EP3953588B1 - Strahlpumpe - Google Patents

Strahlpumpe Download PDF

Info

Publication number
EP3953588B1
EP3953588B1 EP20719576.9A EP20719576A EP3953588B1 EP 3953588 B1 EP3953588 B1 EP 3953588B1 EP 20719576 A EP20719576 A EP 20719576A EP 3953588 B1 EP3953588 B1 EP 3953588B1
Authority
EP
European Patent Office
Prior art keywords
propellant
wall
medium
speed
jet pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20719576.9A
Other languages
English (en)
French (fr)
Other versions
EP3953588A1 (de
Inventor
Daniel Kintea
Lukasz Gabrys
Christian Kahl
Gerrit Von Breitenbach
Michal Sajdak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norma Germany GmbH
Original Assignee
Norma Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norma Germany GmbH filed Critical Norma Germany GmbH
Publication of EP3953588A1 publication Critical patent/EP3953588A1/de
Application granted granted Critical
Publication of EP3953588B1 publication Critical patent/EP3953588B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/465Arrangements of nozzles with supersonic flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/10Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing liquids, e.g. containing solids, or liquids and elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/464Arrangements of nozzles with inversion of the direction of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type

Definitions

  • the invention relates to a jet pump comprising a driving nozzle for accelerating a driving medium, the driving nozzle having a converging inlet part and an outlet part connected to the converging inlet part, the outlet part, according to the preamble of claim 1, having an interior space enclosed by an inner wall and diverging at an opening angle includes.
  • Jet pumps use a jet of fluid from a propellant medium to suck in and accelerate a suction medium.
  • the suction effect is caused by the propellant medium flowing past the suction medium, the suction medium being carried along by the propellant medium when the flow speed of the propellant medium is sufficiently high.
  • To accelerate a propellant medium it is passed under pressure through a nozzle that accelerates the propellant medium. If the suction pressure and the driving pressure have a subcritical pressure ratio have, a convergent nozzle is used to accelerate the propellant in the jet pump.
  • a convergent-divergent nozzle a so-called Laval nozzle
  • Laval nozzle results in a deceleration of flow velocity for propellant media flowing at subsonic speeds because the divergent section of the Laval nozzle acts as a diffuser for the propellant.
  • the object of the invention is to provide an improved jet pump that allows operation at subcritical and supercritical pressure conditions.
  • the invention relates to a jet pump comprising a driving nozzle for accelerating a
  • Propellant medium wherein the propellant nozzle has a converging inlet part and an outlet part connected to the converging inlet part, the outlet part comprising an interior enclosed by an inner wall that diverges at an opening angle, the inner wall defining the opening angle directly according to a narrowest cross section at an inlet opening of the interior
  • the opening angle is designed such that a propellant medium flowing through the outlet part at subsonic speed is separated from the inner wall, the outlet part (26) not acting as a diffuser for the propellant medium flowing at subsonic speed, and a propellant medium flowing through the outlet part at supersonic speed flowing propellant medium is guided by the inner wall, with the opening angle being more than 7° and a maximum of 45°.
  • the invention provides a jet pump with a driving nozzle, the convergent inlet part of which accelerates a propellant medium flowing through the convergent inlet part, the propellant medium flowing at subsonic speed before flowing through the inlet part. If the propellant medium continues to have subsonic speed after flowing through the inlet part and accelerating therein, it also flows through the outlet part at subsonic speed.
  • the outlet part of the driving nozzle has a divergent inner wall, that is, the cross section of the outlet part increases starting from the convergent inlet part.
  • the driving nozzle can be a specially designed Laval nozzle be. The opening angle of the divergent inner wall is so large that a propellant medium flowing through the outlet part at subsonic speed separates from the inner wall of the outlet part.
  • the outlet part of the propulsion nozzle works at subsonic speeds flowing propellant medium does not act as a diffuser, so that no delay in the speed of the propellant medium is caused when it flows through the outlet part. Rather, only the convergent inlet part of the propellant nozzle acts on the propellant medium flowing at subsonic speeds.
  • the propulsion nozzle acts as a convergent nozzle on the propellant medium, which flows at subsonic speeds. If the propellant medium is accelerated to the speed of sound by the convergent inlet part, it is further accelerated by the diverging interior of the outlet part. The propellant medium is guided through the divergent inner wall of the outlet part, since in this case it is not separated from the inner wall.
  • the outlet part acts as a nozzle for the propellant flowing at supersonic speed and further accelerates the propellant. This means that the propellant nozzle acts as a Laval nozzle for propellant medium flowing at supersonic speeds.
  • the invention thus provides a jet pump that can be used both at subcritical pressure conditions, i.e. H. when the propellant medium causes the suction effect at subsonic speeds, as well as at supercritical pressure conditions, i.e. H. if the propellant medium causes the suction effect at supersonic speed, it is operated with a single propellant nozzle.
  • the effect of the outlet part on the flowing propellant medium is automatically adjusted by the opening angle of the inner wall.
  • the invention thus provides an automatic, cost-effective and simple switchover of the jet pump to different pressure conditions.
  • the inner wall of the outlet part can be designed such that the propellant flowing through the outlet part detaches from the inner wall during a transition from supersonic speed to subsonic speed.
  • the inner wall of the outlet part can be designed such that the propellant flowing through the outlet part detaches from the inner wall during a transition from a supercritical pressure ratio to a subcritical pressure ratio.
  • the inner wall of the outlet part can be designed in such a way that the propellant medium flowing through the outlet part contacts the inner wall during a transition from subsonic speed to supersonic speed and is guided by the inner wall.
  • the inner wall of the outlet part can be designed such that the propellant medium flowing through the outlet part contacts the inner wall during a transition from the subcritical pressure ratio to the supercritical pressure ratio and is guided by the inner wall.
  • a pressure ratio of a driving pressure of the driving medium to a suction pressure at the outlet part can be between 1.05 and 5, preferably between 1.1 and 2.5.
  • jet pump can be operated in a wide pressure range, whereby the pressure conditions can be subcritical or supercritical in relation to a desired suction pressure.
  • This provides sufficient suction pressure for the operation of the jet pump both at a low pressure ratio, at which the propellant flows at subsonic speed, and at a high pressure ratio, at which the propellant flows at supersonic speed.
