WO2020207847A1 - Strahlpumpe - Google Patents

Strahlpumpe Download PDF

Info

Publication number
WO2020207847A1
WO2020207847A1 PCT/EP2020/058994 EP2020058994W WO2020207847A1 WO 2020207847 A1 WO2020207847 A1 WO 2020207847A1 EP 2020058994 W EP2020058994 W EP 2020058994W WO 2020207847 A1 WO2020207847 A1 WO 2020207847A1
Authority
WO
WIPO (PCT)
Prior art keywords
propellant
wall
outlet part
medium
jet pump
Prior art date
Application number
PCT/EP2020/058994
Other languages
English (en)
French (fr)
Inventor
Daniel Kintea
Lukasz Gabrys
Christian Kahl
Gerrit Von Breitenbach
Michal Sajdak
Original Assignee
Norma Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norma Germany Gmbh filed Critical Norma Germany Gmbh
Priority to CN202080024006.6A priority Critical patent/CN113614386B/zh
Priority to JP2021559445A priority patent/JP7472165B2/ja
Priority to KR1020217034865A priority patent/KR102649754B1/ko
Priority to MX2021011742A priority patent/MX2021011742A/es
Priority to US17/602,442 priority patent/US11905978B2/en
Priority to EP20719576.9A priority patent/EP3953588B1/de
Publication of WO2020207847A1 publication Critical patent/WO2020207847A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/465Arrangements of nozzles with supersonic flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/10Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing liquids, e.g. containing solids, or liquids and elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/464Arrangements of nozzles with inversion of the direction of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type

