WO2020208981A1 - 検査装置、検査方法、及び、フィルムの製造方法 - Google Patents

検査装置、検査方法、及び、フィルムの製造方法 Download PDF

Info

Publication number
WO2020208981A1
WO2020208981A1 PCT/JP2020/009503 JP2020009503W WO2020208981A1 WO 2020208981 A1 WO2020208981 A1 WO 2020208981A1 JP 2020009503 W JP2020009503 W JP 2020009503W WO 2020208981 A1 WO2020208981 A1 WO 2020208981A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
inspection
optical system
moving
orthogonal
Prior art date
Application number
PCT/JP2020/009503
Other languages
English (en)
French (fr)
Inventor
麻耶 尾崎
里恵 曽我部
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020217033104A priority Critical patent/KR20210150413A/ko
Priority to CN202080027065.9A priority patent/CN113646624A/zh
Publication of WO2020208981A1 publication Critical patent/WO2020208981A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/104Mechano-optical scan, i.e. object and beam moving
    • G01N2201/1042X, Y scan, i.e. object moving in X, beam in Y

Definitions

  • the present invention relates to an inspection device, an inspection method, and a film manufacturing method.
  • Patent Document 1 For optical films such as polarizing films and retardation films, and films used for battery separators, defect inspection is performed on the film after the film is formed.
  • the film As a conventional technique for defect inspection of a film, there is a technique of Patent Document 1.
  • the film is inspected while the long film is conveyed in the longitudinal direction. Specifically, while illuminating the film with an illuminating means extending in the width direction (direction orthogonal to the longitudinal direction) of the film conveyed in the longitudinal direction, the film is imaged by a plurality of cameras arranged in the width direction. And inspect the film for defects.
  • the polarizing film is formed by performing a stretching process of stretching the film in the longitudinal direction while transporting a long film made of the material of the polarizing film with a transport roll in the longitudinal direction.
  • foreign matter adheres to the roll surface of the transport roll for transporting a long film, and the foreign matter may damage the film.
  • streaky defects extending in the longitudinal direction of the film occur in the film.
  • Patent Document 1 in which a region illuminated in a line in the width direction is imaged while the film is conveyed in the longitudinal direction to inspect the defect of the film, a defect extending in the longitudinal direction is detected as described above. could not.
  • a defect extending in the longitudinal direction has been described by taking a polarizing film as an example, but the same problem occurs with a defect extending in the reference direction set in the film. That is, as in the technique of Patent Document 1, while moving the film in the reference direction (corresponding to the longitudinal direction of Patent Document 1), the film is illuminated in a line along a direction orthogonal to the reference direction, and the line is illuminated. When performing a defect inspection by imaging a shaped illumination region as an imaging region, it is difficult to detect a defect extending in the reference direction.
  • an object of the present invention is to provide an inspection method and an inspection apparatus capable of detecting defects extending in one direction in a film, and a method for producing a film including the above inspection method.
  • the inspection device receives light from a lighting unit that illuminates a film and the film illuminated by the lighting unit to determine defects. It is provided with an inspection optical system having an imaging unit for acquiring the inspection image of the above, and a moving mechanism for moving the film.
  • the inspection optical system is fixedly arranged independently of the moving mechanism.
  • the moving mechanism has a mechanism for moving the film in a first direction different from the reference direction of the film with respect to the inspection optical system.
  • the imaging region of the inspection optical system extends in a second direction different from the first direction.
  • the reference direction, the first direction, and the second direction are orthogonal to the thickness direction of the film.
  • the first angle between the reference direction and the first direction is 15 ° or more and 165 ° or less.
  • the second angle between the first direction and the second direction is 15 ° or more and 165 ° or less.
  • the reference direction and the second direction are non-orthogonal.
  • the first inspection device an inspection image is acquired while moving the film in a first direction different from the reference direction with respect to the inspection optical system.
  • the second direction which is the extending direction of the imaging region of the inspection optical system, is different from the first direction and is non-orthogonal to the reference direction. Therefore, defects extending in the reference direction can be detected.
  • the inspection optical system does not move, but the film moves, so that the positional relationship between the illumination unit and the imaging unit does not shift. Therefore, it is easy to reliably detect the above-mentioned defect.
  • the inspection optical system may be a scattering optical system.
  • the inspection optical system is a scattering optical system, the positional accuracy between the illumination unit and the image pickup unit tends to affect the detection sensitivity.
  • the inspection optical system is fixed, and when the film is moved, as described above, the positional relationship between the illumination unit and the image pickup unit does not shift. Therefore, it is easy to reliably detect the above-mentioned defect.
  • the moving mechanism further provides a mechanism for moving the film in a third direction orthogonal to the thickness direction as well as different from the first direction with respect to the inspection optical system. You may have.
  • the third angle between the first direction and the third direction may be 15 ° or more and 165 ° or less. In this case, it is possible to change the inspection range in which the inspection is performed by moving the film in the first direction.
  • the other inspection device receives light from the illumination unit that illuminates the film and the film illuminated by the illumination unit to determine defects. It is provided with an inspection optical system having an imaging unit for acquiring an inspection image for the purpose, and a moving mechanism for moving at least one of the film and the inspection optical system.
  • the moving mechanism has a mechanism for moving one of the film and the inspection optical system with respect to the other in a first direction different from the reference direction of the film.
  • the imaging region of the inspection optical system extends in a second direction different from the first direction.
  • the reference direction, the first direction, and the second direction are orthogonal to the thickness direction of the film.
  • the first angle between the reference direction and the first direction is 15 ° or more and less than 90 ° or greater than 90 ° and 165 ° or less.
  • the second angle between the first direction and the second direction is 15 ° or more and 165 ° or less.
  • the reference direction and the second direction are non-orthogonal.
  • an inspection image is acquired while moving one of the film and the inspection optical system with respect to the other in a first direction different from the reference direction of the film.
  • the second direction which is the extending direction of the imaging region of the inspection optical system, is different from the first direction and is non-orthogonal to the reference direction. Therefore, defects extending in the reference direction can be detected.
  • the moving mechanism has a third direction in which one of the film and the inspection optical system is different from the first direction and orthogonal to the thickness direction with respect to the other. It may further have a mechanism to move to.
  • the third angle between the first direction and the third direction may be 15 ° or more and 165 ° or less. In this case, it is possible to change the inspection range in which the inspection is performed by moving one of the film and the inspection optical system in the first direction with respect to the other.
  • Each embodiment of the first inspection device and the second inspection device may have a transport mechanism for transporting the film in the reference direction.
  • the moving mechanism may move the film by moving the transport mechanism.
  • the inspection method according to another aspect of the present invention is an inspection method for inspecting the film by acquiring an inspection image of the film for defect determination.
  • the present invention includes an inspection image acquisition step of acquiring an inspection image for defect determination by illuminating the film with an illumination unit included in the optical system and imaging the film with an imaging unit included in the inspection optical system.
  • the inspection image acquisition step the inspection image is acquired while moving the film with respect to the inspection optical system in a first direction different from the reference direction of the film.
  • the imaging region of the inspection optical system extends in a second direction different from the first direction.
  • the reference direction, the first direction, and the second direction are orthogonal to the thickness direction of the film.
  • the first angle between the reference direction and the first direction is 15 ° or more and 165 ° or less.
  • the second angle between the first direction and the second direction is 15 ° or more and 165 ° or less.
  • the reference direction and the second direction are non-orthogonal.
  • an inspection image is acquired while moving the film in a first direction different from the reference direction with respect to the inspection optical system.
  • the second direction which is the extending direction of the imaging region of the inspection optical system, is different from the first direction and is non-orthogonal to the reference direction. Therefore, defects extending in the reference direction can be detected.
  • the inspection optical system since the inspection optical system is not moved while the film is moved, the positional relationship between the illumination unit and the image pickup unit is not displaced. Therefore, it is easy to reliably detect the above-mentioned defect.
  • the inspection optical system may be a scattering optical system.
  • the inspection optical system is a scattering optical system, the positional accuracy between the illumination unit and the image pickup unit tends to affect the detection sensitivity. Since the inspection optical system is fixed, when the film is moved, as described above, the positional relationship between the illumination unit and the image pickup unit does not shift. Therefore, it is easy to reliably detect the above-mentioned defect.
  • second inspection method is an inspection method for inspecting the film by acquiring an inspection image of the film for defect determination.
  • the film is illuminated by the illumination unit of the inspection optical system, and the film is imaged by the imaging unit of the inspection optical system to obtain an inspection image for defect determination.
  • an inspection image is acquired while moving one of the film and the inspection optical system with respect to the other in a first direction different from the reference direction of the film.
  • the imaging region of the inspection optical system extends in a second direction different from the first direction.
  • the reference direction, the first direction, and the second direction are orthogonal to the thickness direction of the film.
  • the first angle between the reference direction and the first direction is 15 ° or more and less than 90 ° or greater than 90 ° and 165 ° or less.
  • the second angle between the first direction and the second direction is 15 ° or more and 165 ° or less.
  • the reference direction and the second direction are non-orthogonal.
  • an inspection image is acquired while moving one of the film and the inspection optical system to the other in a first direction different from the reference direction of the film.
  • the relationship between the first angle and the second angle satisfies the above relationship, and the reference direction and the second direction are non-orthogonal. Therefore, defects extending in the reference direction can be detected.
  • the inspection image acquisition step and the range change step may be alternately performed until the inspection image of the entire inspection range preset in the film is acquired. As a result, the entire inspection range can be inspected.
  • the inspection range is changed by moving the film in the third direction which is different from the first direction and orthogonal to the thickness direction. You may change it.
  • the inspection range may be changed by transporting the film in the reference direction.
  • the film may be a long film.
  • the reference direction may be the longitudinal direction of the film.
  • the film may include a stretched film stretched in one direction.
  • the reference direction may be the stretching direction of the stretched film.
  • the present invention also relates to a film manufacturing method, which comprises a step of inspecting the film by the above inspection method.
  • an inspection device and an inspection method capable of detecting defects extending in one direction in a film and a film manufacturing method including the above inspection method.
  • FIG. 1 is a flowchart of an example of a film manufacturing method including an inspection method according to an embodiment.
  • FIG. 2 is a drawing for explaining a film forming process included in the film manufacturing method shown in FIG.
  • FIG. 3 is a drawing for explaining defects detected in the film inspection step of the film manufacturing method shown in FIG.
  • FIG. 4 is a schematic view of an example of an inspection device for carrying out a film inspection step included in the film manufacturing method shown in FIG.
  • FIG. 5 is a schematic view of the inspection device shown in FIG. 4 when viewed from the imaging unit side.
  • FIG. 6 is a drawing for explaining the relationship between the reference direction, the first moving direction (first direction), and the extending direction (second direction) of the imaging region.
  • FIG. 1 is a flowchart of an example of a film manufacturing method including an inspection method according to an embodiment.
  • FIG. 2 is a drawing for explaining a film forming process included in the film manufacturing method shown in FIG.
  • FIG. 3 is a drawing for explaining defects detected in
  • FIG. 7 is a flowchart of an example of the film inspection process shown in FIG.
  • FIG. 8 is a drawing for explaining the inspection image acquisition process shown in FIG. 7.
  • FIG. 9 is a drawing showing a range inspected in the inspection image acquisition step shown in FIG. 7.
  • FIG. 10 is a drawing showing an example of an inspection image obtained by inspecting a film having a defect by the first reference inspection method.
  • FIG. 11 is a drawing showing an example of an inspection image obtained by inspecting the film captured in FIG. 10 by the second reference inspection method.
  • FIG. 12 is a drawing for explaining an example of an inspection device for carrying out the film inspection step of the modified example 1.
  • FIG. 13 is a schematic view of the inspection device shown in FIG. 12 when viewed from the imaging unit side.
  • FIG. 13 is a schematic view of the inspection device shown in FIG. 12 when viewed from the imaging unit side.
  • FIG. 14 is a drawing for explaining an example of an inspection device for carrying out the film inspection step of the modification 2.
  • FIG. 15 is a drawing for explaining the relationship between the reference direction, the first moving direction (first direction), the extending direction (second direction) of the imaging region, and the second moving direction (third direction) in the modified example 3.
  • FIG. 16 is a drawing for explaining an example of an inspection device for carrying out the film inspection step of the modified example 3.
  • FIG. 1 is a drawing showing a flowchart of a film manufacturing method including an inspection method according to an embodiment.
  • the film manufacturing method includes a film forming step S10 and a film inspection step S20.
  • the film produced by the film manufacturing method is a polarizing film.
  • An example of a material for a polarizing film is a polyvinyl alcohol-based resin.
  • An example of a polyvinyl alcohol-based resin is a PVA (Polyvinyl Alcohol) resin.
  • PVA Polyvinyl Alcohol
  • the polarizing film 3 is formed while the long polyvinyl alcohol-based resin film 2 is conveyed in the longitudinal direction by a roll-to-roll method. Specifically, the long polyvinyl alcohol-based resin film 2 set on the unwinding roll R1 is unwound. While the unwound polyvinyl alcohol-based resin film 2 is conveyed by a plurality of conveying rolls R2, various treatments are performed to form a polarizing film 3, and then the unwound polyvinyl alcohol-based resin film 2 is wound by the winding roll R3.
  • the stretching treatment is performed by the stretching treatment device 4 arranged on the transport path of the polyvinyl alcohol-based resin film 2 among various treatments.
  • the stretching treatment apparatus 4 the polyvinyl alcohol-based resin film 2 conveyed in the longitudinal direction is stretched in the longitudinal direction.
  • the stretching method in the stretching treatment device 4 may be either a dry method or a wet stretching method.
  • the polyvinyl alcohol-based resin film 2 is imparted with linearly polarized light characteristics, and the polarizing film 3 is formed. Therefore, the polarizing film 3 is a stretched film.
  • the stretching direction of the polarizing film 3 is the longitudinal direction of the long polarizing film 3.
  • the film forming step S10 may include other treatments for forming the polarizing film 3, such as a dyeing treatment for adsorbing a dichroic dye on the polyvinyl alcohol-based resin film 2, a washing treatment, and a drying treatment.
  • the film inspection step S20 the presence or absence of defects in the polarizing film 3 formed in the film forming step S10 is inspected.
  • the inspection target in the film inspection step S20 is, for example, a long film in which portions cut out for inspection from the polarizing film 3 are connected.
  • the film to be inspected may be a long film cut out from one end of both ends in the longitudinal direction of the polarizing film 3.
