WO2020207237A1 - 面向成形齿轮的配对齿轮加工方法 - Google Patents

面向成形齿轮的配对齿轮加工方法 Download PDF

Info

Publication number
WO2020207237A1
WO2020207237A1 PCT/CN2020/080754 CN2020080754W WO2020207237A1 WO 2020207237 A1 WO2020207237 A1 WO 2020207237A1 CN 2020080754 W CN2020080754 W CN 2020080754W WO 2020207237 A1 WO2020207237 A1 WO 2020207237A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
pinion
matching
coefficient
modification coefficient
Prior art date
Application number
PCT/CN2020/080754
Other languages
English (en)
French (fr)
Inventor
贲道春
王冬生
曹卫
王复光
周丽
丁业
贲旭东
蔡同富
周文华
Original Assignee
江苏鹏飞集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鹏飞集团股份有限公司 filed Critical 江苏鹏飞集团股份有限公司
Publication of WO2020207237A1 publication Critical patent/WO2020207237A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F1/00Making gear teeth by tools of which the profile matches the profile of the required surface

Definitions

  • the invention belongs to the technical field of mechanical manufacturing engineering, and is mainly applied to the manufacture of low-speed and heavy-duty matched gears, and can also be used for on-site repair and precision manufacturing where the slip ratio difference of the matched gears is close to zero.
  • the current manufacturing technology processes and manufactures low-speed and heavy-duty paired gears, respectively, according to the gear parameters in the design drawings.
  • a suitable total modification coefficient x ⁇ is determined for each pair of gear processing, and the total modification coefficient is approached to zero according to the principle of gear slip rate difference ⁇ Assigned to the paired gear modification coefficient x 1 , x 2 , each of which independently processes the paired gear.
  • the theoretically calculated slip rate difference ⁇ i.e.
  • the purpose of the present invention is to provide a gear machining method that can overcome the above-mentioned defects, so that the actual sliding rate difference ⁇ 0.001 or even ⁇ 0.0001 after the mating gear is formed, effectively reduces the wear caused by the relative sliding of the gear, and improves the gear life.
  • the technical solution adopted by the present invention is: a matching gear processing method for forming gears, including: a matching gear processing process route; a gear pair sliding rate difference ⁇ 0.0001 modification coefficient distribution calculation software package;
  • the total modification coefficient x ⁇ is determined according to the gear design specification for the machining process route of the paired gear, which is substituted into the gear pair sliding rate difference ⁇ 0.0001 in the modification coefficient distribution calculation software package to obtain the distribution value of the large gear modification coefficient x 2 ;
  • the selection of the modification coefficient of the matching pinion is not the design value x 1 of the modification coefficient designed according to the one-time parameter design before the gear is manufactured, but the average value of the measured common normal length of the processed large gear
  • the calculated actual modification coefficient x 2 'of the large gear is substituted into the modification coefficient distribution calculation software package for the sliding rate difference of the forming gear pair ⁇ 0.0001, and the target value of the paired pinion modification coefficient x 1 ' and the small gear target are calculated
  • the length of the common normal is W 1k '.
  • the matched pinion gears are processed.
  • the pinion common normal line length target value W 1k' is used to control the amount of finishing machining and complete the gear hobbing of the matched pinion.
