WO2020204107A1 - 電磁鋼板およびその製造方法 - Google Patents

電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2020204107A1
WO2020204107A1 PCT/JP2020/015111 JP2020015111W WO2020204107A1 WO 2020204107 A1 WO2020204107 A1 WO 2020204107A1 JP 2020015111 W JP2020015111 W JP 2020015111W WO 2020204107 A1 WO2020204107 A1 WO 2020204107A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
less
steel sheet
temperature
electromagnetic steel
Prior art date
Application number
PCT/JP2020/015111
Other languages
English (en)
French (fr)
Inventor
美穂 冨田
義顕 名取
屋鋪 裕義
藤村 浩志
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to BR112021016952A priority Critical patent/BR112021016952A2/pt
Priority to US17/441,084 priority patent/US20220186336A1/en
Priority to EP20784220.4A priority patent/EP3950972A4/en
Priority to CN202080025387.XA priority patent/CN113646449B/zh
Priority to JP2020542677A priority patent/JP6863528B2/ja
Priority to KR1020217029948A priority patent/KR102569224B1/ko
Publication of WO2020204107A1 publication Critical patent/WO2020204107A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to an electromagnetic steel sheet and a method for producing the same.
  • the present application claims priority based on Japanese Patent Application No. 2019-711186 filed in Japan on April 3, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses an electromagnetic steel sheet having excellent magnetic characteristics and strength in which the X-ray random intensity ratio of ⁇ 100 ⁇ ⁇ 011> on the surface of the steel sheet is 30 or more and 200 or less.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide an electromagnetic steel sheet having excellent magnetic properties not only in the direction of 45 ° from the rolling direction but also in the direction around the rolling direction. ..
  • the gist of the present invention is the following electrical steel sheet and its manufacturing method.
  • the chemical composition is mass% C: 0.0035% or less, Si: 2.00-3.50%, Mn: 2.00 to 5.00%, P: 0.050% or less, S: 0.0070% or less, Al: 0.15% or less, N: 0.0030% or less, Ni: 0 to 1.00%, Cu: 0 to 0.10%, Remaining: Fe and impurities,
  • the X-ray random intensity ratio of the ⁇ 100 ⁇ ⁇ 011> crystal orientation on the plate surface is 15.0 to 50.0.
  • the magnetic flux densities in the directions of 0 °, 22.5 ° and 45 ° from the rolling direction satisfy the following equation (i), respectively. Electromagnetic steel sheet.
  • B 50 (0 °) Magnetic flux density (T) in the direction of 0 ° from the rolling direction.
  • B 50 (22.5 °) Magnetic flux density (T) in the direction of 22.5 ° from the rolling direction.
  • B 50 (45 °) Magnetic flux density (T) in the direction of 45 ° from the rolling direction.
  • the plate thickness is 0.25 to 0.50 mm.
  • the chemical composition is mass% C: 0.0035% or less, Si: 2.00-3.50%, Mn: 2.00 to 5.00%, P: 0.050% or less, S: 0.0070% or less, Al: 0.15% or less, N: 0.0030% or less, Ni: 0 to 1.00%, Cu: 0 to 0.10%, Remaining: For Fe and slabs that are impurities (A) After heating to 1000 to 1200 ° C., hot rolling is performed under the condition that the finish rolling temperature is in the temperature range of Ac 3 transformation point or higher, and the average cooling rate to 600 ° C. after the completion of rolling is 50 to 150 ° C./ A hot rolling process that cools to a temperature of 600 ° C or less so that it becomes s.
  • (E) The finish annealing step of performing the annealing treatment at a finish annealing temperature in the range of 500 ° C. or higher and less than Ac 1 transformation point is performed in order. Manufacturing method of electrical steel sheet.
  • the rate of temperature rise to the finish annealing temperature is set to 0.1 ° C./s or more and less than 10.0 ° C./s, and the holding time at the finish annealing temperature is set to 10 to 120 s.
  • an electromagnetic steel sheet having excellent magnetic properties can be obtained not only in the direction of 45 ° from the rolling direction but also in the direction around the rolling direction.
  • the present inventors have excellent magnetic characteristics not only in the ⁇ 100 ⁇ ⁇ 011> crystal orientation but also in the surrounding direction, and further, have sufficient magnetic flux density and low iron loss in a high frequency region of 1000 Hz or higher.
  • a method for obtaining an electromagnetic steel sheet to have was examined. As a result, the following findings were obtained.
  • the ⁇ 100 ⁇ ⁇ 011> crystal orientations are accumulated by cold-rolling the hot-rolled steel sheet at a high reduction rate. After that, intermediate annealing is performed and recrystallized to remove strain, and cold rolling is performed at a relatively high reduction rate, so that further crystal rotation occurs and the direction slightly deviates from ⁇ 100 ⁇ ⁇ 011>. The number of crystal grains increases.
  • Carbon (C) is an impurity inevitably contained in the electromagnetic steel sheet according to the present embodiment. That is, the C content is more than 0%. C forms fine carbides. Fine carbides not only inhibit the movement of the domain wall, but also inhibit the grain growth during the manufacturing process. As a result, the magnetic flux density decreases and the iron loss increases. From this point of view, the C content is 0.0035% or less. The C content is preferably as low as possible. However, excessive reduction of C content increases manufacturing costs. Therefore, when considering the operation in industrial production, the preferable lower limit of the C content is 0.0001%, more preferably 0.0005%, still more preferably 0.0010%.
  • Si 2.00 to 3.50%
  • Silicon (Si) increases the electrical resistance of steel and reduces iron loss. If the Si content is less than 2.00%, this effect cannot be obtained.
  • Si content exceeds 3.50%, the magnetic flux density of the steel decreases. If the Si content exceeds 3.50%, the cold workability is further lowered, and the steel sheet may be cracked during cold rolling. Therefore, the Si content is 2.00 to 3.50%.
  • the preferred lower limit of the Si content is 2.10%, more preferably 2.40%.
  • the preferred upper limit of the Si content is 3.40%, more preferably 3.20%.
  • Mn 2.00 to 5.00%
  • Manganese (Mn) increases the electrical resistance of steel and reduces iron loss. Mn further reduce the Ac 3 transformation point, the component of the electromagnetic steel sheet of the present embodiment, to allow grain refinement by phase transformation. As a result, in the electromagnetic steel sheet after the final manufacturing process is completed, the random intensity ratio of the ⁇ 100 ⁇ ⁇ 011> crystal orientation on the surface of the steel sheet can be increased.
  • the Si content of the electromagnetic steel sheet of the present embodiment is high. Si is an element that raises the Ac 3 transformation point. Therefore, in the present embodiment, by increasing the Mn content, the Ac 3 points are lowered, and phase transformation in the hot rolling step is possible. If the Mn content is less than 2.00%, the above effect cannot be obtained.
  • the Mn content is 2.00 to 5.00%.
  • the preferred lower limit of the Mn content is 2.20%, more preferably 2.40%.
  • the preferred upper limit of the Mn content is 4.80%, more preferably 4.60%.
  • P 0.050% or less Phosphorus (P) is an impurity inevitably contained in the electromagnetic steel sheet according to the present embodiment. That is, the P content is more than 0%. P segregates into the steel and reduces the workability of the steel. From this point of view, the P content is set to 0.050% or less.
  • the preferred upper limit of the P content is 0.040%, more preferably 0.030%. It is preferable that the P content is as low as possible. However, excessive reduction of P content increases the manufacturing cost. Considering the operation in industrial production, the preferable lower limit of the P content is 0.0001%, and more preferably 0.0003%.
  • S 0.0070% or less
  • Sulfur (S) is an impurity inevitably contained in the electromagnetic steel sheet according to the present embodiment. That is, the S content is more than 0%. S forms a sulfide such as MnS. Sulfide impedes domain wall movement and reduces magnetic properties. Within the range of the chemical composition of the electromagnetic steel sheet of the present invention, if the S content exceeds 0.0070%, the magnetic properties are deteriorated due to the sulfide produced. That is, the magnetic flux density decreases and the iron loss increases. Therefore, the S content is 0.0070% or less.
  • the preferred upper limit of the S content is 0.0060%, more preferably 0.0050%. It is preferable that the S content is as low as possible. However, excessive reduction of S content increases the manufacturing cost. Considering industrial production, the preferred lower limit of the S content is 0.0001%, more preferably 0.0003%.
  • Al 0.15% or less
  • Aluminum (Al) is a ferrite stabilizing element.
  • Al content exceeds 0.15%, the Ac 3 transformation point rises, and within the range of the chemical composition of the electromagnetic steel sheet of the present invention, the refinement of crystal grains due to phase transformation is inhibited.
  • the Al content is 0.15% or less.
  • the preferable upper limit of the Al content is 0.10%, and more preferably 0.05% or less.
  • the Al content may be 0%. That is, the Al content is 0 to 0.15%.
  • the preferable lower limit of the Al content is 0.0001%, and more preferably 0.0003%.
  • N 0.0030% or less Nitrogen (N) is an impurity inevitably contained in the electromagnetic steel sheet according to the present embodiment. That is, the N content is more than 0%. N forms a fine nitride. Fine nitrides hinder the movement of the domain wall. Therefore, the magnetic flux density decreases and the iron loss increases. Therefore, the N content is 0.0030% or less.
  • the preferred upper limit of the N content is 0.0020%, more preferably 0.0010%.
  • the N content is preferably as low as possible. However, excessive reduction of N content increases the manufacturing cost. Therefore, considering industrial production, the preferable lower limit of the N content is 0.0001%.
  • Nickel (Ni) is an optional element and may not be contained. That is, the Ni content may be 0%.
  • Ni increases the electrical resistance of the steel sheet and reduces iron loss in the same manner as Mn.
  • Ni further reduce the A 3 transformation point, an element that allows grain refinement by phase transformation.
  • the Ni content is 0 to 1.00%.
  • the preferable lower limit of the Ni content is more than 0%, more preferably 0.10%, still more preferably 0.20%.
  • the preferred upper limit of the Ni content is 0.90%, more preferably 0.85%. If Ni is about 0.04%, it can be contained as an impurity in the electromagnetic steel sheet.
  • Cu 0 to 0.10% Copper (Cu) is an optional element and may not be contained. That is, the Cu content may be 0%.
  • Cu increases the electrical resistance of the steel sheet and reduces iron loss in the same manner as Mn.
  • Cu further reduce the A 3 transformation point, to allow grain refinement by phase transformation.
  • the Cu content is 0 to 0.10%.
  • the lower limit of the Cu content is more than 0%, more preferably 0.01%, still more preferably 0.04%.
  • the preferred upper limit of the Cu content is 0.09%, more preferably 0.08%. If Cu is about 0.04%, it may be contained as an impurity in the electromagnetic steel sheet.
  • the balance is Fe and impurities.