  • the film to be inspected is, for example, one end (one end in the longitudinal direction) and the other end (the other end in the longitudinal direction) of each of the plurality of polarizing films 3 formed in the film forming step S10. ) May be cut out, and the film may be obtained by connecting the cut out parts.
  • defects in the plurality of polarizing films 3 can be inspected.
  • An example of the length of the film to be inspected in the longitudinal direction is 70 mm to 7000 mm, and an example of the length in the width direction orthogonal to the longitudinal direction is 50 mm to 1500 mm.
  • the defect detected in the film inspection step S20 is a streak-like defect 5 extending in one direction in the film 1 to be inspected.
  • the defect 5 for example, scratches caused by foreign matter adhering to the surface of the transport roll R2 used in the film forming step S10 are applied to the polyvinyl alcohol-based resin film 2 for stretching treatment or transport by the transport roll R2. It is considered that the defect was caused by being stretched in the longitudinal direction due to tension or the like. Therefore, the extending direction of the defect 5 coincides with the longitudinal direction of the polarizing film 3 formed in the film forming step S10, and also coincides with the longitudinal direction of the film 1 to be inspected.
  • the longitudinal direction of the polarizing film 3 is not only the conveying direction of the polarizing film 3 (or the polyvinyl alcohol-based resin film 2) in the film forming step S10, but also the stretching direction of the polarizing film 3.
  • the longitudinal direction of the film 1 is referred to as the reference direction D1 set in the film 1.
  • An example of the length of the defect 5 in the reference direction D1 is 0.2 mm to 1 mm, and an example of the length in the width direction orthogonal to the reference direction D1 is 0.05 mm to 0.2 mm.
  • the inspection device 10 used in the film inspection step S20 will be described with reference to FIGS. 4 and 5.
  • the inspection device 10 includes a transport mechanism 11 for transporting the film 1 in the longitudinal direction, an inspection optical system 12 for imaging the film 1, and a moving mechanism 13 for moving the transport mechanism 11.
  • the transport mechanism 11 has a unwinding roll 111, a transport roll 112, a transport roll 113, and a take-up roll 114.
  • a pair of rotating shafts 111a, rotating shafts 112a, rotating shafts 113a, and rotating shafts 114a (see FIG. 5) of the unwinding roll 111, the conveying roll 112, the conveying roll 113, and the winding roll 114 are fixed to the moving mechanism 13. It is rotatably supported by the gantry 115.
  • the gantry 115 is schematically shown by a broken line in order to show the transport form of the film 1 by the transport mechanism 11 and the inspection optical system 12.
  • the roll-shaped film 1 set on the unwinding roll 111 is conveyed to the winding roll 114 by using the conveying roll 112 and the conveying roll 113, and is wound into a roll by the winding roll 114.
  • the film 1 is horizontally transported between the transport rolls 112 and 113.
  • the inspection optical system 12 is fixedly arranged between the transport rolls 112 and the transport rolls 113 independently of the moving mechanism 13. As shown in FIG. 5, the inspection optical system 12 includes an illumination unit 121 and an imaging unit 122 in order to image an imaging region A extending in one direction.
  • the extending direction (second direction) of the imaging region A is referred to as the extending direction D2.
  • the imaging unit 122 is not shown. An example of the illumination unit 121 and the image pickup unit 122 will be described.
  • the illumination unit 121 is arranged on one surface (lower surface of the film 1 in FIG. 4) side of the film 1 and illuminates the film 1. Specifically, the illumination unit 121 illuminates the imaging region (field of view) A. Therefore, the illumination unit 121 extends in the extension direction D2 of the imaging region A.
  • the lighting unit 121 has a light source 121a and a light shielding body 121b.
  • the light source 121a extends in the extending direction of the illumination unit 121 (extending direction D2 of the imaging region A). Since the light source 121a illuminates the film 1, it outputs light that does not affect the composition and properties of the film 1. Examples of the light source 121a are metal halide lamps, halogen transmission lights, fluorescent lamps, and the like.
  • the light-shielding body 121b is arranged between the light source 121a and the film 1. The light-shielding body 121b functions as a knife edge that blocks a part of the light output from the light source 121a to the film 1.
  • the light-shielding body 121b is arranged so as to hide a part (for example, half) of the illumination area of the film 1 when the light-shielding body 121b is not arranged in a direction orthogonal to the extending direction of the light source 121a when viewed from the imaging unit 122. ing.
  • the scattered light output from the light source 121a and scattered at the edge of the light-shielding body 121b illuminates the film 1. Since the film 1 is illuminated by the scattered light in this way, the inspection optical system 12 is a scattered optical system. Since the light source 121a and the light-shielding body 121b extend in the extending direction D2 of the imaging region A, the illumination region of the film 1 by the illumination unit 121 also extends in the extending direction D2.
  • the imaging unit 122 receives the light from the film 1 illuminated by the illuminating unit 121 to image the film 1 in order to obtain an inspection image for determining defects.
  • the imaging unit 122 has a plurality of pixels arranged along the extending direction D2 of the imaging region A. Examples of the imaging unit 122 include a CCD camera, a CMOS camera, a line sensor, and an area sensor.
  • the imaging unit 122 is arranged so that the imaging region A can image the illumination region of the illumination unit 121.
  • the imaging unit 122 is electrically connected to the analysis device 14.
  • the imaging unit 122 inputs the imaging data to the analysis device 14.
  • the analysis device 14 sets and controls the operating conditions of the imaging unit 122.
  • the analysis device 14 creates an inspection image for determining the presence or absence of the defect 5 based on the image pickup data from the image pickup unit 122, and displays it on the display device 15. As a result, when the film 1 contains the defect 5, the defect 5 is displayed on the inspection image. As a result, the presence or absence of the defect 5 of the film 1 can be determined.
  • the analysis device 14 identifies the position of the defect 5 based on, for example, the intensity of the light incident on the imaging unit 122 in order to clearly show the defect 5, and the defect 5 and other defects 5 are used.
  • the portion may be displayed in a different color, or when a black-and-white image is created, the defect 5 may be distinguished from the other portion by shading.
  • the analysis device 14 is a computer device having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a hard disk, and the like.
  • the imaging unit 122 may have the function of forming the inspection image in the analysis device 14.
  • the analysis device 14 also functions as a control device for controlling the inspection device 10. For example, the analysis device 14 sets and controls the transfer speed in the transfer mechanism 11. The analysis device 14 may be a part of the inspection device 10.
  • the moving mechanism 13 is a mechanism for moving the film 1 in a first moving direction (first direction) D3 different from the reference direction (conveying direction) D1 of the film 1.
  • the moving mechanism 13 is a uniaxial stage having a base plate 131 and a moving stage 132, and electrically moving the moving stage 132 with respect to the base plate 131 in the first moving direction D3.
  • the transport mechanism 11 (specifically, the gantry 115) is fixed on the moving stage 132. Therefore, as the moving stage 132 moves, the transport mechanism 11 moves in the first moving direction D3, so that the film 1 moves in the first moving direction D3.
  • the moving mechanism 13 has, for example, a guide portion 133 extending in the first moving direction D3 between the base plate 131 and the moving stage 132.
  • the moving stage 132 may be attached to the guide portion 133 so as to be movable along the guide portion 133.
  • the moving mechanism 13 may have, for example, an actuator mechanism, a rack and pinion mechanism, or the like in order to move the moving stage 132 with respect to the base plate 131.
  • the analysis device 14 may control the movement timing, movement speed, movement amount, etc. of the movement stage 132 included in the movement mechanism 13.
  • the movement mechanism 13 moves the film 1 in the first moving direction D3 when the film 1 is moved in the first forward direction along the first moving direction D3 and when the film 1 is moved along the first moving direction D3. It is a meaning including the case where the film 1 is moved in the first reverse direction opposite to the one forward direction.
  • the relationship between the reference direction D1 of the film 1, the extending direction D2 of the imaging region A, and the first moving direction D3 will be described with reference to FIG.
  • the reference direction D1, the extending direction D2 of the imaging region A, and the first moving direction D3 are directions orthogonal to the thickness direction of the film 1, and have the relationship shown in FIG.
  • the first moving direction D3 is tilted with respect to the reference direction D1 of the film 1.
  • the first angle ⁇ 1 between the reference direction D1 and the first moving direction D3 is 15 ° or more and 165 ° or less.
  • the first angle ⁇ 1 is, for example, 45 ° or more and 135 ° or less.
  • the first angle ⁇ 1 is a case where the first movement direction D3 is rotated in a predetermined rotation direction (clockwise in FIG. 6) with respect to the reference direction D1 from the case where the reference direction D1 and the first movement direction D3 are tentatively aligned. In addition, it is an angle between the reference direction D1 and the first movement direction D3 that increases accordingly.
  • the extending direction D2 of the imaging region A is inclined with respect to the first moving direction D3 and is not orthogonal to the reference direction D1.
  • the second angle ⁇ 2 formed by the extending direction D2 and the first moving direction D3 is 15 ° or more and 165 ° or less.
  • the second angle ⁇ 2 is, for example, 45 ° or more and 135 ° or less.
  • the second angle ⁇ 2 is an angle in the above angle range in which the extending direction D2 is non-orthogonal to the reference direction D1.
  • the second angle ⁇ 2 is such that the extension direction D2 is the predetermined rotation direction with respect to the first movement direction D3 from the case where the first movement direction D3 and the extension direction D2 of the imaging region A are tentatively aligned (FIG. 6).
  • the extension direction D2 is non-orthogonal to the reference direction D1 not only when the angle between the extension direction D2 and the reference direction D1 is different from 90 °, for example, among 0 ° to 180 °. It also includes cases different from the range of 85 ° to 95 ° or the range of 75 ° to 105 °. Therefore, the angle formed by the extending direction D2 and the reference direction D1 may be different from the range of 85 ° to 95 ° or the range of 75 ° to 105 ° of 0 ° to 180 °, for example.
  • the extension direction D2 is set to the predetermined rotation direction (for example, FIG. 6) with respect to the reference direction D1 from the case where the reference direction D1 and the extension direction D2 are tentatively aligned. It is an angle between the reference direction D1 and the extension direction D2 that increases accordingly when rotated clockwise).
  • FIG. 7 is a flowchart of an example of the inspection process.
  • the film inspection step S20 the film 1 to be inspected is set on the unwinding roll 111, and the film 1 is unwound.
  • the unwound film 1 is passed over the take-up roll 114 via the transfer roll 112 and the transfer roll 113.
  • the film inspection step S20 includes an inspection image acquisition step S21, a determination step S22, and a range changing step S23.
  • the film 1 is moved in the first moving direction as shown by the solid line and the alternate long and short dash line in FIG.
  • the film 1 is imaged by the fixedly arranged (that is, non-moving) inspection optical system 12 while moving in D3 (for example, the first forward direction).
  • the film 1 is irradiated with light from the illumination unit 121, and the film 1 is imaged by the image pickup unit 122.
  • the imaging data obtained by the imaging unit 122 is input to the analysis device 14, and the analysis device 14 creates an inspection image (inspection image acquisition step S21 in FIG. 7).
  • the inspection image created by the analysis device 14 is displayed on the display device 15.
  • the film 1 is moved in the first moving direction D3 by the moving mechanism 13 until the entire width direction of the film 1 is imaged.
  • image data of the inspection range B in the film 1 can be obtained.
  • the length of the inspection range B in the transport direction substantially corresponds to the length of the imaging region A in the transport direction (the distance between the upstream end and the downstream end of the imaging region A along the transport direction).
  • the range that can be inspected in the inspection image acquisition step S21 is a part of the film 1. That is, in the inspection image acquisition step S21, a part of the film 1 is inspected. Therefore, when the movement of the film 1 by the moving mechanism 13 is completed (that is, the inspection image acquisition step S21 is completed), the inspection of the desired total inspection range (the preset total inspection range) of the film 1 is completed. Whether or not it is determined (determination step S22 in FIG. 7). For the determination, for example, the analysis device 14 compares the inspection end range calculated based on the number of times the inspection image acquisition step S21 is performed and the size of the inspection range B with the size of the desired total inspection range on the film 1. It can be carried out by doing. Alternatively, the operator may visually check it.
  • the inspection range to be inspected in the inspection image acquisition step S21 is changed (range change step S23 in FIG. 7).
  • the film 1 is conveyed in the reference direction D1 (conveyance direction).
  • the transport amount is substantially equal to the length of the inspection range B in the transport direction.
  • the inspection image acquisition step S21 and the range changing step S23 are carried out until the entire desired inspection range on the film 1 is inspected.
  • the inspection image acquisition step S21 is performed a plurality of times by repeating the inspection image acquisition step S21 and the inspection range changing step S22, in the plurality of inspection image acquisition steps S21, the moving mechanism 13 moves the moving stage 132 to the first moving direction D3.
  • the case of moving in the first forward direction and the case of moving in the first reverse direction may be alternately performed.
  • the transfer roll R2 (particularly, the roll before the stretching treatment) used in the film forming step S10 is used. Foreign matter may be attached. Therefore, the roll surface of the transport roll R2 used in the film forming step S10 may be cleaned or the transport roll R2 may be replaced. As a result, the polarizing film 3 containing no defects 5 can be manufactured.
  • the imaging unit 122 and the illumination unit 121 are arranged so that the extending direction D2 of the imaging region A is orthogonal to the reference direction D1, and the film is imaged while being conveyed in the conveying direction.
  • first reference inspection method the first reference inspection method, even if the film having the defect 5 is inspected, the defect 5 is not displayed in the inspection image obtained by imaging the film as shown in FIG. That is, the defect 5 is not detected.
  • the film is set to the reference direction D1.
  • defect 5 is detected as shown in the region shown by the broken line in FIG. It is considered that this is because the defect 5 is illuminated with more light in the second reference inspection method than in the case of the first reference inspection method, and as a result, the amount of light incident on the imaging unit is increased.
  • the annular mark shown in FIGS. 10 and 11 is a mark indicating a region in which the defect 5 is formed in the film. 10 and 11 show the results of imaging the same film in which the defect 5 is formed at the position of the annular mark under the same conditions except that the direction of the imaging region A with respect to the reference direction D1 is tilted as described above. It is a drawing which shows.
  • the film 1 is imaged by the inspection optical system 12 while moving the film 1 in the first moving direction D3.
  • the extending direction D2, the reference direction D1 and the first moving direction D3 of the imaging region A have the relationship shown in FIG. 6, and as described above, the reference direction D1 and the extending direction D2 Is non-orthogonal.
  • the defect 5 can be detected in the same manner as in the second reference inspection method.
  • the film 1 Since the film 1 is moved in the first moving direction D3, it is possible to obtain an inspection image of the film 1 even if there is only one inspection optical system 12, for example. Further, since the inspection optical system 12 is fixedly arranged and the film 1 is moved independently of the inspection optical system 12, the positional relationship between the imaging unit 122 and the illumination unit 121 does not deviate. As a result, the defect 5 can be reliably detected. As shown in FIG. 4, when light is scattered by the light-shielding body 121b and the film 1 is illuminated by the scattered light, the positional accuracy between the image pickup unit 122 and the illumination unit 121 is very important. Therefore, the inspection device 10 and the inspection method using the inspection device 10 are very effective when the film 1 is illuminated by outputting scattered light from the illumination unit 121.
  • the film inspection step S20 was carried out on a film 1 obtained by winding the polarizing film 3 once in a roll shape in the film forming step S10 and then cutting out a certain region from the formed polarizing film 3.
  • the polarizing film 3 formed in the film forming step S10 may be further conveyed by the conveying roll R2, and the film inspection step S20 may be carried out on the polarizing film 3.