  • the said gear pair slip rate difference ⁇ 0.0001 is a software package for the distribution of displacement coefficients, including: slip rate difference ⁇ calculation formula, slip rate ⁇ calculation formula, tooth top height h a1 and h a2 calculation formula, addendum circle diameter d a1 and d a2 calculation formula, base circle diameter d b1 and d b2 calculation formula, addendum pressure angle ⁇ a1 and ⁇ a2 calculation formula, gear mesh angle ⁇ 'calculation formula.
  • the gear design parameters tooth number z, modulus m n , pressure angle ⁇ , helix angle ⁇ and total displacement coefficient x ⁇ , obtain the function of slip rate difference ⁇ with respect to displacement coefficient variables x 1 and x 2 formula.
  • the computer iterative method can be used to obtain the modification coefficient values (x 1 and x 2 ) of each gear when the total modification coefficient is given; or given one of the gear modification coefficients x 2 ′, the computer iterative method can be used to obtain the ⁇ The displacement coefficient of another paired gear ⁇ 0.0001 x 1 '.
  • the first step Determine the total displacement coefficient x ⁇ according to the gear design specification, and substitute it into the calculation software package of the paired gear slip ratio difference ⁇ 0.0001 to obtain the distribution value of the large gear displacement coefficient x 2 ;
  • the second step according to the assigned gear modification coefficient x 2 to process the tooth profile of the big gear, and the big gear is processed into shape;
  • Step 3 Measure the average common normal length of the big gear And according to the average common normal length of the big gear Calculate the actual displacement coefficient of the big gear x 2 ';
  • Step 4 According to the actual displacement coefficient of the large gear x 2 ′, substitute the calculation software package for the slip ratio difference ⁇ 0.0001 of the matched gear, and calculate the target value of the displacement coefficient of the matched pinion x 1 ′ and the target value of the common normal line length of the small gear W 1k ', the target value of the pinion root circle radius r f ';
  • Step 5 According to the target value of the modification coefficient of the paired pinion x 1 ', leave a margin to rough machine the tooth profile of the paired pinion, and measure the average length of the common normal line of the rough machined paired pinion
  • Step 6 Calculate the average common normal length of the paired pinion for rough machining The difference ⁇ W 1k from the target value of the common normal length W 1k ′; and then calculate the difference ⁇ r f between the actual rough machining paired pinion root circle radius r f and the paired pinion root circle radius target value r f ′ according to ⁇ W 1k ;
  • Step 7 Finish the pinion tooth profile according to the ⁇ r f feed, and the pinion is processed.
  • the beneficial effects of the present invention are: firstly process the large gears with a large common normal length tolerance range and difficult-to-control dimensional deviations to form the measured average length of the large gears. Based on the calculated displacement coefficient x 2 ′, the target displacement coefficient x 1 ′ of the matched pinion gear is calculated and processed according to x 1 ′. Effectively reduce the influence of the large and small gear common normal length tolerance range on the actual slip rate difference ⁇ . After the mating gear is processed and formed, the slip rate difference approaches 0 ( ⁇ 0.0001), which effectively avoids the superposition of displacement coefficient errors in machining, reduces the wear caused by the relative sliding of the gear, and improves the life of the gear. Reduce transmission energy loss.
