EP2347115B1 - Injektor zur einspritzung von mit hochdruck beaufschlagtem kraftstoff in den brennraum einer brennkraftmaschine - Google Patents

Injektor zur einspritzung von mit hochdruck beaufschlagtem kraftstoff in den brennraum einer brennkraftmaschine Download PDF

Info

Publication number
EP2347115B1
EP2347115B1 EP09781113.7A EP09781113A EP2347115B1 EP 2347115 B1 EP2347115 B1 EP 2347115B1 EP 09781113 A EP09781113 A EP 09781113A EP 2347115 B1 EP2347115 B1 EP 2347115B1
Authority
EP
European Patent Office
Prior art keywords
control chamber
bore
throttle
valve
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09781113.7A
Other languages
English (en)
French (fr)
Other versions
EP2347115A1 (de
Inventor
Martin Schoeppl
Gerhard Weiss
Michael Pressler
Gerald Thaller
Michael Rainer Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2347115A1 publication Critical patent/EP2347115A1/de
Application granted granted Critical
Publication of EP2347115B1 publication Critical patent/EP2347115B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/008Arrangement of fuel passages inside of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus

Definitions

  • injectors for injecting high-pressure fuel into a combustion chamber of an internal combustion engine in injectors for injecting high-pressure fuel into a combustion chamber of an internal combustion engine, as are known from the field of storage injection systems, the control of the injection process in dependence on the position of a control valve, which is associated with a control chamber of a valve spool.
  • the control chamber is in this case connected via an inlet bore in terms of flow with a high-pressure line via which the injector is supplied with the high-pressure fuel.
  • the control chamber of the valve spool is connected via a drain hole with a pressure compensation chamber, wherein the drain hole is closed by the pressure-compensating control valve. With an opening of the control valve, the high-pressure fuel flows through the drain hole from the control chamber into the pressure compensation chamber of the injector, whereby the valve spool is released.
  • the release of the valve control piston opens a nozzle needle valve, via which the fuel is injected into the combustion chamber of the internal combustion engine.
  • the dynamic opening and closing behavior of the nozzle needle valve which is dependent on the change in the control volume in the control chamber of the valve spool, can be determined by the design of an inlet throttle provided in the inlet bore and an outlet bore provided in the drain hole.
  • the high-pressure fuel from the control chamber flows at a high flow rate through the drain hole in the direction of the pressure equalization chamber of the injector, resulting in a reduction of the cross section in the region of the drain hole and the drain throttle local changes in fuel pressure. Since in storage injection systems of the fuel with a pressure of about 100 MPa or 1000 bar is applied, it may come due to the highly dynamic fluid movement to a local pressure drop, which leads to the local formation of vapor bubbles. In the adjoining the cross-sectional reduction Kochden Overpressure phases implode these vapor bubbles, which is also called cavitation.
  • a high pressure injection fuel injection valve is known from a central high pressure accumulator used in internal combustion engines.
  • the high-pressure accumulator is connected via an inlet throttle bore with a control chamber in operative connection and controls an opening and closing of an injection nozzle.
  • the control chamber communicates via an outlet throttle bore with a switching valve.
  • the inlet throttle bore is also eccentrically aligned with respect to the control chamber.
  • the invention is therefore based on the object to provide an injector for the injection of high-pressure fuel into the combustion chamber of an internal combustion engine, in which caused by Kavitationserosion damage to the valve seat of a pressure-compensating control valve, which closes the drain hole of a control chamber is avoided.
  • the injector for injecting high-pressure fuel into the combustion chamber of an internal combustion engine comprises an at least approximately rotationally symmetrical control chamber to which a valve control piston is assigned.
  • the control chamber is connected via an inlet bore hydraulically connected to the high pressure side of an injection system.
  • the inlet bore comprises an inlet throttle, which limits the flow of high-pressure fuel into the control chamber.
  • the control chamber is further connected via a drain hole with a low pressure side of the injector, wherein the drain hole is closed by a control valve.
  • control valve For injecting high-pressure fuel into the combustion chamber of the internal combustion engine, the control valve can be opened, wherein the high-pressure fuel from the control chamber via the drain hole and one in the drain hole provided drain throttle flows and as a result, the valve spool is released to open an injector.
  • the high-pressure fuel is introduced eccentrically via the inlet bore into the control chamber, so that the inflowing fuel generates a swirl flow within the control chamber, which has a rotational and a translational component.
  • the rotating within the control chamber flow has an axis of rotation which is coaxial with the axis of the drain hole.
  • the rotating fuel flow which is generated by the off-center supply of high-pressure fuel into the control chamber, continues in the form of a swirl into the drain hole. Due to the swirl and the resulting flow creates a vortex filament, which extends along the axis of rotation of the rotating flow and in the vortex core forms a Totwasser (1).
  • the Totwasser is no longer available to transport the fuel, so that the fuel can flow only on the walls of the control chamber and the drain hole along.
  • the vapor bubbles that result in an open control valve due to the high flow rate of the fuel and the change in fuel pressure in the region of the drain hole are in the center of the rotating flow, d. H. pushed into the vortex core, where the implosion of the vapor bubbles takes place.
  • the inlet throttle of the inlet bore extends in a direction which is eccentric to the cross section of the control chamber.
  • the axis of the inlet throttle and preferably also the axis of the entire inlet bore thus do not intersect the cross-sectional center of the control chamber.
  • At least one section is provided with an impact surface, which deflects the high-pressure fuel, which flows into the control chamber via the inlet bore.
  • the at least one baffle can be associated, for example, a portion of the wall which limits the control room.
  • the drain hole comprises a diffuser which reduces the flow rate of the fuel and increases the fuel pressure.
  • the diffuser is arranged on the control valve side facing the outlet throttle in the drain hole and thus in the flow direction of the fuel after the outlet throttle.
  • the rotating flow continues as a vortex to the drain hole, the vortex is fully formed in the area of the outlet throttle and rotates at high speed.
  • the air venting area of the vortex widens conically, whereby the vapor bubbles present in the vortex core are purposefully brought to implosion.
  • the inventive arrangement of the diffuser after the outlet throttle thus results in the advantage that the cavitation takes place in the region of the drain hole in which it does not cause erosion.
  • the diffuser has an optimized opening angle in a range of less than 15 ° or is cylindrical.
  • the drain hole has a control chamber side bore portion which is arranged coaxially to the outlet throttle and has a larger inner diameter than the outlet throttle.
  • the cross-sectional transition from the bore section to the outlet throttle can in this case be stepped, conical or in a rounded shape.
  • the control-chamber-side bore portion which preferably has a cylindrical shape, stabilizes the vortex core, which results from the rotating in the control room flow. The vortex core continues as vortex filament into the outlet throttle, which adjoins the bore section.
  • the transition from the bore section to the outlet throttle has a conical shape, whereby flow turbulences in the transition region between the bore section and the outlet throttle are avoided.
  • the drain hole has at its end facing the control chamber an inlet rounding.
  • the drain hole at its end facing the control chamber has an inlet edge, which forms the transition between the control chamber and the drain hole.