  • the film inspection step S20 may be performed before the polarizing film 3 formed in the film forming step S10 is wound into a roll.
  • the inspection device 20 includes an inspection optical system 12, a moving mechanism 13, and a transport mechanism 21. Since the configurations of the inspection optical system 12 and the moving mechanism 13 are the same as those of the inspection device 10, the description thereof will be omitted.
  • the transport mechanism 21 has a take-up roll 211, a transport roll 212, and a pair of pedestals 213.
  • the take-up roll 211 is a roll for winding the polarizing film 3 in a roll shape.
  • the transport roll 212 is a roll for guiding and supporting the polarizing film 3 in order to transport the polarizing film 3 to the winding roll 211.
  • the pair of pedestals 213 rotatably support the rotary shaft 211a and the rotary shaft 212a of the take-up roll 211 and the transport roll 212, respectively.
  • the pair of pedestals 213 are fixed on the moving mechanism 13 (specifically, on the moving stage 132). In the embodiment shown in FIG. 12, the take-up roll 211 and the transfer roll 212 are arranged so that the polarizing film 3 is substantially horizontally conveyed between them.
  • the film inspection step S20 of the first modification includes the inspection image acquisition step S21, the determination step S22, and the range changing step S23 shown in FIG. 7, as in the case of the inspection device 10.
  • the inspection image acquisition step S21, the determination step S22, and the range change step S23 the inspection image acquisition step S21, which is included in the film inspection step S20 using the inspection device 10, is determined, except that the inspection target is the polarizing film 3 itself. This is the same as in step S22 and range changing step S23.
  • substantially the entire polarizing film 3 may be in the inspection range.
  • each of the plurality of discretely set regions may be the inspection range.
  • an accumulator 22 is arranged in front of the inspection device 20.
  • the accumulator 22 is a mechanism for separately controlling the transport speed of the polarizing film 3 up to the accumulator 22 and the transport speed after the accumulator 22 (including the case where the transport speed is 0).
  • the accumulator 22 has a fixed roll 221 and a movable roll 222 whose distance from the fixed roll 221 can be adjusted.
  • the transport distance of the polarizing film 3 is changed by moving the position of the movable roll 222.
  • the transport speed after the accumulator 22 can be adjusted. For example, by moving the movable roll 222 so as to increase the transport distance of the polarizing film 3 between the fixed roll 221 and the movable roll 222, the polarizing film 3 stays in the accumulator 22, so that the polarizing film 3 in the accumulator 22 and later is polarized.
  • the transport speed of the film 3 can be reduced (speed 0 depending on the residence time).
  • the position control of the movable roll 222 may be performed by, for example, the analysis device 14.
  • the accumulator 22 may be part of the inspection device 20.
  • the moving mechanism 13 moves the transport mechanism 11 in the first moving direction D3 with respect to the inspection optical system 12, so that the polarizing film 3 is moved in the first moving direction D3 with respect to the inspection optical system 12.
  • a turn bar (conveyance direction changing unit) 23 may be arranged between the accumulator 22 and the transfer roll 212 of the inspection device 20.
  • the turn bar 23 functions as a transport direction changing unit that changes the transport direction of the polarizing film 3.
  • the turn bar 23 maintains the transport direction of the polarizing film 3 by the transport mechanism 11 (that is, the transport direction of the polarizing film 3 from the transport roll 212 to the take-up roll 211) in accordance with the movement of the transport mechanism 11 by the moving mechanism 13.
  • the conveying direction of the polarizing film 3 is changed so that unnecessary tension is not generated on the polarizing film 3.
  • the turn bar 23 may be provided so that the extending direction of the turn bar 23 with respect to the conveying direction of the polarizing film 3 conveyed from the accumulator 22 to the turn bar 23 can be adjusted according to the movement of the conveying mechanism 11 by the moving mechanism 13. .
  • the analysis device 14 may adjust the direction of the turn bar 23 in the extending direction.
  • the turn bar 23 may be a part of the inspection device 10.
  • the number of turn bars 23 is not limited to one.
  • the number and arrangement of the turn bars 23 can be set so that the conveying direction of the polarizing film 3 by the conveying mechanism 21 is maintained in the inspection image acquisition step S21 and unnecessary tension is not generated on the polarizing film 3.
  • the transfer mechanism 11 is moved in the first moving direction D3 by the moving mechanism 13 with the inspection optical system 12 fixed (more specifically, the polarizing film 3 is moved.
  • the polarizing film 3 is inspected while being moved). Therefore, even in the modified example 1, the same function and effect as in the case of the inspection device 10 and the film inspection method using the inspection device 10 are obtained.
  • the first modification almost all of the polarizing film 3 in the longitudinal direction can be easily inspected.
  • the inspection optical system may be moved. Good. A case where the inspection optical system is moved will be described as a second modification. Also in the second modification, the extending direction D2 is non-orthogonal to the reference direction D1. The meaning of non-orthogonality is as described above.
  • the inspection device 30 that carries out the film inspection step S20 of the second modification has a transport mechanism 11, an inspection optical system 31, and a moving mechanism 32. Since the transport mechanism 11 is the same as that of the inspection device 10, the description of the transport mechanism 11 will be omitted.
  • the schematic configuration of the inspection optical system 31 and the moving mechanism 32 included in the inspection device 30 will be described with reference to FIG. FIG. 14 schematically shows a case where the inspection optical system 31 and the moving mechanism 32 are viewed from a direction orthogonal to the extending direction of the illumination unit 121. In FIG. 14, the transport mechanism 11 is not shown.
  • the inspection optical system 31 has an illumination unit 121, an imaging unit 122, and a connecting unit 311 that integrally connects them.
  • the configurations of the illumination unit 121 and the imaging unit 122 and their arrangement are the same as in the case of the inspection device 10.
  • the illumination unit 121 is schematically shown.
  • the connecting portion 311 may have a configuration that does not interfere with the film 1 when the inspection optical system 31 is moved in the first moving direction D3. For example, when the connecting portion 311 has a U shape as shown in FIG. 14, if the length of the connecting portion 311 in the first moving direction D3 is equal to or longer than the length of the film 1 in the first moving direction D3. Good.
  • the moving mechanism 32 is attached to the guide portion 321 extending in the first moving direction D3 of the inspection optical system 31 and the guide portion 321 movably movable in the extending direction of the guide portion 321, and also supports the connecting portion 311. It has a part 322.
  • the support portion 322 is electrically attached to the guide portion 321 so as to be movable in the first moving direction D3.
  • a plurality of inspection optical systems 31 may be moved by the moving mechanism 32.
  • one inspection optical system 31 is arranged on one edge side of the film 1 in the width direction of the film 1, and another inspection optical system 31 is arranged on the other edge side.
  • the system 31 may be arranged.
  • the moving distance of each inspection optical system 31 is shorter than in the case where one inspection optical system 31 images the entire region in the first moving direction D3, so that the moving distance of each inspection optical system 31 is shorter in the first moving direction D3 of the connecting portion 311.
  • the length can be shortened.
  • the film 1 may be inspected by photographing the film 1 while moving the connecting portion 311 along the guide portion 321 in the first moving direction D3.
  • the moving state of the connecting portion 311 may be controlled by, for example, the analysis device 14.
  • the film inspection step S20 of the second modification includes the inspection image acquisition step S21, the determination step S22, and the range changing step S23 shown in FIG. 7, as in the case of the film inspection step S20 using the inspection device 10.
  • the film inspection step S20 in the second modification is the film inspection described above, except that in the inspection image acquisition step S21, the inspection optical system 31 is moved with respect to the film 1 by the moving mechanism 32 without moving the transport mechanism 11. This is the same as step S20. Therefore, the defect 5 shown in FIG. 3 can be detected.
  • moving the inspection optical system 31 for example, the inspection optical system 31 is moved so that the positional relationship between the image pickup unit 122 and the illumination unit 121 is equal to or less than the resolution of the image pickup unit 122. As shown in FIG.
  • the inspection device 30 may further include the moving mechanism 13 shown in FIG. 4, and the transport mechanism 11 (specifically, the film 1) may be moved by the moving mechanism 13 together with the inspection optical system 31. That is, when the first angle ⁇ 1 is 15 ° or more and less than 90 ° or greater than 90 ° and 165 ° or less, or 45 ° or more and less than 90 ° or greater than 90 ° and 135 ° or less, the inspection optical system 31 and the film The other of 1 (or the transport mechanism 11) may be moved in the first moving direction D3.
  • the transport mechanism 11 itself (that is, the film 1) is used. Further, it may be moved in a second moving direction (third direction) D4 different from the first moving direction D3.
  • FIG. 15 is a drawing for explaining the relationship between the reference direction D1, the extending direction D2 of the imaging region A, the first moving direction D3, and the second moving direction D4.
  • the relationship between the first angle ⁇ 1 between the reference direction D1 and the first moving direction D3 and the second angle ⁇ 2 between the first moving direction D3 and the extending direction D2 is the same as in FIG.
  • the extending direction D2 and the reference direction D1 are non-orthogonal.
  • the angle formed by the extending direction D2 and the reference direction D1 may be different from, for example, 75 ° to 105 °.
  • the second moving direction D4 is different from the first moving direction D3, and the third angle ⁇ 3 between the first moving direction D3 and the second moving direction D4 is 15 ° to 165 ° or 45 ° to 135 °. is there.
  • the second moving direction D4 may be the same as the extending direction D2 of the imaging region A.
  • the inspection device 40 for carrying out the film inspection step S20 of the third modification in order to move the film 1 in the first moving direction D3 and the second moving direction D4 is a transport mechanism 11
  • the inspection optical system 12 and the moving mechanism 41 are provided. Since the transport mechanism 11 and the inspection optical system 12 are the same as in the case of the inspection device 10, the description thereof will be omitted.
  • the moving mechanism 41 is a biaxial stage capable of moving the film 1 in the first moving direction D3 and in the second moving direction D4.
  • the moving mechanism 41 includes a first moving mechanism 411 that moves the film 1 in the first moving direction D3, and a second moving mechanism 412 that moves the film 1 in the second moving direction D4.
  • the configuration of the first moving mechanism 411 can be the same as that of the moving mechanism 13 of FIG.
  • the second moving mechanism 412 is arranged on the first moving mechanism 411, and the conveying mechanism 11 is fixed to the second moving mechanism 412.
  • the configuration of the second moving mechanism 412 may be the same as the configuration of the first moving mechanism 411, that is, the moving mechanism 13 of FIG. 4 except that the extending direction of the guide portion is the second moving direction D4.
  • the second moving mechanism 412 has a base plate, a moving stage, and a guide portion extending in the second moving direction D4 provided between them, and the moving stage has a guide portion with respect to the base plate. It suffices if it is configured to be movable in the second moving direction D4 along the above.
  • the base plate on the second moving mechanism 412 side may be common to the moving stage of the first moving mechanism 411.
  • the movement mechanism 41 moves the film 1 in the second moving direction D4 when the film 1 is moved in the second forward direction along the second moving direction D4 and when the film 1 is moved along the second moving direction D4. 2 This means including the case of moving the film 1 in the second reverse direction opposite to the forward direction.
  • the region of the film 1 located between the transport roll 112 and the transport roll 113 of the film 1 can be inspected as the entire inspection range. .. After the inspection of the inspection range is completed, for example, the film 1 may be conveyed in the conveying direction by the conveying mechanism 11 to further inspect the range of the film 1.
  • the inspection optical system 12 is not limited to the transmission optical system, and may be a reflection optical system. That is, the illumination unit 121 and the imaging unit 122 may be arranged on the same side with respect to the film 1. Further, the inspection optical system 12 may be a combination of a transmission optical system and a reflection optical system. In this case, the inspection optical system 12 includes an image pickup unit 122, a first illumination unit arranged on the opposite side of the film 1 from the image pickup unit 122 to form a transmission optical system, and an image pickup unit 122 with respect to the film 1. It may have a second illumination unit that is arranged on the same side and forms a reflective optical system. As illustrated in FIG. 4, the configuration of the first illumination unit and the second illumination unit may include, for example, a light source 121a and a light-shielding body 121b.
  • the above-described embodiment and various modifications may be combined as appropriate without departing from the spirit of the present invention.
  • the first modification to the second to fourth modifications the polarizing film 3 is inspected before the polarizing film 3 formed in the film forming step S10 of FIG. 1 is wound by a take-up roll. You may.
  • the inspection range may be changed.
  • a third modification may be applied to the second modification. In this case, in the range changing step S23 of FIG.
  • the inspection range may be changed by moving one of the film 1 or the inspection optical system 31 in the second moving direction D4 with respect to the other.
  • a reflection optical system may be adopted as the inspection optical system by applying the fourth modification in the first to third modification, or an optical system combining a transmission optical system and a reflection optical system may be adopted. Good.
  • the illumination unit does not have to have a light-shielding body.
  • a scattered optical system may be realized by arranging the illumination unit and the imaging unit so that the imaging unit captures a region illuminated by the light scattered at the end of the illumination unit.
  • the inspection optical system is not limited to the scattering optical system.
  • the defect 5 is often formed by extending the scratches generated before the stretching treatment by the stretching treatment or the like. Therefore, the inspection method and the inspection apparatus described in the above-described embodiment and various modifications are provided. Is effective for inspecting the defect 5 of the stretched film. However, for example, when the film is conveyed by the conveying roll, tension is applied in the conveying direction of the film, so that the defect 5 may occur as in the case of the stretching treatment. Therefore, the present invention is also effective for defect inspection of a long film, for example, when a film is formed by a roll-to-roll method.
  • the reference direction, the moving direction of at least one of the film and the optical system (first direction), and the extending direction of the imaging region (second direction) are set. If the above-mentioned relationship is satisfied, a defect substantially extending in the reference direction (that is, a defect extending in one direction satisfying a certain relationship with respect to the first direction and the second direction) can be detected. is there. Therefore, the reference direction of the film is not limited to the longitudinal direction of the film and the conveying direction when the film is conveyed by the conveying roll.
  • the extending direction of the defect to be detected in the film is assumed in advance, the assumed extending direction of the defect may be set as the reference direction of the film. Any direction may be used as a reference direction in the film. In this case, if a defect extending in the reference direction occurs, the defect can be detected.
  • the film in the inspection image acquisition step, when the first angle ⁇ 1 includes 90 °, the film may be moved with respect to the inspection optical system, and the first angle may be moved. If ⁇ 1 does not include 90 °, one of the film and the inspection optical system may be moved relative to the other.
  • the film formed in the film forming step is a part of the polarizing film, and the polarizing film (or the film cut out from the polarizing film) is the inspection target.
  • the film to be inspected is not limited to the polarizing film.
  • it may be a laminated film in which another film (for example, a protective film or a retardation film) is bonded to a polarizing film, or a separator film for a battery.
  • the film to be inspected is not limited to a long film, but may be a single-wafer film.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本発明の一実施形態に係る検査装置は、照明部と、欠陥判定のための検査画像を取得する撮像部とを有する検査光学系と、フィルムを移動させる移動機構とを備え、検査光学系は、移動機構と独立して固定配置されており、移動機構は、検査光学系に対し、フィルムをフィルムの基準方向と異なる第1方向に移動させる機構を有し、撮像部の撮像領域Aは、第1方向と異なる第2方向に延在しており、基準方向、第1方向及び第2方向は、フィルムの厚さ方向に直交しており、基準方向と第1方向との間の第1角度θ1は15°以上165°以下であり、第1方向と第2方向との間の第2角度θ2は15°以上165°以下であり、基準方向と第2方向とは非直交である。

