WO2020207276A1 - 天线模组及电子设备 - Google Patents

天线模组及电子设备 Download PDF

Info

Publication number
WO2020207276A1
WO2020207276A1 PCT/CN2020/081913 CN2020081913W WO2020207276A1 WO 2020207276 A1 WO2020207276 A1 WO 2020207276A1 CN 2020081913 W CN2020081913 W CN 2020081913W WO 2020207276 A1 WO2020207276 A1 WO 2020207276A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
radiator
electronic device
circuit board
antenna module
Prior art date
Application number
PCT/CN2020/081913
Other languages
English (en)
French (fr)
Inventor
贾玉虎
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2020207276A1 publication Critical patent/WO2020207276A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • H01Q1/244Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas extendable from a housing along a given path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components

Definitions

  • This application relates to the field of electronic technology, in particular to an antenna module and electronic equipment.
  • the present application provides an antenna module capable of improving the beam coverage of the antenna in a limited space, so as to improve the communication performance of an electronic device.
  • the present application provides an antenna module, which is applied to an electronic device with a three-dimensional curved housing, including:
  • a carrier the carrier has an arc-shaped first carrier surface, and the first carrier surface is used to fit the three-dimensional curved shell;
  • a radiator the radiator is provided on the first bearing surface, and the radiator is conformal to the first bearing surface, and the radiator is used to receive an excitation signal to transmit and receive an antenna in a preset direction signal.
  • the present application provides an electronic device, the electronic device includes the antenna module, the electronic device further includes a three-dimensional curved shell and a main circuit board, the three-dimensional curved shell and the main circuit board A gap is formed between the circuit boards, and the antenna module is arranged in the gap.
  • this application provides an electronic device, including:
  • a three-dimensional curved shell the inner surface of the three-dimensional curved shell includes a first arc-shaped part and a second arc-shaped part, the second arc-shaped part and the second arc-shaped part are symmetrically arranged with each other;
  • the first millimeter wave module includes a first carrier and a first radiating array arranged on the first carrier, the first carrier and the first radiating array are arranged on the first arc portion , And conformal to the first arc-shaped portion, and the first radiating array is used for transmitting and receiving millimeter wave signals within a first direction range; and
  • the second millimeter wave module includes a second supporting member and a second radiating array.
  • the second supporting member and the second radiating array are disposed on the second arc-shaped part and are connected to the second arc-shaped part.
  • the second radiating array is used for transmitting and receiving millimeter wave signals in the second direction range.
  • the shape of the radiator changes with the gradual change of the arc surface of the bearing member.
  • the position of the arc surface of the bearing member is skillfully used to make the antenna module.
  • the structure of the radiator is more compact; the radiator is arranged on the carrier to form an arc-shaped radiator, so that the radiator can radiate or receive the antenna signal in a preset direction, which increases the beam coverage of the radiator, and then Increase the beam space coverage of the antenna module and increase the communication performance of electronic equipment.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a first cross-sectional view of an electronic device shown in Figure 1;
  • FIG. 3 is a second cross-sectional view of the electronic device shown in FIG. 1;
  • Fig. 4 is a first partial enlarged view of the antenna module shown in Fig. 2;
  • Fig. 5 is a second partial enlarged view of the antenna module shown in Fig. 2;
  • Fig. 6 is a partial enlarged view of the first antenna module shown in Fig. 2;
  • FIG. 7 is a partial enlarged view of the second antenna module shown in FIG. 2;
  • Fig. 8 is a partial enlarged view of the third antenna module shown in Fig. 2;
  • Fig. 9 is a partial enlarged view of the fourth antenna module shown in Fig. 2;
  • Fig. 10 is a partial enlarged view of the fifth antenna module provided in Fig. 2;
  • FIG. 11 is a partial enlarged view of the sixth antenna module shown in FIG. 2;
  • Figure 12 is a structural split diagram of an electronic device shown in Figure 1;
  • FIG. 13 is a schematic diagram of the structure of the radiator on the back cover of the first electronic device shown in FIG. 12;
  • FIG. 14 is a schematic diagram of the structure of the radiator on the back cover of the second electronic device shown in FIG. 12;
  • FIG. 15 is a schematic diagram of the structure of the radiator on the back cover of the third electronic device shown in FIG. 12;
  • FIG. 16 is a schematic diagram of the structure of the radiator on the back cover of the fourth electronic device shown in FIG. 12;
  • FIG. 17 is a schematic diagram of the structure of the radiator on the back cover of the fifth electronic device shown in FIG. 12;
  • FIG. 18 is a schematic diagram of the structure of the radiator on the back cover of the sixth electronic device shown in FIG. 12;
  • FIG. 19 is a schematic diagram of the structure of the radiator on the back cover of the seventh electronic device shown in FIG. 12;
  • FIG. 20 is a schematic diagram of the structure of the radiator on the back cover of the eighth electronic device shown in FIG. 12;
  • Figure 21 is a partial cross-sectional view of an electronic device provided in Figure 1;
  • FIG. 22 is a partial cross-sectional view of another electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the electronic device 100 from a first perspective.
  • the electronic device 100 may be any device equipped with an antenna, such as a smart device such as a phone, a TV, a tablet computer, a mobile phone, a personal computer, a notebook computer, a vehicle-mounted device, a wearable device, etc.
  • a smart device such as a phone, a TV, a tablet computer, a mobile phone, a personal computer, a notebook computer, a vehicle-mounted device, a wearable device, etc.
  • the width direction of the electronic device 100 is defined as the X direction
  • the length direction of the electronic device 100 is defined as the Y direction
  • the thickness direction of the electronic device 100 is defined as Z to.
  • the electronic device 100 is a mobile phone as an example for description, which will not be repeated hereafter.
  • FIG. 2 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the antenna module 10 is applied to an electronic device 100 having a three-dimensional curved housing 1 and a main circuit board 2.
  • the electronic device 100 includes a three-dimensional curved housing 1.
  • the three-dimensional curved housing 1 allows the internal space of the electronic device 100 to be an arc-shaped space.
  • the antenna module 10 includes a carrier 3 and at least one radiator 4.
  • the supporting member 3 has an arc-shaped first supporting surface 34 and a second supporting surface 35 disposed opposite to the first supporting surface 34 and conforming to the shape.
  • the first bearing surface 34 is used to fit the three-dimensional curved shell 1. Specifically, the first bearing surface 34 and the arc-shaped area on the three-dimensional curved shell 1 have the same or similar arc, so that the antenna module 10 can be arranged close to the arc-shaped area on the three-dimensional curved shell 1. , And then use the arc-shaped space formed by the three-dimensional curved shell 1.
  • the at least one radiator 4 is arranged on the carrier 3.
  • the at least one radiator 4 is conformal to the first bearing surface 34 of the carrier 3.
  • the radiator 4 is used to receive excitation signals, so as to transmit and receive antenna signals in a preset direction.
  • the preset direction is the orientation of the first bearing surface 34 of the bearing 3.
  • the carrier 3 is a carrier capable of carrying the radiator 4.
  • the carrier 3 is not conductive.
  • the material of the radiator 2 includes, but is not limited to, conductive materials such as metals, conductive polymers, conductive oxides, and nano conductive materials.
  • the radiator 2 is a metal as an example for illustration. This application does not specifically limit the structure of the radiator 2.
  • the radiator 2 may be provided on the arc-shaped portion 1 in the form of a patch or a thin layer to meet the research of light and thin. .
  • the radiator 4 When the radiator 4 is a patch, the radiator 4 can be fixed on the first bearing surface 34 of the carrier 3 by means of gluing, screwing, clamping, or the like. When the radiator 4 is a coating, the radiator 4 can be formed on the first bearing surface 34 of the carrier 3 by coating, spraying, printing, or the like.
  • the radiator 4 is conformal to the first bearing surface 34 of the bearing member 3.
  • the shape of the radiator 4 changes with the gradual change of the first bearing surface 34 of the bearing 3.
  • the radiator 4 is bent with the first curvature, so that the radiator 4 is closely attached to the first bearing surface 34 of the bearing member 3.
  • the first bearing surface 34 is the outer surface or inner surface of the bearing member 3.
  • the radiator 4 is a carrier that radiates antenna signals.
  • the frequency band of the antenna signal radiated by the radiator 4 includes, but is not limited to, the sub-6GHz frequency band, the millimeter wave frequency band, and the submillimeter wave. This application does not limit the frequency band of the antenna signal radiated by the radiator 4.
  • the shape of the radiator 4 changes with the gradual change of the first bearing surface 34 of the carrier 3, and the carrier 3 is skillfully used.
  • the position of the first bearing surface 34 is to make the structure of the antenna module 10 more compact; by arranging the radiator 4 on the carrier 3 to form an arc-shaped bent radiator 4, so that the radiator 4 can be
  • the antenna signal is radiated or received in the preset direction, which increases the beam coverage of the radiator 4, thereby increasing the beam spatial coverage of the antenna module 10, and increasing the communication performance of the electronic device 100.
  • the antenna module 10 may be arranged in the irregular gap 20 formed by the three-dimensional curved housing 1 and the main circuit board 2, or may be arranged in the three-dimensional curved housing 1 outside.
  • the antenna module 10 is provided in the irregular gap 20 formed by the three-dimensional curved housing 1 and the main circuit board 2 as an example for description.
  • the antenna module 10 further includes a feeder 50 disposed on the carrier 3 and conformal to the carrier 3.
  • the feeder 50 is spaced apart from the radiator 4 and forms a coupling with the radiator 4 to feed the excitation signal into the radiator 4.
  • the coupling between the power feeder 50 and the radiator 4 includes direct electrical connection or capacitive coupling.
  • the feeder 50 may be provided on the first bearing surface 34 or the second bearing surface 35.
  • the first bearing surface 34 is disposed opposite to the three-dimensional curved shell 1.
  • the power feeder 4 is provided on the first bearing surface 34 and conformal to the first bearing surface 35.
  • the antenna module 10 further includes a radio frequency module 5, and the radio frequency module 5 includes a radio frequency chip 51 and a matching circuit 52.
  • the radio frequency chip 51 and the matching circuit 52 are located on the first carrying surface 34 and conformal to the first carrying surface 34, and the radio frequency chip 51 is electrically connected through the matching circuit 52 The feeder 50.
  • the radio frequency chip 51 is electrically connected to the control chip on the main circuit board 2, and the radio frequency chip 51 generates an excitation signal under the action of the control signal generated by the control chip.
  • the matching circuit 52 is electrically connected between the radiator 4 and the radio frequency chip 51 to adjust the impedance of the radiator 4 so that the radiator 4 radiates antenna signals of different frequency bands, so that the antenna module 10 can cover a wider bandwidth , Increase the antenna signal frequency range of the antenna module 10.
  • the matching circuit 52 can be implemented by series and/or parallel inductors or capacitors. The specific circuit architecture is not limited in this application.
  • the radio frequency chip 51, the matching circuit 52 and the first bearing surface 34 are conformal means that the radio frequency chip 51 and the matching circuit 52 are both arranged in an arc shape, and the radio frequency chip 51 and the matching circuit 52 The shape of is gradually changed with the curvature of the first bearing surface 34 gradually.
  • the antenna module 10 makes the radiator 4 form an arc to increase the radiation coverage of the antenna module 10; moreover, the antenna module 10 can It is directly mounted on the main circuit board 2 or the three-dimensional curved housing 1 of the electronic device 100; or, in the gap between the main circuit board 2 and the three-dimensional curved housing 1, there is no need to be on the main circuit board 2 or the three-dimensional curved housing 1 1.
  • the upper molding radiator 4 simplifies the manufacturing process of the electronic device 100 and improves the assembly efficiency of the electronic device 100.
  • the first bearing surface 34 has a first area 303 and a second area 304 connected to each other.
  • the curvature of the first area 303 is greater than the curvature of the second area 304.
  • the radiator 4 is arranged in the first area 303, and the second area 304 is used to arrange the radio frequency chip 51 and the matching circuit 52.
  • the feeder 50 and the radiator 4 are respectively arranged on different surfaces of the carrier 3. That is, the power feeder 50 is provided on the second bearing surface 35.
  • the radiator 4 and the feeder 50 are respectively disposed on the first bearing surface 34 and the second bearing surface of the carrier 3
  • the two bearing surfaces 35 can make the radiator 4 face the three-dimensional curved housing 1, and further make the radiator 4 far away from the electronic components on the circuit board, reducing the interference of the electronic components on the radiator 4.
  • the feeder 50 is disposed on the second bearing surface 35 and conformal to the second bearing surface 35.
  • the power feeder 50 and the orthographic projection of the radiator 4 on the carrier 3 at least partially overlap.
  • the feeder 50 is coupled with the radiator 4 to feed the excitation signal into the radiator 4.
  • the radio frequency chip 51 and the matching circuit 52 are located on the second carrying surface 35 and conformal to the second carrying surface 35.
  • the radio frequency chip 51 is electrically connected to the feeder 50 through the matching circuit 52, and the radio frequency chip 51 is used to generate the excitation signal.
  • the connection line between the radio frequency module 5 and the power feeding body 50 is short, so as to reduce the impact of the external environment on the radio frequency module 5 and the power feeding body 50. Interference in the signal transmission of the connection cable.
  • the second carrying surface 35 may be a surface close to the main circuit board 2, so that the radio frequency module 5 is close to the main circuit board 2, which facilitates the electrical connection of the radio frequency module 5 with the control chip on the main circuit board 2 and avoids the radio frequency module 5.
  • the electrical connection line with the main circuit board 2 needs to be bent or bypassed other electronic components.
  • the supporting member 3 further has a via 36 penetrating between the first supporting surface 34 and the second supporting surface 35.
  • a conductive portion 37 is provided in the via hole 36.
  • the power feeder 50 is disposed on the second bearing surface 35 and conforms to the second bearing surface 35, and the radiator 4 and the power feeder 50 pass through the conduction in the via 36 Section 37 is electrically connected.
  • the feeder 50 further makes a conductive path formed between the radiator 4 and the feeder 50, and the conductive path is used to transmit an excitation signal.
  • the radiator 4 is provided on the side of the carrier 3 away from the three-dimensional curved shell 1 as an example for description.
  • the radiator 4 includes a plurality of radiating units 41.
