WO2020206931A1 - 一种双绳缠绕式超深立井提升系统提升容器位姿控制方法 - Google Patents

一种双绳缠绕式超深立井提升系统提升容器位姿控制方法 Download PDF

Info

Publication number
WO2020206931A1
WO2020206931A1 PCT/CN2019/105589 CN2019105589W WO2020206931A1 WO 2020206931 A1 WO2020206931 A1 WO 2020206931A1 CN 2019105589 W CN2019105589 W CN 2019105589W WO 2020206931 A1 WO2020206931 A1 WO 2020206931A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
lifting
subsystem
vertical shaft
ultra
Prior art date
Application number
PCT/CN2019/105589
Other languages
English (en)
French (fr)
Inventor
沈刚
朱真才
李翔
汤裕
曹国华
周公博
刘送永
彭玉兴
卢昊
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to RU2020120878A priority Critical patent/RU2742676C1/ru
Priority to AU2019390995A priority patent/AU2019390995B2/en
Priority to US16/772,162 priority patent/US11691846B2/en
Publication of WO2020206931A1 publication Critical patent/WO2020206931A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • B66B7/10Arrangements of ropes or cables for equalising rope or cable tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B19/00Mining-hoist operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/48Control devices automatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/007Simulation or modelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms

Definitions

  • the invention relates to a vertical shaft hoisting system, in particular to a double-rope winding type ultra-deep vertical shaft hoisting system lifting container posture control method, belonging to the technical field of mine hoisting.
  • the ultra-deep vertical shaft hoisting system is a vertical shaft hoisting system with a mining depth greater than 1500m. Due to its deep mining depth, the commonly used rigid lifting container canway is prone to deformation and canway in the shaft when the lifting container is running at high speed and heavy load. Damage phenomena such as beam damage, beam nest looseness and operation instability, so they cannot be used for ultra-deep vertical shaft lifting; but when flexible tank channels are used for lifting, due to the difference in the diameter of the reel, the difference in the installation of the two steel ropes, and the elastic mold Inconsistent quantities and other factors, the military will cause the end of the two wire ropes of the lifting system to move out of sync, which will cause the lifting container to tilt, which will cause the tension of the two wire ropes to be inconsistent.
  • the present invention provides a dual-rope winding type ultra-deep vertical shaft hoisting system lifting container pose control method.
  • the design process is simple, the control performance is good, and it can quickly respond to the leveling lifting system and tracking errors. small.
  • a method for controlling the posture of a double-rope-wound ultra-deep vertical shaft hoisting system of the present invention includes the following steps:
  • Step 1 Establish a mathematical model of the double-rope-wound super-deep vertical shaft hoisting subsystem
  • Step 2 Establish a closed-loop mathematical model of the electro-hydraulic servo subsystem
  • Step 3 Flatness characteristics of the nonlinear system
  • Step 4 Design the flatness controller of double rope winding ultra-deep mine hoisting subsystem
  • Step 5 Design the position closed-loop flatness controller of the electro-hydraulic servo subsystem.
  • step 1 the mathematical model of the double-rope winding ultra-deep vertical shaft hoisting subsystem described in step 1 is as follows:
  • the length of the two vertical steel ropes 5 in the process of lifting or lowering the lifting container is as follows:
  • l h10 and l h20 are the initial lengths of the two vertical steel ropes
  • T, U, D are the kinetic energy, potential energy and Rayleigh dissipation function of the lifting system respectively, and Q is the non-potential generalized force of the lifting subsystem without damping;
  • m 1 and m 2 are the masses of the left and right floating sky wheels, r 1 and r 2 are the radii of the left and right floating sky wheels, and I 1 and I 2 are the moments of inertia of the left and right floating sky wheels;
  • the kinetic energy formula of the lifting container is as follows:
  • m c is the mass of the lifting container, and I c is the moment of inertia of the lifting container;
  • k c1 and k h1 are the stiffness of the left string and the left vertical section of the wire rope respectively, and k c2 and k h2 are the stiffness of the right string and the right vertical section of the wire rope respectively;
  • the potential energy of the lifting container system includes the potential energy of the lifting container and the potential energy of the flexible tank.
  • the formula is as follows:
  • c c1 and c c2 are the damping coefficients of the left string and the left vertical wire rope respectively, and c c2 and c h2 are the damping coefficients of the right string and the right vertical wire rope respectively;
  • the Ruili energy dissipation formula for the lifting container system is as follows:
  • Equation (31) can be further simplified as:
  • formula (32) can be further simplified as:
  • the selected state variable is Therefore, the dynamic model of the lifting subsystem can be transformed into a state space form
  • h 1 B/A
  • h 2 C/A
  • h 3 R/A
  • f F 0 /A
  • step 2 the mathematical model of the electro-hydraulic servo subsystem described in step 2 is as follows:
  • the electro-hydraulic servo subsystem includes the proportional servo valve and the double-rod hydraulic cylinder in the floating crown wheel system. Assume that for the electro-hydraulic servo subsystem, the displacement reference signal x p and the speed of the hydraulic cylinder Acceleration And jerk Are all bounded;
  • Ap is the effective area of the piston of the hydraulic cylinder
  • C tl is the total leakage coefficient of the hydraulic cylinder
  • x p is the displacement of the piston rod of the hydraulic cylinder
  • V t is the total volume of the oil inlet and return chambers of the hydraulic cylinder
  • ⁇ e is the effective volume modulus of hydraulic cylinder oil
