WO2020206803A1 - 有机发光器件及其制作方法 - Google Patents

有机发光器件及其制作方法 Download PDF

Info

Publication number
WO2020206803A1
WO2020206803A1 PCT/CN2019/086845 CN2019086845W WO2020206803A1 WO 2020206803 A1 WO2020206803 A1 WO 2020206803A1 CN 2019086845 W CN2019086845 W CN 2019086845W WO 2020206803 A1 WO2020206803 A1 WO 2020206803A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
via hole
thin film
organic light
Prior art date
Application number
PCT/CN2019/086845
Other languages
English (en)
French (fr)
Inventor
刘华龙
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/497,972 priority Critical patent/US11289554B2/en
Publication of WO2020206803A1 publication Critical patent/WO2020206803A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering

Definitions

  • the invention relates to the field of display, in particular to an organic light-emitting device and a manufacturing method thereof.
  • Organic light emitting devices (Organic Light Emitting Diode, OLED) have been widely used in the display field, lighting field, and smart wear field due to their good self-luminous characteristics, high contrast, and fast response.
  • evaporation method There are two main methods for preparing organic light-emitting devices: evaporation method and printing method.
  • the technology of preparing organic light-emitting devices of large, medium and small size by full evaporation method is quite mature compared with printing technology, and has been used in commercial production.
  • the full-evaporation technology has the problem of low material utilization rate and difficulty in preparing high-resolution devices.
  • the material utilization rate of the device prepared by the printing technology is as high as 90%, and the cost of the device preparation is about 17% lower than that of the full evaporation technology, and no mask is required during the printing process, which can be used for the preparation of high-resolution display devices. Therefore, the preparation of large-size and high-resolution organic light-emitting devices is a research hotspot in the display field.
  • the existing organic light-emitting device manufacturing steps are: preparing a thin film transistor (TFT) substrate 1, fabricating a pixel definition layer 2 thereon, and fabricating red sub-pixels on the pixel definition layer 2 (R) Via hole 21, green sub-pixel (G) via hole 22 and blue sub-pixel (B) via hole 23, make the reflective electrode layer 3 in the RGB via holes (21, 22, 23), in the reflective electrode layer 3 is filled with RGB via holes (21, 22, 23) with inkjet printing ink, and dried to form a red sub-pixel 201, a green sub-pixel 202 and a blue sub-pixel 203.
  • TFT thin film transistor
  • the first node device structure hole transport layer (HTL)/hole injection layer (HIL) is only more than ten nanometers, and the film layer is thin, which may affect the performance of the device.
  • the pixel RGB adopts the second node with microcavity effect, the thickness of each layer of the device pixel RGB is large, and the risk of overflow and color mixing is likely to occur during printing. If the ink concentration of the blue sub-pixel is increased separately, It will cause printing difficulties.
  • the purpose of the present invention is to provide an organic light-emitting device and a manufacturing method thereof, which can realize that the thickness of the pixel film layer meets the performance of the device during ink-jet printing and production, and at the same time prevents the overflow problem caused by excessive printing ink, thereby improving the organic light-emitting device The production pass rate.
  • an embodiment of the present invention provides an organic light emitting device, which includes a thin film transistor substrate, a pixel definition layer, a reflective electrode layer, and a plurality of sub-pixels.
  • the pixel defining layer is disposed on the thin film transistor substrate and includes a plurality of via holes; the plurality of sub-pixels are disposed in corresponding via holes; wherein, a stepped thin film layer is provided on the thin film transistor substrate, and Corresponding to a part of the via hole, the depth of the part of the via hole is reduced, and the depth of the other part of the via hole is greater than the depth of the part of the via hole.
  • the via hole includes at least one red sub-pixel via hole, at least one green sub-pixel via hole and at least one blue sub-pixel via hole;
  • the sub-pixel includes at least one red sub-pixel and at least one green sub-pixel And at least one blue sub-pixel, respectively correspondingly disposed in the red sub-pixel via hole, green sub-pixel via hole and blue sub-pixel via hole;