  • impurity is a component mixed with raw materials such as ore and scrap, and various factors in the manufacturing process when steel is industrially manufactured, and is allowed as long as it does not adversely affect the present invention. Means something.
  • the content of Cr and Mo as impurity elements is not particularly specified. In the electromagnetic steel sheet according to the present invention, even if these elements are contained in an amount of 0.2% or less, the effect of the present invention is not particularly affected.
  • O is also an impurity element, but even if it is contained in the range of 0.05% or less, the effect of the present invention is not affected. Since O may be mixed in the annealing step, even if it is contained in the range of 0.01% or less in the content of the slab stage (that is, the ladle value), the effect of the present invention is not particularly affected.
  • Impurities other than the above-mentioned impurities are, for example, Ti, V, W, Nb, Zr, Ca, Mg, REM, Pb, Bi, As, B, Se. All of these elements may suppress grain growth.
  • the content of each of the above elements is preferably 0.01% or less, more preferably 0.005% or less.
  • the electromagnetic steel sheet according to the present invention has a random X-ray intensity ratio of ⁇ 100 ⁇ ⁇ 011> crystal orientation on the plate surface of the steel sheet of 15.0 to 50.0.
  • the plate surface of the steel plate is a surface parallel to the rolling direction and the plate width direction of the steel plate, and means a surface perpendicular to the plate thickness direction of the steel plate.
  • the X-ray random intensity ratio of the ⁇ 100 ⁇ ⁇ 011> crystal orientation on the steel plate surface is less than 15.0, the degree of integration of the easily magnetized axes in the direction inclined by 45 ° with respect to the rolling direction RD is too low. In this case, a sufficient magnetic flux density cannot be obtained in a direction inclined by 45 ° with respect to the rolling direction RD, and the iron loss also increases.
  • the X-ray random intensity ratio of the ⁇ 100 ⁇ ⁇ 011> crystal orientation on the plate surface of the steel plate exceeds 50.0, the magnetic flux density of the electromagnetic steel plate having the above chemical composition is saturated.
  • the X-ray random intensity ratio of the ⁇ 100 ⁇ ⁇ 011> crystal orientation on the steel plate surface is 15.0 to 50.0.
  • the preferred lower limit of the X-ray random intensity ratio is 17.0, more preferably 20.0.
  • the preferred upper limit of the X-ray random intensity ratio is 47.0, more preferably 45.0.
  • the ⁇ 100 ⁇ ⁇ 011> crystal orientation X-ray random intensity ratio on the surface of a steel plate is the ⁇ 100 ⁇ ⁇ 011> crystal orientation of a standard sample (random sample) that does not have accumulation in a specific orientation in X-ray diffraction measurement. It is the ratio of the X-ray diffraction intensity of the measured ⁇ 100 ⁇ ⁇ 011> crystal orientation of the measured electromagnetic steel plate sample to the X-ray diffraction intensity of.
  • the X-ray random intensity ratio of the ⁇ 100 ⁇ ⁇ 011> crystal orientation on the surface of the steel plate can be measured by the following method. Crystal orientation distribution representing a three-dimensional texture calculated by the series expansion method based on the pole diagrams of ⁇ 200 ⁇ , ⁇ 110 ⁇ , ⁇ 310 ⁇ , and ⁇ 211 ⁇ of the ⁇ -Fe phase measured by the X-ray diffraction method.
  • the X-ray random intensity ratio is obtained from the function (Orientation Distribution Function: ODF).
  • ODF Orientation Distribution Function
  • the measurement by the X-ray diffraction method is performed at an arbitrary position between the plate thickness / 4 and the plate thickness / 2 of the electromagnetic steel sheet. At this time, the measurement surface is finished by chemical polishing or the like so as to be smooth.
  • the magnetic flux densities in the directions of 0 °, 22.5 ° and 45 ° from the rolling direction RD of the steel sheet satisfy the following equation (i), respectively. 1.005 x (B 50 (0 °) + B 50 (45 °)) / 2 ⁇ B 50 (22.5 °) ... (i)
  • B 50 (0 °) Magnetic flux density (T) in the direction of 0 ° from the rolling direction.
  • B 50 (22.5 °) Magnetic flux density (T) in the direction of 22.5 ° from the rolling direction.
  • B 50 (45 °) Magnetic flux density (T) in the direction of 45 ° from the rolling direction.
  • the anisotropy is moderately relaxed, and when the electromagnetic steel sheet is used as the core of the electrical equipment, the magnetism easily flows along the shape of the core.
  • the electromagnetic steel sheet according to the present embodiment more preferably satisfies the following formula (ii). This is because the electromagnetic steel sheet according to the present embodiment satisfies the following equation (ii), so that the magnetic flux is concentrated in the teeth direction and the yoke direction of the split core, and the leakage flux can be reduced.
  • the meaning of each symbol in the above equation (ii) is the same as that of the equation (i).
  • the plate thickness of the electromagnetic steel sheet is not particularly limited.
  • the preferable thickness of the electromagnetic steel sheet is 0.25 to 0.50 mm. Generally, the thinner the plate, the lower the iron loss, but the lower the magnetic flux density. When the thickness of the electromagnetic steel sheet according to the present embodiment is 0.25 mm or more, the iron loss is lower and the magnetic flux density is higher. On the other hand, if the plate thickness is 0.50 mm or less, low iron loss can be maintained.
  • the preferable lower limit of the plate thickness is 0.30 mm. In the electromagnetic steel sheet of the present embodiment, even if the sheet thickness is as thick as 0.50 mm, a high magnetic flux density and a low iron loss can be obtained.
  • the electromagnetic steel sheet according to the present invention can be widely applied to applications requiring magnetic characteristics (high magnetic flux density and low iron loss), and examples thereof include the following applications.
  • A Servo motors, stepping motors, compressors used in electrical equipment.
  • B Drive motor used for electric vehicles and hybrid vehicles.
  • the vehicle includes an automobile, a motorcycle, a railroad, and the like.
  • C Generator.
  • D Iron cores, choke coils, reactor (E) current sensors, etc. for various purposes.
  • the electromagnetic steel sheet according to the present invention can be applied to applications other than the above applications.
  • the electromagnetic steel sheet of the present invention is particularly suitable for use as a split core, and is further suitable for a split core of a drive motor of an electric vehicle or a hybrid vehicle, which is applied in a high frequency region of 1000 Hz or higher.
  • the electromagnetic steel sheet is manufactured by (a) hot rolling step, (b) first cold rolling step, (c) intermediate annealing step, (d) second cold rolling step, and (e) finishing.
  • the annealing steps are provided in this order.
  • each step will be described in detail.
  • Hot rolling step In the hot rolling step, a slab satisfying the above-mentioned chemical composition is hot-rolled to produce a steel sheet.
  • the hot rolling step includes a heating step and a rolling step.
  • Slabs are manufactured by a well-known method. For example, molten steel is manufactured in a converter or an electric furnace. The produced molten steel is secondarily refined by a degassing facility or the like to obtain a molten steel having the above chemical composition. Slabs are cast using molten steel by continuous casting or ingot making. The cast slab may be block-rolled.
  • the slab having the above-mentioned chemical composition is heated to 1000 to 1200 ° C. Specifically, the slab is placed in a heating furnace or a soaking furnace and heated in the furnace.
  • the holding time at the above heating temperature in a heating furnace or a soaking furnace is, for example, 30 to 200 hours.
  • the slab heated by the heating process is rolled in a plurality of passes to manufacture a steel sheet.
  • pass means that the steel sheet passes through one rolling stand having a pair of work rolls and is subjected to rolling.
  • Hot rolling is performed, for example, by performing tandem rolling using a tandem rolling mill including a plurality of rolling stands arranged in a row (each rolling stand has a pair of work rolls), and rolling a plurality of passes.
  • reverse rolling having a pair of work rolls may be performed to perform rolling of a plurality of passes. From the viewpoint of productivity, it is preferable to carry out a plurality of rolling passes using a tandem rolling mill.
  • the finish rolling temperature in the rolling process shall be at least the Ac 3 transformation point. After the rolling is completed, cooling is performed to a temperature of 600 ° C. or lower so that the average cooling rate up to 600 ° C. is 50 to 150 ° C./s.
  • the cooling method after the steel sheet temperature reaches 600 ° C. is not particularly limited.
  • the steel sheet temperature means the surface temperature (° C.) of the steel sheet.
  • the finish rolling temperature means the surface temperature (° C.) of the steel sheet on the exit side of the rolling stand where the final pass is reduced in the above rolling process during the hot rolling process.
  • the finish rolling temperature can be measured by, for example, a temperature gauge installed on the exit side of the rolling stand that reduces the final pass.
  • the finish rolling temperature for example, when the total length of the steel sheet is divided into 10 equal parts in the rolling direction to make 10 divisions, the average value of the temperature measurement results of the portion excluding one division at the front end and one division at the rear end is used. means.
  • the average cooling rate up to 600 ° C is determined by the following method.
  • a steel sheet having the above chemical composition is used as a sample steel sheet, and the surface temperature is measured with a radiation thermometer to measure the time from the completion of rolling to cooling to 600 ° C.
  • the average cooling rate is calculated based on the measured time.
  • a cold rolling step is carried out on a steel sheet manufactured by the hot rolling step without performing an annealing step.
  • Cold rolling is performed, for example, by performing tandem rolling using a tandem rolling mill including a plurality of rolling stands arranged in a row (each rolling stand has a pair of work rolls), and rolling a plurality of passes. May be good.
  • reverse rolling may be carried out by a Zendimia rolling mill or the like having a pair of work rolls, and rolling of one pass or a plurality of passes may be carried out. From the viewpoint of productivity, it is preferable to perform rolling of multiple passes using a tandem rolling mill.
  • cold rolling is carried out without performing annealing treatment during cold rolling.
  • cold rolling is carried out in a plurality of passes without an annealing treatment being sandwiched between the cold rolling passes. ..
  • cold rolling may be carried out with only one pass using a reverse type rolling mill.
  • cold rolling is carried out using a tandem type rolling mill, cold rolling is carried out continuously in a plurality of passes (passes at each rolling stand).
  • the rolling reduction in the first cold rolling step is 80 to 92%.
  • the annealing step after the hot rolling process and before the cold rolling process is omitted.