  • the jet pump therefore has a subcritical and a supercritical operating range in which it can be operated. This means that the jet pump can be operated in a wide range of applications.
  • the opening angle is more than 7°.
  • FIG. 1 A jet pump is shown in a schematic sectional view, the jet pump being designated in its entirety with the reference number 10.
  • the jet pump 10 has a propellant medium tank 12, a propellant nozzle 14, a suction medium tank 18, a mixing chamber 20 and a diffuser 22.
  • the propellant medium is provided in the propellant medium tank 12.
  • the driving medium can be a compressible driving medium.
  • the propellant can be pressurized in the propellant tank 12 or stored under pressure in the propellant tank 12.
  • the pressure ratio can e.g. B. between 1.05 and 5, preferably between 1.1 and 2.5. Under this driving pressure, the driving medium flows from the driving medium tank 12 to the driving nozzle 14 during operation of the jet pump 10. This is represented by the arrow 30.
  • the driving nozzle 14 has a convergent inlet part 28 and an outlet part 26 with a divergent interior 40.
  • the exit part 26 and the convergent entry part 28 are connected to one another.
  • the connection point of the convergent entry part 28 with the exit part 26 has the smallest cross section of the propulsion nozzle 14.
  • the convergent entry part 28 has a tapering cross section.
  • the propellant medium initially flows into an area of the convergent inlet part 28 with a large cross section.
  • the propellant medium flowing through the convergent inlet part 28 is accelerated.
  • the driving medium is accelerated to a subsonic speed or a speed of sound by means of the convergent entry part 28 when the driving medium flows through the convergent entry part 28.
  • the exit part 26 adjoins the tapered end of the convergent entry part 28.
  • the exit part 26 includes an inner wall 38 which laterally encloses the interior 40.
  • the inner wall 38 can enclose the interior 40 in the form of a conical lateral surface, as in Figure 3a shown.
  • the inner wall 38 can enclose the interior 40 in the form of a lateral surface of a bell shape, as in Fig. 3b shown.
  • the interior 40 has an inlet opening which is connected to the outlet opening of the convergent inlet part 28. Furthermore, the interior 40 has an outlet opening that is larger than the inlet opening of the interior 40.
  • the inner wall 38 extends between the inlet opening and the outlet opening of the interior 40. The interior 40 is therefore designed to be divergent and diverges at an opening angle 16.
  • the inner wall 38 defines the opening angle 16 directly after the narrowest cross section at the inlet opening of the interior 40. The opening angle 16 of the inner wall 38 can change as the distance from the inlet opening increases.
  • the opening angle 16 is chosen so that a propellant medium flowing through the outlet part 26 at subsonic speed is released from the inner wall 38 and a propellant medium flowing through the outlet part 26 at supersonic speed is guided by the inner wall 38. i.e. the inner wall 38 does not influence a propellant medium flowing through the outlet part 26 at subsonic speed. Rather, the propellant medium flowing at subsonic speed is detached from the inner wall 38 and flows as a jet from the outlet opening of the convergent inlet part 28 through the outlet part 26 and out of the propellant nozzle 14.
  • the opening angle 16 is further selected such that a propellant medium flowing through the outlet part 26 at supersonic speed is guided by the inner wall 38.
  • An expansion of the propellant medium flowing through the outlet part 26 that occurs perpendicular to the flow direction is limited by the inner wall 38.
  • An outer area of the flow of the propellant therefore flows along the inner wall 38.
  • the opening angle 16 is at least 7°.
  • An upper limit of the opening angle 16 is between 8° and 45°.
  • the propellant medium Due to the expansion occurring perpendicular to the direction of flow and limited by the inner wall 38, the propellant medium is further accelerated and flows out of the outlet part 26 at an increased supersonic speed.
  • the propellant After exiting the outlet part 26, the propellant flows past an opening of the suction medium tank 18 and thereby causes a suction pressure.
  • the suction medium is entrained and accelerated with the propellant medium flowing past the suction medium tank 18.
  • the driving medium and the suction medium enter the mixing chamber 20. While the driving medium and the suction medium flow through the mixing chamber 20, the driving medium and the suction medium mix.
  • a diffuser 22 adjoins the mixing chamber 20, in which the propellant medium and the suction medium mixed with it are delayed.
  • the diffuser 22 includes an outlet opening 24. The propellant medium and the sauté medium can flow out of the jet pump 10 through the outlet opening 24.
  • FIGS. 2a and 2b show schematically a cross section through the driving nozzle 14, the flow of the driving medium through the driving nozzle 14 being indicated by means of streamlines 32, 34.
  • the propellant medium is in Figure 2a accelerated to the speed of sound by means of the convergent entry part 28. In the convergent entry part 28, this is indicated by the converging streamlines 32.
  • the propellant medium accelerated to the speed of sound flows from the convergent inlet part 28 into the outlet part 26.
  • the streamlines 32 diverge in the outlet part 26.
  • the outer streamlines 32 run along the inner wall 38, which indicates that the propellant medium is guided along the inner wall 38 through the interior 40.
  • the propellant medium is expanded and the speed is further increased to supersonic speed.
  • the propellant medium therefore flows out of the convergent inlet part 28 at subsonic speed.
  • the streamlines 34 condense in the convergent entry part 28.
  • the opening angle 16 of the diverging inner wall 38 is selected such that a propellant medium flowing at subsonic speed is separated from the diverging inner wall 38, the propellant is not expanded in the outlet part 26, but flows as a free jet through the outlet part 26. This is due to the Streamlines 34 are shown in the exit part 26, which run essentially parallel to one another. The free jet has an almost constant width 36 in the exit part 26.
  • the width 36 of the subsonic flow of the propellant in the outlet part 26 is therefore smaller than a clear width of the interior space 40 laterally delimited by the inner wall 38, the clear width increasing due to the diverging inner wall 38.
  • the pressure of the propellant medium in the convergent entry portion 28 may be increased or decreased during operation.
  • the inner wall 38 of the outlet part 26 is designed such that the propellant medium flowing through the outlet part 26 detaches from the inner wall 38 during a transition from the supercritical pressure ratio to the subcritical pressure ratio. Conversely, the propellant flowing through the outlet part 26 will contact the inner wall 38 during a transition from a subcritical pressure ratio to a supercritical pressure ratio and be guided by the inner wall 38.
  • the jet pump 10 can therefore be operated with both a supercritical pressure ratio and a subcritical pressure ratio.
  • a subcritical pressure ratio can be set, in which the propellant flows through the outlet part 26 at subsonic speed, the flowing propellant being detached from the inner wall 38.
  • a supercritical pressure ratio can be set in which the propellant flows through the outlet part 26 at supersonic speed, with the flowing propellant being guided through the inner wall 38.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Description

