WO2019128371A1 - 一种具有x射线显影功能的管材及其制备方法 - Google Patents

一种具有x射线显影功能的管材及其制备方法 Download PDF

Info

Publication number
WO2019128371A1
WO2019128371A1 PCT/CN2018/109482 CN2018109482W WO2019128371A1 WO 2019128371 A1 WO2019128371 A1 WO 2019128371A1 CN 2018109482 W CN2018109482 W CN 2018109482W WO 2019128371 A1 WO2019128371 A1 WO 2019128371A1
Authority
WO
WIPO (PCT)
Prior art keywords
core layer
antioxidant
layer
pipe according
base resin
Prior art date
Application number
PCT/CN2018/109482
Other languages
English (en)
French (fr)
Inventor
肖望东
李伯全
张文凯
林峰
徐令军
Original Assignee
深圳职业技术学院
深圳市源邦科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳职业技术学院, 深圳市源邦科技有限公司 filed Critical 深圳职业技术学院
Publication of WO2019128371A1 publication Critical patent/WO2019128371A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/005Hoses, i.e. flexible pipes consisting completely or partially of material other than fibres, plastics or metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses, catheter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)

Definitions

  • Embodiments of the present application relate to the field of medical technology, and in particular, to a tube having an X-ray developing function and a method of preparing the same.
  • Medical catheters are necessary for interventional treatment. They include: coronary dilatation catheters, angiographic catheters, microcatheters, arteriovenous catheter sheaths, and catheters for nutrient infusion. , cardiac output measurement catheters, etc. Therefore, in medical procedures, medical catheters are required to have an X-ray imaging function.
  • the conventional medical catheter is generally prepared by adding an inorganic developer to a matrix of a polymer material to form a special material having an X-ray developing function, and then molding into a medical tube of a predetermined size. Since the surface of the inorganic developer is not organically modified, its interface with the polymer matrix is poor, resulting in a decrease in the mechanical properties of the obtained medical catheter, and the surface is not as smooth as the tube extruded from the pure base resin.
  • the content of the developer in the developing tube is generally more than 20%.
  • the diameter of the formed medical catheter is smaller or the thickness of the tube wall is thinner, the required developer content is higher, otherwise the developing effect is not obvious, but the developer content is too high.
  • it is easy to disperse unevenly in the matrix of the polymer material resulting in a decrease in the smoothness of the surface of the tube, and defects such as burrs, bumps, pits, pitting, turbidity, etc.; increasing the difficulty of intubation during operation, affecting the lumen of the catheter .
  • the present application is directed to a pipe having an X-ray developing function and a method of producing the same, which can solve the technical problem that the surface of the medical catheter having the X-ray developing function is poor in smoothness and the material property is degraded.
  • a technical solution adopted by the embodiment of the present application is to provide a tube having an X-ray developing function, comprising: a core layer, an outer skin layer and an inner layer, wherein the core layer is placed on the outer skin layer and Between the endothelial layers; the outer skin layer and the inner skin layer are made of a base resin; the core layer is made of a core layer composite material obtained by blending the base resin and a developer.
  • the core layer composite further comprises: an antioxidant, a dispersant, an internal lubricant, and an external lubricant.
  • the raw material composition of the core layer composite is as follows:
  • the base resin is one or more of low density polyethylene, high density polyethylene, polypropylene, thermoplastic polyurethane elastomer, SEBS based thermoplastic elastomer, nylon elastomer, fluoroplastic.
  • the developer is one or more of barium sulfate, bismuth subcarbonate, antimony trioxide, and metal tungsten powder.
  • the raw material composition of the core layer is as follows: low density polyethylene 60.2%, cerium oxide 39%, antioxidant 1010 0.15%, antioxidant 168 0.15%, diffusing agent EBS 0.2%, hard Zinc citrate 0.15% and polyethylene wax 0.15%.
  • the raw material composition of the core layer is as follows: polyurethane thermoplastic elastomer 49.3%, barium sulfate 50%, antioxidant 1010 0.15%, diffusing agent EBS 0.25%, zinc stearate 0.15%, poly Ethylene wax 0.15%.
  • the raw material composition of the core layer is as follows: high density polyethylene 49%, antimony trioxide 50%, antioxidant 1010 0.15%, antioxidant 168 0.15%, and diffusing agent EBS 0.3 %, zinc stearate 0.2% and polyethylene wax 0.2%.
  • the raw material composition of the core layer is as follows: polypropylene 44%, barium sulfate 55%, antioxidant 1076 0.15%, antioxidant 626 0.15%, diffusing agent EBS 0.3%, stearic acid ⁇ 0.2% and dimethicone 0.2%.
  • the raw material composition of the core layer is as follows: SEBS resin and its modification 14.2%, rubber filling 11.5%, polypropylene 8.5%, barium sulfate 65%, EBS 0.3%, zinc stearate 0.15%, polyethylene wax 0.15%, antioxidant 1010 0.10%, and antioxidant 619 0.10%.
  • the raw material composition of the core layer is as follows: nylon elastomer 49.2%, antimony trioxide 50%, antioxidant 1098 0.2%, diffusing agent EBS 0.25%, internal lubricant zinc stearate 0.15%, external lubricant polyethylene wax 0.2%.
  • another technical solution adopted by the embodiment of the present application is to provide a method for preparing a tube having an X-ray developing function, comprising the steps of: preparing a core material, and using the core material as a foundation.
  • the resin is mixed with the developer and other auxiliary agents in a mixer to obtain a mixed material; the mixed material is added to a twin-screw extruder for melt blending and extrusion granulation to obtain a core layer composite material having X-ray developing performance;
  • the core layer composite material and the base resin were separately fed into two single-screw extruders and extruded by a co-extrusion head to obtain the above-mentioned pipes.
  • the outer skin layer and the inner skin layer of the tube having the X-ray developing function provided by the embodiment of the present application are base resin layers, do not contain or contain a small amount of developer, and thus can provide the pipe with excellent inner and outer surface quality and smooth performance. The phenomenon of unevenness, burrs, pitting, and the like caused by the addition of the developer directly to the developing tube is avoided.
  • the embodiment of the present application first provides a tube having an X-ray developing function, the tube having a three-layer structure, namely: a core layer, an outer skin layer and an inner layer, wherein the core layer is placed on the outer skin layer and the inner layer between.
  • the base resin of the core material is added with a developer for providing a developing function;
  • the outer skin layer and the inner skin layer are a base resin layer, and contain no or a small amount of a developer, thereby providing excellent properties to the pipe.
  • the inner and outer surface quality and smooth performance The phenomenon of unevenness, burrs, pitting, and the like caused by the addition of the developer directly to the developing tube is avoided.
  • each raw material in the core layer is described in detail below.
  • the raw material composition and mass percentage of the core layer are specifically as follows: base resin 34.2-60.2%, developer 39-65%, antioxidant 0.1-0.5%, dispersant 0.1-0.4%, internal lubricant 0.1-0.3%, The external lubricant is 0.1-0.3%.
  • the base resin in the examples of the present application is a thermoplastic commonly used in the art, including: low density polyethylene, high density polyethylene, polypropylene, thermoplastic polyurethane elastomer, SEBS based thermoplastic elastomer, nylon elastomer, fluoroplastic or One of the other thermoplastics.
  • the developer in the embodiment of the present application includes one or more of barium sulfate, barium hypocarbonate, antimony trioxide, and metal tungsten powder.
  • the developer is barium sulfate.
  • the antioxidant in the examples of the present application is: tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propanoic acid]pentaerythritol ester (code 1010), ⁇ -(3,5-di-tert-butyl) N-octadecanol ester of phenyl-4-hydroxyphenyl)propionate (code 1076), phenyl tris(2,4-di-tert-butyl) phosphite (code 168), dioctadecyl pentaerythritol diphosphite Ester (code 619), bis(2,4-di-tert-butylphenol) pentaerythritol diphosphite (code 626) and N,N'-bis-(3-(3,5-di-tert-butyl-4- One or more of hydroxyphenyl)propionyl)hexanediamine (
