WO2020204074A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2020204074A1
WO2020204074A1 PCT/JP2020/015036 JP2020015036W WO2020204074A1 WO 2020204074 A1 WO2020204074 A1 WO 2020204074A1 JP 2020015036 W JP2020015036 W JP 2020015036W WO 2020204074 A1 WO2020204074 A1 WO 2020204074A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
positive electrode
active material
negative electrode
secondary battery
Prior art date
Application number
PCT/JP2020/015036
Other languages
English (en)
French (fr)
Inventor
章弘 鈴木
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202080007188.6A priority Critical patent/CN113302772A/zh
Publication of WO2020204074A1 publication Critical patent/WO2020204074A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery provided with an insulating layer.
  • Lithium-ion secondary batteries are used as large-scale stationary power sources for power storage, power sources for electric vehicles, etc., and in recent years, research on miniaturization and thinning of batteries has been progressing.
  • a lithium ion secondary battery generally includes both electrodes having an electrode active material layer formed on the surface of a metal foil and a separator arranged between the electrodes.
  • the separator plays a role of preventing a short circuit between both electrodes and holding an electrolytic solution.
  • the separator is thin.
  • a secondary battery in which an insulating layer capable of functioning as a separator is provided on an electrode active material layer is known as a prior art (see, for example, Patent Document 1).
  • This insulating layer has a porous structure and can be formed, for example, by applying a slurry for an insulating layer containing insulating fine particles, a binder and a solvent on the electrode active material layer and drying it. Then, the insulating layer can be made thinner by reducing the surface roughness of the electrode active material layer to which the insulating layer slurry is applied by a smoothing treatment.
  • an object of the present invention is to provide a lithium ion secondary battery provided with an insulating layer capable of suppressing an increase in internal resistance of the secondary battery due to a decrease in the void ratio of the insulating layer.
  • the present inventors have found that by incorporating a polymer solid electrolyte in the insulating layer, it is possible to suppress an increase in the internal resistance of the lithium ion secondary battery due to a decrease in the void ratio of the insulating layer.
  • the present invention of the above was completed.
  • the gist of the present invention is the following [1] to [5].
  • a lithium ion secondary battery provided with an insulating layer capable of suppressing an increase in internal resistance of the lithium ion secondary battery due to a reduction in the void ratio of the insulating layer.
  • FIG. 1 is an exploded view of a jig for evaluating battery characteristics.
  • FIG. 2 is a graph showing the evaluation results of the lithium ion secondary batteries of Example 1 and Comparative Example 1.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an insulating layer arranged between the positive electrode and the negative electrode, and an electrolytic solution.
  • the insulating layer is a layer containing a polymer solid electrolyte, and the thickness of the insulating layer is 3 to 7 ⁇ m.
  • the lithium ion secondary battery of the present invention will be described in detail.
  • the positive electrode in the lithium ion secondary battery of the present invention has a positive electrode active material layer, preferably has a positive electrode current collector and a positive electrode active material layer laminated on the positive electrode current collector.
  • the positive electrode active material layer typically includes a positive electrode active material and a binder for the positive electrode.
  • Examples of the positive electrode active material include lithium metallic acid compounds.
  • Examples of the lithium metal acid compound include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and the like. Further, it may be olivine type lithium iron phosphate (LiFePO 4 ) or the like. Further, a plurality of metals other than lithium may be used, and NCM (nickel cobalt manganese) oxides, NCA (nickel cobalt aluminum) oxides and the like, which are called ternary oxides, may be used.
  • the average particle size of the positive electrode active material is not particularly limited, but is preferably 0.5 to 50 ⁇ m, and more preferably 1 to 30 ⁇ m.
  • the average particle size means the particle size (D50) when the volume integration is 50% in the particle size distribution of the positive electrode active material obtained by the laser diffraction / scattering method.
  • the positive electrode active material can be adjusted to a desired value by pulverizing the positive electrode active material by, for example, a known method using a ball mill or the like.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 50 to 98.5% by mass, more preferably 60 to 98% by mass, based on the total amount of the positive electrode active material layer.
  • the positive electrode active material layer may contain a conductive auxiliary agent.
  • a conductive auxiliary agent a material having higher conductivity than the positive electrode active material is used, and specific examples thereof include carbon materials such as Ketjen black, acetylene black, carbon nanotubes, and rod-shaped carbon.
  • the content of the conductive auxiliary agent is preferably 1 to 30% by mass, preferably 2 to 25% by mass, based on the total amount of the positive electrode active material layer. Is more preferable.
  • the binder for the positive electrode is not particularly limited, and is, for example, a fluorine-containing resin such as polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), or polytetrafluoroethylene (PTFE), or poly.
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • PTFE polytetrafluoroethylene
  • Acrylic resins such as methyl acrylate (PMA) and polymethyl methacrylate (PMMA), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinylidene chloride (PVC), polyether nitrile (PEN), polyethylene (PE), Examples thereof include polypropylene (PP), polyacrylonitrile (PAN), acrylonitrile-butadiene rubber, styrene butadiene rubber, poly (meth) acrylic acid, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol and the like. These binders may be used alone or in combination of two or more. Further, carboxymethyl cellulose and the like may be used in the form of a salt such as a sodium salt.
  • the content of the binder for the positive electrode in the positive electrode active material layer is preferably 1.5 to 40% by mass, more preferably 2.0 to 25% by mass, based on the total amount of the positive electrode active material layer.
  • the thickness of the positive electrode active material layer is not particularly limited, but is preferably 10 to 200 ⁇ m, and more preferably 50 to 150 ⁇ m.
  • the positive electrode current collector examples include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, aluminum or copper is preferable, and aluminum is more preferable.
  • the positive electrode current collector is generally made of a metal foil, and its thickness is not particularly limited, but is preferably 1 to 50 ⁇ m.
  • the negative electrode in the lithium ion secondary battery of the present invention has a negative electrode active material layer, preferably has a negative electrode current collector and a negative electrode active material layer laminated on the negative electrode current collector.
  • the negative electrode active material layer typically includes a negative electrode active material and a binder for the negative electrode.
  • Examples of the negative electrode active material used for the negative electrode active material layer include carbon materials such as graphite and hard carbon, composites of tin compounds, silicon and carbon, Si, and general formula SiOx (in the formula, x is 0.5 to 1. Examples include compounds represented by (number 5), Si—C nanocomposites, Si materials such as Si—SiO—C nanocomposites, lithium, etc. Among these, carbon materials and Si materials are included. Preferably, graphite and a compound represented by the general formula SiOx (where x is a number of 0.5 to 1.5) are more preferable.
  • the average particle size of the negative electrode active material is not particularly limited, but is preferably 0.5 to 50 ⁇ m, and more preferably 1 to 30 ⁇ m.
  • the average particle size means the particle size (D50) when the volume integration is 50% in the particle size distribution of the negative electrode active material obtained by the laser diffraction / scattering method.
  • the negative electrode active material can be adjusted to a desired value by pulverizing the negative electrode active material by, for example, a known method using a ball mill or the like.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 50 to 98.5% by mass, more preferably 60 to 98% by mass, based on the total amount of the negative electrode active material layer.
  • the negative electrode active material layer may contain a conductive auxiliary agent.
  • a conductive auxiliary agent a material having higher conductivity than the above-mentioned negative electrode active material is used, and specific examples thereof include carbon materials such as Ketjen black, acetylene black, carbon nanotubes, and rod-shaped carbon.
  • the content of the conductive auxiliary agent is preferably 1 to 30% by mass and 2 to 25% by mass based on the total amount of the negative electrode active material layer. Is more preferable.
  • the binder for the negative electrode is not particularly limited, but the same binder as described for the binder for the positive electrode can be used.
  • the content of the binder for the negative electrode in the negative electrode active material layer is preferably 1.5 to 40% by mass, more preferably 2.0 to 25% by mass, based on the total amount of the negative electrode active material layer.
  • the thickness of the negative electrode active material layer is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 50 to 150 ⁇ m.
  • the material used as the negative electrode current collector is the same as the compound used for the positive electrode current collector, but aluminum or copper is preferably used, and copper is more preferably used.
  • the negative electrode current collector is generally made of a metal foil, and its thickness is not particularly limited, but is preferably 1 to 50 ⁇ m.
  • the lithium ion secondary battery of the present invention includes an insulating layer arranged between the negative electrode and the positive electrode.
  • the insulating layer effectively prevents short circuits between the positive and negative electrodes. Further, the insulating layer may retain an electrolyte described later.
  • the insulating layer is a layer containing a polymer solid electrolyte.