  • p 1 is the pressure flowing into the hydraulic cylinder
  • p 2 is the pressure flowing out of the hydraulic cylinder
  • Q 1 is the flow into the hydraulic cylinder
  • Q 2 is the flow out of the hydraulic cylinder.
  • FL is the force of the double-rod hydraulic cylinder acting on the floating sky wheel
  • m is the total mass of the floating sky wheel
  • B p is the viscous damping coefficient of the hydraulic cylinder.
  • the dynamic model of the electro-hydraulic servo subsystem can be transformed into the state space form:
  • x is the system state variable
  • u is the system control input with the same dimension as the system output y
  • system state variable x and the system control input u can be expressed as the system output and its finite order differential equation form
  • Equation (37) is called flatness, and the output of this system is the flatness output.
  • the specific design of the posture leveling and flatness controller of the double-rope winding ultra-deep mine hoisting subsystem in step 4 is as follows:
  • y 1d represents the expected output of the system, that is, the reference signal.
  • the dynamic equation of the expected state variable x 1d of the system is as follows:
  • the system open loop input u hd is as follows:
  • a h is the Hurwitz matrix, and the error z 1 approaches 0 in an exponential manner. Since the approach rate cannot be based on the open-loop control input alone, the control input with state feedback is defined as
  • step 5 design of the closed-loop flatness controller of the electro-hydraulic servo subsystem position in step 5 is as follows:
  • the flatness equation of the control input u L is
  • control input with state feedback is defined as
  • the present invention omits the derivation process of system state variables, thus greatly simplifies the design process of the controller, so that the controller can shorten the response time, and the container can be lifted quickly. Reach the leveling state; and in the system application process, because the state variable derivation will amplify the sensor measurement noise and the unmodeled characteristics of the system, the design of the flatness controller can reduce the tracking error, make the control process more accurate and ensure its good Control performance.
  • Figure 1 is a schematic diagram of the structure of the lifting system of the present invention.
  • Figure 2 is a dynamic model diagram of a double rod hydraulic cylinder
  • FIG. 3 is a block diagram of the control system of the present invention.
  • Fig. 4 is a comparison diagram of the tracking signal of the raised container angle of the flatness controller in the specific embodiment of the present invention.
  • Fig. 5 is a partial enlarged view of the tracking signal of the raised container angle of the flatness controller in the specific embodiment of the present invention
  • FIG. 6 is a comparison diagram of tracking signals of the hydraulic cylinder 1 of the flatness controller in a specific embodiment of the present invention.
  • Figure 7 is a tracking error diagram of the flatness controller hydraulic cylinder 1 in a specific embodiment of the present invention.
  • FIG. 8 is a comparison diagram of tracking signals of the hydraulic cylinder 2 of the flatness controller in a specific embodiment of the present invention.
  • FIG. 9 is a tracking error diagram of the hydraulic cylinder 2 of the flatness controller in a specific embodiment of the present invention.
  • FIG. 10 is a comparison diagram of the tracking signal of the lifting container angle of the anti-step controller in a specific embodiment
  • Fig. 11 is a partial enlarged view of the tracking signal of the lifting container angle of the anti-step controller in a specific embodiment
  • FIG. 12 is a comparison diagram of tracking signals of the hydraulic cylinder 1 of the reverse step controller in a specific embodiment
  • FIG. 13 is a tracking error diagram of the hydraulic cylinder 1 of the reverse step controller in a specific embodiment
  • FIG. 14 is a comparison diagram of tracking signals of the hydraulic cylinder 2 of the reverse step controller in a specific embodiment
  • Figure 15 is a tracking error diagram of the hydraulic cylinder 2 of the backstep controller in a specific embodiment
  • Double drum In the picture: 1. Double drum; 2. String rope; 3. Floating crown wheel; 4. Double rod hydraulic cylinder; 5. Vertical steel wire rope; 6. Lifting container.
  • the leveling steps of the flatness controller to lift the container are as follows:
  • h 1 B/A
  • h 2 C/A
  • h 3 R/A
  • f F 0 /A
  • a 1 A p /m
  • a 2 B p /m
  • a 3 1/m
  • a 4 4 ⁇ e A p /V t
  • a 5 4 ⁇ e C tl /V t
  • a 6 4 ⁇ e /V t ;
  • the flatness controller improves the leveling performance of the container as shown in Figures 4 to 9;
  • the back-step controller lifts the container's posture and leveling control design as follows:
  • the position closed-loop control process of the electro-hydraulic servo subsystem of the backstep controller is as follows:
  • the anti-step controller improves the leveling performance of the container as shown in Figure 10 to Figure 15;
  • the lifting container can reach the leveling state within a certain period of time, but the flatness controller has made the lifting container reach the leveling state at 70ms, and the anti-step controller It takes 450ms to make the lifting container reach a stable state; from the perspective of the position tracking performance of the two hydraulic cylinders, the tracking error of the anti-step controller is larger than that of the flatness controller.
  • the flatness controller has better control performance than the anti-stepping controller. Step controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Control And Safety Of Cranes (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

公开了一种双绳缠绕式超深立井提升系统提升容器位姿控制方法,包括以下步骤:步骤1:建立双绳缠绕式超深立井提升子系统数学模型;步骤2:建立电液伺服子系统位置闭环的数学模型;步骤3:非线性系统平整度特性输出;步骤4:设计双绳缠绕式超深矿井提升子系统位姿调平平整度控制器;步骤5:设计电液伺服子系统位置闭环平整度控制器。该方法省略了系统状态变量的求导过程,大大简化了控制器的设计过程,使控制器能够缩短响应时间,使提升容器可以快速达到调平状态;且在系统应用过程中,由于状态变量求导会放大传感器测量噪声和系统未建模特性,因此平整度控制器的设计可以减少跟踪误差,使控制过程更加精确,保证其良好的控制性能。

