WO2020203365A1 - 光素子付き光電気混載基板およびその製造方法 - Google Patents
光素子付き光電気混載基板およびその製造方法 Download PDFInfo
- Publication number
- WO2020203365A1 WO2020203365A1 PCT/JP2020/012403 JP2020012403W WO2020203365A1 WO 2020203365 A1 WO2020203365 A1 WO 2020203365A1 JP 2020012403 W JP2020012403 W JP 2020012403W WO 2020203365 A1 WO2020203365 A1 WO 2020203365A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- optical element
- conductive member
- optical
- size
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
Definitions
- the present invention relates to an opto-electric mixed substrate with an optical element and a method for manufacturing the same.
- a photoelectric mixed board with an optical element which includes an optical waveguide, an electric circuit board, and an optical element in order toward the upper side, is known (see, for example, Patent Document 1 below).
- the electric circuit board has a first terminal exposed on the upper side.
- the optical waveguide has a mirror formed on one end surface of the core.
- the optical element includes a second terminal exposed to the lower side and an entrance / exit of light exposed to the lower side.
- the first terminal and the second terminal are electrically connected by contact with a conductive member such as a bump.
- the doorway and the mirror are optically connected by aligning their optical axes.
- a photoelectric mixed mounting board including an electric circuit board and an optical waveguide is manufactured.
- a conductive member smaller than the second terminal is placed on the first terminal.
- the optical element is aligned on the upper side of the substrate with the optical waveguide so that the optical axis of the optical element and the optical axis of the mirror are aligned and the second terminal is brought into contact with the conductive member.
- the center of gravity of the second terminal and the center of gravity of the bump may be slightly deviated.
- the present invention provides a photoelectric mixed board with an optical element and a method for manufacturing the same, which are excellent in connection reliability between the photoelectric mixed board and the optical element.
- an optical waveguide having an optical waveguide and an electric circuit board having a first terminal in order in the thickness direction, an optical element mounted on the electric circuit board and having a second terminal, and the above-mentioned
- a photoelectric mixed substrate with an optical element comprising a first terminal and a conductive member in contact with the second terminal, the size of the conductive member being equal to or larger than the size of the second terminal.
- the size of the conductive member is the same as or larger than the size of the second terminal, so that the center of gravity of the conductive member is the second on the projection surface projected in the thickness direction. Even if the center of gravity of the terminal deviates, the degree of decrease in the contact area between the conductive member and the second terminal can be suppressed.
- the optoelectric mixed substrate with an optical element according to (1) wherein the flat area S1 of the conductive member and the flat area S2 of the second terminal satisfy the following formula (1). Including.
- the present invention (3) includes the photoelectric mixed substrate with an optical element according to (1) or (2), wherein the size of the first terminal is the same as or larger than the size of the conductive member.
- the conductive member is surely arranged at the first terminal. Therefore, it is possible to suppress a decrease in connection reliability.
- a core having one end surface formed as a mirror, an optical waveguide including a clad covering the core, and an electric circuit board having a first terminal are provided in order in the thickness direction.
- a third step of positioning with reference to the mirror and a fourth step of electrically connecting the first terminal and the second terminal via a conductive member are provided, and the size of the conductive member is the first.
- the doorway is positioned with respect to the mirror with reference to the mirror.
- the conductive member arranged at the first terminal and the second terminal may be displaced from each other.
- the size of the conductive member is the same as or larger than the size of the second terminal, it is possible to suppress the degree of decrease in the contact area between the conductive member and the second terminal.
- optical / electric mixed substrate with an optical element and the manufacturing method thereof of the present invention it is possible to obtain an optical / electric mixed substrate with an optical element in which a decrease in connection reliability is suppressed.
- FIG. 1 shows a plan view of an embodiment of an optical / electrical mixed substrate with an optical element of the present invention.
- FIG. 2 shows a side sectional view of the optical / electrical mixed substrate with an optical element shown in FIG. 1 along XX lines.
- 3A to 3B are manufacturing process diagrams of the photoelectric mixed substrate with an optical element shown in FIG. 1, and side sectional views taken along the line YY of the enlarged view of FIG. 1,
- FIG. 3A is a photoelectric Steps of preparing the mixed substrate and the optical element (first step and second step)
- FIG. 3B shows a step of positioning the optical element on the optical / electric mixed substrate and connecting the optical element to the optical / electric mixed substrate (third step and step). Fourth step) is shown.
- FIG. 4A to 4B are examples in which the distance D3 in the optical and electric mixed substrate and the distance D2 in the optical element are different, and FIG. 4A shows a step of preparing the optical and electric mixed substrate and the optical element (first step and). 2nd step), FIG. 4B shows a step (third step and fourth step) of positioning the optical element on the optical / electric mixed mounting substrate and connecting the optical element to the optical / electric mixed mounting substrate.
- 5A to 5B are optical and electric mixed substrates with an optical element of a comparative example in which the size of the conductive member is smaller than the size of the second terminal, and FIG. 5A shows a comparative example in which the conductive member does not come into contact with the second terminal.
- Reference numeral 5B shows a comparative example in which the conductive member comes into contact with the second terminal, but the optical element is tilted and the second optical axis OA2 thereof and the first optical axis OA1 of the mirror are displaced.
- the photoelectric mixed mounting substrate 1 with an optical element includes a photoelectric mixed mounting substrate 2, an optical element 3, and a conductive member 20.
- the photoelectric mixed board 2 has a substantially rectangular sheet shape extending along the longitudinal direction.
- the photoelectric mixed board 2 includes an optical waveguide 4 and an electric circuit board 5 in order toward the upper side (one side in the thickness direction).
- the optical waveguide 4 has the same plan view shape as the photoelectric mixed substrate 2.
- the optical waveguide 4 is an underclad 7 as an example of a clad, a core 8 arranged under the under clad 7, and an example of a clad arranged under the under clad 7 so as to cover the core 8. It includes an overclad 9.