  • Die Erfindung betrifft eine Strahlpumpe umfassend eine Treibdüse zum Beschleunigen eines Treibmediums, wobei die Treibdüse ein konvergierendes Eintrittsteil und ein mit dem konvergierenden Eintrittsteil verbundenes Austrittsteil aufweist, wobei das Austrittsteil, gemäß dem Oberbegriff von Anspruch 1, einen von einer Innenwand umschlossenen unter einem Öffnungswinkel divergierenden Innenraum umfasst.
  • Strahlpumpen verwenden einen Fluidstrahl aus einem Treibmedium, um ein Saugmedium anzusaugen und zu beschleunigen. Die Saugwirkung wird durch ein Vorbeiströmen des Treibmediums an dem Saugmedium bewirkt, wobei das Saugmedium von dem Treibmedium mitgerissen wird, wenn die Strömungsgeschwindigkeit des Treibmediums ausreichend hoch ist. Um ein Treibmedium zu beschleunigen, wird es unter Druck durch eine Düse geführt, die das Treibmedium beschleunigt. Wenn der Saugdruck und der Treibdruck ein unterkritisches Druckverhältnis aufweisen, wird eine konvergente Düse zur Beschleunigung des Treibmediums in der Strahlpumpe verwendet. Bei überkritischen Druckverhältnissen wird eine konvergent-divergente Düse, eine sog. Laval-Düse, genutzt, um das im konvergenten Teil der Laval-Düse auf Schallgeschwindigkeit beschleunigte Treibmedium weiter zu beschleunigen. Eine Laval-Düse führt bei Treibmedien, die mit Unterschallgeschwindigkeit fließen, zu einer Verzögerung der Strömungsgeschwindigkeit, da der divergente Abschnitt der Laval-Düse für das Treibmedium als Diffusor wirkt.
  • Das Dokument US 6 877 970 offenbart eine Strahlpumpe mit einer Treibdüse,
  • Aufgabe der Erfindung ist es, eine verbesserte Strahlpumpe bereitzustellen, die einen Betrieb bei unterkritischen und überkritischen Druckverhältnissen erlaubt.
  • Hauptmerkmale der Erfindung sind im kennzeichnenden Teil von Anspruch 1 angegeben. Ausgestaltungen sind Gegenstand der Ansprüche 2 bis 8.
  • Die Erfindung betrifft eine Strahlpumpe umfassend eine Treibdüse zum Beschleunigen eines
  • Treibmediums, wobei die Treibdüse ein konvergierendes Eintrittsteil und ein mit dem konvergierenden Eintrittsteil verbundenes Austrittsteil aufweist, wobei das Austrittsteil einen von einer Innenwand umschlossenen unter einem Öffnungswinkel divergierenden Innenraum umfasst, wobei die Innenwand den Öffnungswinkel direkt nach einem engsten Querschnitt an einer Eintrittsöffnung des Innenraums definiert wobei erfindungsgemäß vorgesehen ist, dass der Öffnungswinkel derart ausgebildet ist, dass ein mit Unterschallgeschwindigkeit durch das Austrittsteil strömendes Treibmedium von der Innenwand gelöst ist, wobei das Austrittsteil (26) für das mit Unterschallgeschwindigkeit strömende Treibmedium nicht als Diffusor wirkt, und ein mit Überschallgeschwindigkeit durch das Austrittsteil strömendes Treibmedium von der Innenwand geführt wird, wobei der Öffnungswinkel mehr als 7° und höchstens 45° beträgt.
  • Mit der Erfindung wird eine Strahlpumpe mit einer Treibdüse bereitgestellt, dessen konvergentes Eintrittsteil ein durch das konvergente Eintrittsteil strömendes Treibmedium beschleunigt, wobei das Treibmedium vor dem Durchströmen des Eintrittsteils mit Unterschallgeschwindigkeit strömt. Wenn das Treibmedium nach dem Durchströmen des Eintrittsteils und der Beschleunigung darin weiterhin Unterschallgeschwindigkeit aufweist, durchströmt es das Austrittsteil ebenfalls mit Unterschallgeschwindigkeit. Das Austrittsteil der Treibdüse weist dabei eine divergente Innenwand auf, d. h., dass sich der Querschnitt des Austrittsteils von dem konvergenten Eintrittsteil ausgehend vergrößert. Die Treibdüse kann dabei eine speziell ausgebildete Laval-Düse sein. Der Öffnungswinkel der divergenten Innenwand ist dabei so groß, dass sich ein mit Unterschallgeschwindigkeit durch das Austrittsteil strömendes Treibmedium von der Innenwand des Austrittsteils löst. Das Austrittsteil der Treibdüse wirkt für das mit Unterschallgeschwindigkeit strömende Treibmedium damit nicht als Diffusor, so dass keine Verzögerung der Geschwindigkeit des Treibmediums beim Durchströmen des Austrittsteils bewirkt wird. Vielmehr wirkt lediglich das konvergente Eintrittsteil der Treibdüse auf das mit Unterschallgeschwindigkeit strömende Treibmedium. Die Treibdüse wirkt auf das Treibmedium, das mit Unterschallgeschwindigkeit strömt, als konvergente Düse. Wird das Treibmedium durch das konvergente Eintrittsteil auf Schallgeschwindigkeit beschleunigt, wird es durch den divergierenden Innenraum des Austrittsteils weiter beschleunigt. Das Treibmedium wird dabei durch die divergente Innenwand des Austrittsteils geführt, da es in diesem Fall nicht von der Innenwand gelöst ist. Dabei wirkt das Austrittsteil als Düse für das mit Überschallgeschwindigkeit strömende Treibmedium und beschleunigt das Treibmedium weiter. Damit wirkt die Treibdüse für mit Überschallgeschwindigkeit strömendes Treibmedium als Laval-Düse.