Description

一种双绳缠绕式超深立井提升系统提升容器位姿控制方法 技术领域
本发明涉及一种立井提升系统,具体涉及一种双绳缠绕式超深立井提升系统提升容器位姿控制方法,属于矿山提升技术领域。
背景技术
超深立井提升系统是一种开采深度大于1500m的立井提升系统,由于其开采深度深,常用的刚性提升容器罐道在提升容器高速、重载运行情况下容易出现井筒内罐道变形、罐道梁破坏、梁窝松动和运行失稳等损坏现象,因此无法用于超深立井提升;但当采用柔性罐道提升时,由于卷筒直径制造差异、两根钢丝绳安装差异、两根钢丝绳弹性模量不一致等因素,军会造成提升系统两根钢丝绳末端运动不同步,从而引起提升容器倾斜,进而造成两根钢丝绳的张力不一致,长期在此条件下运行时,容易导致其中一根钢丝绳的应力超过它的安全使用应力,造成断绳的重大恶性事故。为避免这类事故发生,需要主动调节提升容器角度,使提升容器保持平衡状态,从而使两根钢丝绳张力保持一致。
现有技术中常用的是一种反步控制器设计方法,但是这种控制方法需要对系统状态变量进行变量求导,且控制器的设计过程复杂;且该控制器在超深立井实际系统中应用时,由于超深立井提升系统是一种复杂多结构的机电液系统,即便建模过程中考虑了很多实际因素,但也很难和实际系统一致,因此在控制器的设计过程中,对系统状态变量的求导无疑会放大传感器测量噪声和系统未建模特性,造成较大的跟踪误差,以及较长的调平响应时间。
发明内容
为了克服现有技术存在的各种不足,本发明提供一种双绳缠绕式超深立井提升系统提升容器位姿控制方法,设计过程简单,控制性能良好,能够快速响应调平提升系统,跟踪误差小。
为了实现上述发明目的,本发明一种双绳缠绕式超深立井提升系统提升容器位姿控制方法,包括以下步骤:
步骤1:建立双绳缠绕式超深立井提升子系统数学模型;
步骤2:建立电液伺服子系统位置闭环的数学模型;
步骤3:非线性系统平整度特性;
步骤4:设计双绳缠绕式超深矿井提升子系统平整度控制器;
步骤5:设计电液伺服子系统位置闭环平整度控制器。
进一步的,步骤1中所述的双绳缠绕式超深立井提升子系统数学模型如下:
1)、定义建模过程中应用到的参数:
l ri(i=1,2)为双联卷筒的卷动长度;
l ci(i=1,2)为提升或下放提升容器过程中两根弦绳的长度;
l hi(i=1,2)为提升或下放提升容器过程中两根垂直段钢丝绳的长度;
u i(i=1,2)为两个浮动天轮的位移;
Figure PCTCN2019105589-appb-000001
为两根弦绳与水平面的夹角;
a i(i=1,2)为两垂直段钢丝绳在提升容器上的连接点与提升容器重心的水平距离;
b i(i=1,2)为提升容器上下表面与提升容器重心的垂直距离;
k si(i=1,2,3,4)为四对弹簧-阻尼模型的横向等效刚度;
c si(i=1,2,3,4)为四对弹簧-阻尼模型的横向等效阻尼系数;
2)、定义提升过程为正方向,提升或下放提升容器过程中两根垂直段钢丝绳5的长度如
Figure PCTCN2019105589-appb-000002
Figure PCTCN2019105589-appb-000003
l h10,l h20为两根垂直段钢丝绳的初始长度;
3)、定义提升子系统广义向量q=[x c,y c,θ],x c和y c分别为提升容器6重心的垂直位移和水平位移,θ为提升容器6的逆时针旋转角度;提升子系统的拉格朗日动力学方程如下:
Figure PCTCN2019105589-appb-000004
T、U、D分别为提升系统的动能、势能和瑞利耗散函数,Q为不包括阻尼的提升子系统非有势广义力;
4)、浮动天轮与左弦绳之间的切线点位移为
Figure PCTCN2019105589-appb-000005
浮动天轮与左垂直段钢丝绳之间切线点位移为
Figure PCTCN2019105589-appb-000006
左弦绳在s单位长度距离处的位移表示如下:
Figure PCTCN2019105589-appb-000007
同样地,左垂直段绳在y单位长度距离处的位移表示如下:
Figure PCTCN2019105589-appb-000008
5)、依据式(4)和(5),左弦绳和左垂直段钢丝绳的动能公式分别如下:
Figure PCTCN2019105589-appb-000009
Figure PCTCN2019105589-appb-000010
式中,ρ钢丝绳的单位质量;
6)、浮动天轮与右弦绳之间的切线点位移为
Figure PCTCN2019105589-appb-000011
右弦绳在s单位长度距离处的位移表示如下:
Figure PCTCN2019105589-appb-000012
浮动天轮与右垂直段钢丝绳之间切线点位移为
Figure PCTCN2019105589-appb-000013
右垂直段绳在y单位长度距离处的位移表示如下:
Figure PCTCN2019105589-appb-000014
7)、依据式(8)和(9),右弦绳和右垂直段钢丝绳的动能分别公式如下:
Figure PCTCN2019105589-appb-000015
Figure PCTCN2019105589-appb-000016
8)、左右浮动天轮的动能公式如下:
Figure PCTCN2019105589-appb-000017
Figure PCTCN2019105589-appb-000018
式中,m 1和m 2分别为左右浮动天轮的质量,r 1和r 2分别为左右浮动天轮的半径,I 1和I 2分别为左右浮动天轮的转动惯量;
提升容器的动能公式如下:
Figure PCTCN2019105589-appb-000019
式中,m c为提升容器的质量,I c是提升容器的转动惯量;
9)、左钢丝绳的势能公式如下:
Figure PCTCN2019105589-appb-000020
右钢丝绳的势能公式如下:
Figure PCTCN2019105589-appb-000021
式中,k c1和k h1分别为左弦绳和左垂直段钢丝绳的刚度,k c2和k h2分别为右弦绳和右垂直段钢丝绳的刚度;
左、右浮动天轮的势能公式分别如下:
U h1=m 1gu 1(17)
U h2=m 2gu 2(18)
提升容器系统的势能,包括提升容器的势能和柔性罐道的势能,公式如下:
Figure PCTCN2019105589-appb-000022
10)、左、右绳的瑞丽耗散能公式分别如下:
Figure PCTCN2019105589-appb-000023
Figure PCTCN2019105589-appb-000024
式中,c c1和c c2分别为左弦绳和左垂直段钢丝绳的阻尼系数,c c2和c h2分别为右弦绳和右垂直段钢丝绳的阻尼系数;
提升容器系统的瑞丽耗散能公式如下:
Figure PCTCN2019105589-appb-000025
综上,提升子系统的动能、势能和瑞丽耗散能分别表示如下:
Figure PCTCN2019105589-appb-000026