  • a further conical transition area is provided between the outlet throttle and the valve seat of the control valve.
  • the further conical transition region which is provided at the end of the drainage bore facing the control valve and thereby forms the transition from the drainage bore to the valve seat of the control valve, is in this case designed as a chamfer.
  • the control valve has a spherical valve body, which serves as a shut-off for the drain hole.
  • the spherical valve body is in this case rotatably received in a corresponding guide of the control valve and can thus be offset by the swirl pulse of the fuel flow in rotation.
  • the rotation of the valve ball has the advantage that the wear of the valve ball is reduced and extends the service life of the control valve.
  • valve control piston is received rotatably about its longitudinal axis in the injector.
  • the valve control piston is in this case displaceable by the swirl flow in a rotation, which advantageously reduces the wear of the valve spool and increases its life.
  • FIG. 1 shows a partial view of an axial section through an injector 1 with a valve piece 4, which is inserted into a housing 2 of the injector 1.
  • the valve piece 4 is arranged in a multi-stepped axial recess 6 of the housing 2, in which a valve spool 8 centered and axially and rotationally movably received.
  • injector 2 includes a FIG. 1 not shown nozzle body, in which a coaxial with the valve control piston 8 arranged nozzle needle is provided which opens an injection nozzle for injecting high-pressure fuel in the combustion chamber of an internal combustion engine in phases.
  • an axial bore 10 is provided, which extends in the axial direction of the valve member 4 therethrough and is divided into sections with different sized inner diameters.
  • the valve control piston 8 is movably received with its upper end in the axial direction, resulting in a comparatively small-volume control chamber 12 in the valve piece 4 above the valve spool 8.
  • the provided in the valve piece 4 axial bore 10 extends to a valve seat 16 of an in FIG. 1 not shown control valve.
  • the portion of the axial bore 10 between the control chamber 12 and the valve seat 16 is in this case designed as a drain hole 14 and is characterized by a in FIG.
  • control valve with respect to the arranged above the valve member 4 cavity of the axial recess 6 of the injector housing 2, which serves as a pressure equalization chamber, closed.
  • an inlet bore 20 is provided in the wall 18 of the valve member 4, which connects the control chamber 12 via an annular space 22 with a high pressure port 24.
  • the control chamber 12 is thus supplied with high-pressure fuel via the annular space 22 and the inlet bore 20, an inlet throttle 26 being provided in the inlet bore 20 for restricting the volume flow.
  • FIG. 2a and the FIG. 2b two cross-sectional views of a control chamber 12 of a valve piece 4 are shown, which comprises an inlet bore 20 with an inlet throttle 26.
  • the inlet bore 20 in this case connects the arranged within the valve member 4 control chamber 12 hydraulically with the in FIG. 1 shown annulus 22 of the injector 1.
  • the inlet bore 20 in addition to the inlet throttle 26, which merges into the control chamber 12, moreover, a counterbore with a cylindrical portion 28 and a conical portion 30.
  • centrally arranged inlet throttle are in the Figure 2a and 2b shown inlet throttles 26 arranged eccentrically.
  • FIG. 2a When in FIG. 2a shown cross-section of an eccentrically arranged inlet throttle 20, the axis of the inlet bore 20 and the inlet throttle 26 is rotated by an angle x relative to a radial orientation of the inlet bore.
  • the cylindrical portion 28 of the inlet bore 20 is in this case arranged coaxially to the inlet throttle 26. Due to the conical portion 30 of the inlet bore 20, which may also be arranged coaxially to the inlet throttle 26, resulting from the inflow of high-pressure fuel from the annular space 22 into the inlet bore 20 hydrodynamically advantageous Flow conditions.
  • the cross section of an injector according to the invention with an eccentrically arranged inlet bore 20 is in FIG. 2b shown.
  • the conical portion 30 and the cylindrical portion 28 of the inlet bore 20 are arranged centrally, whereas the inlet throttle 26 is eccentrically offset from a radial alignment by an offset e.
  • the inlet throttle 26 in the wall 18 of the valve member 4 of the high-pressure fuel flows from the in FIG. 1 shown annulus 22 tangentially into the control chamber 12, whereby a swirl flow with a translational and rotational component is formed.
  • the vortex filament represents the center line of the vortex core 38 extending in the axial direction of the axial bore 10 of the valve piece 4, which propagates along the flow direction.
  • FIG. 1 illustrated embodiment of the drain hole 14
  • this extends in several cross-sectional sections up to the conically shaped valve seat 16 of the control valve.
  • an outlet throttle 42 follows, followed by a diffuser 44.
  • a conical transition region 46 may be arranged, which has a smaller cone diameter than the adjoining valve seat 16.
  • the different sections 40, 42, 44 differ-Nach the embodiment of the drain hole 14 after FIG. 1 the transition from the control chamber 12 to the cylindrical bore portion 40, the transition from the cylindrical bore portion 40 to the outlet throttle 42 and the transition from the outlet throttle 42 to the diffuser 44 are made step-shaped.
  • FIG. 4 An alternative embodiment of the drain hole 14 is the FIG. 4 can be seen in which an axial longitudinal section through the valve member 4 in the region of the drain hole 14 is shown. Unlike the in FIG. 1 illustrated drain hole 14 made the transition from the control chamber 12 to the cylindrical bore portion 40 and the transition from the cylindrical bore portion 40 to the outlet throttle 42 is not in a stepped shape. Between the control chamber 12 and the cylindrical bore portion 40, a conical portion 48 of the drain hole 14 is arranged, which tapers from the control chamber 12 in the direction of the cylindrical bore portion 40 tapers.
  • a circumferential chamfer 50 which has a larger cone diameter in the transition from the control chamber 12 to the drain hole 14 by the arrangement of the circumferential chamfer 50 and the conical sections 48 in front of the cylindrical bore portion 40, a break in the flow in the region of the change in cross section between the control chamber 12 and the cylindrical bore portion 40 is prevented, whereby the vortex core 38 of the rotating flow is stabilized.
  • FIG. 4 illustrated embodiment may be provided as an alternative or in addition to an adjacent to the control chamber 12 circumferential chamfer 50 that the drain hole 14 at its end facing the control chamber 12 has an outlet opening whose edge is rounded.
  • the cylindrical bore section 40 has a conical shape in the transitional region 52 to the outlet throttle 42.
  • the transition from the outlet throttle 42 to the diffuser 44 is step-shaped.
  • the diffuser 44 may in this case have an optimized opening angle of preferably less than 15 °, whereby the speed level of the swirl flow is reduced and the pressure level is increased.
  • the vapor bubbles formed in the vortex core 38 of the swirl flow are due the increase in the pressure level in the region of the diffuser 44 is deliberately brought to implosion, without any damage being caused by cavitation erosion at the wall bounding the drainage bore 14.
  • the effect according to the invention that no damage to the conical valve seat 16 occurs.
  • a conical transition region 46 connects, which merges into a conical valve seat 16.
  • the conical transition region 46 has a smaller cone diameter than the conical valve seat 16.
  • the conical transition region 46 FIG. 1 and 4 represents a flow transition section, which can serve as a damage-relevant area for cavitation in front of the valve seat 16.
  • the drain hole 14 is closed by a spherical valve body 54, which by a in FIG. 1 and 4 not shown ball guide rotatably guided and actuated by an actuator, also not shown.
  • the swirl impulse of the swirl flow allows the spherical valve body 54 to be set in rotation.
  • the inlet bore 20 and the drain hole 14 have a combination of differently shaped transitions.
  • the transitions between the sections of different inner diameter preferably have a conical or conical shape, a step shape or a rounded shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Lift Valve (AREA)