Definitions

  • the invention relates to a jet pump comprising a propulsion nozzle for accelerating a propellant medium, the propulsion nozzle having a converging inlet part and an outlet part connected to the converging inlet part, the outlet part, according to the preamble of claim 1, being enclosed by an inner wall at an opening angle includes diverging interior.
  • Jet pumps use a fluid jet from a propellant medium to suck in and accelerate a suction medium.
  • the suction effect is brought about by a flow of the propellant medium past the suction medium, the suction medium being entrained by the propellant medium when the flow velocity of the propellant medium is sufficiently high.
  • To accelerate a propellant medium it is passed under pressure through a nozzle that accelerates the propellant medium.
  • a convergent nozzle is used to accelerate the propellant in the jet pump.
  • a convergent-divergent nozzle a so-called Laval nozzle
  • a Laval nozzle leads to a delay in the flow speed, since the divergent section of the Laval nozzle acts as a diffuser for the propellant medium.
  • the object of the invention is to provide an improved jet pump which allows operation under subcritical and supercritical pressure conditions.
  • the invention relates to a jet pump comprising a propellant nozzle for accelerating a propellant medium, the propulsion nozzle having a converging inlet part and an outlet part connected to the converging inlet part, the outlet part comprising an interior space enclosed by an inner wall and diverging at an opening angle, where provided according to the invention is that the opening angle is designed such that a propellant medium flowing through the outlet part at subsonic speed is detached from the inner wall and a propellant medium flowing through the outlet part at supersonic speed is guided from the inner wall.
  • the invention provides a jet pump with a propellant nozzle, the convergent inlet part of which accelerates a propellant medium flowing through the convergent inlet portion, the propellant medium flowing at subsonic speed before it flows through the inlet portion. If the propellant medium continues to have subsonic speed after flowing through the inlet part and the acceleration therein, it also flows through the outlet part at subsonic speed.
  • the exit part of the propellant nozzle has a divergent inner wall, that is, the cross section of the exit part increases starting from the convergent entry part.
  • the propulsion nozzle can be a specially designed Laval nozzle.
  • the opening angle of the divergent inner wall is so large that a propellant flowing through the outlet part at subsonic speed detaches from the inner wall of the outlet part.
  • the exit part of the drive nozzle acts for the subsonic speed
  • the flowing propellant medium does not act as a diffuser, so that the speed of the propellant medium is not delayed when it flows through the outlet part. Rather, only the convergent inlet part of the propellant nozzle acts on the propellant medium flowing at subsonic speed.
  • the propellant nozzle acts on the propellant medium, which flows at subsonic speed, as a convergent nozzle. If the propellant is accelerated by the convergent entry part to the speed of sound, it is further accelerated by the diverging interior of the exit part.
  • the propellant is guided through the divergent inner wall of the outlet part, since in this case it is not detached from the inner wall.
  • the outlet part acts as a nozzle for the propellant flowing at supersonic speed and accelerates the propellant further.
  • the motive nozzle thus acts as a Laval nozzle for the motive medium flowing at supersonic speed.
  • the invention thus provides a jet pump that can be used both in subcritical pressure conditions, d. H. if the propellant causes the suction effect at subsonic speed, as well as under supercritical pressure conditions, d. H. if the propellant causes the suction at supersonic speed, it is operated with a single propellant nozzle.
  • the effect of the outlet part on the flowing propellant is automatically adjusted by the opening angle of the inner wall.
  • the invention thus provides an automatic, inexpensive and simple switching of the jet pump to different pressure ratios.
  • the inner wall of the outlet part can be designed so that the propellant flowing through the outlet part detaches from the inner wall when there is a transition from supersonic speed to subsonic speed.
  • the inner wall of the outlet part can be designed in such a way that the propellant medium flowing through the outlet part detaches from the inner wall when there is a transition from a supercritical pressure ratio to a subcritical pressure ratio.
  • the inner wall of the outlet part can be designed in such a way that the propellant medium flowing through the outlet part is applied to the inner wall during a transition from subsonic speed to supersonic speed and is guided by the inner wall.
  • the inner wall of the outlet part can be designed such that the propellant medium flowing through the outlet part is applied to the inner wall during a transition from the subcritical pressure ratio to the supercritical pressure ratio and is guided by the inner wall.
  • a pressure ratio of a motive pressure of the motive medium to a suction pressure at the outlet part can be between 1.05 and 5, preferably between 1.1 and 2.5.
  • the jet pump can thus be operated in a wide pressure range, with the pressure ratios being able to be subcritical or supercritical in relation to a desired suction pressure.
  • a sufficient suction pressure for the operation of the jet pump is provided both at a low pressure ratio in which the propellant flows at subsonic speed and at a high pressure ratio in which the propellant flows at supersonic speed.
  • the jet pump thus has a subcritical and a supercritical operating range in which it can be operated. This means that the jet pump can be operated in a wide range of applications.
  • the opening angle is advantageously more than 7 °.
  • 3a, b are schematic representations of examples of the outlet part.
  • FIG. 1 a jet pump is shown in a schematic sectional illustration, the jet pump being designated in its entirety by the reference symbol 10.
  • the jet pump 10 has a propellant tank 12, a propellant nozzle 14, a suction medium tank 18, a mixing chamber 20 and a diffuser 22.
  • the propellant is provided in the propellant tank 12.
  • the propellant medium can be a compressible propellant medium.
  • the propellant can be pressurized in the propellant tank 12 or be stored under pressure in the propellant tank 12.
  • the pressure ratio can e.g. B. between 1.05 and 5, preferably between 1.1 and 2.5. Under this motive pressure, the motive medium flows during operation of the jet pump 10 from the motive medium tank 12 to the motive nozzle 14. This is shown by the arrow 30 Darge.