  • the polymer solid electrolyte is a material that is mainly composed of a polymer and exhibits ionic conductivity.
  • Examples of the polymer solid electrolyte include a dry type polymer electrolyte and a gel type polymer electrolyte.
  • dry-type polymer electrolytes it is considered that ion conduction is essentially caused by the movement of the polymer skeleton.
  • gel type polymer electrolyte ion conduction occurs through the electrolytic solution containing a large amount.
  • the preferred polymer solid electrolyte is a dry type polymer electrolyte.
  • the preferred dry type polymer solid electrolyte is a polyether electrolyte.
  • the polymer serving as the matrix of the polyether electrolyte preferably has an ethylene oxide structure, a propylene oxide structure, or both structures.
  • Examples of the polymer serving as a matrix of the polyether electrolyte include polyethylene oxide, polypropylene oxide, ethylene oxide-propylene copolymer, and dimethylsiloxane-ethylene oxide copolymer.
  • a comb-shaped polymer having a polyether side chain containing an ethylene oxide structure a copolymer of a monomer other than ethylene oxide and ethylene oxide, a crosslinked polyethylene oxide or a polyether oligomer using a cross-linking agent, and a branch.
  • examples thereof include branched-type polyether polymers and those obtained by thermally polymerizing or photopolymerizing macromonomers having a molecular weight of several hundred to several thousand. These polymers may be used alone or in combination of two or more.
  • the polymer serving as the matrix of the polyether electrolyte is more preferably a polymer having at least an ethylene oxide structure, and further preferably polyethylene oxide.
  • the ethylene oxide structure is composed of a basic unit consisting of ethylene and oxygen.
  • the content of the polymer solid electrolyte in the insulating layer is preferably 80% by volume or more, more preferably 90% by volume or more, still more preferably 95% by volume.
  • the above is more preferably 98% by volume or more.
  • the upper limit of the content of the polymer solid electrolyte is 100% by volume.
  • the polymer solid electrolyte contains a lithium salt.
  • the polymer solid electrolyte is a polyether electrolyte
  • the ion-dipole interaction between the cation of the lithium salt (lithium ion) and the isolated electron pair of ether oxygen in the polymer that forms the matrix of the polyether electrolyte It is thought that the lithium salt forms a complex and dissolves in the polymer that forms the matrix. Then, a part of the dissolved lithium salt is dissociated, and it is considered that the ionic conductivity of the polyether electrolyte becomes higher.
  • Lithium salts used for high molecular weight solid electrolytes include, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiAsF 6 , LiB 10 Cl 10 , low grade.
  • Examples thereof include lithium aliphatic carboxylate, lithium chloroborane, LiBPh 4 (lithium tetraphenylborate), LiTFSA (lithium bistrifluoromethylsulfonylamide), LiTFSI (lithium bistrifluoromethylsulfonylimide) and the like.
  • These lithium salts may be used alone or in combination of two or more. Among these, LiTFSA and LiTFSI are preferable, and LiTFSI is more preferable, from the viewpoint that the dissociability of the lithium salt in the polymer solid electrolyte can be increased.
  • the blending amount of the lithium salt with respect to 100 parts by mass of the polymer serving as the matrix of the polymer solid electrolyte is preferably 1 to 100 parts by mass. , More preferably 5 to 80 parts by mass, and even more preferably 10 to 50 parts by mass.
  • the thickness of the insulating layer is 3 to 7 ⁇ m. If the thickness of the insulating layer is less than 3 ⁇ m, it may not be possible to sufficiently prevent a minute short circuit. On the other hand, if the thickness of the insulating layer is larger than 7 ⁇ m, the distance between the electrodes cannot be shortened, and the volumetric energy density of the lithium ion secondary battery may not be sufficiently increased. From this point of view, the thickness of the insulating layer is preferably 4 to 7 ⁇ m, more preferably 4 to 6 ⁇ m.
  • the void ratio of the insulating layer is preferably 20% or less.
  • the void ratio of the insulating layer is preferably 15% or less, more preferably 10% or less.
  • the lower limit of the range of the void ratio of the insulating layer is not particularly limited, but is, for example, 0%.
  • the void ratio of the insulating layer can be measured by the method described in the item of Examples described later.
  • the insulating layer of the lithium ion secondary battery of the present invention contains a polymer solid electrolyte, a sufficient amount of lithium ions pass through the insulating layer even if the void ratio of the insulating layer is 20% or less. Can be done. Therefore, it is possible to suppress an increase in the internal resistance of the lithium ion secondary battery due to a decrease in the void ratio of the insulating layer.
  • the insulating layer may contain insulating fine particles if desired. Thereby, the mechanical strength of the insulating layer can be increased.
  • the content of the insulating fine particles in the insulating layer is preferably 10% by volume or less based on 100% by volume of the total of the polymer solid electrolyte and the insulating fine particles. It is preferably 7% by volume or less, more preferably 5% by volume or less, and even more preferably 1% by volume or less. From the viewpoint of more reliably reducing the void ratio of the insulating layer, it is particularly preferable that the insulating layer does not contain insulating fine particles.
  • the insulating fine particles are not particularly limited as long as they are insulating, and may be either organic particles or inorganic particles.
  • Specific organic particles include, for example, crosslinked polymethyl methacrylate, crosslinked styrene-acrylic acid copolymer, crosslinked acrylonitrile resin, polyamide resin, polyimide resin, poly (lithium 2-acrylamide-2-methylpropanesulfonate), and the like. Examples thereof include particles composed of organic compounds such as polyacetal resin, epoxy resin, polyester resin, phenol resin, and melamine resin.
  • Inorganic particles include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), potassium fluoride, and foot.
  • examples thereof include particles composed of inorganic compounds such as lithium pentoxide, clay, zeolite, and calcium carbonate.
  • the inorganic particles may be particles composed of known composite oxides such as niobium-tantalum composite oxide and magnesium-tantalum composite oxide.
  • the insulating fine particles may be particles in which one of the above materials is used alone, or particles in which two or more of the above materials are used in combination.
  • the insulating fine particles may be fine particles containing both an inorganic compound and an organic compound.
  • it may be an inorganic-organic composite particle in which the surface of a particle made of an organic compound is coated with an inorganic oxide.
  • inorganic particles are preferable, and alumina particles and boehmite particles are particularly preferable.
  • the average particle size of the insulating fine particles is usually smaller than the average particle size of the electrode active material, for example, 0.001 to 0.5 ⁇ m, preferably 0.05 to 0.4 ⁇ m, and more preferably 0.1 to 0.1. It is 0.3 ⁇ m. By keeping the average particle size of the insulating fine particles within these ranges, the mechanical strength of the insulating layer can be further increased.
  • the average particle size means the particle size (D50) when the volume integration is 50% in the particle size distribution of the insulating fine particles obtained by the laser diffraction / scattering method. Further, as the insulating fine particles, one type having an average particle diameter within the above range may be used alone, or two types of insulating fine particles having different average particle diameters may be mixed and used.
  • the insulating layer may be formed by a known method using a composition for an insulating layer.
  • a composition for an insulating layer can be prepared by mixing a polymer raw material monomer, a lithium salt, a solvent, and additives such as a photopolymerization initiator and a curing agent, which form a matrix of the polymer solid electrolyte. Then, the composition for an insulating layer is applied on a release sheet such as a fluororesin sheet, dried and polymerized, and peeled from the release sheet to form a film-like insulating layer.
  • a release sheet such as a fluororesin sheet
  • a coating film-like insulating layer may be formed by applying a composition for an insulating layer on an electrode, drying and polymerizing the composition.
  • the composition for the insulating layer may be prepared by mixing the polymer, the lithium salt and the solvent which form the matrix of the polymer solid electrolyte.
  • a film-like insulating layer can be formed by applying the composition for an insulating layer on a release sheet, drying the composition, and peeling from the release sheet.
  • a coating film-like insulating layer may be formed by applying the composition for an insulating layer on the electrode and drying it. When the insulating layer contains insulating fine particles, the composition for the insulating layer contains insulating fine particles.
  • the insulating layer can be formed by the same method as described above.
  • the voids of the insulating layer can be formed by, for example, a gas mixing method. For example, when mixing the raw materials of the composition for an insulating layer, air is mixed by stirring at high speed, and the mixture in which air is mixed is dried and polymerized, or dried to form voids in the insulating layer. it can.
  • the void ratio of the insulating layer can be adjusted by adjusting the amount of air mixed in. Further, the void ratio of the insulating layer can also be adjusted by performing a defoaming treatment after sufficiently mixing air.