- the core 8 extends along the longitudinal direction of the optical waveguide 4. Further, the regular cross-sectional view shape of the core 8 has, for example, a substantially rectangular shape. One end surface in the longitudinal direction of the core 8 is flush with one end surface in the longitudinal direction of the underclad 7 and the overclad 9. A mirror 10 is formed on the other end surface of the core 8. The mirror 10 is tilted so that the angle formed by the lower surface of the underclad 7 is 45 degrees in a side cross-sectional view.
- optical waveguide 4 As the optical waveguide 4, a known one is used.
- the size of the optical waveguide 4 is appropriately set and is not particularly limited, and the width of the core 8 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 100 ⁇ m or less, preferably 70 ⁇ m or less.
- the thickness of the core 8 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
- Area in projecting the mirror 10 in the vertical direction for example, 25 [mu] m 2 or more, preferably not 100 [mu] m 2 or more, and is, for example, 10000 2 or less, or preferably 4900Myuemu 2 or less.
- the electric circuit board 5 is arranged on the upper surface of the optical waveguide 4.
- the electric circuit board 5 includes a metal support layer 11, a base insulating layer 12, a conductor layer 13, and a cover insulating layer 14.
- the metal support layer 11 is provided in an area corresponding to the first terminal 15 described later.
- the metal support layer 11 is displaced from the mirror 10 when projected in the vertical direction.
- the base insulating layer 12 is arranged on the upper surface of the metal support layer 11 and the upper surface of the underclad 7 where the metal support layer 11 is not provided.
- the conductor layer 13 includes a first terminal 15, a third terminal 16, and wiring 17.
- the first terminal 15 is arranged around the mirror 10 when projected in the vertical direction.
- a plurality of first terminals 15 are aligned and arranged in the longitudinal direction and the width direction (directions orthogonal to the longitudinal direction and the thickness direction) at intervals from each other.
- the plan view shape of the first terminal 15 is not particularly limited, and has, for example, a substantially oblong shape or a substantially elliptical shape that is long in the longitudinal direction of the optoelectric mixed mounting substrate 1 with an optical element.
- the size of the first terminal 15 is not particularly limited as long as it can accommodate the conductive member 20 described later.
- a plurality of third terminals 16 are arranged at the other end of the base insulating layer 12 in the longitudinal direction at intervals in the width direction.
- the third terminal 16 is spaced behind the first terminal 15 in the longitudinal direction.
- the wiring 17 is continuous with each of the plurality of first terminals 15 and each of the plurality of third terminals 16. A plurality of wirings 17 are arranged at intervals from each other.
- the optical element 3 is mounted on the optical / electric mixed board 2.
- the optical element 3 is arranged on the upper side of the electric circuit board 5.
- the optical element 3 has a substantially box shape in which the vertical length is shorter than the longitudinal length and the width direction length.
- the optical element 3 has a plan view size smaller than that of the photoelectric mixed substrate 2.
- the optical element 3 has a size including a plurality of first terminals 15 when projected in the vertical direction.
- the lower surface of the optical element 3 is parallel to the upper surface of the photoelectric mixed substrate 2.
- the optical element 3 independently includes an entrance / exit 21 and a second terminal 22 on its lower surface.
- the doorway 21 is exposed to the lower side. Specifically, the doorway 21 faces the electric circuit board 5.
- the entrance / exit 21 is an outlet of light capable of emitting light from the optical element 3 to the mirror 10, or an inlet of light capable of receiving light from the mirror 10.
- the optical element 3 has a second optical axis OA2 that passes through the entrance / exit 21 and is an optical axis along the vertical direction.
- the second terminal 22 is exposed to the lower side.
- the second terminal 22 is configured to be electrically connected to the first terminal 15 via a conductive member 20 (described later).
- a plurality of (for example, four) second terminals 22 are provided in the optical element 3 corresponding to a plurality of (for example, four) first terminals 15.
- the bottom view shape of the second terminal 22 is not particularly limited, and is, for example, a bottom view substantially circular shape.
- the size of the second terminal 22 is adjusted so as to satisfy the relationship with the size of the conductive member 20 described below.
- the plane area S2 of the second terminal 22 is, for example, 50 [mu] m 2 or more, preferably not 100 [mu] m 2 or more, and is, for example, 5000 .mu.m 2 or less, or preferably 2500 [mu] m 2 or less.
- the optical element 3 is from a laser diode (LD) or a light emitting diode (LED) capable of receiving an input of electricity from the first terminal 15 and emitting light from the entrance / exit 21, for example, a mirror 10.
- LD laser diode
- LED light emitting diode
- Examples thereof include a photodiode (PD) that receives light and outputs an electric signal to the first terminal 15.
- the conductive member 20 connects the first terminal 15 and the second terminal 22. Specifically, the conductive member 20 comes into contact with the first terminal 15 and the second terminal 22.
- the plan-view shape of the conductive member 20 is not particularly limited, and has, for example, a substantially circular shape. Further, the conductive member 20 has a substantially mountain shape in which the normal cross-sectional area gradually decreases toward the upper side. Examples of the material of the conductive member 20 include metals such as gold and solder.
- the size of the conductive member 20 is larger than the size of the second terminal 22.
- the size of the conductive member 20 is smaller than the size of the second terminal 22, when the optical element 3 described later is mounted on the optical / electric mixed mounting substrate 2, as shown in FIG. 5A, when projected in the vertical direction.
- the conductive member 20 cannot come into contact with the second terminal 22.
- FIG. 5B even if contact is possible, the contact area is too small, and the electrical connection between the second terminal 22 and the first terminal 15 becomes insufficient.
- the conductive member 20 having a small size comes into contact with the center of gravity CO3 at a position greatly deviated, the lower surface of the optical element 3 is inclined with respect to the upper surface of the photoelectric mixed mounting substrate 2, and the photoelectric mixed mounting of the optical element 3 The attitude with respect to the substrate 2 becomes unstable. Therefore, the entrance / exit 21 and the mirror 10 cannot be optically connected.
- the flat area S1 of the conductive member 20 and the flat area S2 of the second terminal 22 satisfy, for example, the following formula (1), preferably the following formula (2), and more preferably. Satisfies the following formula (3), and more preferably the following formula (4).