  • Figure 1 is a process diagram of the present invention.
  • the process flow includes: determining the total modification coefficient x ⁇ 1 according to the gear design specification; substituting the calculation software package 2 of the slip ratio difference of the paired gears ⁇ 0.0001 to obtain the large gear modification coefficient x 2 3; According to the assigned large gear modification coefficient x 2 , the large gear tooth profile is processed 4, the large gear is processed and formed; the average common normal length of the large gear is measured 5; According to the average common normal length of the large gear Calculate the actual displacement coefficient of the large gear x 2 '6; according to the actual displacement coefficient x 2 ′ of the large gear, substitute the displacement coefficient distribution calculation software package of the gear pair slip rate difference ⁇ 0.0001 to calculate the target value of the paired pinion displacement coefficient x 1 ', pinion common normal length target value W 1k ', pinion root circle radius target value r f '7; according to matching pinion displacement coefficient target value x 1 ', leave margin for rough machining matching pinion tooth profile 8; measure the average
  • the software package for the distribution calculation of the displacement coefficient of the gear pair slip rate difference ⁇ 0.0001 includes:
  • ⁇ a1 arccos(d b1 /d a1 ) (2)
  • ⁇ a2 arccos(d b2 /d a2 ) (3)
  • ⁇ 1 z ⁇ (tan ⁇ a2- tan ⁇ ')/(z ⁇ tan ⁇ '-z 2 tan ⁇ a2 ) (10)
  • ⁇ 2 z ⁇ (tan ⁇ a1 -tan ⁇ ')/(z ⁇ tan ⁇ '-z 1 tan ⁇ a1 ) (11)
  • d 2 The diameter of the index circle of the big gear, mm;
  • the gear design parameters tooth number z, modulus m n , pressure angle ⁇ , helix angle ⁇ and total displacement coefficient x ⁇ , obtain the function of slip rate difference ⁇ with respect to displacement coefficient variables x 1 and x 2 formula.
  • the initial design adopts the computer iteration method to obtain the gear modification coefficient values (x 1 and x 2 ) for a given total modification coefficient.
  • a secondary design is carried out, and the deformation coefficient of the formed gear is given x 2 '(according to the measured common normal length average value of the formed gear) Calculate x 2 '), and use the computer iterative method to obtain the modification coefficient x 1 ′ of another paired gear satisfying ⁇ 0.0001.
  • the pinion common normal line length target value W 1k ' (calculated according to the displacement coefficient x 1 ′) is used to control the finishing feed amount, and the pinion root is calculated according to the pinion common normal line length target value W 1k '
  • the target value of the circle radius r f ' is used as the basis for the feed amount of finishing after rough machining of the tooth profile.
  • the average common normal length is measured after rough machining of the tooth profile, according to the average common normal length of the pinion after rough machining
  • the difference ⁇ W from the pinion common normal length target value W 1k ′ calculates the feed amount ⁇ r f (that is, the change in the tooth root circle radius).
  • the precision machining feed control of pinion includes calculation formula:
  • ⁇ W length difference of common normal, mm
  • W 1k' the target value of the common normal line of the pinion, mm;
  • ⁇ W The difference between the average common normal length of the pinion gear after rough machining and the target value of the gear common normal length, mm.