  • the film-shaped insulating layer may be simply arranged between the positive electrode and the negative electrode. In this case, the film-shaped insulating layer may or may not be in contact with at least one of the positive electrode and the negative electrode. The film-shaped insulating layer may come into contact with the positive electrode active material layer when it comes into contact with the positive electrode. When the positive electrode active material layer is provided with the conventional insulating layer, the film-shaped insulating layer may come into contact with the conventional insulating layer. On the other hand, the film-shaped insulating layer may come into contact with the negative electrode active material layer when it comes into contact with the negative electrode.
  • the film-shaped insulating layer may come into contact with the conventional insulating layer.
  • the conventional insulating layer is formed by applying a slurry for an insulating layer containing insulating fine particles, a binder and a solvent but not containing a polymer solid electrolyte on the electrode active material layer and drying it. is there.
  • the film-shaped insulating layer may be pressure-bonded to at least one of the positive electrode and the negative electrode.
  • the coating film-like insulating layer may be coated on the surface of one of the positive electrode and the negative electrode.
  • the coating film-like insulating layer may be formed on the surface of the positive electrode active material layer of the positive electrode or the negative electrode active material layer of the negative electrode. Further, when the conventional insulating layer is provided on the positive electrode active material layer or the negative electrode active material layer, the coating film-like insulating layer may be formed on the surface of the conventional insulating layer.
  • the lithium ion secondary battery of the present invention includes an electrolytic solution.
  • the electrolytic solution is not particularly limited, and a known electrolytic solution used in a lithium ion secondary battery may be used.
  • the electrolytic solution include an organic solvent and an electrolytic solution containing an electrolyte salt.
  • the organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ⁇ -butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2.
  • Examples thereof include polar solvents such as -diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, and methylacetamide, or mixtures of two or more of these solvents.
  • polar solvents such as -diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, and methylacetamide, or mixtures of two or more of these solvents.
  • Electrolyte salts include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 CO 2 , LiPF 6 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , Examples thereof include salts containing lithium such as LiN (COCF 3 ) 2, LiN (COCF 2 CF 3 ) 2 , and lithium bisoxalate boronate (LiB (C 2 O 4 ) 2 ). Further, a complex such as a lithium organic acid salt-boron trifluoride complex and a complex hydride such as LiBH 4 can be mentioned.
  • the electrolytic solution may be present between the negative electrode and the positive electrode.
  • the electrolytic solution is filled in the battery cell in which the negative electrode, the positive electrode, and the insulating layer are housed. Further, the electrolytic solution may be applied on the negative electrode or the positive electrode and arranged between the negative electrode and the positive electrode, for example.
  • the lithium ion secondary battery may have a multilayer structure in which a plurality of negative electrodes and a plurality of positive electrodes are laminated.
  • the negative electrode and the positive electrode may be provided alternately along the stacking direction.
  • the insulating layer may be arranged between each negative electrode and each positive electrode.
  • the positive electrode or the negative electrode may be provided with a conventional insulating layer on the surface of the electrode active material layer. This makes it possible to more effectively prevent a short circuit between the positive electrode and the negative electrode.
  • the conventional insulating layer contains insulating fine particles and a binder, but does not contain a polymer solid electrolyte.
  • the conventional insulating layer is a layer formed by binding insulating fine particles with a binder and has a porous structure.
  • the thickness of the conventional insulating layer is preferably 1 to 10 ⁇ m.
  • the thickness of the conventional insulating layer is more preferably 1.5 to 8.5 ⁇ m, further preferably 3 to 7 ⁇ m. Since the lithium ion secondary battery of the present invention is provided with an insulating layer containing a polymer solid electrolyte, the conventional insulating layer can be thinned.
  • the conventional insulating layer has a porous structure as described above, but the void ratio is preferably 50 to 90%.
  • the void ratio is preferably 50 to 90%.
  • the coverage of the electrode active material layer by the conventional insulating layer is increased, and the short-circuit suppressing effect is improved.
  • the void ratio is more preferably 60 to 85%, further preferably 70 to 80%.
  • the insulating fine particles used in the conventional insulating layer are the same as the insulating fine particles used in the above-mentioned insulating layer. Therefore, the description of the insulating fine particles used in the conventional insulating layer will be omitted.
  • the content of the insulating fine particles contained in the conventional insulating layer is preferably 15 to 95% by mass, more preferably 40 to 90% by mass, and further preferably 60 to 85% by mass based on the total amount of the insulating layer.
  • the conventional insulating layer can form a uniform porous structure and is provided with appropriate insulating properties.
  • the binder used for the conventional insulating layer the same binder as the above-mentioned positive electrode binder can be used.
  • the content of the binder contained in the conventional insulating layer is preferably 5 to 50% by mass, more preferably 10 to 45% by mass, and further preferably 15 to 40% by mass based on the total amount of the insulating layer. Within the above range, a uniform porous structure can be formed in the conventional insulating layer, and appropriate insulating properties can be imparted.
  • the conventional insulating layer may contain optional components other than the insulating fine particles and the binder as long as the effects of the present invention are not impaired. However, the total content of the insulating fine particles and the binder in the total mass of the conventional insulating layer is preferably 85% by mass or more, and more preferably 90% by mass or more.
  • the distance between the positive electrode active material layer and the negative electrode active material layer can be shortened by not providing the conventional insulating layer on the electrode. Therefore, from the viewpoint of the volumetric energy density of the lithium ion secondary battery, it is preferable not to provide the conventional insulating layer on the electrode.
  • the method for manufacturing the lithium ion secondary battery of the present invention is not particularly limited, but the lithium ion secondary battery of the present invention can be manufactured as follows by preparing, for example, a positive electrode, a negative electrode and an insulating layer. ..
  • the positive electrode can be obtained by applying a composition for a positive electrode active material layer to one or both surfaces of a positive electrode current collector and drying the composition.
  • the composition for the positive electrode active material layer is in the form of a slurry containing at least one solvent selected from the positive electrode active material, the binder for the positive electrode, the organic solvent and water.
  • the positive electrode active material layer may be formed by applying the composition for the positive electrode active material layer on a base material other than the positive electrode current collector and drying it. Examples of the base material other than the positive electrode current collector include known release sheets.
  • the positive electrode active material layer formed on the base material may be peeled off from the base material and transferred onto the positive electrode current collector.
  • the positive electrode active material layer formed on the positive electrode current collector or the base material is preferably pressure-pressed.
  • the negative electrode can be manufactured by the same method as the above-mentioned manufacturing of the positive electrode. That is, in the production of the positive electrode, the positive electrode can be read as the negative electrode.
  • the insulating layer can be produced by the method described in the above-mentioned "Method for forming an insulating layer".
  • the manufactured positive electrode, insulating layer and negative electrode are laminated in order.
  • a plurality of positive electrodes and a plurality of negative electrodes may be prepared and laminated so that the insulating layer is arranged between the positive electrode and the negative electrode.
  • the laminated positive electrode, negative electrode and insulating layer are usually housed in a battery cell.
  • the battery cell may be square, cylindrical, laminated or the like. Then, after injecting the electrolytic solution into the battery cell, the battery cell is sealed.
  • the obtained electrode for a lithium ion secondary battery was evaluated by the following evaluation method. (Whether charging / discharging is possible) In an environment of a temperature of 45 ° C., it was examined whether or not there was a voltage drop 60 minutes after full charge with respect to the voltage at full charge at the time of initial charge. Further, the charge / discharge efficiency of the second charge / discharge was investigated in an environment of a temperature of 45 ° C. The charge / discharge efficiency was calculated by dividing the discharge capacity by the charge capacity. Then, it was evaluated according to the following criteria. Charge / discharge possible: Chargeable and voltage drop is 0.1V or less, and charge / discharge efficiency is 95% or more. Charge / discharge impossible: Charge is not possible or voltage drop is greater than 0.1V. Or charge / discharge efficiency is less than 95%
  • the AC resistance value (measurement unit: ⁇ ) of the lithium ion secondary battery at 1 kHz was measured using a tester for AC resistance measurement (product name: RM3542A, manufactured by Hioki Denki Co., Ltd.). ..
  • the cross section of the insulating layer was exposed by the ion milling method. Next, the cross section of the exposed insulating layer was observed using an FE-SEM (field emission scanning electron microscope) at a magnification at which the entire insulating layer could be observed, and an image of the insulating layer was obtained. The magnification was 5000 to 25000 times. Next, using the image analysis software "Image J", the obtained image was binarized so that the real portion of the insulating layer was displayed in black and the void portion of the insulating layer was displayed in white. Then, the ratio of the area of the white part was measured. The ratio of the area of the white portion is the void ratio (%) of the insulating layer. The void ratio of the insulating layer was also measured by the same method.