- the above-mentioned attitude of the optical element 3 with respect to the optical / electrical mixed substrate 2 can be stabilized, so that the entrance / exit 21 and the mirror 10 can be reliably connected with each other, and the optical element 3 and the optical waveguide 4 can be optically connected. Connection reliability can be guaranteed.
- the flat area S1 of the conductive member 20 and the flat area S2 of the second terminal 22 satisfy, for example, the following equation (5).
- the size of the conductive member 20 is smaller than or the same as the size of the first terminal 15. As a result, the conductive member 20 is securely arranged on the upper surface of the first terminal 15.
- the flat area S1 of the conductive member 20 and the flat area S3 of the first terminal 15 satisfy, for example, the following formula (5-1), and preferably the following formula (6). More preferably, the following formula (7) is satisfied, and more preferably, the following formula (8) is satisfied.
- the flat area S1 of the conductive member 20, the flat area S2 of the second terminal 22, and the flat area S3 of the first terminal 15 preferably satisfy the following formula (10), and more preferably the following formula (11). ) Is satisfied, and more preferably, the following formula (12) is satisfied.
- the flat area S1 of the conductive member 20 is, for example, 1000 ⁇ m 2 or more, preferably 1500 ⁇ m 2 or more, more preferably 2000 ⁇ m 2 or more, and for example, 10000 ⁇ m 2 or less.
- the method for manufacturing the optical / electrical mixed substrate 1 with an optical element includes a first step of preparing the optical / electric mixed substrate 2, a second step of preparing the optical element 3, and a third step of positioning the entrance / exit 21 with respect to the mirror 10. And a fourth step of electrically connecting the first terminal 15 and the second terminal 22 via the conductive member 20. In this method, the first step to the fourth step are carried out in order.
- the electric circuit board 5 is first prepared, and then the optical waveguide 4 is formed (built) under the electric circuit board 5.
- the optical / electric mixed board 2 including the optical waveguide 4 and the electric circuit board 5 is prepared.
- the optical element 3 is prepared in the second step.
- the optical element 3 has a longitudinal distance between the second optical axis OA2 of the entrance / exit 21 and the second center of gravity line COL2 passing vertically through the center of gravity CO2 of the second terminal 22 on the projection surface projected in the width direction. D2 exists.
- the distance D2 in the optical element 3 usually coincides with (is the same as) the above-mentioned distance D1 in the photoelectric mixed substrate 2.
- the doorway 21 is positioned with respect to the mirror 10 in the plane direction with the mirror 10 as a reference.
- the second terminal 22 is not positioned with respect to the first terminal 15. However, since the distances D2 and D1 are the same, the second center of gravity line COL2 passing through the second terminal 22 and the first center of gravity line COL1 passing through the first terminal 15 are usually the same.
- the second optical axis OA2 of the doorway 21 and the first optical axis OA1 of the mirror 10 are matched. That is, the optical element 3 and the optical waveguide 4 are optically connected.
- the first terminal 15 and the second terminal 22 are electrically connected via the conductive member 20.
- the conductive member 20 is arranged (mounted) on the upper surface of the first terminal 15.
- the conductive member 20 is arranged on the upper surface of the first terminal 15 so that the center of gravity CO3 thereof coincides with the center of gravity CO1 of the first terminal 15 in a plan view.
- the above-mentioned distance D3 is substantially the same as the distance D1.
- the above-mentioned distance D3 in the photoelectric mixed mounting substrate 2 on which the conductive member 20 is arranged coincides with (the same as) the above-mentioned distance D2 in the optical element 3.
- the optical element 3 is subsequently brought closer to the optical / electrical mixed substrate 2 so that the second terminal 22 comes into contact with the conductive member 20, and then the conductive member 20 is reflowed. As a result, the first terminal 15 and the second terminal 22 become conductive via the molten conductive member 20.
- the optical element 3 and the electric circuit board 5 are electrically connected.
- an optical / electric mixed substrate 2 having an optical element and an optical element 3 electrically and optically connected to the optical / electric mixed substrate 2 is obtained.
- FIGS. 4A to 4B for an example in which the above-mentioned distance D3 in the photoelectric mixed mounting substrate 2 on which the conductive member 20 is arranged deviates (does not match) the above-mentioned distance D2 in the optical element 3. explain.
- the above-mentioned distances D3 and D2 are usually designed to match, but as shown in FIG. 4A, they may deviate (variate) depending on the manufacturing conditions.
- the third step if the mirror alignment that aligns with the mirror 10 as a reference is used, the second optical axis OA2 of the entrance / exit 21 and the second optical axis OA2 The first optical axis OA1 of the mirror 10 can be aligned.
- the second terminal 22 is not positioned with respect to the first terminal 15 in the third step.
- the third center of gravity wire COL3 passing through the conductive member 20 and the second center of gravity wire COL2 passing through the second terminal 22 are displaced from each other.
- the amount of deviation between the third center of gravity wire COL3 of the conductive member 20 and the second center of gravity wire COL2 of the second terminal 22 is, for example, 20 ⁇ m or less, further 15 ⁇ m or less, further 10 ⁇ m or less, and further 5 ⁇ m or less. is there.
- the size of the conductive member 20 is larger than the size of the second terminal 22, so that the conductive member 20 and the second terminal 22 may come into contact with each other with a sufficient contact area. it can.
- the deviation amount (difference) between the distances D3 and D2 is allowed to be, for example, 20 ⁇ m or less, further 15 ⁇ m or less, further 10 ⁇ m or less, and further 5 ⁇ m or less.
- the deviation amount (difference) between the distances D3 and D2 is 20 ⁇ m or less, it is preferable to satisfy the following formula (4).
- the connection reliability of the optical / electrical mixed substrate 1 with an optical element is further reduced. Can be suppressed.
- the doorway 21 is positioned with respect to the mirror 10 with the mirror 10 as a reference (mirror alignment).