Description

検査装置、検査方法、及び、フィルムの製造方法
 本発明は、検査装置、検査方法、及び、フィルムの製造方法に関する。
 偏光フィルム及び位相差フィルム等の光学フィルム、電池のセパレータに用いられるフィルム等では、そのフィルムを形成した後、フィルムの欠陥検査が実施される。フィルムの欠陥検査の従来技術として、特許文献1の技術がある。特許文献1の技術では、長尺のフィルムを長手方向に搬送しながらフィルムの検査を行っている。具体的には、長手方向に搬送されているフィルムの幅方向(長手方向に直交する方向)に延在する照明手段でフィルムを照明しながら、幅方向に配置された複数のカメラでフィルムを撮像してフィルムの欠陥を検査している。
特開2016-70856号公報
 偏光フィルムは、偏光フィルムの材料で形成された長尺のフィルムを長手方向に搬送ロールで搬送しながら、上記長手方向にフィルムを延伸させる延伸処理を施すことによって形成される。例えば長尺のフィルムを搬送するための上記搬送ロールのロール表面に異物が付着しており、その異物によってフィルムに傷がつく場合がある。傷が生じたフィルムに延伸処理が施されると、フィルムの長手方向に延在した筋状の欠陥がフィルムに生じる。しかしながら、フィルムを長手方向に搬送しながら、幅方向にライン状に照明された領域を撮像してフィルムの欠陥検査を行う特許文献1の技術では、上述したような、長手方向に延びる欠陥を検出できなかった。
 ここでは、偏光フィルムを例にして、長手方向に延びる欠陥について説明したが、フィルムにおいて設定される基準方向に延びる欠陥について同様の問題が生じる。すなわち、特許文献1の技術のように、フィルムを基準方向(特許文献1の長手方向に相当)に移動させながら、その基準方向に直交する方向に沿ってライン状にフィルムを照明し、そのライン状の照明領域を撮像領域として撮像することによって、欠陥検査をする場合、基準方向に延びる欠陥の検出が困難である。
 そこで、本発明の目的は、フィルムにおいて一方向に延在する欠陥を検出可能な検査方法及び検査装置並びに上記検査方法を含むフィルムの製造方法を提供することである。
 本発明の一側面に係る検査装置(以下、「第1検査装置」と称す)は、フィルムを照明する照明部と、上記照明部で照明された上記フィルムからの光を受けて欠陥判定のための検査画像を取得する撮像部とを有する検査光学系と、フィルムを移動させる移動機構と、を備える。上記検査光学系は、上記移動機構と独立して固定配置されている。上記移動機構は、上記検査光学系に対し、上記フィルムを上記フィルムの基準方向と異なる第1方向に移動させる機構を有する。上記検査光学系の撮像領域は、上記第1方向と異なる第2方向に延在している。上記基準方向、上記第1方向及び上記第2方向は、上記フィルムの厚さ方向に直交している。上記基準方向と上記第1方向との間の第1角度は、15°以上165°以下である。上記第1方向と上記第2方向との間の第2角度は、15°以上165°以下である。上記基準方向と上記第2方向とは非直交である。
 上記第1検査装置では、フィルムを検査光学系に対して基準方向とは異なる第1方向に移動させながら検査画像を取得する。検査光学系の撮像領域の延在方向である第2方向は、第1方向と異なり且つ上記基準方向と非直交である。そのため、基準方向に延在する欠陥を検出可能である。上記第1検査装置では、検査光学系は移動しない一方、フィルムが移動するので、照明部と撮像部との配置関係においてそれらの位置ズレが生じない。そのため、上記欠陥を確実に検出しやすい。
 上記第1検査装置の一実施形態では、上記検査光学系は、散乱光学系であってもよい。検査光学系が散乱光学系である場合、照明部と撮像部との位置精度が検出感度に影響を与えやすい。検査光学系は固定されており、フィルムを移動させる場合、前述したように、照明部と撮像部との配置関係においてそれらの位置ズレが生じない。そのため、上記欠陥を確実に検出しやすい。
 上記第1検査装置の一実施形態では、上記移動機構は、上記検査光学系に対して上記フィルムを上記第1方向とは異なるとともに上記厚さ方向に直交する第3方向に移動させる機構を更に有してもよい。上記第1方向と上記第3方向との間の第3角度は、15°以上165°以下であってもよい。この場合、第1方向にフィルムを移動させて検査を行う検査範囲を変更可能である。
 本発明の一側面に係る他の検査装置(以下、「第2検査装置」と称す)は、フィルムを照明する照明部と、上記照明部で照明された上記フィルムからの光を受けて欠陥判定のための検査画像を取得する撮像部とを有する検査光学系と、フィルム及び検査光学系の少なくとも一方を移動させる移動機構と、を備える。上記移動機構は、上記フィルム及び上記検査光学系のうちの一方を他方に対し、上記フィルムの基準方向と異なる第1方向に移動させる機構を有する。上記検査光学系の撮像領域は、上記第1方向と異なる第2方向に延在している。上記基準方向、上記第1方向及び上記第2方向は、上記フィルムの厚さ方向に直交している。上記基準方向と上記第1方向との間の第1角度は、15°以上90°未満または90°より大きく165°以下である。上記第1方向と上記第2方向との間の第2角度は、15°以上165°以下である。上記基準方向と上記第2方向とは非直交である。
 上記第2検査装置では、上記フィルム及び上記検査光学系のうちの一方を他方に対し、上記フィルムの基準方向と異なる第1方向に移動させながら検査画像を取得する。検査光学系の撮像領域の延在方向である第2方向は、第1方向と異なり且つ上記基準方向と非直交である。そのため、基準方向に延在する欠陥を検出可能である。
 上記第2検査装置の一実施形態では、上記移動機構は、上記フィルム及び上記検査光学系のうちの一方を他方に対し、上記第1方向とは異なるとともに上記厚さ方向に直交する第3方向に移動させる機構を更に有してもよい。上記第1方向と上記第3方向との間の第3角度は、15°以上165°以下であってもよい。この場合、上記フィルム及び上記検査光学系のうちの一方を他方に対し第1方向に移動させて検査を行う検査範囲を変更可能である。
 上記第1検査装置及び上記第2検査装置それぞれの一実施形態は、上記フィルムを上記基準方向に搬送する搬送機構を有してもよい。上記移動機構は、上記搬送機構を移動させることによって、上記フィルムを移動させてもよい。
 本発明の他の側面に係る検査方法(以下、「第1検査方法」と称す)は、欠陥判定のためにフィルムの検査画像を取得することによって上記フィルムを検査する検査方法であって、検査光学系が有する照明部で上記フィルムを照明しながら、上記検査光学系が有する撮像部で上記フィルムを撮像することによって、欠陥判定のための検査画像を取得する検査画像取得工程を備える。上記検査画像取得工程では、上記フィルムの基準方向とは異なる第1方向に、上記検査光学系に対して上記フィルムを移動させながら上記検査画像を取得する。上記検査光学系の撮像領域は、上記第1方向と異なる第2方向に延在している。 上記基準方向、上記第1方向及び上記第2方向は、上記フィルムの厚さ方向に直交している。上記基準方向と上記第1方向との間の第1角度は、15°以上165°以下である。上記第1方向と上記第2方向との間の第2角度は、15°以上165°以下である。上記基準方向と上記第2方向とは非直交である。
 上記第1検査方法では、フィルムを検査光学系に対して基準方向とは異なる第1方向に移動させながら検査画像を取得する。検査光学系の撮像領域の延在方向である第2方向は、第1方向と異なり且つ上記基準方向と非直交である。そのため、基準方向に延在する欠陥を検出可能である。上記第1検査方法では、検査光学系を移動させない一方、フィルムを移動させるので、照明部と撮像部との配置関係においてそれらの位置ズレが生じない。そのため、上記欠陥を確実に検出しやすい。
 上記第1検査方法の一実施形態では、上記検査光学系は、散乱光学系であってもよい。検査光学系が散乱光学系である場合、照明部と撮像部との位置精度が検出感度に影響を与えやすい。検査光学系は固定されていることから、フィルムを移動させる場合、前述したように、照明部と撮像部との配置関係においてそれらの位置ズレが生じない。そのため、上記欠陥を確実に検出しやすい。
 本発明の他の側面に係る他の検査方法(以下、「第2検査方法」と称す)は、欠陥判定のためにフィルムの検査画像を取得することによって上記フィルムを検査する検査方法であって、検査光学系が有する照明部で上記フィルムを照明しながら、上記検査光学系が有する撮像部で上記フィルムを撮像することによって、欠陥判定のための検査画像を取得する検査画像取得工程を備える。上記検査画像取得工程では、上記フィルムの基準方向と異なる第1方向に、上記フィルム及び上記検査光学系のうちの一方を他方に対して移動させながら、検査画像を取得する。上記検査光学系の撮像領域は、上記第1方向と異なる第2方向に延在している。上記基準方向、上記第1方向及び上記第2方向は、上記フィルムの厚さ方向に直交している。上記基準方向と上記第1方向との間の第1角度は、15°以上90°未満または90°より大きく165°以下である。上記第1方向と上記第2方向との間の第2角度は、15°以上165°以下である。上記基準方向と上記第2方向とは非直交である。
 上記第2検査方法では、上記フィルム及び上記検査光学系のうちの一方を他方に対し、上記フィルムの基準方向と異なる第1方向に移動させながら検査画像を取得する。上記第1角度及び第2角度の関係は上記関係を満たし且つ上記基準方向と上記第2方向とは非直交である。そのため、基準方向に延在する欠陥を検出可能である。
 上記第1検査方法及び第2検査方法それぞれの一実施形態では、検査画像取得工程による上記フィルムの検査範囲を変更する範囲変更工程を有してもよい。上記フィルムにおいて予め設定している全検査範囲の上記検査画像を取得するまで、検査画像取得工程と上記範囲変更工程とを交互に実施してもよい。これにより、上記全検査範囲を検査可能である。
 上記第1検査方法及び第2検査方法それぞれの一実施形態の範囲変更工程では、上記フィルムを上記第1方向と異なるとともに上記厚さ方向に直交する第3方向に移動させることによって上記検査範囲を変更してもよい。或いは、上記第1検査方法及び第2検査方法それぞれの一実施形態の範囲変更工程では、上記フィルムを上記基準方向に搬送することによって上記検査範囲を変更してもよい。
 上記第1検査装置、第2検査装置、第1検査方法及び第2検査方法それぞれの一実施形態では、上記フィルムは長尺のフィルムであってもよい。上記基準方向は、上記フィルムの長手方向であってもよい。
 上記第1検査装置、第2検査装置、第1検査方法及び第2検査方法それぞれの一実施形態では、上記フィルムは、一方向に延伸された延伸フィルムを含んでもよい。上記基準方向は、上記延伸フィルムの延伸方向であってもよい。
 本発明は、上記検査方法で上記フィルムを検査する工程を有する、フィルムの製造方法にも係る。
 本発明によれば、フィルムにおいて一方向に延在する欠陥を検出可能な検査装置及び検査方法並びに上記検査方法を含むフィルムの製造方法を提供できる。
図1は、一実施形態に係る検査方法を含むフィルムの製造方法の一例のフローチャートである。 図2は、図1に示したフィルムの製造方法が有するフィルム形成工程を説明するための図面である。 図3は、図1に示したフィルムの製造方法が有するフィルム検査工程で検出する欠陥を説明するための図面である。 図4は、図1に示したフィルムの製造方法が有するフィルム検査工程を実施するための検査装置の一例の模式図である。 図5は、図4に示した検査装置を、撮像部側からみた場合の模式図である。 図6は、基準方向、第1移動方向(第1方向)及び撮像領域の延在方向(第2方向)の関係を説明するための図面である。 図7は、図1に示したフィルム検査工程の一例のフローチャートである。 図8は、図7に示した検査画像取得工程を説明するための図面である。 図9は、図7に示した検査画像取得工程で検査される範囲を示す図面である。 図10は、欠陥を有するフィルムを第1参考検査方法で検査して取得した検査画像の一例を示す図面である。 図11は、図10で撮像したフィルムを第2参考検査方法で検査して取得した検査画像の一例を示す図面である。 図12は、変形例1のフィルム検査工程を実施するための検査装置の一例を説明するための図面である。 図13は、図12に示した検査装置を、撮像部側からみた場合の模式図である。 図14は、変形例2のフィルム検査工程を実施するための検査装置の一例を説明するための図面である。 図15は、変形例3における基準方向、第1移動方向(第1方向)、撮像領域の延在方向(第2方向)及び第2移動方向(第3方向)の関係を説明するための図面である。 図16は、変形例3のフィルム検査工程を実施するための検査装置の一例を説明するための図面である。