Description

    Stand der Technik
  • Bei Injektoren zur Einspritzung von mit Hochdruck beaufschlagtem Kraftstoff in einen Brennraum einer Brennkraftmaschine, wie sie aus dem Bereich der Speichereinspritzsysteme bekannt sind, erfolgt die Steuerung des Einspritzvorgangs in Abhängigkeit der Stellung eines Steuerventils, welches einem Steuerraum eines Ventilsteuerkolbens zugeordnet ist. Der Steuerraum ist hierbei über eine Zulaufbohrung strömungsmäßig mit einer Hochdruckleitung verbunden, über die dem Injektor der mit Hochdruck beaufschlagte Kraftstoff zugeführt wird. Zur Druckentlastung ist der Steuerraum des Ventilsteuerkolbens über eine Ablaufbohrung mit einem Druckausgleichsraum verbunden, wobei die Ablaufbohrung von dem druckausgleichenden Steuerventil verschlossen wird. Bei einer Öffnung des Steuerventils strömt der mit Hochdruck beaufschlagte Kraftstoff über die Ablaufbohrung aus dem Steuerraum in den Druckausgleichsraum des Injektors, wodurch der Ventilsteuerkolben freigegeben wird. Durch die Freigabe des Ventilsteuerkolbens öffnet sich ein Düsennadelventil, über welches der Kraftstoff in den Brennraum der Brennkraftmaschine eingespritzt wird. Das dynamische Öffnungs- und Schließverhalten des Düsennadelventils, welches von der Veränderung des Steuervolumen im Steuerraum des Ventilsteuerkolbens abhängig ist, kann hierbei über die Auslegung einer in der Zulaufbohrung vorgesehenen Zulaufdrossel und einer in der Ablaufbohrung vorgesehenen Ablaufdrossel bestimmt werden.
  • Beim Öffnen des Steuerventils strömt der mit Hochdruck beaufschlagte Kraftstoff von dem Steuerraum mit einer hohen Strömungsgeschwindigkeit durch die Ablaufbohrung hindurch in Richtung des Druckausgleichsraumes des Injektors, wobei sich durch eine Verkleinerung des Querschnitts im Bereich der Ablaufbohrung und der Ablaufdrossel lokale Änderungen des Kraftstoffdrucks ergeben. Da bei Speichereinspritzsystemen der Kraftstoff mit einem Druck von über 100 MPa bzw. 1000 bar beaufschlagt wird, kann es aufgrund der hochdynamischen Fluidbewegung zu einem lokalen Druckabfall kommen, der zur örtlichen Bildung von Dampfblasen führt. In den sich an die Querschnittsverringerung anschließenden Überden Überdruckphasen implodieren diese Dampfblasen, was auch als Kavitation bezeichnet wird. Bei einer Implosion der Dampfblasen im Bereich des Steuerventils führt die dabei entstehende hohe örtliche Energiedichte mit der Zeit zu einer Aushöhlung an der Oberfläche der begrenzenden Wandung und damit zu einem unerwünschten Materialabtrag sowie einem Verschleiß am Ventilsitz des Steuerventils. Durch das Auftreten von Kavitationserosion wird somit die Oberfläche am Ventilsitz und im Sitzbereich des Ventilkörpers beschädigt, was eine Undichtigkeit des Steuerventils und somit eine Injektorfehlfunktion zur Folge haben kann.
  • Aus DE 198 59 592 C1 ist ein Kraftstoffeinspritzventil für eine Hochdruckeinspritzung aus einem zentralen Hochdruckspeicher bekannt, das in Verbrennungskraftmaschinen eingesetzt wird. Der Hochdruckspeicher steht über eine Zulaufdrosselbohrung mit einem Steuerraum in Wirkverbindung und steuert ein Öffnen und Schließen einer Einspritzdüse. Dabei kommuniziert der Steuerraum über eine Ablaufdrosselbohrung mit einem Schaltventil. Die Zulaufdrosselbohrung ist ferner gegenüber dem Steuerraum exzentrisch ausgerichtet.
  • Offenbarung der Erfindung
  • Der Erfindung liegt die daher Aufgabe zugrunde, einen Injektor zur Einspritzung von mit Hochdruck beaufschlagtem Kraftstoff in den Brennraum einer Brennkraftmaschine bereitzustellen, bei dem eine durch Kavitationserosion verursachte Beschädigung des Ventilsitzes eines druckausgleichenden Steuerventils, welches die Ablaufbohrung eines Steuerraums verschließt, vermieden wird.
  • Gemäß der Erfindung umfasst der Injektor zur Einspritzung von mit Hochdruck beaufschlagtem Kraftstoff in den Brennraum einer Brennkraftmaschine einen wenigstens näherungsweise rotationssymmetrischen Steuerraum, dem ein Ventilsteuerkolben zugeordnet ist. Der Steuerraum ist dabei über eine Zulaufbohrung hydraulisch mit der Hochdruckseite eines Einspritzsystems verbunden. Die Zulaufbohrung umfasst eine Zulaufdrossel, über die der Durchfluss von mit Hochdruck beaufschlagten Kraftstoff in den Steuerraum begrenzt wird. Der Steuerraum ist weiterhin über eine Ablaufbohrung mit einer Niederdruckseite des Injektors verbunden, wobei die Ablaufbohrung durch ein Steuerventil verschließbar ist. Zum Einspritzen von mit Hochdruck beaufschlagtem Kraftstoff in den Brennraum der Brennkraftmaschine kann das Steuerventil geöffnet werden, wobei der mit Hochdruck beaufschlagte Kraftstoff aus dem Steuerraum über die Ablaufbohrung und eine in der Ablaufbohrung vorgesehene Ablaufdrossel strömt und als Folge dessen der Ventilsteuerkolben zum Öffnen einer Einspritzdüse freigegeben wird.
  • Gemäß der Erfindung wird der mit Hochdruck beaufschlagte Kraftstoff exzentrisch über die Zulaufbohrung in den Steuerraum eingeleitet, so dass der einströmende Kraftstoff eine Drallströmung innerhalb des Steuerraums erzeugt, welche eine rotatorische und eine translatorische Komponente. Die innerhalb des Steuerraums rotierende Strömung weist dabei eine Rotationsachse auf, die koaxial zur Achse der Ablaufbohrung verläuft.
  • Die rotierende Kraftstoffströmung, die durch die außermittige Zufuhr des mit Hochdruck beaufschlagten Kraftstoffes in den Steuerraum erzeugt wird, setzt sich in Form eines Dralles bis in die Ablaufbohrung fort. Aufgrund des Dralles und der sich daraus ausbildenden Strömung entsteht ein Wirbelfaden, der sich entlang der Rotationsachse der rotierenden Strömung erstreckt und in dessen Wirbelkern sich ein Totwassergebiet bildet. Das Totwassergebiet steht dabei nicht mehr zum Transport des Kraftstoffes zur Verfügung, so dass der Kraftstoff nur noch an den Wänden des Steuerraums und der Ablaufbohrung entlang strömen kann. Die Dampfblasen, die sich bei einem geöffneten Steuerventil aufgrund der hohen Strömungsgeschwindigkeit des Kraftstoffes und der Veränderung des Kraftstoffdrucks im Bereich der Ablaufbohrung ergeben, werden in das Zentrum der rotierenden Strömung, d. h. in den Wirbelkern gedrängt, wo auch die Implosion der Dampfblasen erfolgt. Auf diese Weise wird verhindert, dass die Dampfblasen in der Nähe der die Ablaufbohrung begrenzenden Wand oder im Bereich des Ventilsitzes des Steuerventils implodieren, so dass Materialabtrag und somit eine Beschädigung durch Kavitation vermieden wird. Durch die Nutzung des der Erfindung zugrunde liegenden Prinzips ergibt sich die Möglichkeit, Injektoren mit einer hohen Lebensdauer bereitzustellen, die für eine Vielfacheinspritzung und höchste Belastung geeignet sind.