U=U l1+U l2+U h1+U h2+U c    (24)
D=D l1+D l2+D c        (25)
11)、将上述公式带入通用方程:
Figure PCTCN2019105589-appb-000027
式中,
Figure PCTCN2019105589-appb-000028
和q分别为广义加速度、速度和位移,M、C、K和F分别为质量矩阵、阻尼矩阵、刚度矩阵和提升子系统的非有势力;从而得到:
Figure PCTCN2019105589-appb-000029
Figure PCTCN2019105589-appb-000030
Figure PCTCN2019105589-appb-000031
Figure PCTCN2019105589-appb-000032
12)、简化系统方程,在提升子系统建模过程中,假设没有偏移载荷条件,即a 1=a 2,进一步地,当提升容器的逆时针旋转角度为0,两根钢丝绳的张力一致;因此,式(30)可以简化为
Figure PCTCN2019105589-appb-000033
式中,M ij、C ij、K ij和F ij分别为质量矩阵、阻尼矩阵、刚度矩阵和非有势力的元素,i=1,2,3和j=1,2,3。
提升容器的位姿调平是由两个液压执行器调节的,因此,u 1=u=-u 2,提升容器倾角θ为控制量,式(31)可进一步简化为:
Figure PCTCN2019105589-appb-000034
式中,
Figure PCTCN2019105589-appb-000035
由于k h1和k h2远大于c h1和c h2,式(32)可进一步化简为:
Figure PCTCN2019105589-appb-000036
对于提升子系统,选取状态变量为
Figure PCTCN2019105589-appb-000037
因而提升子系统动力学模型可以转化为状态空间形式
Figure PCTCN2019105589-appb-000038
y 1=x 1
式中,h 1=B/A,h 2=C/A,h 3=R/A,f=F 0/A。
上述模型建立的前提假设:对于提升子系统,θ和
Figure PCTCN2019105589-appb-000039
都是有界的。
进一步的,步骤2所述的电液伺服子系统数学模型如下:
电液伺服子系统包括浮动天轮系统中比例伺服阀和双出杆液压缸,假设对于电液伺服子系统,液压缸的位移参考信号x p、速度
Figure PCTCN2019105589-appb-000040
加速度
Figure PCTCN2019105589-appb-000041
和加加速度
Figure PCTCN2019105589-appb-000042
均是有界的;
双出杆液压缸流量连续性方程如下:
Figure PCTCN2019105589-appb-000043
式中,A p为液压缸活塞的有效作用面积,C tl为液压缸总泄漏系数,x p为液压缸活塞杆的位移,V t为液压缸进油腔和回油腔的总体积,β e为液压缸油液的有效体积弹性模量;P L=p 1-p 2为液压缸的负载压降,p 1为流入液压缸的压力,p 2为流出液压缸的压力,Q L=Q 1-Q 2为负载流量,Q 1为流入液压缸的流量,Q 2为流出液压缸的流量。
根据牛顿第二定律,电液伺服系统的负载力平衡方程如下:
Figure PCTCN2019105589-appb-000044
其中,F L为双杆液压缸作用在浮动天轮的力,m为浮动天轮总质量,B p为液压缸粘性阻尼系数。
对于电液伺服子系统,选取状态变量为
Figure PCTCN2019105589-appb-000045
因而电液伺 服子系统动力学模型可以转化为状态空间形式:
Figure PCTCN2019105589-appb-000046
y 2=x 3
式中,a 1=A p/m,a 2=B p/m,a 3=1/m,a 4=4β eA p/V t,a 5=4β eC tl/V t,a 6=4β e/V t;从而得到式(33)中控制输入u。
进一步的,步骤3中非线性系统平整度特性输出的具体设计如下:
考虑如下非线性系统
Figure PCTCN2019105589-appb-000047
式中,x是系统状态变量,u是与系统输出y具有相同维数的系统控制输入;
如果存在如下系统输出y
Figure PCTCN2019105589-appb-000048
那么系统状态变量x和系统控制输入u可以表示为系统输出及其有限次微分的方程形式
Figure PCTCN2019105589-appb-000049
Figure PCTCN2019105589-appb-000050
式(37)称为平整度,这个系统的输出即为平整度输出。
进一步,步骤4中双绳缠绕式超深矿井提升子系统位姿调平平整度控制器的具体设计如下:
依据平整度控制器设计方法,在提升子系统(34)中,系统输出为y 1=x 1,系统控制输入为u h=x 3
对于提升子系统,通过y 1,
Figure PCTCN2019105589-appb-000051
到系统状态变量x 1和系统控制输入u h的平整度方程如下:
Figure PCTCN2019105589-appb-000052
定义提升子系统期望状态变量
Figure PCTCN2019105589-appb-000053
式中,y 1d表示系统期望输出,即参考信号,则系统期望状态变量x 1d的动力学方程如下:
Figure PCTCN2019105589-appb-000054
系统开环输入u hd如下:
Figure PCTCN2019105589-appb-000055
定义系统状态跟踪误差为z 1=[z 1,z 2] T=[x 1d-x 1,x 2d-x 2] T,系统跟踪误差的动力学方程如下:
Figure PCTCN2019105589-appb-000056
当u hd=u h,可得
Figure PCTCN2019105589-appb-000057
写成矩阵形式,即:
Figure PCTCN2019105589-appb-000058
式中,
Figure PCTCN2019105589-appb-000059
A h为Hurwitz矩阵,且误差z 1按照指数方式趋近于0,由于趋近速率不能仅仅依据开环控制输入,因此,定义有状态反馈的控制输入为
Figure PCTCN2019105589-appb-000060
式中,K 1=[k 1,k 2];因此,有状态反馈的系统跟踪误差动力学方程如下:
Figure PCTCN2019105589-appb-000061
式中,
Figure PCTCN2019105589-appb-000062
通过适当选择系统控制增益矩阵K 1以保证矩阵A hk为Hurwitz矩阵,此时,系统跟踪误差z 1会按照指数方式趋近于0;
提升子系统控制律可总结如下:
Figure PCTCN2019105589-appb-000063