  • the multiple radiation units 41 are arranged in a one-dimensional linear array or a two-dimensional matrix.
  • the N radiation units are arranged along the Y-axis direction.
  • the N radiation units are arranged along the X-axis direction.
  • the N radiating elements are arranged along a direction intersecting the Y-axis direction.
  • N*M radiating elements are arranged in a matrix of N rows and M columns.
  • the above N and M are positive integers.
  • This application does not specifically limit the number and arrangement of the radiation units 41. It can be understood that the size of the first bearing surface 34 of the bearing member 3 satisfies the radiator 4 formed by a plurality of radiating units 41 arranged in a matrix.
  • each radiating unit 41 has the same size and shape.
  • the radiating unit 41 may be square, rectangular, circular, circular, triangular, etc. This application does not make specific restrictions on the specific shape and size of the radiation unit 41.
  • the radiator 4 By arranging the radiator 4 to have multiple radiation units 41, the beams transmitted or received by the multiple radiation units 41 can have a phase difference, so that the beams transmitted or received by the multiple radiation units 41 are superimposed on each other, increasing the antenna signal Gain.
  • the radiator 4 is in an arc shape, the directions of the antenna signals emitted or received by different radiating units 41 are different, so that the radiator 4 emits or receives a wide range of beams, so that fewer radiators 4 can be provided to meet the requirements of the radiator.
  • the radiation coverage of 4 is relatively large, which can reduce the number of radiators 4 and save the space of the electronic device 100.
  • the radiation unit 41 radiates a millimeter wave antenna signal, and the frequency range of the millimeter wave antenna signal is 24.25 GHz-52.6 GHz.
  • the radiator 4 may also be a metal sheet or metal layer to radiate non-millimeter wave band antenna signals.
  • the specific structure of the carrier 3 includes but is not limited to the following embodiments.
  • the carrier 3 may be a flexible circuit board 31.
  • the arc area on the flexible circuit board 31 forms the first bearing surface 34.
  • the plurality of radiating elements 41 are arranged on the flexible circuit board 31 to form a modular antenna module 10, which The antenna module 10 can transmit and receive antenna signals under the control of the excitation signal.
  • the flexible circuit board 31 has an arc shape in a natural state.
  • the shape of the flexible circuit board 31 in the natural state is bent, that is, an arc-shaped flexible circuit board 31 is formed.
  • the plastic encapsulation layer of the flexible circuit board 31 has a certain rigidity and toughness, so that the flexible circuit board 31 can maintain without interference from external forces.
  • the flexible circuit board 31 forms the carrier 3, and the inner or outer surface of the flexible circuit board 31 forms the first bearing surface 34 of the carrier 3.
  • the multiple radiation units 41 are arranged on the flexible circuit board 31 at intervals, so that the multiple radiation units 41 bend as the flexible circuit board 31 is bent, and the radiation directions of the multiple radiation units 41 are different.
  • the radiation angle of the radiator 4 is increased, thereby increasing the radiation coverage of the radiator 4.
  • the multiple radiating units 41 are located outside the plastic protective layer of the flexible circuit board 31 to reduce the shielding of the multiple radiating units 41 when they radiate or receive antenna signals, and improve the efficiency of the multiple radiating units 41. Radiation efficiency.
  • the multiple radiation units 41 may be encapsulated in the plastic protective layer of the flexible circuit board 31 to protect the multiple radiation units 41.
  • the antenna module 10 further includes an arc-shaped bracket 32.
  • the flexible circuit board 31 is attached to the arc-shaped bracket so that the flexible circuit board 31 has an arc shape.
  • the radiator 4 is arranged on the side of the flexible circuit board 31 away from the arc-shaped bracket 32.
  • the arc-shaped bracket 32 has a certain rigidity, and specifically may be an arc-shaped plastic sheet.
  • the arc-shaped bracket 32 functions to support the flexible circuit board 31 so that the flexible circuit board 31 has an arc shape.
  • the arc-shaped bracket 32 has an inner arc surface and an inner arc surface arranged oppositely.
  • the arc surface supporting the flexible circuit board 31 is the inner arc surface or the inner arc surface of the arc-shaped bracket 32.
  • the flexible circuit board 31 can be attached to the inner arc surface or the inner arc surface of the arc-shaped bracket 32, so that the flexible circuit board 31 extends in an arc shape, and the inner or outer surface of the flexible circuit board 31 forms the arc
  • the first bearing surface 34 of the shaped support 32, the plurality of radiating units 41 conform to the arc of the flexible circuit board 31, and the radiation directions of the plurality of radiating units 41 are different, which increases the radiation angle of the radiator 4, and further Improve the radiation coverage of the radiator 4.
  • the flexible circuit board 31, the multiple radiating units 41 provided on the flexible circuit board 31, and the arc-shaped bracket 32 form a modular antenna module 10, and the antenna module 10 makes the multiple radiating units 41 form It has an arc shape to improve the radiation coverage of the radiator 4; moreover, the antenna module 10 can be directly installed on the motherboard of the electronic device 100 or on the three-dimensional curved housing 1 or in the gap between the motherboard and the three-dimensional curved housing 1, There is no need to form a plurality of radiation units 41 on the motherboard or the three-dimensional curved shell 1, which simplifies the manufacturing process of the electronic device 100 and improves the assembly efficiency of the electronic device 100.
  • the carrier 3 is a rigid circuit board 33.
  • the arc surface area of the hard circuit board 33 forms the first bearing surface 34.
  • the radiator 4 is arranged on the hard circuit board 33.
  • the carrier 3 may be an arc-shaped rigid circuit board 33.
  • the hard circuit board 33 has a certain rigidity, so that a curved surface is formed on the hard circuit board 33.
  • a plurality of radiation units 41 are fabricated on an arc-shaped surface of the hard circuit board 33, wherein the plurality of radiation units 41 can be formed on the hard circuit board 33 by coating, spraying, printing or the like.
  • the arcs of the multiple radiating units 41 and the rigid circuit board 33 form a conformal shape.
  • the antenna signals radiated by the multiple radiating units 41 have different directions, so the antenna signals transmitted or received by the radiator 4 composed of the multiple radiating units 41 cover The range is larger, thereby improving the radiation efficiency of the antenna module 10.
  • the electronic device 100 provided by the embodiment of the present application includes the antenna module 10 provided by any one of the foregoing implementation manners.
  • the electronic device 100 further includes a three-dimensional curved housing 1 and a main circuit board 2.
  • the three-dimensional curved housing 1 includes at least one arc-shaped portion 110, and an irregular gap 20 is formed between the arc-shaped portion 110 and the main circuit board 2.
  • the antenna module 10 is disposed in the irregular gap 20, and the first bearing surface 34 is disposed opposite to the arc-shaped portion 110.
  • the arc portion 110 is a portion having at least one arc surface.
  • the shape of the radiator 4 changes with the gradual change of the first bearing surface 34 of the carrier 3, and the carrier 3 is skillfully used.
  • the position of the first bearing surface 34 of the antenna module 10 is arranged in the irregular gap 20 and opposite to the arc portion 110, which effectively utilizes the irregular gap 20 in the electronic device 100 , So that the component position design of the electronic device 100 is more reasonable, and the space utilization rate of the electronic device 100 is improved; by setting the radiator 4 in an arc shape, the radiator 4 can radiate in the direction of the first bearing surface 34 of the carrier 3 Or receiving antenna signals, thereby increasing the beam coverage of the radiator 4, and increasing the communication performance of the electronic device 100.
  • the electronic device 100 further includes a display screen 6, and the three-dimensional curved housing 1 surrounds the peripheral side of the display screen 6.
  • the three-dimensional curved housing 1 has an internal space, and the internal space is used to house the main circuit board 2, the camera, the battery, and other components.
  • the arc 110 makes the three-dimensional curved shell 1 form a concave inner space, and makes the outer surface of the three-dimensional curved shell 1 smooth and easy to hold.
  • Irregular gaps 20 are formed between the arcs of the three-dimensional curved housing 1 and the main circuit board 2, and the antenna module 10 is arranged in the irregularities formed between the arcs of the three-dimensional curved housing 1 and the main circuit board 2. In the gap 20.
  • the antenna module 10 By arranging the antenna module 10 in the irregular gap 20 formed between the arcs of the three-dimensional curved housing 1 and the main circuit board 2, the arcs of the three-dimensional curved housing 1 and the main circuit board are effectively used.
  • the multiple arc surfaces of the three-dimensional curved shell 1 provide sufficient spreading area for the radiator 4, and the thickness of the radiator 4 is small, which will not increase the thickness of the electronic device 100;
  • the radiator 4 is set in The edge area of the three-dimensional curved shell 1, which is relatively far away from the electronic components on the main circuit board 2, not only reduces the interference of the electronic components to the radiator 4 transmitting or receiving antenna signals, but also helps to form a larger clearance area and improve radiation The efficiency of the radiated antenna signal of the body 4.
  • the inner surface of the three-dimensional curved shell 1 has at least one first arc surface 101.
  • the antenna module 10 is conformal to the first arc surface 101.
  • the shape of the antenna module 10 gradually changes with the gradual change of the first arc surface 101, and the antenna module 10 can just be located in the three-dimensional
  • the irregular gap 20 formed between the first arc surface 101 of the curved shell 1 and the main circuit board 2 makes full use of the irregular gap 20 in the electronic device 100, improves the space utilization rate of the electronic device 100, and increases the electronic device 100 compactness.
  • the carrier 3 of the antenna module 10 is attached to the first curved surface 101.
  • the carrier 3 When the carrier 3 is conformal to the first curved surface 101 of the three-dimensional curved housing 1, the carrier 3 can be attached to the first curved surface 101 of the three-dimensional curved housing 1 without any gap, which makes the antenna module 10
  • the irregular gap 20 formed by the inner surface of the three-dimensional curved housing 1 and the main circuit board 2 is used to save space in the electronic device 100 and promote the compactness of the electronic device 100; on the other hand, the three-dimensional curved housing 1 serves as a
  • the function of fixing the antenna module 10 is to keep the radiator 4 on the antenna module 10 away from the electronic components on the main circuit board 2 and reduce the interference of the electronic components on the radiator 4.
  • the radiator 4 By forming the radiator 4 on the carrier 3, and then conformal the carrier 3 with the three-dimensional curved shell 1, compared to directly conforming the radiator 4 to the three-dimensional curved shell 1, the radiator 4 can be effectively avoided.
  • the molding on the three-dimensional curved shell 1 fails, the entire three-dimensional curved shell 1 becomes a waste material and the production cost increases.
  • the radiator 4 and the radio frequency module 5 are respectively arranged on opposite sides of the carrier 3, wherein the radiator 4 is close to the three-dimensional curved housing 1, and the radio frequency module 5 is close to the main circuit board 2, so that the radiator 4 Keep away from the electronic components on the main circuit board 2 to reduce the interference received by the radiator 4; and it is also convenient for the radio frequency module 5 to be electrically connected with the antenna chip on the main circuit board 2.
  • an electrical connection end of the flexible circuit board 31 can be electrically connected to the antenna interface on the main circuit board 2, and the antenna chip is electrically connected through the antenna interface.
  • the electronic device 100 further includes a bracket 7.
  • the bracket 7 is arranged on the main circuit board 2 and is located between the main circuit board 2 and the first curved surface 101, and the antenna module 10 is fixed on the bracket 7.
  • the antenna module 10 is fixed on the main circuit board 2 through the bracket 7 so that the antenna module 10 is arranged in the irregular gap 20 between the main circuit board 2 and the three-dimensional curved housing 1.
  • bracket 7 is made of conductive material, and the bracket 7 is electrically connected to the radio frequency module of the antenna module 10 and the main circuit board 2.
  • the three-dimensional curved shell 1 includes a middle frame 11 and a back cover 12.
  • the middle frame 11 is connected between the back cover 12 and the display screen 6.
  • the middle frame 11 includes four frames. On the four frames, you can set the button of the power button, the button of the volume button, the switch of the ring mode and the silent mode, the sound hole, the charging port, the headphone port, etc.
  • the internal space formed by the middle frame 11 can accommodate circuit boards, batteries and other devices.
  • the back cover 12 is connected to the side of the middle frame 11 away from the display screen 6, and the back cover 12 is used to protect the battery and the like.
  • the back cover 12 may be an arc-shaped cover, so that the back cover 12 has an internal space to accommodate devices.
  • the carrier 3 is arranged on the back cover 12.
  • the back cover 12 may be made of non-conductive material.
  • the back cover 12 is a curved three-dimensional curved housing 1 with an inner concave space.
  • the back cover 12 has a large area to lay a plurality of radiating units 41 arranged in an array so that the radiator 4 can radiate a millimeter wave antenna.
  • the back cover 12 may be a 3D glass back cover, a 3D ceramic back cover, a 3D sapphire back cover, a 3D plastic back cover, etc.
  • the material of the middle frame 11 is metal.
  • the middle frame 11 is made of metal material, the strength of the three-dimensional curved shell 1 can be increased for convenience.
  • the middle frame 11 can be used as an antenna radiator 4 to realize the multiplexing of the three-dimensional curved shell 1, without additional The provision of the antenna radiator 4 saves space in the electronic device 100, and the three-dimensional curved housing 1 as the antenna radiator 4 also prevents the antenna radiator 4 from being interfered by the three-dimensional curved housing 1.
  • the middle frame 11 when the middle frame 11 is made of metal material, the middle frame 11 has a certain shielding effect on the radiator 4 that it shields, and holes are usually made on the middle frame 11 to make the radiator 4
  • the antenna signal can be radiated through the opening on the middle frame 11, but this will increase the processing technology of the middle frame 11, and also reduce the structural strength of the middle frame 11, which is not conducive to improving the anti-drop performance of the electronic device 100.
  • the radiator 4 is attached to the back cover 12 so that the radiator 4 will not be shielded by the middle frame 11, which avoids opening holes on the middle frame 11 and reduces the interference received by the radiator 4. Improve the radiation efficiency of the radiator 4.
  • the three-dimensional curved shell 1 is an integrated shell with a middle frame and a back cover.
  • the three-dimensional curved shell 1 is made of non-conductive material.
  • the three-dimensional curved shell 1 is a three-dimensional glass curved shell, a three-dimensional ceramic curved shell, a three-dimensional sapphire curved shell, a three-dimensional plastic curved shell, and the like.