- the second terminal 22 since the second terminal 22 is not positioned with respect to the first terminal 15, the conductive member 20 arranged at the first terminal 15 and the second terminal 22 may be displaced from each other.
- the size of the conductive member is larger than the size of the second terminal 22, the degree of decrease in the contact area between the conductive member 20 and the second terminal 22 can be suppressed.
- mirror alignment is performed with reference to the mirror 10 in the third step.
- an alignment mark 6 is provided on, for example, an electric circuit board 5, and this alignment is performed.
- the doorway 21 can be positioned with respect to the mirror 10 with reference to the mark 6.
- the size of the conductive member 20 may be the same as the size of the second terminal 22.
- the optical-electric mixed board with an optical element is used for communication.
- Optical-electric mixed board with optical element 1 Optical-electric mixed board with optical element 2 Optical-electric mixed board 3 Optical element 4 Optical waveguide 5 Electric circuit board 7 Underclad 8 Core 9 Overclad 10 Mirror 15 1st terminal 20 Conductive member 21 Doorway 22 2nd terminal
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
- Structure Of Printed Boards (AREA)
Abstract
光素子付き光電気混載基板1は、光導波路4と、第1端子15を有する電気回路基板5とを厚み方向に順に備える光電気混載基板2と、電気回路基板5に実装され、第2端子22を有する光素子3と、第1端子15および第2端子22に接触する導電部材20とを備える。導電部材20のサイズが、第2端子22のサイズと同一か、または、それより大きい。
Description
本発明は、光素子付き光電気混載基板およびその製造方法に関する。
光導波路と、電気回路基板と、光素子とを上側に向かって順に備える備える光素子付き光電気混載基板が知られている(例えば、下記特許文献1参照。)。電気回路基板は、上側に露出する第1端子を有する。光導波路は、コアの一端面に形成されたミラーを有する。光素子は、下側に露出する第2端子と、下側に露出する光の出入口とを備える。第1端子と第2端子は、バンプなどの導電部材との接触によって、電気的に接続される。出入口とミラーは、それらの光軸を一致させて、光学的に接続される。
このような光素子付き光電気混載基板を製造する方法として、以下が提案されている(例えば、特許文献1参照。)。まず、電気回路基板および光導波路を備える光電気混載基板を作製する。その後、第2端子より小さい導電部材を、第1端子の上に配置する。光素子を、光導波路付基板の上側にアライメントして、光素子の光軸とミラーの光軸とを一致させるとともに、第2端子を導電部材に接触させる。
しかるに、光素子と、光電気混載基板とのアライメントによっては、第2端子の重心と、バンプの重心とがわずかにずれる場合がある。
そうすると、第2端子と導電部材との接触面積が減少し、そのため、それらを電気的に確実に接続できないという不具合がある。
本発明は、光電気混載基板および光素子の接続信頼性に優れる光素子付き光電気混載基板およびその製造方法を提供する。
本発明(1)は、光導波路と、第1端子を有する電気回路基板とを厚み方向に順に備える光電気混載基板と、前記電気回路基板に実装され、第2端子を有する光素子と、前記第1端子および前記第2端子に接触する導電部材とを備え、前記導電部材のサイズが、前記第2端子のサイズと同一か、または、それより大きい、光素子付き光電気混載基板を含む。
この光素子付き光電気混載基板では、導電部材のサイズが、第2端子のサイズと同一か、または、それより大きいので、厚み方向に投影した投影面において、導電部材の重心とが、第2端子の重心とがずれても、導電部材と第2端子との接触面積の減少の程度を抑制することができる。
そのため、接続信頼性の低下を抑制することができる。
本発明(2)は、前記導電部材の平面積S1と、前記第2端子の平面積S2とが、下記式(1)を満足する、(1)に記載の光素子付き光電気混載基板を含む。
S1×0.9>S2 (1)
本発明(3)は、前記第1端子のサイズが、前記導電部材のサイズと同一か、または、それより大きい、(1)または(2)に記載の光素子付き光電気混載基板を含む。
本発明(3)は、前記第1端子のサイズが、前記導電部材のサイズと同一か、または、それより大きい、(1)または(2)に記載の光素子付き光電気混載基板を含む。
この光素子付き光電気混載基板において、第1端子のサイズが、導電部材のサイズと同一か、または、それより大きければ、導電部材が、第1端子に確実に配置される。そのため、接続信頼性の低下を抑制することができる。
本発明(4)は、一端面がミラーとして形成されているコア、および、前記コアを被覆するクラッドを含む光導波路と、第1端子を有する電気回路基板と、を厚み方向に順に備える光電気混載基板を準備する第1工程と、第2端子および光の出入口を備える光素子を準備する第2工程と、前記出入口を前記ミラーに対して、前記厚み方向に対して直交する直交方向において、前記ミラーを基準として位置決めする第3工程と、前記第1端子と前記第2端子とを、導電部材を介して電気的に接続する第4工程とを備え、前記導電部材のサイズが、前記第2端子のサイズと同一か、または、それより大きい、光素子付き光電気混載基板の製造方法を含む。
第3工程では、ミラーを基準として、出入口を前記ミラーに対して位置決めする。一方、第2端子を第1端子に対して位置決めしない場合には、第1端子に配置される導電部材と、第2端子とがずれる場合がある。