Abstract

一种面向成形齿轮的配对齿轮加工方法,包含一个配对齿轮加工工艺路线,包括步骤:选择小齿轮的变位系数,根据已加工成形的大齿轮的实测公法线长度平均值,计算大齿轮实际变位系数x 2',并代入一个齿轮副滑动率差Δη≤0.0001的变位系数分配计算软件包,算得配对小齿轮变位系数目标值x 1'和小齿轮目标公法线长度值W 1k';根据小齿轮变位系数目标值x 1'和其他已知设计参数加工配对小齿轮。面向成形齿轮的配对齿轮加工方法,能够实现齿轮滑动率差趋近于零的精度制造,应用于低速重载配对齿轮的制造,可延长齿轮寿命,降低传动功耗。

Description

面向成形齿轮的配对齿轮加工方法 技术领域
本发明属机械制造工程技术领域,主要应用于低速重载配对齿轮的制造,也可用于现场修复要求配对齿轮滑动率差趋近于零的精度制造。
背景技术
现行制造技术对低速重载配对齿轮加工制作,均各自按设计图样中的齿轮参数滚齿加工。为提高齿轮强度,并兼顾重合度ε,不产生根切,每副齿轮加工均确定一个合适的总变位系数x ,并将总变位系数按齿轮滑动率差Δη趋近于零的原则分配给配对齿轮变位系数x 1、x 2,各自独立加工配对齿轮。尽管理论计算的滑动率差Δη(即|η 12|)可以达到小于0.0001,但实际上由于滚齿加工后以测量公法线长度值作为加工质量的主要依据,由于低速重载齿轮的公法线长度公差范围较宽,在极限偏差状况下,虽然各齿轮齿形参数均不超差,但滑动率差|η 12|超过原来控制的数倍甚至上百倍,完全失去了原先设计控制滑动率差|η 12|趋近于0的意义。滑动率差增大,意味着齿轮传动相对滑动增加,磨损增加,齿轮寿命降低,能耗增加。
发明内容
本发明目的在于提供能克服上述缺陷的齿轮加工方法,使配对齿轮加工成形后实际滑动率差Δη≤0.001甚至Δη≤0.0001,有效降低齿轮相对滑动产生的磨损,提高齿轮寿命。
本发明所采用的技术方案是:面向成形齿轮的配对齿轮加工方法,包含:一个配对齿轮加工工艺路线;一个齿轮副滑动率差Δη≤0.0001的变位系数分配计算软件包;
所述配对齿轮加工工艺路线,根据齿轮设计规范确定总变位系数x ,代入齿轮副滑动率差Δη≤0.0001的变位系数分配计算软件包,得到大齿轮变位系数 x 2的分配值;其配对小齿轮的变位系数的选择不是按齿轮制造前的一次参数设计的变位系数设计值x 1,而是将已加工成形大齿轮的实测公法线长度平均值
Figure PCTCN2020080754-appb-000001
计算的大齿轮实际变位系数x 2',代入所述面向成形齿轮副滑动率差Δη≤0.0001的变位系数分配计算软件包,算得配对小齿轮变位系数目标值x 1'和小齿轮目标公法线长度值W 1k'。根据小齿轮变位系数目标值x 1'和其他已知设计参数(齿数z 1、模数m n、压力角α、螺旋角β等)加工配对小齿轮。小齿轮公法线长度目标值W 1k'用于控制精加工进刀量,完成配对小齿轮齿形滚削加工。
所述齿轮副滑动率差Δη≤0.0001的变位系数分配计算软件包,包含:滑动率差Δη计算公式、滑动率η计算公式、齿顶高h a1和h a2计算公式、齿顶圆直径d a1和d a2计算公式、基圆直径d b1和d b2计算公式、齿顶压力角α a1和α a2计算公式、齿轮啮合角α'计算公式。将齿轮设计参数齿数z、模数m n、压力角α、螺旋角β及总变位系数x ,按所述相关公式,得到滑动率差Δη关于变位系数变量x 1和x 2的函数式。采用计算机迭代法可求得给定总变位系数时各齿轮变位系数值(x 1和x 2);或者给定其中一个齿轮变位系数x 2',采用计算机迭代法可求得满足Δη≤0.0001的另一个配对齿轮的变位系数x 1'。
系统是这样工作的:
第一步:根据齿轮设计规范确定总变位系数x ,代入配对齿轮滑动率差Δη≤0.0001的计算软件包,得到大齿轮变位系数x 2的分配值;
第二步:根据分配的大齿轮变位系数x 2进行大齿轮齿形加工,大齿轮加工成形;
第三步:测量大齿轮平均公法线长度
Figure PCTCN2020080754-appb-000002
并根据大齿轮平均公法线长度
Figure PCTCN2020080754-appb-000003
推算大齿轮实际变位系数x 2';
