WO2020207320A1 - 一种医用材料及其制备方法 - Google Patents

一种医用材料及其制备方法 Download PDF

Info

Publication number
WO2020207320A1
WO2020207320A1 PCT/CN2020/082925 CN2020082925W WO2020207320A1 WO 2020207320 A1 WO2020207320 A1 WO 2020207320A1 CN 2020082925 W CN2020082925 W CN 2020082925W WO 2020207320 A1 WO2020207320 A1 WO 2020207320A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic elastomer
particles
filler
mass
blending
Prior art date
Application number
PCT/CN2020/082925
Other languages
English (en)
French (fr)
Inventor
何光彬
李兆敏
秦明林
张百灵
Original Assignee
脉通医疗科技(嘉兴)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 脉通医疗科技(嘉兴)有限公司 filed Critical 脉通医疗科技(嘉兴)有限公司
Publication of WO2020207320A1 publication Critical patent/WO2020207320A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2491/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0887Tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides

Definitions

  • Micro-sized medical tubes are the key material for minimally invasive interventional medical devices.
  • Micro-traumatic interventional medical devices have very high requirements for micro-sized medical tubes and are technically difficult. They have been monopolized by European and American companies.
  • the main technical problems in the industrialization of micro-sized medical tubes for microtrauma interventional medical devices in my country include synthesis of medical polymer materials, modification of medical polymer materials, micro-extrusion, welding, grinding, weaving, springs, and condensed matter Key technologies and equipment such as structural control.
  • the same series of medical polymer materials with different hardnesses have good compatibility and thermal melting.
  • different materials can be selected as different parts of the catheter according to the needs to obtain a catheter with gradual hardness.
  • the catheters and conveyors of minimally invasive interventional medical devices are usually relatively long, the front section needs to be soft so as to be able to pass through the curved blood vessels of the human body and reach the lesion; while the latter section requires a certain degree of hardness to ensure that the catheter has enough during the process of entering the human body. Supporting force.
  • thermoplastic elastomer when added with filler to blend the developing material, the filler-blended developing material has poor dispersion, easy foaming and poor fluidity during processing.
  • the technical solution adopted by the present invention to solve the above-mentioned technical problems is to provide a method for preparing medical materials, including the following steps: S1: extruding and granulating a thermoplastic elastomer to obtain thermoplastic elastomer particles; S2: combining the steps The thermoplastic elastomer particles obtained in S1 and the filler are blended and extruded to obtain a filler masterbatch; S3: the thermoplastic elastomer particles obtained in the step S1 and the filler masterbatch obtained in the step S2 are combined with the color master particles Blending and extrusion to obtain blended modified particles; S4: adding a lubricant to the blended modified particles obtained in step S3, and after blending and extruding, a medical material with a particle melt index of 20-50 g/10min is obtained.
  • the step S1 includes: extruding the thermoplastic elastomer through a twin-screw blending extruder to obtain cylindrical thermoplastic elastomer particles.
  • the thermoplastic elastomer is polyether block amide, thermoplastic polyurethane elastomer, styrene block copolymer, styrene-butadiene-styrene block copolymer or octene copolymer At least one of them.
  • the filler is at least one of barium sulfate, bismuth carbonate or tungsten powder.
  • the mass of the thermoplastic elastomer particles is 40% to 70% of the mass of the filler masterbatch, and the thermoplastic elastomer particles and the filler are extruded by twin-screw blending. Machine extruding to obtain the filler masterbatch.
  • the mass of the thermoplastic elastomer particles is 10%-40% of the mass of the blended modified particles, and the mass of the filler masterbatch is 20% of the mass of the blended modified particles. %-59%, the thermoplastic elastomer particles, the filler masterbatch and the color masterbatch particles are uniformly stirred and then extruded through a twin-screw blending extruder to obtain the blended modified particles.
  • the mass of the lubricant added in the step S4 is 2%-10% of the mass of the blended modified particles.
  • the set temperature of the twin-screw blending extruder is 180-240°C, and the screw speed is 400-1200 revolutions per minute.
  • the lubricant in the step S4 is at least one of white oil, stearic acid amide or paraffin powder.
  • Another technical solution adopted by the present invention to solve the above technical problems is to provide a medical material prepared by the above preparation method.