しかし、この製造方法では、導電部材のサイズが、第2端子のサイズと同一か、または、それより大きいので、導電部材と第2端子との接触面積の減少の程度を抑制することができる。
その結果、接続信頼性の低下が抑制された光素子付き光電気混載基板を得ることができる。
本発明の光素子付き光電気混載基板およびその製造方法では、接続信頼性の低下が抑制された光素子付き光電気混載基板を得ることができる。
<一実施形態>
本発明の光素子付き光電気混載基板およびその製造方法の一実施形態を図1~図3Bを参照して説明する。
本発明の光素子付き光電気混載基板およびその製造方法の一実施形態を図1~図3Bを参照して説明する。
図1~図2に示すように、この光素子付き光電気混載基板1は、光電気混載基板2と、光素子3と、導電部材20とを備える。
光電気混載基板2は、長手方向に沿って延びる略矩形シート形状を有する。光電気混載基板2は、光導波路4と、電気回路基板5とを、上側(厚み方向一方側)に向かって順に備える。
光導波路4は、光電気混載基板2と同一の平面視形状を有する。光導波路4は、クラッドの一例としてのアンダークラッド7と、アンダークラッド7の下に配置されるコア8と、アンダークラッド7の下に、コア8を被覆するように配置されるクラッドの一例としてのオーバークラッド9とを備える。
コア8は、光導波路4の長手方向に沿って延びる。また、コア8の正断面視形状は、例えば、略矩形状を有する。コア8は、長手方向一端面は、アンダークラッド7およびオーバークラッド9の長手方向一端面と面一である。コア8の長手他端面には、ミラー10が形成されている。ミラー10は、側断面視において、アンダークラッド7の下面とのなす角度が45度となるように、傾斜している。
光導波路4は、公知のものが用いられる。
光導波路4のサイズは、適宜設定され、特に限定されず、コア8の幅が、例えば、5μm以上、好ましくは、10μm以上であり、また、例えば、100μm以下、好ましくは、70μm以下である。また、コア8の厚みが、例えば、5μm以上、好ましくは、10μm以上であり、また、例えば、100μm以下、好ましくは、50μm以下である。ミラー10を上下方向で投影したときの面積は、例えば、25μm2以上、好ましくは、100μm2以上であり、また、例えば、10000μm2以下、好ましくは、4900μm2以下である。
電気回路基板5は、光導波路4の上面に配置されている。電気回路基板5は、金属支持層11と、ベース絶縁層12と、導体層13と、カバー絶縁層14とを備える。
金属支持層11は、後述する第1端子15に対応するエリアに設けられる。なお、上下方向に投影したときに、金属支持層11は、ミラー10とずれている。
ベース絶縁層12は、金属支持層11の上面と、アンダークラッド7において金属支持層11が設けられていない上面とに配置されている。
導体層13は、第1端子15と、第3端子16と、配線17とを備える。
第1端子15は、上下方向に投影したときに、ミラー10の周囲に配置されている。第1端子15は、長手方向および幅方向(長手方向および厚み方向に直交する方向)に互いに間隔を隔てて複数の整列配置されている。第1端子15の平面視形状は、特に限定されず、例えば、光素子付き光電気混載基板1の長手方向に長い略長丸形状あるいは略楕円形状を有する。
第1端子15のサイズは、後述する導電部材20を載置できるサイズであれば、特に限定されない。第1端子15の平面積S3が、例えば、100μm2以上、好ましくは、500μm2以上、より好ましくは、1000μm2以上であり、また、例えば、100000μm2以下である。
第3端子16は、ベース絶縁層12の長手方向他端部において、幅方向に互いに間隔を隔てて複数整列配置されている。第3端子16は、第1端子15の長手方向後側に間隔が隔てられている。
配線17は、複数の第1端子15のそれぞれと、複数の第3端子16のそれぞれとに連続する。配線17は、互いに間隔を隔てて複数配置されている。
光素子3は、光電気混載基板2に実装されている。光素子3は、電気回路基板5の上側に配置されている。光素子3は、上下方向長さが長手方向長さおよび幅方向長さより短い略ボックス形状を有する。なお、光素子3は、光電気混載基板2より小さい平面視サイズを有する。具体的には、光素子3は、上下方向に投影したときに、複数の第1端子15を含むサイズを有する。光素子3の下面は、光電気混載基板2の上面に平行する。光素子3は、その下面において、出入口21および第2端子22を独立して備える。
出入口21は、下側に露出する。具体的には、出入口21は、電気回路基板5に面する。
出入口21は、光素子3からミラー10に光を出射可能な光の出口であるか、または、ミラー10からの光を受光可能な光の入口である。光素子3は、図3Bに示すように、出入口21を通過し、上下方向に沿う光軸である第2光軸OA2を有する。
第2端子22は、下側に露出する。第2端子22は、第1端子15と導電部材20(後述)を介して電気的に接続するように、構成される。第2端子22は、複数(例えば、4つ)の第1端子15に対応して、光素子3に複数(例えば、4つ)設けられる。第2端子22の底面視形状は、特に限定されず、例えば、底面視略円形状である。
第2端子22のサイズは、次に説明する導電部材20のサイズとの関係を満足するように調整される。具体的には、第2端子22の平面積S2は、例えば、50μm2以上、好ましくは、100μm2以上であり、また、例えば、5000μm2以下、好ましくは、2500μm2以下である。
具体的には、光素子3としては、第1端子15から電気の入力を受けて、出入口21から光を出射可能であるレーザーダイオード(LD)や発光ダイオード(LED)、例えば、ミラー10からの光を受光して、第1端子15に電気信号を出力するフォトダイオード(PD)などが挙げられる。
導電部材20は、第1端子15および第2端子22を連絡する。具体的には、導電部材20は、第1端子15および第2端子22に接触する。導電部材20の平面視形状は、特に限定されず、例えば、略円形状を有する。また、導電部材20は、正断面積が上側に向かって次第に小さくなる略山形状を有する。導電部材20の材料としては、例えば、金、はんだなどの金属が挙げられる。
そして、この一実施形態の光素子付き光電気混載基板1では、導電部材20のサイズが、第2端子22のサイズより大きい。
逆に、導電部材20のサイズが、第2端子22のサイズより小さければ、後述する光素子3を光電気混載基板2に実装するときに、図5Aに示すように、上下方向に投影したときに、第2端子22の重心CO2と、導電部材20の重心CO3とがずれた場合(後述)に、導電部材20が第2端子22と接触できない。あるいは、図5Bに示すように、接触できても、その接触面積が過小であり、第2端子22と第1端子15との電気的な接続が不十分となる。さらには、サイズが小さい導電部材20の重心CO3に対して大きくずれた箇所で接触するため、光素子3の下面が光電気混載基板2の上面に対して傾斜し、光素子3の光電気混載基板2に対する姿勢が不安定となる。そのため、出入口21とミラー10との光学的な接続を実施できない。
具体的には、導電部材20の平面積S1と、第2端子22の平面積S2とは、例えば、下記式(1)を満足し、好ましくは、下記式(2)を満足し、より好ましくは、下記式(3)を満足し、さらに好ましくは、下記式(4)を満足する。