 以下、図面を参照して本発明の実施形態を説明する。図面において同一又は相当の部分に対しては同一の符号を付し、重複する説明を省略する。図面の寸法比率は、説明のものと必ずしも一致していない。
 図1は、一実施形態に係る検査方法を含むフィルムの製造方法のフローチャートを示す図面である。フィルムの製造方法は、フィルム形成工程S10と、フィルム検査工程S20とを有する。本実施形態において、フィルムの製造方法で製造するフィルムは、偏光フィルムである。偏光フィルムの材料の例は、ポリビニルアルコール系樹脂である。ポリビニルアルコール系樹脂の例は、PVA(Polyvinyl Alcohol)樹脂である。以下では、長尺のポリビニル系アルコール樹脂フィルムを用いて偏光フィルムを製造する場合を説明する。
 フィルム形成工程S10では、図2に示したように、ロールツーロール方式で長尺のポリビニルアルコール系樹脂フィルム2を長手方向に搬送しながら、偏光フィルム3を形成する。具体的には、巻出しロールR1にセットされた長尺のポリビニルアルコール系樹脂フィルム2を巻き出す。巻き出されたポリビニルアルコール系樹脂フィルム2を複数の搬送ロールR2で搬送しながら、種々の処理を施して偏光フィルム3を形成した後、巻取りロールR3で巻き取る。図2では、種々の処理のうち、ポリビニルアルコール系樹脂フィルム2の搬送経路上に配置された延伸処理装置4で、延伸処理を行う場合を例示している。延伸処理装置4では、長手方向に搬送されているポリビニルアルコール系樹脂フィルム2を、その長手方向に延伸する。延伸処理装置4での延伸方法は、乾式及び湿式の延伸方法の何れでもよい。これにより、ポリビニルアルコール系樹脂フィルム2に直線偏光特性が付与され、偏光フィルム3が形成される。よって、偏光フィルム3は延伸フィルムである。偏光フィルム3の延伸方向は、長尺の偏光フィルム3の長手方向である。
 フィルム形成工程S10は、偏光フィルム3を形成するための他の処理(例えば二色性色素をポリビニルアルコール系樹脂フィルム2に吸着させる染色処理、洗浄処理、乾燥処理など)を含んでもよい。
 フィルム検査工程S20では、フィルム形成工程S10で形成された偏光フィルム3における欠陥の有無を検査する。フィルム検査工程S20での検査対象は、例えば、偏光フィルム3から検査のために切り出された部分をつなげた長尺のフィルムである。例えば、検査対象のフィルムは、偏光フィルム3の長手方向の両端部のうち一方の端部から切り出された長尺のフィルムであってもよい。検査対象のフィルムは、例えば、フィルム形成工程S10で形成された複数の偏光フィルム3のそれぞれの一方の端部(長手方向の一方の端部)と他方の端部(長手方向の他方の端部)を含む一定部分を切り出し、その切り出された部分をつなげることによって得られたフィルムであってもよい。この場合、複数の偏光フィルム3の欠陥を検査できる。検査対象であるフィルムの長手方向の長さの例は、70mm~7000mmであり、長手方向に直交する幅方向の長さの例は、50mm~1500mmである。
 フィルム検査工程S20で検出する欠陥は、図3に示したように、検査対象であるフィルム1において一方向に延在した筋状の欠陥5である。欠陥5は、例えばフィルム形成工程S10で使用する搬送ロールR2の表面に付着した異物で生じた傷が、延伸処理、又は、搬送ロールR2での搬送のためにポリビニルアルコール系樹脂フィルム2に印加されたテンションなどによって長手方向に伸ばされることによって生じた欠陥と考えられる。よって、欠陥5の延在方向は、フィルム形成工程S10で形成された偏光フィルム3の長手方向に一致するとともに、検査対象であるフィルム1の長手方向に一致する。偏光フィルム3の長手方向は、フィルム形成工程S10での偏光フィルム3(又はポリビニルアルコール系樹脂フィルム2)の搬送方向であるとともに、偏光フィルム3の延伸方向でもある。以下、フィルム1の長手方向を、フィルム1において設定された基準方向D1と称す。基準方向D1における欠陥5の長さの例は、0.2mm~1mmであり、基準方向D1に直交する幅方向の長さの例は、0.05mm~0.2mmである。
 フィルム検査工程S20で使用する検査装置10を、図4及び図5を利用して説明する。検査装置10は、フィルム1を長手方向に搬送する搬送機構11と、フィルム1を撮像する検査光学系12と、搬送機構11を移動させる移動機構13とを有する。
 搬送機構11は、巻出しロール111と、搬送ロール112と、搬送ロール113と、巻取りロール114とを有する。巻出しロール111、搬送ロール112、搬送ロール113及び巻取りロール114それぞれの回転軸111a、回転軸112a、回転軸113a及び回転軸114a(図5参照)は、移動機構13に固定された一対の架台115に回転可能に支持されている。図4では、搬送機構11によるフィルム1の搬送形態及び検査光学系12を示すために架台115を破線で模式的に示している。巻出しロール111にセットされたロール状のフィルム1は、搬送ロール112及び搬送ロール113を利用して巻取りロール114に搬送され、巻取りロール114でロール状に巻き取られる。図4に示した実施形態では、搬送ロール112及び搬送ロール113間では、フィルム1は水平搬送される。
 検査光学系12は、搬送ロール112及び搬送ロール113間に、移動機構13とは独立して固定配置されている。検査光学系12は、図5に示したように、一方向に延在した撮像領域Aを撮像するために、照明部121と撮像部122とを有する。以下では、撮像領域Aの延在方向(第2方向)を延在方向D2と称す。図5では、撮像部122の図示を省略している。照明部121及び撮像部122の一例を説明する。
 図4に示したように、照明部121は、フィルム1の一方の面(図4では、フィルム1の下面)側に配置されており、フィルム1を照明する。具体的には、照明部121は、撮像領域(視野)Aを照明する。そのため、照明部121は、撮像領域Aの延在方向D2に延在している。
 照明部121は、光源121aと遮光体121bとを有する。光源121aは、照明部121の延在方向(撮像領域Aの延在方向D2)に延在している。光源121aは、フィルム1を照明するため、フィルム1の組成及び性質に影響を与えない光を出力する。光源121aの例は、メタルハライドランプ、ハロゲン伝送ライト、蛍光灯などである。遮光体121bは、光源121aとフィルム1との間に配置されている。遮光体121bは、光源121aからフィルム1に出力される光の一部を遮光するナイフエッジとして機能する。遮光体121bは、撮像部122からみて、光源121aの延在方向に直交する方向において、遮光体121bを配置しない場合のフィルム1の照明領域の一部(例えば、半分)を隠すように配置されている。
 上記照明部121の構成では、光源121aから出力され且つ遮光体121bの縁部で散乱された散乱光がフィルム1を照明する。このように、散乱光でフィルム1が照明されるので、検査光学系12は散乱光学系である。光源121a及び遮光体121bが撮像領域Aの延在方向D2に延在していることから、照明部121によるフィルム1の照明領域も上記延在方向D2に延在する。
 撮像部122は、照明部121で照明されたフィルム1からの光を受光することによって、欠陥判定のための検査画像を得るためにフィルム1を撮像する。撮像部122は、撮像領域Aの延在方向D2に沿って配置された複数の画素を有する。撮像部122の例は、CCDカメラ、CMOSカメラ、ラインセンサ及びエリアセンサを含む。撮像部122は、撮像領域Aが照明部121の照明領域を撮像可能なように、配置されている。
 撮像部122は、解析装置14に電気的に接続されている。撮像部122は、撮像データを解析装置14に入力する。解析装置14は、撮像部122における動作の条件を設定及び制御する。解析装置14は、撮像部122からの撮像データに基づいて、欠陥5の有無の判定のための検査画像を作成し、表示装置15に表示する。これにより、フィルム1に欠陥5が含まれている場合、検査画像に欠陥5が表示される。その結果、フィルム1の欠陥5の有無が判定され得る。解析装置14は、上記検査画像を作成する際に、欠陥5を明瞭に示すために、例えば、撮像部122に入射する光の強度に基づいて欠陥5の位置を特定し、欠陥5と他の部分とを異なるカラーで表示してもよいし、白黒画像を作成する場合には、濃淡で欠陥5と他の部分とを区別してもよい。解析装置14は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)及びハードディスク等を有するコンピュータ装置である。解析装置14における上記検査画像の形成機能は、例えば撮像部122が有してもよい。
 解析装置14は、検査装置10を制御する制御装置としても機能する。例えば、解析装置14は、搬送機構11における搬送速度を設定及び制御する。解析装置14は、検査装置10の一部でもよい。
 移動機構13は、フィルム1の基準方向(搬送方向)D1とは異なる第1移動方向(第1方向)D3にフィルム1を移動させる機構である。移動機構13は、ベース板131と、移動ステージ132とを有し、移動ステージ132をベース板131に対して電動で第1移動方向D3に移動させる1軸ステージである。移動ステージ132上に搬送機構11(具体的には、架台115)が固定されている。よって、移動ステージ132の移動に伴い搬送機構11が第1移動方向D3に移動するので、フィルム1が第1移動方向D3に移動する。
 移動機構13は、例えば、ベース板131と移動ステージ132との間に第1移動方向D3に延在したガイド部133を有する。この場合、たとえば、移動ステージ132がガイド部133に沿って移動可能にガイド部133に取り付けられていればよい。移動機構13は、移動ステージ132をベース板131に対して移動させるために、例えば、アクチュエータ機構、ラックアンドピニオン機構などを有し得る。
 移動機構13が有する移動ステージ132の移動タイミング、移動速度、移動量などは、解析装置14が制御すればよい。
 移動機構13がフィルム1を第1移動方向D3に移動させるとは、第1移動方向D3に沿った第1順方向にフィルム1を移動させる場合と、第1移動方向D3に沿っており上記第1順方向と逆向きの第1逆方向にフィルム1を移動させる場合を含む意味である。
 図6を利用して、フィルム1の基準方向D1、撮像領域Aの延在方向D2及び第1移動方向D3の関係を説明する。基準方向D1、撮像領域Aの延在方向D2及び第1移動方向D3は、フィルム1の厚さ方向に直交する方向であり、図6に示した関係を有する。
 図6に示したように、第1移動方向D3は、フィルム1の基準方向D1に対して傾いている。基準方向D1と第1移動方向D3との間の第1角度θ1は、15°以上165°以下である。第1角度θ1は、例えば45°以上135°以下である。第1角度θ1は、基準方向D1と第1移動方向D3とが仮に揃っている場合から基準方向D1に対して第1移動方向D3を所定回転方向(図6では右周り)に回転させた場合に、それに応じて増加する基準方向D1と第1移動方向D3との間の角度である。
 撮像領域Aの延在方向D2は、第1移動方向D3に対して傾いており且つ基準方向D1と非直交である。延在方向D2と第1移動方向D3との為す第2角度θ2は、15°以上165°以下である。第2角度θ2は、例えば45°以上135°以下である。ただし、第2角度θ2は、上記角度範囲のうち延在方向D2が基準方向D1と非直交である角度である。第2角度θ2は、第1移動方向D3と、撮像領域Aの延在方向D2とが仮に揃っている場合から第1移動方向D3に対して上記延在方向D2を上記所定回転方向(図6では右周り)に回転させた場合に、それに応じて増加する第1移動方向D3と上記延在方向D2との間の角度である。本明細書において、延在方向D2が基準方向D1と非直交とは、延在方向D2と基準方向D1との間の角度が90°と異なる場合に限らず、例えば0°~180°のうち85°~95°の範囲又は75°~105°の範囲と異なる場合も含む。よって、延在方向D2と基準方向D1との為す角度は、例えば0°~180°のうち85°~95°の範囲又は75°~105°の範囲と異なる角度でもよい。延在方向D2と基準方向D1との為す角度も、基準方向D1と延在方向D2とが仮に揃っている場合から基準方向D1に対して上記延在方向D2を上記所定回転方向(例えば図6において右周り)に回転させた場合に、それに応じて増加する基準方向D1と上記延在方向D2との間の角度である。