  • the dispersing agent in the examples of the present application is: ethylene bis stearamide (EBS), and one of the novel dispersing agents (TAS-2A) in which a polar group is introduced on the basis of ethylene bis fatty acid amide. Or both, the dispersing agent serves to improve the dispersibility of the developer in the base resin.
  • EBS ethylene bis stearamide
  • TAS-2A novel dispersing agents
  • the internal lubricants in the examples of the present application are: methyl stearate, ethyl stearate, n-butyl stearate, zinc stearate, calcium stearate, magnesium stearate, barium stearate and One or more of aluminum stearate.
  • the internal lubricant is used to improve the processability of the core material, to improve the thickness uniformity during extrusion of the pipe, and to improve the dispersibility of the developer.
  • the external lubricant in the examples of the present application is one or more of polyethylene wax, EVA wax and dimethicone.
  • the external lubricant is used to form a lubricating layer on the outer surface of the core layer during the extrusion molding process, thereby reducing the adhesion of the material to the equipment and the die, and improving the surface finish of the core material.
  • the embodiment of the present application further provides a method for preparing the above-mentioned pipe with X-ray developing function, which comprises the following steps:
  • the base resin is 34.2-60.2%, the developer 39-65%, the antioxidant 0.1-0.5%, the dispersant 0.1-0.4%, the internal lubricant 0.1-0.3%, and the external lubricant 0.1-0.3% added to the high-speed mixing. In the machine, mix for 3-5 minutes;
  • the mixed materials are added to a twin-screw extruder for melt blending extrusion granulation to obtain a medical catheter composite material having an X-ray developing function of 39-65% by weight of the developer.
  • the temperature of each working section of the twin-screw extruder is set according to the melting point or melting temperature of the base resin;
  • a tube having a three-layer structure is obtained by extrusion from a co-extrusion head.
  • the diameter of the co-extruded medical catheter is 1.0-25 mm; the thickness ratio of the inner and outer cortex of the catheter is 3:1 to 1:3, preferably the inner and outer cortex thickness ratio is 1:1; the ratio of the thickness of the cortex to the core layer is 1:1-1:10, preferably the thickness ratio of the skin layer to the core layer is 1:1 to 1:3.
  • the embodiment provides a low-density polyethylene composite pipe having an X-ray developing function, and the raw material composition and preparation method thereof are as follows:
  • the mixed materials are added to a twin-screw extruder for melt blending and extrusion granulation to obtain a low-density polyethylene composite material for the core layer.
  • the temperature of each section of the twin-screw extruder starts from the feeding port, and is set to 125 ° C, 170 ° C, 185 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, the machine head.
  • the temperature was set to 185 °C.
  • the core layer is made of a low-density polyethylene composite material and a low-density polyethylene base resin by two single-screw extruders, and extruded by a co-extrusion head to obtain a pipe having a three-layer structure. Specifically, the low-density polyethylene composite material having the developing function is fed into the main extruder; the low-density polyethylene base resin is fed into the auxiliary extruder and co-extruded.
  • the temperature of each section of the main extruder is 130 ° C, 175 ° C, 180 ° C; the temperature of each section of the auxiliary extruder is 125 ° C, 175 ° C, 180 ° C; the die temperature is 180 ° C.
  • the inner diameter of the pipe is 4.00 mm
  • the outer diameter of the pipe is 5.00 mm
  • the thickness of the pipe wall is 0.50 mm
  • the thickness of the inner layer is 0.12 mm
  • the thickness of the outer skin is 0.12 mm
  • the thickness of the core layer is 0.26 mm.
  • the embodiment provides a TPU composite pipe with X-ray development function, and the raw material composition and preparation method thereof are as follows:
  • TPU Polyurethane thermoplastic elastomer 49.3% (the TPU is specifically Estane58315 supplied by Lubr i zo l), barium sulfate 50%, antioxidant 1010 0.15%, diffusing agent EBS 0.25%, zinc stearate 0.15% Polyethylene wax 0.15%; in a high speed mixer, dry blending for 5 min to obtain a mixture.
  • the mixed materials are added to a twin-screw extruder for melt blending and extrusion granulation to obtain a low-density polyethylene composite material for the core layer.
  • the temperature of each section of the twin-screw extruder starts from the feeding port, and is set to 125 ° C, 170 ° C, 180 ° C, 185 ° C, 185 ° C, 185 ° C, 185 ° C, 190 ° C, 190 ° C, and the machine head. The temperature was set to 185 °C.
  • the TPU composite material and the TPU base resin of the core layer were extruded by a co-extrusion head using two single-screw extruders to obtain a pipe having a three-layer structure. Specifically, the TPU composite material having the developing function is sent to the main extruder; the TPU base resin is sent to the auxiliary extruder and coextruded.
  • the temperature of each section of the main extruder is 130 ° C, 175 ° C, 185 ° C; the temperature of each section of the auxiliary extruder is 125 ° C, 175 ° C, 185 ° C; the die temperature is 180 ° C.
  • the inner diameter of the pipe is 4.00 mm
  • the outer diameter of the pipe is 5.00 mm
  • the thickness of the pipe wall is 0.50 mm
  • the thickness of the inner layer is 0.11 mm
  • the thickness of the outer skin is 0.11 mm
  • the thickness of the core layer is 0.28 mm.
  • the embodiment provides a high-density polyethylene composite pipe with X-ray development function, and the raw material composition and preparation method thereof are as follows:
  • the mixed materials are added to a twin-screw extruder for melt blending and extrusion granulation to obtain a high-density polyethylene composite material for the core layer.
  • the temperature of each section of the twin-screw extruder starts from the feeding port, and is set to 135 ° C, 175 ° C, 190 ° C, 195 ° C, 195 ° C, 195 ° C, 195 ° C, 195 ° C, 195 ° C, 195 ° C, 195 ° C, 195 ° C, 195 ° C, 195 ° C, 195 ° C, 195 ° C, the machine head.
  • the temperature was set to 190 °C.
  • the core layer is made of a high-density polyethylene composite material and a high-density polyethylene base resin by using two single-screw extruders, and extruded by a co-extrusion head to obtain a pipe having a three-layer structure. Specifically, the high-density polyethylene composite material having the developing function is fed into the main extruder; the high-density polyethylene base resin is fed into the auxiliary extruder and coextruded.
  • the temperature of each section of the main extruder is 145 ° C, 180 ° C, 185 ° C; the temperature of each section of the auxiliary extruder is 140 ° C, 175 ° C, 185 ° C; the die temperature is 185 ° C.
  • the inner diameter of the pipe is 6.00 mm
  • the outer diameter of the pipe is 8.00 mm
  • the thickness of the pipe wall is 1.00 mm
  • the thickness of the inner layer is 0.20 mm
  • the thickness of the outer skin layer is 0.20 mm
  • the thickness of the core layer is 0.60 mm.
  • the embodiment provides a polypropylene (PP) composite pipe with X-ray development function, and the raw material composition and preparation method thereof are as follows:
  • the mixed materials are added to a twin-screw extruder for melt blending and extrusion granulation to obtain a polypropylene developing material for the core layer.
  • the temperature of each section of the twin-screw extruder starts from the feeding port, and is set to 135 ° C, 175 ° C, 195 ° C, 200 ° C, 200 ° C, 200 ° C, 200 ° C, 200 ° C, 200 ° C, 200 ° C, and the machine head.
  • the temperature is set to 195 ° C,
  • the core layer is made of a polypropylene developing material and a polypropylene base resin by two single-screw extruders, and extruded by a co-extrusion head to obtain a pipe having a three-layer structure. Specifically, the polypropylene developing material having the developing function is fed into the main extruder; the polypropylene base resin is fed into the auxiliary extruder and coextruded.
  • the temperature of each section of the main extruder is 145 ° C, 185 ° C, 195 ° C; the temperature of each section of the auxiliary extruder is 140 ° C, 175 ° C, 195 ° C; the die temperature is 190 ° C.
  • the inner diameter of the pipe is 7.50 mm
  • the outer diameter of the pipe is 10.00 mm
  • the wall thickness is 1.25 mm
  • the thickness of the inner layer is 0.25 mm
  • the thickness of the outer skin is 0.50 mm