  • the stepped film layer is disposed on the thin film transistor substrate and corresponds to At the positions of the red sub-pixel via hole and the green sub-pixel via hole, the depth of the red sub-pixel via hole and the green sub-pixel via hole is smaller than the depth of the blue sub-pixel via hole.
  • the thickness of the stepped film layer is in the range of 0.1-3um.
  • the material of the stepped thin film layer includes SiO 2 .
  • red sub-pixel, the green sub-pixel and the blue sub-pixel are prepared by inkjet printing.
  • the stepped thin film layer is prepared by evaporation, sputtering or coating.
  • the thickness of the pixel definition layer ranges from 1 um to 5 um.
  • the organic light-emitting device further includes a reflective electrode layer formed between the thin film transistor substrate and the pixel defining layer, and arranged in the red sub-pixel via hole, the green sub-pixel via hole and the blue sub-pixel via hole. Inside the color sub-pixel via hole.
  • a method for manufacturing an organic light emitting device which includes the steps:
  • the step of producing a stepped thin film layer is to produce a stepped thin film on the thin film transistor substrate by evaporation, sputtering or coating.
  • the material of the stepped thin film includes SiO 2 , and the thickness of the stepped thin film is in the range of 0.1- 3um; patterning the step film to form the step film layer, the step film layer has the same area as the red and green light emitting regions;
  • the step of fabricating a pixel definition layer is to fabricate the pixel definition layer on the thin film transistor substrate, and the thickness of the pixel definition layer is in the range of 1um-5um; and graphically process the pixel definition layer to form a red sub-pixel via hole , Green sub-pixel via hole and blue sub-pixel via hole;
  • the red sub-pixel via hole, the green sub-pixel via hole and the blue sub-pixel via hole are filled with inkjet printing ink, and the red sub-pixel, the green sub-pixel and the blue sub-pixel are formed after drying.
  • it also includes a step of making a reflective electrode layer, and the step of making a reflective electrode layer is after the step of making a pixel definition layer, and before the step of inkjet printing, in the step of making a reflective electrode layer, A reflective electrode layer is formed in the red sub-pixel via hole, the green sub-pixel via hole and the blue sub-pixel via hole.
  • the beneficial effect of the present invention is to provide an organic light-emitting device and a method for manufacturing the organic light-emitting device.
  • the red sub-pixel via hole and the green sub-pixel via hole are heightened by arranging a stepped film layer to realize inkjet printing.
  • the thickness of the film layer satisfies the performance of the device, and at the same time prevents the overflow problem caused by excessive printing ink, thereby improving the production pass rate of the organic light emitting device.
  • FIG. 1 is a schematic structural diagram of the process of manufacturing an organic light-emitting device using a first microcavity node in the prior art
  • FIG. 2 is a schematic structural diagram of a process of manufacturing an organic light-emitting device using a second microcavity node in the prior art
  • FIG. 3 is a schematic diagram of the structure of an organic light emitting device in an embodiment of the invention.
  • Fig. 5 is a manufacturing flow chart of an organic light emitting device in another embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the structure in the process of Fig. 5.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, “plurality” means two or more than two, unless specifically defined otherwise.
  • the organic light emitting device includes a thin film transistor substrate 1, a pixel definition layer 2, a reflective electrode layer 3, and a plurality of sub-pixels 21, 22, and 23.
  • the pixel definition layer 2 is disposed on the thin film transistor substrate 1 and includes a plurality of via holes, such as at least one red sub-pixel via 21, at least one green sub-pixel via 22, and at least one blue sub-pixel via 23 .
  • the reflective electrode layer 3 is disposed in the red sub-pixel via hole 21, the green sub-pixel via hole 22 and the blue sub-pixel via hole 23.
  • the sub-pixels include at least one red sub-pixel 201, at least one green sub-pixel 202, and at least one blue sub-pixel 203, which are respectively provided in the red sub-pixel via 21, the green sub-pixel via 22 and the The blue sub-pixel via hole 23.