  • the propulsion nozzle 14 has a convergent inlet part 28 and an outlet part 26 with a divergent interior 40.
  • the exit part 26 and the convergent entry part 28 are connected to one another.
  • the junction of the convergent inlet part 28 with the outlet part 26 has the smallest cross section of the propellant nozzle 14.
  • the convergent entry part 28 has a tapered cross section.
  • Themaschineme medium first flows into an area of the convergent inlet part 28 with a large cross section.
  • the propellant medium flowing through the convergent inlet part 28 is accelerated.
  • the motive medium is accelerated to a subsonic speed or a speed of sound by means of the convergent inlet part 28 when the motive medium flows through the convergent inlet part 28.
  • the exit part 26 adjoins the tapered end of the convergent entry part 28.
  • the outlet part 26 comprises an inner wall 38 which laterally closes the interior 40.
  • the inner wall 38 can enclose the interior space 40 in the form of a conical jacket surface, as shown in FIG. 3a.
  • the inner wall 38 can enclose the interior 40 in the form of a shell surface of a bell shape, as shown in FIG. 3b.
  • the interior 40 has an inlet opening which is connected to the outlet opening of the convergent inlet part 28. Furthermore, the interior space 40 has an outlet opening that is larger than the entry opening of the interior space 40.
  • the inner wall 38 extends between the inlet opening and the outlet opening of the interior 40.
  • the interior 40 is divergent and diverges at an opening angle 16.
  • the interior wall 38 defines the opening angle 16 directly after the narrowest cross section at the inlet opening of the interior 40. The opening angle 16 of the inner wall 38 can change as the distance from the inlet opening increases.
  • the opening angle 16 is selected so that a propellant medium flowing through the outlet part 26 at subsonic speed is detached from the inner wall 38 and a propellant medium flowing through the outlet part 26 at over sonic speed is guided from the inner wall 38.
  • the inner wall 38 does not influence a propellant medium flowing through the outlet part 26 at subsonic speed. Rather, the propellant medium flowing at subsonic speed is detached from the inner wall 38 and flows as a jet from the outlet opening of the convergent inlet part 28 through the outlet part 26 and out of the propellant nozzle 14.
  • the opening angle 16 is further selected so that a propellant medium flowing through the outlet part 26 at supersonic speed is guided from the inner wall 38.
  • An expansion of the propellant flowing through the outlet part 26, which takes place perpendicular to the direction of flow, is limited by the inner wall 38.
  • An outer region of the flow of the propellant medium therefore flows along the inner wall 38.
  • the opening angle 16 can be at least 7 °.
  • An upper limit of the opening angle 16 can, for. B. be between 8 ° and 45 °.
  • the propellant is further accelerated and flows out of the outlet part 26 with increased supersonic speed.
  • the propellant After exiting the outlet part 26, the propellant flows past an opening in the suction medium tank 18 and in doing so causes a suction pressure.
  • the suction medium is entrained and accelerated with the propellant medium flowing past the suction medium tank 18. As a result, the propellant and the suction medium enter the mixing chamber 20. While the propellant and the suction medium flow through the mixing chamber 20, the propellant and the suction medium mix.
  • the mixing chamber 20 is followed by a diffuser 22 in which the propellant medium and the suction medium mixed with it are delayed.
  • the diffuser 22 comprises an outlet opening 24. The propellant medium and the seam medium can flow out of the jet pump 10 through the outlet opening 24.
  • FIGS. 2a and 2b show in a schematic manner a cross section through the propellant nozzle 14, the flow of the propellant medium through the propellant nozzle 14 being indicated by means of streamlines 32, 34.
  • the propellant in Figure 2a is accelerated by means of the convergent inlet part 28 to speed sound.
  • this is indicated by the streamlines 32 running together.
  • the propellant medium accelerated to the speed of sound flows from the convergent inlet part 28 into the outlet part 26.
  • the streamlines 32 diverge.
  • the outer streamlines 32 run along the inner wall 38, which indicates that the propellant is guided along the inner wall 38 through the interior 40.
  • the propellant is expanded and the speed is increased further to supersonic speed.
  • the propellant is also accelerated by means of a convergent inlet part 28, but the speed of the propellant remains below the speed of sound.
  • the propellant therefore flows out of the convergent inlet part 28 at subsonic speed.
  • the streamlines 34 condense in the convergent inlet part 28.
  • the opening angle 16 of the diverging inner wall 38 is selected so that a propellant medium flowing at subsonic speed is detached from the diverging inner wall 38, the propellant medium in the outlet part 26 is not expanded, but flows as a free jet through the outlet part 26. This is carried out by the streamlines 34 in the outlet part 26 are provided, which run essentially parallel to one another.
  • the free jet has an almost constant width 36 in the exit part 26.
  • the width 36 of the subsonic flow of the propellant medium in the outlet part 26 is therefore klei ner than a clear width of the interior space 40 laterally bounded by the inner wall 38, the clear width increasing due to the diverging inner wall 38.
  • the pressure of the propellant medium in the convergent inlet part 28 can be increased or decreased during operation.
  • the inner wall 38 of the outlet part 26 is designed in such a way that the propellant medium flowing through the outlet part 26 detaches from the inner wall 38 when there is a transition from the supercritical pressure ratio to the subcritical pressure ratio. Conversely, when there is a transition from a subcritical pressure ratio to a supercritical pressure ratio, the propellant medium flowing through the outlet part 26 will come into contact with the inner wall 38 and be guided by the inner wall 38.
  • the jet pump 10 can thus be operated both with an over-critical pressure ratio and with a sub-critical pressure ratio.
  • a subcritical pressure ratio can be set in which the driving medium flows through the outlet part 26 at subsonic speed, the flowing driving medium being detached from the inner wall 38.
  • a supercritical pressure ratio can be set in which the motive medium flows through the outlet part 26 at supersonic speed, the flowing motive medium being guided through the inner wall 38 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