第四步:根据大齿轮实际变位系数x 2',代入配对齿轮滑动率差Δη≤0.0001的计算软件包,推算配对小齿轮变位系数目标值x 1'、小齿轮公法线长度目标值W 1k'、小齿轮根圆半径目标值r f';
第五步:根据配对小齿轮变位系数目标值x 1'留余量粗加工配对小齿轮齿形,并测量粗加工配对小齿轮公法线长度平均值
Figure PCTCN2020080754-appb-000004
第六步:计算粗加工配对小齿轮平均公法线长度
Figure PCTCN2020080754-appb-000005
与公法线长度目标值W 1k'的差ΔW 1k;进而根据ΔW 1k计算实际粗加工配对小齿轮根圆半径r f与配对小 齿轮根圆半径目标值r f'的差值Δr f
第七步:根据Δr f进刀精加工小齿轮齿形,小齿轮加工完毕。
本发明的有益效果是:先加工公法线长度公差范围大、尺寸偏差难以控制的大齿轮,以成形大齿轮的实测公法线平均长度
Figure PCTCN2020080754-appb-000006
推算的变位系数x 2'为依据,计算获得配对小齿轮目标变位系数x 1',并根据x 1'进行小齿轮加工。有效减小因大小齿轮公法线长度公差范围较大对实际滑动率差Δη的影响。配对齿轮加工成形后滑动率差趋近于0(Δη≤0.0001),有效避免机加工中变位系数误差的叠加,降低齿轮相对滑动产生的磨损,提高齿轮寿命。降低传动能耗损失。
附图说明
现结合图示和实施例进一步说明:
图1是本发明工艺路线图。
图中①-确定总变位系数x ;②-配对齿轮滑动率差Δη≤0.0001的计算软件包;③-确定大齿轮变位系数x 2;④-大齿轮齿形加工;⑤-测量大齿轮平均公法线长度
Figure PCTCN2020080754-appb-000007
⑥-推算大齿轮实际变位系数x 2';⑦-推算配对小齿轮变位系数目标值x 1',同时推算小齿轮公法线长度目标值W 1k'、小齿轮根圆半径目标值r f';⑧-根据配对小齿轮变位系数目标值x 1'粗加工配对小齿轮齿形;⑨-测量粗加工配对小齿轮公法线长度平均值
Figure PCTCN2020080754-appb-000008
⑩计算粗加工配对小齿轮公法线长度平均值
Figure PCTCN2020080754-appb-000009
与小齿轮公法线长度目标值W 1k'的差ΔW 1k;计算粗加工配对小齿轮根圆半径r f与小齿轮根圆半径目标值r f'的差Δr f
Figure PCTCN2020080754-appb-000010
-根据Δr f进刀精加工小齿轮齿形。
具体实施方式
面向成形齿轮的配对齿轮加工方法,其工艺路线流程包括:根据齿轮设计规范确定总变位系数x ①;代入配对齿轮滑动率差Δη≤0.0001的计算软件包②,得到大齿轮变位系数x 2③;根据分配的大齿轮变位系数x 2,进行大齿轮齿形加工④,大齿轮加工成形;测量大齿轮平均公法线长度
Figure PCTCN2020080754-appb-000011
⑤;根据大齿轮平均公法线长度
Figure PCTCN2020080754-appb-000012
推算大齿轮实际变位系数x 2'⑥;根据大齿轮实际变位系数x 2',代入齿轮副滑动率差Δη≤0.0001的变位系数分配计算软件包,推算配对小齿轮变位系数目标值x 1'、小齿轮公法线长度目标值W 1k'、小齿轮根圆半径目标值r f'⑦;根据配对小齿轮变位系数目标值x 1',留余量粗加工配对小齿轮齿形⑧;测 量粗加工配对小齿轮公法线长度平均值
Figure PCTCN2020080754-appb-000013
⑨;计算粗加工配对小齿轮平均公法线长度
Figure PCTCN2020080754-appb-000014
与公法线长度目标值W 1k'的差ΔW 1k;进而根据ΔW 1k计算实际粗加工配对小齿轮根圆半径r f与配对小齿轮根圆半径目标值r f'的差值Δr f⑩;根据实际粗加工的齿轮根圆半径r f与齿轮根圆半径目标值r f'的差值Δr f进刀精加工小齿轮齿形,小齿轮加工完毕
Figure PCTCN2020080754-appb-000015
所述齿轮副滑动率差Δη≤0.0001的变位系数分配计算软件包,包含:
啮合角α'的计算公式
invα'=2x Σtanα/(z Σ+invα)         (1)