  • the three-dimensional curved housing 1 is arranged in an integral type, the first bearing area on the three-dimensional curved housing 1 is relatively large, and the radiator 4 can be flexibly arranged on the three-dimensional curved housing 1, which optimizes the device layout of the electronic device 100.
  • the first curved surface 101 is located on the inner surface 122 of the back cover 12, and the inner surface 122 faces the display screen. 6.
  • the radiator 4 is provided on the inner surface 122 of the back cover 12 so that the radiator 4 occupies a small space of the electronic device 100 and also facilitates the hiding of the radiator 4.
  • the middle frame 11 has four frames 111, 112, 113, and 114.
  • the inner surface 122 of the rear cover 12 further includes a back surface 13, four inner arc surfaces 141, 142, 143, and 144 and four transition arc surfaces 151, 152, 153, and 154.
  • the back surface 13 is arranged opposite to the display screen 6.
  • the four inner arc surfaces 141, 142, 143, and 144 are respectively connected between the four sides of the back surface 13 and the four borders 111, 112, 113, and 114 of the middle frame 11.
  • the four transition arc surfaces 151, 152, 153, and 154 are respectively connected between two adjacent inner arc surfaces.
  • the at least one first arc surface 101 includes any one or more of the four inner arc surfaces 141, 142, 143, 144 and the four transition arc surfaces 151, 152, 153, and 154.
  • the irregularities formed by the four arc surfaces and the four transition arc surfaces of the inner surface 122 on the back cover and the main circuit board 2 can be effectively used.
  • the gap 20 improves the space utilization in the electronic device 100; on the other hand, the four arc surfaces and the four transition arc surfaces of the back cover are relatively far away from the electronic components on the main circuit board 2, which is beneficial to reduce the amount of space on the main circuit board 2.
  • the first arc surface 101 includes the four inner arc surfaces 141, 142, 143, 144 and the four transition arc surfaces 151, 152, 153, 154 Any one or more of the surfaces can improve the flexibility of positioning the antenna module 10.
  • the back surface 13 has a first side 131 and a second side 132 opposite to each other, and a third side 133 and a fourth side 134 opposite to each other.
  • the third side 133 and the fourth side 134 are connected between the first side 131 and the second side 132.
  • the middle frame 11 has a first frame 111 and a second frame 112 opposite to each other, and a third frame 113 and a fourth frame 114 opposite to each other.
  • the third frame 113 and the fourth frame 114 are connected between the first frame 111 and the second frame 112.
  • the first side 131 is opposite to the first frame 111
  • the second side 132 is opposite to the second frame 112
  • the third side 133 is opposite to the third frame 113
  • the fourth side 134 is opposite to the fourth frame 114.
  • the surfaces connecting the back surface 13 and the multiple frames are multiple inner arc surfaces.
  • the radiator 4 may be arranged at any position on the plurality of inner arc surfaces.
  • the inner surface 121 of the rear cover 12 includes a first inner arc 141, a second inner arc 142, a third inner arc 143, a fourth inner arc 144, and a first transition The arc surface 151, the second transition arc surface 152, the third transition arc surface 153, and the fourth transition arc surface 154.
  • the first inner arc surface 141 is connected between the first side 131 of the back surface 13 and the first frame 111
  • the second inner arc surface 142 is connected between the second side 132 and the second frame 112 of the back surface 13
  • the inner arc surface 143 is connected between the third side 133 of the back 13 and the third frame 113
  • the fourth inner arc surface 144 is connected between the fourth side 134 and the fourth frame 114 of the back 13.
  • the first transition arc surface 151 is connected between the first inner arc surface 141 and the third inner arc surface 143
  • the first transition arc surface 151 is connected between the back surface 13 and the frame.
  • the second transition arc surface 152 is connected between the third inner arc surface 143 and the second inner arc surface 142, and the first transition arc surface 151 is connected between the back surface 13 and the frame.
  • the third transition arc surface 153 is connected between the second inner arc surface 142 and the fourth inner arc surface 144, and the third transition arc surface 153 is connected between the back surface 13 and the frame.
  • the fourth transition arc surface 154 is connected between the fourth inner arc surface 144 and the first inner arc surface 141, and the fourth transition arc surface 154 is connected between the back surface 13 and the frame.
  • the first arc surface 101 may include a first inner arc surface 141, a second inner arc surface 142, a third inner arc surface 143, a fourth inner arc surface 144, a first transition arc surface 151, and a second inner arc surface 142. Any one or more of the second transition arc surface 152, the third transition arc surface 153, and the fourth transition arc surface 154.
  • the at least one first arc surface 101 further includes the first bearing surface 34 portion of the back surface 13.
  • the radiator 4 may be provided on the first inner arc surface 141, the second inner arc surface 142, the third inner arc surface 143, and the fourth inner arc surface. Any one of the arc surface 144, the first transition arc surface 151, the second transition arc surface 152, the third transition arc surface 153, and the fourth transition arc surface 154.
  • the electronic device 100 please refer to FIGS. 14 and 15.
  • the radiator 4 can be provided on the upper side, lower side, left side or right side of the back cover 12 of the mobile phone, so that the radiator 4 can be Make full use of the position on the back cover 12 of the mobile phone to save the space in the electronic device 100 occupied by the radiator 4; the inner arc surface of the back cover 12 is curved, so that the radiator 4 is formed into an arc shape, so that the radiator 4 can
  • the antenna signals are radiated or received in different directions, so that the beam transmitted or received by the radiator 4 is tilted, thereby increasing the beam coverage of the radiator 4 and improving the antenna efficiency of the electronic device 100.
  • the radiation angle of the radiator 4 in the horizontal direction is 60 degrees.
  • the radiation angle of the radiator 4 in the horizontal direction is 120 degrees.
  • the radiator 4 can be arranged on the arc surface of the four corners of the back cover 12 of the mobile phone, and the radiator 4 is arranged on the arc surface of the corner, so that the radiator 4 can radiate the antenna signal in a three-dimensional space.
  • the radiation direction of the antenna signal can be further increased, thereby further improving the beam coverage of the antenna signal, and improving the antenna efficiency of the electronic device 100.
  • the radiation angle of the radiator 4 in the horizontal direction is 120 degrees
  • the radiation angle of the radiator 4 in the vertical direction can be 120 degrees, which further increases The antenna beam coverage of the electronic device 100.
  • the number of the radiator 4 may be two.
  • the two radiators 4 may be respectively arranged on the first inner arc surface 141 and the second inner arc surface 142.
  • the first inner arc surface 141 and the second inner arc surface 142 are two arc surfaces arranged along the X direction.
  • one of the radiators 4 provided on the first inner arc surface 141 can have a radiation angle range of 120 degrees in the X direction
  • the other radiator 4 is provided on the first inner arc surface 141 in the X direction.
  • the radiation angle range in the direction can be 120 degrees.
  • the radiation range of the radiator 4 provided on the first inner arc surface 141 is the same as that of the second inner arc surface 142.
  • the overlap of the radiation range of the body 4 is small, and the radiation range of the radiator 4 provided on the first inner arc surface 141 and the radiation range formed by the radiator 4 provided on the second inner arc surface 142 are larger, for example ,
  • the radiation range of the radiator 4 provided on the first inner arc surface 141 and the radiator 4 provided on the second inner arc surface 142 together form a radiation angle of 180 degrees in the X direction, so as to improve the performance of the electronic device 100 Antenna beam coverage.
  • the radiator 4 is not only provided on the first inner arc surface 141, the second inner arc surface 142, but also may be provided on the first transition arc surface 151, the second transition arc surface 152, and the third transition arc surface. Any one or more of the arc surface 153 and the fourth transition arc surface 154.
  • the radiator 4 and the radiator 4 arranged on the fourth transition arc surface 154 jointly form a larger radiation range.
  • the radiation angle formed by the multiple radiators 4 in the X direction reaches 180 degrees, and the multiple radiators 4 The radiation angle jointly formed in the Y direction reaches 180 degrees, so as to increase the antenna beam coverage of the electronic device 100 and improve the antenna efficiency of the electronic device 100.
  • the radiator 4 may be provided on the back surface 13 in addition to the first inner arc surface 141, the second inner arc surface 142, and the second transition arc surface 152.
  • the back surface 13 may be a flat surface or a curved surface.
  • the radiator 4 provided on the first inner arc surface 141, the radiator 4 provided on the second inner arc surface 142, and the radiator 4 provided on the back surface 13 together form a larger radiation range, which improves the electronic device 100 The antenna efficiency.
  • first inner arc surface 141 and the second inner arc surface 142 may be two arc surfaces arranged along the Y direction.
  • the radiator 4 can be provided on the third inner arc surface 143 in addition to the first inner arc surface 141 and the second inner arc surface 142.
  • the jointly formed radiation range is larger, which further improves the antenna efficiency of the electronic device 100.
  • the radiator 4 may be provided on the fourth inner arc surface 144 in addition to the first inner arc surface 141, the second inner arc surface 142, and the third inner arc surface 143.
  • the upper radiator 4 and the radiator 4 on the back 13 jointly form a larger radiation range.
  • the radiation angle formed by the multiple radiators 4 in the X direction reaches 180 degrees, and the multiple radiators 4 are in Y
  • the radiation angle formed in the directions reaches 180 degrees, which further improves the antenna efficiency of the electronic device 100.
  • the present application also provides an electronic device 200 including a three-dimensional curved housing 201, a first millimeter wave module 202, and a second millimeter wave module 203.
  • the inner surface of the three-dimensional curved shell 201 includes a first arc-shaped portion 204 and a second arc-shaped portion 205.
  • the second arc-shaped portion 205 and the second arc-shaped portion 205 are symmetrically arranged with each other.
  • the first millimeter wave module 202 includes a first carrier 210 and a first radiation array 206.
  • the first supporting member 210 has a first supporting surface 211, and the first supporting surface 211 is opposite to the first arc-shaped portion 204 and is conformal.
  • the first radiation array 206 is disposed on the first supporting surface 211, And conformal to the first supporting surface 211.
  • the first radiation array 206 is used to transmit and receive millimeter wave signals within a first direction range.
  • the second millimeter wave module 203 includes a second carrier 220 and a second radiation array 207.
  • the second carrier 220 has an arc-shaped second supporting surface 221, the second supporting surface 221 is opposite to the second arc-shaped portion 205 and conformal, and the second radiating array 207 is disposed on the second
  • the supporting surface 221 is conformal to the second supporting surface 221.
  • the second radiation array 207 is used to transmit and receive millimeter wave signals in the second direction.
  • the first radiating array 206 is conformed to the first bearing surface 211, and the first bearing surface 211 and the first arc portion 204 is conformal and opposite, so that the first radiating array 206 has an arc shape, so as to increase the first direction range of the first radiating array 206 to transmit and receive millimeter wave signals; and the second radiating array 207 is conformal to the second bearing surface 221 , And the second bearing surface 221 is conformal and opposite to the second arc-shaped portion 205, so that the second radiating array 207 is arc-shaped, so as to increase the second direction range for the first radiating array 206 to transmit and receive millimeter wave signals.
  • a radiating array 206 and a second radiating array 207 are arranged symmetrically, so that the first direction range and the second direction range can cover the rear side and the left and right sides of the electronic device 200, or the rear side and the upper and lower sides.
  • the beam space coverage of the first millimeter wave module 202 and the second millimeter wave module 203 is large.
  • the first millimeter wave module 202 and the second millimeter wave module 203 effectively utilize the irregular gaps formed under the first arc-shaped portion 204 and the irregular gaps formed under the second arc-shaped portion 205, thereby improving electronic equipment 200 space utilization.
  • the first millimeter wave module 202 and the second millimeter wave module 203 are as good as possible. It is far away from the electronic components on the main circuit board to reduce interference when the first millimeter wave module 202 and the second millimeter wave module 203 radiate antenna signals.
  • the first millimeter wave module 202 further includes a first radio frequency module 208.
  • the first radio frequency module 208 is disposed on the first carrier 210, and is disposed on the first supporting surface 211 and conforms to the supporting surface 211.
  • the first radio frequency module 208 is coupled to the first radiation array 206, and the first radio frequency module 208 is used to excite the first radiation array 206 to send and receive the millimeter wave signal.
  • the second millimeter wave module 203 also includes a second radio frequency module 209.
  • the second radio frequency module 209 is disposed on the second supporting member 220 and is disposed on the second supporting surface 221 and conformal to the second supporting surface 211.
  • the second radio frequency module 209 is coupled to the second radiation array 207, and the second radio frequency module 207 is used to excite the second radiation array 207 to send and receive the millimeter wave signal.
  • first carrier 210 and the second carrier 220 may be flexible circuit boards. Further, the first supporting member 210 and the second supporting member 220 may be attached to the first arc-shaped portion 204 and the second arc-shaped portion 205, respectively.
  • the first radio frequency module 208 and the first radiation array 206 are disposed on the first carrier 210, and The first supporting member 210 is attached to the first arc-shaped portion 204 to make the first millimeter wave module 202 conform to the first arc-shaped portion 204.
  • the second radio frequency module 209 and the second radiation array 207 are disposed on the second supporting member 220, and are attached to the second arc-shaped portion 205 through the second supporting member 220, so that the second millimeter wave
  • the module 203 is conformal to the second arc-shaped portion 205.
  • the electronic device 200 further includes a main circuit board 230.
  • the main circuit board 230 is arranged in the three-dimensional curved housing 201.
  • the first millimeter wave module 202 further includes a first radio frequency module 208.
  • the first radio frequency module 208 is disposed on the main circuit board 230, and the first radio frequency module 208 is electrically connected to the first radiation array 206.
  • the second millimeter wave module 203 also includes a second radio frequency module 209.
  • the second radio frequency module 209 is installed on the main circuit board 230.
  • the second radio frequency module 209 is electrically connected to the second radiation array 207.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请提供了一种天线模组,应用于具有三维曲面壳体的电子设备,包括:承载件,所述承载件具有弧形的第一承载面,所述第一承载面用于与所述三维曲面壳体适配;及辐射体,所述辐射体设于所述第一承载面上,且所述辐射体与所述第一承载面共形,所述辐射体用于接收激励信号,以在预设方向内收发天线信号。本申请还提供了一种电子设备。通过将辐射体与承载件的弧面共形设计,形成弧形弯折的辐射体,以使辐射体能够在预设方向上辐射或接收天线信号,增加了辐射体的波束覆盖范围,进而增加了天线模组的波束空间覆度,增加电子设备的通讯性能。