  • the chemical composition of the electromagnetic steel sheet according to the present embodiment has a high Mn content. Therefore, when the hot-rolled sheet annealing carried out with the conventional electromagnetic steel sheet is carried out, Mn segregates at the grain boundaries, and the workability of the steel sheet (hot-rolled steel sheet) after the hot rolling process is significantly lowered.
  • the annealing treatment referred to here means, for example, a heat treatment at 300 ° C. or higher.
  • (C) Intermediate Annealing Step the steel sheet after the first cold rolling step is annealed at an intermediate annealing temperature in the range of 500 ° C. or higher and less than the Ac 1 transformation point.
  • the intermediate annealing temperature is less than 500 ° C.
  • the strain introduced by the cold rolling step cannot be sufficiently reduced.
  • the degree of integration of ⁇ 100 ⁇ ⁇ 011> crystal orientation decreases.
  • the X-ray random intensity ratio of the ⁇ 100 ⁇ ⁇ 011> crystal orientation on the steel plate surface of the electromagnetic steel plate is out of the range of 15.0 to 50.0.
  • the intermediate annealing temperature exceeds one point of Ac, a part of the structure of the steel sheet is transformed into austenite, and the crystal orientation becomes random.
  • the preferred lower limit of the intermediate annealing temperature is 550 ° C, more preferably 570 ° C.
  • the intermediate annealing temperature is the plate temperature (the temperature of the steel plate surface) near the extraction port of the annealing furnace.
  • the plate temperature of the annealing furnace can be measured by a temperature gauge arranged at the annealing furnace extraction port.
  • the holding time at the intermediate annealing temperature in the intermediate annealing step may be a time well known to those skilled in the art.
  • the holding time at the intermediate annealing temperature is, for example, 1 to 30 s.
  • the holding time at the intermediate annealing temperature is not limited to this.
  • the heating rate up to the intermediate annealing temperature may be a well-known condition.
  • the rate of temperature rise to the intermediate annealing temperature is, for example, 10.0 to 20.0 ° C./s.
  • the rate of temperature rise up to the intermediate annealing temperature is not limited to this.
  • the atmosphere at the time of intermediate annealing is not particularly limited, but for example, an atmosphere gas (drying) containing 20% H 2 and having the balance of N 2 is used for the atmosphere at the time of intermediate annealing.
  • the cooling rate of the steel sheet after intermediate annealing is not particularly limited. The cooling rate is, for example, 5.0 to 50.0 ° C./s.
  • Second cold rolling step A second cold rolling step is carried out on the steel sheet after the intermediate annealing step is completed. Specifically, the steel sheet after the intermediate annealing step is rolled (cold rolled) at room temperature and in the air.
  • cold rolling for example, a reverse rolling mill represented by the Zendimia rolling mill described above or a tandem rolling mill is used.
  • cold rolling is carried out without performing annealing treatment during cold rolling.
  • cold rolling is carried out in a plurality of passes without an annealing treatment being sandwiched between the cold rolling passes. ..
  • cold rolling may be carried out with only one pass using a reverse type rolling mill.
  • cold rolling is carried out using a tandem type rolling mill, cold rolling is carried out continuously in a plurality of passes (passes at each rolling stand).
  • the rolling reduction in the second cold rolling step is more than 15.0% and 20.0% or less.
  • the preferable lower limit of the rolling reduction in the second cold rolling step is 17.0%.
  • the number of cold rolling passes in the second cold rolling step may be only one pass (that is, only one rolling) or may be multiple passes.
  • the strain introduced into the steel sheet by the hot rolling step and the first cold rolling step is reduced once. Then, the second cold rolling step is carried out. As a result, the crystal is further rotated, and the number of crystal grains in the direction slightly deviated from ⁇ 100 ⁇ ⁇ 011> increases. As a result, the magnetic flux density in the direction of 22.5 ° from the rolling direction RD is improved, and the anisotropy is appropriately relaxed.
  • (E) Finish Annealing Step the steel sheet after the second cold rolling step is annealed at a finish annealing temperature in the range of 500 ° C. or higher and less than the Ac 1 transformation point.
  • the finish annealing temperature is less than 500 ° C., the grain growth of ⁇ 100 ⁇ ⁇ 011> crystal orientation grains does not occur sufficiently. As a result, the X-ray random intensity ratio of the ⁇ 100 ⁇ ⁇ 011> crystal orientation on the steel plate surface of the electromagnetic steel plate is out of the range of 15.0 to 50.0.
  • the finish annealing temperature exceeds one point of Ac, a part of the structure of the steel sheet is transformed into austenite. As a result, the X-ray random intensity ratio of the ⁇ 100 ⁇ ⁇ 011> crystal orientation on the steel plate surface of the electromagnetic steel plate is out of the range of 15.0 to 50.0.
  • the preferred lower limit of the finish annealing temperature is 550 ° C, more preferably 570 ° C.
  • the finish annealing temperature is the plate temperature (the temperature of the steel plate surface) near the extraction port of the annealing furnace.
  • the furnace temperature of the annealing furnace can be measured by a temperature gauge arranged at the annealing furnace extraction port.
  • the rate of temperature rise to the finish annealing temperature in the finish annealing step may be a temperature rise rate well known to those skilled in the art, and the holding time at the finish annealing temperature may be a time well known to those skilled in the art.
  • the atmosphere during the finish annealing process is not particularly limited.
  • an atmosphere gas (drying) containing 20% H 2 and the balance being N 2 is used.
  • the cooling rate of the steel sheet after finish annealing is not particularly limited. The cooling rate is, for example, 5 to 20 ° C./s.
  • the preferable holding time at the finish annealing temperature in the finish annealing step is 10 to 120 s.
  • the holding time is 10 to 120 s, the degree of integration of ⁇ 100 ⁇ ⁇ 011> crystal orientation is increased.
  • a more preferable lower limit of the holding time is 12 s, more preferably 15 s.
  • a more preferable upper limit of the holding time is 100 s, more preferably 90 s.
  • the holding time means the holding time after the steel sheet temperature reaches the finish annealing temperature.
  • the preferable rate of temperature rise to the finish annealing temperature in the finish annealing step is 0.1 ° C./s or more and less than 10.0 ° C./s.
  • rate of temperature rise is 0.1 ° C./s or more and less than 10.0 ° C./s.
  • the rate of temperature rise is determined by the following method.
  • a thermocouple is attached to a steel sheet having the above chemical composition and obtained by carrying out the steps from the hot rolling step to the second cold rolling step to obtain a sample steel sheet.
  • the temperature is raised on the sample steel sheet to which the thermocouple is attached, and the time from the start of the temperature rise to the arrival at the finish annealing temperature is measured.
  • the rate of temperature rise is determined based on the measured time.
  • the method for manufacturing an electromagnetic steel sheet according to the present invention is not limited to the above manufacturing process.
  • a shot blasting step and / or a pickling step may be carried out after the hot rolling step and before the cold rolling step.
  • shot blasting step shot blasting is performed on the steel sheet after the hot rolling step to break and remove the scale formed on the surface of the steel sheet after the hot rolling step.
  • pickling process the steel sheet after the hot rolling process is pickled.
  • an aqueous hydrochloric acid solution is used as a pickling bath.
  • the scale formed on the surface of the steel sheet is removed by pickling.
  • the shot blasting step may be carried out after the hot rolling step and before the cold rolling step, and then the pickling step may be carried out.
  • a coating step may be further carried out after the finish annealing step.
  • an insulating coating is applied to the surface of the steel sheet after the finish annealing process.
  • the type of insulating coating is not particularly limited.
  • the insulating coating may be an organic component or an inorganic component, and the insulating coating may contain an organic component and an inorganic component.
  • the inorganic component is, for example, dichromate-boric acid type, phosphoric acid type, silica type and the like.
  • the organic component is, for example, a general acrylic-based, acrylic styrene-based, acrylic silicon-based, silicon-based, polyester-based, epoxy-based, or fluorine-based resin.
  • the preferable resin is an emulsion type resin.
  • An insulating coating that exhibits adhesiveness by heating and / or pressurizing may be applied.
  • the insulating coating having adhesive ability is, for example, an acrylic-based, phenol-based, epoxy-based, or melamine-based resin.
  • the coating process is an arbitrary process. Therefore, it is not necessary to carry out the coating step after the finish annealing step.
  • hot rolling was carried out under the conditions shown in Table 2 to produce a hot-rolled steel sheet having a plate thickness of 2.0 mm.
  • Magnetic flux density measurement test A 55 mm ⁇ 55 mm single plate test piece was produced from the electromagnetic steel sheets of each test number by punching. Using a single plate magnetic measuring instrument, the magnetic flux densities B 50 (0 °), B 50 (22.5 °) and B 50 (22.5 °) in the directions of 0 °, 22.5 ° and 45 ° from the rolling direction RD, respectively, by the method described above. B 50 (45 °) was measured. The magnetic field at the time of measurement was 5000 A / m.
  • test No. In No. 12 the Mn content was less than the specified value
  • Test No. In No. 14 since the Si content was less than the specified value, the ⁇ 100 ⁇ ⁇ 011> crystal orientation did not develop.
  • Test No. In No. 13 since the Mn content was excessive, the workability was lowered and cracks were generated after cold rolling, so the experiment was stopped.
  • Test No. In No. 16 the finish rolling temperature was low, and the test No. In No. 17, the cooling rate was too low, and Test No. At 18, the cooling rate was too high, so the ⁇ 100 ⁇ ⁇ 011> crystal orientation did not develop.
  • Test No. In No. 19 the first cold rolling ratio was too low, while the test No. In No. 20, the first cold rolling ratio was too high, and in each case, the magnetic flux density was lowered as a whole.
  • Test No. 23 although the iron loss and the magnetic flux density were excellent, the anisotropy was not alleviated because the second cold rolling ratio was low. On the other hand, Test No. In No. 24, the second cold rolling ratio was too high, so that the deviation from the ⁇ 100 ⁇ ⁇ 011> crystal orientation became large, resulting in a decrease in the magnetic flux density as a whole.
  • an electromagnetic steel sheet having excellent magnetic properties can be obtained not only in the direction of 45 ° from the rolling direction but also in the direction around the rolling direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