 次に、検査装置10を利用したフィルム検査工程S20を説明する。図7は、検査工程の一例のフローチャートである。フィルム検査工程S20では、検査対象のフィルム1を、巻出しロール111にセットし、フィルム1を巻き出す。巻き出されたフィルム1を、搬送ロール112及び搬送ロール113を介して巻取りロール114にフィルム1を掛け渡す。このようにフィルム1がセットされた後にフィルム検査を行う場合を説明する。フィルム検査工程S20は、検査画像取得工程S21と、判定工程S22と、範囲変更工程S23とを有する。
 まず、搬送機構11によるフィルム1の搬送を停止した状態で、移動機構13で移動ステージ132を移動させることによって、図8に実線と二点鎖線で示したように、フィルム1を第1移動方向D3(例えば第1順方向)に移動させながら、固定配置された(すなわち、移動しない)検査光学系12でフィルム1を撮像する。具体的には、照明部121からフィルム1に光を照射して、撮像部122でフィルム1を撮像する。撮像部122で得られた撮像データは、解析装置14に入力され、解析装置14が検査画像を作成する(図7の検査画像取得工程S21)。解析装置14で作成された検査画像は表示装置15で表示される。
 上記検査画像取得工程S21では、例えばフィルム1の幅方向全体が撮像されるまで、フィルム1を移動機構13によって第1移動方向D3に移動させる。これにより、図9にハッチングで示したように、フィルム1における検査範囲Bの画像データを得ることができる。搬送方向における検査範囲Bの長さは、搬送方向における撮像領域Aの長さ(撮像領域Aの上流端と、下流端との間の搬送方向に沿った距離)に実質的に相当する。
 フィルム1の大きさによっては、検査画像取得工程S21で検査できる範囲はフィルム1の一部である。すなわち、検査画像取得工程S21では、フィルム1の一部の検査が実施される。そのため、移動機構13によるフィルム1の移動が終了(すなわち、検査画像取得工程S21が終了)した段階で、フィルム1における所望の全検査範囲(予め設定している全検査範囲)の検査が終了したか否かを判定する(図7の判定工程S22)。判定は、例えば、解析装置14で、検査画像取得工程S21を実施した回数と検査範囲Bの大きさとに基づいて算出される検査終了範囲と、フィルム1における所望の全検査範囲の大きさとを比較することで実施され得る。或いは、作業者が目視で確認してもよい。
 所望の全検査範囲の検査が終了していない場合(判定工程S22でNOの場合)、検査画像取得工程S21で検査を行う検査範囲を変更する(図7の範囲変更工程S23)。範囲変更工程S23では、フィルム1を、基準方向D1(搬送方向)に搬送する。搬送量は、搬送方向における上記検査範囲Bの長さと実質的に等しい。所望の全検査範囲の検査が終了している場合(判定工程S22でYESの場合)、検査を終了する。
 フィルム検査工程S20では、検査画像取得工程S21と、範囲変更工程S23とを、フィルム1における所望の全検査範囲の全てが検査されるまで実施する。検査画像取得工程S21と検査範囲変更工程S22とを繰り返すことにより検査画像取得工程S21を複数回実施する場合、複数の検査画像取得工程S21では、移動機構13で移動ステージ132を第1移動方向D3における第1順方向に移動させる場合と第1逆方向に移動させる場合とを交互に実施してもよい。
 フィルム検査工程S20を実施して得られたフィルム1の検査画像に欠陥5が表示された場合には、フィルム形成工程S10で使用する何れかの搬送ロールR2(特に、延伸処理前のロール)に異物が付着している可能性がある。よって、フィルム形成工程S10で使用する搬送ロールR2のロール表面を洗浄したり、搬送ロールR2を交換したりすればよい。これにより、欠陥5を含まない偏光フィルム3を製造可能である。
 フィルムを検査する際、撮像領域Aの延在方向D2が、基準方向D1に直交するように、撮像部122及び照明部121を配置し、フィルムを搬送方向に搬送しながら、フィルムを撮像する場合が考えられる(以下、「第1参考検査方法」と称す)。しかしながら、上記第1参考検査方法では、欠陥5を有するフィルムを検査しても、図10に示したように、フィルムを撮像することで得られた検査画像に欠陥5は表示されない。すなわち、欠陥5が検出されない。一方、撮像領域Aの延在方向D2が、基準方向D1と90°とは異なる方向に向いている場合(延在方向D2と基準方向D1とが直交していない場合)、フィルムを基準方向D1に搬送しながら、フィルムを撮像する(以下、「第2参考検査方法」と称す)と、図11の破線で示した領域に現れているように、欠陥5が検出される。これは、第2参考検査方法では、第1参考検査方法の場合に比べて欠陥5がより多くの光で照明され,その結果、撮像部に入射する光の量が多くなるためと考えられる。
 図10及び図11に示されている環状のマークは、フィルムにおいて欠陥5が形成されている領域を示すマークである。図10及び図11は、環状のマークの位置に欠陥5が形成されている同じフィルムを、上記のように基準方向D1に対する撮像領域Aの向きを傾けた点以外は同じ条件で撮像した結果を示す図面である。
 検査装置10を用いたフィルムの検査方法では、検査画像取得工程S21で、フィルム1を第1移動方向D3に移動させながら、検査光学系12でフィルム1を撮像する。本実施形態では、撮像領域Aの延在方向D2、基準方向D1及び第1移動方向D3が、図6に示した関係を有しており、前述したように、基準方向D1と延在方向D2とが非直交である。その結果、検査装置10を用いたフィルムの検査方法では、第2参考検査方法と同様に、欠陥5を検出できる。
 フィルム1を第1移動方向D3に移動させるので、例えば検査光学系12が1つであっても、フィルム1の検査画像を得ることが可能である。更に、検査光学系12は固定配置され、検査光学系12とは独立してフィルム1を移動させていることから、撮像部122と照明部121との位置関係のズレが生じない。その結果、欠陥5を確実に検出可能である。図4に示したように、遮光体121bで光を散乱させ、その散乱光でフィルム1を照明する場合、上記撮像部122と照明部121との位置精度が非常に重要である。そのため、検査装置10及びそれを利用した検査方法は、照明部121から散乱光を出力してフィルム1を照明する場合に非常に有効である。
 次に、上記実施形態に対する種々の変形例を、上記実施形態との相違点を中心に説明する。
 (第1変形例)
 上記フィルム検査工程S20は、フィルム形成工程S10において偏光フィルム3をロール状に一度巻き取った後、形成された偏光フィルム3から一定領域を切り出して得られるフィルム1に対して実施した。しかしながら、図12に示したように、フィルム形成工程S10において形成された偏光フィルム3を搬送ロールR2で更に搬送しながら、その偏光フィルム3に対してフィルム検査工程S20を実施してもよい。換言すれば、フィルム形成工程S10で形成された偏光フィルム3をロール状に巻き取る前にフィルム検査工程S20を実施してもよい。
 図12及び図13は、変形例1のフィルム検査工程S20を実施するための検査装置20の模式図である。検査装置20は、検査光学系12と、移動機構13と、搬送機構21とを有する。検査光学系12及び移動機構13の構成は、検査装置10の場合と同様であるため、説明を省略する。
 搬送機構21は、巻取りロール211と、搬送ロール212と、一対の架台213とを有する。巻取りロール211は、偏光フィルム3をロール状に巻き取るためのロールである。搬送ロール212は、偏光フィルム3を巻取りロール211に搬送するために偏光フィルム3をガイドするとともに支持するためのロールである。一対の架台213は、巻取りロール211及び搬送ロール212それぞれの回転軸211a及び回転軸212aを回転可能に支持する。一対の架台213は、移動機構13上(具体的には、移動ステージ132上)に固定されている。図12に示した実施形態では、巻取りロール211及び搬送ロール212は、それらの間で、偏光フィルム3が実質的に水平搬送されるように配置されている。
 第1変形例のフィルム検査工程S20は、検査装置10の場合と同様に、図7に示した検査画像取得工程S21、判定工程S22及び範囲変更工程S23を有する。検査画像取得工程S21、判定工程S22及び範囲変更工程S23では、検査対象が偏光フィルム3自体である点を除いて、上記検査装置10を利用したフィルム検査工程S20が有する検査画像取得工程S21、判定工程S22及び範囲変更工程S23と同様である。
 変形例1では、偏光フィルム3の実質的に全体が検査範囲でもよい。しかしながら、例えば、偏光フィルム3の搬送方向において、離散的に設定した複数の領域それぞれが検査範囲でもよい。
 変形例1でも、検査画像取得工程S21では、偏光フィルム3を移動機構13で移動させる一方、偏光フィルム3の搬送を止める。そのため、検査装置20の前段には、図12に示したように、アキュムレータ22が配置される。アキュムレータ22は、アキュムレータ22までの偏光フィルム3の搬送速度と、アキュムレータ22以降の搬送速度(搬送速度が0の場合を含む)を分離して制御するための機構である。
 図12に示したように、アキュムレータ22は、固定ロール221と、固定ロール221との距離を調整可能な可動ロール222とを有する。アキュムレータ22では、可動ロール222の位置を移動させることによって偏光フィルム3の搬送距離を変える。これによって、アキュムレータ22以降の搬送速度が調整され得る。例えば、固定ロール221と可動ロール222の間の偏光フィルム3の搬送距離を長くするように、可動ロール222を移動させることで、アキュムレータ22内に偏光フィルム3が滞留するので、アキュムレータ22以降における偏光フィルム3の搬送速度を小さく(滞留時間によっては速度0)できる。可動ロール222の位置制御は、例えば、解析装置14が行えばよい。アキュムレータ22は、検査装置20の一部であってもよい。
 検査画像取得工程S21では、移動機構13で、搬送機構11を検査光学系12に対して第1移動方向D3に移動させることによって、偏光フィルム3を検査光学系12に対して第1移動方向D3に移動させる。そのため、アキュムレータ22と検査装置20の搬送ロール212との間には、ターンバー(搬送方向変換部)23が配置されていてもよい。ターンバー23は、偏光フィルム3の搬送方向を変更する搬送方向変換部として機能する。ターンバー23は、移動機構13による搬送機構11の移動に合わせて、搬送機構11による偏光フィルム3の搬送方向(すなわち、搬送ロール212から巻取りロール211までの偏光フィルム3の搬送方向)が維持されるとともに、偏光フィルム3への不要なテンションが生じないように、偏光フィルム3の搬送方向を変更する。
 ターンバー23は、アキュムレータ22からターンバー23に搬送されてくる偏光フィルム3の搬送方向に対するターンバー23の延在方向が、移動機構13による搬送機構11の移動に合わせて調整可能に設けられていればよい。ターンバー23の延在方向の向きの調整は、例えば、解析装置14が行えばよい。ターンバー23は、検査装置10の一部であってもよい。
 ターンバー23の数は一つに限定されない。ターンバー23の数及び配置は、検査画像取得工程S21において搬送機構21による偏光フィルム3の搬送方向が維持されるとともに、偏光フィルム3への不要なテンションが生じないように、設定され得る。
 変形例1のフィルム検査工程S20でも上記のように、検査光学系12を固定した状態で、移動機構13によって搬送機構11を第1移動方向D3に移動(より具体的には、偏光フィルム3を移動)させながら偏光フィルム3を検査する。よって、変形例1でも、検査装置10及びそれを利用したフィルムの検査方法の場合と同様の作用効果を有する。変形例1では、偏光フィルム3の長手方向のほぼ全てを容易に検査できる。
(第2変形例)