  • a stepped thin film layer 4 is provided on the thin film transistor substrate 1, which corresponds to a part of the vias, so that the depth of the part of the vias is reduced, and the depth of the other part of the vias is greater than depth.
  • the stepped film layer 4 corresponds to the red sub-pixel via 21 and the green sub-pixel via 22, and is exposed to the red sub-pixel via 21 and the green sub-pixel via 22 in.
  • the stepped film layer 4 is used to reduce the depth of the red sub-pixel via 21 and the green sub-pixel via 22, so that the depth of the red sub-pixel via 21 and the green sub-pixel via 22 can be less than The depth of the blue sub-pixel via 23. It can also be said that the height of the embankment located between the red sub-pixel via hole 21 and the green sub-pixel via hole 22 is smaller than the height of the embankment located on both sides of the blue sub-pixel via hole 23.
  • the bottom of the red sub-pixel via hole 21 and the bottom of the green sub-pixel via hole 22 are the stepped film layer 4, and the bottom of the blue sub-pixel via hole 23 is the thin film transistor substrate. 1.
  • the depth of the blue sub-pixel via hole 23 is equal to the thickness of the pixel definition layer 2.
  • the thickness of the stepped film layer 4 is in the range of 0.1-3um.
  • the material of the stepped film layer 4 includes SiO 2 .
  • red sub-pixel 21, green sub-pixel 22 and blue sub-pixel 23 are prepared by inkjet printing.
  • the stepped thin film layer 4 is prepared by evaporation, sputtering or coating.
  • the thickness of the pixel definition layer 2 ranges from 1um to 5um.
  • a reflective electrode layer 3 is further included, which is disposed in the red sub-pixel via hole 21, the green sub-pixel via hole 22 and the blue sub-pixel via hole. Pixel via 23.
  • another embodiment of the present invention provides a method for manufacturing an organic light emitting device, including the steps:
  • S1 provides a thin film transistor substrate 1
  • S2 is the step of preparing a stepped thin film layer, specifically, a stepped thin film is produced on the thin film transistor substrate 1 by evaporation, sputtering or coating.
  • the stepped thin film material includes SiO 2 , and the stepped thin film material The thickness range is 0.1-3um; the step film is patterned to form a step film layer 4, and the patterned area of the step film is the same as the red and green light emitting areas;
  • S3 is the step of fabricating a pixel definition layer, specifically, fabricating a pixel definition layer 2 on the thin film transistor substrate 1, and the thickness of the pixel definition layer 2 ranges from 1 um to 5 um; performing graphical processing on the pixel definition layer 2, Forming a red sub-pixel via hole 21, a green sub-pixel via hole 22 and a blue sub-pixel via hole 23;
  • S4 Inkjet printing step specifically, filling the red sub-pixel via hole 21, green sub-pixel via hole 22, and blue sub-pixel via hole 23 with inkjet printing ink, and drying to form red sub-pixel 201 and green sub-pixel 202 and the blue sub-pixel 203.
  • the method of manufacturing the organic light emitting device further includes the step of S31 manufacturing a reflective electrode layer.
  • the manufacturing step S31 of the reflective electrode layer is performed in the step S3 of manufacturing a pixel definition layer. After that, and before the inkjet printing step S4, in the step S31 of making the reflective electrode layer, specifically, in the red sub-pixel via hole 21, the green sub-pixel via hole 22 and the blue sub-pixel via hole 23
  • the reflective electrode layer 3 is made inside.
  • the beneficial effect of the present invention is to provide an organic light-emitting device and a method for manufacturing the organic light-emitting device.
  • the red sub-pixel via hole and the green sub-pixel via hole are heightened by arranging a stepped film layer to realize inkjet printing.
  • the thickness of the film layer satisfies the performance of the device, and at the same time prevents the overflow problem caused by excessive printing ink, thereby improving the production pass rate of the organic light-emitting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种有机发光器件及其制作方法。有机发光器件包括薄膜晶体管基板、像素定义层、反射电极层和多个子像素。像素定义层设置于薄膜晶体管基板上,包括多个过孔;多个子像素设置于相对应的过孔内;在薄膜晶体管基板上设有一台阶薄膜层,其对应于一部分过孔,使得一部分过孔的深度减小,而另一部分过孔的深度则大于一部分过孔的深度。有机发光器件的制作方法包括步骤:提供薄膜晶体管基板、制作台阶薄膜层、制作像素定义层、喷墨打印。本发明通过设置台阶薄膜层垫高红色子像素过孔、绿色子像素过孔可实现喷墨打印制作时像素膜层厚度满足器件性能,同时防止墨水溢流问题,提高有机发光器件的制作合格率。