この電磁鋼板は、化学組成が、質量%で、C:0.0035%以下、Si:2.00~3.50%、Mn:2.00~5.00%、P:0.050%以下、S:0.0070%以下、Al:0.15%以下、N:0.0030%以下、Ni:0~1.00%、Cu:0~0.10%、残部:Feおよび不純物であり、鋼板の板面における{100}<011>結晶方位のX線ランダム強度比が15.0~50.0であり、鋼板の圧延方向からそれぞれ0°、22.5°および45°の方向における磁束密度が[1.005×(B50(0°)+B50(45°))/2≦B50(22.5°)]を満足する。

Description

電磁鋼板およびその製造方法
 本発明は、電磁鋼板およびその製造方法に関する。
 本願は、2019年4月3日に、日本に出願された特願2019-71186号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境問題が注目されており、省エネルギーへの取り組みに対する要求は、一段と高まってきている。なかでも電機機器の高効率化が強く要望されている。このため、モータまたは発電機等の鉄心材料として広く使用されている電磁鋼板においても、磁気特性の向上に対する要請がさらに強まっている。そのため、電機機器のコアとして利用される電磁鋼板には、低い鉄損および高い磁束密度が要求される。
 電磁鋼板の磁束密度を高めるためには、鉄の磁化容易軸方向である<100>方位を特定の方向に集積させることが望ましい。例えば、特許文献1においては、鋼板板面における{100}<011>のX線ランダム強度比が30以上200以下である、磁気特性と強度に優れた電磁鋼板が開示されている。
日本国特開2017-145462号公報
 特許文献1に開示された電磁鋼板では、鋼板板面において、{100}<011>結晶方位が集積している。つまり、鋼板板面において、磁化容易軸が圧延方向RDから45°傾斜して集積している。そのため、上記電磁鋼板は優れた磁気特性を有する。
 しかしながら、特許文献1に記載される電磁鋼板では、圧延方向RDから45°方向における磁気特性のみが卓越しており、異方性が極めて強い。実際、電磁鋼板が電機機器のコアとして利用される場合には、コアの形状に沿って磁束が流れる必要があることから、{100}<011>結晶方位のみならず、その周囲における磁気特性も重要となる。
 本発明は、このような問題を解決するためになされたものであり、圧延方向から45°方向だけでなく、その周囲の方向において優れた磁気特性を有する電磁鋼板を提供することを目的とする。
 本発明は、下記の電磁鋼板およびその製造方法を要旨とする。
 (1)化学組成が、質量%で、
 C:0.0035%以下、
 Si:2.00~3.50%、
 Mn:2.00~5.00%、
 P:0.050%以下、
 S:0.0070%以下、
 Al:0.15%以下、
 N:0.0030%以下、
 Ni:0~1.00%、
 Cu:0~0.10%、 
 残部:Feおよび不純物であり、
 板面における{100}<011>結晶方位のX線ランダム強度比が15.0~50.0であり、
 圧延方向からそれぞれ0°、22.5°および45°の方向における磁束密度が下記(i)式を満足する、
 電磁鋼板。
 1.005×(B50(0°)+B50(45°))/2≦B50(22.5°) ・・・(i)
 但し、上記式(i)中の各記号の意味は以下のとおりである。
 B50(0°):圧延方向から0°の方向における磁束密度(T)
 B50(22.5°):圧延方向から22.5°の方向における磁束密度(T)
 B50(45°):圧延方向から45°の方向における磁束密度(T)
 (2)板厚が、0.25~0.50mmである、
 上記(1)に記載の電磁鋼板。
 (3)化学組成が、質量%で、
 C:0.0035%以下、
 Si:2.00~3.50%、
 Mn:2.00~5.00%、
 P:0.050%以下、
 S:0.0070%以下、
 Al:0.15%以下、
 N:0.0030%以下、
 Ni:0~1.00%、
 Cu:0~0.10%、
 残部:Feおよび不純物であるスラブに対して、
 (a)1000~1200℃に加熱した後、仕上げ圧延温度をAc変態点以上の温度範囲となる条件で熱間圧延を行い、圧延完了後に600℃までの平均冷却速度が50~150℃/sとなるように600℃以下の温度まで冷却を行う、熱間圧延工程と、
 (b)焼鈍処理を実施することなく、80~92%の圧下率で冷間圧延を実施する、第1冷間圧延工程と、
 (c)500℃以上Ac変態点未満の範囲の中間焼鈍温度で焼鈍処理を実施する、中間焼鈍工程と、
 (d)15.0%を超えて20.0%以下の圧下率で冷間圧延を実施する、第2冷間圧延工程と、
 (e)500℃以上Ac変態点未満の範囲の仕上げ焼鈍温度で焼鈍処理を実施する、仕上げ焼鈍工程と、を順に施す、
 電磁鋼板の製造方法。
 (4)前記仕上げ焼鈍工程において、前記仕上げ焼鈍温度までの昇温速度を0.1℃/s以上10.0℃/s未満とし、かつ、前記仕上げ焼鈍温度での保持時間を10~120sとする、
 上記(3)に記載の電磁鋼板の製造方法。
 本発明によれば、圧延方向から45°の方向だけでなく、その周囲の方向において優れた磁気特性を有する電磁鋼板が得られる。
 本発明者らは、{100}<011>結晶方位のみならず、その周囲の方向において優れた磁気特性を有し、さらに、1000Hz以上の高周波数域において十分な磁束密度と低鉄損とを有する電磁鋼板を得る方法について検討を行った。その結果、以下の知見を得るに至った。
 従来の製造方法と同様に、熱延鋼板に対して、高い圧下率で冷間圧延を施すことにより、{100}<011>結晶方位が集積する。その後、中間焼鈍して再結晶させてひずみを除去し、さらに比較的高い圧下率で冷間圧延を施すことにより、さらに結晶の回転が生じ、{100}<011>からわずかにずれた方向の結晶粒が増加する。
 本発明は上記の知見に基づいてなされたものである。以下、本発明の各要件について詳しく説明する。
 1.化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
 C:0.0035%以下
 炭素(C)は、本実施形態に係る電磁鋼板に不可避的に含まれる不純物である。つまり、C含有量は0%超である。Cは微細な炭化物を形成する。微細な炭化物は、磁壁の移動を阻害するだけでなく、製造工程中における粒成長を阻害する。それにより、磁束密度が低下したり、鉄損が増加したりする。この観点から、C含有量は0.0035%以下である。C含有量はなるべく低い方が好ましい。しかしながら、C含有量の過度の低減は、製造コストを高める。したがって、工業的生産における操業を考慮した場合、C含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。
 Si:2.00~3.50%
 シリコン(Si)は鋼の電気抵抗を高め、鉄損を低減する。Si含有量が2.00%未満であると、この効果が得られない。一方、Si含有量が3.50%を超えると、鋼の磁束密度が低下する。Si含有量が3.50%を超えるとさらに、冷間加工性が低下し、冷間圧延時に鋼板に割れが発生する場合がある。したがって、Si含有量は2.00~3.50%である。Si含有量の好ましい下限は2.10%であり、さらに好ましくは2.40%である。Si含有量の好ましい上限は3.40%であり、さらに好ましくは3.20%である。
 Mn:2.00~5.00%
 マンガン(Mn)は鋼の電気抵抗を高め、鉄損を低減する。Mnはさらに、Ac変態点を低下させ、本実施形態の電磁鋼板の成分系において、相変態による結晶粒の微細化を可能とする。これにより、最終の製造工程終了後の電磁鋼板において、鋼板板面における{100}<011>結晶方位のランダム強度比を高めることができる。上述のとおり、本実施形態の電磁鋼板のSi含有量は高い。SiはAc変態点を上昇させる元素である。そこで、本実施形態では、Mn含有量を高めることにより、Ac点を低下させ、熱間圧延工程での相変態を可能とする。Mn含有量が2.00%未満であると、上記効果が得られない。一方、Mn含有量が高すぎると、MnSが過剰に生成して、冷間加工性が低下する。したがって、Mn含有量は2.00~5.00%である。Mn含有量の好ましい下限は2.20%であり、さらに好ましくは2.40%である。Mn含有量の好ましい上限は4.80%であり、さらに好ましくは4.60%である。
 P:0.050%以下
 リン(P)は、本実施形態に係る電磁鋼板に不可避的に含まれる不純物である。つまり、P含有量は0%超である。Pは、鋼中に偏析して、鋼の加工性を低下させる。この観点から、P含有量を0.050%以下とする。P含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%である。P含有量はなるべく低い方が好ましい。しかしながら、P含有量の過剰な低減は製造コストを高めてしまう。工業的生産における操業を考慮した場合、P含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%である。