  • Mit der Erfindung wird damit eine Strahlpumpe bereitgestellt, die sowohl bei unterkritischen Druckverhältnissen, d. h. wenn das Treibmedium mit Unterschallgeschwindigkeit die Saugwirkung bewirkt, als auch bei überkritischen Druckverhältnissen, d. h. wenn das Treibmedium mit Überschallgeschwindigkeit die Saugwirkung bewirkt, mit einer einzigen Treibdüse betrieben wird. Die Wirkung des Austrittsteils auf das strömende Treibmedium wird dabei automatisch durch den Öffnungswinkel der Innenwand eingestellt. Durch die Erfindung wird damit eine automatische, kostengünstige und einfache Umschaltung der Strahlpumpe auf verschiedene Druckverhältnisse bereitgestellt.
  • Die Innenwand des Austrittsteils kann so ausgebildet sein, dass sich das durch das Austrittsteil strömende Treibmedium bei einem Übergang von Überschallgeschwindigkeit zu Unterschallgeschwindigkeit von der Innenwand löst. Anders ausgedrückt kann die Innenwand des Austrittsteils so ausgebildet sein, dass sich das durch das Austrittsteil strömende Treibmedium bei einem Übergang von einem überkritischen Druckverhältnis zu einem unterkritischen Druckverhältnis von der Innenwand löst.
  • Damit kann der Druck während des Betriebs der Strahlpumpe von dem überkritischen Druckverhältnis zu dem unterkritischen Druckverhältnis geändert werden, wobei Druckstöße bei dem Umschaltvorgang vermieden werden. Dies bewirkt eine zusätzliche Erweiterung des Einsatzbereiches der Strahlpumpe.
  • Weiter kann die Innenwand des Austrittsteils so ausgebildet sein, dass sich das durch das Austrittsteil strömende Treibmedium bei einem Übergang von Unterschallgeschwindigkeit zu Überschallgeschwindigkeit an die Innenwand anlegt und von der Innenwand geführt wird. In anderen Worten kann die Innenwand des Austrittsteils so ausgebildet sein, dass sich das durch das Austrittsteil strömende Treibmedium bei einem Übergang von dem unterkritischen Druckverhältnis zu dem überkritischen Druckverhältnis an die Innenwand anlegt und von der Innenwand geführt wird.
  • Damit kann ein reibungsloser Übergang von dem unterkritischen Druckverhältnis zu dem überkritischen Druckverhältnis erfolgen. Dies erweitert den Einsatzbereich der Strahlpumpe weiter.
  • Weiter kann ein Druckverhältnis von einem Treibdruck des Treibmediums zu einem Saugdruck an dem Austrittsteil zwischen 1,05 und 5, vorzugsweise zwischen 1,1 und 2,5, betragen.
  • Damit kann die Strahlpumpe in einem weiten Druckbereich betrieben werden, wobei die Druckverhältnisse im Verhältnis zu einem gewünschten Saugdruck unterkritisch oder überkritisch sein können.
  • Damit wird sowohl bei einem niedrigen Druckverhältnis, bei dem das Treibmedium mit Unterschallgeschwindigkeit strömt, als auch bei einem hohen Druckverhältnis, bei dem das Treibmedium mit Überschallgeschwindigkeit strömt, ein ausreichender Saugdruck für den Betrieb der Strahlpumpe bereitgestellt.
  • Die Strahlpumpe weist damit einen unterkritischen und einen überkritischen Betriebsbereich auf, in dem sie betrieben werden kann. Damit kann die Strahlpumpe in einem weiten Einsatzbereich betrieben werden.
  • Erfindungsgemäß beträgt der Öffnungswinkel mehr als 7°.
  • Mit Öffnungswinkeln von mehr als 7° wird das Ablösen des durch das Austrittsteil mit Unterschallgeschwindigkeit strömende Treibmedium von der Innenwand weiter begünstigt. Damit wird ein Anhaften des durch das Austrittsteil strömenden Treibmediums an die Innenwand des Austrittsteils bei Unterschallgeschwindigkeiten vermieden.
  • Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus dem Wortlaut der Ansprüche sowie aus der folgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnungen. Es zeigen:
  • Fig. 1
    eine schematische Darstellung der Strahlpumpe,
    Fig. 2a, b
    schematische Darstellungen der Treibdüse, und
    Fig. 3a, b
    schematische Darstellungen von Beispielen des Austrittsteils.
  • In Figur 1 ist eine Strahlpumpe in schematischer Schnittdarstellung gezeigt, wobei die Strahlpumpe in ihrer Gesamtheit mit dem Referenzzeichen 10 bezeichnet wird.
  • Die Strahlpumpe 10 weist einen Treibmedium-Tank 12, eine Treibdüse 14, einen Saugmedium-Tank 18, eine Mischkammer 20 und einen Diffusor 22 auf.
  • In dem Treibmedium-Tank 12 wird das Treibmedium bereitgestellt. Das Treibmedium kann dabei ein kompressibles Treibmedium sein. Das Treibmedium kann in dem Treibmedium-Tank 12 mit einem Druck beaufschlagt werden oder unter Druck in dem Treibmedium-Tank 12 gelagert werden. Das Druckverhältnis kann z. B. zwischen 1,05 und 5, vorzugsweise zwischen 1,1 und 2,5, betragen. Unter diesem Treibdruck strömt das Treibmedium beim Betrieb der Strahlpumpe 10 von dem Treibmedium-Tank 12 zu der Treibdüse 14. Dies wird durch den Pfeil 30 dargestellt.