Die Erfindung betrifft eine Strahlpumpe (10) umfassend eine Treibdüse (14) zum Beschleunigen eines Treibmediums, wobei die Treibdüse (14) ein konvergierendes Eintrittsteil (28) und ein mit dem konvergierenden Eintrittsteil (28) verbundenes Austrittsteil (26) aufweist, wobei das Austrittsteil (26) eine unter einem Öffnungswinkel (16) divergierende Innenwand (38) umfasst, wobei vorgesehen ist, dass der Öffnungswinkel (16) derart ausgebildet ist, dass ein mit Unterschallgeschwindigkeit durch das Austrittsteil (26) strömendes Treibmedium von der Innenwand (38) gelöst ist und ein mit Überschallgeschwindigkeit durch das Austrittsteil (26) strömendes Treibmedium von der Innenwand (38) geführt wird. Durch die Erfindung wird damit eine automatische, kostengünstige und einfache Umschaltung der Strahlpumpe (10) auf verschiedene Druckverhältnisse bereitgestellt.

Description

Strahlpumpe
Die Erfindung betrifft eine Strahlpumpe umfassend eine Treibdüse zum Beschleunigen eines Treibmediums, wobei die Treibdüse ein konvergierendes Eintrittsteil und ein mit dem konvergie renden Eintrittsteil verbundenes Austrittsteil aufweist, wobei das Austrittsteil, gemäß dem Ober begriff von Anspruch 1 , einen von einer Innenwand umschlossenen unter einem Öffnungswinkel divergierenden Innenraum umfasst.
Strahlpumpen verwenden einen Fluidstrahl aus einem Treibmedium, um ein Saugmedium an zusaugen und zu beschleunigen. Die Saugwirkung wird durch ein Vorbeiströmen des Treibme diums an dem Saugmedium bewirkt, wobei das Saugmedium von dem Treibmedium mitgeris sen wird, wenn die Strömungsgeschwindigkeit des Treibmediums ausreichend hoch ist. Um ein Treibmedium zu beschleunigen, wird es unter Druck durch eine Düse geführt, die das Treibme dium beschleunigt. Wenn der Saugdruck und der Treibdruck ein unterkritisches Druckverhältnis aufweisen, wird eine konvergente Düse zur Beschleunigung des Treibmediums in der Strahl pumpe verwendet. Bei überkritischen Druckverhältnissen wird eine konvergent-divergente Düse, eine sog. Laval-Düse, genutzt, um das im konvergenten Teil der Laval-Düse auf Schall geschwindigkeit beschleunigte Treibmedium weiter zu beschleunigen. Eine Laval-Düse führt bei Treibmedien, die mit Unterschallgeschwindigkeit fließen, zu einer Verzögerung der Strömungs geschwindigkeit, da der divergente Abschnitt der Laval-Düse für das Treibmedium als Diffusor wirkt.
Aufgabe der Erfindung ist es, eine verbesserte Strahlpumpe bereitzustellen, die einen Betrieb bei unterkritischen und überkritischen Druckverhältnissen erlaubt.
Hauptmerkmale der Erfindung sind im kennzeichnenden Teil von Anspruch 1 angegeben. Aus gestaltungen sind Gegenstand der Ansprüche 2 bis 8.
Die Erfindung betrifft eine Strahlpumpe umfassend eine Treibdüse zum Beschleunigen eines Treibmediums, wobei die Treibdüse ein konvergierendes Eintrittsteil und ein mit dem konvergie renden Eintrittsteil verbundenes Austrittsteil aufweist, wobei das Austrittsteil einen von einer In nenwand umschlossenen unter einem Öffnungswinkel divergierenden Innenraum umfasst, wo bei erfindungsgemäß vorgesehen ist, dass der Öffnungswinkel derart ausgebildet ist, dass ein mit Unterschallgeschwindigkeit durch das Austrittsteil strömendes Treibmedium von der Innen wand gelöst ist und ein mit Überschallgeschwindigkeit durch das Austrittsteil strömendes Treib medium von der Innenwand geführt wird.
Mit der Erfindung wird eine Strahlpumpe mit einer Treibdüse bereitgestellt, dessen konvergen tes Eintrittsteil ein durch das konvergente Eintrittsteil strömendes Treibmedium beschleunigt, wobei das Treibmedium vor dem Durchströmen des Eintrittsteils mit Unterschallgeschwindigkeit strömt. Wenn das Treibmedium nach dem Durchströmen des Eintrittsteils und der Beschleuni gung darin weiterhin Unterschallgeschwindigkeit aufweist, durchströmt es das Austrittsteil eben falls mit Unterschallgeschwindigkeit. Das Austrittsteil der Treibdüse weist dabei eine divergente Innenwand auf, d. h., dass sich der Querschnitt des Austrittsteils von dem konvergenten Ein trittsteil ausgehend vergrößert. Die Treibdüse kann dabei eine speziell ausgebildete Laval-Düse sein. Der Öffnungswinkel der divergenten Innenwand ist dabei so groß, dass sich ein mit Unter schallgeschwindigkeit durch das Austrittsteil strömendes Treibmedium von der Innenwand des Austrittsteils löst. Das Austrittsteil der T reibdüse wirkt für das mit Unterschallgeschwindigkeit strömende Treibmedium damit nicht als Diffusor, so dass keine Verzögerung der Geschwindig keit des Treibmediums beim Durchströmen des Austrittsteils bewirkt wird. Vielmehr wirkt ledig lich das konvergente Eintrittsteil der Treibdüse auf das mit Unterschallgeschwindigkeit strö mende Treibmedium. Die Treibdüse wirkt auf das Treibmedium, das mit Unterschallgeschwin digkeit strömt, als konvergente Düse. Wird das Treibmedium durch das konvergente Eintrittsteil auf Schallgeschwindigkeit beschleunigt, wird es durch den divergierenden Innenraum des Aus trittsteils weiter beschleunigt. Das Treibmedium wird dabei durch die divergente Innenwand des Austrittsteils geführt, da es in diesem Fall nicht von der Innenwand gelöst ist. Dabei wirkt das Austrittsteil als Düse für das mit Überschallgeschwindigkeit strömende Treibmedium und be schleunigt das Treibmedium weiter. Damit wirkt die Treibdüse für mit Überschallgeschwindigkeit strömendes Treibmedium als Laval-Düse.
Mit der Erfindung wird damit eine Strahlpumpe bereitgestellt, die sowohl bei unterkritischen Druckverhältnissen, d. h. wenn das Treibmedium mit Unterschallgeschwindigkeit die Saugwir kung bewirkt, als auch bei überkritischen Druckverhältnissen, d. h. wenn das Treibmedium mit Überschallgeschwindigkeit die Saugwirkung bewirkt, mit einer einzigen Treibdüse betrieben wird. Die Wirkung des Austrittsteils auf das strömende Treibmedium wird dabei automatisch durch den Öffnungswinkel der Innenwand eingestellt. Durch die Erfindung wird damit eine auto matische, kostengünstige und einfache Umschaltung der Strahlpumpe auf verschiedene Druck verhältnisse bereitgestellt.
Die Innenwand des Austrittsteils kann so ausgebildet sein, dass sich das durch das Austrittsteil strömende Treibmedium bei einem Übergang von Überschallgeschwindigkeit zu Unterschallge schwindigkeit von der Innenwand löst. Anders ausgedrückt kann die Innenwand des Austritts teils so ausgebildet sein, dass sich das durch das Austrittsteil strömende Treibmedium bei ei nem Übergang von einem überkritischen Druckverhältnis zu einem unterkritischen Druckver hältnis von der Innenwand löst.