齿顶压力角α a1和α a2的计算公式
α a1=arccos(d b1/d a1)          (2)
α a2=arccos(d b2/d a2)          (3)
基圆直径d b1和d b2的计算公式
d b1=d 1cosα             (4)
d b2=d 2cosα            (5)
齿顶圆直径d a1和d a2的计算公式
d a1=d f1+2h a1           (6)
d a2=d f2+2h a2           (7)
齿顶高h a1和h a2的计算公式
Figure PCTCN2020080754-appb-000016
h a2=(h an *+x 2)m n           (9)
滑动率η 1和η 2的计算公式
η 1=z Σ(tanα a2-tanα')/(z Σtanα'-z 2tanα a2)        (10)
η 2=z Σ(tanα a1-tanα')/(z Σtanα'-z 1tanα a1)          (11)
滑动率差Δη计算公式
Δη=|η 12|            (12)
以上式中:
α'—啮合角,°;
x Σ—总变位系数(x 1+x 2);
x 1—小齿轮变位系数;
x 2—大齿轮变位系数;
z —齿轮副总齿数(z 1+z 2);
z 1—小齿轮齿数;
z 2—大齿轮齿数;
α—压力角,°;
d b1—小齿轮基圆直径,mm;
d b2—大齿轮基圆直径,mm;
h a1—小齿轮齿顶高,mm;
h a2—大齿轮齿顶高,mm;
Figure PCTCN2020080754-appb-000017
—齿顶高系数;
d 1—小齿轮分度圆直径,mm;
d 2—大齿轮分度圆直径,mm;
η 1—小齿轮滑动率;
η 2—大齿轮滑动率;
Δη—滑动率差;
α a1—小齿轮齿顶圆压力角,°;
α a2—大齿轮齿顶圆压力角,°;
m n—模数,mm;
d b1—小齿轮基圆直径,mm;
d b2—大齿轮基圆直径,mm;
d a1—小齿轮齿顶圆直径,mm;
d a2—大齿轮齿顶圆直径,mm。
将齿轮设计参数齿数z、模数m n、压力角α、螺旋角β及总变位系数x ,按所述相关公式,得到滑动率差Δη关于变位系数变量x 1和x 2的函数式。最初设计采用计算机迭代法可求得给定总变位系数时各齿轮变位系数值(x 1和x 2)。一个齿轮制造成形后进行二次设计,给定其中成形齿轮齿轮变位系数x 2'(根据成形齿轮实测公法线长度平均值
Figure PCTCN2020080754-appb-000018
推算x 2'),采用计算机迭代法可求得另一个满足Δη≤0.0001的另一个配对齿轮的变位系数x 1'。
所述的小齿轮公法线长度目标值W 1k'(根据变位系数x 1'推算得到)用于 控制精加工进刀量,是根据小齿轮公法线长度目标值W 1k'计算出小齿轮根圆半径目标值r f',作为齿形粗加工后精加工进刀量的依据。具体为齿形粗加工后测量平均公法线长度,根据小齿轮粗加工后的平均公法线长度
Figure PCTCN2020080754-appb-000019
与小齿轮公法线长度目标值W 1k'的差值ΔW计算进刀量Δr f(即齿根圆半径变化量)。小齿轮精加工进刀量控制包含计算公式:
公法线长度差ΔW与齿轮根圆直径差Δd f、压力角α的关系式
Δd f=ΔWctanα          (13)
齿轮根圆直径差Δd f与齿轮根圆半径差Δr f'的几何关系式
Δr f=0.5Δd f         (14)
小齿轮粗加工后的平均公法线长度
Figure PCTCN2020080754-appb-000020
与公法线长度目标值W 1k'的差值ΔW的计算式
Figure PCTCN2020080754-appb-000021
以上式中:
Δd f—根圆直径差,mm;
ΔW—公法线长度差,mm;
α—压力角,°;
Δr f—根圆半径差,mm;
Figure PCTCN2020080754-appb-000022
—小齿轮粗加工的平均公法线长度,mm;
W 1k'—小齿轮公法线长度目标值,mm;
ΔW—小齿轮粗加工后的平均公法线长度与齿轮公法线长度目标值的差值,mm。