 S:0.0070%以下
 硫黄(S)は、本実施形態に係る電磁鋼板に不可避的に含まれる不純物である。つまり、S含有量は0%超である。Sは、MnS等の硫化物を形成する。硫化物は、磁壁移動を妨げ、磁気特性を低下する。本発明の電磁鋼板の化学組成の範囲において、S含有量が0.0070%を超えると、生成した硫化物により、磁気特性が低下する。つまり、磁束密度が低下し、鉄損が高まる。したがって、S含有量は0.0070%以下である。S含有量の好ましい上限は0.0060%であり、さらに好ましくは0.0050%である。S含有量はなるべく低い方が好ましい。しかしながら、S含有量の過剰な低減は製造コストを高めてしまう。工業的生産を考慮すれば、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%である。
 Al:0.15%以下
 アルミニウム(Al)は、フェライト安定化元素である。Al含有量が0.15%を超えると、Ac変態点が上昇し、本発明の電磁鋼板の化学組成の範囲において、相変態による結晶粒の微細化を阻害する。その結果、最終の製造工程終了後の電磁鋼板において、鋼板板面における{100}<011>結晶方位のランダム強度比が低下する。したがって、Al含有量は0.15%以下である。Al含有量の好ましい上限は0.10%であり、さらに好ましくは、0.05%以下である。Al含有量は0%であってもよい。つまり、Al含有量は0~0.15%である。しかしながら、Al含有量の過剰な低減は製造コストを高めてしまう。したがって、工業的生産での操業を考慮した場合、Al含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%である。
 N:0.0030%以下
 窒素(N)は、本実施形態に係る電磁鋼板に不可避的に含まれる不純物である。つまり、N含有量は0%超である。Nは微細な窒化物を形成する。微細な窒化物は、磁壁の移動を阻害する。そのため、磁束密度が低下し、鉄損が高まる。したがって、N含有量は0.0030%以下である。N含有量の好ましい上限は0.0020%であり、さらに好ましくは0.0010%である。N含有量はなるべく低い方が好ましい。しかしながら、N含有量の過剰な低減は製造コストを高めてしまう。したがって、工業的生産を考慮すれば、N含有量の好ましい下限は0.0001%である。
 Ni:0~1.00%
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。つまり、Ni含有量は0%であってもよい。本実施形態に係る電磁鋼板がNiを含有する場合、NiはMnと同様に鋼板の電気抵抗を高め、鉄損を低減する。Niはさらに、A変態点を低下させて、相変態による結晶粒の微細化を可能とする元素である。しかしながら、Ni含有量が高すぎると、Niは高価であるため製品コストが高くなる。したがって、Ni含有量は0~1.00%である。Ni含有量の好ましい下限は0%超であり、さらに好ましくは0.10%であり、さらに好ましくは0.20%である。Ni含有量の好ましい上限は0.90%であり、さらに好ましくは0.85%である。なお、Niは0.04%程度であれば電磁鋼板中に不純物として含まれ得る。
 Cu:0~0.10%
 銅(Cu)は任意元素であり、含有されなくてもよい。つまり、Cu含有量は0%であってもよい。本実施形態に係る電磁鋼板がCuを含有する場合、CuはMnと同様に鋼板の電気抵抗を高め、鉄損を低減する。Cuはさらに、A変態点を低下させて、相変態による結晶粒の微細化を可能とする。しかしながら、Cu含有量が高すぎると、CuSが過剰に生成して、仕上げ焼鈍における粒成長を阻害して鉄損が劣化する。したがって、Cu含有量は0~0.10%である。Cu含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.04%である。Cu含有量の好ましい上限は0.09%であり、さらに好ましくは0.08%である。なお、Cuは0.04%程度であれば電磁鋼板中に不純物として含まれ得る。
 本発明の電磁鋼板の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 なお、不純物元素として、CrおよびMoの含有量に関しては、特に規定されない。本発明に係る電磁鋼板では、これらの元素を0.2%以下で含有しても、本発明の効果に特に影響はない。
 Oも不純物元素であるが、0.05%以下の範囲で含有しても、本発明の効果に影響はない。Oは、焼鈍工程において混入することもあるため、スラブ段階(すなわち、レードル値)の含有量においては、0.01%以下の範囲で含有しても、本発明の効果に特に影響はない。
 上述の不純物以外の他の不純物は例えば、Ti、V、W、Nb、Zr、Ca、Mg、REM、Pb、Bi、As、B、Seである。これらの元素はいずれも、粒成長を抑制する場合がある。上記各元素の含有量はいずれも、0.01%以下であるのが好ましく、0.005%以下であるのがより好ましい。
 2.電磁鋼板の板面におけるX線ランダム強度
 本発明に係る電磁鋼板では、鋼板の板面における{100}<011>結晶方位のX線ランダム強度比が15.0~50.0である。ここで、鋼板の板面とは、鋼板の圧延方向および板幅方向に平行な面であり、鋼板の板厚方向に垂直な面を意味する。これにより、鋼板板面において、圧延方向RDに対して45°傾斜した方向に、磁化容易軸である<100>方位の集積度が十分に高くなる。
 鋼板板面における{100}<011>結晶方位のX線ランダム強度比が15.0未満であると、圧延方向RDに対して45°傾斜した方向での磁化容易軸の集積度が低すぎる。この場合、圧延方向RDに対して45°傾斜した方向において、十分な磁束密度が得られず、鉄損も高くなってしまう。一方、鋼板板面における{100}<011>結晶方位のX線ランダム強度比が50.0を超えると、上記化学組成を有する電磁鋼板では、磁束密度が飽和する。
 したがって、鋼板板面における{100}<011>結晶方位のX線ランダム強度比は15.0~50.0である。X線ランダム強度比の好ましい下限は17.0であり、さらに好ましくは20.0である。X線ランダム強度比の好ましい上限は47.0であり、さらに好ましくは45.0である。
 鋼板板面における{100}<011>結晶方位のX線ランダム強度比とは、X線回折測定において、特定方位への集積を持たない標準試料(ランダム試料)の{100}<011>結晶方位のX線回折強度に対する、測定された電磁鋼板サンプルの{100}<011>結晶方位のX線回折強度の比である。
 鋼板板面における{100}<011>結晶方位のX線ランダム強度比は、次の方法で測定できる。X線回折法によって測定されるα-Fe相の{200}、{110}、{310}、{211}の極点図を基に級数展開法で計算した、3次元集合組織を表す結晶方位分布関数(Orientation Distribution Function:ODF)からX線ランダム強度比を求める。X線回折法による測定は、電磁鋼板の板厚/4~板厚/2の間の任意の位置で行う。このとき、測定面は滑らかになるよう化学研磨等で仕上げる。
 3.磁束密度
 上述のように、本発明における電磁鋼板においては、1回目の高圧下率での冷間圧延に引き続き、2回目の冷間圧延を施すことにより、{100}<011>からわずかにずれた方向の結晶粒が多く含まれる。それにより、圧延方向RDから22.5°の方向における磁束密度が相対的に高くなる。
 具体的には、鋼板の圧延方向RDからそれぞれ0°、22.5°および45°の方向における磁束密度が下記(i)式を満足する。
 1.005×(B50(0°)+B50(45°))/2≦B50(22.5°)・・・(i)
 但し、上記式中の各記号の意味は以下のとおりである。
 B50(0°):圧延方向から0°の方向における磁束密度(T)
 B50(22.5°):圧延方向から22.5°の方向における磁束密度(T)
 B50(45°):圧延方向から45°の方向における磁束密度(T)
 上記(i)式を満足することにより、異方性が適度に緩和され、電磁鋼板を電機機器のコアとして利用した場合に、磁気がコアの形状に沿って流れやすくなる。
 本実施形態に係る電磁鋼板は上述の(i)式を満足することに加えて、下記(ii)式を満足することがより好ましい。本実施形態に係る電磁鋼板が下記(ii)式を満足することにより、分割コアのティース方向およびヨーク方向に磁束が集中し、漏れ磁束を低減できるからである。
 B50(45°)-B50(0°)≧0.085T・・・(ii)
 なお、上記(ii)式中の各記号の意味は(i)式と同様である。
 4.板厚