  • the thickness of the insulating layer was measured from the above SEM image.
  • Example 1 (Preparation of positive electrode) 100 parts by mass of NCA-based oxide (average particle size 10 ⁇ m) as the positive electrode active material, 4 parts by mass of acetylene black as the conductive auxiliary agent, 4 parts by mass of polyvinylidene fluoride as the electrode binder, and N as the solvent. -Methylpyrrolidone (NMP) was mixed to obtain a slurry for a positive electrode active material layer adjusted to a solid content concentration of 60% by mass. This slurry for the positive electrode active material layer was applied to an aluminum foil having a thickness of 15 ⁇ m as a positive electrode current collector, pre-dried, and then vacuum dried at 120 ° C.
  • NMP -Methylpyrrolidone
  • the positive electrode current collector coated with the slurry for the positive electrode active material layer is pressure-pressed by a roller at a linear pressure of 400 kN / m, and further punched into a circle having an electrode size of 14 mm in diameter to have a positive electrode having a positive electrode active material layer. And said.
  • the thickness of the positive electrode active material layer was 50 ⁇ m.
  • the negative electrode current collector coated with the slurry for the negative electrode active material layer is pressure-pressed by a roller at a linear pressure of 500 kN / m, and further punched into a circle having an electrode size of 16 mm in diameter to have a negative electrode having a negative electrode active material layer. And said.
  • the thickness of the negative electrode active material layer was 50 ⁇ m.
  • LiPF 6 as an electrolyte salt is dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7 (EC: DEC) so as to be 1 mol / liter, and the electrolytic solution is prepared.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Teflon (registered trademark) sheet was placed on the dried polymer electrolyte, and the polymer electrolyte was sandwiched between two Teflon (registered trademark) sheets. Then, both sides of the polymer electrolyte sandwiched between two Teflon (registered trademark) sheets are irradiated with ultraviolet rays through the Teflon (registered trademark) sheet, and the polymer electrolyte is cured to prepare a polymer solid electrolyte film. did.
  • the polymer serving as the matrix of this polymer solid electrolyte film is polyethylene oxide, and the lithium salt is LiTFSI.
  • the polymer solid electrolyte film was punched into a circle having an electrode size of 16 mm in diameter to prepare an insulating layer.
  • the thickness (d) of the insulating layer was 5 ⁇ m. Further, by changing the amount of air mixed in when stirring the lithium salt-containing solution to which ethylene oxide is added, and by performing a demethod treatment after stirring, the void ratio of the insulating layer can be reduced to 0%, 5%, 10%, and 15. It was changed to 5 points of% and 20%.
  • a battery for character evaluation was produced by arranging the positive electrode, the insulating layer, and the negative electrode on the battery characteristic evaluation jig 100 shown in FIG. 1 and injecting the electrolytic solution. Specifically, between the negative electrode body 106 and the positive electrode body 107, a negative electrode 108, an insulating layer 109, an electrode guide 110, a positive electrode 111, an electrode retainer 112, and a spring 113 are placed in this order from the negative electrode body 106 side to a jig for evaluating battery characteristics. It was placed at 100. Then, the electrolytic solution was injected into the battery characteristic evaluation jig 100 to prepare a lithium ion secondary battery for characteristic evaluation.
  • the surface of the positive electrode active material layer is coated with this insulating layer slurry with a gravure coater on the surface of the positive electrode active material layer after pressure pressing and before punching, and the coating film is dried at 90 ° C. for 1 minute.
  • a positive electrode plate having a conventional insulating layer was produced.
  • a positive electrode plate having a conventional insulating layer was punched into a circle having an electrode size of 14 mm in diameter to prepare a positive electrode having a conventional insulating layer.
  • the thickness (d) of the insulating layer was 5 ⁇ m.
  • the void ratio of the insulating layer was changed to 5 points of 0%, 5%, 10%, 15% and 20%. If the void ratio is 25% or more, charging / discharging becomes impossible and the internal resistance of the battery cannot be measured.