进一步的,步骤5中电液伺服子系统位置闭环平整度控制器的设计如下:
根据电液伺服子系统(36),系统输出为y 2=x 3,系统控制输入为u L=Q L,因此,可得控制输入u L的平整度方程为
Figure PCTCN2019105589-appb-000064
定义系统期望状态变量,式中y 2d为系统期望输出,即参考信号。则,系统期望变量x 2d=[x 3d,x 4d,x 5d] T的动力学为
Figure PCTCN2019105589-appb-000065
因此可以得到系统开环输入u Ld
Figure PCTCN2019105589-appb-000066
定义系统跟踪误差z 2=[z 3,z 4,z 5] T=[x 3d-x 3,x 4d-x 4,x 5d-x 5] T。因而,系统跟踪误差的动力学为
Figure PCTCN2019105589-appb-000067
当u Ld=u L,可得
Figure PCTCN2019105589-appb-000068
写成矩阵形式:
Figure PCTCN2019105589-appb-000069
式中,
Figure PCTCN2019105589-appb-000070
进一步,定义有状态反馈的控制输入为
Figure PCTCN2019105589-appb-000071
式中,K 2=[k 3,k 4,k 5] T。因而,有状态反馈的跟踪误差动力学方程如下:
Figure PCTCN2019105589-appb-000072
式中,
Figure PCTCN2019105589-appb-000073
选择适当的控制增益矩阵K 2使得矩阵A Lk为Hurwitz矩阵,使系统跟踪误差z 2按照指数方式趋近于0;从而得到电液伺服子系统的控制公式:
Figure PCTCN2019105589-appb-000074
本发明相比于目前流行的反步控制器设计方法,由于省略了系统状态变量的求导过程,因此大大简化了控制器的设计过程,从而使控制器能够缩短响应时间,使提升容器可以快速达到调平状态;且在系统应用过程中,由于状态变量求导会放大传感器测量噪声和系统未建模特性,因此平整度控制器的设计可以减少跟踪误差,使控制过程更加精确,保证其良好的控制性能。
附图说明
图1是本发明提升系统结构示意图;
图2是双出杆液压缸动力学模型图;
图3是本发明控制系统结构框图;
图4是本发明具体实施例中平整度控制器提升容器角度跟踪信号对比图;
图5是本发明具体实施例中平整度控制器提升容器角度跟踪信号局部放大图;
图6是本发明具体实施例中平整度控制器液压缸1的跟踪信号对比图;
图7是本发明具体实施例中平整度控制器液压缸1的跟踪误差图;
图8是本发明具体实施例中平整度控制器液压缸2的跟踪信号对比图;
图9是本发明具体实施例中平整度控制器液压缸2的跟踪误差图;
图10是具体实施例中反步控制器提升容器角度跟踪信号对比图;
图11是具体实施例中反步控制器提升容器角度跟踪信号局部放大图;
图12是具体实施例中反步控制器液压缸1的跟踪信号对比图;
图13是具体实施例中反步控制器液压缸1的跟踪误差图;
图14是具体实施例中反步控制器液压缸2的跟踪信号对比图;
图15是具体实施例中反步控制器液压缸2的跟踪误差图;
图中:1、双联卷筒;2、弦绳;3、浮动天轮;4、双出杆液压缸;5、垂直段钢丝绳;6、提升容器。
具体实施方式
下面结合附图和具体实施例对本发明做详细的阐述。
如图1和图2所示,液压系统油源压力P s=15×10 6Pa,双出杆液压缸4的有效作用面积A p=1.88×10 -3m 2,液压系统负载质量m=200kg,液压系统粘性阻尼系数B p=25000N(m/s),液压缸进油腔和回油腔的总体积V t=0.96×10 -3m 3,液压系统总泄漏系数C tl=9.2×10 -13m 3/(s/Pa),液压油体积弹性模量β e=6.9×10 8Pa,提升容器6上下表面与提升容器重心的垂直距离b 1=b 2=0.0625m,两垂直段钢丝绳5在提升容器6上的连接点与提升容器重心的水平距离a 1=a 2=0.1575m,垂直段钢丝绳5初始长度l h20=l h20=6m,提升容器6转动惯量I c=3.307kg·m -2,钢丝绳单位长度质量ρ=0.417kg/m,左右弦绳2的倾斜角度α 1=α 2=64.5度,两个浮动天轮3的半径r 1=r 2=0.2m,两个浮动天轮3的质量m 1=m 2=10kg,提升容器6质量m c=120kg,四对弹簧-阻尼模型的横向等效阻尼系数c s1=c s2=c s3=c s4=10N/(m/s),四对弹簧-阻尼模型的横向等效刚度k s1=k s2=k s3=k s4=1000Pa。
平整度控制器控制参数,K 1=[k 1,k 2]=[20,10],K 2=[k 3,k 4,k 5]=[3×10 14,2×10 12,2]。
反步控制器控制参数,k 1=20,k 2=20,k 3=300,k 4=280,k 5=260。
设置提升容器初始角度5度。
如图3所示,平整度控制器提升容器调平步骤如下:
1)提升子系统动力学模型的状态空间形式:
Figure PCTCN2019105589-appb-000075
y 1=x 1
式中,h 1=B/A,h 2=C/A,h 3=R/A,f=F 0/A;
2)、电液伺服子系统动力学模型的状态空间形式:
Figure PCTCN2019105589-appb-000076
y 2=x 3
式中,a 1=A p/m,a 2=B p/m,a 3=1/m,a 4=4β eA p/V t,a 5=4β eC tl/V t,a 6=4β e/V t
3)、根据系统状态变量x和系统控制输入u可以表示为系统平整度特性输出及其有限次微分的方程形式:
Figure PCTCN2019105589-appb-000077
Figure PCTCN2019105589-appb-000078
4)、双绳缠绕式超深矿井提升子系统位姿调平平整度控制器的具体设计如下:
Figure PCTCN2019105589-appb-000079
5)、电液伺服子系统位置闭环平整度控制器的设计如下:
Figure PCTCN2019105589-appb-000080
根据具体实施例参数输入,得到平整度控制器提升容器调平性能如图4至图9所示;
反步控制器提升容器位姿调平控制设计如下:
Figure PCTCN2019105589-appb-000081
反步控制器电液伺服子系统位置闭环控制过程如下:
Figure PCTCN2019105589-appb-000082
根据具体实施例参数输入,反步控制器提升容器调平性能如图10至图15所示;
由两个控制器的提升容器角度跟踪性能来看,在一定时间内都可使提升容器达到调平状态,但平整度控制器在70ms时已经使提升容器达到调平状态,而反步控制器在450ms时才使提升容器达到平稳状态;从两个液压缸的位置跟踪性能来看,反步控制器的跟踪误差比平整度控制器大,综上,平整度控制器的控制性能优于反步控制器。