S1>S2 (1)
S1×0.9>S2 (2)
S1×0.75>S2 (3)
S1×0.5>S2 (4)
上記した式を満足する場合には、後述する光素子3を光電気混載基板2に実装するときに、上下方向に投影したときに、第2端子22の重心CO2と、導電部材20の重心CO3とがずれても、導電部材20が第2端子22と十分な接触面積で接触できる。そのため、第2端子22と第1端子15との電気的な接続が確実となり、その結果、光素子3と電気回路基板5との電気的な接続信頼性を担保できる。また、光素子3の光電気混載基板2に対する上記した姿勢を安定にでき、そのため、出入口21とミラー10との光学的な接続を確実に図れ、光素子3と光導波路4との光学的な接続信頼性を担保できる。
S1×0.9>S2 (2)
S1×0.75>S2 (3)
S1×0.5>S2 (4)
上記した式を満足する場合には、後述する光素子3を光電気混載基板2に実装するときに、上下方向に投影したときに、第2端子22の重心CO2と、導電部材20の重心CO3とがずれても、導電部材20が第2端子22と十分な接触面積で接触できる。そのため、第2端子22と第1端子15との電気的な接続が確実となり、その結果、光素子3と電気回路基板5との電気的な接続信頼性を担保できる。また、光素子3の光電気混載基板2に対する上記した姿勢を安定にでき、そのため、出入口21とミラー10との光学的な接続を確実に図れ、光素子3と光導波路4との光学的な接続信頼性を担保できる。
また、導電部材20の平面積S1と、第2端子22の平面積S2とは、例えば、下記式(5)を満足する。
S2×10>S1 (5)
また、導電部材20のサイズは、第1端子15のサイズより小さいか、または、同一である。これにより、導電部材20が、第1端子15の上面に確実に配置される。
また、導電部材20のサイズは、第1端子15のサイズより小さいか、または、同一である。これにより、導電部材20が、第1端子15の上面に確実に配置される。
具体的には、導電部材20の平面積S1と、第1端子15の平面積S3とは、例えば、下記式(5-1)を満足し、好ましくは、下記式(6)を満足し、より好ましくは、下記式(7)を満足し、さらに好ましくは、下記式(8)を満足する。
S3>S1 (5-1)
S3×0.9>S1 (6)
S3×0.75>S1 (7)
S3×0.5>S1 (8)
また、導電部材20の平面積S1と、第1端子15の平面積S3とは、下記式(9)も満足する。
S3×0.9>S1 (6)
S3×0.75>S1 (7)
S3×0.5>S1 (8)
また、導電部材20の平面積S1と、第1端子15の平面積S3とは、下記式(9)も満足する。
S1×10>S3 (9)
導電部材20の平面積S1と、第2端子22の平面積S2と、第1端子15の平面積S3とは、好ましくは、下記式(10)を満足し、より好ましくは、下記式(11)を満足し、さらに好ましくは、下記式(12)を満足する。
導電部材20の平面積S1と、第2端子22の平面積S2と、第1端子15の平面積S3とは、好ましくは、下記式(10)を満足し、より好ましくは、下記式(11)を満足し、さらに好ましくは、下記式(12)を満足する。
S3≧S1>S2 (10)
S3>S1>S2 (11)
S3×0.5>S1×0.5>S2 (12)
より具体的には、導電部材20の平面積S1は、例えば、1000μm2以上、好ましくは、1500μm2以上、より好ましくは、2000μm2以上であり、また、例えば、10000μm2以下である。
S3>S1>S2 (11)
S3×0.5>S1×0.5>S2 (12)
より具体的には、導電部材20の平面積S1は、例えば、1000μm2以上、好ましくは、1500μm2以上、より好ましくは、2000μm2以上であり、また、例えば、10000μm2以下である。
次に、光素子付き光電気混載基板1の製造方法を説明する。
光素子付き光電気混載基板1の製造方法は、光電気混載基板2を準備する第1工程と、光素子3を準備する第2工程と、出入口21をミラー10に対して位置決めする第3工程と、第1端子15と第2端子22とを、導電部材20を介して電気的に接続する第4工程とを備える。この方法では、第1工程~第4工程を、順に実施する。
図3Aの実線で示すように、第1工程では、例えば、まず、電気回路基板5を準備し、続いて、光導波路4を、電気回路基板5の下側に形成する(作り込む)。これにより、光導波路4および電気回路基板5を備える光電気混載基板2を準備する。
光電気混載基板2には、幅方向に投影した投影面において、ミラー10の第1光軸OA1と、第1端子15の重心CO1を上下方向に通過する第1重心線COL1との間の長手方向距離D1が存在する。
図3Aの仮想線で示すように、第2工程では、光素子3を準備する。
光素子3には、幅方向に投影した投影面において、出入口21の第2光軸OA2と、第2端子22の重心CO2を上下方向に通過する第2重心線COL2との間の長手方向距離D2が存在する。
光素子3における距離D2は、通常、光電気混載基板2における上記した距離D1と一致する(同一である)。
第3工程では、出入口21をミラー10に対して、面方向において、ミラー10を基準として位置決めする。
なお、この第3工程では、第2端子22を第1端子15に対して位置決めしない。但し、距離D2およびD1が同一しているので、第2端子22を通過する第2重心線COL2と、第1端子15を通過する第1重心線COL1とは、通常、一致している。
これにより、出入口21の第2光軸OA2と、ミラー10の第1光軸OA1とを一致させる。つまり、光素子3と、光導波路4とを、光学的に接続する。
第4工程では、第1端子15と第2端子22とを、導電部材20を介して電気的に接続する。
第4工程を実施するには、まず、導電部材20を、第1端子15の上面に配置(載置)する。
具体的には、導電部材20を、その重心CO3が、平面視において、第1端子15の重心CO1と一致するように、第1端子15の上面に配置する。
すると、導電部材20が配置された光電気混載基板2では、幅方向に投影した投影面において、ミラー10の第1光軸OA1と、導電部材20の重心CO3を上下方向に通過する第3重心線COL3との間の長手方向距離D3が存在する。上記した距離D3は、距離D1と略同一である。
そうすると、導電部材20が配置された光電気混載基板2における上記した距離D3は、光素子3における上記した距離D2と一致する(同一である)。
この第4工程では、続いて、第2端子22が導電部材20に接触するように、光素子3を光電気混載基板2に対して近づけ、続いて、導電部材20をリフローする。これにより、溶融した導電部材20を介して、第1端子15および第2端子22が導通する。
これにより、光素子3と、電気回路基板5とが、電気的に接続される。
これにより、光電気混載基板2と、これと電気的および光学的に接続された光素子3とを備える光素子付き光電気混載基板1を得る。
次に、導電部材20が配置された光電気混載基板2における上記した距離D3が、光素子3における上記した距離D2とずれる(一致しない)場合の例を、図4A~図4Bを参照して説明する。
図3Aに示すように、上記した距離D3およびD2は、通常、一致するように、設計されるが、図4Aに示すように、製造条件によって、ずれる(ばらつく)場合がある。