  • Für ein exzentrisches bzw. tangentiales Einströmen von mit Hochdruck beaufschlagten Kraftstoff aus der Zulaufbohrung in den Steuerraum erstreckt sich die Zulaufdrossel der Zulaufbohrung in einer Richtung, die exzentrisch zum Querschnitt des Steuerraums verläuft. Die Achse der Zulaufdrossel und vorzugsweise auch die Achse der gesamten Zulaufbohrung schneiden somit nicht den Querschnittsmittelpunkt des Steuerraums. Das Erzeugen der rotierenden Strömung bzw. des Dralls des mit Hochdruck beaufschlagten Kraftstoffes im Steuerraum ist somit durch eine einfache konstruktive Maßnahme, nämlich ein außermittiges Anordnen der Zulaufdrossel in Bezug zum Querschnitt des Steuerraums, realisierbar.
  • Im Gegensatz zu anderen aus dem Stand der Technik bekannten zentrischen Anordnung der Zulaufdrossel, bei welcher der Kraftstoff in einer zum Querschnitt des Steuerraums radialen Richtung in den Steuerraum eingeleitet wird, ergibt sich der Vorteil, dass durch das tangentiale Einströmen von Kraftstoff über die exzentrische Zulaufdrossel der Wirbel innerhalb des Steuerraums generiert werden kann, der sich bis zur Ablaufbohrung hin fortsetzt.
  • Zusätzlich oder alternativ zu einer exzentrischen Anordnung der Zulaufdrossel kann es gemäß einer weiteren Ausführungsform der Erfindung vorgesehen sein, dass in dem Steuer-raum wenigstens ein Abschnitt mit einer Prallfläche vorgesehen ist, die den mit Hochdruck beaufschlagten Kraftstoff, welcher über die Zulaufbohrung in den Steuerraum einströmt, umlenkt. Durch die erfindungsgemäße Umlenkung des einströmenden Kraftstoffes über die Prallfläche wird die Kraftstoffströmung innerhalb des Steuerraums in eine erfindungsgemäße Rotation versetzt, wodurch sich die zuvor beschriebenen Vorteile ergeben. Die wenigstens eine Prallfläche kann dabei beispielsweise einem Abschnitt der Wandung zugeordnet sein, die den Steuerraum begrenzt.
  • Neben einer exzentrischen Anordnung der Zulaufdrossel oder der Anordnung von Prallflächen innerhalb des Steuerraums zur Umlenkung des in den Steuerraum einströmenden Kraftstoffes sind selbstverständlich auch andere konstruktive Maßnahmen denkbar, mit denen eine rotierende Kraftstoffströmung innerhalb des Steuerraums erzeugt werden kann.
  • Zur gezielten Steuerung der Implosion der Dampfblasen kann es gemäß der Erfindung vorgesehen sein, dass die Ablaufbohrung einen Diffusor umfasst, der die Strömungsgeschwindigkeit des Kraftstoffes verringert und den Kraftstoffdruck erhöht. Der Diffusor ist dabei auf der dem Steuerventil zugewandten Seite der Ablaufdrossel in der Ablaufbohrung und somit in Strömungsrichtung des Kraftstoffes nach der Ablaufdrossel angeordnet. Wie experimentelle Untersuchungen bei einem geöffneten Steuerventil ergeben haben, setzt sich die rotierende Strömung bis zur Ablaufbohrung als Wirbel fort, wobei der Wirbel sich im Bereich der Ablaufdrossel voll ausbildet und mit hoher Geschwindigkeit dreht. Beim Übergang in den Diffusor weitet sich hierbei das Luftausgasungsgebiet des Wirbels kegelförmig auf, wodurch die im Wirbelkern vorhandenen Dampfblasen gezielt zur Implosion gebracht werden. Durch die erfindungsgemäße Anordnung des Diffusors nach der Ablaufdrossel ergibt sich somit der Vorteil, dass die Kavitation in dem Bereich der Ablaufbohrung erfolgt, in welchem sie keine Erosion verursacht.
  • Für eine stabile Ausbildung des Wirbels im Bereich des Diffusors hat es sich gemäß der Erfindung als besonders vorteilhaft herausgestellt, wenn der Diffusor einen optimierten Öffnungswinkel in einem Bereich von weniger als 15° aufweist oder zylindrisch ausgeführt ist.
  • Nach einer weiteren Ausführungsform der Erfindung kann es vorgesehen sein, dass die Ablaufbohrung einen steuerraumseitigen Bohrungsabschnitt aufweist, der koaxial zur Ablauf drossel angeordnet ist und einen größeren Innendurchmesser als die Ablaufdrossel aufweist. Der Querschnittsübergang vom Bohrungsabschnitt zur Ablaufdrossel kann hierbei stufenförmig, kegelförmig oder in einer gerundeten Form erfolgen. Der steuerraumseitige Bohrungsabschnitt, der vorzugsweise eine zylindrische Form aufweist, stabilisiert den Wirbelkern, der aus der im Steuerraum rotierenden Strömung resultiert. Der Wirbelkern setzt sich dabei als Wirbelfaden bis in die Ablaufdrossel fort, welche an den Bohrungsabschnitt anschließt.
  • Gemäß einer erfindungsgemäßen Ausführungsform des Bohrungsabschnitts kann es vorgesehen sein, dass der Übergang vom Bohrungsabschnitt zur Ablaufdrossel eine konische Form aufweist, wodurch Strömungsverwirbelungen im Übergangsbereich zwischen dem Bohrungsabschnitt und der Ablaufdrossel vermieden werden.
  • Um beim Übergang vom Steuerraum in die Ablaufbohrung ein Abriss der rotierenden Strömung des Kraftstoffes zu verhindern, kann es gemäß der Erfindung vorgesehen sein, dass die Ablaufbohrung an ihrem dem Steuerraum zugewandten Ende eine Einlaufverrundung aufweist. Für ein gezieltes Aufweiten des Luftaufgasungsgebietes stromabwärts der Ablaufdrossel kann es alternativ hierzu vorgesehen sein, dass die Ablaufbohrung an ihrem dem Steuerraum zugewandten Ende eine Einlaufkante aufweist, die den Übergang zwischen dem Steuerraum und der Ablaufbohrung bildet.
  • Zur Verbesserung des Druckniveaus im Sitzbereich des Steuerventils kann es gemäß der Erfindung weiterhin vorgesehen sein, dass zwischen der Ablaufdrossel und dem Ventilsitz des Steuerventils ein weiterer kegelförmiger Übergangsbereich vorgesehen ist. Der weitere kegelförmige Übergangsbereich, der an dem dem Steuerventil zugewandten Ende der Ablaufbohrung vorgesehen ist und dabei den Übergang von der Ablaufbohrung zum Ventilsitz des Steuerventils bildet, ist hierbei als eine Fase ausgebildet.