  • FIG. 2 shows the evaluation results of the lithium ion secondary batteries of Example 1 and Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、正極と、負極と、正極と負極の間に配置された絶縁層と、電解液とを備えるリチウムイオン二次電池であって、絶縁層は高分子固体電解質を含む層であり、絶縁層の厚さは3~7μmである。本発明によれば、絶縁層の空隙率の低減によるリチウムイオン二次電池の内部抵抗の上昇を抑制できる絶縁層を備えたリチウムイオン二次電池を提供する。

Description

リチウムイオン二次電池
 本発明は、絶縁層を備えるリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、電力貯蔵用の大型定置用電源、電気自動車用等の電源として利用されており、近年では電池の小型化及び薄型化の研究が進展している。リチウムイオン二次電池は、金属箔の表面に電極活物質層を形成した両電極と、両電極の間に配置されるセパレータとを備えるものが一般的である。セパレータは、両電極間の短絡防止や電解液を保持する役割を果たす。リチウムイオン二次電池のエネルギー密度を高めるために、セパレータは薄いことが好ましい。
 セパレータとして機能し得る絶縁層を電極活物質層上に設けた二次電池が従来技術として知られている(例えば、特許文献1参照)。この絶縁層は、多孔質構造を有し、例えば、絶縁性微粒子、バインダー及び溶媒を含む絶縁層用スラリーを、電極活物質層の上に塗布し、乾燥することで形成することができる。そして、絶縁層用スラリーが塗布される電極活物質層の表面の粗さを平滑化処理によって低減することにより、絶縁層を薄くすることができる。
国際公開2016/104782号
 しかしながら、従来の絶縁層では、薄層化するにしたがって、絶縁層の空隙に起因する微小短絡が発生する可能性が高くなる。このため、従来の絶縁層では、薄層化するにしたがって、絶縁層の空隙率を低くする必要があった。しかし、絶縁層の空隙率を低くすると、二次電池の内部抵抗が高くなり、二次電池の特性が悪くなった。
 そこで、本発明は、絶縁層の空隙率の低下による二次電池の内部抵抗の上昇を抑制できる絶縁層を備えたリチウムイオン二次電池を提供することを課題とする。
 本発明者らは、鋭意検討の結果、絶縁層に高分子固体電解質を含有させることによって、絶縁層の空隙率低下に起因するリチウムイオン二次電池の内部抵抗の上昇を抑制できることを見出し、以下の本発明を完成させた。本発明の要旨は、以下の[1]~[5]である。
[1]正極と、負極と、前記正極と前記負極の間に配置された絶縁層と、電解液とを備えるリチウムイオン二次電池であって、前記絶縁層は高分子固体電解質を含む層であり、前記絶縁層の厚さは3~7μmであるリチウムイオン二次電池。
[2]前記絶縁層の空隙率が20%以下である上記[1]に記載のリチウムイオン二次電池。
[3]前記高分子固体電解質がポリエーテル系電解質である上記[1]又は[2]に記載のリチウムイオン二次電池。
[4]前記ポリエーテル系電解質のマトリックスとなるポリマーが、エチレンオキシド構造を有するポリマーである上記[3]に記載のリチウムイオン二次電池。
[5]前記高分子固体電解質がリチウム塩を含む上記[1]~[4]のいずれか1つに記載のリチウムイオン二次電池。
 本発明によれば、絶縁層の空隙率の低減によるリチウムイオン二次電池の内部抵抗の上昇を抑制できる絶縁層を備えたリチウムイオン二次電池を提供することができる。
図1は、電池特性評価用ジグの分解図である。 図2は、実施例1及び比較例1のリチウムイオン二次電池の評価結果を示すグラフである。
[リチウムイオン二次電池]
 本発明のリチウムイオン二次電池は、正極と、負極と、正極と負極の間に配置された絶縁層と、電解液とを備える。そして、絶縁層は高分子固体電解質を含む層であり、絶縁層の厚さは3~7μmである。以下、本発明のリチウムイオン二次電池を詳細に説明する。
(正極)
 本発明のリチウムイオン二次電池における正極は、正極活物質層を有し、好ましくは正極集電体と、正極集電体上に積層された正極活物質層とを有する。正極活物質層は、典型的には、正極活物質と、正極用バインダーとを含む。
 正極活物質としては、金属酸リチウム化合物が挙げられる。金属酸リチウム化合物としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等が例示できる。また、オリビン型リン酸鉄リチウム(LiFePO)等であってもよい。さらに、リチウム以外の金属を複数使用したものでもよく、三元系と呼ばれるNCM(ニッケルコバルトマンガン)系酸化物、NCA(ニッケルコバルトアルミニウム系)系酸化物等を使用してもよい。
 正極活物質の平均粒子径は、特に限定されないが、0.5~50μmであることが好ましく、1~30μmであることがより好ましい。なお、平均粒子径は、レーザー回折散乱法によって求めた正極活物質の粒度分布において、体積積算が50%での粒径(D50)を意味する。また、正極活物質は、例えば、ボールミル等を用いる公知の手法で粉砕することにより、平均粒子径を所望の値に調節できる。
 正極活物質層における正極活物質の含有量は、正極活物質層全量基準で、50~98.5質量%が好ましく、60~98質量%がより好ましい。
 正極活物質層は、導電助剤を含有してもよい。導電助剤は、上記正極活物質よりも導電性が高い材料が使用され、具体的には、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、棒状カーボン等の炭素材料等が挙げられる。
 正極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、正極活物質層全量基準で、1~30質量%であることが好ましく、2~25質量%であることがより好ましい。
 正極用バインダーとしては、特に制限されないが、例えば、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)、ポリテトラフルオロエチレン(PTFE)等のフッ素含有樹脂、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、アクリロニトリル・ブタジエンゴム、スチレンブタジエンゴム、ポリ(メタ)アクリル酸、カルボキシメチルセルロース、ヒドロキシエチルセルロース、及びポリビニルアルコール等が挙げられる。これらバインダーは、1種単独で使用されてもよいし、2種以上が併用されてもよい。また、カルボキシメチルセルロース等は、ナトリウム塩等の塩の態様にて使用されていてもよい。
 正極活物質層における正極用バインダーの含有量は、正極活物質層全量基準で、1.5~40質量%であることが好ましく、2.0~25質量%がより好ましい。
 正極活物質層の厚みは、特に限定されないが、10~200μmであることが好ましく、50~150μmであることがより好ましい。
 正極集電体を構成する材料としては、例えば、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が挙げられ、これらの中ではアルミニウム又は銅が好ましく、アルミニウムがより好ましい。正極集電体は、一般的に金属箔からなり、その厚さは、特に限定されないが、1~50μmが好ましい。
(負極)
 本発明のリチウムイオン二次電池における負極は、負極活物質層を有し、好ましくは負極集電体と、負極集電体上に積層された負極活物質層とを有する。負極活物質層は、典型的には、負極活物質と、負極用バインダーとを含む。
 負極活物質層に使用される負極活物質としては、グラファイト、ハードカーボン等の炭素材料、スズ化合物とシリコンと炭素の複合体、Si、一般式SiOx(式中、xは0.5~1.5の数)で表される化合物、Si-C系ナノ複合材料、Si-SiO-C系ナノ複合材料等のSi系材料、リチウム等が挙げられるが、これら中では炭素材料及びSi系材料が好ましく、グラファイト及び一般式SiOx(式中、xは0.5~1.5の数)で表される化合物がより好ましい。
 負極活物質の平均粒子径は、特に限定されないが、0.5~50μmであることが好ましく、1~30μmであることがより好ましい。なお、平均粒子径は、レーザー回折散乱法によって求めた負極活物質の粒度分布において、体積積算が50%での粒径(D50)を意味する。また、負極活物質は、例えば、ボールミル等を用いる公知の手法で粉砕することにより、平均粒子径を所望の値に調節できる。
 負極活物質層における負極活物質の含有量は、負極活物質層全量基準で、50~98.5質量%が好ましく、60~98質量%がより好ましい。
 負極活物質層は、導電助剤を含有してもよい。導電助剤は、上記負極活物質よりも導電性が高い材料が使用され、具体的には、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、棒状カーボン等の炭素材料等が挙げられる。
 負極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、負極活物質層全量基準で、1~30質量%であることが好ましく、2~25質量%であることがより好ましい。
 負極用バインダーとしては、特に制限されないが、正極用バインダーとして説明したものと同様のものを用いることができる。
 負極活物質層における負極用バインダーの含有量は、負極活物質層全量基準で、1.5~40質量%であることが好ましく、2.0~25質量%がより好ましい。
 負極活物質層の厚みは、特に限定されないが、10~200μmであることが好ましく、50~150μmであることがより好ましい。
 負極集電体となる材料は、上記正極集電体に使用される化合物と同様であるが、好ましくはアルミニウム又は銅、より好ましくは銅が使用される。負極集電体は、一般的に金属箔からなり、その厚さは、特に限定されないが、1~50μmが好ましい。
(絶縁層)
 本発明のリチウムイオン二次電池は、負極と正極との間に配置される絶縁層を備える。絶縁層により、正極及び負極の間の短絡が効果的に防止される。また、絶縁層は、後述する電解質を保持してもよい。絶縁層は高分子固体電解質を含む層である。
<高分子固体電解質>
 高分子固体電解質は、主に高分子から構成されるイオン伝導性を示す材料である。高分子固体電解質には、例えば、ドライタイプの高分子電解質、ゲルタイプの高分子電解質等が挙げられる。ドライタイプの高分子電解質は、本質的には、高分子の骨格の運動によりイオンの伝導が起こると考えられている。一方、ゲルタイプの高分子電解質は、多量に含む電解液を介してイオンの伝導が起こる。機械的強度が高いという観点から、好ましい高分子固体電解質はドライタイプの高分子電解質である。