この場合、距離D3およびD2にずれがあっても、図4Bに示すように、第3工程では、ミラー10を基準としてアライメントするミラーアライメントを利用すれば、出入口21の第2光軸OA2と、ミラー10の第1光軸OA1とを一致させることはできる。
一方、ミラーアライメントであれば、第3工程において、第2端子22を第1端子15に対して位置決めしない。
すると、図4Bに示すように、導電部材20を通過する第3重心線COL3と、第2端子22を通過する第2重心線COL2とが、ずれる。導電部材20の第3重心線COL3と、第2端子22の第2重心線COL2とのずれ量は、例えば、20μm以下、さらには、15μm以下、さらには、10μm以下、さらには、5μm以下である。
しかしながら、この光素子付き光電気混載基板1では、導電部材20のサイズが、第2端子22のサイズより大きいので、導電部材20と第2端子22とが、十分な接触面積で接触することができる。
つまり、本実施形態では、距離D3およびD2のずれ量(差)は、例えば、20μm以下、さらには、15μm以下、さらには、10μm以下、さらには、5μm以下までが許容される。
なお、距離D3およびD2のずれ量(差)が、20μm以下であれば、下記式(4)を満足することが好適である。
S1×0.5>S2 (4)
また、距離D3およびD2のずれ量(差)が、15μm以下であれば、下記式(3)を満足することが好適である。
また、距離D3およびD2のずれ量(差)が、15μm以下であれば、下記式(3)を満足することが好適である。
S1×0.75>S2 (3)
さらに、距離D3およびD2のずれ量(差)が、10μm以下であれば、下記式(2)を満足することが好適である。
さらに、距離D3およびD2のずれ量(差)が、10μm以下であれば、下記式(2)を満足することが好適である。
S1×0.9>S2 (2)
さらにまた、距離D3およびD2のずれ量(差)が、5μm以下であれば、下記式(1)を満足することが好適である。
さらにまた、距離D3およびD2のずれ量(差)が、5μm以下であれば、下記式(1)を満足することが好適である。
S1>S2 (1)
そして、この光素子付き光電気混載基板1では、導電部材20のサイズが、第2端子22のサイズより大きいので、厚み方向に投影した投影面において、導電部材20の重心CO3と、第2端子22の重心CO2とがずれても、導電部材20と第2端子22との接触面積の減少の程度を抑制することができる。
そして、この光素子付き光電気混載基板1では、導電部材20のサイズが、第2端子22のサイズより大きいので、厚み方向に投影した投影面において、導電部材20の重心CO3と、第2端子22の重心CO2とがずれても、導電部材20と第2端子22との接触面積の減少の程度を抑制することができる。
そのため、光素子付き光電気混載基板1における接続信頼性の低下を抑制することができる。
また、導電部材20の平面積S1と、第2端子22の平面積S2とが、下記式(2)を満足すれば、光素子付き光電気混載基板1における接続信頼性の低下をより一層確実に抑制することができる。
S1×0.9>S2 (2)
また、導電部材20のサイズが、第1端子15のサイズより小さいか、または、同一であれば、導電部材20が、第1端子15の上面に確実に配置される。接続信頼性の低下を抑制することができる。
また、導電部材20のサイズが、第1端子15のサイズより小さいか、または、同一であれば、導電部材20が、第1端子15の上面に確実に配置される。接続信頼性の低下を抑制することができる。
さらに、上記した製造方法の第3工程では、ミラー10を基準として、出入口21をミラー10に対して位置決めする(ミラーアライメント)。一方、第2端子22を第1端子15に対して位置決めしないので、第1端子15に配置される導電部材20と、第2端子22とがずれる場合がある。
しかし、この製造方法では、導電部材のサイズが、第2端子22のサイズより大きいので、導電部材20と第2端子22との接触面積の減少の程度を抑制することができる。
その結果、接続信頼性の低下が抑制された光素子付き光電気混載基板1を得ることができる。
<変形例>
以下の各変形例において、上記した一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例は、特記する以外、一実施形態態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。
以下の各変形例において、上記した一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例は、特記する以外、一実施形態態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。
一実施形態では、第3工程において、ミラー10を基準とするミラーアライメントを実施しているが、例えば、図3Bに示すように、アライメントマーク6を、例えば、電気回路基板5に設け、このアライメントマーク6を基準として、出入口21をミラー10に対して位置決めすることもできる。
変形例では、導電部材20のサイズが、第2端子22のサイズと同一であってもよい。
なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
光素子付き光電気混載基板は、通信に用いられる。
1 光素子付き光電気混載基板
2 光電気混載基板
3 光素子
4 光導波路
5 電気回路基板
7 アンダークラッド
8 コア
9 オーバークラッド
10 ミラー
15 第1端子
20 導電部材
21 出入口
22 第2端子
2 光電気混載基板
3 光素子
4 光導波路
5 電気回路基板
7 アンダークラッド
8 コア
9 オーバークラッド
10 ミラー
15 第1端子
20 導電部材
21 出入口
22 第2端子
Claims (5)
- 光導波路と、第1端子を有する電気回路基板とを厚み方向に順に備える光電気混載基板と、
前記電気回路基板に実装され、第2端子を有する光素子と、
前記第1端子および前記第2端子に接触する導電部材とを備え、
前記導電部材のサイズが、前記第2端子のサイズと同一か、または、それより大きいことを特徴とする、光素子付き光電気混載基板。 - 前記導電部材の平面積S1と、前記第2端子の平面積S2とが、下記式(1)を満足することを特徴とする、請求項1に記載の光素子付き光電気混載基板。
S1×0.9>S2 (1) - 前記第1端子のサイズが、前記導電部材のサイズと同一か、または、それより大きいことを特徴とする、請求項1に記載の光素子付き光電気混載基板。
- 前記第1端子のサイズが、前記導電部材のサイズと同一か、または、それより大きいことを特徴とする、請求項2に記載の光素子付き光電気混載基板。
- 一端面がミラーとして形成されているコア、および、前記コアを被覆するクラッドを含む光導波路と、第1端子を有する電気回路基板と、を厚み方向に順に備える光電気混載基板を準備する第1工程と、
第2端子および光の出入口を備える光素子を準備する第2工程と、
前記出入口を前記ミラーに対して、前記厚み方向に対して直交する直交方向において、
前記ミラーを基準として位置決めする第3工程と、
前記第1端子と前記第2端子とを、導電部材を介して電気的に接続する第4工程と