  • the present invention has the following beneficial effects: the medical material provided by the present invention and the preparation method thereof, when the thermoplastic elastomer is added with filler to blend the developing material, the blending after adding the lubricant is adopted, which effectively improves the blending of the filler.
  • the blending uniformity and fluidity of the mixed developing material solves the problems of easy sticking, agglomeration, poor dispersion, easy foaming and poor fluidity during the processing of the filler mixed developing material, and the process is simple to implement , Low cost, easy to mass production.
  • the prepared medical material can be applied to products such as electrophysiological radiofrequency ablation catheters and mapping catheters.
  • thermoplastic elastomer is passed through a twin-screw blending extruder to remove air bubbles in the extruder, and extrude and pelletize to obtain cylindrical thermoplastic elastomer particles.
  • the twin-screw blending extruder may include multiple stages of temperature, and the temperature range of each stage may be the same or different. In this embodiment, the temperature interval of each stage is different, but the temperature interval of each stage is set within the interval of 180-240°C.
  • the screw speed of the twin-screw blending extruder was set to 500 revolutions per minute.
  • the thermoplastic elastomer may be a thermoplastic elastomer with a high hard segment ratio, such as polyether block amide (PEBA), thermoplastic polyurethane elastomer (TPU), styrene block copolymer (SBC), benzene Materials such as ethylene-butadiene-styrene block copolymer (SBS) or octene copolymer (POE).
  • the thermoplastic elastomer may be composed of a soft segment and a hard segment, and a thermoplastic elastomer with a hard segment ratio higher than or equal to 90% is defined as a high-hard segment ratio.
  • thermoplastic elastomer particles, the filler masterbatch and the color masterbatch particles are uniformly stirred according to a predetermined ratio, and extruded through a twin-screw blending extruder to obtain blended modified particles of corresponding colors.
  • the mass of the thermoplastic elastomer particles may be 10%-40% of the mass of the blended modified particles, and the mass of the filler masterbatch may be 20%-59% of the mass of the blended modified particles.
  • a lubricant is added to the obtained blended modified particles.
  • the mass of the added lubricant is 2% of the mass of the blended modified particles.
  • the lubricant can be at least one of white oil, stearic acid amide, paraffin powder, etc.
  • the setting temperature of the twin-screw blending extruder is 180 ⁇ 220°C, the screw speed is 400 ⁇ 1200 revolutions per minute, and the melt index of the particles obtained by blending is 20-50 g/min.
  • the effect of adding lubricant is to reduce the friction between the materials and the surface of the materials and the processing equipment, thereby reducing the flow resistance of the melt, reducing the viscosity of the melt, improving the fluidity of the melt, avoiding the adhesion of the melt and the equipment, and improving The smoothness of the product surface.
  • Melt index is a numerical value indicating the fluidity of plastic materials during processing. The test method is to first let the plastic pellets melt into a plastic fluid within a certain time (10 minutes), at a certain temperature and pressure, and then pass the grams (g) flowing out of a round tube with a diameter of 2.095mm. The larger the value, the better the processing fluidity of the plastic material, and vice versa.
  • the melt index can characterize the viscous flow characteristics of thermoplastics in the molten state, and has important guiding significance for ensuring the quality of thermoplastics and their products, and for adjusting the production process.
  • the product structure and production process of this embodiment are the same as that of embodiment 1, but the difference is that the proportion of lubricant added is different.
  • the mass of lubricant added is 5% of the mass of the blended modified particles, and the melt index of the blended particles is 22g/10min ⁇ 29g/10min.
  • the product structure and production process of this embodiment are the same as those of embodiment 1, but the difference is that the proportion of lubricant added is different.
  • the mass of lubricant added is 8% of the mass of the blended modified particles, and the melt index of the blended particles is 35g/10min ⁇ 39g/10min.
  • the product structure and production process of this embodiment are the same as those of embodiment 1.
  • the difference is that the proportion of the lubricant added is different.
  • the mass of the lubricant added is 10% of the mass of the blended modified particles, and the melt index of the blended particles is 43g/10min ⁇ 48g/10min.
  • the method for preparing medical materials provided by the present invention has the following advantages:
  • thermoplastic elastomers with high hard segment ratio when adding fillers such as barium sulfate, bismuth carbonate, and tungsten powder to blend developing materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