  • the thickness of the core layer is 0.50 mm.
  • the embodiment provides a TPE composite pipe with X-ray development function, and the raw material composition and preparation method thereof are as follows:
  • Step 1 According to the following raw material composition and mass ratio, the raw materials and auxiliary materials for the core material and the inner and outer skin materials are weighed.
  • 1.1 core layer material formula (weight percentage): SEBS resin and its modification 14.2%, rubber filling 11.5%, polypropylene 8.5%, barium sulfate 65%, lubricant 0.6% (by EBS 0.3%, zinc stearate 0.15%, 0.15% of polyethylene wax), 0.2% of antioxidant (composed of 1010 0.10%, 619 0.10%);
  • Inner and outer skin material formula (weight percentage): SEBS resin and its modified product 41.5%, rubber filling oil 33.0%, polypropylene 25%, zinc stearate 0.1%, polyethylene wax 0.1% composition, antioxidant 0.3% (composed of 1010 0.15%, 619 0.15%).
  • Step 2 According to the formula of the core layer and the skin material, the material is weighed so that the SEBS resin and the modified product completely absorb the rubber filling oil; then, the SEBS resin and the modified material thereof and other materials which absorb the rubber filling oil are used. Add them together in a blender and mix well.
  • Step 3 The materials mixed in the step 2 are respectively placed in a twin-screw extruder for melt extrusion granulation to obtain a SEBS thermoplastic elastomer skin material and an X-ray detectable SEBS thermoplastic elastomer core material.
  • the temperature of each section of the twin-screw extruder starts from the feeding port, and is 190 ° C, 200 ° C, 205 ° C, 205 ° C, 205 ° C, 205 ° C, 205 ° C, 205 ° C, 205 ° C, and the head temperature is 200 ° C.
  • Step 4 The material prepared in the step 3 was extruded from a co-extrusion head with two single-screw extruders to obtain a pipe having a three-layer structure. Specifically, the SEBS thermoplastic elastomer core material having a developing function is fed into the main extruder; the SEBS thermoplastic elastomer skin material is fed into an auxiliary extruder and coextruded.
  • the temperature of each section of the main extruder is 145 ° C, 180 ° C, 185 ° C; the temperature of each section of the auxiliary extruder is 140 ° C, 175 ° C, 185 ° C; the die temperature is 185 ° C.
  • the inner diameter of the pipe is 14.00 mm
  • the outer diameter is 20.00 mm
  • the wall thickness is 3.00 mm
  • the thickness of the inner layer is 0.50 mm
  • the thickness of the outer skin is 1.00 mm
  • the thickness of the core layer is 1.50 mm.
  • the embodiment provides a nylon elastomer composite pipe having an X-ray developing function, and the raw material composition and preparation method thereof are as follows:
  • Nylon elastomer 49.2% (the nylon elastomer is specifically nylon elastomer PEbax 5533 produced by Arkema Company of France), antimony trioxide 50%, antioxidant 1098 0.2%, diffusing agent EBS 0.25%, stearic acid Zinc 0.15%, polyethylene wax 0.2%; in a high-speed mixer, dry mixing for 5 min, to obtain a mixture.
  • the mixed materials are added to a twin-screw extruder for melt blending and extrusion granulation to obtain a PEbax composite material for the core layer.
  • the temperature of each section of the twin-screw extruder starts from the feeding port, and is set to 135 ° C, 175 ° C, 185 ° C, 195 ° C, 200 ° C, 200 ° C, 200 ° C, 200 ° C, 200 ° C, and the machine head. The temperature was set to 195 °C.
  • the core layer was extruded with PEbax composite material and PEbax base resin by two single-screw extruders, and extruded by a co-extrusion head to obtain a pipe having a three-layer structure. Specifically, the PEbax composite material having the developing function is fed into the main extruder; the PEbax base resin is fed into the auxiliary extruder and co-extruded.
  • the temperature of each section of the main extruder is 140 ° C, 185 ° C, 195 ° C; the temperature of each section of the auxiliary extruder is 140 ° C, 185 ° C, 195 ° C; the die temperature is 190 ° C.
  • the inner diameter of the pipe is 1.50 mm
  • the outer diameter of the pipe is 2.00 mm
  • the thickness of the pipe wall is 0.25 mm
  • the thickness of the inner layer is 0.05 mm
  • the thickness of the outer skin layer is 0.05 mm
  • the thickness of the core layer is 0.15 mm.
  • the embodiment provides a low-density polyethylene single-layer pipe having an X-ray developing function, and the raw material composition and preparation method thereof are as follows:
  • the mixed materials are added to a twin-screw extruder for melt blending and extrusion granulation to obtain a low-density polyethylene composite material having a developing function.
  • the temperature of each section of the twin-screw extruder starts from the feeding port, and is set to 125 ° C, 170 ° C, 185 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, the machine head.
  • the temperature was set to 185 °C.
  • the low-density polyethylene composite material is extruded by a single-screw extruder to obtain a pipe having a single-layer structure.
  • the temperature of each section of the extruder was 130 ° C, 175 ° C, 180 ° C; the die temperature was 180 ° C.
  • the inner diameter of the pipe is 4.00mm, the outer diameter of the pipe is 5.00mm, and the wall thickness of the pipe is 0.50mm.
  • the embodiment provides a TPU single-layer pipe with X-ray development function, and the raw material composition and preparation method thereof are as follows:
  • the mixed materials are added to a twin-screw extruder for melt blending and extrusion granulation to obtain a TPU composite material having a developing function.
  • the temperature of each section of the twin-screw extruder starts from the feeding port, and is set to 125 ° C, 170 ° C, 185 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, 190 ° C, the machine head.
  • the temperature was set to 185 °C.
  • the TPU composite material was extruded by a single screw extruder to obtain a pipe having a single layer structure. Among them, the temperature of each section of the extruder was 130 ° C, 175 ° C, 180 ° C; the die temperature was 180 ° C.
  • the inner diameter of the pipe is 4.00mm, the outer diameter of the pipe is 5.00mm, and the wall thickness of the pipe is 0.50mm.
  • Example 7 and Example 8 are the comparative examples of Example 1 and Example 2, respectively, and the raw material composition and the weight percentage of each raw material in the pipe are substantially the same as those of Example 1 and Example 2, Only in the tubes of the first embodiment and the second embodiment, the core material contains a higher content of the developer, and the inner and outer skin materials do not contain the developer; and the embodiments 7 and 8 have the developer uniformly distributed.
  • the pipes obtained in the above Examples 1-8 were subjected to corresponding performance tests, and the performance test results are shown in Tables 1 and 2.
  • the technical solution of the present application defines the composition of the composite tube of the X-ray developing function (base resin 34.2-60.2%, developer 39-65%, antioxidant 0.1-0.5%, dispersant 0.1-0.4%, The internal lubricant is 0.1-0.3%, and the external lubricant is 0.1-0.3%).
  • base resin 34.2-60.2%, developer 39-65%, antioxidant 0.1-0.5%, dispersant 0.1-0.4%,
  • the internal lubricant is 0.1-0.3%
  • the external lubricant is 0.1-0.3%.
  • the additional internal lubricant and external lubricant can make the melt viscosity of the core material material smaller, reduce the rotational torque of the screw, reduce the adhesion with the inner and outer molds, and improve the extrusion stability of the pipe.
  • the composite pipe On the basis of limiting the composition of the composite pipe (base resin 34.2-60.2%, developer 39-65%, antioxidant 0.1-0.5%, dispersant 0.1-0.4%, internal lubricant 0.1 -0.3%, external lubricant 0.1-0.3%), high-density polyethylene composite pipe of Example 3, polypropylene composite pipe of Example 4, and nylon elastomer composite pipe of Example 6, tensile stress Larger, the composite pipe has a greater resistance to deformation.
  • the technical solution of the present application is preferably based on the above-mentioned component content and component type limitation, and is also within a limited range of components and contents, and a preferred embodiment (such as Example 1 - Example 6) is formed, which is preferred.
  • a preferred embodiment such as Example 1 - Example 6 is formed, which is preferred.
  • the reason is that the preferred scheme has excellent mechanical properties and development performance, in addition to the smooth improvement of the surface smoothness of the pipe.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