  • Die Treibdüse 14 weist dabei ein konvergentes Eintrittsteil 28 und ein Austrittsteil 26 mit einem divergenten Innenraum 40 auf. Das Austrittsteil 26 und das konvergente Eintrittsteil 28 sind miteinander verbunden. Die Verbindungsstelle des konvergenten Eintrittsteils 28 mit dem Austrittsteil 26 weist den kleinsten Querschnitt der Treibdüse 14 auf.
  • Das konvergente Eintrittsteil 28 weist einen sich verjüngenden Querschnitt auf. Das Treibmedium strömt zunächst in einen Bereich des konvergenten Eintrittsteils 28 mit einem großen Querschnitt. Durch die Verjüngung des Querschnitts des konvergenten Eintrittsteils 28 wird das durch das konvergente Eintrittsteil 28 strömende Treibmedium beschleunigt.
  • In Abhängigkeit des Treibdrucks wird das Treibmedium mittels des konvergenten Eintrittsteils 28 auf eine Unterschallgeschwindigkeit oder eine Schallgeschwindigkeit beschleunigt, wenn das Treibmedium durch das konvergente Eintrittsteil 28 strömt.
  • Das Austrittsteil 26 schließt sich an dem verjüngten Ende des konvergenten Eintrittsteils 28 an. Dabei umfasst das Austrittsteil 26 eine Innenwand 38, die den Innenraum 40 seitlich umschließt. Die Innenwand 38 kann in einem Ausführungsbeispiel den Innenraum 40 dabei in Form einer konischen Mantelfläche umschließen, wie in Figur 3a dargestellt. In einem anderen Ausführungsbeispiel kann die Innenwand 38 den Innenraum 40 in Form einer eine Mantelfläche einer Glockenform umschließen, wie in Fig. 3b dargestellt.
  • Der Innenraum 40 weist dabei eine Eintrittsöffnung auf, die mit der Austrittsöffnung des konvergenten Eintrittsteils 28 verbunden ist. Weiter weist der Innenraum 40 eine Austrittsöffnung auf, die größer als die Eintrittsöffnung des Innenraums 40 ist. Zwischen der Eintrittsöffnung und der Austrittsöffnung des Innenraums 40 erstreckt sich die Innenwand 38. Der Innenraum 40 ist damit divergent ausgebildet und divergiert unter einem Öffnungswinkel 16. Die Innenwand 38 definiert den Öffnungswinkel 16 direkt nach dem engsten Querschnitt an der Eintrittsöffnung des Innenraums 40. Der Öffnungswinkel 16 der Innenwand 38 kann sich dabei mit zunehmendem Abstand von der Eintrittsöffnung ändern.
  • Der Öffnungswinkel 16 ist dabei so gewählt, dass ein mit Unterschallgeschwindigkeit durch das Austrittsteil 26 strömendes Treibmedium von der Innenwand 38 gelöst ist und ein mit Überschallgeschwindigkeit durch das Austrittsteil 26 strömendes Treibmedium von der Innenwand 38 geführt wird. D. h. die Innenwand 38 beeinflusst ein mit Unterschallgeschwindigkeit durch das Austrittsteil 26 strömendes Treibmedium nicht. Vielmehr ist das mit Unterschallgeschwindigkeit strömende Treibmedium von der Innenwand 38 gelöst und strömt als Strahl aus der Austrittsöffnung des konvergenten Eintrittsteils 28 durch das Austrittsteil 26 und aus der Treibdüse 14.
  • Der Öffnungswinkel 16 ist weiter so gewählt, dass ein mit Überschallgeschwindigkeit durch das Austrittsteil 26 strömendes Treibmedium von der Innenwand 38 geführt wird. Eine senkrecht zur Strömungsrichtung erfolgende Expansion des durch das Austrittsteil 26 strömenden Treibmediums wird dabei durch die Innenwand 38 begrenzt. Ein Außenbereich der Strömung des Treibmediums strömt daher an der Innenwand 38 entlang.
  • Dabei beträgt der Öffnungswinkel 16 mindestens 7°. Eine obere Grenze des Öffnungswinkels 16 liegt zwischen 8° und 45°.
  • Durch die senkrecht zur Strömungsrichtung erfolgende und die Innenwand 38 begrenzte Expansion wird das Treibmedium weiter beschleunigt und strömt mit erhöhter Überschallgeschwindigkeit aus dem Austrittsteil 26 aus.
  • Nach dem Austritt aus dem Austrittsteil 26 strömt das Treibmedium an einer Öffnung des Saugmedium-Tanks 18 vorbei und bewirkt dabei einen Saugdruck.
  • Das Saugmedium wird mit dem an dem Saugmedium-Tank 18 vorbeiströmenden Treibmedium mitgerissen und beschleunigt. Dadurch gelangen das Treibmedium und das Saugmedium in die Mischkammer 20. Während das Treibmedium und das Saugmedium die Mischkammer 20 durchströmen, vermischen sich das Treibmedium und das Saugmedium.
  • An die Mischkammer 20 schließt sich ein Diffusor 22 an, in dem das Treibmedium und das mit ihm vermischte Saugmedium verzögert werden. Der Diffusor 22 umfasst eine Auslassöffnung 24. Das Treibmedium und das Saumedium können durch die Auslassöffnung 24 aus der Strahlpumpe 10 ausströmen.