 イオン伝導性が高く、機械的強度の高いという観点、及びこれまで分子設計について膨大な検討がなされているという観点から、好ましいドライタイプの高分子固体電解質は、ポリエーテル系電解質である。ポリエーテル系電解質のマトリックスとなるポリマーは、エチレンオキシド構造、プロピレンオキシド構造、又はその両方の構造を有することが好ましい。ポリエーテル系電解質のマトリックスとなるポリマーには、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、エチレンオキシド-プロピレン共重合体、ジメチルシロキサン-エチレンオキシド共重合体等が挙げられる。また、エチレンオキシド構造が含まれるポリエーテル側鎖を有するくし型ポリマー、エチレンオキシド以外のモノマーとエチレンオキシドとの共重合体、架橋剤を用いてポリエチレンオキシドもしくはポリエーテルオリゴマーを架橋させたもの、分岐を持たせた分岐型ポリエーテル系ポリマー、分子量が数百~数千程度のマクロモノマーを熱重合や光重合したもの等も挙げられる。これらのポリマーは、1種単独で使用してもよいし、2種以上を併用してもよい。イオン伝導性が高く、機械的強度が高いという観点から、ポリエーテル系電解質のマトリックスとなるポリマーは、少なくともエチレンオキシド構造を有するポリマーであることがより好ましく、ポリエチレンオキシドであることがさらに好ましい。なお、エチレンオキシド構造は、エチレンと酸素とによる基本ユニットによって構成される。
 絶縁層のイオン伝導性を高くするという観点から、絶縁層における高分子固体電解質の含有量は、好ましくは80体積%以上であり、より好ましくは90体積%以上であり、さらに好ましくは95体積%以上であり、特に好ましくは98体積%以上である。なお、高分子固体電解質の含有量の上限値は100体積%である。
 高分子固体電解質のイオン伝導性をより高くするという観点から、高分子固体電解質はリチウム塩を含むことが好ましい。例えば、高分子固体電解質がポリエーテル系電解質である場合、リチウム塩のカチオン(リチウムイオン)と、ポリエーテル系電解質のマトリックスとなるポリマーにおけるエーテル酸素の孤立電子対とによるイオン-双極子相互作用によって錯形成し、リチウム塩はマトリックスとなるポリマーに溶解すると考えられる。そして、溶解したリチウム塩の一部が解離した状態となり、ポリエーテル系電解質のイオン伝導性はより高くなると考えられる。
 高分子固体電解質に用いるリチウム塩には、例えば、LiCl、LiBr、LiI、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、LiBPh(リチウムテトラフェニルボレート)、LiTFSA(リチウムビストリフルオロメチルスルホニルアミド)、LiTFSI(リチウムビストリフルオロメチルスルホニルイミド)等が挙げられる。これらのリチウム塩は、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中で、高分子固体電解質中のリチウム塩の解離性を高くできるという観点から、LiTFSA及びLiTFSIが好ましく、LiTFSIがより好ましい。
 高分子固体電解質のイオン伝導性及び高分子固体電解質の機械的強度の観点から、高分子固体電解質のマトリックスとなるポリマー100質量部に対するリチウム塩の配合量は、好ましくは1~100質量部であり、より好ましくは5~80質量部であり、さらに好ましくは10~50質量部である。
 絶縁層の厚さは3~7μmである。絶縁層の厚さが3μm未満であると、微小短絡を十分には防止できない場合がある。一方、絶縁層の厚さが7μmよりも大きいと、電極間の距離を短くすることができず、リチウムイオン二次電池の体積エネルギー密度を十分に高くすることができない場合がある。このような観点から、絶縁層の厚さは、好ましくは4~7μmであり、より好ましくは4~6μmである。
 絶縁層の空隙率は20%以下であることが好ましい。絶縁層の空隙率が20%以下であると、絶縁層の空隙にリチウムデントライト等が発生することを防止し、絶縁層の微小短絡の発生を十分に抑制することができる。このような観点から、絶縁層の空隙率は、好ましくは15%以下であり、より好ましくは10%以下である。なお、絶縁層の空隙率の範囲の下限値は、とくに限定されないが、例えば0%である。絶縁層の空隙率は、後述の実施例の項目に記載の方法により測定することができる。なお、本発明のリチウムイオン二次電池の絶縁層は、高分子固体電解質を含むので、絶縁層の空隙率が20%以下であっても、十分な量のリチウムイオンが絶縁層を通過することができる。このため、絶縁層の空隙率の低下によるリチウムイオン二次電池の内部抵抗の上昇を抑制することができる。
 絶縁層は所望により絶縁性微粒子を含んでもよい。これにより、絶縁層の機械的強度を高くすることができる。絶縁層の空隙率を小さくするという観点から、絶縁層における絶縁性微粒子の含有量は、高分子固体電解質及び絶縁性微粒子の合計100体積%に対して、好ましくは10体積%以下であり、より好ましくは7体積%以下であり、さらに好ましくは5体積%以下であり、よりさらに好ましくは1体積%以下である。絶縁層の空隙率をより確実に小さくするという観点から、絶縁層は絶縁性微粒子を含まないことが特に好ましい。
 絶縁性微粒子は、絶縁性であれば特に限定されず、有機粒子、無機粒子の何れであってもよい。具体的な有機粒子としては、例えば、架橋ポリメタクリル酸メチル、架橋スチレン-アクリル酸共重合体、架橋アクリロニトリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸リチウム)、ポリアセタール樹脂、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、メラミン樹脂等の有機化合物から構成される粒子が挙げられる。無機粒子としては二酸化ケイ素、窒化ケイ素、アルミナ、ベーマイト、チタニア、ジルコニア、窒化ホウ素、酸化亜鉛、二酸化スズ、酸化ニオブ(Nb)、酸化タンタル(Ta)、フッ化カリウム、フッ化リチウム、クレイ、ゼオライト、炭酸カルシウム等の無機化合物から構成される粒子が挙げられる。また、無機粒子は、ニオブ-タンタル複合酸化物、マグネシウム-タンタル複合酸化物等の公知の複合酸化物から構成される粒子であってもよい。
 絶縁性微粒子は、上記した各材料が1種単独で使用される粒子であってもよいし、2種以上が併用される粒子であってもよい。また、絶縁性微粒子は、無機化合物と有機化合物の両方を含む微粒子であってもよい。例えば、有機化合物からなる粒子の表面に無機酸化物をコーティングした無機有機複合粒子であってもよい。
 これらの中では、無機粒子が好ましく、中でもアルミナ粒子、ベーマイト粒子が好ましい。
 絶縁性微粒子の平均粒子径は、通常、電極活物質の平均粒径より小さいものであり、例えば0.001~0.5μm、好ましくは0.05~0.4μm、より好ましくは0.1~0.3μmである。絶縁性微粒子の平均粒子径をこれら範囲内することで、絶縁層の機械的強度をより高くすることができる。なお、平均粒子径は、レーザー回折散乱法によって求めた絶縁性微粒子の粒度分布において、体積積算が50%での粒径(D50)を意味する。また、絶縁性微粒子は、平均粒子径が上記範囲内の1種が単独で使用されてもよいし、平均粒子径の異なる2種の絶縁性微粒子が混合されて使用されてもよい。
<絶縁層の形成方法>
 絶縁層は、絶縁層用組成物を使用して公知の方法で形成すればよい。例えば、高分子固体電解質のマトリックスとなるポリマーの原料モノマー、リチウム塩、溶媒、及び、光重合開始剤、硬化剤等の添加剤を混合することによって絶縁層用組成物を作製することができる。そして、絶縁層用組成物をフッ素樹脂シート等の剥離シートの上に塗布し、乾燥及び重合させ、剥離シートから剥離することによりフィルム状の絶縁層を形成することができる。また、絶縁層用組成物を電極の上に塗布し、乾燥及び重合させることによって塗膜状の絶縁層を形成してもよい。
 また、高分子固体電解質のマトリックスとなるポリマー、リチウム塩及び溶媒を混合することによって絶縁層用組成物を作製してもよい。この場合、絶縁層用組成物を剥離シートの上に塗布し、乾燥させ、剥離シートから剥離することによりフィルム状の絶縁層を形成することができる。また、絶縁層用組成物を電極の上に塗布し、乾燥させることによって塗膜状の絶縁層を形成してもよい。
 なお、絶縁層が絶縁性微粒子を含む場合は、絶縁層用組成物は絶縁性微粒子を含むことになる。そして、上述と同様な方法で絶縁層を形成することができる。
 また、絶縁層の空隙は、例えば、気体混入法により形成することができる。例えば、絶縁層用組成物の原料を混合する際に高速で攪拌することにより空気を混入させ、空気が混入した混合物を乾燥及び重合、又は乾燥させることにより、絶縁層に空隙を形成することができる。そして、絶縁層の空隙率は、混入する空気の量を調節することにより、調整することができる。また、絶縁層の空隙率は、十分空気を混入させた後、脱泡処理を行うことによっても調整することができる。
 フィルム状の絶縁層は、正極及び負極の間に単に配置されていてもよい。この場合、フィルム状の絶縁層は、正極及び負極の少なくとも一方の電極に接触していてもよく、電極と接触していなくてもよい。
 フィルム状の絶縁層は、正極に接触する際、正極活物質層に接触するとよい。また、正極活物質層に従来の絶縁層が設けられている場合、フィルム状の絶縁層は従来の絶縁層に接触するとよい。一方、フィルム状の絶縁層は、負極に接触する際、負極活物質層に接触するとよい。また、負極活物質層に従来の絶縁層が設けられている場合、フィルム状の絶縁層は従来の絶縁層に接触するとよい。なお、従来の絶縁層とは、絶縁性微粒子、バインダー及び溶媒を含むが高分子固体電解質を含まない絶縁層用スラリーを、電極活物質層の上に塗布し、乾燥することで形成したものである。
 また、フィルム状の絶縁層は、正極及び負極の少なくとも一方の電極に圧着されていてもよい。
 また、塗膜状の絶縁層は、正極及び負極の一方の電極の表面に塗膜されてもよい。この場合、塗膜状の絶縁層は、正極の正極活物質層、又は負極の負極活物質層の表面に形成されるとよい。また、正極活物質層又は負極活物質層に従来の絶縁層が設けられている場合、塗膜状の絶縁層は、従来の絶縁層の表面に形成されてもよい。
(電解液)
 本発明のリチウムイオン二次電池は、電解液を備える。電解液は特に限定されず、リチウムイオン二次電池で使用される公知の電解液を使用すればよい。