Description

天线模组及电子设备 技术领域
本申请涉及电子技术领域,具体涉及一种天线模组及电子设备。
背景技术
对于电子设备的天线而言,越广的空间覆盖度越有助于用户的无线体验,但越广的空间覆盖度,则往往需要牺牲电子设备外形设计的极致性与吸引力,故在天线波束广覆盖度与电子设备整体竞争力两者间需做适当的权衡。如何设计天线结构,以使在电子设备有限的空间内提高天线的波束覆盖范围,以提高电子设备的通讯性能,成为需要解决的技术问题。
发明内容
本申请提供了一种能够在有限的空间内提高天线的波束覆盖范围的天线模组,以提高通讯性能的电子设备。
一方面,本申请提供了一种天线模组,应用于具有三维曲面壳体的电子设备,包括:
承载件,所述承载件具有弧形的第一承载面,所述第一承载面用于与所述三维曲面壳体适配;及
辐射体,所述辐射体设于所述第一承载面上,且所述辐射体与所述第一承载面共形,所述辐射体用于接收激励信号,以在预设方向内收发天线信号。
另一方面,本申请提供了一种电子设备,所述电子设备包括所述的天线模组,所述电子设备还包括三维曲面壳体及主电路板,所述三维曲面壳体与所述主电路板之间形成间隙,所述天线模组设于所述间隙中。
再一方面,本申请提供了一种电子设备,包括:
三维曲面壳体,所述三维曲面壳体的内表面包括第一弧形部和第二弧形部,所述第二弧形部和所述第二弧形部相互对称设置;
第一毫米波模组,包括第一承载件及设于所述第一承载件上的第一辐射阵列,所述第一承载件和所述第一辐射阵列设置于所述第一弧形部,并与所述第一弧形部共形,所述第一辐射阵列用于在第一方向范围内收发毫米波信号;及
第二毫米波模组,包括第二承载件及第二辐射阵列,所述第二承载件及所述第二辐射阵列设置于所述第二弧形部,并与所述第二弧形部共形,所述第二辐射阵列用于在第二方向范围内收发毫米波信号。
通过将辐射体与承载件的弧面共形设计,以使辐射体的形状随着承载件的弧面的渐变而发生渐变,巧妙地利用了承载件的弧面的位置,以使天线模组的结构更加紧凑;通过将辐射体设于承载件上,以形成弧形弯折的辐射体,以使辐射体能够预设方向上辐射或接收天线信号,增加了辐射体的波束覆盖范围,进而增加了天线模组的波束空间覆度,增加电子设备的通讯性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的结构示意图。
图2是图1所示的一种电子设备的第一种截面图;
图3是图1所示的一种电子设备的第二种截面图;
图4是图2所示的一种天线模组的第一种局部放大图;
图5是图2所示的一种天线模组的第二种局部放大图;
图6是图2所示的第一种天线模组的局部放大图;
图7是图2所示的第二种天线模组的局部放大图;
图8是图2所示的第三种天线模组的局部放大图;
图9是图2所示的第四种天线模组的局部放大图;
图10是图2所示供的第五种天线模组的局部放大图;
图11是图2所示的第六种天线模组的局部放大图;
图12是图1所示的一种电子设备的结构拆分图;
图13是图12所示的第一种电子设备的后盖上辐射体的结构示意图;
图14是图12所示的第二种电子设备的后盖上辐射体的结构示意图;
图15是图12所示的第三种电子设备的后盖上辐射体的结构示意图;
图16是图12所示的第四种电子设备的后盖上辐射体的结构示意图;
图17是图12所示的第五种电子设备的后盖上辐射体的结构示意图;
图18是图12所示的第六种电子设备的后盖上辐射体的结构示意图;
图19是图12所示的第七种电子设备的后盖上辐射体的结构示意图;
图20是图12所示的第八种电子设备的后盖上辐射体的结构示意图;
图21是图1提供的一种电子设备的局部剖面图;
图22是本申请实施例提供的另一种电子设备的局部剖面图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例的技术方案进行清楚、完整地描述。
请参照图1,图1为电子设备100的第一视角示意图。所述电子设备100可以是任何具备天线的设备,例如:电话、电视、平板电脑、手机、个人计算机、笔记本电脑、车载设备、可穿戴设备等智能设备。其中,为了便于描述,以电子设备100处于第一视角为参照进行定义,电子设备100的宽度方向定义为X向,电子设备100的长度方向定义为Y向,电子设备100的厚度方向定义为Z向。本申请以电子设100是手机为例进行说明,后续不再赘述。
请参阅图2及图3,图2是本申请实施例提供的一种电子设备的结构示意图。请参阅图2及图3,所述天线模组10应用于具有三维曲面壳体1和主电路板2的电子设备100。 换言之,电子设备100包括三维曲面壳体1。具体的,三维曲面壳体1让电子设备100的内部空间为弧形空间。
请参阅图4,所述天线模组10包括承载件3及至少一个辐射体4。所述承载件3具有弧形的第一承载面34及与第一承载面34相背设置且相共形的第二承载面35。所述第一承载面34用于与所述三维曲面壳体1适配。具体的,所述第一承载面34与所述三维曲面壳体1上的弧形区域具有相同或相近的弧度,以使天线模组10可以贴近于三维曲面壳体1上的弧形区域设置,进而利用三维曲面壳体1形成的弧形空间。所述至少一个辐射体4设于所述承载件3上。所述至少一个辐射体4与所述承载件3的第一承载面34共形。所述辐射体4用于接收激励信号,以在预设方向内收发天线信号。所述预设方向为承载件3的第一承载面34的朝向。
具体的,请参阅图4,所述承载件3为能够承载辐射体4的载体。例如,柔性电路板、硬质电路板及弧形塑料板等等。其中,承载件3不导电。可选的,辐射体2的材质包括但不限于金属、导电聚合物、导电氧化物、纳米导电材质等导电材质。本实施例中以辐射体2是金属为例进行举例说明。本申请对于辐射体2的结构形式并不做具体的限定。可选的,辐射体2可以以贴片或薄层形式设于弧形部1上,以符合轻薄化的研究。。当辐射体4为贴片时,辐射体4可以通过胶粘、螺接、卡合等方式固定于所述承载件3的第一承载面34上。当辐射体4为涂层时,辐射体4可以通过涂布、喷涂、印刷等方式成型于所述承载件3的第一承载面34上。
具体的,请参阅图4及图5,所述辐射体4与所述承载件3的第一承载面34共形。辐射体4的形状随着承载件3的第一承载面34的渐变而发生渐变。当承载件3的第一承载面34以第一曲率弯曲延伸时,辐射体4以第一曲率发生弯曲,以使辐射体4紧密地贴附于承载件3的第一承载面34上。其中,第一承载面34为承载件3的外表面或内表面。
具体的,请参阅图4,辐射体4为辐射天线信号的载体。其中,辐射体4辐射的天线信号的频段包括但不限于sub-6GHz频段、毫米波频段、亚毫米波。本申请对于辐射体4辐射的天线信号的频段不做限定。
通过将辐射体4与承载件3的第一承载面34共形设计,以使辐射体4的形状随着承载件3的第一承载面34的渐变而发生渐变,巧妙地利用了承载件3的第一承载面34的位置,以使天线模组10的结构更加紧凑;通过将辐射体4设于承载件3上,以形成弧形弯折的辐射体4,以使辐射体4能够在预设方向上辐射或接收天线信号,增加了辐射体4的波束覆盖范围,进而增加了天线模组10的波束空间覆度,增加电子设备100的通讯性能。
具体的,请参阅图2及图3,所述天线模组10可以设于所述三维曲面壳体1与所述主电路板2形成的不规则间隙20中,也可以设于三维曲面壳体1之外。本实施例以天线模组10设于所述三维曲面壳体1与所述主电路板2形成的不规则间隙20中为例进行说明。
在一实施例中,请参阅图6,所述天线模组10还包括设置于所述承载件3上且与所述承载件3共形的馈电体50。所述馈电体50与所述辐射体4间隔设置,并与所述辐射体4形成耦合,以将所述激励信号馈入所述辐射体4。具体的,所述馈电体50与所述辐射体4形成耦合包括直接电连接或电容耦合等方式。
具体的,请参阅图4及图5,所述馈电体50可以设于所述第一承载面34或第二承载 面35上。其中,第一承载面34与三维曲面壳体1相对设置。
在一种实施方式中,馈电体4设于所述第一承载面34,且与第一承载面35共形。
进一步地,请参阅图6,所述天线模组10还包括射频模块5,射频模块5包括射频芯片51和匹配电路52。可选的,所述射频芯片51和所述匹配电路52位于所述第一承载面34上且与所述第一承载面34共形,且所述射频芯片51通过所述匹配电路52电连接所述馈电体50。射频芯片51电连接主电路板2上的控制芯片,射频芯片51在控制芯片产生的控制信号的作用下产生激励信号。所述匹配电路52电连接于辐射体4与射频芯片51之间,以调节辐射体4的阻抗,以使辐射体4辐射不同频段的天线信号,以使得天线模组10能够覆盖更宽的带宽,增加天线模组10的天线信号频率范围。匹配电路52可以通过串联和/或并联电感或电容来实现,具体的电路架构,本申请不做限定。
具体的,射频芯片51、所述匹配电路52与所述第一承载面34共形是指,射频芯片51和所述匹配电路52皆设置成弧形,且射频芯片51和所述匹配电路52的形状皆随着第一承载面34的弯曲渐变而渐变。
通过将射频模块5、辐射体4形成模组化的天线模组10,该天线模组10使得辐射体4形成弧形,以提高天线模组10的辐射覆盖范围;而且,天线模组10能够直接安装于电子设备100的主电路板2上或三维曲面壳体1上;或,主电路板2与三维曲面壳体1之间的间隙中,无需在主电路板2上或三维曲面壳体1上成型辐射体4,简化电子设备100的制备制程,提高电子设备100的组装效率。
可选的,请参阅图6,第一承载面34具有相连接的第一区域303和第二区域304。所述第一区域303的曲率大于所述第二区域304的曲率。所述辐射体4设于所述第一区域303,所述第二区域304用于设置射频芯片51和匹配电路52。通过将射频芯片51和匹配电路52设于承载件3的第一承载面34上曲率较小的区域,以减小射频芯片51和匹配电路52的成型难度,提高天线模组10的生产良率。
可选的,请参阅图7,馈电体50与辐射体4分别设于承载件3上不同的面上。即馈电体50设于第二承载面35上。当天线模组10设于三维曲面壳体1的弧面与主电路板2之间形成弧形空间时,辐射体4与馈电体50分别设于承载件3的第一承载面34和第二承载面35,可以使得辐射体4朝向所述三维曲面壳体1,进而使得辐射体4远离所述电路板上电子元件,减少电子元件对辐射体4的干扰。
可选的,请参阅图7,所述馈电体50设于所述第二承载面35上,且与所述第二承载面35共形。所述馈电体50与所述辐射体4在所述承载件3上的正投影至少部分重叠。所述馈电体50与所述辐射体4相耦合,以将所述激励信号馈入所述辐射体4。