  • Die Figur 2a und 2b zeigen in schematischer Weise einen Querschnitt durch die Treibdüse 14, wobei die Strömung des Treibmediums durch die Treibdüse 14 mittels Stromlinien 32, 34 angezeigt wird.
  • Dabei wird das Treibmedium in Figur 2a mittels des konvergenten Eintrittsteils 28 auf Schallgeschwindigkeit beschleunigt. In dem konvergenten Eintrittsteil 28 wird dies durch die zusammenlaufenden Stromlinien 32 angezeigt. Von dem konvergenten Eintrittsteil 28 strömt das auf Schallgeschwindigkeit beschleunigte Treibmedium in das Austrittsteil 26. In dem Austrittsteil 26 laufen die Stromlinien 32 auseinander. Die äußeren Stromlinien 32 verlaufen dabei entlang der Innenwand 38, wodurch anzeigt wird, dass das Treibmedium entlang der Innenwand 38 durch den Innenraum 40 geführt wird. Das Treibmedium wird dabei expandiert und die Geschwindigkeit damit weiter auf Überschallgeschwindigkeit erhöht.
  • In Figur 2b wird das Treibmedium mittels konvergenten Eintrittsteils 28 ebenfalls beschleunigt, jedoch verbleibt die Geschwindigkeit des Treibmediums unterhalb der Schallgeschwindigkeit.
  • Das Treibmedium strömt daher mit Unterschallgeschwindigkeit aus dem konvergenten Eintrittsteil 28 aus. Die Stromlinien 34 verdichten sich in dem konvergenten Eintrittsteil 28.
  • Da der Öffnungswinkel 16 der divergierenden Innenwand 38 so gewählt ist, dass ein mit Unterschallgeschwindigkeit strömendes Treibmedium von der divergierenden Innenwand 38 gelöst ist, wird das Treibmedium in dem Austrittsteil 26 nicht expandiert, sondern strömt als freier Strahl durch das Austrittsteil 26. Dies wird durch die Stromlinien 34 in dem Austrittsteil 26 dargestellt, die im Wesentlichen parallel zu einander verlaufen. Der freie Strahl hat in dem Austrittsteil 26 eine nahezu konstante Breite 36.
  • Die Breite 36 der Unterschallströmung des Treibmediums in dem Austrittsteil 26 ist daher kleiner als eine lichte Weite des seitlich durch die Innenwand 38 begrenzten Innenraums 40, wobei sich die lichte Weite aufgrund der divergierenden Innenwand 38 vergrößert.
  • Damit wird vermieden, dass die Innenwand 38 als Diffusor für das mit Unterschallgeschwindigkeit fließende Treibmedium wirkt und das Treibmedium durch das Austrittsteil 26 abgebremst wird.
  • Der Druck des Treibmediums in dem konvergenten Eintrittsteil 28 kann während des Betriebs vergrößert oder verringert werden. Die Innenwand 38 des Austrittsteils 26 ist dabei so ausgebildet, dass sich das durch das Austrittsteil 26 strömende Treibmedium bei einem Übergang von dem überkritischen Druckverhältnis zu dem unterkritischen Druckverhältnis von der Innenwand 38 löst. Umgekehrt wird sich das durch das Austrittsteil 26 strömende Treibmedium bei einem Übergang von einem unterkritischen Druckverhältnis zu einem überkritischen Druckverhältnis an die Innenwand 38 anlegen und von der Innenwand 38 geführt werden.
  • Das bedeutet, dass die Geschwindigkeit des Treibmediums im Austrittsteil 26 zwischen Überschallgeschwindigkeit und Unterschallgeschwindigkeit wechseln kann, ohne dass eine Störung des Betriebs der Strahlpumpe 10 erfolgt. Die Strahlpumpe 10 ist damit sowohl mit einem überkritischen Druckverhältnis als auch mit einem unterkritischen Druckverhältnis betreibbar.
  • Dabei kann bei einem Saugdruck von 0,98 bar und einem Treibdruck von 1,1 bar ein unterkritisches Druckverhältnis eingestellt sein, bei dem das Treibmedium mit Unterschallgeschwindigkeit durch das Austrittsteil 26 strömt, wobei das strömende Treibmedium von der Innenwand 38 gelöst ist.
  • Bei einem Saugdruck von 0,98 bar und einem Treibdruck von 2,5 bar kann damit ein überkritisches Druckverhältnis eingestellt werden, bei dem das Treibmedium mit Überschallgeschwindigkeit durch das Austrittsteil 26 strömt, wobei das strömende Treibmedium durch die Innenwand 38 geführt wird.
  • Die Erfindung ist nicht auf eine der vorbeschriebenen Ausführungsformen beschränkt, sondern in vielfältiger Weise abwandelbar.
  • Sämtliche aus den Ansprüchen, der Beschreibung und der Zeichnung hervorgehenden Merkmale und Vorteile, einschließlich konstruktiver Einzelheiten, räumlicher Anordnungen und Verfahrensschritten, können sowohl für sich als auch in den verschiedensten Kombinationen erfindungswesentlich sein.
  • Bezugszeichenliste
  • 10
    Strahlpumpe
    12
    Treibmedium-Tank
    14
    Treibdüse
    16
    Öffnungswinkel
    18
    Saugmedium-Tank
    20
    Mischkammer
    22
    Diffusor
    24
    Auslassöffnung
    26
    Austrittsteil
    28
    konvergierendes Eintrittsteil
    30
    Strömungsrichtung
    32
    Überschall-Stromlinien
    34
    Unterschall-Stromlinien
    36
    Breite freier Strahl
    38
    Innenwand
    40
    Innenraum