  • Nach einer weiteren Ausführungsform des erfindungsgemäßen Injektors weist das Steuerventil einen kugelförmigen Ventilkörper auf, welcher als Absperrkörper für die Ablaufbohrung dient. Der kugelförmige Ventilkörper ist hierbei verdrehbar in einer entsprechenden Führung des Steuerventils aufgenommen und kann somit durch den Drall-Impuls der Kraftstoffströmung in Rotation versetzt werden. Durch die Rotation der Ventilkugel ergibt sich der Vorteil, dass der Verschleiß der Ventilkugel reduziert wird und sich die Lebensdauer des Steuerventils verlängert.
  • In gleicher Weise kann es nach einer weiteren Ausführungsform der Erfindung vorgesehen sein, dass auch der Ventilsteuerkolben um seine Längsachse verdrehbar im Injektor aufgenommen ist. Der Ventilsteuerkolben ist hierbei durch die Drallströmung in eine Rotation versetzbar, wodurch sich in vorteilhafter Weise der Verschleiß des Ventilsteuerkolbens verringert und sich dessen Lebensdauer erhöht.
  • Beschreibung der Zeichnungen
  • Die Erfindung wird nachfolgend mit Bezug auf die Zeichnungen anhand von bevorzugten Ausführungsformen beschrieben.
  • In den Zeichnungen zeigen:
  • Figur 1
    einen schematischen Längsschnitt durch einen erfindungsgemäßen Injektor, in dessen Gehäuse ein Ventilstück mit einen Ventilsteuerkolben eingefügt ist;
    Figur 2a
    eine schematische Querschnittsansicht durch den Steuerraum eines Ventilstücks mit einer um einen Winkel exzentrisch verdrehten Zulaufbohrung, welche eine Zulaufdrossel umfasst;
    Figur 2b
    eine schematische Querschnittsansicht durch den Steuerraum eines Ventilstücks mit einer zentrisch angeordneten Ansenkung und einer gemäß der Erfmdung exzentrisch versetzten Zulaufdrossel;
    Figur 3
    eine schematische Darstellung der Kraftstoffströmung in einem Steuerraum eines Ventilstücks nach Figur 2a; sowie
    Figur 4
    eine schematische Darstellung eines Längsschnitts durch ein Ventilstück im Bereich der Ablaufbohrung mit einer die Ablaufbohrung verschließenden Ventilkugel eines Steuerventils.
  • Figur 1 zeigt eine Teilansicht eines axialen Schnittes durch einen Injektor 1 mit einem Ventilstück 4, welches in ein Gehäuse 2 des Injektors 1 eingefügt ist. Das Ventilstück 4 ist dabei in einer mehrfach abgestuften Axialausnehmung 6 des Gehäuses 2 angeordnet, in der auch ein Ventilsteuerkolben 8 zentriert sowie axial und rotatorisch beweglich aufgenommen ist. An das untere Ende des in Figur 1 dargestellten Injektorgehäuses 2 schließt sich ein in Figur 1 nicht dargestellter Düsenkörper an, in dem eine koaxial zum Ventilsteuerkolben 8 angeordnete Düsennadel vorgesehen ist, die eine Einspritzdüse zum Einspritzen von mit Hochdruck beaufschlagtem Kraftstoff in den Brennraum einer Brennkraftmaschine phasenweise öffnet.
  • In dem im Injektorgehäuse 2 vorgesehenen Ventilstück 4 ist eine Axialbohrung 10 vorgesehen, die sich in axialer Richtung des Ventilstücks 4 durch dieses hindurch erstreckt und dabei in Abschnitte mit unterschiedlich großen Innendurchmessern unterteilt ist. In einem unteren Abschnitt der Axialbohrung 10 des Ventilstücks 4 ist dabei der Ventilsteuerkolben 8 mit seinem oberen Ende in axialer Richtung beweglich aufgenommen, wodurch sich oberhalb des Ventilsteuerkolbens 8 ein vergleichsweise kleinvolumiger Steuerraum 12 im Ventilstück 4 ergibt. Ausgehend vom Steuerraum 12 erstreckt sich die in dem Ventilstück 4 vorgesehene Axialbohrung 10 bis zu einem Ventilsitz 16 eines in Figur 1 nicht weiter dargestellten Steuerventils. Der Abschnitt der Axialbohrung 10 zwischen dem Steuerraum 12 und dem Ventilsitz 16 ist hierbei als eine Ablaufbohrung 14 ausgeführt und ist durch ein in Figur 1 nicht weiter dargestelltes Steuerventil gegenüber dem oberhalb des Ventilstücks 4 angeordneten Hohlraum der Axialausnehmung 6 des Injektorgehäuses 2, welcher als Druckausgleichsraum dient, verschließbar. Auf der Höhe des Steuerraums 12 ist in der Wand 18 des Ventilstücks 4 eine Zulaufbohrung 20 vorgesehen, welche den Steuerraum 12 über einen Ringraum 22 mit einem Hochdruckanschluss 24 verbindet. Über den Hochdruckanschluss 24 wird dem Steuerraum 12 somit über den Ringraum 22 und die Zulaufbohrung 20 mit Hochdruck beaufschlagter Kraftstoff zugeführt, wobei zur Beschränkung des Volumenstroms eine Zulaufdrossel 26 in der Zulaufbohrung 20 vorgesehen ist.
  • In der Figur 2a und der Figur 2b sind zwei Querschnittsansichten eines Steuerraums 12 eines Ventilstücks 4 gezeigt, das eine Zulaufbohrung 20 mit einer Zulaufdrossel 26 umfasst. Die Zulaufbohrung 20 verbindet hierbei den innerhalb des Ventilstücks 4 angeordneten Steuerraum 12 hydraulisch mit dem in Figur 1 dargestellten Ringraum 22 des Injektors 1. Wie aus der Figur 2a und der Figur 2b hervorgeht, umfasst die Zulaufbohrung 20 neben der Zulaufdrossel 26, die in den Steuerraum 12 übergeht, darüber hinaus noch eine Ansenkung mit einem zylindrischen Abschnitt 28 und einem kegelförmiger Abschnitt 30. Gegenüber einer aus dem Stand der Technik bekannten zentrisch angeordneten Zulaufdrossel sind die in der Figur 2a und Figur 2b gezeigten Zulaufdrosseln 26 exzentrisch angeordnet.
  • Beim in Figur 2a gezeigten Querschnitt einer exzentrisch angeordneten Zulaufdrossel 20 ist die Achse der Zulaufbohrung 20 und der Zulaufdrossel 26 um einen Winkel x gegenüber einer radialen Ausrichtung der Zulaufbohrung verdreht. Der zylindrische Abschnitt 28 der Zulaufbohrung 20 ist hierbei koaxial zur Zulaufdrossel 26 angeordnet. Durch den kegelförmigen Abschnitt 30 der Zulaufbohrung 20, der ebenfalls koaxial zur Zulaufdrossel 26 angeordnet sein kann, ergeben sich beim Einströmen von mit Hochdruck beaufschlagtem Kraftstoff vom Ringraum 22 in die Zulaufbohrung 20 hydrodynamisch vorteilhafte Strömungsverhältnisse. Der Querschnitt eines erfindungsgemäßen Injektors mit einer exzentrisch angeordneten Zulaufbohrung 20 ist in Figur 2b dargestellt. Der kegelförmige Abschnitt 30 und der zylindrische Abschnitt 28 der Zulaufbohrung 20 sind dabei zentrisch angeordnet, wohingegen die Zulaufdrossel 26 gegenüber einer radialen Ausrichtung um einen Versatz e exzentrisch versetzt ist.
  • Durch die exzentrische Anordnung der Zulaufdrossel 26 in der Wand 18 des Ventilstücks 4 strömt der mit Hochdruck beaufschlagte Kraftstoff aus dem in Figur 1 dargestellten Ringraum 22 tangential in den Steuerraum 12 ein, wodurch sich eine Drallströmung mit einer translatorischen und rotatorischen Komponente ausbildet. Die durch die Pfeile 34 in Figur 3 angedeutete Drallströmung rotiert dabei in Richtung des Pfeils 32 innerhalb des Steuerraums 12, wobei im Bereich der Achse 36 des Ventilstücks 4 ein Wirbelkern und ein Wirbelfaden entsteht, die in Figur 3 in schematischer Weise mit dem Bezugszeichen 38 angedeutet sind. Der Wirbelfaden stellt hierbei die in axialer Richtung der Axialbohrung 10 des Ventilstücks 4 verlaufende Mittellinie des Wirbelkerns 38 dar, der sich längs der Strömungsrichtung ausbreitet.