 電解液としては、有機溶媒と、電解質塩を含む電解液が例示できる。有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、メチルアセテート等の極性溶媒、又はこれら溶媒の2種類以上の混合物が挙げられる。電解質塩としては、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFCO、LiPFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF及びLiN(COCFCF、リチウムビスオキサレートボラート(LiB(C)等のリチウムを含む塩が挙げられる。また、有機酸リチウム塩-三フッ化ホウ素錯体、LiBH等の錯体水素化物等の錯体が挙げられる。これらの塩又は錯体は、1種単独で使用してもよいが、2種以上の混合物であってもよい。
 電解液は、負極及び正極間に存在していればよく、例えば、電解液は、上記した負極、正極、及び絶縁層が内部に収納されたバッテリーセル内に充填される。また、電解液は、例えば、負極又は正極上に塗布されて負極及び正極間に配置されてもよい。
 リチウムイオン二次電池は、負極、正極がそれぞれ複数積層された多層構造であってもよい。この場合、負極及び正極は、積層方向に沿って交互に設けられればよい。また、絶縁層は各負極と各正極の間に配置されればよい。
(従来の絶縁層)
 正極又は負極は、電極活物質層の表面上に従来の絶縁層を備えてもよい。これにより、正極及び負極の間の短絡をさらに有効に防止できる。
 従来の絶縁層は、絶縁性微粒子と、バインダーとを含むが、高分子固体電解質を含まない。従来の絶縁層は、絶縁性微粒子がバインダーによって結着されて構成される層であり、多孔質構造を有する。
 従来の絶縁層の厚さは、1~10μmが好ましい。従来の絶縁層の厚さを10μm以下とすることで、リチウムイオン二次電池の体積エネルギー密度を高くすることができる。また、1μm以上とすることで、電極活物質層に対する従来の絶縁層による被覆率が上昇して、短絡抑制効果が向上する。これら体積エネルギー密度及び短絡抑制効果の観点から、従来の絶縁層の厚さは、1.5~8.5μmがより好ましく、3~7μmがさらに好ましい。なお、本発明のリチウムイオン二次電池には高分子固体電解質を含む絶縁層が設けられているので、従来の絶縁層を薄くすることができる。
 従来の絶縁層は、上記のように、多孔質構造を有するが、その空隙率は、50~90%が好ましい。空隙率を90%以下とすることで、電極活物質層に対する従来の絶縁層による被覆率が上昇して、短絡抑制効果が向上する。空隙率を50%以上とすることで、リチウムイオン二次電の内部抵抗の上昇を抑制することができる。短絡抑制効果及びリチウムイオン二次電の内部抵抗の観点から、従来の絶縁層の空隙率は、60~85%がより好ましく、70~80%がさらに好ましい。
 従来の絶縁層に用いる絶縁性微粒子は、上述の絶縁層に用いる絶縁性微粒子と同様のものである。したがって、従来の絶縁層に用いる絶縁性微粒子の説明を省略する。
 従来の絶縁層に含有される絶縁性微粒子の含有量は、絶縁層全量基準で、好ましくは15~95質量%、より好ましくは40~90質量%、さらに好ましくは60~85質量%である。絶縁性微粒子の含有量が上記範囲内であると、従来の絶縁層は、均一な多孔質構造が形成でき、かつ適切な絶縁性が付与される。
 従来の絶縁層に用いるバインダーとしては、上述の正極用バインダーと同様なものを使用できる。
 従来の絶縁層に含有されるバインダーの含有量は、絶縁層全量基準で、5~50質量%が好ましく、より好ましくは10~45質量%、さらに好ましくは15~40質量%である。上記範囲内であると、従来の絶縁層には、均一な多孔質構造を形成でき、かつ適切な絶縁性を付与できる。
 従来の絶縁層は、本発明の効果を損なわない範囲内において、絶縁性微粒子及びバインダー以外の他の任意成分を含んでもよい。ただし、従来の絶縁層の総質量のうち、絶縁性微粒子及びバインダーの総含有量は、85質量%以上であることが好ましく、90質量%以上であることがより好ましい。
 電極に従来の絶縁層を設けない方が、正極活物質層と負極活物質層との間の距離を短くすることができる。したがって、リチウムイオン二次電池の体積エネルギー密度の観点から、従来の絶縁層を電極に設けない方が好ましい。
<リチウムイオン二次電池の製造方法>
 本発明のリチウムイオン二次電池の製造方法は、特に限定されないが、本発明のリチウムイオン二次電池は、例えば、正極、負極及び絶縁層を準備して、以下のように製造することができる。
(正極の製造)
 正極は、正極集電体の一方又は両方の表面に、正極活物質層用組成物を塗布して、乾燥させることにより得ることができる。正極活物質層用組成物は、正極活物質、正極用バインダー、有機溶媒及び水から選択される少なくとも1種の溶媒を含むスラリー状のものである。
 正極活物質層は、正極活物質層用組成物を、正極集電体以外の基材上に塗布して、乾燥することにより形成してもよい。正極集電体以外の基材としては、公知の剥離シートが挙げられる。基材の上に形成した正極活物質層は、基材から剥がして正極集電体の上に転写すればよい。正極集電体又は基材の上に形成した正極活物質層は、好ましくは加圧プレスする。
(負極の製造)
 負極は、上記した正極の製造と同様の方法で製造することができる。すなわち、上記正極の製造において、正極を負極と読み代えることができる。
(絶縁層の製造)
 絶縁層は、上述の「絶縁層の形成方法」の項目に記載されている方法で製造することができる。
 製造した正極、絶縁層及び負極を順に積層する。なお、複数の正極及び複数の負極を準備し、これらを絶縁層が正極と負極との間に配置されるように積層してもよい。積層した正極、負極及び絶縁層は、通常バッテリーセル内に収容される。バッテリーセルは、角型、円筒型、ラミネート方等のいずれでもよい。そして、バッテリーセル内に電解液を注入した後、バッテリーセルは密封される。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
 得られたリチウムイオン二次電池用電極は、以下の評価方法により評価した。
(充放電の可否)
 45℃の温度の環境下、最初の充電時の満充電時の電圧に対する満充電60分後の電圧低下の有無を調べた。さらに、45℃の温度の環境下、2回目の充放電の充放電効率を調べた。なお、充放電効率は放電容量を充電容量で割り算して算出した。そして、以下の基準で評価した。
  充放電可能:充電ができ、かつ電圧低下が0.1V以下であり、かつ充放電効率が95%以上
  充放電不可能:充電ができなかったか、又は電圧低下が0.1Vよりも大きいか、又は充放電効率が95%未満
(内部抵抗)
 室温(25℃)下で、交流抵抗測定用のテスター(製品名:RM3542A、日置電機株式会社製)を用いて、リチウムイオン二次電池の1kHzにおける交流抵抗値(測定単位:Ω)を測定した。
(空隙率)
 イオンミリング方式で、絶縁層の断面を露出させた。次に、露出させた絶縁層の断面を、FE-SEM(電界放出型走査型電子顕微鏡)を用いて、絶縁層全体が観察できる倍率で観察し、絶縁層の画像を得た。なお、倍率は5000~25000倍であった。次に、画像解析ソフト「Image J」を使用して、絶縁層の実部分が黒く表示され、絶縁層の空隙部分が白く表示されるように、得られた画像を2値化処理した。そして、白部分の面積の割合を測定した。この白部分の面積の割合が絶縁層の空隙率(%)となる。絶縁層の空隙率も同様の方法で測定した。
(絶縁層の厚み)
 絶縁層の厚みは、上述のSEMの画像から測定した。
[実施例1]
(正極の作製)
 正極活物質としてNCA系酸化物(平均粒子径10μm)を100質量部と、導電助剤としてのアセチレンブラックを4質量部と、電極用バインダーとしてのポリフッ化ビニリデン4質量部と、溶媒としてのN-メチルピロリドン(NMP)とを混合し、固形分濃度60質量%に調整した正極活物質層用スラリーを得た。この正極活物質層用スラリーを、正極集電体としての厚さ15μmのアルミニウム箔に塗布し、予備乾燥後、120℃で真空乾燥した。その後、正極活物質層用スラリーを塗布した正極集電体を、400kN/mの線圧でローラにより加圧プレスし、さらに電極寸法の直径14mmの円形に打ち抜いて、正極活物質層を有する正極とした。なお、正極活物質層の厚さは50μmであった。
(負極の作製)
 負極活物質としてグラファイト(平均粒子径10μm)100質量部と、電極用バインダーとしてのカルボキシメチルセルロース(CMC)のナトリウム塩を1.5質量部及びスチレンブタジエンゴム(SBR)1.5質量部と、溶媒としての水とを混合し、固形分50質量%に調整した負極活物質層用スラリーを得た。この負極活物質層用スラリーを、負極集電体としての厚さ12μmの銅箔に塗布して100℃で真空乾燥した。その後、負極活物質層用スラリーを塗布した負極集電体を、500kN/mの線圧でローラにより加圧プレスし、さらに電極寸法の直径16mmの円形に打ち抜いて、負極活物質層を有する負極とした。なお、負極活物質層の厚さは50μmであった。
(電解液の調製)
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比(EC:DEC)で混合した溶媒に、電解質塩としてLiPFを1モル/リットルとなるように溶解して、電解液を調製した。
(絶縁層の作製)
 2.5質量部のLiTFSI(リチウムビストリフルオロメチルスルホニルイミド)を16質量部のアセトニトリルに溶解させることによって得られた溶液に0.1質量部の光重合開始剤(商品名:Esacure KTO 46、Sartomer社製)を加えて、リチウム塩含有溶液を調製した。次に、10質量部のエチレンオキシドを上記リチウム塩含有溶液に加えて、空気を混入させながら攪拌し、高分子電解質溶液を調製した。得られた高分子電解質溶液をテフロン(登録商標)製シートに塗布し、減圧下、60℃の乾燥温度で30分間乾燥させた。乾燥した高分子電解質の上に別のテフロン(登録商標)製シートを載せ、2枚のテフロン(登録商標)製シートで高分子電解質をサンドイッチした。そして、2枚のテフロン(登録商標)製シートでサンドイッチした高分子電解質の両面に、テフロン(登録商標)製シートを通して紫外線を照射し、高分子電解質を硬化させて、高分子固体電解質フィルムを作製した。なお、この高分子固体電解質フィルムのマトリックスとなるポリマーはポリエチレンオキシドであり、リチウム塩はLiTFSIである。そして、高分子固体電解質フィルムを電極寸法の直径16mmの円形に打ち抜いて、絶縁層を作製した。なお、絶縁層の厚さ(d)は5μmであった。