Damit kann der Druck während des Betriebs der Strahlpumpe von dem überkritischen Druck verhältnis zu dem unterkritischen Druckverhältnis geändert werden, wobei Druckstöße bei dem Umschaltvorgang vermieden werden. Dies bewirkt eine zusätzliche Erweiterung des Einsatzbe reiches der Strahlpumpe. Weiter kann die Innenwand des Austrittsteils so ausgebildet sein, dass sich das durch das Aus trittsteil strömende Treibmedium bei einem Übergang von Unterschallgeschwindigkeit zu Über schallgeschwindigkeit an die Innenwand anlegt und von der Innenwand geführt wird. In anderen Worten kann die Innenwand des Austrittsteils so ausgebildet sein, dass sich das durch das Aus trittsteil strömende Treibmedium bei einem Übergang von dem unterkritischen Druckverhältnis zu dem überkritischen Druckverhältnis an die Innenwand anlegt und von der Innenwand geführt wird.
Damit kann ein reibungsloser Übergang von dem unterkritischen Druckverhältnis zu dem über kritischen Druckverhältnis erfolgen. Dies erweitert den Einsatzbereich der Strahlpumpe weiter.
Weiter kann ein Druckverhältnis von einem Treibdruck des Treibmediums zu einem Saugdruck an dem Austrittsteil zwischen 1 ,05 und 5, vorzugsweise zwischen 1 ,1 und 2,5, betragen.
Damit kann die Strahlpumpe in einem weiten Druckbereich betrieben werden, wobei die Druck verhältnisse im Verhältnis zu einem gewünschten Saugdruck unterkritisch oder überkritisch sein können.
Damit wird sowohl bei einem niedrigen Druckverhältnis, bei dem das Treibmedium mit Unter schallgeschwindigkeit strömt, als auch bei einem hohen Druckverhältnis, bei dem das Treibme dium mit Überschallgeschwindigkeit strömt, ein ausreichender Saugdruck für den Betrieb der Strahlpumpe bereitgestellt.
Die Strahlpumpe weist damit einen unterkritischen und einen überkritischen Betriebsbereich auf, in dem sie betrieben werden kann. Damit kann die Strahlpumpe in einem weiten Einsatzbe reich betrieben werden.
Vorteilhafterweise beträgt der Öffnungswinkel mehr als 7°.
Mit Öffnungswinkeln von mehr als 7° wird das Ablösen des durch das Austrittsteil mit Unter schallgeschwindigkeit strömende Treibmedium von der Innenwand weiter begünstigt. Damit wird ein Anhaften des durch das Austrittsteil strömenden Treibmediums an die Innenwand des Austrittsteils bei Unterschallgeschwindigkeiten vermieden. Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus dem Wortlaut der Ansprüche sowie aus der folgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnungen. Es zeigen:
Fig. 1 eine schematische Darstellung der Strahlpumpe,
Fig. 2a, b schematische Darstellungen der Treibdüse, und
Fig. 3a, b schematische Darstellungen von Beispielen des Austrittsteils.
In Figur 1 ist eine Strahlpumpe in schematischer Schnittdarstellung gezeigt, wobei die Strahl pumpe in ihrer Gesamtheit mit dem Referenzzeichen 10 bezeichnet wird.
Die Strahlpumpe 10 weist einen Treibmedium-Tank 12, eine Treibdüse 14, einen Saugmedium- Tank 18, eine Mischkammer 20 und einen Diffusor 22 auf.
In dem Treibmedium-Tank 12 wird das Treibmedium bereitgestellt. Das Treibmedium kann da bei ein kompressibles Treibmedium sein. Das Treibmedium kann in dem Treibmedium-Tank 12 mit einem Druck beaufschlagt werden oder unter Druck in dem Treibmedium-Tank 12 gelagert werden. Das Druckverhältnis kann z. B. zwischen 1 ,05 und 5, vorzugsweise zwischen 1 , 1 und 2,5, betragen. Unter diesem Treibdruck strömt das Treibmedium beim Betrieb der Strahlpumpe 10 von dem Treibmedium-Tank 12 zu der Treibdüse 14. Dies wird durch den Pfeil 30 darge stellt.
Die Treibdüse 14 weist dabei ein konvergentes Eintrittsteil 28 und ein Austrittsteil 26 mit einem divergenten Innenraum 40 auf. Das Austrittsteil 26 und das konvergente Eintrittsteil 28 sind mit einander verbunden. Die Verbindungsstelle des konvergenten Eintrittsteils 28 mit dem Austritts teil 26 weist den kleinsten Querschnitt der Treibdüse 14 auf.
Das konvergente Eintrittsteil 28 weist einen sich verjüngenden Querschnitt auf. Das Treibme dium strömt zunächst in einen Bereich des konvergenten Eintrittsteils 28 mit einem großen Querschnitt. Durch die Verjüngung des Querschnitts des konvergenten Eintrittsteils 28 wird das durch das konvergente Eintrittsteil 28 strömende Treibmedium beschleunigt. In Abhängigkeit des Treibdrucks wird das Treibmedium mittels des konvergenten Eintrittsteils 28 auf eine Unterschallgeschwindigkeit oder eine Schallgeschwindigkeit beschleunigt, wenn das Treibmedium durch das konvergente Eintrittsteil 28 strömt.
Das Austrittsteil 26 schließt sich an dem verjüngten Ende des konvergenten Eintrittsteils 28 an. Dabei umfasst das Austrittsteil 26 eine Innenwand 38, die den Innenraum 40 seitlich um schließt. Die Innenwand 38 kann in einem Ausführungsbeispiel den Innenraum 40 dabei in Form einer konischen Mantelfläche umschließen, wie in Figur 3a dargestellt. In einem anderen Ausführungsbeispiel kann die Innenwand 38 den Innenraum 40 in Form einer eine Mantelfläche einer Glockenform umschließen, wie in Fig. 3b dargestellt.
Der Innenraum 40 weist dabei eine Eintrittsöffnung auf, die mit der Austrittsöffnung des konver genten Eintrittsteils 28 verbunden ist. Weiter weist der Innenraum 40 eine Austrittsöffnung auf, die größer als die Eintrittsöffnung des Innenraums 40 ist. Zwischen der Eintrittsöffnung und der Austrittsöffnung des Innenraums 40 erstreckt sich die Innenwand 38. Der Innenraum 40 ist da mit divergent ausgebildet und divergiert unter einem Öffnungswinkel 16. Die Innenwand 38 defi niert den Öffnungswinkel 16 direkt nach dem engsten Querschnitt an der Eintrittsöffnung des Innenraums 40. Der Öffnungswinkel 16 der Innenwand 38 kann sich dabei mit zunehmendem Abstand von der Eintrittsöffnung ändern.
Der Öffnungswinkel 16 ist dabei so gewählt, dass ein mit Unterschallgeschwindigkeit durch das Austrittsteil 26 strömendes Treibmedium von der Innenwand 38 gelöst ist und ein mit Über schallgeschwindigkeit durch das Austrittsteil 26 strömendes Treibmedium von der Innenwand 38 geführt wird. D. h. die Innenwand 38 beeinflusst ein mit Unterschallgeschwindigkeit durch das Austrittsteil 26 strömendes Treibmedium nicht. Vielmehr ist das mit Unterschallgeschwin digkeit strömende Treibmedium von der Innenwand 38 gelöst und strömt als Strahl aus der Austrittsöffnung des konvergenten Eintrittsteils 28 durch das Austrittsteil 26 und aus der Treib düse 14.