 第1角度θ1が15°以上90°未満若しくは90°より大きく165°以下、又は、45°以上90°未満若しくは90°より大きく135°以下である場合には、検査光学系を移動させてもよい。検査光学系を移動させる場合を第2変形例として説明する。第2変形例においても、延在方向D2は、基準方向D1と非直交である。非直交の意味は、前述したとおりである。
 第2変形例のフィルム検査工程S20を実施する検査装置30は、搬送機構11と、検査光学系31と、移動機構32とを有する。搬送機構11は、検査装置10の場合と同様であるため、搬送機構11の説明を省略する。検査装置30が有する検査光学系31及び移動機構32の概略構成を、図14を利用して説明する。図14では、照明部121の延在方向に直交する方向から検査光学系31及び移動機構32をみた場合を模式的に示している。図14では、搬送機構11の図示を省略している。
 検査光学系31は、図14に示したように、照明部121と撮像部122と、それらを一体に連結する連結部311とを有する。照明部121及び撮像部122の構成及びそれらの配置関係は、検査装置10の場合と同様である。図14では、照明部121を模式的に図示している。連結部311は、検査光学系31を第1移動方向D3に移動させた際に、フィルム1と干渉しない構成を有すればよい。例えば、連結部311が、図14に示したようにU字状を呈する場合、連結部311の第1移動方向D3の長さが、第1移動方向D3におけるフィルム1の長さ以上であればよい。
 移動機構32は、検査光学系31の第1移動方向D3に延在したガイド部321と、ガイド部321の延在方向に移動可能にガイド部321に取り付けられるとともに、連結部311を支持する支持部322とを有する。支持部322は、ガイド部321に電動で第1移動方向D3に移動可能に取り付けられている。
 フィルム1の幅が長い場合(換言すれば、第1移動方向D3における検査光学系31の移動距離が長い場合)には、例えば、複数の検査光学系31を移動機構32で移動すればよい。例えば、2つの検査光学系31を用いる場合には、フィルム1の幅方向において、フィルム1の一方の縁部側に一つの検査光学系31を配置し、他方の縁部側に別の検査光学系31を配置すればよい。これにより、一つの検査光学系31で第1移動方向D3に全ての領域を撮像する場合に比べて、各検査光学系31の移動距離が短くなるので、連結部311の第1移動方向D3における長さを短くできる。
 第2変形例では、連結部311をガイド部321に沿って第1移動方向D3に移動させながらフィルム1を撮像することでフィルム1の検査を実施すればよい。連結部311の移動状態は、例えば解析装置14が制御すればよい。
 第2変形例のフィルム検査工程S20は、検査装置10を利用したフィルム検査工程S20の場合と同様に、図7に示した検査画像取得工程S21、判定工程S22及び範囲変更工程S23を有する。第2変形例におけるフィルム検査工程S20は、検査画像取得工程S21において、搬送機構11を移動させずに、移動機構32によって検査光学系31をフィルム1に対して移動させる点以外は、上記フィルム検査工程S20と同様である。そのため、図3に示した欠陥5を検出可能である。検査光学系31を移動させる場合には、例えば、撮像部122と照明部121との位置関係のズレが、撮像部122の分解能以下であるように検査光学系31を移動する。図14に示したように、検査光学系31が有する照明部121及び撮像部122が連結部311で連結されている場合、撮像部122と照明部121との位置関係のズレが生じにくく、上記位置関係のズレが撮像部122の分解能以下であるように検査光学系31を移動させ易い。
 第2変形例では、搬送機構11を移動させずに、フィルム1に対して検査光学系31を移動させる場合を主に説明した。しかしながら、検査装置30が更に図4に示した移動機構13を備え、検査光学系31とともに、搬送機構11(具体的には、フィルム1)も、移動機構13で移動させてもよい。すなわち、第1角度θ1が15°以上90°未満若しくは90°より大きく165°以下、又は、45°以上90°未満若しくは90°より大きく135°以下である場合には、検査光学系31及びフィルム1(又は搬送機構11)のうち一方に対して他方を第1移動方向D3に移動させればよい。
(第3変形例)
 図4において、搬送ロール112と搬送ロール113の間のフィルム1の領域をフィルムの全検査範囲とする場合には、例えば、検査範囲変更工程S22では、搬送機構11自体(すなわち、フィルム1)を更に第1移動方向D3と異なる第2移動方向(第3方向)D4に移動させてもよい。
 図15は、基準方向D1、撮像領域Aの延在方向D2、第1移動方向D3及び第2移動方向D4の関係を説明するための図面である。基準方向D1と第1移動方向D3との間の第1角度θ1及び第1移動方向D3と延在方向D2との間の第2角度θ2の関係は、図6の場合と同様である。更に、第3変形例においても延在方向D2と基準方向D1とが非直交である。第3変形例においても延在方向D2と基準方向D1との為す角度は、例えば75°~105°と異なっていてもよい。第2移動方向D4は、第1移動方向D3と異なっており、第1移動方向D3と第2移動方向D4との間の第3角度θ3は、15°~165°又は45°~135°である。第2移動方向D4は、撮像領域Aの延在方向D2と同じでもよい。
 フィルム1を第1移動方向D3と第2移動方向D4に移動させるために、第3変形例のフィルム検査工程S20を実施するための検査装置40は、図16に示したように、搬送機構11と、検査光学系12と、移動機構41とを備える。搬送機構11及び検査光学系12は、検査装置10の場合と同様であるため、説明を省略する。
 移動機構41は、フィルム1を、第1移動方向D3に移動可能とともに第2移動方向D4に移動可能な2軸ステージである。例えば、移動機構41は、フィルム1を第1移動方向D3に移動させる第1移動機構411と、フィルム1を第2移動方向D4に移動させる第2移動機構412とを備える。第1移動機構411の構成は、図4の移動機構13と同じであり得る。第2移動機構412は、第1移動機構411上に配置されており、搬送機構11は、第2移動機構412に固定される。第2移動機構412の構成は、ガイド部の延在方向が第2移動方向D4である点以外は、第1移動機構411の構成、すなわち、図4の移動機構13と同じとし得る。例えば、第2移動機構412は、ベース板と、移動ステージと、それらの間に設けられた第2移動方向D4に延在したガイド部とを有し、移動ステージがベース板に対してガイド部に沿って第2移動方向D4に移動可能に構成されていればよい。第2移動機構412が、上記のようにベース板と、移動ステージを有する場合、第2移動機構412側のベース板は、第1移動機構411の移動ステージと共通でもよい。
 移動機構41がフィルム1を第2移動方向D4に移動させるとは、第2移動方向D4に沿った第2順方向にフィルム1を移動させる場合と、第2移動方向D4に沿っており上記第2順方向と逆向きの第2逆方向にフィルム1を移動させる場合を含む意味である。
 第3変形例では、検査画像取得工程S21と、範囲変更工程S23とを繰り返すことによって、フィルム1のうち搬送ロール112と搬送ロール113の間に位置するフィルム1の領域を全検査範囲として検査できる。当該検査範囲の検査完了した後、例えば、搬送機構11でフィルム1を搬送方向に搬送して、フィルム1の範囲を更に検査してもよい。
(第4変形例)
 検査光学系12は、透過光学系に限定されず、反射光学系であってもよい。すなわち、照明部121と撮像部122は、フィルム1に対して同じ側に配置されてもよい。更に、検査光学系12は、透過光学系と反射光学系を組み合わせたものでもよい。この場合、検査光学系12は、撮像部122と、フィルム1に対して撮像部122と反対側に配置され、透過光学系を形成する第1照明部と、フィルム1に対して撮像部122と同じ側に配置され、反射光学系を形成する第2照明部とを有してもよい。第1照明部及び第2照明部の構成は、図4に例示したように、例えば、光源121aと、遮光体121bとを備えてもよい。
 以上、実施形態とともに、種々の変形例を説明した。しかしながら、本発明は、上記実施形態及び種々の変形例に限定されるものではなく、特許請求の範囲によって示される範囲が含まれるとともに、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 よって、例えば本発明の趣旨を逸脱しない範囲で、上記実施形態及び種々の変形例は、適宜、組み合わされてもよい。例えば第2~第4変形例に対しても第1変形例を適用して、図1のフィルム形成工程S10で形成された偏光フィルム3を巻き取りロールで巻き取る前に、偏光フィルム3を検査してもよい。第1変形例及び第4変形例に、第3変形例を適用して、図7の範囲変更工程S23において、検査対象(フィルム1又は偏光フィルム3)を第2移動方向D4に移動することによって検査範囲を変更してもよい。第2変形例に、第3変形例を適用してもよい。この場合、図7の範囲変更工程S23において、フィルム1又は検査光学系31のうちの一方を他方に対して第2移動方向D4に移動させることによって、検査範囲を変更すればよい。第1~第3変形例において第4変形例を適用して、検査光学系に反射光学系を採用してもよいし、または透過光学系と反射光学系を組み合わせた光学系を採用してもよい。
 図7の検査画像取得工程S21を1回実施して検査対象の所望の全検査範囲を検査できる場合には、図7の他の工程(判定工程S22及び範囲変更工程S23)を実施する必要はない。
 検査光学系が散乱光学系である実施形態では、照明部は遮光体を有しなくてもよい。例えば、撮像部が、照明部の端部で散乱された光で照明された領域を撮像するように、照明部と撮像部とが配置されることによって、散乱光学系が実現されてもよい。検査光学系は散乱光学系に限定されない。
 欠陥5は、前述したように、延伸処理などによって、延伸処理前に生じた傷が延在して形成される場合が多いため、上記実施形態及び種々の変形例で説明した検査方法及び検査装置は、延伸フィルムの欠陥5の検査に有効である。ただし、例えば、フィルムを搬送ロールで搬送する際には、フィルムの搬送方向にテンションが印加されるので、延伸処理の場合と同様に欠陥5が生じる可能性がある。よって、本発明は、例えばロールツーロール方式でフィルムを形成する場合の長尺のフィルムの欠陥検査にも有効である。
 上記実施形態及び種々の変形例で説明した検査装置及び検査方法では、基準方向、フィルム及び光学系の少なくとも一方の移動方向(第1方向)並びに撮像領域の延在方向(第2方向)が、前述した関係を満たしていれば、基準方向に実質的に延在する欠陥(すなわち、第1方向及び第2方向に対して一定の関係を満たす、一方向に延在する欠陥)を検出可能である。したがって、フィルムの基準方向は、フィルムの長手方向、フィルムを搬送ロールで搬送する際の搬送方向に限定されない。予めフィルムにおいて検出すべき欠陥の延在方向が想定される場合には、その想定される欠陥の延在方向をフィルムの基準方向とすればよい。フィルムにおいて任意の方向を基準方向としてもよい。この場合、その基準方向に延在する欠陥が生じている場合には、その欠陥を検出可能である。
 これまでの説明では主に検査光学系が一つの場合を説明した。しかしながら、照明部と撮像部の組である検査光学系は、フィルムに対して2つ以上設けられてもよい。この場合、複数の検査光学系による検査範囲を考慮して、検査画像取得工程では、第1角度θ1が90°を含む場合、フィルムを検査光学系に対して移動させればよく、第1角度θ1が90°を含まない場合、フィルム及び検査光学系のうちの一方を他方に対して移動させればよい。
 これまでの説明では、フィルム形成工程で形成するフィルムを偏光フィルムの一部とし、偏光フィルム(又は偏光フィルムから切り出されたフィルム)を検査対象とした。しかしながら、検査対象のフィルムは、偏光フィルムに限定されない。例えば、偏光フィルムに対して更に他のフィルム(例えば、保護フィルム、位相差フィルム)が貼合された積層フィルムでもよいし、電池のセパレータフィルムでもよい。検査対象のフィルムは、長尺のフィルムに限定されず、枚葉のフィルムでもよい。
 1…フィルム、10,20,30,40…検査装置、11,21…搬送機構、12,31…検査光学系、13,32,41…移動機構、121…照明部、122…撮像部、A…撮像領域、D1…基準方向、D2…延在方向(第2方向)、D3…第1移動方向(第1方向)、D4…第2移動方向(第3方向)。