 本発明において、電磁鋼板の板厚は特に限定されない。電磁鋼板の好ましい板厚は、0.25~0.50mmである。通常、板厚が薄くなれば、鉄損は低くなるものの、磁束密度が低くなる。本実施形態による電磁鋼板の板厚が0.25mm以上であれば、鉄損がより低く、かつ、磁束密度がより高くなる。一方、板厚が0.50mm以下であれば、低い鉄損を維持できる。板厚の好ましい下限は0.30mmである。本実施形態の電磁鋼板では、板厚が0.50mmと厚くても、高い磁束密度および低い鉄損が得られる。
 5.用途
 本発明に係る電磁鋼板は、磁気特性(高磁束密度および低鉄損)が求められる用途に広く適用可能であり、例えば、以下の用途が挙げられる。(A)電機機器に用いられるサーボモータ、ステッピングモータ、コンプレッサ。(B)電気ビークル、ハイブリッドビークルに用いられる駆動モータ。ここで、ビークルとは、自動車、自動二輪車、鉄道等を含む。(C)発電機。(D)種々の用途の鉄心、チョークコイル、リアクトル(E)電流センサー、等。
 本発明に係る電磁鋼板は、上記用途以外の用途にも適用可能である。本発明の電磁鋼板は特に、分割コアとしての利用に好適であり、さらに、1000Hz以上の高周波数域に適用される、電気ビークルまたはハイブリッドビークルの駆動モータの分割コア等に好適である。
 6.製造方法
 本発明に係る電磁鋼板の製造方法の一例について説明する。電磁鋼板の製造方法は、(a)熱間圧延工程と、(b)第1冷間圧延工程と、(c)中間焼鈍工程と、(d)第2冷間圧延工程と、(e)仕上げ焼鈍工程とをこの順に備える。以下、各工程について詳述する。
 (a)熱間圧延工程
 熱間圧延工程では、上述の化学組成を満たすスラブに対して熱間圧延を実施して鋼板を製造する。熱間圧延工程は、加熱工程と、圧延工程とを備える。
 スラブは周知の方法で製造される。例えば、転炉または電気炉等で溶鋼を製造する。製造された溶鋼に対して脱ガス設備等で二次精錬して、上記化学組成を有する溶鋼とする。溶鋼を用いて連続鋳造法または造塊法によりスラブを鋳造する。鋳造されたスラブを分塊圧延してもよい。
 [加熱工程]
 加熱工程では、上述の化学組成を有するスラブを1000~1200℃に加熱する。具体的には、スラブを加熱炉または均熱炉に装入して、炉内にて加熱する。加熱炉または均熱炉での上記加熱温度での保持時間は例えば、30~200時間である。
 [圧延工程]
 圧延工程では、加熱工程により加熱されたスラブに対して、複数回パスの圧延を実施して、鋼板を製造する。ここで、「パス」とは、一対のワークロールを有する1つの圧延スタンドを鋼板が通過して圧下を受けることを意味する。熱間圧延は例えば、一列に並んだ複数の圧延スタンド(各圧延スタンドは一対のワークロールを有する)を含むタンデム圧延機を用いてタンデム圧延を実施して、複数回パスの圧延を実施してもよいし、一対のワークロールを有するリバース圧延を実施して、複数回パスの圧延を実施してもよい。生産性の観点から、タンデム圧延機を用いて複数の圧延パスを実施するのが好ましい。
 圧延工程における仕上げ圧延温度はAc変態点以上とする。また、圧延完了後は、600℃までの平均冷却速度が50~150℃/sとなるように600℃以下の温度まで冷却を行う。鋼板温度が600℃となった後の冷却方法は特に限定されない。鋼板温度は、鋼板の表面温度(℃)を意味する。
 ここで、仕上げ圧延温度とは、熱間圧延工程中の上記圧延工程において、最終パスの圧下を行う圧延スタンド出側での鋼板の表面温度(℃)を意味する。仕上げ圧延温度は例えば、最終パスの圧下を行う圧延スタンド出側に設置された測温計により、測温可能である。なお、仕上げ圧延温度は例えば、鋼板全長を圧延方向に10等分して10区分とした場合において、先端の1区分と、後端の1区分とを除いた部分の測温結果の平均値を意味する。
 また、600℃までの平均冷却速度は、次の方法により求める。上記化学組成を有する鋼板をサンプル鋼板とし、表面温度を放射温度計により測定することで、圧延完了から600℃に冷却するまで時間を測定する。測定された時間に基づいて、平均冷却速度を求める。
 (b)第1冷間圧延工程
 熱間圧延工程により製造された鋼板に対して、焼鈍工程を実施することなく、冷間圧延工程を実施する。冷間圧延は例えば、一列に並んだ複数の圧延スタンド(各圧延スタンドは一対のワークロールを有する)を含むタンデム圧延機を用いてタンデム圧延を実施して、複数回パスの圧延を実施してもよい。また、一対のワークロールを有するゼンジミア圧延機等によるリバース圧延を実施して、1回パスまたは複数回パスの圧延を実施してもよい。生産性の観点から、タンデム圧延機を用いて複数回パスの圧延を実施するのが好ましい。 
 第1冷間圧延工程では、冷間圧延途中で焼鈍処理を実施することなく冷間圧延を実施する。例えば、リバース圧延を実施して、複数回のパスにて冷間圧延を実施する場合、冷間圧延のパスとパスとの間に焼鈍処理を挟まずに複数回パスの冷間圧延を実施する。なお、リバース式の圧延機を用いて、1回のパスのみで冷間圧延を実施してもよい。また、タンデム式の圧延機を用いた冷間圧延を実施する場合、複数回のパス(各圧延スタンドでのパス)で連続して冷間圧延を実施する。
 第1冷間圧延工程における圧下率は80~92%とする。ここで、冷間圧延工程における圧下率は、次のとおり定義される。
 圧下率(%)=(1-冷間圧延工程での最終パスの圧延後の鋼板の板厚/冷間圧延工程での1パス目の冷間圧延前の鋼板の板厚)×100
 なお、熱間圧延工程後であって冷間圧延工程前の焼鈍工程は省略される。本実施形態に係る電磁鋼板の化学組成は、上述のとおり、Mn含有量が高い。そのため、従前の電磁鋼板で実施されている熱延板焼鈍を実施すると、Mnが粒界に偏析して、熱間圧延工程後の鋼板(熱延鋼板)の加工性が著しく低下する。なお、ここでいう焼鈍処理は例えば、300℃以上の熱処理を意味する。
 (c)中間焼鈍工程
 中間焼鈍工程では、第1冷間圧延工程後の鋼板に対して、500℃以上Ac変態点未満の範囲の中間焼鈍温度で焼鈍処理を実施する。
 中間焼鈍温度が500℃未満であると、冷間圧延工程により導入されたひずみが十分に低減できない。この場合、{100}<011>結晶方位の集積度が低下する。その結果、電磁鋼板の鋼板板面における{100}<011>結晶方位のX線ランダム強度比が15.0~50.0の範囲外となる。一方、中間焼鈍温度がAc点を超えると、鋼板の組織の一部がオーステナイトに変態してしまい、結晶方位がランダム化してしまう。中間焼鈍温度の好ましい下限は550℃であり、さらに好ましくは570℃である。
 ここで、中間焼鈍温度は、焼鈍炉の抽出口近傍での板温(鋼板表面の温度)とする。焼鈍炉の板温は、焼鈍炉抽出口に配置された測温計により測定することができる。
 なお、中間焼鈍工程における中間焼鈍温度での保持時間は当業者に周知の時間でよい。中間焼鈍温度での保持時間は例えば、1~30sである。ただし、中間焼鈍温度での保持時間はこれに限定されない。また、中間焼鈍温度までの昇温速度も周知の条件でよい。中間焼鈍温度までの昇温速度は例えば、10.0~20.0℃/sである。ただし、中間焼鈍温度までの昇温速度はこれに限定されない。
 中間焼鈍時の雰囲気は特に限定されないが、中間焼鈍時の雰囲気には例えば、20%Hを含有し、残部がNからなる雰囲気ガス(乾燥)を用いる。中間焼鈍後の鋼板の冷却速度は特に限定されない。冷却速度は例えば、5.0~50.0℃/sである。
 (d)第2冷間圧延工程
 中間焼鈍工程を完了後の鋼板に対して、2回目の冷間圧延工程を実施する。具体的には、中間焼鈍工程後の鋼板に対して、常温、大気中において、圧延(冷間圧延)を実施する。ここでの冷間圧延は例えば、上述のゼンジミア圧延機に代表されるリバース圧延機、または、タンデム圧延機を用いる。
 第2冷間圧延工程では、冷間圧延途中で焼鈍処理を実施することなく冷間圧延を実施する。例えば、リバース圧延を実施して、複数回のパスにて冷間圧延を実施する場合、冷間圧延のパスとパスとの間に焼鈍処理を挟まずに複数回パスの冷間圧延を実施する。なお、リバース式の圧延機を用いて、1回のパスのみで冷間圧延を実施してもよい。また、タンデム式の圧延機を用いた冷間圧延を実施する場合、複数回のパス(各圧延スタンドでのパス)で連続して冷間圧延を実施する。
 第2冷間圧延工程における圧下率は15.0%を超えて20.0%以下とする。第2冷間圧延工程における圧下率の好ましい下限は17.0%である。ここで、第2冷間圧延工程における圧下率は次のとおり定義される。
 圧下率(%)=(1-最終パスの圧延後の鋼板の板厚/1パス目の圧延前の鋼板の板厚)×100
 第2冷間圧延工程での冷間圧延のパス回数は1回パスのみ(つまり、1回の圧延のみ)であってもよいし、複数回パスの圧延であってもよい。
 以上のとおり、熱間圧延工程および第1冷間圧延工程により鋼板にひずみを導入した後、中間焼鈍工程により鋼板に導入されたひずみを一度低減させる。そして、第2冷間圧延工程を実施する。これにより、さらに結晶の回転が生じ、{100}<011>からわずかにずれた方向の結晶粒が増加する。その結果、圧延方向RDから22.5°の方向における磁束密度が向上し、異方性が適度に緩和される。