Claims (4)

  1. Strahlpumpe umfassend eine Treibdüse (14) zum Beschleunigen eines Treibmediums, wobei die Treibdüse (14) ein konvergierendes Eintrittsteil (28) und ein mit dem konvergierenden Eintrittsteil (28) verbundenes Austrittsteil (26) aufweist, wobei das Austrittsteil (26) einen von einer Innenwand (38) umschlossenen unter einem Öffnungswinkel (16) divergierenden Innenraum (40) umfasst, wobei die Innenwand (38) den Öffnungswinkel (16) direkt nach einem engsten Querschnitt an einer Eintrittsöffnung des Innenraums (40) definiert, dadurch gekennzeichnet, dass der Öffnungswinkel (16) derart ausgebildet ist, dass ein mit Unterschallgeschwindigkeit durch das Austrittsteil (26) strömendes Treibmedium von der Innenwand (38) gelöst ist, wobei das Austrittsteil (26) für das mit Unterschallgeschwindigkeit strömende Treibmedium nicht als Diffusor wirkt, und ein mit Überschallgeschwindigkeit durch das Austrittsteil (26) strömendes Treibmedium von der Innenwand (38) geführt wird, wobei der Öffnungswinkel (16) mehr als 7° und höchstens 45° beträgt.
  2. Strahlpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Innenwand (38) des Austrittsteils (26) so ausgebildet ist, dass sich das durch das Austrittsteil (26) strömende Treibmedium bei einem Übergang von Überschallgeschwindigkeit zu Unterschallgeschwindigkeit von der Innenwand (38) löst.
  3. Strahlpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Innenwand (38) des Austrittsteils (26) so ausgebildet ist, dass sich das durch das Austrittsteil (26) strömende Treibmedium bei einem Übergang von Unterschallgeschwindigkeit zu Überschallgeschwindigkeit an die Innenwand (38) anlegt und von der Innenwand (38) geführt wird.
  4. Strahlpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein Druckverhältnis zwischen einem Treibdruck des Treibmediums und einem Saugdruck nach dem Austrittsteil (26) zwischen 1,05 und 5, vorzugsweise zwischen 1,1 und 2,5, beträgt.
EP20719576.9A 2019-04-08 2020-03-30 Strahlpumpe Active EP3953588B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019109195.0A DE102019109195A1 (de) 2019-04-08 2019-04-08 Strahlpumpe
PCT/EP2020/058994 WO2020207847A1 (de) 2019-04-08 2020-03-30 Strahlpumpe