一种医用材料及其制备方法,所述制备方法包括如下步骤:S1:将热塑性弹性体经过挤压造粒,得到热塑性弹性体粒子;S2:将所述步骤S1得到的热塑性弹性体粒子与填充物共混挤出,得到填充物母粒;S3:将所述步骤S1得到的热塑性弹性体粒子和所述步骤S2得到的填充物母粒与色母粒子共混挤出,得到医用材料;S4:在所述步骤S3得到的共混改性粒子中添加润滑剂,经过共混挤出,得到粒子熔融指数为20-50g/min的医用材料。所述制备方法解决了高硬段比率的热塑性弹性体材料在加工过程中分散性差、易发泡和流动性差等问题。所制备的医用材料可应用到电生理射频消融导管及标测导管等产品。

Description

一种医用材料及其制备方法 技术领域
本发明涉及一种生物医用原材料及其制备方法,尤其涉及一种热塑性弹性体医用材料及其制备方法。
背景技术
微创伤介入医疗技术是20世纪末医学对人类文明的重要贡献之一,涵盖了心血管、脑血管、大动脉、外周、电生理等科学技术。微尺寸医疗管是微创伤介入医疗器械的关键材料,微创伤介入医疗器械对微尺寸医疗管的要求非常高,技术难度大,一直被欧美公司所垄断。近20年来,我国微创伤介入医疗器械微尺寸医疗管产业化的主要技术难题包括医用高分子材料合成、医用高分子材料改性、微挤出、焊接、磨削、编织、弹簧、凝聚态结构调控等关键技术和关键设备。
相同系列不同硬度的医用高分子材料之间具有良好的相容性和热熔融,用于微创伤介入医疗器械时,可以根据需要选择不同的材料做导管的不同部分,以得到硬度渐变的导管。因为微创伤介入医疗器械导管和输送器通常都比较长,前段要求柔软,以便能穿越人体弯曲的血管,到达病变处;而后段要求有一定硬度,才能保证在导管进入人体过程中有足够的支撑力。
热塑性弹性体是一类热塑性多嵌段共聚物,由于其良好的生物学相容性、良好的抗凝血性、以及良好的韧性和弹性,使其在生物医学领域有着广泛的应用。现有的热塑性弹性体在性能方面存在一定的缺陷,比如高硬段比率的热塑性弹性体在添加硫酸钡、碳酸铋、钨粉等作为显影剂时,但是这些填充物在添加到高硬段比率的热塑性弹性体中,在加工过程中持续时间短(<1 h),存在分散性差,易发泡(气泡多)以及流动性差等问题,严重影响到后期产品的加工。因此,需要对现有的高硬段比率的热塑性弹性体共混材料进行改性。
技术问题
本发明所要解决的技术问题是热塑性弹性体在添加填充物共混显影材料时,该填充物共混显影材料在加工过程中分散性差、易发泡且流动性差。
技术解决方案
本发明为解决上述技术问题而采用的技术方案是提供一种医用材料的制备方法,包括如下步骤:S1:将热塑性弹性体经过挤压造粒,得到热塑性弹性体粒子;S2:将所述步骤S1得到的热塑性弹性体粒子与填充物共混挤出,得到填充物母粒;S3:将所述步骤S1得到的热塑性弹性体粒子和所述步骤S2得到的填充物母粒与色母粒子共混挤出,得到共混改性粒子;S4:在所述步骤S3得到的共混改性粒子中添加润滑剂,经过共混挤出,得到粒子熔融指数为20-50g/10min的医用材料。
优选地,所述步骤S1包括:将所述热塑性弹性体经过双螺杆共混挤出机,挤出得到圆柱形热塑性弹性体粒子。
优选地,所述步骤S1中,所述热塑性弹性体为聚醚嵌段酰胺、热塑性聚氨酯弹性体、苯乙烯嵌段共聚物、苯乙烯-丁二烯-苯乙烯嵌段共聚物或辛烯共聚物中的至少一种。
优选地,所述步骤S2中,所述填充物为硫酸钡、碳酸铋或钨粉中的至少一种。
优选地,所述步骤S2中,所述热塑性弹性体粒子的质量为所述填充物母粒质量的40%~70%,所述热塑性弹性体粒子与所述填充物经双螺杆共混挤出机挤出得到所述填充物母粒。
优选地,所述步骤S3中,所述热塑性弹性体粒子质量为所述共混改性粒子质量的10%~40%,所述填充物母粒质量为所述共混改性粒子质量的20%-59%,所述热塑性弹性体粒子、所述填充物母粒与所述色母粒子搅拌均匀后经过双螺杆共混挤出机挤出得到所述共混改性粒子。
优选地,所述步骤S4中添加的润滑剂质量为所述共混改性粒子质量的2%-10%。
优选地,所述双螺杆共混挤出机设定温度为180-240℃,螺杆转速为400-1200转/分钟。
优选地,所述步骤S4中所述润滑剂为白油、硬脂酸酰胺或石蜡粉中的至少一种。
本发明为解决上述技术问题而采用的另一技术方案是提供一种医用材料,由上述制备方法制取。
有益效果