实施方式涉及医疗技术领域,特别是涉及一种具有X射线显影功能的管材及其制备方法。该管材包括:芯层、外皮层和内皮层,芯层置于外皮层和内皮层之间;外皮层和内皮层由基础树脂制成;芯层包括:基础树脂和显影剂。实施例提供的具有X射线显影功能的管材的外皮层和内皮层为基体树脂层,不含有或含有少量显影剂,因此能为管材提供优良的内外表面质量和光滑的性能。避免了直接在显影管中添加大量显影剂所引起的表面凹凸不平、毛刺、麻点、焦粒等现象。

Description

一种具有X射线显影功能的管材及其制备方法 技术领域
本申请实施方式涉及医疗技术领域,特别是涉及一种具有X射线显影功能的管材及其制备方法。
背景技术
随着医学诊断精度的提高,介入诊疗倍受重视,而医用导管是实施介入诊疗的必要装置,它包括:冠状动脉扩张导管、血管造影用导管、微导管、动静脉导管鞘、营养输液用导管、心搏出量测量导管等。因此,在医疗手术中,要求医用导管具有X射线显影功能。
为了减少外加物质的影响,现有的医用导管一般是在高分子材料基体中加入无机显影剂制成具有X射线显影功能的专用材料,再成型为规定尺寸的医用管材。由于无机显影剂的表面未经过有机化修饰,其与高分子基体的界面结合力较差,导致得到的医用导管力学性能下降,且表面不如纯基础树脂挤出的管材光滑。
显影管材中显影剂的含量一般在20%以上,当成型的医用导管直径越小或者管壁厚度越薄时,所要求的显影剂含量越高,否则显影效果不明显,但是显影剂含量过高,则容易在高分子材料基体中分散不均匀,导致管材表面光滑程度下降,出现毛刺、凸起、凹坑、麻点、浑浊等不良现象;增加手术时插管难度,影响导管的内腔通畅。此外,加入显影剂时,需要使用一些必要的分散剂、润滑剂等,且显影剂含量越高,相应的分散剂与润滑剂用量越多;这些助剂在基体树脂中相容性并不是很好,储存久了可能从表面析出形成喷霜,给手术带来风险。
发明内容
本申请旨在提供一种具有X射线显影功能的管材及其制备方法,其 能够解决现具有X射线显影功能的医用导管表面光滑程度差,材料性能下降的技术问题。
为解决上述技术问题,本申请实施方式采用的一个技术方案是:提供一种具有X射线显影功能的管材,包括:芯层、外皮层和内皮层,所述芯层置于所述外皮层和所述内皮层之间;所述外皮层和所述内皮层由基础树脂制成;所述芯层由所述基础树脂与显影剂共混所制芯层复合材料制成。
可选地,所述芯层复合材料还包括:抗氧剂、分散剂、内润滑剂和外润滑剂。
可选地,按照重量百分比,所述芯层复合材料的原料组成如下:
基础树脂 34.2-60.2%,
显影剂 39-65%,
抗氧剂 0.1-0.5%,
分散剂 0.1-0.4%,
内润滑剂 0.1-0.3%,
外润滑剂 0.1-0.3%。
可选地,所述基础树脂为:低密度聚乙烯、高密度聚乙烯、聚丙烯、热塑性聚氨酯弹性体、SEBS基热塑性弹性体、尼龙弹性体、氟塑料中的一种或者多种。
可选地,所述显影剂为:硫酸钡、次碳酸铋、三氧化二铋和金属钨粉中的一种或多种。
可选地,按照重量百分比,所述芯层的原料组成如下:低密度聚乙烯60.2%、氧化铋39%、抗氧剂1010 0.15%、抗氧剂168 0.15%,扩散剂EBS 0.2%、硬脂酸锌0.15%和聚乙烯蜡0.15%。
可选地,按照重量百分比,所述芯层的原料组成如下:聚氨酯热塑性弹性体49.3%、硫酸钡50%、抗氧剂1010 0.15%、扩散剂EBS 0.25%、硬脂酸锌0.15%、聚乙烯蜡0.15%。
可选地,按照重量百分比,所述芯层的原料组成如下:高密度聚乙烯49%、三氧化二铋50%、抗氧剂1010 0.15%、抗氧剂168 0.15%,,扩 散剂EBS 0.3%、硬脂酸锌0.2%和聚乙烯蜡0.2%。
可选地,按照重量百分比,所述芯层的原料组成如下:聚丙烯44%、硫酸钡55%、抗氧剂1076 0.15%、抗氧剂626 0.15%,扩散剂EBS 0.3%、硬脂酸钡0.2%和二甲基硅油0.2%。
可选地,按照重量百分比,所述芯层的原料组成如下:SEBS树脂及其改性物14.2%、橡胶填充11.5%、聚丙烯8.5%、硫酸钡65%、EBS 0.3%、硬脂酸锌0.15%、聚乙烯蜡0.15%、抗氧剂1010 0.10%和抗氧剂619 0.10%。
可选地,按照重量百分比,所述芯层的原料组成如下:尼龙弹性体49.2%、三氧化二铋50%、抗氧剂1098 0.2%、扩散剂EBS 0.25%、内润滑剂硬脂酸锌0.15%、外润滑剂聚乙烯蜡0.2%。
为解决上述技术问题,本申请实施方式采用的另一个技术方案是:提供一种具有X射线显影功能的管材的制备方法,包括如下步骤:准备芯层材料,并将所述芯层材料用基础树脂与显影剂及其他助剂加入搅拌机中混合,得到混合物料;将所述混合物料加入双螺杆挤出机中进行熔融共混挤出造粒,得到具有X射线显影性能的芯层复合材料;将所述芯层复合材料和基础树脂,分别加入两台单螺杆挤出机中,用共挤出机头挤出,制得上述管材。
本申请实施例提供的具有X射线显影功能的管材的外皮层和内皮层为基体树脂层,不含有或含有少量显影剂,因此能为管材提供优良的内外表面质量和光滑的性能。避免了直接在显影管中添加显影剂,所引起的表面凹凸不平、毛刺、麻点等现象。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请实施例首先提供一种具有X射线显影功能的管材,该管材具有三层结构,分别为:芯层、外皮层和内皮层,所述芯层置于所述外皮层和所述内皮层之间。所述芯层材料的基体树脂中添加有显影剂,用于 提供显影功能;所述外皮层和所述内皮层为基体树脂层,不含有或含有少量显影剂,因此能为所述管材提供优良的内外表面质量和光滑的性能。避免了直接在显影管中添加显影剂,所引起的表面凹凸不平、毛刺、麻点等现象。
以下详细介绍,芯层中各原料的含量和组成。所述芯层的原料组成及质量百分比具体如下:基础树脂34.2-60.2%,显影剂39-65%,抗氧剂0.1-0.5%,分散剂0.1-0.4%,内润滑剂0.1-0.3%,外润滑剂0.1-0.3%。
本申请实施例中的基础树脂,为本领域常见的热塑性塑料,包括:低密度聚乙烯、高密度聚乙烯、聚丙烯、热塑性聚氨酯弹性体、SEBS基热塑性弹性体、尼龙弹性体、氟塑料或其他热塑性塑料中的一种。
本申请实施例中的显影剂包括:硫酸钡、次碳酸铋、三氧化二铋和金属钨粉中的一种或多种,较佳地,所述显影剂为硫酸钡。
本申请实施例中的抗氧化剂为:四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(代号1010)、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯(代号1076)、三(2,4-二叔丁基)亚磷酸苯酯(代号168)、双十八烷基季戊四醇二亚磷酸酯(代号619)、双(2,4-二叔丁基苯酚)季戊四醇二亚磷酸酯(代号626)和N,N'-双-(3-(3,5-二叔丁基-4-羟基苯基)丙酰基)己二胺(代号1098)中的一种或者多种。
本申请实施例中的分散剂为:乙撑双硬脂酰胺(EBS)、以及在亚乙基双脂肪酸酰胺的基础上引入了极性基团的新型分散剂(TAS-2A)中的一种或者二种,分散剂起改善显影剂在基础树脂中分散性的作用。