Claims (10)

  1. 一种双绳缠绕式超深立井提升系统提升容器位姿控制方法,其特征在于,包括以下步骤:
    步骤1:建立双绳缠绕式超深立井提升子系统数学模型;
    步骤2:建立电液伺服子系统位置闭环的数学模型;
    步骤3:非线性系统平整度特性;
    步骤4:设计双绳缠绕式超深矿井提升子系统平整度控制器;
    步骤5:设计电液伺服子系统位置闭环平整度控制器。
  2. 根据权利要求1所述的双绳缠绕式超深立井提升系统提升容器位姿控制方法,其特征在于,步骤1中所述的双绳缠绕式超深立井提升子系统数学模型如下:
    Figure PCTCN2019105589-appb-100001
    式中,
    Figure PCTCN2019105589-appb-100002
    和q分别为广义加速度、速度和位移,q=[x c,y c,θ],x c和y c分别为提升容器重心的垂直和水平位移,θ c为提升容器的逆时针旋转角度,M、C、K和F分别为质量矩阵、阻尼矩阵、刚度矩阵和提升子系统的非有势力;其中:
    Figure PCTCN2019105589-appb-100003
    Figure PCTCN2019105589-appb-100004
    Figure PCTCN2019105589-appb-100005
    Figure PCTCN2019105589-appb-100006
  3. 根据权利要求2所述的双绳缠绕式超深立井提升系统提升容器位姿控制方法,其特征在于,在提升子系统建模过程中,假设没有偏移载荷条件,即a 1=a 2,且当提升容器的逆时针旋转角度为0,两根钢丝绳的张力一致;因此,双绳缠绕式超深立井提升子系统数学模型简化为:
    Figure PCTCN2019105589-appb-100007
    式中,M ij、C ij、K ij和F ij分别为质量矩阵、阻尼矩阵、刚度矩阵和非有势力的元素,i=1, 2,3和j=1,2,3。
  4. 根据权利要求3所述的双绳缠绕式超深立井提升系统提升容器位姿控制方法,其特征在于,提升容器的位姿调平是由两个液压执行器调节的,因此,u 1=u=-u 2,提升容器倾角θ为控制量,因此,双绳缠绕式超深立井提升子系统数学模型进一步简化为:
    Figure PCTCN2019105589-appb-100008
    式中,
    Figure PCTCN2019105589-appb-100009
    由于k h1和k h2远大于c h1和c h2,上述公式再进一步化简为:
    Figure PCTCN2019105589-appb-100010
  5. 根据权利要求3所述的双绳缠绕式超深立井提升系统提升容器位姿控制方法,其特征在于,选取状态变量为
    Figure PCTCN2019105589-appb-100011
    提升子系统动力学模型可以转化为状态空间形式:
    Figure PCTCN2019105589-appb-100012
    y1=x1
    式中,h 1=B/A,h 2=C/A,h 3=R/A,f=F 0/A。
  6. 根据权利要求1所述的双绳缠绕式超深立井提升系统提升容器位姿控制方法,其特征在于,步骤2所述的电液伺服子系统数学模型如下:
    Figure PCTCN2019105589-appb-100013
    式中,A p为液压缸活塞的有效作用面积,C tl为液压缸总泄漏系数,x p为液压缸活塞杆的位移,V t为液压缸进油腔和回油腔的总体积,β e为液压缸油液的有效体积弹性模量;
    根据牛顿第二定律,电液伺服系统的负载力平衡方程如下:
    Figure PCTCN2019105589-appb-100014
    其中,F L为液压缸作用在浮动天轮的力,m为浮动天轮总质量,B p为液压缸粘性阻尼系数。
  7. 根据权利要求5所述的双绳缠绕式超深立井提升系统提升容器位姿控制方法,其特 征在于,选取状态变量为
    Figure PCTCN2019105589-appb-100015
    电液伺服子系统动力学模型可转化为状态空间形式:
    Figure PCTCN2019105589-appb-100016
    y 2=x 3
    式中,a 1=A p/m,a 2=B p/m,a 3=1/m,a 4=4β eA p/V t,a 5=4β eC tl/V t,a 6=4β e/V t
  8. 根据权利要求1所述的双绳缠绕式超深立井提升系统提升容器位姿控制方法,其特征在于,步骤3中非线性系统平整度特性输出的具体设计如下:
    Figure PCTCN2019105589-appb-100017
    式中,x是系统状态变量,u是与系统输出y具有相同维数的系统控制输入;
    如果存在如下系统输出y:
    Figure PCTCN2019105589-appb-100018
    那么系统状态变量x和系统控制输入u可以表示为系统输出及其有限次微分的方程形式:
    Figure PCTCN2019105589-appb-100019
    Figure PCTCN2019105589-appb-100020
  9. 根据权利要求1所述的双绳缠绕式超深立井提升系统提升容器位姿控制方法,其特征在于,步骤4中双绳缠绕式超深矿井提升子系统位姿调平平整度控制器的具体设计如下:
    Figure PCTCN2019105589-appb-100021
  10. 根据权利要求1所述的双绳缠绕式超深立井提升系统提升容器位姿控制方法,其特征在于,步骤5中电液伺服子系统位置闭环平整度控制器的设计如下:
    Figure PCTCN2019105589-appb-100022
PCT/CN2019/105589 2019-04-10 2019-09-12 一种双绳缠绕式超深立井提升系统提升容器位姿控制方法 WO2020206931A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2020120878A RU2742676C1 (ru) 2019-04-10 2019-09-12 Способ управления пространственным расположением подъемного контейнера в подъемной системе двойного типа намотки канатов для работы в сверхглубокой вертикальной шахте
AU2019390995A AU2019390995B2 (en) 2019-04-10 2019-09-12 Hoisting container pose control method of double-rope winding type ultra-deep vertical shaft hoisting system
US16/772,162 US11691846B2 (en) 2019-04-10 2019-09-12 Hoisting container pose control method of double-rope winding type ultra-deep vertical shaft hoisting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910284619.2A CN110145501B (zh) 2019-04-10 2019-04-10 一种双绳缠绕式超深立井提升系统提升容器位姿控制方法
CN201910284619.2 2019-04-10