Description

有机发光器件及其制作方法 技术领域
本发明涉及显示领域,尤其涉及一种有机发光器件及其制作方法。
背景技术
有机发光器件(Organic Light Emitting Diode,OLED)以其良好的自发光特性、高的对比度、快速响应等优势,在显示领域、照明领域以及智能穿戴领域等都得到了广泛的应用。
制备有机发光器件的主要方法有蒸镀法和打印法两种,现在利用全蒸镀方法制备大中小尺寸的有机发光器件的技术相对于打印技术来说已相当成熟,目前已经用于商业化生产,但全蒸镀技术存在材料利用率低,难用于制备高分辨率的器件的问题。打印技术制备器件的材料利用率高达90%以上,其制备器件的成本较全蒸镀技术低17%左右,且打印过程中无需掩模板,可用于高分辨率显示器件的制备。所以制备出大尺寸、高分辨率的有机发光器件是现在显示领域的研究热点。
如图1、图2所示,现有的有机发光器件制作步骤为:制备一薄膜晶体管(TFT)基板1,在其上制作像素定义层2并在所述像素定义层2上制作红色子像素(R)过孔21、绿色子像素(G)过孔22和蓝色子像素(B)过孔23,在RGB过孔(21、22、23)内制作反射电极层3,在反射电极层3上通过喷墨打印墨水填充RGB过孔(21、22、23),经干燥形成红色子像素201、绿色子像素202和蓝色子像素203。
由于像素尺寸较小,在打印过程中存在影响器件性能或混色的问题。如图1所示,若采用具有微腔效应的第一节点,红色子像素和绿色子像素可实现,但蓝光波长较短,第一节点器件结构空穴传输层(HTL)/空穴注入层(HIL)仅有十几纳米,膜层较薄,可能会存在影响器件性能问题。
如图2所示,若像素RGB均采用具有微腔效应的第二节点,器件像素RGB各层厚度较大,打印时易产生溢流和混色风险,若单独增加蓝色子像素的墨水浓度,则会导致打印困难。
技术问题
本发明的目的在于,提供一种有机发光器件及其制作方法,可实现喷墨打印制作时像素膜层厚度满足器件性能,同时防止因打印墨水过多导致的溢流问题,从而提高有机发光器件的制作合格率。
技术解决方案
为了解决上述问题,本发明一实施例中提供一种有机发光器件,包括薄膜晶体管基板、像素定义层、反射电极层以及多个子像素。所述像素定义层设置于所述薄膜晶体管基板上,包括多个过孔;所述多个子像素设置于相对应的过孔内;其中,在所述薄膜晶体管基板上设有一台阶薄膜层,其对应于一部分过孔,使得所述一部分过孔的深度减小,而另一部分过孔的深度则大于所述一部分过孔的深度。
进一步的,其中所述过孔包括至少一红色子像素过孔、至少一绿色子像素过孔和至少一蓝色子像素过孔;所述子像素包括至少一红色子像素、至少一绿色子像素和至少一蓝色子像素,分别对应设置于所述红色子像素过孔、绿色子像素过孔和蓝色子像素过孔内;所述台阶薄膜层设置于所述薄膜晶体管基板上,并对应于所述红色子像素过孔和绿色子像素过孔的位置,使得所述红色子像素过孔和绿色子像素过孔的深度小于所述蓝色子像素过孔的深度。
进一步的,其中所述台阶薄膜层的厚度范围为0.1-3um。
进一步的,其中所述台阶薄膜层的材料包括SiO 2
进一步的,其中所述红色子像素、所述绿色子像素和所述蓝色子像素通过喷墨打印方式制备。
进一步的,其中所述台阶薄膜层采用蒸镀、溅射或涂覆方式制备。