本申请实施例中的内润滑剂为:硬脂酸甲酯、硬脂酸乙酯、硬脂酸正丁酯、硬脂酸锌、硬脂酸钙、硬脂酸镁、硬脂酸钡和硬脂酸铝中的一种或者多种。内润滑剂用于提高芯层材料的加工性,提高管材挤出时的厚度均匀性,并对改善显影剂的分散性有一定帮助。
本申请实施例中的外润滑剂为:聚乙烯蜡、EVA蜡和二甲基硅油的中的一种或者多种。外润滑剂用于在挤出成型过程中,在芯层的外表面形成一润滑层,降低材料与设备及口模的粘附性,提高芯层材料表面的光洁度。
本申请实施例还提供一种上述具有X射线显影功能的管材的制备方法,其包括如下步骤:
1、将基础树脂34.2-60.2%,显影剂39-65%,抗氧剂0.1-0.5%,分散剂0.1-0.4%,内润滑剂0.1-0.3%,外润滑剂0.1-0.3%加入高速混合机中,混合3-5分钟;
2、将混合好的物料加入双螺杆挤出机中进行熔融共混挤出造粒,得到显影剂重量含量39-65%的具有X射线显影功能的医用导管复合材料。其中,双螺杆挤出机各工作区段的温度根据基础树脂的熔点或者熔化温度进行设置;
3、利用两台单螺杆挤出机,形成复合挤出机,用共挤出机头挤出得到具有三层结构的管材。
3.1将步骤2得到的医用导管芯层用复合材料送入主挤出机;
3.2将基础树脂送入辅助挤出机;
3.3通过复合挤出机共挤出,得到X射线显影复合管材。其中,共挤出成形的医用导管的直径为1.0-25mm;导管内、外皮层的厚度比为3:1-1:3,优选内外皮层厚度比为1:1;皮层与芯层厚度比为1:1-1:10,优选皮层与芯层的厚度比1:1-1:3。
以下通过具体的实施例对本申请做进一步阐述,但本申请并不限定于此特定的实施例。
实施例1
本实施例提供一种具有X射线显影功能的低密度聚乙烯复合管材,其原料组成和制备方法如下:
1、将低密度聚乙烯60.2%、三氧化二铋39%、抗氧剂1010 0.15%、抗氧剂168 0.15%,扩散剂EBS 0.2%、硬脂酸锌0.15%和聚乙烯蜡0.15%;在高速混合机中,干混5min,得到混合物料。
2、将混合好的物料加入双螺杆挤出机中进行熔融共混挤出造粒,得到芯层用低密度聚乙烯复合材料。其中,双螺杆挤出机各段温度自加料口开始,依次设置为125℃、170℃、185℃、190℃、190℃、190℃、 190℃、190℃、190℃、190℃,机头温度设置为185℃。
3、将芯层用低密度聚乙烯复合材料以及低密度聚乙烯基础树脂用两台单螺杆挤出机,用共挤出机头挤出得到具有三层结构的管材。具体的,将具有显影功能的低密度聚乙烯复合材料送入主挤出机;将低密度聚乙烯基础树脂送入辅助挤出机,共同挤出。
其中,主挤出机的各段温度为130℃、175℃、180℃;辅助挤出机的各段温度为125℃、175℃、180℃;口模温度180℃。
管道内径4.00mm,管道外径5.00mm,管壁厚度0.50mm;内皮层厚度0.12mm,外皮层厚度0.12mm,芯层厚度0.26mm。
实施例2
本实施例提供一种具有X射线显影功能的TPU复合管材,其原料组成和制备方法如下:
1、将聚氨酯热塑性弹性体(TPU)49.3%(该TPU具体为Lubr i zo l提供的Estane58315)、硫酸钡50%、抗氧剂1010 0.15%、扩散剂EBS 0.25%、硬脂酸锌0.15%、聚乙烯蜡0.15%;在高速混合机中,干混5min,得到混合物料。
2、将混合好的物料加入双螺杆挤出机中进行熔融共混挤出造粒,得到芯层用低密度聚乙烯复合材料。其中,双螺杆挤出机各段温度自加料口开始,依次设置为125℃、170℃、180℃、185℃、185℃、185℃、185℃、185℃、190℃、190℃,机头温度设置为185℃。
3、将芯层用TPU复合材料以及TPU基础树脂用两台单螺杆挤出机,用共挤出机头挤出得到具有三层结构的管材。具体的,将具有显影功能的TPU复合材料送入主挤出机;将TPU基础树脂送入辅助挤出机,共同挤出。
其中,主挤出机的各段温度为130℃、175℃、185℃;辅助挤出机的各段温度为125℃、175℃、185℃;口模温度180℃。
管道内径4.00mm,管道外径5.00mm,管壁厚度0.50mm;内皮层厚度0.11mm,外皮层厚度0.11mm,芯层厚度0.28mm。
实施例3
本实施例提供一种具有X射线显影功能的高密度聚乙烯复合管材,其原料组成和制备方法如下:
1、将高密度聚乙烯49%、三氧化二铋50%、抗氧剂1010 0.15%、抗氧剂168 0.15%,扩散剂EBS 0.3%、硬脂酸锌0.2%和聚乙烯蜡0.2%;在高速混合机中,干混5min,得到混合物料。
2、将混合好的物料加入双螺杆挤出机中进行熔融共混挤出造粒,得到芯层用高密度聚乙烯复合材料。其中,双螺杆挤出机各段温度自加料口开始,依次设置为135℃、175℃、190℃、195℃、195℃、195℃、195℃、195℃、195℃、195℃,机头温度设置为190℃。
3、将芯层用高密度聚乙烯复合材料以及高密度聚乙烯基础树脂用两台单螺杆挤出机,用共挤出机头挤出得到具有三层结构的管材。具体的,将具有显影功能的高密度聚乙烯复合材料送入主挤出机;将高密度聚乙烯基础树脂送入辅助挤出机,共同挤出。
其中,主挤出机的各段温度为145℃、180℃、185℃;辅助挤出机的各段温度为140℃、175℃、185℃;口模温度185℃。
管道内径6.00mm,管道外径为8.00mm,管壁厚度1.00mm;内皮层厚度0.20mm,外皮层厚度0.20mm;芯层厚度0.60mm。
实施例4
本实施例提供一种具有X射线显影功能的聚丙烯(PP)复合管材,其原料组成和制备方法如下:
1、将聚丙烯44%、硫酸钡55%、抗氧剂1076 0.15%、抗氧剂626 0.15%,扩散剂EBS 0.3%、硬脂酸钡0.2%和二甲基硅油0.2%在高速混合机中,干混5min,得到混合物料。
2、将混合好的物料加入双螺杆挤出机中进行熔融共混挤出造粒,得到芯层用聚丙烯显影材料。其中,双螺杆挤出机各段温度自加料口开始,依次设置为135℃、175℃、195℃、200℃、200℃、200℃、200℃、 200℃、200℃、200℃,机头温度设置为195℃,
3、将芯层用聚丙烯显影材料及聚丙烯基础树脂用两台单螺杆挤出机,用共挤出机头挤出得到具有三层结构的管材。具体的,将具有显影功能的聚丙烯显影材料送入主挤出机;将聚丙烯基础树脂送入辅助挤出机,共同挤出。
其中,主挤出机的各段温度为145℃、185℃、195℃;辅助挤出机的各段温度为140℃、175℃、195℃;口模温度190℃。
管道的内径7.50mm,管道外径为10.00mm,管壁厚度1.25mm;内皮层厚度0.25mm,外皮层厚度0.50mm;芯层厚度0.50mm。
实施例5
本实施例提供一种具有X射线显影功能的TPE复合管材,其原料组成和制备方法如下:
步骤1、按照以下原料组成和质量配比,称取芯层材料和内外皮层材料用原料与辅料。
1.1芯层材料配方(重量百分数)为:SEBS树脂及其改性物14.2%、橡胶填充11.5%、聚丙烯8.5%、硫酸钡65%、润滑剂0.6%(由EBS 0.3%、硬脂酸锌0.15%、聚乙烯蜡0.15%组成)、抗氧剂0.2%(由1010 0.10%、619 0.10%组成);