Publications (1)

Publication Number Publication Date
WO2020206931A1 true WO2020206931A1 (zh) 2020-10-15

Family

ID=67588960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105589 WO2020206931A1 (zh) 2019-04-10 2019-09-12 一种双绳缠绕式超深立井提升系统提升容器位姿控制方法

Country Status (5)

Country Link
US (1) US11691846B2 (zh)
CN (1) CN110145501B (zh)
AU (1) AU2019390995B2 (zh)
RU (1) RU2742676C1 (zh)
WO (1) WO2020206931A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117725696A (zh) * 2023-12-18 2024-03-19 浙江大学 基于独立模态空间法的柔性臂无指令输入整形抑振方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018448166B2 (en) * 2018-10-31 2022-06-09 China University Of Mining&Technology , Beijing Mine vertical shaft lifting apparatus, mine vertical shaft lifting system and control method therefor
CN110145501B (zh) 2019-04-10 2020-05-12 中国矿业大学 一种双绳缠绕式超深立井提升系统提升容器位姿控制方法
CN112987575B (zh) * 2021-03-05 2023-09-15 中国矿业大学 一种电液伺服系统位置闭环跟踪误差限定控制方法
CN113536571B (zh) * 2021-07-16 2022-12-23 重庆大学 矿井多绳缠绕式提升机动力学建模方法及系统、存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101938A (ja) * 2009-11-12 2011-05-26 Yaskawa Electric Corp ロボットおよびその制御装置
CN102602838A (zh) * 2012-02-28 2012-07-25 中国矿业大学 一种立井施工吊盘的自动平衡调节系统及方法
CN104035334A (zh) * 2014-05-23 2014-09-10 中北大学 基于广义阻滞力的液压动态调平方法
CN104444707A (zh) * 2014-10-30 2015-03-25 中国矿业大学 一种超深立井提升机钢丝绳张力平衡系统及其方法
CN104763694A (zh) * 2015-03-18 2015-07-08 上海交通大学 一种掘进机液压推进系统分区压力设定值优化方法
US20170305722A1 (en) * 2015-12-04 2017-10-26 China University Of Mining And Technology A horizontally movable vertical shaft rope guide and regulating method thereof
CN109334380A (zh) * 2018-11-16 2019-02-15 燕山大学 基于参数不确定性和外部扰动的非线性油气悬架主动控制方法
CN110145501A (zh) * 2019-04-10 2019-08-20 中国矿业大学 一种双绳缠绕式超深立井提升系统提升容器位姿控制方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1153088A1 (ru) * 1983-12-23 1985-04-30 Проектно-Технологический Трест Организации И Технологии Шахтного Строительства "Оргтехшахтострой" Устройство дл транспортировки длинномеров в шахтах
RU2031830C1 (ru) * 1992-07-21 1995-03-27 Николай Гаврилович Огнев Способ защиты шахтной подъемной установки от напуска тяговых канатов и устройство для его осуществления
RU2408516C1 (ru) * 2009-10-08 2011-01-10 Открытое акционерное общество Акционерная холдинговая компания "Всероссийский научно-исследовательский и проектно-конструкторский институт металлургического машиностроения имени академика Целикова" (ОАО АХК "ВНИИМЕТМАШ") Комплекс для подземного сбора и хранения твердых бытовых отходов
CN102674125B (zh) * 2011-03-16 2014-10-15 西门子(中国)有限公司 控制提升机的方法、装置、存储介质和提升机系统
JP2014019519A (ja) * 2012-07-17 2014-02-03 Ohbayashi Corp 高層建築物における竪穴区画構造
CN203217866U (zh) * 2013-04-13 2013-09-25 张凤嘉 单绳缠绕式立井提升系统教学模型
CN103712682A (zh) * 2013-11-30 2014-04-09 安徽恒源煤电股份有限公司 基于有限元分析法的主井提升机主轴振动监测方法
CN103776577B (zh) * 2014-01-03 2016-05-04 中国矿业大学 施工立井吊盘的稳绳张力检测装置和检测方法
CN105565130B (zh) * 2014-10-15 2018-07-31 中煤第三建设(集团)有限责任公司 一种煤矿立井混合提升系统
CN104806226B (zh) * 2015-04-30 2018-08-17 北京四利通控制技术股份有限公司 智能钻井专家系统
CN105129583B (zh) * 2015-07-03 2017-03-08 中国矿业大学 一种绳罐道罐笼能量收集装置及方法
CN106154833B (zh) * 2016-07-14 2019-09-27 南京理工大学 一种电液负载模拟装置输出反馈控制方法
CN106121621A (zh) * 2016-07-15 2016-11-16 西南石油大学 一种智能钻井专家系统
CN106290035B (zh) * 2016-07-18 2018-10-02 中国矿业大学 超深立井缠绕式提升钢丝绳摩擦腐蚀疲劳损伤监测装置及方法
CN106904517B (zh) * 2017-04-06 2020-02-07 中国矿业大学 一种超深立井提升机与提升方法
CN107032245B (zh) * 2017-05-02 2018-09-21 中国矿业大学 一种超深立井双绳提升系统的天轮自动调力装置及方法
CN106946120B (zh) * 2017-05-02 2019-02-19 中国矿业大学 一种超深立井提升容器端钢丝绳张力调节装置及方法
CN108059056B (zh) * 2017-12-19 2019-10-11 中国矿业大学 一种超深立井双滚筒驱动大载荷摩擦提升系统及方法
CN108584616B (zh) * 2018-07-11 2023-09-12 中国矿业大学 一种超深立井用牵引力均衡的提升装置及控制方法
CN109292600A (zh) * 2018-10-31 2019-02-01 中国矿业大学(北京) 矿山立井提升装置、矿山立井提升系统及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101938A (ja) * 2009-11-12 2011-05-26 Yaskawa Electric Corp ロボットおよびその制御装置
CN102602838A (zh) * 2012-02-28 2012-07-25 中国矿业大学 一种立井施工吊盘的自动平衡调节系统及方法
CN104035334A (zh) * 2014-05-23 2014-09-10 中北大学 基于广义阻滞力的液压动态调平方法
CN104444707A (zh) * 2014-10-30 2015-03-25 中国矿业大学 一种超深立井提升机钢丝绳张力平衡系统及其方法
CN104763694A (zh) * 2015-03-18 2015-07-08 上海交通大学 一种掘进机液压推进系统分区压力设定值优化方法
US20170305722A1 (en) * 2015-12-04 2017-10-26 China University Of Mining And Technology A horizontally movable vertical shaft rope guide and regulating method thereof
CN109334380A (zh) * 2018-11-16 2019-02-15 燕山大学 基于参数不确定性和外部扰动的非线性油气悬架主动控制方法
CN110145501A (zh) * 2019-04-10 2019-08-20 中国矿业大学 一种双绳缠绕式超深立井提升系统提升容器位姿控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117725696A (zh) * 2023-12-18 2024-03-19 浙江大学 基于独立模态空间法的柔性臂无指令输入整形抑振方法