 また、エチレンオキシドを加えたリチウム塩含有溶液を攪拌する際の空気の混入量を変えること、及び攪拌後に脱法処理を行うことにより、絶縁層の空隙率を、0%、5%、10%、15%及び20%の5点に変えた。
(電池の製造)
 図1に示す電池特性評価用ジグ100に、上記の正極、絶縁層及び負極を配置するとともに上記電解液を注入することにより特性評価用の電池を作製した。具体的には、負極ボディ106と正極ボディ107との間に、負極ボディ106側から順に、負極108、絶縁層109、電極ガイド110、正極111、電極押さえ112及びスプリング113を電池特性評価用ジグ100に配置した。そして、電池特性評価用ジグ100に上記電解液を注入して特性評価用のリチウムイオン二次電池を作製した。
[比較例1]
 6質量部のポリフッ化ビニリデン溶液((株)クレハ製、製品名:L#1710、10質量%溶液、溶媒:NMP)に、絶縁性微粒子として94質量部のアルミナ粒子(日本軽金属株式会社製、製品名:ローソーダアルミナ、平均粒子径500nm)を、中程度の剪断力を加えながら混合して分散させてスラリーを得た。
 このスラリーに所定量のNMPをさらに加え、撹拌機で30分間穏やかに撹拌し、絶縁層用スラリーを得た。
 加圧プレス後及び打ち抜き前の正極の正極活物質層の表面に、この絶縁層用スラリーをグラビアコーターで塗布し、その塗膜を90℃で1分間乾燥することによって、正極活物質層の表面に従来の絶縁層を有する正極板を作製した。従来の絶縁層を有する正極板を電極寸法の直径14mmの円形に打ち抜いて、従来の絶縁層を有する正極を作製した。なお、絶縁層の厚さ(d)は5μmであった。電池の製造の際、この絶縁層を有する正極を用いた点及び絶縁層109を配置しなかった点以外は、実施例1と同様な方法で比較例1の特性評価用のリチウムイオン二次電池を作製した。
 なお、スラリーにおけるアルミナ粒子及びポリフッ化ビニリデン溶液の配合量を変えることにより、絶縁層の空隙率を、0%、5%、10%、15%及び20%の5点に変えた。なお、空隙率が25%以上とすると、充放電不可能となり、電池の内部抵抗を測定できない。
 実施例1及び比較例1のリチウムイオン二次電池の評価結果を図2に示す。
 図2の結果から、充放電不可能とならずに絶縁層を薄くするために絶縁層の空隙率を低下させると、リチウムイオン二次電池の内部抵抗が非常に高くなるため、従来の絶縁層では厚さを3~7μmにすることができないことがわかった。一方、高分子固体電解質を含む絶縁層では、絶縁層の厚さを3~7μmにしても、リチウムイオン二次電池の内部抵抗がそれほど高くならないため、絶縁層の厚さを3~7μmにできることがわかった。
 100 電池特性評価用ジグ
 106 負極ボディ
 107 正極ボディ
 108 負極
 109 絶縁層
 110 電極ガイド
 111 正極
 112 電極押さえ
 113 スプリング

Claims (5)

  1.  正極と、負極と、前記正極と前記負極の間に配置された絶縁層と、電解液とを備えるリチウムイオン二次電池であって、
     前記絶縁層は高分子固体電解質を含む層であり、
     前記絶縁層の厚さは3~7μmであるリチウムイオン二次電池。
  2.  前記絶縁層の空隙率が20%以下である請求項1に記載のリチウムイオン二次電池。
  3.  前記高分子固体電解質がポリエーテル系電解質である請求項1又は2に記載のリチウムイオン二次電池。
  4.  前記ポリエーテル系電解質のマトリックスとなるポリマーが、エチレンオキシド構造を有するポリマーである請求項3に記載のリチウムイオン二次電池。
  5.  前記高分子固体電解質がリチウム塩を含む請求項1~4のいずれか1項に記載のリチウムイオン二次電池。
PCT/JP2020/015036 2019-04-02 2020-04-01 リチウムイオン二次電池 WO2020204074A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080007188.6A CN113302772A (zh) 2019-04-02 2020-04-01 锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019070358A JP7245100B2 (ja) 2019-04-02 2019-04-02 リチウムイオン二次電池
JP2019-070358 2019-04-02

Publications (1)

Publication Number Publication Date
WO2020204074A1 true WO2020204074A1 (ja) 2020-10-08

Family

ID=72667879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015036 WO2020204074A1 (ja) 2019-04-02 2020-04-01 リチウムイオン二次電池

Country Status (3)

Country Link
JP (1) JP7245100B2 (ja)
CN (1) CN113302772A (ja)
WO (1) WO2020204074A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199083A (ja) * 2010-04-28 2010-09-09 Sharp Corp リチウム二次電池
JP2015028942A (ja) * 2006-04-28 2015-02-12 エルジー・ケム・リミテッド ゲルポリマー層を含む電池用分離膜
JP2018514929A (ja) * 2015-10-30 2018-06-07 エルジー・ケム・リミテッド 多層構造のポリマー電解質及びこれを含む全固体電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028942A (ja) * 2006-04-28 2015-02-12 エルジー・ケム・リミテッド ゲルポリマー層を含む電池用分離膜
JP2010199083A (ja) * 2010-04-28 2010-09-09 Sharp Corp リチウム二次電池
JP2018514929A (ja) * 2015-10-30 2018-06-07 エルジー・ケム・リミテッド 多層構造のポリマー電解質及びこれを含む全固体電池

Also Published As

Publication number Publication date
JP7245100B2 (ja) 2023-03-23
JP2020170610A (ja) 2020-10-15
CN113302772A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
US9444090B2 (en) Lithium metal doped electrodes for lithium-ion rechargeable chemistry
US8277977B2 (en) Binder composition, slurry for electrodes, electrode and nonaqueous electrolyte secondary battery
EP3240085B1 (en) Electrode manufacturing method, electrode, and secondary battery
JP6805374B2 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
WO2009123232A1 (ja) 二次電池用正極板、その製造方法、及びそれを備える二次電池
JP5231166B2 (ja) 非水電解質二次電池用正極板の製造法及び非水電解質二次電池
KR20100131921A (ko) 양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지
WO2019168035A1 (ja) リチウムイオン二次電池用正極材料、正極活物質層、及びリチウムイオン二次電池
JP3615472B2 (ja) 非水電解質電池
JP6849863B2 (ja) リチウムイオン二次電池、その製造方法、及びリチウムイオン二次電池用正極
JP2019153557A (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
WO2020184713A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7359337B1 (ja) 負極バインダー組成物およびその製造方法、負極、及び二次電池
CN117059879A (zh) 多层复合固态电解质膜及其制备方法与应用、全固态电池
Palanisamy et al. Lithium metal battery pouch cell assembly and prototype demonstration using tailored polypropylene separator
JP2020140896A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2020126733A (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2020204074A1 (ja) リチウムイオン二次電池
JP6832474B2 (ja) リチウムイオン二次電池用正極材料、正極活物質層、及びリチウムイオン二次電池
WO2020158306A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2020140895A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2020155378A (ja) リチウムイオン二次電池用電解液、及びリチウムイオン二次電池
JP6876879B2 (ja) リチウムイオン二次電池用電極、リチウムイオン二次電池及びリチウムイオン二次電池用電極の製造方法
JP7523539B2 (ja) 二次電池
WO2024116288A1 (ja) リチウムイオン二次電池用樹脂膜及びその製造方法並びにリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784780

Country of ref document: EP

Kind code of ref document: A1