  • Durch die in Richtung des Pfeils 32 rotierende Strömung des Kraftstoffes entsteht eine Fliehkraft, welche den Kraftstoff aufgrund seiner hohen Masse aus der Rotationsachse bzw. der Achse 36 des Ventilstücks 4 nach außen treibt. Die im Verhältnis zur Masse des Kraftstoffs leichteren Dampfblasen, Hohlräume bzw. Kavitationsblasen werden hierdurch von der Wand 18 weg zur Mitte der rotierenden Strömung, d. h. in Richtung der Rotationsachse gedrängt. Im Wirbelkern 38 entsteht ein sogenanntes Totwassergebiet, welches nicht mehr zum Transport des Kraftstoffes innerhalb des Steuerraums 12 zur Verfügung steht. Der Kraftstoff kann daher nur noch an der dem Steuerraum 12 zugewandten Innenfläche der Wand 18 des Ventilstücks 4 entlang strömen, wobei sich die rotierende Strömung in axialer Richtung der Axialbohrung 10 des Ventilstücks 4 bis in die in Figur 1 gezeigte Ablaufbohrung 14 fortsetzt.
  • Nach der in Figur 1 dargestellten Ausführungsform der Ablaufbohrung 14 erstreckt sich diese in mehreren Querschnittsabschnitten bis zu dem kegelförmig ausgebildeten Ventilsitz 16 des Steuerventils. Ausgehend vom Steuerraum 12 folgt nach einem zylindrischen Bohrungsabschnitt 40 eine Ablaufdrossel 42, an der sich ein Diffusor 44 anschließt. Zwischen dem Diffusor 44 und dem Ventilsitz 16 kann ein kegelförmiger Übergangsbereich 46 angeordnet sein, der einen kleineren Konusdurchmesser aufweist als der daran anschließende Ventilsitz 16. Weiterhin weisen auch die verschiedenen Abschnitte 40, 42, 44 unterschied-Nach der Ausführungsform der Ablaufbohrung 14 nach Figur 1 sind der Übergang vom Steuerraum 12 zum zylindrischen Bohrungsabschnitt 40, der Übergang vom zylindrischen Bohrungsabschnitt 40 zur Ablaufdrossel 42 sowie der Übergang von der Ablaufdrossel 42 zum Diffusor 44 stufenförmig ausgeführt.
  • Eine Alternative Ausführungsform der Ablaufbohrung 14 ist der Figur 4 zu entnehmen, in der ein axialer Längsschnitt durch das Ventilstück 4 im Bereich der Ablaufbohrung 14 dargestellt ist. Im Gegensatz zu der in Figur 1 dargestellten Ablaufbohrung 14 erfolgen der Übergang vom Steuerraum 12 zum zylindrischen Bohrungsabschnitt 40 und der Übergang vom zylindrischen Bohrungsabschnitt 40 zur Ablaufdrossel 42 nicht in einer Stufenform. Zwischen dem Steuerraum 12 und dem zylindrischen Bohrungsabschnitt 40 ist ein kegelförmiger Abschnitt 48 der Ablaufbohrung 14 angeordnet, der sich vom Steuerraum 12 aus gesehen in Richtung des zylindrischen Bohrungsabschnitts 40 verjüngt. An dem dem Steuerraum 12 zugewandten Ende des kegelförmigen Abschnitts 48 kann dabei eine umlaufende Fase 50 vorgesehen sein, die im Übergang vom Steuerraum 12 zur Ablaufbohrung 14 einen größeren Konusdurchmesser aufweist als der kegelförmige Abschnitt 48. Durch die Anordnung der umlaufenden Fase 50 und des kegelförmigen Abschnitte 48 vor dem zylindrischen Bohrungsabschnitt 40 wird ein Abriss der Strömung im Bereich der Querschnittsveränderung zwischen dem Steuerraum 12 und dem zylindrischen Bohrungsabschnitt 40 verhindert, wodurch der Wirbelkern 38 der rotierenden Strömung stabilisiert wird.
  • Nach einer nicht in Figur 4 dargestellten Ausführungsform kann es alternativ oder zusätzlich zu einer an den Steuerraum 12 angrenzenden umlaufenden Fase 50 vorgesehen sein, dass die Ablaufbohrung 14 an ihrem dem Steuerraum 12 zugewandten Ende eine Auslassöffnung aufweist, deren Kante verrundet ist.
  • Zur weiteren Stabilisierung des innerhalb der Ablaufbohrung 14 sich bildenden Wirbelkerns 38 der Drallströmung weist der zylindrische Bohrungsabschnitt 40 im Übergangsbereich 52 zur Ablaufdrossel 42 eine konische Form auf.
  • Im Gegensatz zu den Übergängen vom Steuerraum 12 zum zylindrischen Bohrungsabschnitt 40 und vom zylindrischen Bohrungsabschnitt 40 zur Ablaufdrossel 42 ist der Übergang von der Ablaufdrossel 42 zum Diffusor 44 stufenförmig ausgebildet. Der Diffusor 44 kann hierbei einen optimierten Öffnungswinkel von vorzugsweise weniger als 15° aufweisen, wodurch das Geschwindigkeitsniveau der Drallströmung reduziert und das Druckniveau erhöht wird. Die im Wirbelkern 38 der Drallströmung gebildeten Dampfblasen werden aufgrund der Erhöhung des Druckniveaus im Bereich des Diffusors 44 gezielt zur Implosion gebracht, ohne dass eine Schädigung durch Kavitationserosion an der die Ablaufbohrung 14 umgrenzenden Wand erfolgt. Darüber hinaus bewirkt der erfindungsgemäße Effekt, dass keine Schädigung des kegelförmigen Ventilsitzes 16 auftritt.
  • In Strömungsrichtung nach dem Diffusor 44 schließt ein kegelförmiger Übergangsbereich 46 an, der in einen kegelförmigen Ventilsitz 16 übergeht. Der kegelförmige Übergangsbereich 46 weist dabei einen kleineren Konusdurchmesser als der kegelförmige Ventilsitz 16 auf.
  • Der kegelförmige Übergangsbereich 46 aus Figur 1 und 4 stellt einen Strömungsübergangsabschnitt dar, der als schadensrelevanter Bereich für eine Kavitation vor dem Ventilsitz 16 dienen kann. Wie aus der Darstellung in Figur 4 zu entnehmen ist, wird die Ablaufbohrung 14 durch einen kugelförmigen Ventilkörper 54 verschlossen, der durch eine in Figur 1 und 4 nicht dargestellte Kugelführung verdrehbar geführt und über einen ebenfalls nicht dargestellten Aktor betätigt wird. Durch den Drall-Impuls der Drallströmung kann der kugelförmige Ventilkörper 54 hierbei in Rotation versetzt werden.
  • Neben den zuvor beschriebenen Ausführungen der Übergänge zwischen den Abschnitten mit unterschiedlichen Innendurchmesser der Zulaufbohrung 20 und der Ablaufbohrung 14 ist es nach weiteren nicht in den Figuren dargestellten alternativen Ausführungsformen vorgesehen, dass die Zulaufbohrung 20 und die Ablaufbohrung 14 eine Kombination von unterschiedlich geformten Übergängen aufweisen. Die Übergänge zwischen den Abschnitten unterschiedlicher Innendurchmesser weisen hierbei vorzugsweise eine Konus- bzw. Kegelform, eine Stufenform oder eine gerundete Form auf.