进一步的,其中所述像素定义层的厚度范围为1um-5um。
进一步的,其中所述的有机发光器件还包括反射电极层,形成于所述薄膜晶体管基板与所述像素定义层之间,并设置于所述红色子像素过孔、绿色子像素过孔和蓝色子像素过孔内。
本发明又一实施例中提供一种有机发光器件的制作方法,包括步骤:
提供薄膜晶体管基板;
制作台阶薄膜层步骤,在所述薄膜晶体管基板上采用蒸镀、溅射或涂覆方式制作台阶薄膜,所述台阶薄膜的材料包括SiO 2,所述台阶薄膜的膜层的厚度范围为0.1-3um;对所述台阶薄膜进行图形化处理形成所述台阶薄膜层,所述台阶薄膜层与红光和绿光发光区域面积相同;
制作像素定义层步骤,在所述薄膜晶体管基板上制作所述像素定义层,所述像素定义层的厚度范围为1um-5um;对所述像素定义层进行图形化处理,形成红色子像素过孔、绿色子像素过孔和蓝色子像素过孔;
喷墨打印步骤,通过喷墨打印墨水填充所述红色子像素过孔、绿色子像素过孔和蓝色子像素过孔,经干燥形成红色子像素、绿色子像素和蓝色子像素。
进一步的,其中还包括制作反射电极层步骤,所述制作反射电极层步骤是在所述制作像素定义层步骤之后,以及在所述喷墨打印步骤之前,在所述制作反射电极层步骤中,在所述红色子像素过孔、绿色子像素过孔和蓝色子像素过孔内制作反射电极层。
有益效果
本发明的有益效果是:提供一种有机发光器件及其有机发光器件的制作方法,通过设置台阶薄膜层垫高所述红色子像素过孔、绿色子像素过孔可实现喷墨打印制作时像素膜层厚度满足器件性能,同时防止因打印墨水过多导致的溢流问题,从而提高有机发光器件的制作合格率。
附图说明
图1为现有技术采用第一微腔节点制作有机发光器件过程结构示意图;
图2为现有技术采用第二微腔节点制作有机发光器件过程结构示意图;
图3为本发明一实施例中的有机发光器件的结构示意图;
图4为本发明一实施例中的有机发光器件的制作流程图;
图5为本发明又一实施例中的有机发光器件的制作流程图;
图6为图5过程中的结构示意图。
图中部件标识如下:
1、薄膜晶体管基板,2、像素定义层,3、反射电极层,4、台阶薄膜层,
21、红色子像素过孔,22、绿色子像素过孔,23、蓝色子像素过孔,
201、红色子像素,202、绿色子像素,203、蓝色子像素。
本发明的实施方式
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请参阅图3所示,本发明一实施例中,有机发光器件包括薄膜晶体管基板1、像素定义层2、反射电极层3、以及多个子像素21、22、23。所述像素定义层2设置于所述薄膜晶体管基板1上,包括多个过孔,例如至少一红色子像素过孔21、至少一绿色子像素过孔22和至少一蓝色子像素过孔23。所述反射电极层3设置于所述红色子像素过孔21、所述绿色子像素过孔22和所述蓝色子像素过孔23内。所述子像素包括至少一红色子像素201、至少一绿色子像素202和至少一蓝色子像素203,分别对应设置于所述红色子像素过孔21、所述绿色子像素过孔22和所述蓝色子像素过孔23内。其中,在所述薄膜晶体管基板1上设有一台阶薄膜层4,其对应于一部分过孔,使得所述一部分过孔的深度减小,而另一部分过孔的深度则大于所述一部分过孔的深度。在本实施例中,所述台阶薄膜层4对应于所述红色子像素过孔21和绿色子像素过孔22,并暴露于所述红色子像素过孔21和所述绿色子像素过孔22中。所述台阶薄膜层4用以减少所述红色子像素过孔21和所述绿色子像素过孔22深度,可使所述红色子像素过孔21和所述绿色子像素过孔22的深度小于所述蓝色子像素过孔23的深度。也可以说,位于所述红色子像素过孔21和所述绿色子像素过孔22之间的堤坝高度小于位于所述蓝色子像素过孔23两侧的堤坝高度。