本发明对比现有技术有如下的有益效果:本发明提供的医用材料及其制备方法,热塑性弹性体在添加填充物共混显影材料时,采用添加润滑剂后共混,有效提升了填充物共混显影材料的共混均匀性和流动性,解决了填充物共混显影材料材料在加工过程中易粘模、结块、分散性差、易发泡和流动性差等问题,而且这一工艺实施简单,成本低廉,易于批量化生产。所制备的医用材料可应用到电生理射频消融导管及标测导管等产品。
本发明的实施方式
下面结合实施例对本发明作进一步的描述。
实施例 1
首先,将预定量的热塑性弹性体经过双螺杆共混挤出机,去除其内部的气泡孔,挤出造粒,得到圆柱形的热塑性弹性体粒子。所述双螺杆共混挤出机可以包括多段温度,各段的温度区间可以相同或者不同。在本实施例中,各段的温度区间不同,但是各段的温度区间均设定在180-240℃区间内。所述双螺杆共混挤出机的螺杆转速设定为500转/分钟。具体地,所述热塑性弹性体可以为高硬段比率的热塑性弹性体,例如可以为聚醚嵌段酰胺(PEBA)、热塑性聚氨酯弹性体(TPU)、苯乙烯嵌段共聚物(SBC)、苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)或辛烯共聚物(POE)等材料。在本发明中,热塑性弹性体可以由软段和硬段构成,硬段比率高于或等于90%的定义为髙硬段比率的热塑性弹性体。
接着,将得到的热塑性弹性体粒子与填充物按一定的比例共混,经双螺杆共混挤出机挤出得到共混的填充物母粒。在本实施例中,所述填充物可以为显影材料,例如可以为硫酸钡、碳酸铋或钨粉等中的至少一种。所述热塑性弹性体粒子的质量为所述填充物母粒质量的40%~70%。所述双螺杆共混挤出机各段的设定温度均在180-240℃区间内,螺杆转速为400-1200转/分钟。
然后,将热塑性弹性体粒子、填充物母粒与色母粒子按照预定比例搅拌均匀,经过双螺杆共混挤出机挤出,得到相应颜色的共混改性粒子。所述热塑性弹性体粒子质量可以为所述共混改性粒子质量的10%~40%,所述填充物母粒质量可以为所述共混改性粒子质量的20%-59%。
最后,在得到的共混改性粒子中添加润滑剂,添加的润滑剂质量为共混改性粒子质量的2%,润滑剂可以为白油、硬脂酸酰胺、石蜡粉等中的至少一种,双螺杆共混挤出机设定的温度为180~220℃,螺杆转速400~1200转/分钟,共混得到的粒子熔融指数为20-50 g/min。添加润滑剂的作用是降低物料之间及物料和加工设备表面的摩擦力,从而降低熔体的流动阻力,降低熔体粘度,提高熔体的流动性,避免熔体与设备的粘附,提高制品表面的光滑度。熔融指数是一种表示塑胶材料加工时的流动性的数值。其测试方法是先让塑料粒在一定时间(10分钟)内、一定温度及压力下,融化成塑料流体,然后通过一直径为2.095mm圆管所流出的克(g)数。其值越大,表示该塑胶材料的加工流动性越佳,反之则越差。熔融指数可表征热塑性塑料在熔融状态下的粘流特性,对保证热塑性塑料及其制品的质量,对调整生产工艺,都有重要的指导意义。
实施例 2
本实施例与实施例1的产品结构和生产工艺相同,不同点在于添加的润滑剂的比例不同,添加的润滑剂质量为共混改性粒子质量的5%,共混得到的粒子熔融指数为22g/10min~29g/10min。
实施例 3
本实施例与实施例1的产品结构和生产工艺相同,不同点在于添加的润滑剂的比例不同,添加的润滑剂质量为共混改性粒子质量的8%,共混得到的粒子熔融指数为35g/10min~39g/10min。
实施例 4
本实施例与实施例1的产品结构和生产工艺相同,不同点在于添加的润滑剂的比例不同,添加的润滑剂质量为共混改性粒子质量的10%,共混出来的粒子熔融指数为43g/10min~48g/10min。
综上,本发明提供的医用材料的制备方法具有以下优点:
a) 通过共混的方式解决了高硬段比率的热塑性弹性体在添加硫酸钡、碳酸铋、钨粉等填充物共混显影材料时,加工过程中分散性差,易发泡的问题。
b) 采用添加一种润滑剂后共混,有效提升了高硬段比率的热塑性弹性体的共混均匀性和流动性,解决了该材料在加工过程流动性差等问题。
c) 本发明提供的方法制备工艺简单,可以进行连续性的规模化生产。通过对双螺杆共混挤出机温度、螺杆转速以及润滑剂比例的调控,即可达到对共混改性后材料粒子熔融指数的控制。
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善,因此本发明的保护范围当以权利要求书所界定的为准。