Claims (17)

  1.  フィルムを照明する照明部と、前記照明部で照明された前記フィルムからの光を受けて欠陥判定のための検査画像を取得する撮像部とを有する検査光学系と、
     フィルムを移動させる移動機構と、
    を備え、
     前記検査光学系は、前記移動機構と独立して固定配置されており、
     前記移動機構は、前記検査光学系に対し、前記フィルムを前記フィルムの基準方向と異なる第1方向に移動させる機構を有し、
     前記検査光学系の撮像領域は、前記第1方向と異なる第2方向に延在しており、
     前記基準方向、前記第1方向及び前記第2方向は、前記フィルムの厚さ方向に直交しており、
     前記基準方向と前記第1方向との間の第1角度は、15°以上165°以下であり、
     前記第1方向と前記第2方向との間の第2角度は、15°以上165°以下であり、
     前記基準方向と前記第2方向とは非直交である、
    検査装置。
  2.  前記検査光学系は、散乱光学系である、
    請求項1に記載の検査装置。
  3.  前記移動機構は、前記検査光学系に対して前記フィルムを前記第1方向とは異なるとともに前記厚さ方向に直交する第3方向に移動させる機構を更に有し、
     前記第1方向と前記第3方向との間の第3角度は、15°以上165°以下である、
    請求項1又は2に記載の検査装置。
  4.  フィルムを照明する照明部と、前記照明部で照明された前記フィルムからの光を受けて欠陥判定のための検査画像を取得する撮像部とを有する検査光学系と、
     フィルムまたは検査光学系を移動させる移動機構と、
    を備え、
     前記移動機構は、前記フィルム及び前記検査光学系のうちの一方を他方に対し、前記フィルムの基準方向と異なる第1方向に移動させる機構を有し、
     前記検査光学系の撮像領域は、前記第1方向と異なる第2方向に延在しており、
     前記基準方向、前記第1方向及び前記第2方向は、前記フィルムの厚さ方向に直交しており、
     前記基準方向と前記第1方向との間の第1角度は、15°以上90°未満または90°より大きく165°以下であり、
     前記第1方向と前記第2方向との間の第2角度は、15°以上165°以下であり、
     前記基準方向と前記第2方向とは非直交である、
    検査装置。
  5.  前記移動機構は、前記フィルム及び前記検査光学系のうちの一方を他方に対し、前記第1方向とは異なるとともに前記厚さ方向に直交する第3方向に移動させる機構を更に有し、
     前記第1方向と前記第3方向との間の第3角度は、15°以上165°以下である、
    請求項4に記載の検査装置。
  6.  前記フィルムを前記基準方向に搬送する搬送機構を有し、
     前記移動機構は、前記搬送機構を移動させることによって、前記フィルムを移動させる、
    請求項1~5の何れか1項に記載の検査装置。
  7.  前記フィルムは長尺のフィルムであり、
     前記基準方向は、前記フィルムの長手方向である、
    請求項1~6の何れか1項に記載の検査装置。
  8.  前記フィルムは、一方向に延伸された延伸フィルムを含み、
     前記基準方向は、前記延伸フィルムの延伸方向である、
    請求項1~7の何れか1項に記載の検査装置。
  9.  欠陥判定のためにフィルムの検査画像を取得することによって前記フィルムを検査する検査方法であって、
     検査光学系が有する照明部で前記フィルムを照明しながら、前記検査光学系が有する撮像部で前記フィルムを撮像することによって、欠陥判定のための検査画像を取得する検査画像取得工程を備え、
     前記検査画像取得工程では、前記フィルムの基準方向とは異なる第1方向に、前記検査光学系に対して前記フィルムを移動させながら前記検査画像を取得し、
     前記検査光学系の撮像領域は、前記第1方向と異なる第2方向に延在しており、
     前記基準方向、前記第1方向及び前記第2方向は、前記フィルムの厚さ方向に直交しており、
     前記基準方向と前記第1方向との間の第1角度は、15°以上165°以下であり、
     前記第1方向と前記第2方向との間の第2角度は、15°以上165°以下であり、
     前記基準方向と前記第2方向とは非直交である、
    検査方法。
  10.  前記検査光学系は、散乱光学系である、
    請求項9に記載の検査方法。
  11.  欠陥判定のためにフィルムの検査画像を取得することによって前記フィルムを検査する検査方法であって、
     検査光学系が有する照明部で前記フィルムを照明しながら、前記検査光学系が有する撮像部で前記フィルムを撮像することによって、欠陥判定のための検査画像を取得する検査画像取得工程を備え、
     前記検査画像取得工程では、前記フィルムの基準方向と異なる第1方向に、前記フィルム及び前記検査光学系のうちの一方を他方に対して移動させながら、検査画像を取得し、
     前記検査光学系の撮像領域は、前記第1方向と異なる第2方向に延在しており、
     前記基準方向、前記第1方向及び前記第2方向は、前記フィルムの厚さ方向に直交しており、
     前記基準方向と前記第1方向との間の第1角度は、15°以上90°未満または90°より大きく165°以下であり、
     前記第1方向と前記第2方向との間の第2角度は、15°以上165°以下であり、
     前記基準方向と前記第2方向とは非直交である、
    検査方法。
  12.  前記検査画像取得工程による前記フィルムの検査範囲を変更する範囲変更工程を有し、
     前記フィルムにおいて予め設定している全検査範囲の前記検査画像を取得するまで、検査画像取得工程と前記範囲変更工程とを交互に実施する、
    請求項9~11の何れか1項に記載の検査方法。
  13.  前記範囲変更工程では、前記フィルムを前記第1方向と異なるとともに前記厚さ方向に直交する第3方向に移動させることによって前記検査範囲を変更する、
    請求項12に記載の検査方法。
  14.  前記範囲変更工程では、前記フィルムを前記基準方向に搬送することによって前記検査範囲を変更する、
    請求項12に記載の検査方法。
  15.  前記フィルムは長尺のフィルムであり、
     前記基準方向は、前記フィルムの長手方向である、
    請求項9~14の何れか1項に記載の検査方法。
  16.  前記フィルムは、一方向に延伸された延伸フィルムを含み、
     前記基準方向は、前記延伸フィルムの延伸方向である、
    請求項9~15の何れか1項に記載の検査方法。
  17.  請求項9~16の何れか1項に記載の検査方法で前記フィルムを検査する工程を有する、フィルムの製造方法。
PCT/JP2020/009503 2019-04-11 2020-03-05 検査装置、検査方法、及び、フィルムの製造方法 WO2020208981A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217033104A KR20210150413A (ko) 2019-04-11 2020-03-05 검사 장치, 검사 방법 및 필름의 제조 방법
CN202080027065.9A CN113646624A (zh) 2019-04-11 2020-03-05 检查装置、检查方法以及膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-075711 2019-04-11
JP2019075711A JP2020173188A (ja) 2019-04-11 2019-04-11 検査装置、検査方法、及び、フィルムの製造方法

Publications (1)

Publication Number Publication Date
WO2020208981A1 true WO2020208981A1 (ja) 2020-10-15

Family

ID=72751837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009503 WO2020208981A1 (ja) 2019-04-11 2020-03-05 検査装置、検査方法、及び、フィルムの製造方法

Country Status (5)

Country Link
JP (1) JP2020173188A (ja)
KR (1) KR20210150413A (ja)
CN (1) CN113646624A (ja)
TW (1) TW202040092A (ja)
WO (1) WO2020208981A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI785535B (zh) * 2021-03-15 2022-12-01 住華科技股份有限公司 一種檢測光學膜的方法、裝置及系統

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309287A (ja) * 2003-04-07 2004-11-04 Nippon Sheet Glass Co Ltd 欠陥検出装置、および欠陥検出方法
JP2006162250A (ja) * 2004-12-02 2006-06-22 Ushio Inc フィルムワークのパターン検査装置
JP2008216148A (ja) * 2007-03-06 2008-09-18 Mec:Kk 欠陥検査装置、照明装置
JP2013007689A (ja) * 2011-06-27 2013-01-10 Fujifilm Corp 欠陥検査装置及び方法
JP2013053860A (ja) * 2011-09-01 2013-03-21 Toray Ind Inc キズ欠点検査装置および方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240726A (ja) * 2002-02-14 2003-08-27 Toray Ind Inc シートの欠点検出装置
JP4829542B2 (ja) * 2005-06-21 2011-12-07 グンゼ株式会社 フィルム検査装置およびフィルム検査方法
JP4960026B2 (ja) * 2006-06-09 2012-06-27 富士フイルム株式会社 フイルムの欠陥検査装置及びフイルムの製造方法
JP2007333608A (ja) * 2006-06-16 2007-12-27 Toray Ind Inc シートにおける凹凸状欠点の検査装置および検査方法
JP5944165B2 (ja) * 2010-05-25 2016-07-05 東レ株式会社 フィルムの欠陥検査装置および欠陥検査方法
JP2016070856A (ja) 2014-10-01 2016-05-09 東レ株式会社 フィルムの検査装置
KR102469408B1 (ko) * 2017-03-03 2022-11-22 스미또모 가가꾸 가부시키가이샤 결함 검사 시스템, 필름 제조 장치, 필름 제조 방법, 인자 장치 및 인자 방법
JP6874441B2 (ja) * 2017-03-16 2021-05-19 コニカミノルタ株式会社 欠陥検査方法、欠陥検査プログラム、および欠陥検査装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309287A (ja) * 2003-04-07 2004-11-04 Nippon Sheet Glass Co Ltd 欠陥検出装置、および欠陥検出方法
JP2006162250A (ja) * 2004-12-02 2006-06-22 Ushio Inc フィルムワークのパターン検査装置
JP2008216148A (ja) * 2007-03-06 2008-09-18 Mec:Kk 欠陥検査装置、照明装置
JP2013007689A (ja) * 2011-06-27 2013-01-10 Fujifilm Corp 欠陥検査装置及び方法
JP2013053860A (ja) * 2011-09-01 2013-03-21 Toray Ind Inc キズ欠点検査装置および方法

Also Published As

Publication number Publication date
TW202040092A (zh) 2020-11-01
JP2020173188A (ja) 2020-10-22
CN113646624A (zh) 2021-11-12
KR20210150413A (ko) 2021-12-10

Similar Documents

Publication Publication Date Title
TWI498546B (zh) Defect inspection device and defect inspection method
US20070237385A1 (en) Defect inspection apparatus
JP5024935B2 (ja) 光透過性部材の欠陥検出装置及び方法
US6914679B2 (en) Side light apparatus and method
TW200949238A (en) Film defect inspecting method and apparatus
JP2008026212A (ja) パターン検査装置
JP4615532B2 (ja) 欠陥検査装置、照明装置
TW201918702A (zh) 缺陷檢查裝置、缺陷檢查方法、圓偏光板或橢圓偏光板之製造方法及相位差板之製造方法
JP2008026060A (ja) 絶縁皮膜被覆帯状体の疵検査装置
WO2020208981A1 (ja) 検査装置、検査方法、及び、フィルムの製造方法
KR20190097929A (ko) 유리 시트 검사 장치 및 방법
JP2019117104A (ja) 検査装置
JP4052547B2 (ja) 複数の1次元ccdカメラの姿勢および位置の調整方法
JP2012083125A (ja) 端面検査装置
WO2022224636A1 (ja) 検査装置
JP2006242828A (ja) 表面欠陥検出装置
JP2020106295A (ja) シート欠陥検査装置
JPH0882602A (ja) 板ガラスの欠点検査方法及び装置
JPH11248643A (ja) 透明フィルムの異物検査装置
KR20170129077A (ko) 투과 광학계 검사 장치 및 이를 이용한 결함 검사 방법
JP2008026254A (ja) ゴムホースの外観検査装置
JP6086277B2 (ja) パターン検査装置及びそれに使用する照明光学系
JPWO2020059426A5 (ja)
JP5935266B2 (ja) キズ欠点検査方法およびシートの製造方法
TWI841484B (zh) 用於檢測玻璃片的設備及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217033104

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20787358

Country of ref document: EP

Kind code of ref document: A1