Publications (2)

Publication Number Publication Date
EP3953588A1 EP3953588A1 (de) 2022-02-16
EP3953588B1 true EP3953588B1 (de) 2023-12-06

Family

ID=70292939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20719576.9A Active EP3953588B1 (de) 2019-04-08 2020-03-30 Strahlpumpe

Country Status (8)

Country Link
US (1) US11905978B2 (de)
EP (1) EP3953588B1 (de)
JP (1) JP7472165B2 (de)
KR (1) KR102649754B1 (de)
CN (1) CN113614386B (de)
DE (1) DE102019109195A1 (de)
MX (1) MX2021011742A (de)
WO (1) WO2020207847A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021005770A1 (de) 2021-11-22 2023-05-25 Serge Olivier Menkuimb Neuartiges und regeneratives Energieerzeugungskühlsystem
KR20230171701A (ko) * 2022-06-14 2023-12-21 주식회사 엘지에너지솔루션 가스 벤팅 장치, 이를 포함하는 배터리 모듈 및 배터리 팩

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1322879A (fr) * 1962-02-10 1963-04-05 Bertin & Cie Perfectionnements aux trompes

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE578900C (de) * 1931-08-16 1933-06-19 Schmidt Paul Zwei- oder mehrstufige, durch Fluessigkeit betriebene Strahlpumpe zum Foerdern von Fluessigkeit
GB1190409A (en) * 1966-09-23 1970-05-06 Gen Electric Nuclear Reactor Fuel Bundle
CA1272661A (en) 1985-05-11 1990-08-14 Yuji Chiba Reaction apparatus
FR2590808B1 (fr) * 1985-12-04 1989-09-15 Canon Kk Dispositif de soufflage de particules fines
US5240384A (en) * 1990-10-30 1993-08-31 Gas Research Institute Pulsating ejector refrigeration system
JPH09512615A (ja) * 1994-04-29 1997-12-16 ユナイテッド テクノロジーズ コーポレイション レーザ粉体インジェクション法を用いたチューブ状壁を有するロケットエンジン用推力チャンバの製造方法
DE4425601A1 (de) * 1994-07-06 1996-01-18 Mannesmann Ag Verfahren zum Betreiben einer Strahlpumpe sowie eine Strahlpumpe selber
EA002780B1 (ru) * 1998-10-16 2002-08-29 Трансланг Текнолоджиз Лтд. Способ и устройство для разделения компонентов газовых смесей и сжижения газа
US6877960B1 (en) 2002-06-05 2005-04-12 Flodesign, Inc. Lobed convergent/divergent supersonic nozzle ejector system
US20050258149A1 (en) * 2004-05-24 2005-11-24 Yuri Glukhoy Method and apparatus for manufacture of nanoparticles
CN101098759A (zh) * 2005-01-07 2008-01-02 株式会社神户制钢所 喷镀喷嘴装置以及喷镀装置
JP2006212624A (ja) * 2005-01-07 2006-08-17 Kobe Steel Ltd 溶射ノズル装置および溶射装置
CA2560814C (en) * 2006-09-25 2014-08-26 Transcanada Pipelines Limited Tandem supersonic ejectors
US8056319B2 (en) * 2006-11-10 2011-11-15 Aerojet—General Corporation Combined cycle missile engine system
JP2008138686A (ja) * 2008-01-11 2008-06-19 Hitachi Ltd エジェクタ
KR100991723B1 (ko) * 2008-09-12 2010-11-03 주식회사 펨빅스 고상파우더 연속 증착 롤투롤 장치
US8936830B2 (en) * 2010-12-14 2015-01-20 Femvix Corp. Apparatus and method for continuous powder coating
JP5786765B2 (ja) * 2012-03-07 2015-09-30 株式会社デンソー エジェクタ
DE102015011958B4 (de) * 2015-09-18 2024-02-01 Arianegroup Gmbh Schubdüse

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1322879A (fr) * 1962-02-10 1963-04-05 Bertin & Cie Perfectionnements aux trompes

Also Published As

Publication number Publication date
MX2021011742A (es) 2021-10-22
KR20210139453A (ko) 2021-11-22
US11905978B2 (en) 2024-02-20
KR102649754B1 (ko) 2024-03-20
CN113614386B (zh) 2024-01-23
JP2022526627A (ja) 2022-05-25
US20220213904A1 (en) 2022-07-07
CN113614386A (zh) 2021-11-05
DE102019109195A1 (de) 2020-10-08
EP3953588A1 (de) 2022-02-16
JP7472165B2 (ja) 2024-04-22
WO2020207847A1 (de) 2020-10-15

Similar Documents

Publication Publication Date Title
EP3953588B1 (de) Strahlpumpe
EP1749564A2 (de) Kavitationsmischer
DE2143012A1 (de) Brennersysteme
EP0911082A1 (de) Verfahren zur erzeugung eines strahles von gas und tröpfchen, ausrüstung und düse zur durchführung dieses verfahrens
DE10044624A1 (de) Koaxial-Einspritzdüse
EP2140112A1 (de) Diffusoranordnung
DE2839387C2 (de) Verfahren zur Erzeugung hydrodynamischer Schwingungen in einer Flüssigkeit und Einrichtung zur Ausführung des Verfahrens
DE2226745A1 (de) Strahlgeblaese, sogenannter ejektor
DE102007034549A1 (de) Energiespardüse mit Druckluftunterstützung
DE102015200236A1 (de) Verfahren zum Erzeugen eines Sprühstrahls und Zweistoffdüse
DE602004012985T2 (de) Zerstäubungsdüse für überhitzte flüssigkeiten
EP2385220A2 (de) Labyrinthdichtung für eine Turbomaschine
CH705822B1 (de) Axialverdichter für eine Strömungsmaschine, insbesondere eine Gasturbine.
AT511466B1 (de) Fluidmischer
DE3430769C2 (de)
WO2013107489A1 (de) Verfahren und vorrichtung zur stabilisierung eines verdichterstroms
EP1926539A1 (de) Kavitations-entgaser
EP3643396B1 (de) Kontinuierlich arbeitende und fluidatmende fluidmischeinrichtung und verfahren zum betrieb einer solchen
DE102020115734A1 (de) Vorrichtung, System und Verfahren zur Untersuchung der Umströmung von Turbinenschaufeln mit Überschall-Abströmung
DE1650079A1 (de) Vorrichtung zur Verbesserung des Wirkungsgrades von stark erweiterten Diffusoren
DE1053714B (de) Leitapparat fuer UEberschall-Radialverdichter
EP1851600B1 (de) Vorrichtung und verfahren zur regelung eines druckes und/oder eines volumenstromes einer flüssigkeit
DE306642C (de)
DE2828787C2 (de) Manövriertriebwerk für Wasserfahrzeuge
DE19949761B4 (de) Mehrdruckkondensationsanlage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230908

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006302

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240307

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240307

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 5

Ref country code: GB

Payment date: 20240327

Year of fee payment: 5