Claims (10)

  1. 一种医用材料的制备方法,其特征在于,包括如下步骤:
    S1:将热塑性弹性体经过挤压造粒,得到热塑性弹性体粒子;
    S2:将所述步骤S1得到的所述热塑性弹性体粒子与填充物共混挤出,得到填充物母粒;
    S3:将所述步骤S1得到的热塑性弹性体粒子和所述步骤S2得到的填充物母粒与色母粒子共混挤出,得到共混改性粒子;
    S4:在所述步骤S3得到的共混改性粒子中添加润滑剂,经过共混挤出,得到粒子熔融指数为20-50g/10min的医用材料。
  2. 如权利要求1所述的医用材料的制备方法,其特征在于,所述步骤S1包括:将所述热塑性弹性体经过双螺杆共混挤出机,挤出得到圆柱形热塑性弹性体粒子。
  3. 如权利要求1所述的医用材料的制备方法,其特征在于,所述热塑性弹性体为聚醚嵌段酰胺、热塑性聚氨酯弹性体、苯乙烯嵌段共聚物、苯乙烯-丁二烯-苯乙烯嵌段共聚物或辛烯共聚物中的至少一种。
  4. 如权利要求1所述的医用材料的制备方法,其特征在于,所述步骤S2中,所述填充物为硫酸钡、碳酸铋或钨粉中的至少一种。
  5. 如权利要求1所述的医用材料的制备方法,其特征在于,所述步骤S2中,所述热塑性弹性体粒子的质量为所述填充物母粒质量的40%~70%,所述热塑性弹性体粒子与所述填充物经过双螺杆共混挤出机挤出得到所述填充物母粒。
  6. 如权利要求1所述的医用材料的制备方法,其特征在于,所述步骤S3中,所述热塑性弹性体粒子质量为所述共混改性粒子质量的10%~40%,所述填充物母粒质量为所述共混改性粒子质量的20%-59%,所述热塑性弹性体粒子、所述填充物母粒与所述色母粒子搅拌均匀后经过双螺杆共混挤出机挤出得到所述共混改性粒子。
  7. 如权利要求1所述的医用材料的制备方法,其特征在于,所述步骤S4中添加的润滑剂质量为所述共混改性粒子质量的2%-10%。
  8. 如权利要求2、5或6所述的医用材料的制备方法,其特征在于,所述双螺杆共混挤出机设定温度为180-240℃,螺杆转速为400-1200转/分钟。
  9. 如权利要求1所述的医用材料的制备方法,其特征在于,所述步骤S4中所述润滑剂为白油、硬脂酸酰胺或石蜡粉中的至少一种。
  10. 一种医用材料,其特征在于,所述医用材料由权利要求1-9任一项所述的制备方法制取。
PCT/CN2020/082925 2019-04-12 2020-04-02 一种医用材料及其制备方法 WO2020207320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910293812.2 2019-04-12
CN201910293812.2A CN110003637A (zh) 2019-04-12 2019-04-12 一种医用材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2020207320A1 true WO2020207320A1 (zh) 2020-10-15

Family

ID=67171528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082925 WO2020207320A1 (zh) 2019-04-12 2020-04-02 一种医用材料及其制备方法

Country Status (2)