由此可知,所述红色子像素过孔21和所述绿色子像素过孔22的孔底为所述台阶薄膜层4,所述蓝色子像素过孔23的孔底为所述薄膜晶体管基板1,所述蓝色子像素过孔23的深度等于所述像素定义层2的厚度。
其中,所述台阶薄膜层4的厚度范围为0.1-3um。
其中,所述台阶薄膜层4的材料包括SiO 2
其中,所述红色子像素21、绿色子像素22和蓝色子像素23通过喷墨打印方式制备。
其中,所述台阶薄膜层4采用蒸镀、溅射或涂覆方式制备。
其中,所述像素定义层2的厚度范围为1um-5um。
其中,所述薄膜晶体管基板1与所述像素定义层2之间还包括一反射电极层3,设置于所述红色子像素过孔21、所述绿色子像素过孔22和所述蓝色子像素过孔23内。
请同时参阅图4和图6所示,本发明又一实施例中提供一种有机发光器件的制作方法,包括步骤:
S1提供薄膜晶体管基板1;
S2制作台阶薄膜层步骤,具体是,在所述薄膜晶体管基板1上采用蒸镀、溅射或涂覆方式制作台阶薄膜,所述台阶薄膜物质的材料包括SiO 2,所述台阶薄膜物质膜的厚度范围为0.1-3um;对所述台阶薄膜进行图形化处理形成台阶薄膜层4,所述台阶薄膜图形化后的区域与红光和绿光发光区域面积相同;
S3制作像素定义层步骤,具体是,在所述薄膜晶体管基板1上制作像素定义层2,所述像素定义层2的厚度范围为1um-5um;对所述像素定义层2进行图形化处理,形成红色子像素过孔21、绿色子像素过孔22和蓝色子像素过孔23;
S4喷墨打印步骤,具体是,通过喷墨打印墨水填充所述红色子像素过孔21、绿色子像素过孔22和蓝色子像素过孔23,经干燥形成红色子像素201、绿色子像素202和蓝色子像素203。
请参阅图5所示,本发明又一实施例中,所述有机发光器件的制作方法还包括S31制作反射电极层步骤,所述制作反射电极层步骤S31是在所述制作像素定义层步骤S3之后,以及在所述喷墨打印步骤S4之前,在所述制作反射电极层步骤S31中具体是,在所述红色子像素过孔21、绿色子像素过孔22和蓝色子像素过孔23内制作反射电极层3。
本发明的有益效果是:提供一种有机发光器件及其有机发光器件的制作方法,通过设置台阶薄膜层垫高所述红色子像素过孔、绿色子像素过孔可实现喷墨打印制作时像素膜层厚度满足器件性能,同时防止因打印墨水过多导致的溢流问题,从而提高有机发光器件的制作合格率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种有机发光器件,包括
    薄膜晶体管基板;
    像素定义层,设置于所述薄膜晶体管基板上,包括多个过孔;以及
    多个子像素,设置于相对应的过孔内;
    其中,
    在所述薄膜晶体管基板上设有一台阶薄膜层,其对应于一部分过孔,使得所述一部分过孔的深度减小,而另一部分过孔的深度则大于所述一部分过孔的深度。
  2. 根据权利要求1所述的有机发光器件,其中,