可选的,请参阅图7,所述射频芯片51和所述匹配电路52位于所述第二承载面35上且与所述第二承载面35共形。所述射频芯片51通过所述匹配电路52电连接所述馈电体50,所述射频芯片51用于产生所述激励信号。
通过将射频模块5、馈电体50设于第二承载面35上,射频模块5与馈电体50之间的连接线短,以减少外界环境对于射频模块5与馈电体50之间的连接线的信号传输的干扰。进一步地,第二承载面35上可以为靠近主电路板2的面,使得射频模块5靠近于主电路板2,便于射频模块5与主电路板2上的控制芯片电连接,避免射频模块5与主电路板2之间 的电连接线需要弯折或绕过其他的电子元件。
可选的,请参阅图8,所述承载件3还具有贯穿所述第一承载面34和所述第二承载面35之间的过孔36。所述过孔36内设有导电部37。所述馈电体50设于所述第二承载面35上,且与所述第二承载面35共形,所述辐射体4和所述馈电体50通过所述过孔36内的导电部37电连接。
通过在承载件3上设置过孔36并将导电部37填充所述过孔36,其中,导电部37的一端可以电连接于所述辐射体4,所述导电部37的另一端可以电连接所述馈电体50,进而使得辐射体4与馈电体50之间形成导通路径,该导通路径用于传输激励信号。
以下的实施例以所述辐射体4设于承载件3背离所述三维曲面壳体1的一侧为例进行说明。
在一实施例中,请参阅图9,所述辐射体4包括多个辐射单元41。所述多个辐射单元41呈一维直线阵或二维矩阵排列。具体的,N个辐射单元沿Y轴方向排列。或者,N个辐射单元沿大致呈X轴方向排列。或者,N个辐射单元沿与Y轴方向相交的方向排列。或者,N*M个辐射单元以N行和M列的矩阵排列。其中,以上的N和M为正整数。本申请对于辐射单元41的数量和排列方式不做具体的限制。可以理解的,承载件3的第一承载面34的大小满足多个辐射单元41呈矩阵排列形成的辐射体4。
可以理解的,请参阅图9,每个辐射单元41的大小和形状相同。
具体的,请参阅图9,辐射单元41可以呈正方形、矩形、圆形、环形、三角形等。本申请对于辐射单元41的具体形状和尺寸不做具体的限制。
通过设置辐射体4具有多个辐射单元41,多个辐射单元41所发射或接收的波束之间可以具有相位差,以使多个辐射单元41所发射或接收的波束相互叠加,增加天线信号的增益。当辐射体4呈弧形时,不同的辐射单元41所发射或接收天线信号的方向不同,以使辐射体4发射或接收波束覆盖范围广,从而可以设置较少的辐射体4而满足辐射体4的辐射覆盖范围较大,进而可以减少辐射体4的数量的设置,节省电子设备100的空间。
本实施例中,所述辐射单元41辐射毫米波天线信号,毫米波天线信号的频率范围是24.25GHz-52.6GHz。
在其他实施方式中,所述辐射体4还可以是一块金属片或金属层,以辐射非毫米波段的天线信号。
所述承载件3的具体结构包括但不限于以下的几种实施方式。
在一实施例中,请参阅图9,所述承载件3可以为柔性电路板31。所述柔性电路板31上的弧面区域形成所述第一承载面34。
具体的,以辐射体4为多个阵列排布的辐射单元41为例进行说明,多个辐射单元41设于柔性电路板31上,以形成模组化的天线模组10,该模组化的天线模组10能够在激励信号的控制下可以发射和接收天线信号。
在一种实施方式中,所述柔性电路板31在自然状态下的形状为弧形。
请参阅图9,在成型柔性电路板31时,使柔性电路板31在自然状态下的形状为弯折状态,即形成一种弧形的柔性电路板31。具体的,通过设置柔性电路板31的塑料封装层的厚度或材质,以使柔性电路板31的塑料封装层具有一定的刚度和韧性,以使柔性电路板 31在不受到外力干扰的情况下保持弧形,进而柔性电路板31形成承载件3,柔性电路板31的内表面或外表面形成承载件3的第一承载面34。多个辐射单元41之间相间隔地设置在柔性电路板31上,以使多个辐射单元41随着柔性电路板31的弯折而弯曲,进而多个辐射单元41的辐射方向各不相同,提高辐射体4的辐射角度,进而提高辐射体4的辐射覆盖范围。
可以理解的,请参阅图9,多个辐射单元41位于柔性电路板31的塑料保护层之外,以减少多个辐射单元41辐射或接收天线信号时受到的遮挡,提高多个辐射单元41的辐射效率。当然,在其他实施方式中,多个辐射单元41可以封装于柔性电路板31的塑料保护层内,以保护多个辐射单元41。
可选的,请参阅图10,所述天线模组10还包括弧形支架32。所述柔性电路板31贴合于所述弧形支架上,以使柔性电路板31呈弧形。辐射体4设于柔性电路板31背离弧形支架32的一侧。
具体的,请参阅图10,所述弧形支架32具有一定的刚度,具体可以为弧形的塑料片。所述弧形支架32起到支撑柔性电路板31的作用,以使柔性电路板31呈弧形。所述弧形支架32具有相对设置的内弧面和内弧面。支撑柔性电路板31的弧面为弧形支架32的内弧面或内弧面。其中,柔性电路板31可以贴合于弧形支架32的内弧面或内弧面上,以使柔性电路板31呈弧形延伸,进而柔性电路板31的内表面或外表面形成所述弧形支架32的第一承载面34,所述多个辐射单元41与柔性电路板31的弧面共形,进而多个辐射单元41的辐射方向各不相同,提高辐射体4的辐射角度,进而提高辐射体4的辐射覆盖范围。
本实施例中,柔性电路板31、设于柔性电路板31上的多个辐射单元41及弧形支架32形成模组化的天线模组10,该天线模组10使得多个辐射单元41形成弧形,以提高辐射体4的辐射覆盖范围;而且,天线模组10能够直接安装于电子设备100的主板上或三维曲面壳体1上或主板与三维曲面壳体1之间的间隙中,无需在主板上或三维曲面壳体1上成型多个辐射单元41,简化电子设备100的制备制程,提高电子设备100的组装效率。
可选的,请参阅图11,所述承载件3为硬质电路板33。所述硬质电路板33的弧面区域形成所述第一承载面34。所述辐射体4设于所述硬质电路板33上。
具体的,请参阅图11,以辐射体4为多个阵列排布的辐射单元41为例进行说明。承载件3可以为弧形的硬质电路板33。硬质电路板33具有一定的刚度,以使硬质电路板33上成型弧面。在硬质电路板33上一个弧形面上制作多个辐射单元41,其中,多个辐射单元41可以通过涂布、喷涂、印刷等方式成型于硬质电路板33上。多个辐射单元41与硬质电路板33的弧面形成共形,多个辐射单元41所辐射的天线信号的方向不同,所以多个辐射单元41组成的辐射体4发射或接收的天线信号覆盖范围较大,进而提高天线模组10的辐射效率。
请参阅图2及图3,本申请实施例提供的电子设备100包括上述的任意一种实施方式提供的天线模组10。所述电子设备100还包括三维曲面壳体1及主电路板2。所述三维曲面壳体1包括至少一个弧形部110,所述弧形部110与所述主电路板2之间形成不规则间隙20。所述天线模组10设于所述不规则间隙20中,且所述第一承载面34与所述弧形部110相对设置。所述弧形部110为具有至少一个弧面的部分。
通过将辐射体4与承载件3的第一承载面34共形设计,以使辐射体4的形状随着承载件3的第一承载面34的渐变而发生渐变,巧妙地利用了承载件3的第一承载面34的位置,将天线模组10的第一承载面34设于不规则间隙20中,且与弧形部110相对设置,有效地利用了电子设备100内的不规则间隙20,使得电子设备100的元件位置设计更加合理,提高电子设备100的空间利用率;通过设置辐射体4为弧形,以使辐射体4能够在承载件3的第一承载面34的朝向上辐射或接收天线信号,进而提高辐射体4的波束覆盖范围,增加电子设备100的通讯性能。
具体的,请参阅图12,所述电子设备100还包括显示屏6,三维曲面壳体1围接于所述显示屏6周侧。以电子设备100为手机进行举例说明。具体的,三维曲面壳体1具有内部空间,内部空间用于收容主电路板2、摄像头、电池等元件。请参阅图2及图12,弧形部110使所述三维曲面壳体1形成内凹的内部空间,且使得三维曲面壳体1的外表面光滑及便于握持。三维曲面壳体1的多个弧面与主电路板2之间形成不规则间隙20,天线模组10设于三维曲面壳体1的多个弧面与主电路板2之间形成的不规则间隙20中。
通过将天线模组10设于三维曲面壳体1的多个弧面与主电路板2之间形成的不规则间隙20,有效地利用了三维曲面壳体1的多个弧面与主电路板2之间的空间,三维曲面壳体1的多个弧面为辐射体4提供了足够的铺展面积,且辐射体4的厚度小,不会额外增加电子设备100的厚度;辐射体4设于三维曲面壳体1的边缘区,该区域相对远离主电路板2上的电子元件,不仅减少了电子元件对于辐射体4发射或接收天线信号的干扰,还利于形成较大的净空区域,提高辐射体4的辐射天线信号的效率。
可选的,请参阅图2,所述三维曲面壳体1的内表面具有至少一个第一弧面101。所述天线模组10与所述第一弧面101共形。
通过设置天线模组10与三维曲面壳体1的第一弧面101共形,以使天线模组10的形状随着第一弧面101的渐变而渐变,进而天线模组10刚好可以位于三维曲面壳体1的第一弧面101与主电路板2之间形成的不规则间隙20中,充分利用了电子设备100内的不规则间隙20,提高电子设备100的空间利用率,增加电子设备100的紧凑性。
可选的,请参阅图2,所述天线模组10的承载件3贴合于所述第一弧面101上。
当承载件3与三维曲面壳体1的第一弧面101共形时,承载件3可以无间隙地与三维曲面壳体1的第一弧面101相贴合,一方面使得天线模组10利用了三维曲面壳体1的内表面与主电路板2形成的不规则间隙20,以节省电子设备100内的空间,促进电子设备100的结构紧凑性;另一方面三维曲面壳体1起到了固定天线模组10的作用,以使天线模组10上的辐射体4远离于主电路板2上的电子元件,减少电子元件对辐射体4的干扰。通过将辐射体4成型与承载件3上,再将承载件3与三维曲面壳体1共形,相对于将辐射体4直接共形于三维曲面壳体1上,可以有效地避免辐射体4在三维曲面壳体1上成型失败时,造成整个三维曲面壳体1成为废料而导致生产成本增加。
具体的,辐射体4和射频模块5分别设于承载件3的相对两侧,其中,辐射体4靠近所述三维曲面壳体1,射频模块5靠近于主电路板2,以使辐射体4远离主电路板2上的电子元件,减少辐射体4受到的干扰;还便于射频模块5与主电路板2上的天线芯片电连接。
具体的,当辐射体4和射频模块5设于柔性电路板31上时,柔性电路板31的一个电 连接端可以电连接主电路板2上的天线接口,并通过天线接口电连接天线芯片。
可选的,请参阅图3,所述电子设备100还包括支架7。所述支架7设于所述主电路板2上且位于所述主电路板2与所述第一弧面101之间,所述天线模组10固定于所述支架7上。天线模组10通过支架7固定于主电路板2上,以使天线模组10设于主电路板2与三维曲面壳体1之间的不规则间隙20中。