Claims (8)

  1. Injektor für Brennkraftmaschinen umfassend einen Steuerraum (12) eines Ventilsteuerkolbens (8), dem eine eine Zulaufdrossel (26) aufweisende Zulaufbohrung (20) zur Zufuhr von mit Hochdruck beaufschlagtem Kraftstoff und eine eine Ablaufdrossel (42) aufweisende Ablaufbohrung (14) zugeordnet ist, welche durch ein Steuerventil verschließbar ist, wobei die Zulaufdrossel (26) sich in einer zum Steuerraum (12) exzentrischen Richtung erstreckt, indem der durch die Zulaufbohrung (20) strömende mit Hochdruck beaufschlagte Kraftstoff exzentrische in den Steuerraum (12) eingeleitet wird, dadurch gekennzeichnet, dass die Zulaufbohrung (20) neben der Zulaufdrossel (26), die in den Steuerraum (12) übergeht, einen zylindrischen Abschnitt (28) und einen kegelförmigen Abschnitt (30) umfasst, und dass der kegelförmige Abschnitt (30) und der zylindrische Abschnitt (28) der Zulaufbohrung (20) zentrisch angeordnet sind, hingegen die Zulaufdrossel (26) gegenüber einer radialen Ausrichtung um einen Versatz e exzentrisch versetzt ist.
  2. Injektor nach Anspruch 1, dadurch gekennzeichnet,
    dass in dem Steuerraum (12) wenigstens ein eine Prallfläche umfassender Abschnitt vorgesehen ist, der den in den Steuerraum (12) einströmenden Kraftstoff umlenkt.
  3. Injektor nach Anspruch 1, dadurch gekennzeichnet,
    dass die Ablaufbohrung (14) einen Diffusor (44) umfasst, der auf der dem Steuerventil zugewandten Seite der Ablaufdrossel (42) angeordnet ist
  4. Injektor nach Anspruch 3, dadurch gekennzeichnet,
    dass der Diffusor (44) einen Öffnungswinkel in einem optimierten Bereich von weniger als 15° aufweist.
  5. Injektor nach Ansprüche 3 oder 4, dadurch gekennzeichnet,
    dass die Ablaufbohrung (14) einen steuerraumseitigen Bohrungsabschnitt (40) aufweist, der einen größeren Innendurchmesser als die Ablaufdrossel (42) aufweist, wobei der Querschnittsübergang vom Bohrungsabschnitt (40) zur Ablaufdrossel (42) stufenförmig, kegelförmig oder gerundet ist.
  6. Injektor nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet,
    dass die Ablaufbohrung (14) an ihrem dem Steuerraum (12) zugewandten Ende eine Einlaufverrundung aufweist.
  7. Injektor nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet,
    dass die Ablaufbohrung (14) an ihrem dem Steuerraum (12) zugewandten Ende einen kegelförmigen Abschnitt (48) aufweist, der sich in Richtung des Steuerraums (12) erweitert.
  8. Injektor nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet,
    dass zwischen der Ablaufdrossel (42) und dem Ventilsitz (16) des Steuerventils ein kegelförmiger Übergangsbereich (46) vorgesehen ist
EP09781113.7A 2008-09-23 2009-07-27 Injektor zur einspritzung von mit hochdruck beaufschlagtem kraftstoff in den brennraum einer brennkraftmaschine Active EP2347115B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810042293 DE102008042293A1 (de) 2008-09-23 2008-09-23 Injektor zur Einspritzung von mit Hochdruck beaufschlagtem Kraftstoff in den Brennraum einer Brennkraftmaschine
PCT/EP2009/059649 WO2010034544A1 (de) 2008-09-23 2009-07-27 Injektor zur einspritzung von mit hochdruck beaufschlagtem kraftstoff in den brennraum einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP2347115A1 EP2347115A1 (de) 2011-07-27
EP2347115B1 true EP2347115B1 (de) 2013-09-11