1.2内外皮层材料配方(重量百分数):SEBS树脂及其改性物41.5%、橡胶填充油33.0%、聚丙烯25%、硬脂酸锌0.1%,聚乙烯蜡0.1%组成、抗氧剂0.3%(由1010 0.15%、619 0.15%组成)。
步骤2、分别按照芯层以及皮层材料的配方,称取材料,使SEBS树脂及其改性物完全吸收橡胶填充油;然后,将吸收了橡胶填充油的SEBS树脂及其改性物与其他原料一起加入搅拌机中混合均匀。
步骤3、将步骤2中混合好的物料分别置于双螺杆挤出机中熔融挤出造粒,分别得到SEBS热塑性弹性体皮层材料以及可X射线探测的SEBS热塑性弹性体芯层材料。其中,双螺杆挤出机造粒时各段温度自加料口开始,依次为190℃、200℃、205℃、205℃、205℃、205℃、205℃、 205℃,机头温度200℃。
步骤4、将步骤3中制备的材料,用两台单螺杆挤出机用共挤出机头挤出得到具有三层结构的管材。具体的,将具有显影功能的SEBS热塑性弹性体芯层材料送入主挤出机;将SEBS热塑性弹性体皮层材料送入辅助挤出机,共同挤出。
其中,主挤出机的各段温度为145℃、180℃、185℃;辅助挤出机的各段温度为140℃、175℃、185℃;口模温度185℃。
管道内径14.00mm,外径为20.00mm,管壁厚度3.00mm;内皮层厚度0.50mm,外皮层厚度1.00mm,芯层厚度1.50mm。
实施例6
本实施例提供一种具有X射线显影功能的尼龙弹性体复合管材,其原料组成和制备方法如下:
1、将尼龙弹性体49.2%(该尼龙弹性体具体为法国Arkema公司生产的尼龙弹性体PEbax 5533)、三氧化二铋50%、抗氧剂1098 0.2%、扩散剂EBS 0.25%、硬脂酸锌0.15%、聚乙烯蜡0.2%;在高速混合机中,干混5min,得到混合物料。
2、将混合好的物料加入双螺杆挤出机中进行熔融共混挤出造粒,得到芯层用PEbax复合材料。其中,双螺杆挤出机各段温度自加料口开始,依次设置为135℃、175℃、185℃、195℃、200℃、200℃、200℃、200℃、200℃、200℃,机头温度设置为195℃。
3、将芯层用PEbax复合材料以及PEbax基础树脂用两台单螺杆挤出机,用共挤出机头挤出得到具有三层结构的管材。具体的,将具有显影功能的PEbax复合材料送入主挤出机;将PEbax基础树脂送入辅助挤出机,共同挤出。
其中,主挤出机的各段温度为140℃、185℃、195℃;辅助挤出机的各段温度为140℃、185℃、195℃;口模温度190℃。
管道内径1.50mm,管道外径为2.00mm,管壁厚度0.25mm;内皮层厚度0.05mm,外皮层厚度0.05mm,芯层厚度0.15mm。
实施例7
本实施例提供一种具有X射线显影功能的低密度聚乙烯单层管材,其原料组成和制备方法如下:
1、将低密度聚乙烯79.3%、氧化铋20%、抗氧剂1010 0.15%、抗氧剂168 0.15%,扩散剂EBS 0.2%、硬脂酸锌0.1%和聚乙烯蜡0.1%;在高速混合机中,干混5min,得到混合物料。
2、将混合好的物料加入双螺杆挤出机中进行熔融共混挤出造粒,得到有显影功能的低密度聚乙烯复合材料。其中,双螺杆挤出机各段温度自加料口开始,依次设置为125℃、170℃、185℃、190℃、190℃、190℃、190℃、190℃、190℃、190℃,机头温度设置为185℃。
3、将低密度聚乙烯复合材料用单螺杆挤出机挤出得到具有单层结构的管材。
其中,挤出机的各段温度为130℃、175℃、180℃;口模温度180℃。
管道内径4.00mm,管道外径5.00mm,管材壁厚0.50mm。
实施例8
本实施例提供一种具有X射线显影功能的TPU单层管材,其原料组成和制备方法如下:
1、将TPU71.3%、硫酸钡28%、抗氧剂1010 0.15%、抗氧剂168 0.15%,扩散剂EBS 0.2%、硬脂酸锌0.1%和聚乙烯蜡0.1%;在高速混合机中,干混5min,得到混合物料。
2、将混合好的物料加入双螺杆挤出机中进行熔融共混挤出造粒,得到具有显影功能的TPU复合材料。其中,双螺杆挤出机各段温度自加料口开始,依次设置为125℃、170℃、185℃、190℃、190℃、190℃、190℃、190℃、190℃、190℃,机头温度设置为185℃。
3、将TPU复合材料用单螺杆挤出机挤出得到具有单层结构的管材。其中,挤出机的各段温度为130℃、175℃、180℃;口模温度180℃。
管道内径4.00mm,管道外径5.00mm,管材壁厚0.50mm。
其中,上述实施例7和实施例8分别为实施例1和实施例2的对比实施例,其原料组成及各原料在管材中的重量百分含量大致等同于实施例1和实施例2,变化之处仅在于本实施例1和实施例2中的管材,芯层材料含有较高含量的显影剂,内、外皮层材料则不含显影剂;而实施例7和8是显影剂均匀地分布在单层管材中;对上述实施例1-8得到的管材进行相应的性能测试,其进行性能测试结果见表1和表2。
表1实施例1-6的性能测试结果
Figure PCTCN2018109482-appb-000001
表2实施例1与实施例7、实施例2实施例8的对比性能测试结果
Figure PCTCN2018109482-appb-000002
Figure PCTCN2018109482-appb-000003
由表1和表2中的数据可知,实施例1和实施例2中得到的复合导管相对于实施例7和实施例8在其他性能不变的情况下,管体表面光滑,无毛刺、麻点并且无破裂,管体的表面质量显著提高。
本申请技术方案之所对X射线显影功能的复合管材的组分做出限定(基础树脂34.2-60.2%,显影剂39-65%,抗氧剂0.1-0.5%,分散剂0.1-0.4%,内润滑剂0.1-0.3%,外润滑剂0.1-0.3%),原因在于:应用上述比例,由于添加了足够的显影剂,可以确保芯层材料能够具有良好的探测性能,能够被X射线所探测,添加有相应比例的助剂后,能够使显影剂在基础树脂中具有较好的分散性。另外,额外添加的内润滑剂和外润滑剂,可以使芯层材料熔体粘度变小,降低螺杆的转动力矩,减少其与内外模具的粘附性,改善管材的挤出稳定性。
进一步的,在对复合管材的组分做出限定的基础上(基础树脂34.2-60.2%,显影剂39-65%,抗氧剂0.1-0.5%,分散剂0.1-0.4%,内润滑剂0.1-0.3%,外润滑剂0.1-0.3%),实施例3中的高密度聚乙烯复合管材、实施例4中的聚丙烯复合管材和实施例6中的尼龙弹性体复合管材,其拉伸应力更大,则该复合管材的抗变形能力也相应更大。
本申请技术方案在上述组分含量、组分种类限定的基础上,还在组分、含量限定范围内进行了优选,形成了优选方案(如实施例1-实施例6),之所以为优选方案,原因在于:优选方案除了管材表面光滑程度得到大幅度改善外,该管材力学性能优良,显影性能等满足相关要求。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (12)