进一步地,支架7为导电材质,所述支架7电连接天线模组10的射频模块和主电路板2。
可选的,请参阅图12,所述三维曲面壳体1包括中框11和后盖12。所述中框11连接在所述后盖12与所述显示屏6之间。以电子设备100为手机为例进行说明,所述中框11包括四个边框。四个边框上可以设置电源键的按钮、音量键的按扭、铃声模式与静音模式的切换拨扭、出音孔、充电接口、耳机接口等。中框11形成的内部空间可以收容电路板、电池等器件。后盖12盖接于所述中框11背离显示屏6的一侧,所述后盖12用于保护电池等。后盖12可以为弧形盖,以使后盖12具有内部空间,以收容器件。
具体的,请参阅图12,所述承载件3设于后盖12上。可以理解的,后盖12可以不导电材质。后盖12为具有内凹空间的曲面三维曲面壳体1,后盖12上具有较大的面积,以铺设多个阵列排布的辐射单元41,以使辐射体4能够辐射毫米波天线。具体的,所述后盖12可以为3D玻璃后盖、3D陶瓷后盖、3D蓝宝石后盖、3D塑料后盖等。
可选的,请参阅图12,所述中框11的材质为金属材质。所述中框11为金属材质时,以方便可以增加三维曲面壳体1的强度,另一方面,中框11可以作为天线辐射体4,以实现三维曲面壳体1的复用,无需另外再设置天线辐射体4,节省了电子设备100内的空间,三维曲面壳体1作为天线辐射体4还避免了天线辐射体4受到三维曲面壳体1的干扰。
进一步地,请参阅图12,当中框11为金属材质时,所述中框11对于其遮罩的辐射体4具有一定的屏蔽作用,通常会在中框11上开孔,以使辐射体4能够透过中框11上的开孔辐射天线信号,但是这样会增加对中框11的加工工艺,还会减小中框11的结构强度,不利于提高电子设备100的防摔性能。本实施例通过将辐射体4贴合于后盖12上,以使辐射体4不会受到中框11的屏蔽作用,避免了在中框11上开孔,减少了辐射体4受到的干扰,提高辐射体4的辐射效率。
可选的,所述三维曲面壳体1为中框和后盖一体式壳体。所述三维曲面壳体1为不导电材质。所述三维曲面壳体1为三维玻璃曲面壳体、三维陶瓷曲面壳体、三维蓝宝石曲面壳体、三维塑料曲面壳体等。通过将三维曲面壳体1设置成一体式,避免需要单独的加工中框11和后盖12,及后续还要连接中框11和后盖12,减少三维曲面壳体1的制作工艺和成本;还提高了三维曲面壳体1的密封性。三维曲面壳体1设置成一体式,三维曲面壳体1上的第一承载面积较大,辐射体4可以灵活地设置于三维曲面壳体1上,优化了电子设备100的器件布局。
可选的,以承载件3贴合于后盖12的内表面为例进行说明,所述第一弧面101位于所述后盖12的内表面122,所述内表面122朝向所述显示屏6。所述辐射体4设于后盖12的内表面122,以使辐射体4占据电子设备100的空间较小的同时还利于隐藏辐射体4。
可选的,请参阅图12,所述中框11具有四个边框111、112、113、114。请参阅图13, 所述后盖12的内表面122还包括背面13、四个内弧面141、142、143、144及四个过渡弧面151、152、153、154。所述背面13与所述显示屏6相背设置。所述四个内弧面141、142、143、144分别连接于所述背面13的四个边和所述中框11的四个边框111、112、113、114之间。所述四个过渡弧面151、152、153、154分别连接于相邻的两个内弧面之间。所述至少一个第一弧面101包括所述四个内弧面141、142、143、144和所述四个过渡弧面151、152、153、154中的任意一个面或多个面。
通过将天线模组10设于所述第一弧面101上,一方面可以有效地利用后盖上的内表面122的四个弧面、四个过渡弧面与主电路板2形成的不规则间隙20,提高电子设备100内的空间利用率;另一方面,后盖的四个弧面、四个过渡弧面相对远离主电路板2上的电子元件,有利于减少主电路板2上的电子元件对辐射体4的干扰;在一方面,所述第一弧面101包括所述四个内弧面141、142、143、144和所述四个过渡弧面151、152、153、154中的任意一个面或多个面,提高天线模组10的位置设置的灵活性。
具体的,请参阅图13,所述背面13具有相对设置的第一边131和第二边132,及相对设置的第三边133和第四边134。所述第三边133和所述第四边134连接在所述第一边131和所述第二边132之间。请参阅图12,所述中框11具有相对设置的第一边框111和第二边框112,及相对设置的第三边框113及第四边框114。所述第三边框113和所述第四边框114连接在所述第一边框111和所述第二边框112之间。其中,第一边131与第一边框111相对,第二边132与第二边框112相对,第三边133与第三边框113相对,第四边134与第四边框114相对。连接所述背面13与多个边框之间的面为多个内弧面。在一实施方式中,辐射体4可以设于所述多个内弧面上的任意位置。
举例而言,请参阅图13,所述后盖12的内表面121包括第一内弧面141、第二内弧面142、第三内弧面143、第四内弧面144、第一过渡弧面151、第二过渡弧面152、第三过渡弧面153、第四过渡弧面154。其中,第一内弧面141连接在背面13的第一边131和第一边框111之间,第二内弧面142连接在背面13的第二边132和第二边框112之间,第三内弧面143连接在背面13的第三边133和第三边框113之间,第四内弧面144连接在背面13的第四边134和第四边框114之间。第一过渡弧面151连接在第一内弧面141与所述第三内弧面143之间,且第一过渡弧面151连接在背面13与边框之间。所述第二过渡弧面152连接在第三内弧面143与所述第二内弧面142之间,且第一过渡弧面151连接在背面13与边框之间。所述第三过渡弧面153连接在第二内弧面142与所述第四内弧面144之间,且第三过渡弧面153连接在背面13与边框之间。所述第四过渡弧面154连接在第四内弧面144与所述第一内弧面141之间,且第四过渡弧面154连接在背面13与边框之间。
请参阅图13,所述第一弧面101可以包括第一内弧面141、第二内弧面142、第三内弧面143、第四内弧面144、第一过渡弧面151、第二过渡弧面152、第三过渡弧面153、第四过渡弧面154中的任意一个弧面或多个弧面。
在另一实施方式中,所述至少一个第一弧面101还包括所述背面13的第一承载面34部分。
请参阅图13至图15,当辐射体4的数量为一个时,所述辐射体4可以设于第一内弧面141、第二内弧面142、第三内弧面143、第四内弧面144、第一过渡弧面151、第二过 渡弧面152、第三过渡弧面153、第四过渡弧面154中的任意一个弧面上。以电子设备100为手机举例说明,请参阅图14及图15,所述辐射体4可以设于手机后盖12的上侧面、下侧面、左侧面或右侧面,以使辐射体4可以充分利用手机后盖12上的位置,节省辐射体4占据的电子设备100内的空间;后盖12的内弧面呈弧面,以使辐射体4成型为弧形,进而使得辐射体4能够朝向不同的方向辐射或接收天线信号,实现了辐射体4发射或接收的波束倾斜,进而增大辐射体4的波束覆盖范围,提高电子设备100的天线效率。例如,当辐射体4设于水平面上时,所述辐射体4在水平方向上的辐射角度为60度。当辐射体4设于弧面上时,所述辐射体4在水平方向上的辐射角度为120度。
或者,请参阅图15,辐射体4可以设于手机后盖12的四个拐角的弧面处,辐射体4设于拐角的弧面,以使辐射体4能够在三维空间内辐射天线信号,能够进一步增加天线信号的辐射方向,进而进一步地提高天线信号的波束覆盖范围,提高电子设备100的天线效率。例如,当辐射体4设于拐角的弧面上时,所述辐射体4在水平方向上的辐射角度为120度,及辐射体4在垂直方向上的辐射角度可以为120度,进一步增加了电子设备100的天线波束覆盖范围。
在一实施例中,请参阅图16,当所述辐射体4的数量为多个时,多个所述辐射体4与所述四个内弧面141、142、143、144、所述背面13、所述四个过渡弧面151、152、153、154中的任意一个面或多个面共形。具体的,多个辐射体4可以为相同的面上,或者多个辐射体4可以设于不同的面上。
举例而言,请参阅图16,所述辐射体4的数量可以为两个。两个所述辐射体4可以分别设于所述第一内弧面141和第二内弧面142上。第一内弧面141和第二内弧面142为沿X方向排列的两个弧面。其中,一个所述辐射体4设于所述第一内弧面141在X方向上的辐射角度范围可以为120度,另一个所述辐射体4设于所述第一内弧面141在X方向上的辐射角度范围可以为120度。由于第一内弧面141和第二内弧面142分别朝向不同的方向,以使设于第一内弧面141上的辐射体4的辐射范围与设于第二内弧面142上的辐射体4的辐射范围的重叠较小,进而设于第一内弧面141上的辐射体4的辐射范围与设于第二内弧面142上的辐射体4共同形成的辐射范围较大,例如,设于第一内弧面141上的辐射体4的辐射范围与设于第二内弧面142上的辐射体4在X方向上共同形成的辐射角度达到180度,以提高电子设备100的天线波束覆盖范围。
进一步地,请参阅图17,辐射体4除了设于第一内弧面141、第二内弧面142上,还可以设于第一过渡弧面151、第二过渡弧面152、第三过渡弧面153、第四过渡弧面154中的任意一个或多个弧面上。例如,设于第一内弧面141上的辐射体4、设于第二内弧面142上的辐射体4、设于背面13上的辐射体4、设于第一过渡弧面151上的辐射体4、设于第四过渡弧面154上的辐射体4,共同形成的辐射范围较大,多个辐射体4在X方向上共同形成的辐射角度达到180度,及多个辐射体4在Y方向上共同形成的辐射角度达到180度,以提高电子设备100的天线波束覆盖范围,提高电子设备100的天线效率。
进一步地,请参阅图18,辐射体4除了设于第一内弧面141、第二内弧面142、第二过渡弧面152上,还可以设于背面13上。此时,背面13可以为平面或弧面。设于第一内弧面141上的辐射体4、设于第二内弧面142上的辐射体4、设于背面13上的辐射体4, 共同形成的辐射范围较大,提高电子设备100的天线效率。
在其他实施方式中,第一内弧面141和第二内弧面142可以为沿Y方向排列的两个弧面。
进一步地,请参阅图19,辐射体4除了设于第一内弧面141、第二内弧面142上,还可以设于第三内弧面143上。设于第一内弧面141上的辐射体4、设于第二内弧面142上的辐射体4、设于第三内弧面143上的辐射体4、设于背面13上的辐射体4,共同形成的辐射范围较大,进一步提高电子设备100的天线效率。