 (e)仕上げ焼鈍工程
 仕上げ焼鈍工程では、第2冷間圧延工程後の鋼板に対して、500℃以上Ac変態点未満の範囲の仕上げ焼鈍温度で焼鈍処理を実施する。
 仕上げ焼鈍温度が500℃未満であると、{100}<011>結晶方位粒の粒成長が十分に起こらない。その結果、電磁鋼板の鋼板板面における{100}<011>結晶方位のX線ランダム強度比が15.0~50.0の範囲外となる。一方、仕上げ焼鈍温度がAc点を超えると、鋼板の組織の一部がオーステナイトに変態してしまう。その結果、電磁鋼板の鋼板板面における{100}<011>結晶方位のX線ランダム強度比が15.0~50.0の範囲外となる。仕上げ焼鈍温度の好ましい下限は550℃であり、さらに好ましくは570℃である。
 ここで、仕上げ焼鈍温度は、焼鈍炉の抽出口近傍での板温(鋼板表面の温度)とする。焼鈍炉の炉温は、焼鈍炉抽出口に配置された測温計により測定することができる。
 なお、仕上げ焼鈍工程における仕上げ焼鈍温度までの昇温速度は、当業者に周知の昇温速度であればよく、仕上げ焼鈍温度での保持時間も当業者に周知の時間であればよい。
 仕上げ焼鈍工程時の雰囲気は特に限定されない。仕上げ焼鈍工程時の雰囲気には例えば、20%Hを含有し、残部がNからなる雰囲気ガス(乾燥)を用いる。仕上げ焼鈍後の鋼板の冷却速度は特に限定されない。冷却速度は例えば、5~20℃/sである。
 仕上げ焼鈍工程での仕上げ焼鈍温度での好ましい保持時間は10~120sである。保持時間が10~120sであれば、{100}<011>結晶方位の集積度が高まる。保持時間のさらに好ましい下限は12sであり、さらに好ましくは15sである。保持時間のさらに好ましい上限は100sであり、さらに好ましくは90sである。
 ここで、保持時間は、鋼板温度が仕上げ焼鈍温度となってからの保持時間を意味する。
 仕上げ焼鈍工程での仕上げ焼鈍温度までの好ましい昇温速度は0.1℃/s以上10.0℃/s未満とする。昇温速度が0.1℃/s以上10.0℃/s未満であれば、{100}<011>結晶方位の集積度が高まる。
 昇温速度は、次の方法により求める。上記化学組成を有し、上記熱間圧延工程から第2冷間圧延工程まで実施して得られた鋼板に熱電対を取り付けて、サンプル鋼板とする。熱電対を取り付けたサンプル鋼板に対して昇温を実施して、昇温を開始してから仕上げ焼鈍温度に到達するまで時間を測定する。測定された時間に基づいて、昇温速度を求める。
 本発明に係る電磁鋼板の製造方法は、上記製造工程に限定されない。
 例えば、上記製造工程のうち、熱間圧延工程後であって、冷間圧延工程前に、ショットブラスト工程および/または酸洗工程を実施してもよい。ショットブラスト工程では、熱間圧延工程後の鋼板に対してショットブラストを実施して、熱間圧延工程後の鋼板の表面に形成されているスケールを破壊して除去する。酸洗工程では、熱間圧延工程後の鋼板に対して酸洗処理を実施する。酸洗処理は例えば、塩酸水溶液を酸洗浴として利用する。酸洗により鋼板の表面に形成されているスケールが除去される。熱間圧延工程後であって、冷間圧延工程前に、ショットブラスト工程を実施して、次いで、酸洗工程を実施してもよい。また、熱間圧延工程後であって冷間圧延工程前に、酸洗工程を実施して、ショットブラスト工程を実施しなくてもよい。熱間圧延工程後であって冷間圧延工程前に、ショットブラスト工程を実施して、酸洗処理を実施しなくてもよい。なお、ショットブラスト工程および酸洗工程は任意の工程である。したがって、熱間圧延工程後であって冷間圧延工程前に、ショットブラスト工程および酸洗工程を実施しなくてもよい。
 本発明に係る電磁鋼板の製造方法はさらに、仕上げ焼鈍工程後にコーティング工程を実施してもよい。コーティング工程では、仕上げ焼鈍工程後の鋼板の表面に、絶縁コーティングを施す。
 絶縁コーティングの種類は特に限定されない。絶縁コーティングは有機成分であってもよいし、無機成分であってもよい、絶縁コーティングは、有機成分と無機成分とを含有してもよい。無機成分は例えば、重クロム酸-ホウ酸系、リン酸系、シリカ系等である。有機成分は例えば、一般的なアクリル系、アクリルスチレン系、アクリルシリコン系、シリコン系、ポリエステル系、エポキシ系、フッ素系の樹脂である。塗装性を考慮した場合、好ましい樹脂は、エマルジョンタイプの樹脂である。加熱および/または加圧することにより接着能を発揮する絶縁コーティングを施してもよい。接着能を有する絶縁コーティングは例えば、アクリル系、フエノール系、エポキシ系、メラミン系の樹脂である。
 なお、コーティング工程は任意の工程である。したがって、仕上げ焼鈍工程後にコーティング工程を実施しなくてもよい。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1の化学組成を有するスラブを1150℃に加熱した後、表2に示す条件で熱間圧延を実施し、板厚2.0mmの熱延鋼板を製造した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [評価試験]
 各鋼番号の電磁鋼板に対して、次の評価試験を実施した。
 [{100}<110>結晶方位のX線ランダム強度測定試験]
 各試験番号の鋼板から、サンプルを採取し、表面を鏡面研磨した。鏡面研磨された領域のうち、ピクセルの測定間隔が平均粒径の1/5以下で、結晶粒が5000個以上測定できる任意の領域を選択した。選択された領域においてEBSD測定を実施して、{200}、{110}、{310}、{211}の極点図を得た。これらの極点図を用いて級数展開法で計算した3次元集合組織を表すODF分布を得た。得られたODFから、{100}<011>結晶方位のX線ランダム強度比を求めた。
 [磁束密度測定試験]
 各試験番号の電磁鋼板から、打ち抜き加工により、55mm×55mmの単板試験片を作製した。単板磁気測定器を用いて、上述の方法により、圧延方向RDからそれぞれ0°、22.5°および45°の方向における磁束密度B50(0°)、B50(22.5°)およびB50(45°)を測定した。測定時における磁場は、5000A/mとした。
 [1000Hzにおける鉄損W10/1000
 各試験番号の電磁鋼板から、打ち抜き加工により、55mm×55mmの単板試験片を作製した。単板磁気測定器を用いて、周波数1000Hz、最大磁束密度1.0Tで磁化された単板試験片の鉄損W10/1000(W/kg)を測定した。
 [評価結果]
 評価結果を表3にまとめて示す。なお、製造された電磁鋼板の化学成分を測定したところ、各鋼番号の電磁鋼板とも、表1に記載の化学成分と同様の化学成分を有していた。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、本発明の規定を満足する試験No.1~11及び28~30では、鉄損および磁束密度に優れることが分かる。また、{100}<011>結晶方位のみならず、その周囲における磁気特性も優れる結果となった。
 それらに対して、試験No.12ではMn含有量が規定値未満であり、試験No.14ではSi含有量が規定値未満であるため、{100}<011>結晶方位が発達しなかった。試験No.13ではMn含有量が過剰であるため、加工性が低下し、冷間圧延後に割れが生じたため、実験を中止した。また、試験No.15ではSi含有量が過剰でありα-γ変態系の化学組成から外れたため、{100}<011>結晶方位が発達しなかった。
 試験No.16では仕上げ圧延温度が低く、試験No.17では冷却速度が低すぎ、試験No.18では冷却速度が高すぎたため、{100}<011>結晶方位が発達しなかった。試験No.19では第1冷間圧延率が低すぎ、一方、試験No.20では第1冷間圧延率が高すぎたため、いずれの場合も全体的に磁束密度が低下する結果となった。同様に、試験No.21では中間焼鈍温度が低すぎ、一方、試験No.22では中間焼鈍温度が高すぎたため、いずれの場合も全体的に磁束密度が低下する結果となった。
 試験No.23では鉄損および磁束密度に優れるものの、第2冷間圧延率が低いため、異方性が緩和されなかった。一方、試験No.24では第2冷間圧延率が高すぎたため、{100}<011>結晶方位からのずれが大きくなり、全体的に磁束密度が低下する結果となった。
 試験No.25では仕上げ焼鈍温度が低すぎたため、粒成長せずに異方性が強すぎる結果となった。一方、試験No.26では仕上げ焼鈍温度が高すぎたため、α-γ変態が起こり、組織がランダム化したため、全体的に磁束密度が低下する結果となった。さらに、試験No.27では熱延板焼鈍を実施したため、粒界にMnが偏析し、冷間圧延後に割れが生じたため、実験を中止した。
 以上のように、本発明によれば、圧延方向から45°の方向だけでなく、その周囲の方向において優れた磁気特性を有する電磁鋼板が得られる。