Family

ID=41277475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09781113.7A Active EP2347115B1 (de) 2008-09-23 2009-07-27 Injektor zur einspritzung von mit hochdruck beaufschlagtem kraftstoff in den brennraum einer brennkraftmaschine

Country Status (4)

Country Link
EP (1) EP2347115B1 (de)
CN (1) CN102165176B (de)
DE (1) DE102008042293A1 (de)
WO (1) WO2010034544A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075089A1 (en) * 2014-11-11 2016-05-19 Robert Bosch Gmbh An injection valve having control chamber
CN110822106B (zh) * 2018-08-09 2022-10-28 罗伯特·博世有限公司 用于制冷阀的传动装置和制冷阀

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859592C1 (de) 1998-12-22 2000-05-04 Bosch Gmbh Robert Kraftstoffeinspritzventil
DE19939939A1 (de) * 1999-08-23 2001-04-19 Bosch Gmbh Robert Injektor für ein Common-Rail-Einspritzsystem für Brennkraftmaschinen mit kompakter Bauweise
DE19940290A1 (de) * 1999-08-25 2001-03-01 Bosch Gmbh Robert Steuerventil für ein Kraftstoffeinspritzventil
DE10123775B4 (de) * 2001-05-16 2005-01-20 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen, insbesondere Common-Rail-Injektor, sowie Kraftstoffsystem und Brennkraftmaschine
JP2003113761A (ja) * 2001-08-01 2003-04-18 Denso Corp 燃料噴射弁
DE10259950A1 (de) * 2002-12-20 2004-07-01 Robert Bosch Gmbh Steuerventil für Injektoren, insbesondere Common-Rail-Injektoren von Brennkraftmaschinen

Also Published As

Publication number Publication date
WO2010034544A1 (de) 2010-04-01
CN102165176B (zh) 2014-02-19
EP2347115A1 (de) 2011-07-27
DE102008042293A1 (de) 2010-03-25
CN102165176A (zh) 2011-08-24

Similar Documents

Publication Publication Date Title
EP1076772B1 (de) Kraftstoffeinspritzdüse für eine brennkraftmaschine
DE4039520B4 (de) Kraftstoff-Einspritzventil
EP2370686B1 (de) Verfahren zur herstellung von drosselbohrungen mit niedrigem kavitationsumschlagpunkt
WO2012058703A1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP2129903B1 (de) Kraftstoffinjektor mit einer zusätzlichen ablaufdrossel oder mit einer verbesserten anordnung derselben im steuerventil
WO2005019637A1 (de) Pilotventil gesteuertes brennstoffeinspritzventil
WO2017063774A1 (de) Durchflussbegrenzer für einen injektor
EP1623108B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2006053811A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2013072115A1 (de) Kraftstoffinjektor, insbesondere common-rail-injektor
EP2347115B1 (de) Injektor zur einspritzung von mit hochdruck beaufschlagtem kraftstoff in den brennraum einer brennkraftmaschine
DE10007175B9 (de) Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine
DE10328331A1 (de) Kraftstoffeinspritzdüse
DE10116714A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen, vorzugsweise für hohe Strahlgeschwindigkeiten
EP1062423B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1952012B1 (de) Einspritzinjektor
WO2012084515A1 (de) Düsenkörper mit einem einspritzloch mit mindestens zwei eintrittsöffnungen
WO2000032928A1 (de) Kraftstoffeinspritzdüse für selbstzündende brennkraftmaschinen
WO2008125537A1 (de) Injektor
AT511731B1 (de) Kavitationsoptimierte drosselbohrungen
EP2504561B1 (de) Kraftstoff-einspritzdüse für brennkraftmaschinen
EP4077908A1 (de) Einspritzdüse zur einspritzung von kraftstoff unter hohem druck
DE10160490A1 (de) Kraftstoff-Einspritzvorrichtung, Kraftstoffsystem sowie Brennkraftmaschine
DE102020203582A1 (de) Gasinjektor zum Einblasen eines gasförmigen Kraftstoffs
WO2002063160A1 (de) Kraftstoffeinspritzventil für eine brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121009

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130514

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 631780

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009008008

Country of ref document: DE

Effective date: 20131107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130911

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009008008

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140612

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009008008

Country of ref document: DE

Effective date: 20140612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140727

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140727

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 631780

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090727

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210730

Year of fee payment: 13

Ref country code: FR

Payment date: 20210722

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230922

Year of fee payment: 15