Der Öffnungswinkel 16 ist weiter so gewählt, dass ein mit Überschallgeschwindigkeit durch das Austrittsteil 26 strömendes Treibmedium von der Innenwand 38 geführt wird. Eine senkrecht zur Strömungsrichtung erfolgende Expansion des durch das Austrittsteil 26 strömenden Treibmedi ums wird dabei durch die Innenwand 38 begrenzt. Ein Außenbereich der Strömung des Treib mediums strömt daher an der Innenwand 38 entlang. Dabei kann der Öffnungswinkel 16 mindestens 7° betragen. Eine obere Grenze des Öffnungs winkels 16 kann z. B. zwischen 8° und 45° liegen.
Durch die senkrecht zur Strömungsrichtung erfolgende und die Innenwand 38 begrenzte Ex pansion wird das Treibmedium weiter beschleunigt und strömt mit erhöhter Überschallge schwindigkeit aus dem Austrittsteil 26 aus.
Nach dem Austritt aus dem Austrittsteil 26 strömt das Treibmedium an einer Öffnung des Saug- medium-Tanks 18 vorbei und bewirkt dabei einen Saugdruck.
Das Saugmedium wird mit dem an dem Saugmedium-Tank 18 vorbeiströmenden Treibmedium mitgerissen und beschleunigt. Dadurch gelangen das Treibmedium und das Saugmedium in die Mischkammer 20. Während das Treibmedium und das Saugmedium die Mischkammer 20 durchströmen, vermischen sich das Treibmedium und das Saugmedium.
An die Mischkammer 20 schließt sich ein Diffusor 22 an, in dem das Treibmedium und das mit ihm vermischte Saugmedium verzögert werden. Der Diffusor 22 umfasst eine Auslassöffnung 24. Das Treibmedium und das Saumedium können durch die Auslassöffnung 24 aus der Strahl pumpe 10 ausströmen.
Die Figur 2a und 2b zeigen in schematischer Weise einen Querschnitt durch die Treibdüse 14, wobei die Strömung des Treibmediums durch die Treibdüse 14 mittels Stromlinien 32, 34 ange zeigt wird.
Dabei wird das Treibmedium in Figur 2a mittels des konvergenten Eintrittsteils 28 auf Schallge schwindigkeit beschleunigt. In dem konvergenten Eintrittsteil 28 wird dies durch die zusammen laufenden Stromlinien 32 angezeigt. Von dem konvergenten Eintrittsteil 28 strömt das auf Schallgeschwindigkeit beschleunigte Treibmedium in das Austrittsteil 26. In dem Austrittsteil 26 laufen die Stromlinien 32 auseinander. Die äußeren Stromlinien 32 verlaufen dabei entlang der Innenwand 38, wodurch anzeigt wird, dass das Treibmedium entlang der Innenwand 38 durch den Innenraum 40 geführt wird. Das Treibmedium wird dabei expandiert und die Geschwindig keit damit weiter auf Überschallgeschwindigkeit erhöht.
In Figur 2b wird das Treibmedium mittels konvergenten Eintrittsteils 28 ebenfalls beschleunigt, jedoch verbleibt die Geschwindigkeit des Treibmediums unterhalb der Schallgeschwindigkeit. Das Treibmedium strömt daher mit Unterschallgeschwindigkeit aus dem konvergenten Eintritts teil 28 aus. Die Stromlinien 34 verdichten sich in dem konvergenten Eintrittsteil 28.
Da der Öffnungswinkel 16 der divergierenden Innenwand 38 so gewählt ist, dass ein mit Unter schallgeschwindigkeit strömendes Treibmedium von der divergierenden Innenwand 38 gelöst ist, wird das Treibmedium in dem Austrittsteil 26 nicht expandiert, sondern strömt als freier Strahl durch das Austrittsteil 26. Dies wird durch die Stromlinien 34 in dem Austrittsteil 26 dar gestellt, die im Wesentlichen parallel zu einander verlaufen. Der freie Strahl hat in dem Aus trittsteil 26 eine nahezu konstante Breite 36.
Die Breite 36 der Unterschallströmung des Treibmediums in dem Austrittsteil 26 ist daher klei ner als eine lichte Weite des seitlich durch die Innenwand 38 begrenzten Innenraums 40, wobei sich die lichte Weite aufgrund der divergierenden Innenwand 38 vergrößert.
Damit wird vermieden, dass die Innenwand 38 als Diffusor für das mit Unterschallgeschwindig keit fließende Treibmedium wirkt und das Treibmedium durch das Austrittsteil 26 abgebremst wird.
Der Druck des Treibmediums in dem konvergenten Eintrittsteil 28 kann während des Betriebs vergrößert oder verringert werden. Die Innenwand 38 des Austrittsteils 26 ist dabei so ausgebil det, dass sich das durch das Austrittsteil 26 strömende Treibmedium bei einem Übergang von dem überkritischen Druckverhältnis zu dem unterkritischen Druckverhältnis von der Innenwand 38 löst. Umgekehrt wird sich das durch das Austrittsteil 26 strömende Treibmedium bei einem Übergang von einem unterkritischen Druckverhältnis zu einem überkritischen Druckverhältnis an die Innenwand 38 anlegen und von der Innenwand 38 geführt werden.
Das bedeutet, dass die Geschwindigkeit des Treibmediums im Austrittsteil 26 zwischen Über schallgeschwindigkeit und Unterschallgeschwindigkeit wechseln kann, ohne dass eine Störung des Betriebs der Strahlpumpe 10 erfolgt. Die Strahlpumpe 10 ist damit sowohl mit einem über kritischen Druckverhältnis als auch mit einem unterkritischen Druckverhältnis betreibbar.
Dabei kann bei einem Saugdruck von 0,98 bar und einem Treibdruck von 1 , 1 bar ein unterkriti sches Druckverhältnis eingestellt sein, bei dem das Treibmedium mit Unterschallgeschwindig keit durch das Austrittsteil 26 strömt, wobei das strömende Treibmedium von der Innenwand 38 gelöst ist. Bei einem Saugdruck von 0,98 bar und einem Treibdruck von 2,5 bar kann damit ein überkriti sches Druckverhältnis eingestellt werden, bei dem das Treibmedium mit Überschallgeschwin digkeit durch das Austrittsteil 26 strömt, wobei das strömende Treibmedium durch die Innen- wand 38 geführt wird.
Die Erfindung ist nicht auf eine der vorbeschriebenen Ausführungsformen beschränkt, sondern in vielfältiger Weise abwandelbar. Sämtliche aus den Ansprüchen, der Beschreibung und der Zeichnung hervorgehenden Merk male und Vorteile, einschließlich konstruktiver Einzelheiten, räumlicher Anordnungen und Ver fahrensschritten, können sowohl für sich als auch in den verschiedensten Kombinationen erfin dungswesentlich sein.
Bezu gszei chen l iste
10 Strahlpumpe
12 Treibmedium-Tank
14 Treibdüse
16 Öffnungswinkel
18 Saugmedium-Tank
20 Mischkammer
22 Diffusor
24 Auslassöffnung
26 Austrittsteil
28 konvergierendes Eintrittsteil
30 Strömungsrichtung
32 Überschall-Stromlinien
34 Unterschall-Stromlinien
36 Breite freier Strahl
38 Innenwand
40 Innenraum