进一步地,请参阅图20,辐射体4除了设于第一内弧面141、第二内弧面142、第三内弧面143上,还可以设于第四内弧面144上。设于第一内弧面141上的辐射体4、设于第二内弧面142上的辐射体4、设于第三内弧面143上的辐射体4、设于第四内弧面144上的辐射体4、设于背面13上的辐射体4,共同形成的辐射范围较大,多个辐射体4在X方向上共同形成的辐射角度达到180度,及多个辐射体4在Y方向上共同形成的辐射角度达到180度,进一步提高电子设备100的天线效率。
请参阅图21,本申请还提供了一种电子设备200,包括三维曲面壳体201、第一毫米波模组202及第二毫米波模组203。所述三维曲面壳体201的内表面包括第一弧形部204和第二弧形部205。所述第二弧形部205和所述第二弧形部205相互对称设置。第一毫米波模组202包括第一承载件210及第一辐射阵列206。所述第一承载件210具有第一支撑面211,所述第一支撑面211与所述第一弧形部204相对且共形,第一辐射阵列206设置于所述第一支撑面211,并与所述第一支撑面211共形。所述第一辐射阵列206用于在第一方向范围内收发毫米波信号。第二毫米波模组203包括第二承载件220第二辐射阵列207。第二承载件220具有呈弧形的第二支撑面221,所述第二支撑面221与所述第二弧形部205相对且共形,所述第二辐射阵列207设置于所述第二支撑面221,并与所述第二支撑面221共形。所述第二辐射阵列207用于在第二方向范围内收发毫米波信号。
通过在三维曲面壳体201上形成第一弧形部204和第二弧形部205,将第一辐射阵列206与第一承载面211共形,而第一承载面211与第一弧形部204共形且相对,以使第一辐射阵列206呈弧形,以增大第一辐射阵列206收发毫米波信号的第一方向范围;及将第二辐射阵列207与第二承载面221共形,而第二承载面221与第二弧形部205共形且相对,以使第二辐射阵列207呈弧形,以增大第一辐射阵列206收发毫米波信号的第二方向范围,结合第一辐射阵列206和第二辐射阵列207对称设置,以使第一方向范围和第二方向范围能够覆盖电子设备200的后侧及左右两侧,或者后侧及上下两侧,进而在设置较少的毫米波模组的基础上使得第一毫米波模组202及第二毫米波模组203的波束空间覆度大。此外,第一毫米波模组202及第二毫米波模组203有效地利用了第一弧形部204下形成的不规则空隙和第二弧形部205下形成的不规则空隙,提高电子设备200的空间利用率。进一步地,由于第一弧形部204和第二弧形部205分别位于三维曲面壳体201的两侧的边缘处,以使第一毫米波模组202及第二毫米波模组203尽可能的远离主电路板上的电子元件,减少第一毫米波模组202及第二毫米波模组203辐射天线信号时受到干扰。
在一实施例中,请参阅图21,所述第一毫米波模组202还包括第一射频模块208。所述第一射频模块208设于第一承载件210上,且设于所述第一支撑面211上并与所述支撑 面211共形。所述第一射频模块208与所述第一辐射阵列206相耦合,所述第一射频模块208用于激发所述第一辐射阵列206收发所述毫米波信号。所述第二毫米波模组203还包括第二射频模块209。所述第二射频模块209设于第二承载件220上,且设于所述第二支撑面221上并与所述第二支撑面211上共形。所述第二射频模块209与所述第二辐射阵列207相耦合,所述第二射频模块207用于激发所述第二辐射阵列207收发所述毫米波信号。
具体的,第一承载件210和第二承载件220可以为柔性电路板。进一步地,第一承载件210和第二承载件220可以分别贴合于第一弧形部204和第二弧形部205。
具体的,当所述第一承载件210和所述第二承载件220为柔性电路板时,所述第一射频模块208与所述第一辐射阵列206设于第一承载件210上,并通过第一承载件210贴合于第一弧形部204,以使第一毫米波模组202与第一弧形部204共形。相似的,所述第二射频模块209与所述第二辐射阵列207设于第二承载件220上,并通过第二承载件220贴合于第二弧形部205,以使第二毫米波模组203与第二弧形部205共形。
在另一实施例中,请参阅图22,所述电子设备200还包括主电路板230。所述主电路板230设于所述三维曲面壳体201内。所述第一毫米波模组202还包括第一射频模块208。所述第一射频模块208设于所述主电路板230上,所述第一射频模块208电连接于所述第一辐射阵列206。所述第二毫米波模组203还包括第二射频模块209。所述第二射频模块209设于所述主电路板230上。所述第二射频模块209电连接于所述第二辐射阵列207。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线模组,应用于具有三维曲面壳体的电子设备中,其特征在于,包括:
    承载件,所述承载件具有弧形的第一承载面,所述第一承载面用于与所述三维曲面壳体适配;及
    辐射体,所述辐射体设于所述第一承载面上,且所述辐射体与所述第一承载面共形,所述辐射体用于接收激励信号,以在预设方向内收发天线信号。
  2. 如权利要求1所述的天线模组,其特征在于,所述天线模组还包括设置于所述承载件上且与所述承载件共形的馈电体,所述馈电体与所述辐射体间隔设置,并与所述辐射体耦合,以将所述激励信号馈入所述辐射体。
  3. 如权利要求2所述的天线模组,其特征在于,所述承载件还具有与所述第一承载面相背设置且相共形的第二承载面,所述馈电体设于所述第二承载面上,且与所述第二承载面共形,所述馈电体与所述辐射体在所述承载件上的正投影至少部分重叠。
  4. 如权利要求3所述的天线模组,其特征在于,所述承载件还具有贯穿所述第一承载面和所述第二承载面的过孔,所述过孔内设有导电部,所述辐射体和所述馈电体通过所述导电部电连接。
  5. 如权利要求3所述的天线模组,其特征在于,所述天线模组还包括射频芯片和匹配电路,所述射频芯片通过所述匹配电路电连接所述馈电体,所述射频芯片用于产生所述激励信号。
  6. 如权利要求5所述的天线模组,其特征在于,所述射频芯片和所述匹配电路位于所述第一承载面上,且与所述第一承载面共形。
  7. 如权利要求5所述的天线模组,其特征在于,所述射频芯片和所述匹配电路位于所述第二承载面上,且与所述第二承载面共形。
  8. 如权利要求1~7任意一项所述的天线模组,其特征在于,所述辐射体包括呈阵列排布的多个辐射单元,相邻的两个所述辐射单元之间相间隔,每个所述辐射单元在所述激励信号的作用下收发毫米波天线信号。
  9. 如权利要求1~7任意一项所述的天线模组,其特征在于,所述承载件为柔性电路板,所述柔性电路板上的弧面区域形成所述第一承载面。
  10. 如权利要求9所述的天线模组,其特征在于,所述天线模组还包括弧形支架,所述柔性电路板贴合于所述弧形支架上,以使所述柔性电路板具有弧面区域。
  11. 如权利要求1~7任意一项所述的天线模组,其特征在于,所述承载件为硬质电路板,所述硬质电路板的弧面区域形成所述第一承载面。
  12. 一种电子设备,其特征在于,所述电子设备包括三维曲面壳体、主电路板及如权利要求1~11任意一项所述的天线模组,所述三维曲面壳体包括至少一个弧形部,所述弧形部与所述主电路板之间形成不规则间隙,所述天线模组设于所述不规则间隙中,且所述第一承载面与所述弧形部相对设置。
  13. 如权利要求12所述的电子设备,其特征在于,所述弧形部的内表面具有第一弧面,所述第一承载面与所述第一弧面共形。
  14. 如权利要求13所述的电子设备,其特征在于,所述电子设备还包括支架,所述支架设于所述主电路板上且位于所述主电路板与所述第一弧面之间,所述天线模组固定于所述支架上。
  15. 如权利要求14所述的电子设备,其特征在于,所述支架的材质为导电材质,所述支架电连接所述天线模组与所述主电路板。
  16. 如权利要求13所述的电子设备,其特征在于,所述三维曲面壳体包括中框和后盖,所述中框具有四个边框,所述后盖的内表面还包括背面、四个内弧面及四个过渡弧面,所述背面用于与显示屏相背设置,所述四个内弧面分别连接于所述背面的四个边和所述中框的四个边框之间;所述四个过渡弧面分别连接于相邻的两个内弧面之间;所述第一弧面包括所述背面、所述四个内弧面和所述四个过渡弧面中的任意一个面或多个面。
  17. 一种电子设备,其特征在于,包括:
    三维曲面壳体,所述三维曲面壳体包括第一弧形部和第二弧形部,所述第二弧形部和所述第二弧形部相互对称设置;
    第一毫米波模组,包括第一承载件及第一辐射阵列,所述第一承载件具有呈弧形的第一支撑面,所述第一支撑面与所述第一弧形部相对且共形,所述第一辐射阵列设置于所述第一支撑面,并与所述第一支撑面共形,所述第一辐射阵列用于在第一方向范围内收发毫米波信号;及
    第二毫米波模组,包括第二承载件及第二辐射阵列,所述第二承载件具有呈弧形的第二支撑面,所述第二支撑面与所述第二弧形部相对且共形,所述第二辐射阵列设置于所述第二支撑面,并与所述第二支撑面共形,所述第二辐射阵列用于在第二方向范围内收发毫米波信号。
  18. 如权利要求17所述的电子设备,其特征在于,所述第一毫米波模组还包括第一射频模块,所述第一射频模块与所述第一辐射阵列相耦合,以激发所述第一辐射阵列收发所述毫米波信号;所述第二毫米波模组还包括第二射频模块,所述第二射频模块与所述第二辐射阵列相耦合,以激发所述第二辐射阵列收发所述毫米波信号。
  19. 如权利要求18所述的电子设备,其特征在于,所述第一射频模块设于所述第一支撑面上并与所述第一支撑面共形,所述第二射频模块设于所述第二支撑面并与所述第二支撑面共形。
  20. 如权利要求18所述的电子设备,其特征在于,所述主电路板设于所述三维曲面壳体内,所述第一射频模块和所述第二射频模块设于所述主电路板上。
PCT/CN2020/081913 2019-04-08 2020-03-28 天线模组及电子设备 WO2020207276A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910277975.1 2019-04-08
CN201910277975.1A CN111799545B (zh) 2019-04-08 2019-04-08 天线模组及电子设备