Also Published As

Publication number Publication date
CN110145501B (zh) 2020-05-12
US20210070586A1 (en) 2021-03-11
AU2019390995B2 (en) 2022-03-10
RU2742676C1 (ru) 2021-02-09
US11691846B2 (en) 2023-07-04
CN110145501A (zh) 2019-08-20
AU2019390995A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2020206931A1 (zh) 一种双绳缠绕式超深立井提升系统提升容器位姿控制方法
CN103046606B (zh) 工程机械设备、可移动式配重系统及控制方法
CN103935848B (zh) 一种超深矿井提升机多绳协同控制系统及方法
CN113465859A (zh) 一种六自由度电液振动台的干扰力补偿方法
KR20170058925A (ko) 로드의 운동을 제어하기 위한 시스템
US20230159136A1 (en) Vessel attitude control arrangement
CN109911771A (zh) 变系数自抗扰控制器设计方法、及吊车自抗扰控制器
WO2020024653A1 (zh) 一种支撑减振装置以及采用该支撑减振装置的车辆
CN110597051A (zh) 基于RBF神经网络的Stewart稳定平台控制方法
KR20230054881A (ko) 휠 지지력에 기반한 차량 액티브 서스펜션의 관성 조정 방법 및 제어 시스템
JP5362158B2 (ja) ターンテーブル梯子装置
CN1259481A (zh) 虚拟主动式电梯牵引装置
CN115468732A (zh) 一种高速列车升力翼安装布置及协同控制方法
JP5253697B2 (ja) ターンテーブル梯子装置
CN112811318B (zh) 一种用于桥式起重机的消摆边界控制方法
Xu et al. Review of Heave Compensation Systems: Design and Control Strategies
Wang et al. Design and simulation research of riser flexible hang-off system based on variable damping for drilling platform to avoid typhoon
CN109270967B (zh) 一种风机塔筒风致振动的半主动控制方法
Daher et al. System synthesis and controller design of a novel pump controlled steer-by-wire system employing modern control techniques
KR20120118696A (ko) 자동화 건축을 위한 유압로봇의 동기제어 방법
CN106564579A (zh) 液压收放减摇缓冲装置
CN215861052U (zh) 一种吊放设备用主被动升沉补偿系统
CN101852229B (zh) 一种用于液压伺服驱动系统动力学控制的实验台
CN210034034U (zh) 飞机舵机并联双阀结构电液伺服阀加载系统
CN114572429A (zh) 一种基于凸轮外形设计的普适火箭回收索系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019390995

Country of ref document: AU

Date of ref document: 20190912

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923748

Country of ref document: EP

Kind code of ref document: A1