    所述过孔包括至少一红色子像素过孔、至少一绿色子像素过孔和至少一蓝色子像素过孔;
    所述子像素包括至少一红色子像素、至少一绿色子像素和至少一蓝色子像素,分别对应设置于所述红色子像素过孔、绿色子像素过孔和蓝色子像素过孔内;
    所述台阶薄膜层设置于所述薄膜晶体管基板上,并对应于所述红色子像素过孔和绿色子像素过孔的位置,使得所述红色子像素过孔和绿色子像素过孔的深度小于所述蓝色子像素过孔的深度。
  3. 根据权利要求1所述的有机发光器件,其中,所述台阶薄膜层的厚度范围为0.1-3um。
  4. 根据权利要求1所述的有机发光器件,其中,所述台阶薄膜层的材料包括SiO 2
  5. 根据权利要求1所述的有机发光器件,其中,所述红色子像素、所述绿色子像素和所述蓝色子像素通过喷墨打印方式制备。
  6. 根据权利要求1所述的有机发光器件,其中,所述台阶薄膜层采用蒸镀、溅射或涂覆方式制备。
  7. 根据权利要求1所述的有机发光器件,其中,所述像素定义层的厚度范围为1um-5um。
  8. 根据权利要求1所述的有机发光器件,其中,还包括
    反射电极层,形成于所述薄膜晶体管基板与所述像素定义层之间,并设置于所述红色子像素过孔、绿色子像素过孔和蓝色子像素过孔内。
  9. 一种如权利要求1所述的有机发光器件的制作方法,包括步骤:
    提供薄膜晶体管基板;
    制作台阶薄膜层步骤,在所述薄膜晶体管基板上采用蒸镀、溅射或涂覆方式制作台阶薄膜,所述台阶薄膜的材料包括SiO 2,所述台阶薄膜的膜层的厚度范围为0.1-3um;对所述台阶薄膜进行图形化处理形成所述台阶薄膜层,所述台阶薄膜层与红光和绿光发光区域面积相同;
    制作像素定义层步骤,在所述薄膜晶体管基板上制作所述像素定义层,所述像素定义层的厚度范围为1um-5um;对所述像素定义层进行图形化处理,形成红色子像素过孔、绿色子像素过孔和蓝色子像素过孔;
    喷墨打印步骤,通过喷墨打印墨水填充所述红色子像素过孔、绿色子像素过孔和蓝色子像素过孔,经干燥形成红色子像素、绿色子像素和蓝色子像素。
  10. 根据权利要求9所述的有机发光器件的制作方法,其中,还包括制作反射电极层步骤,所述制作反射电极层步骤是在所述制作像素定义层步骤之后,以及在所述喷墨打印步骤之前,在所述制作反射电极层步骤中,在所述红色子像素过孔、绿色子像素过孔和蓝色子像素过孔内制作反射电极层。
PCT/CN2019/086845 2019-04-09 2019-05-14 有机发光器件及其制作方法 WO2020206803A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/497,972 US11289554B2 (en) 2019-04-09 2019-05-14 Organic light emitting device and fabricating method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910278553.6 2019-04-09
CN201910278553.6A CN110085636A (zh) 2019-04-09 2019-04-09 有机发光器件及其制作方法