Claims (2)

  1. 面向成形齿轮的配对齿轮加工方法,其特征是:包含一个配对齿轮加工工艺路线;一个齿轮副滑动率差Δη≤0.0001的变位系数分配计算软件包;
    所述配对齿轮加工工艺路线,其配对小齿轮的变位系数的选择是将已加工成形大齿轮的实测公法线长度平均值
    Figure PCTCN2020080754-appb-100001
    计算的大齿轮实际变位系数x 2',代入所述面向成形齿轮副滑动率差Δη≤0.0001的变位系数分配计算软件包,算得配对小齿轮变位系数目标值x 1'和小齿轮目标公法线长度值W 1k',根据小齿轮变位系数目标值x 1'和其他已知设计参数(齿数z 1、模数m n、压力角α、螺旋角β等)加工配对小齿轮。
  2. 根据权利要求1所述的面向成形齿轮的配对齿轮加工方法,其特征是:所述齿轮副滑动率差Δη≤0.0001的变位系数分配计算软件包,包含:滑动率差Δη计算公式、滑动率η计算公式、齿顶高h a计算公式、齿顶圆直径d a计算公式、基圆直径d b计算公式、齿顶压力角α a计算公式、啮合角α'计算公式;将齿轮设计参数齿数z、模数m n、压力角α、螺旋角β及总变位系数x ,按所述相关公式,得到滑动率差Δη关于变位系数变量x 1和x 2的函数式,采用计算机迭代法求得给定总变位系数时各齿轮变位系数值(x 1和x 2);或者给定其中一个齿轮变位系数x 2'、采用计算机迭代法可求得满足Δη≤0.0001的另一个配对齿轮的变位系数x 1'。
PCT/CN2020/080754 2019-04-10 2020-03-23 面向成形齿轮的配对齿轮加工方法 WO2020207237A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910284756.6 2019-04-10
CN201910284756.6A CN110000431B (zh) 2019-04-10 2019-04-10 面向成形齿轮的配对齿轮加工方法

Publications (1)

Publication Number Publication Date
WO2020207237A1 true WO2020207237A1 (zh) 2020-10-15

Family

ID=67170808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080754 WO2020207237A1 (zh) 2019-04-10 2020-03-23 面向成形齿轮的配对齿轮加工方法

Country Status (2)

Country Link
CN (1) CN110000431B (zh)
WO (1) WO2020207237A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110000431B (zh) * 2019-04-10 2020-10-23 江苏鹏飞集团股份有限公司 面向成形齿轮的配对齿轮加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765974A (en) * 1990-04-19 1998-06-16 Hermann Pfauter Gmbh & Co. Method for machining tooth flanks of workpieces with a profiled shaped tool
CN104653749A (zh) * 2014-12-31 2015-05-27 南车戚墅堰机车车辆工艺研究所有限公司 大齿向修形量齿轮及其加工方法
CN108108500A (zh) * 2016-11-24 2018-06-01 上海船厂船舶有限公司 变位齿轮的测量与修复方法
CN109063326A (zh) * 2018-07-31 2018-12-21 中国第汽车股份有限公司 一种考虑微观修形和实际加工误差的齿轮精确建模方法
CN109434220A (zh) * 2019-01-10 2019-03-08 姚显民 一种弧锥齿轮加工方法
CN110000431A (zh) * 2019-04-10 2019-07-12 江苏鹏飞集团股份有限公司 面向成形齿轮的配对齿轮加工方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198543B (zh) * 2011-03-31 2013-03-06 北京经纬恒润科技有限公司 齿轮建模方法和齿轮建模装置
CN102817990B (zh) * 2012-08-31 2015-06-10 重庆齿轮箱有限责任公司 模拟计算滚齿后渐开线展开长度的方法及装置
CN103331494B (zh) * 2013-07-10 2015-10-28 上海第二工业大学 一种相交轴变齿厚齿轮齿形误差分析方法
CN105798396B (zh) * 2016-05-16 2018-02-13 宜昌长机科技有限责任公司 一种新型的圆柱内齿轮车削方法
CN107234304B (zh) * 2017-07-28 2019-01-22 昆山国立传动机械有限公司 基于磨齿机在机测量的齿轮精度实时可视化装置和方法
CN108620689A (zh) * 2017-12-29 2018-10-09 南京工业大学 一种数控强力刮齿参数化编程加工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765974A (en) * 1990-04-19 1998-06-16 Hermann Pfauter Gmbh & Co. Method for machining tooth flanks of workpieces with a profiled shaped tool
CN104653749A (zh) * 2014-12-31 2015-05-27 南车戚墅堰机车车辆工艺研究所有限公司 大齿向修形量齿轮及其加工方法
CN108108500A (zh) * 2016-11-24 2018-06-01 上海船厂船舶有限公司 变位齿轮的测量与修复方法
CN109063326A (zh) * 2018-07-31 2018-12-21 中国第汽车股份有限公司 一种考虑微观修形和实际加工误差的齿轮精确建模方法
CN109434220A (zh) * 2019-01-10 2019-03-08 姚显民 一种弧锥齿轮加工方法
CN110000431A (zh) * 2019-04-10 2019-07-12 江苏鹏飞集团股份有限公司 面向成形齿轮的配对齿轮加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李晓平等 (LI, XIAOPING ET AL.): "大模数圆柱渐开线齿轮副变位系数的控制 (Precise Control of Sliding Rate Difference of Cylindrical Involute Gear with Large Modulus)", 机械设计与制造 (MACHINERY DESIGN & MANUFACTURE), no. 03, 31 March 2018 (2018-03-31), XP55742129, ISSN: 1001-3997, DOI: 20200609121446X *