Claims

Patentans prüche
1. Strahlpumpe umfassend eine Treibdüse (14) zum Beschleunigen eines Treibmediums, wobei die Treibdüse (14) ein konvergierendes Eintrittsteil (28) und ein mit dem konver gierenden Eintrittsteil (28) verbundenes Austrittsteil (26) aufweist, wobei das Austrittsteil (26) einen von einer Innenwand (38) umschlossenen unter einem Öffnungswinkel (16) divergierenden Innenraum (40) umfasst, dadurch gekennzeichnet, dass der Öffnungs winkel (16) derart ausgebildet ist, dass ein mit Unterschallgeschwindigkeit durch das Austrittsteil (26) strömendes Treibmedium von der Innenwand (38) gelöst ist und ein mit Überschallgeschwindigkeit durch das Austrittsteil (26) strömendes Treibmedium von der Innenwand (38) geführt wird.
2. Strahlpumpe nach Anspruch 1 , dadurch gekennzeichnet, dass die Innenwand (38) des Austrittsteils (26) so ausgebildet ist, dass sich das durch das Austrittsteil (26) strömende Treibmedium bei einem Übergang von Überschallgeschwindigkeit zu Unterschallge schwindigkeit von der Innenwand (38) löst.
3. Strahlpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Innenwand (38) des Austrittsteils (26) so ausgebildet ist, dass sich das durch das Austrittsteil (26) strömende Treibmedium bei einem Übergang von Unterschallgeschwindigkeit zu Über schallgeschwindigkeit an die Innenwand (38) anlegt und von der Innenwand (38) geführt wird.
4. Strahlpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein Druckverhältnis zwischen einem Treibdruck des Treibmediums und einem Saugdruck nach dem Austrittsteil (26) zwischen 1 ,05 und 5, vorzugsweise zwischen 1 ,1 und 2,5, be trägt.
5. Strahlpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Öff nungswinkel (16) mehr als 7° beträgt.
PCT/EP2020/058994 2019-04-08 2020-03-30 Strahlpumpe WO2020207847A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080024006.6A CN113614386B (zh) 2019-04-08 2020-03-30 射流泵
JP2021559445A JP7472165B2 (ja) 2019-04-08 2020-03-30 ジェットポンプ
KR1020217034865A KR102649754B1 (ko) 2019-04-08 2020-03-30 제트 펌프
MX2021011742A MX2021011742A (es) 2019-04-08 2020-03-30 Bomba de chorro.
US17/602,442 US11905978B2 (en) 2019-04-08 2020-03-30 Jet pump
EP20719576.9A EP3953588B1 (de) 2019-04-08 2020-03-30 Strahlpumpe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019109195.0A DE102019109195A1 (de) 2019-04-08 2019-04-08 Strahlpumpe
DE102019109195.0 2019-04-08

Publications (1)

Publication Number Publication Date
WO2020207847A1 true WO2020207847A1 (de) 2020-10-15

Family

ID=70292939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/058994 WO2020207847A1 (de) 2019-04-08 2020-03-30 Strahlpumpe

Country Status (8)

Country Link
US (1) US11905978B2 (de)
EP (1) EP3953588B1 (de)
JP (1) JP7472165B2 (de)
KR (1) KR102649754B1 (de)
CN (1) CN113614386B (de)
DE (1) DE102019109195A1 (de)
MX (1) MX2021011742A (de)
WO (1) WO2020207847A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021005770A1 (de) 2021-11-22 2023-05-25 Serge Olivier Menkuimb Neuartiges und regeneratives Energieerzeugungskühlsystem

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230171701A (ko) * 2022-06-14 2023-12-21 주식회사 엘지에너지솔루션 가스 벤팅 장치, 이를 포함하는 배터리 모듈 및 배터리 팩

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE578900C (de) * 1931-08-16 1933-06-19 Schmidt Paul Zwei- oder mehrstufige, durch Fluessigkeit betriebene Strahlpumpe zum Foerdern von Fluessigkeit
GB1190409A (en) * 1966-09-23 1970-05-06 Gen Electric Nuclear Reactor Fuel Bundle
WO2000023757A1 (en) * 1998-10-16 2000-04-27 Translang Technologies Ltd. Vortex tube for liquefaction and separation of components in a gas mixture
US6877960B1 (en) * 2002-06-05 2005-04-12 Flodesign, Inc. Lobed convergent/divergent supersonic nozzle ejector system
US20050258149A1 (en) * 2004-05-24 2005-11-24 Yuri Glukhoy Method and apparatus for manufacture of nanoparticles
JP2006212624A (ja) * 2005-01-07 2006-08-17 Kobe Steel Ltd 溶射ノズル装置および溶射装置
US20130149471A1 (en) * 2010-12-14 2013-06-13 FEMVIX Co. Ltd. Apparatus and method for continuous powder coating