Country Link
CN (1) CN110003637A (zh)
WO (1) WO2020207320A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003637A (zh) * 2019-04-12 2019-07-12 脉通医疗科技(嘉兴)有限公司 一种医用材料及其制备方法
CN111040429B (zh) * 2019-12-30 2021-12-24 脉通医疗科技(嘉兴)有限公司 一种医用管材及其制备方法
CN113861379A (zh) * 2020-06-30 2021-12-31 三元科技(深圳)有限公司 一种tpu医用线缆的制造方法及医用线缆
CN111939328A (zh) * 2020-08-18 2020-11-17 西安乐析医疗科技有限公司 一种新型腹膜透析管及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010547A (zh) * 2010-12-23 2011-04-13 南京聚隆科技股份有限公司 矿物与长玻璃纤维增强聚丙烯复合材料及其制备方法
CN104861303A (zh) * 2015-06-12 2015-08-26 福路明精密管材(北京)有限公司 医用聚丙烯复合材料及其制备方法
CN105727375A (zh) * 2016-02-02 2016-07-06 乐普(北京)医疗器械股份有限公司 一种尼龙共混料及其制备方法和应用
US20180055597A1 (en) * 2016-07-27 2018-03-01 Ankon Medical Technologies (Shanghai),LTD. Capsule for detection of gastrointestinal motility and method for preparing teh same
CN108276638A (zh) * 2017-12-29 2018-07-13 深圳职业技术学院 一种具有x射线显影功能的管材及其制备方法
CN110003637A (zh) * 2019-04-12 2019-07-12 脉通医疗科技(嘉兴)有限公司 一种医用材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010547A (zh) * 2010-12-23 2011-04-13 南京聚隆科技股份有限公司 矿物与长玻璃纤维增强聚丙烯复合材料及其制备方法
CN104861303A (zh) * 2015-06-12 2015-08-26 福路明精密管材(北京)有限公司 医用聚丙烯复合材料及其制备方法
CN105727375A (zh) * 2016-02-02 2016-07-06 乐普(北京)医疗器械股份有限公司 一种尼龙共混料及其制备方法和应用
US20180055597A1 (en) * 2016-07-27 2018-03-01 Ankon Medical Technologies (Shanghai),LTD. Capsule for detection of gastrointestinal motility and method for preparing teh same
CN108276638A (zh) * 2017-12-29 2018-07-13 深圳职业技术学院 一种具有x射线显影功能的管材及其制备方法
CN110003637A (zh) * 2019-04-12 2019-07-12 脉通医疗科技(嘉兴)有限公司 一种医用材料及其制备方法

Also Published As

Publication number Publication date
CN110003637A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2020207320A1 (zh) 一种医用材料及其制备方法
JPS5991142A (ja) 弾性プラスチツク組成物の製造方法
US20210269605A1 (en) Developing material, medical tube and preparation method therefor
WO2019128371A1 (zh) 一种具有x射线显影功能的管材及其制备方法
CN105504552A (zh) 一种管材用聚丁烯材料及其制备方法
CN111040429B (zh) 一种医用管材及其制备方法
CN109651752A (zh) 一种3d打印用abs耗材及其制备方法
US5912291A (en) Thermoplastic polymers with polyfluoroalkylsiloxane modified surfaces
CN101486818A (zh) 一种热塑性弹性体材料
CN105801956A (zh) 医用输液管tpe材料及其制备方法
CN110144092A (zh) 一种环保硬质pvc改性材料及其制备方法
CN105367986A (zh) 一种tpe环形拉力片料及其制备方法
CN105061943A (zh) 抗老化pvc管材制造方法
EP3913021A1 (en) Medical material and preparation method therefor
CN112442251A (zh) 一种abs复合材料及其制备方法及应用
CN101191014A (zh) 具有较高耐热性的耐低温尼龙6复合材料及其制备方法
CN106117746A (zh) 一种高密度聚乙烯增韧母粒及其制备方法和其在高密度聚乙烯管材中的应用
CN106009464A (zh) 与pc/abs射粘用高强度热塑性弹性体及其制备方法
CN110079046B (zh) 一种易分散复合载体母粒及其制备方法
CN107722538A (zh) 一种免充气轮胎材料及其制备方法
CN111057370A (zh) 一种高强度的隔热尼龙材料及其制备方法与应用
CN103333484B (zh) 一种疏水型医用热塑性聚氨酯合金
CN114316496A (zh) 高填充耐刮白的挤出级热塑性弹性体材料及其制备方法
CN104893227A (zh) 一种与pc材料二次射粘用的热塑性弹性体及其制备方法
CN108059804B (zh) 一种pbat降解色母粒及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787168

Country of ref document: EP

Kind code of ref document: A1