Claims (4)

  1.  化学組成が、質量%で、
     C:0.0035%以下、
     Si:2.00~3.50%、
     Mn:2.00~5.00%、
     P:0.050%以下、
     S:0.0070%以下、
     Al:0.15%以下、
     N:0.0030%以下、
     Ni:0~1.00%、
     Cu:0~0.10%、
     残部:Feおよび不純物であり、
     板面における{100}<011>結晶方位のX線ランダム強度比が15.0~50.0であり、
     圧延方向からそれぞれ0°、22.5°および45°の方向における磁束密度が下記(i)式を満足する
    ことを特徴とする電磁鋼板。
     1.005×(B50(0°)+B50(45°))/2≦B50(22.5°)・・・(i)
     但し、上記式(i)中の各記号の意味は以下のとおりである。
     B50(0°):圧延方向から0°の方向における磁束密度(T)
     B50(22.5°):圧延方向から22.5°の方向における磁束密度(T)
     B50(45°):圧延方向から45°の方向における磁束密度(T)
  2.  板厚が、0.25~0.50mmであることを特徴とする、請求項1に記載の電磁鋼板。
  3.  化学組成が、質量%で、
     C:0.0035%以下、
     Si:2.00~3.50%、
     Mn:2.00~5.00%、
     P:0.050%以下、
     S:0.0070%以下、
     Al:0.15%以下、
     N:0.0030%以下、
     Ni:0~1.00%、
     Cu:0~0.10%、
     残部:Feおよび不純物であるスラブに対して、
     (a)1000~1200℃に加熱した後、仕上げ圧延温度をAc変態点以上の温度範囲となる条件で熱間圧延を行い、圧延完了後に600℃までの平均冷却速度が50~150℃/sとなるように600℃以下の温度まで冷却を行う、熱間圧延工程と、
     (b)焼鈍処理を実施することなく、80~92%の圧下率で冷間圧延を実施する、第1冷間圧延工程と、
     (c)500℃以上Ac変態点未満の範囲の中間焼鈍温度で焼鈍処理を実施する、中間焼鈍工程と、
     (d)15.0%を超えて20.0%以下の圧下率で冷間圧延を実施する、第2冷間圧延工程と、
     (e)500℃以上Ac変態点未満の範囲の仕上げ焼鈍温度で焼鈍処理を実施する、仕上げ焼鈍工程と、
    を順に施す
    ことを特徴とする電磁鋼板の製造方法。
  4.  前記仕上げ焼鈍工程において、前記仕上げ焼鈍温度までの昇温速度を0.1℃/s以上10.0℃/s未満とし、かつ、前記仕上げ焼鈍温度での保持時間を10~120sとすることを特徴とする、請求項3に記載の電磁鋼板の製造方法。
PCT/JP2020/015111 2019-04-03 2020-04-01 電磁鋼板およびその製造方法 WO2020204107A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112021016952A BR112021016952A2 (pt) 2019-04-03 2020-04-01 Chapa de aço elétrica e método para fabricar a mesma
US17/441,084 US20220186336A1 (en) 2019-04-03 2020-04-01 Electrical steel sheet and method for manufacturing same
EP20784220.4A EP3950972A4 (en) 2019-04-03 2020-04-01 ELECTROMAGNETIC STEEL SHEET AND METHOD OF PRODUCTION THEREOF
CN202080025387.XA CN113646449B (zh) 2019-04-03 2020-04-01 电磁钢板及其制造方法
JP2020542677A JP6863528B2 (ja) 2019-04-03 2020-04-01 電磁鋼板およびその製造方法
KR1020217029948A KR102569224B1 (ko) 2019-04-03 2020-04-01 전자 강판 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-071186 2019-04-03
JP2019071186 2019-04-03

Publications (1)

Publication Number Publication Date
WO2020204107A1 true WO2020204107A1 (ja) 2020-10-08

Family

ID=72669012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015111 WO2020204107A1 (ja) 2019-04-03 2020-04-01 電磁鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US20220186336A1 (ja)
EP (1) EP3950972A4 (ja)
JP (1) JP6863528B2 (ja)
KR (1) KR102569224B1 (ja)
CN (1) CN113646449B (ja)
BR (1) BR112021016952A2 (ja)
TW (1) TWI718041B (ja)
WO (1) WO2020204107A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090138A1 (ja) * 2021-11-17 2023-05-25 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法並びにモータコアの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751015B (zh) * 2021-02-02 2021-12-21 中國鋼鐵股份有限公司 高粗糙度電磁鋼片與其製作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045613A (ja) * 2004-08-04 2006-02-16 Nippon Steel Corp 圧延方向から45°方向の磁気特性が優れた無方向性電磁鋼板およびその製造方法
CN104480386A (zh) * 2014-11-27 2015-04-01 武汉钢铁(集团)公司 高速电机用0.2mm厚无取向硅钢及生产方法
JP2017106101A (ja) * 2015-12-04 2017-06-15 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP2017145462A (ja) 2016-02-17 2017-08-24 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2017193731A (ja) * 2016-04-18 2017-10-26 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2018141206A (ja) * 2017-02-28 2018-09-13 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2019019355A (ja) * 2017-07-13 2019-02-07 新日鐵住金株式会社 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法
JP2019071186A (ja) 2017-10-06 2019-05-09 株式会社豊田自動織機 リチウムイオン二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436199B1 (en) * 1999-09-03 2002-08-20 Kawasaki Steel Corporation Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
US6562473B1 (en) * 1999-12-03 2003-05-13 Kawasaki Steel Corporation Electrical steel sheet suitable for compact iron core and manufacturing method therefor
JP2004332071A (ja) * 2003-05-09 2004-11-25 Jfe Steel Kk 高磁束密度方向性電磁鋼板の製造方法
JP4593317B2 (ja) * 2005-03-02 2010-12-08 新日本製鐵株式会社 磁気特性が優れた方向性電磁鋼板の製造方法
JP5780378B1 (ja) * 2013-09-26 2015-09-16 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP3162907B1 (en) * 2014-06-26 2021-05-26 Nippon Steel Corporation Electrical steel sheet
PL3165624T3 (pl) * 2014-07-02 2019-09-30 Nippon Steel & Sumitomo Metal Corporation Nieorientowana, magnetyczna blacha stalowa i sposób jej wytwarzania
PL3196325T3 (pl) * 2014-09-01 2020-08-24 Nippon Steel Corporation Blacha cienka ze stali elektrotechnicznej o ziarnach zorientowanych
JP6992652B2 (ja) * 2018-03-30 2022-01-13 日本製鉄株式会社 電磁鋼板、及び、電磁鋼板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045613A (ja) * 2004-08-04 2006-02-16 Nippon Steel Corp 圧延方向から45°方向の磁気特性が優れた無方向性電磁鋼板およびその製造方法
CN104480386A (zh) * 2014-11-27 2015-04-01 武汉钢铁(集团)公司 高速电机用0.2mm厚无取向硅钢及生产方法
JP2017106101A (ja) * 2015-12-04 2017-06-15 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP2017145462A (ja) 2016-02-17 2017-08-24 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2017193731A (ja) * 2016-04-18 2017-10-26 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2018141206A (ja) * 2017-02-28 2018-09-13 新日鐵住金株式会社 電磁鋼板、及びその製造方法
JP2019019355A (ja) * 2017-07-13 2019-02-07 新日鐵住金株式会社 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法
JP2019071186A (ja) 2017-10-06 2019-05-09 株式会社豊田自動織機 リチウムイオン二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090138A1 (ja) * 2021-11-17 2023-05-25 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法並びにモータコアの製造方法
TWI830492B (zh) * 2021-11-17 2024-01-21 日商杰富意鋼鐵股份有限公司 無方向性電磁鋼板及其製造方法以及馬達鐵芯的製造方法

Also Published As

Publication number Publication date
JP6863528B2 (ja) 2021-04-21
BR112021016952A2 (pt) 2021-11-23
KR20210129139A (ko) 2021-10-27
KR102569224B1 (ko) 2023-08-22
EP3950972A1 (en) 2022-02-09
CN113646449B (zh) 2023-06-20
CN113646449A (zh) 2021-11-12
JPWO2020204107A1 (ja) 2021-04-30
US20220186336A1 (en) 2022-06-16
EP3950972A4 (en) 2023-02-22
TW202043501A (zh) 2020-12-01
TWI718041B (zh) 2021-02-01

Similar Documents

Publication Publication Date Title
JP6992652B2 (ja) 電磁鋼板、及び、電磁鋼板の製造方法
TWI658152B (zh) 無方向性電磁鋼板及無方向性電磁鋼板之製造方法
JP6794630B2 (ja) 電磁鋼板、及びその製造方法
EP3859032B1 (en) Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same
JP6855684B2 (ja) 電磁鋼板、及びその製造方法
JP6451873B2 (ja) 無方向性電磁鋼板およびその製造方法
JP6855895B2 (ja) 無方向性電磁鋼板及びその製造方法
TWI774294B (zh) 無方向性電磁鋼板、鐵芯、冷輥軋鋼板、無方向性電磁鋼板的製造方法及冷輥軋鋼板的製造方法
CN104789860A (zh) 一种电工钢及其生产方法
JP6828292B2 (ja) 無方向性電磁鋼板及びその製造方法
US20140076469A1 (en) High carbon thin steel sheet and method for producing same
WO2017056383A1 (ja) 無方向性電磁鋼板およびその製造方法
JP6863528B2 (ja) 電磁鋼板およびその製造方法
JP2018178198A (ja) 無方向性電磁鋼板及びその製造方法
JP6855894B2 (ja) 無方向性電磁鋼板及びその製造方法
US20190360065A1 (en) METHOD FOR PRODUCING A STRIP FROM A CoFe ALLOY AND A SEMI-FINISHED PRODUCT CONTAINING THIS STRIP
JP7311739B2 (ja) 無方向性電磁鋼板
JP7235188B1 (ja) 無方向性電磁鋼板およびその製造方法
WO2024089828A1 (ja) 無方向性電磁鋼板およびその製造方法
WO2024089827A1 (ja) 無方向性電磁鋼板およびその製造方法、ならびにモータコア
JP6780246B2 (ja) 無方向性電磁鋼板、およびその製造方法
CN117062929A (zh) 无取向性电磁钢板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020542677

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784220

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021016952

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217029948

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020784220

Country of ref document: EP

Effective date: 20211103

ENP Entry into the national phase

Ref document number: 112021016952

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210826