Publications (1)

Publication Number Publication Date
WO2020206803A1 true WO2020206803A1 (zh) 2020-10-15

Family

ID=67414558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086845 WO2020206803A1 (zh) 2019-04-09 2019-05-14 有机发光器件及其制作方法

Country Status (3)

Country Link
US (1) US11289554B2 (zh)
CN (1) CN110085636A (zh)
WO (1) WO2020206803A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447258B (zh) * 2022-01-20 2023-12-01 深圳市华星光电半导体显示技术有限公司 显示面板及显示终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180254303A1 (en) * 2017-03-01 2018-09-06 Joled Inc. Organic electroluminescent element, organic electroluminescent panel, and luminescent unit
CN109037301A (zh) * 2018-09-07 2018-12-18 京东方科技集团股份有限公司 阵列基板及制作方法、显示装置
CN109273621A (zh) * 2018-09-13 2019-01-25 合肥鑫晟光电科技有限公司 一种有机发光显示面板、其制备方法及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4483757B2 (ja) * 2005-09-30 2010-06-16 セイコーエプソン株式会社 有機el装置及び光学装置
JP6186697B2 (ja) * 2012-10-29 2017-08-30 セイコーエプソン株式会社 有機el装置の製造方法、有機el装置、電子機器
US9444050B2 (en) * 2013-01-17 2016-09-13 Kateeva, Inc. High resolution organic light-emitting diode devices, displays, and related method
JP2017182892A (ja) * 2016-03-28 2017-10-05 セイコーエプソン株式会社 発光素子、発光装置、及び電子機器
CN109390372B (zh) * 2017-08-08 2021-11-16 合肥视涯技术有限公司 像素结构及其形成方法、显示屏
CN108565350B (zh) * 2018-04-13 2019-06-28 京东方科技集团股份有限公司 Oled器件及其制造方法和显示面板
CN208489238U (zh) * 2018-05-16 2019-02-12 云谷(固安)科技有限公司 有机电致发光装置
CN109273619B (zh) * 2018-08-27 2021-02-09 京东方科技集团股份有限公司 一种有机发光显示面板、压印模板及制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180254303A1 (en) * 2017-03-01 2018-09-06 Joled Inc. Organic electroluminescent element, organic electroluminescent panel, and luminescent unit
CN109037301A (zh) * 2018-09-07 2018-12-18 京东方科技集团股份有限公司 阵列基板及制作方法、显示装置
CN109273621A (zh) * 2018-09-13 2019-01-25 合肥鑫晟光电科技有限公司 一种有机发光显示面板、其制备方法及显示装置

Also Published As

Publication number Publication date
US11289554B2 (en) 2022-03-29
CN110085636A (zh) 2019-08-02
US20210066412A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2021258886A1 (zh) 一种显示面板及其制备方法和显示装置
US9768382B2 (en) Display substrate, its manufacturing method and display device
CN103545457B (zh) 发光器件、阵列基板、显示装置及发光器件的制造方法
US10734583B2 (en) Electroluminescent substrate plate, method for manufacturing the same and display device
CN105118846B (zh) 一种印刷型发光二极管显示器件及其制作方法
WO2019214125A1 (zh) 彩色滤光基板及其制作方法与woled显示器
WO2018205652A1 (zh) 像素结构及其制作方法、显示基板和显示装置
WO2020224010A1 (zh) Oled 显示面板及其制备方法
JP2005538511A5 (zh)
WO2019062580A1 (zh) 显示基板及其制备方法、喷墨打印方法、显示装置
WO2016127560A1 (zh) 一种有机发光二极管阵列基板及其制作方法、显示装置
WO2021031414A1 (zh) 显示面板的制备方法及其功能层的制备方法
CN205542786U (zh) 一种像素界定结构、显示面板及显示装置
WO2020001061A1 (zh) 显示基板及制造方法、显示装置
WO2017173683A1 (zh) 电致光致混合发光显示器件及其制作方法
WO2022048010A1 (zh) 显示面板及其制作方法
US20200066989A1 (en) Organic light-emitting display panel, method for fabricating the same, and display device
WO2021142886A1 (zh) 一种显示面板、其制备方法及显示装置
WO2019052229A1 (zh) 显示基板、显示器件和显示基板的制造方法
WO2019062278A1 (zh) 像素排列结构、像素结构及其制作方法、阵列基板和显示面板
WO2022047929A1 (zh) 彩膜基板及其制作方法、显示面板
WO2021212586A1 (zh) 显示面板及显示面板的制备方法
WO2022199003A1 (zh) 像素排布结构、显示面板及其制备方法
WO2021227153A1 (zh) 显示面板
WO2019192421A1 (zh) Oled基板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924126

Country of ref document: EP

Kind code of ref document: A1