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1322879A (fr) * 1962-02-10 1963-04-05 Bertin & Cie Perfectionnements aux trompes
CA1272661A (en) * 1985-05-11 1990-08-14 Yuji Chiba Reaction apparatus
FR2590808B1 (fr) * 1985-12-04 1989-09-15 Canon Kk Dispositif de soufflage de particules fines
US5240384A (en) * 1990-10-30 1993-08-31 Gas Research Institute Pulsating ejector refrigeration system
WO1995029785A1 (en) * 1994-04-29 1995-11-09 United Technologies Corporation Fabrication of tubular wall thrust chambers for rocket engines using laser powder injection
DE4425601A1 (de) * 1994-07-06 1996-01-18 Mannesmann Ag Verfahren zum Betreiben einer Strahlpumpe sowie eine Strahlpumpe selber
US20070295833A1 (en) 2005-01-07 2007-12-27 Tsuyoshi Oda Thermal Spraying Nozzle Device and Thermal Spraying System
CA2560814C (en) * 2006-09-25 2014-08-26 Transcanada Pipelines Limited Tandem supersonic ejectors
US8056319B2 (en) 2006-11-10 2011-11-15 Aerojet—General Corporation Combined cycle missile engine system
JP2008138686A (ja) 2008-01-11 2008-06-19 Hitachi Ltd エジェクタ
KR100991723B1 (ko) * 2008-09-12 2010-11-03 주식회사 펨빅스 고상파우더 연속 증착 롤투롤 장치
JP5786765B2 (ja) * 2012-03-07 2015-09-30 株式会社デンソー エジェクタ
DE102015011958B4 (de) 2015-09-18 2024-02-01 Arianegroup Gmbh Schubdüse

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE578900C (de) * 1931-08-16 1933-06-19 Schmidt Paul Zwei- oder mehrstufige, durch Fluessigkeit betriebene Strahlpumpe zum Foerdern von Fluessigkeit
GB1190409A (en) * 1966-09-23 1970-05-06 Gen Electric Nuclear Reactor Fuel Bundle
WO2000023757A1 (en) * 1998-10-16 2000-04-27 Translang Technologies Ltd. Vortex tube for liquefaction and separation of components in a gas mixture
US6877960B1 (en) * 2002-06-05 2005-04-12 Flodesign, Inc. Lobed convergent/divergent supersonic nozzle ejector system
US20050258149A1 (en) * 2004-05-24 2005-11-24 Yuri Glukhoy Method and apparatus for manufacture of nanoparticles
JP2006212624A (ja) * 2005-01-07 2006-08-17 Kobe Steel Ltd 溶射ノズル装置および溶射装置
US20130149471A1 (en) * 2010-12-14 2013-06-13 FEMVIX Co. Ltd. Apparatus and method for continuous powder coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021005770A1 (de) 2021-11-22 2023-05-25 Serge Olivier Menkuimb Neuartiges und regeneratives Energieerzeugungskühlsystem

Also Published As

Publication number Publication date
JP2022526627A (ja) 2022-05-25
US20220213904A1 (en) 2022-07-07
EP3953588B1 (de) 2023-12-06
KR102649754B1 (ko) 2024-03-20
JP7472165B2 (ja) 2024-04-22
US11905978B2 (en) 2024-02-20
CN113614386A (zh) 2021-11-05
MX2021011742A (es) 2021-10-22
EP3953588A1 (de) 2022-02-16
DE102019109195A1 (de) 2020-10-08
CN113614386B (zh) 2024-01-23
KR20210139453A (ko) 2021-11-22

Similar Documents

Publication Publication Date Title
DE60113770T2 (de) Reinigungsdüse und Reinigungsgerät
EP0911082B1 (de) Verfahren zur erzeugung eines strahles von gas und tröpfchen, ausrüstung und düse zur durchführung dieses verfahrens
DE3639139C2 (de)
EP2444161A1 (de) Zweistoffzerstäubungsdüse
EP3953588A1 (de) Strahlpumpe
WO2007080084A1 (de) Zweistoffdüse
DE602004012985T2 (de) Zerstäubungsdüse für überhitzte flüssigkeiten
EP1765551B1 (de) Vorrichtung zur erzeugung eines strahls von trockeneispartikeln
DE4425601A1 (de) Verfahren zum Betreiben einer Strahlpumpe sowie eine Strahlpumpe selber
EP2136965B1 (de) Vorrichtung und verfahren zum partikelstrahlen mittels gefrorener gaspartikel
EP3804861B1 (de) Injektionsdüse für eine sprühvorrichtung und sprühvorrichtung
EP3209887A1 (de) Strahlpumpe
WO2021058372A1 (de) Förderaggregat für ein brennstoffzellen-system zur förderung und/oder steuerung eines gasförmigen mediums
CH702598A1 (de) Einspritzdüse sowie Verfahren zum Betrieb einer solchen Einspritzdüse.
EP2128452B1 (de) Strahlpumpenverdichter zum Erzeugen von Druckluftschaum CAFS - (Compressed air foam system)
EP2578319A1 (de) Brausekopf
WO2018167204A1 (de) Schubkammervorrichtung und verfahren zum betreiben einer schubkammervorrichtung
EP2012970A1 (de) Vorrichtung zum erzeugen eines hochdruckstrahls
DE10231218A1 (de) Zerstäubungseinrichtung und Verfahren zur Erzeugung eines Flüssigkeit-Gas Gemisches
WO2020200909A1 (de) Vorrichtung zum erzeugen eines co2-schnee-strahls
EP2347115B1 (de) Injektor zur einspritzung von mit hochdruck beaufschlagtem kraftstoff in den brennraum einer brennkraftmaschine
DE19843185A1 (de) Rotordüse
WO1996006285A1 (de) Überschallvorrichtung
DE10352252B4 (de) Kompressor für eine Turbogruppe
DE102021203755A1 (de) Strahlpumpe, insbesondere Strahlpumpe für eine Brennstoffzellenanwendung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20719576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021559445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217034865

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020719576

Country of ref document: EP

Effective date: 20211108