Publications (1)

Publication Number Publication Date
WO2020207276A1 true WO2020207276A1 (zh) 2020-10-15

Family

ID=72750975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081913 WO2020207276A1 (zh) 2019-04-08 2020-03-28 天线模组及电子设备

Country Status (2)

Country Link
CN (1) CN111799545B (zh)
WO (1) WO2020207276A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909475A (zh) * 2021-01-15 2021-06-04 Oppo广东移动通信有限公司 天线组件、电子设备
CN112929475A (zh) * 2021-02-04 2021-06-08 维沃移动通信有限公司 电子设备
CN113873063A (zh) * 2021-09-28 2021-12-31 维沃移动通信有限公司 电子设备、音频播放方法、充电接头及充电线
US20220384941A1 (en) * 2020-09-01 2022-12-01 Apple Inc. Electronic Devices Having Antennas that Radiate Through Three-Dimensionally Curved Cover Layers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821050B (zh) * 2021-01-07 2023-04-25 Oppo广东移动通信有限公司 天线组件及电子设备
CN113675603B (zh) * 2021-09-28 2022-04-19 深圳市睿德通讯科技有限公司 柔性天线结构及电子设备
CN113809513B (zh) * 2021-11-16 2022-02-15 深圳市睿德通讯科技有限公司 天线装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1577968A (zh) * 2003-06-30 2005-02-09 日本电气株式会社 天线结构和通信装置
US20180108995A1 (en) * 2016-05-18 2018-04-19 International Business Machines Corporation Millimeter-wave communications on a multifunction platform
CN108242589A (zh) * 2016-12-23 2018-07-03 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN108376828A (zh) * 2018-01-25 2018-08-07 瑞声科技(南京)有限公司 天线系统及移动终端
CN110034374A (zh) * 2019-04-08 2019-07-19 Oppo广东移动通信有限公司 电子设备
CN209641819U (zh) * 2019-05-22 2019-11-15 维沃移动通信有限公司 一种终端设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4229418B2 (ja) * 2000-06-21 2009-02-25 Tdk株式会社 円偏波パッチアンテナ
KR100945117B1 (ko) * 2009-04-23 2010-03-02 삼성전기주식회사 안테나 패턴 프레임 및 그 제조방법
EP2339693A1 (en) * 2009-12-18 2011-06-29 Broadcom Corporation Three-dimensional antenna structure
CN102208713A (zh) * 2010-03-30 2011-10-05 宏碁股份有限公司 移动通信装置
US10103424B2 (en) * 2016-04-26 2018-10-16 Apple Inc. Electronic device with millimeter wave yagi antennas
US10418687B2 (en) * 2016-07-22 2019-09-17 Apple Inc. Electronic device with millimeter wave antennas on printed circuits

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1577968A (zh) * 2003-06-30 2005-02-09 日本电气株式会社 天线结构和通信装置
US20180108995A1 (en) * 2016-05-18 2018-04-19 International Business Machines Corporation Millimeter-wave communications on a multifunction platform
CN108242589A (zh) * 2016-12-23 2018-07-03 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN108376828A (zh) * 2018-01-25 2018-08-07 瑞声科技(南京)有限公司 天线系统及移动终端
CN110034374A (zh) * 2019-04-08 2019-07-19 Oppo广东移动通信有限公司 电子设备
CN209641819U (zh) * 2019-05-22 2019-11-15 维沃移动通信有限公司 一种终端设备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220384941A1 (en) * 2020-09-01 2022-12-01 Apple Inc. Electronic Devices Having Antennas that Radiate Through Three-Dimensionally Curved Cover Layers
CN112909475A (zh) * 2021-01-15 2021-06-04 Oppo广东移动通信有限公司 天线组件、电子设备
CN112909475B (zh) * 2021-01-15 2023-12-12 Oppo广东移动通信有限公司 天线组件、电子设备
CN112929475A (zh) * 2021-02-04 2021-06-08 维沃移动通信有限公司 电子设备
CN112929475B (zh) * 2021-02-04 2023-12-08 维沃移动通信有限公司 电子设备
CN113873063A (zh) * 2021-09-28 2021-12-31 维沃移动通信有限公司 电子设备、音频播放方法、充电接头及充电线

Also Published As

Publication number Publication date
CN111799545A (zh) 2020-10-20
CN111799545B (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2020207275A1 (zh) 电子设备
WO2020207276A1 (zh) 天线模组及电子设备
KR102462850B1 (ko) 안테나 모듈 및 이를 포함하는 전자 장치
EP3716403B1 (en) Antenna module and electronic device
EP3893327A1 (en) Millimeter wave module and electronic device
KR20200007377A (ko) 안테나 구조체 및 안테나를 포함하는 전자 장치
KR102612938B1 (ko) 안테나 모듈을 포함하는 전자 장치
KR102663550B1 (ko) 안테나 모듈을 포함하는 전자 장치
EP3709438B1 (en) Antenna and electronic device including the same
CN115458898A (zh) 包括天线和散热结构的电子装置
TW201801396A (zh) 通訊裝置及其天線組件
WO2020020013A1 (zh) 毫米波无线终端设备
CN117378091A (zh) 天线模块以及包括该天线模块的电子装置
WO2022022160A1 (zh) 电子设备
ES2949054T3 (es) Dispositivo electrónico que incluye un módulo de antena
KR102647883B1 (ko) 안테나 모듈을 포함하는 전자 장치
CN109301447B (zh) 一种终端
TWI769878B (zh) 天線結構及具有該天線結構之電子設備
CN213460081U (zh) 电子设备
KR20220142206A (ko) 안테나 모듈 및 상기 안테나 모듈을 포함하는 전자 장치
US10283838B2 (en) Multi-mode mobile device and radiation enhancing device
KR20220096387A (ko) 안테나 및 그것을 포함하는 전자 장치
KR20220076083A (ko) 노이즈 유도 구조를 포함하는 전자 장치
CN112448136A (zh) 天线及移动终端
US20220399645A1 (en) Antenna structure and electronic device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787525

Country of ref document: EP

Kind code of ref document: A1