  1. 一种具有X射线显影功能的管材,其特征在于,包括:芯层、外皮层和内皮层,所述芯层置于所述外皮层和所述内皮层之间;
    所述外皮层和所述内皮层由基础树脂制成;所述芯层包括:基础树脂和显影剂。
  2. 根据权利要求1所述的管材,其特征在于,所述芯层还包括:抗氧剂、分散剂、内润滑剂和外润滑剂。
  3. 根据权利要求2所述的管材,其特征在于,按照重量百分比,所述芯层的原料组成如下:
    基础树脂34.2-60.2%,
    显影剂39-65%,
    抗氧剂0.1-0.5%,
    分散剂0.1-0.4%,
    内润滑剂0.1-0.3%,
    外润滑剂0.1-0.3%。
  4. 根据权利要求1-3任一项所述的管材,其特征在于,所述基础树脂为:低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、热塑性聚氨酯弹性体(TPU)、SEBS基热塑性弹性体(TPE)、尼龙弹性体、氟塑料中的一种或者多种。
  5. 根据权利要求4所述的管材,其特征在于,所述显影剂为:硫酸钡、次碳酸铋、三氧化二铋和金属钨粉中的一种或多种。
  6. 根据权利要求5所述的管材,其特征在于,按照重量百分比,所述芯层的原料组成如下:
    低密度聚乙烯60.2%、氧化铋39%、抗氧剂1010 0.15%、抗氧剂168 0.15%,扩散剂EBS 0.2%、硬脂酸锌0.15%和聚乙烯蜡0.15%。
  7. 根据权利要求5所述的管材,其特征在于,按照重量百分比,所述芯层的原料组成如下:
    聚氨酯热塑性弹性体49.3%、硫酸钡50%、抗氧剂1010 0.15%、扩 散剂EBS 0.25%、硬脂酸锌0.15%、聚乙烯蜡0.15%。
  8. 根据权利要求5所述的管材,其特征在于,按照重量百分比,所述芯层的原料组成如下:
    高密度聚乙烯49%、三氧化二铋50%、抗氧剂1010 0.15%、抗氧剂168 0.15%,扩散剂EBS 0.3%、硬脂酸锌0.2%和聚乙烯蜡0.2%。
  9. 根据权利要求5所述的管材,其特征在于,按照重量百分比,所述芯层的原料组成如下:
    聚丙烯44%、硫酸钡55%、抗氧剂1076 0.15%、抗氧剂626 0.15%,扩散剂EBS 0.3%、硬脂酸钡0.2%和二甲基硅油0.2%。
  10. 根据权利要求5所述的管材,其特征在于,按照重量百分比,所述芯层的原料组成如下:
    SEBS树脂及其改性物14.2%、橡胶填充11.5%、聚丙烯8.5%、硫酸钡65%、EBS 0.3%、硬脂酸锌0.15%、聚乙烯蜡0.15%、抗氧剂1010 0.10%和抗氧剂619 0.10%。
  11. 根据权利要求5所述的管材,其特征在于,按照重量百分比,所述芯层的原料组成如下:
    尼龙弹性体49.2%、三氧化二铋50%、抗氧剂1098 0.2%、扩散剂EBS 0.25%、硬脂酸锌0.15%、聚乙烯蜡0.2%。
  12. 一种具有X射线显影功能的管材的制备方法,其特征在于,包括如下步骤:
    准备芯层材料,并将所述芯层材料用基础树脂、显影剂及其他助剂加入搅拌机中混合,得到混合物料;
    将所述混合物料加入双螺杆挤出机中进行熔融共混挤出造粒,得到具有X射线显影性能的芯层用复合材料;
    将所述具有显影功能的芯层复合材料与基础树脂,分别加入两台单螺杆挤出机中,用共挤出模头挤出,制得如权利要求1至11任一项所述的管材。
PCT/CN2018/109482 2017-12-29 2018-10-09 一种具有x射线显影功能的管材及其制备方法 WO2019128371A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711479362.3 2017-12-29
CN201711479362.3A CN108276638A (zh) 2017-12-29 2017-12-29 一种具有x射线显影功能的管材及其制备方法