Also Published As

Publication number Publication date
CN110000431B (zh) 2020-10-23
CN110000431A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN107908857B (zh) 齿向修形斜齿轮成形磨削时齿面原理性误差建模方法
WO2020151683A1 (zh) 一种考虑齿面精度特性的渐开线圆柱齿轮包络铣削加工方法
CN109376456B (zh) 弧齿锥齿轮含安装误差的齿面载荷接触性能数值计算方法
CN101733482B (zh) 基于加工精度指标标定的圆弧端齿数控加工方法
CN108730480B (zh) 一种rv减速器的摆线轮及其齿廓逆向主动修形方法
CA2793260A1 (en) Load-optimized bevel-gear teeth
WO2020207237A1 (zh) 面向成形齿轮的配对齿轮加工方法
CN111299982B (zh) 一种农机齿轮修形加工工艺
EP3423781B1 (en) Measurement of worm gears
CN106369139A (zh) 一种满足高次传动误差的准双曲面齿轮加工参数获取方法
CN110966374A (zh) 高精度机器人用大减比准双曲面齿轮的设计方法
CN107971582B (zh) 一种提高平面包络环面蜗杆齿面精度的方法
CN108526363B (zh) 轴向进给加工精密蜗杆滚丝轮的设计方法及蜗杆加工方法
WO2020252843A1 (zh) 一种适用于锻造工艺的锥齿轮齿面点对点修形方法
CN112157321B (zh) 一种面向大变位齿轮的强力刮齿刀具设计方法
TWI557586B (zh) 齒輪模具的補償成型方法
CN112395790A (zh) 一种薄壁叶片侧铣精加工余量预留方法
CN203509232U (zh) 用于微线段齿轮加工的磨前滚刀
CN110039123B (zh) 一种变压力角滚刀加工倒锥齿的方法
CN107617794A (zh) 一种人字齿内齿圈加工方法
Kissling et al. Face gears: Geometry and strength
CN115270324A (zh) 冷挤压齿轮齿根建模方法
CN109033723B (zh) 准双曲面齿轮小轮无偏置滚轧模具设计及制造方法
TWI714098B (zh) 齒輪成形方法
CN110102829B (zh) 一种锥齿轮加工工艺的对比方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787389

Country of ref document: EP

Kind code of ref document: A1