Publications (1)

Publication Number Publication Date
WO2019128371A1 true WO2019128371A1 (zh) 2019-07-04

Family

ID=62802747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109482 WO2019128371A1 (zh) 2017-12-29 2018-10-09 一种具有x射线显影功能的管材及其制备方法

Country Status (2)

Country Link
CN (1) CN108276638A (zh)
WO (1) WO2019128371A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003637A (zh) * 2019-04-12 2019-07-12 脉通医疗科技(嘉兴)有限公司 一种医用材料及其制备方法
CN110315733A (zh) * 2019-07-11 2019-10-11 河南驼人医疗器械集团有限公司 留置针软管、软管挤出系统和软管挤出工艺
CN110522954B (zh) * 2019-09-17 2021-12-10 南通大学 一种含硫酸钡能显影的复合生物补片及其制备方法
CN112109303A (zh) * 2020-09-03 2020-12-22 昆山乐朗精密模塑有限公司 一种医用麻醉导管带x光显影线共挤复合挤出模具
CN112895333B (zh) * 2021-03-05 2023-03-24 苏州元禾医疗器械有限公司 一种医用x光显影高分子材料的加工工艺
CN114316405A (zh) * 2021-12-30 2022-04-12 上海翊科聚合物科技有限公司 一种医用管材及其制备方法
CN115260743A (zh) * 2022-07-29 2022-11-01 上海永利带业股份有限公司 一种输送带用热塑性聚氨酯复合材料及制备方法
CN115350336B (zh) * 2022-08-12 2023-12-15 深圳市骏鼎达新材料股份有限公司 显影导管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202724425U (zh) * 2012-02-27 2013-02-13 上海交通大学医学院附属第三人民医院 一种显影导管
CN102921090A (zh) * 2012-02-27 2013-02-13 上海交通大学医学院附属第三人民医院 应用于慢性完全闭塞病变治疗中的显影导管
CN105086134A (zh) * 2015-06-12 2015-11-25 福路明精密管材(北京)有限公司 医用高分子材料及其制备方法
WO2016145966A1 (zh) * 2015-03-13 2016-09-22 刘政 超声显影导管

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2212058A1 (de) * 1972-03-13 1973-09-20 Siemens Ag Drehanode fuer roentgenroehren
DE2362761A1 (de) * 1973-12-17 1975-06-26 Siemens Ag Roentgenbildverstaerker
US4657024A (en) * 1980-02-04 1987-04-14 Teleflex Incorporated Medical-surgical catheter
IE70756B1 (en) * 1990-04-11 1996-12-30 Becton Dickinson Co Radiopaque optically transparent medical tubing
US5908413A (en) * 1997-10-03 1999-06-01 Scimed Life Systems, Inc. Radiopaque catheter and method of manufacture thereof
US6652507B2 (en) * 2001-07-03 2003-11-25 Scimed Life Systems, Inc. Intravascular catheter having multi-layered tip
JP4771456B2 (ja) * 2005-05-13 2011-09-14 テルモ株式会社 カテーテル
CN2889337Y (zh) * 2006-02-16 2007-04-18 微创医疗器械(上海)有限公司 微导管
WO2012167220A1 (en) * 2011-06-03 2012-12-06 C.R. Bard, Inc. Radiopaque medical balloon
CN102440856A (zh) * 2011-12-09 2012-05-09 微创医疗器械(上海)有限公司 一种x射线下可见的生物可降解支架及其制备方法
CN202802461U (zh) * 2012-04-06 2013-03-20 深圳市凯思特精工塑料有限公司 一种抗菌型血管造影导管
CN103497463B (zh) * 2013-10-23 2015-11-25 北京市塑料研究所 一种用硫酸钡填充改性的fep导管
CN205849482U (zh) * 2016-04-15 2017-01-04 上海微创医疗器械(集团)有限公司 医用复合中空纤维管及介入医疗器械
CN106178121B (zh) * 2016-09-09 2022-06-03 中国医科大学附属第一医院 一种x线下显影血管替代物及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202724425U (zh) * 2012-02-27 2013-02-13 上海交通大学医学院附属第三人民医院 一种显影导管
CN102921090A (zh) * 2012-02-27 2013-02-13 上海交通大学医学院附属第三人民医院 应用于慢性完全闭塞病变治疗中的显影导管
WO2016145966A1 (zh) * 2015-03-13 2016-09-22 刘政 超声显影导管
CN105086134A (zh) * 2015-06-12 2015-11-25 福路明精密管材(北京)有限公司 医用高分子材料及其制备方法

Also Published As

Publication number Publication date
CN108276638A (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
WO2019128371A1 (zh) 一种具有x射线显影功能的管材及其制备方法
CN1221603C (zh) 抗感染高分子材料及其制备方法和应用
US10124524B2 (en) Method for manufacturing thermoplastic polyurethane thread
US20110264080A1 (en) Medical Devices Having Extremely High Radiopacity Containing Ytterbium Compound
WO2022052408A1 (zh) 一种碳纳米管母粒及其制备方法与应用
CN105623248A (zh) 一种聚酰胺复合材料及其制备方法
WO2020207320A1 (zh) 一种医用材料及其制备方法
CN108359170A (zh) 一种多层共挤聚乙烯膜及其制备方法
US9914819B2 (en) Resin for thermoplastic polyurethane yarn comprising silica nanopowder and method for producing thermoplastic polyurethane yarn using the same
CN103419373B (zh) 一种csm/nbr复合胶管的制备方法
CN104262782A (zh) 一种超低散发玻纤增强聚丙烯复合材料及其制备方法
CN105086134B (zh) 医用高分子材料及其制备方法
CN113278211A (zh) 一种聚乙烯母粒及其制备方法和用途
KR101935206B1 (ko) 열가소성 폴리우레탄 원사
CN104672779A (zh) 一种聚甲醛材料及其制备方法
CN102051006B (zh) 一种耐辐照高回弹性的聚氯乙烯组合物及其制备方法
CN105920681A (zh) 一种留置针用医用导管及其制备方法
CN102213350B (zh) 一种pvc复合软管的生产方法
CN1847299A (zh) 可用于挤出成型的超高分子量聚乙烯组合物及其制备方法
CN109593268A (zh) 高模量、高刚性的轻质汽车门板用丙烯材料及其制备方法
CN109776970A (zh) 一种汽车内饰用聚丙烯复合材料及其制备方法
CN109722012A (zh) 一种韧性高成型性好的尼龙复合材料及其制备方法
CN111171458B (zh) 用于油箱内置管的耐油耐热材料及其制备方法
CN103497463A (zh) 一种用硫酸钡填充改性的fep导管
JP4105814B2 (ja) 熱可塑性樹脂組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18896434

Country of ref document: EP

Kind code of ref document: A1