を備え、
前記導電部材のサイズが、前記第2端子のサイズと同一か、または、それより大きいことを特徴とする、光素子付き光電気混載基板の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-068363 | 2019-03-29 | ||
JP2019068363A JP7408292B2 (ja) | 2019-03-29 | 2019-03-29 | 光素子付き光電気混載基板およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020203365A1 true WO2020203365A1 (ja) | 2020-10-08 |
Family
ID=72667743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/012403 WO2020203365A1 (ja) | 2019-03-29 | 2020-03-19 | 光素子付き光電気混載基板およびその製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7408292B2 (ja) |
TW (1) | TW202043827A (ja) |
WO (1) | WO2020203365A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06342933A (ja) * | 1993-06-01 | 1994-12-13 | Nec Corp | 光結合回路 |
JPH10170769A (ja) * | 1996-12-10 | 1998-06-26 | Nec Corp | 光素子の実装方法 |
US6127736A (en) * | 1996-03-18 | 2000-10-03 | Micron Technology, Inc. | Microbump interconnect for semiconductor dice |
WO2001020660A1 (fr) * | 1999-09-09 | 2001-03-22 | Fujitsu Limited | Procede de montage de dispositifs optiques et electriques, et structure de montage |
JP2002228886A (ja) * | 2001-01-31 | 2002-08-14 | Kansai Tlo Kk | セルフアライメント構造 |
US20030098511A1 (en) * | 2001-11-29 | 2003-05-29 | Jong-Tae Moon | Flip-chip-bonded optical module package and method of packaging optical module using flip chip bonding |
JP2004004195A (ja) * | 2002-05-30 | 2004-01-08 | Ricoh Co Ltd | 光素子の高精度位置合わせ方法、高精度位置合わせ装置、及び光伝送用モジュール |
WO2018101098A1 (ja) * | 2016-11-30 | 2018-06-07 | 日東電工株式会社 | 光電気混載基板 |
JP2018093033A (ja) * | 2016-12-01 | 2018-06-14 | 富士通株式会社 | 光モジュール及び光モジュールの製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06295937A (ja) * | 1993-03-26 | 1994-10-21 | Nec Corp | 光電素子の実装方法 |
JP2004286835A (ja) | 2003-03-19 | 2004-10-14 | Ngk Spark Plug Co Ltd | 光学素子搭載装置及びその製造方法、光学素子搭載装置付き配線基板 |
JP2005294444A (ja) | 2004-03-31 | 2005-10-20 | Sony Corp | 半導体装置及びその製造方法、疑似ウェーハ及びその製造方法、並びに半導体装置の実装構造及びその実装方法 |
JP2015060097A (ja) | 2013-09-19 | 2015-03-30 | ソニー株式会社 | 光伝送モジュール |
US20060186180A1 (en) | 2005-02-24 | 2006-08-24 | Northrop Grumman Corporation | Accurate relative alignment and epoxy-free attachment of optical elements |
US8086082B2 (en) | 2006-07-14 | 2011-12-27 | Koninklijke Philips Electronics N.V. | Methods for mounting an electro-optical component in alignment with an optical element and related structures |
JP2012128233A (ja) | 2010-12-16 | 2012-07-05 | Nec Corp | 光モジュール及びその実装方法 |
-
2019
- 2019-03-29 JP JP2019068363A patent/JP7408292B2/ja active Active
-
2020
- 2020-03-19 WO PCT/JP2020/012403 patent/WO2020203365A1/ja active Application Filing
- 2020-03-25 TW TW109110029A patent/TW202043827A/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06342933A (ja) * | 1993-06-01 | 1994-12-13 | Nec Corp | 光結合回路 |
US6127736A (en) * | 1996-03-18 | 2000-10-03 | Micron Technology, Inc. | Microbump interconnect for semiconductor dice |
JPH10170769A (ja) * | 1996-12-10 | 1998-06-26 | Nec Corp | 光素子の実装方法 |
WO2001020660A1 (fr) * | 1999-09-09 | 2001-03-22 | Fujitsu Limited | Procede de montage de dispositifs optiques et electriques, et structure de montage |
JP2002228886A (ja) * | 2001-01-31 | 2002-08-14 | Kansai Tlo Kk | セルフアライメント構造 |
US20030098511A1 (en) * | 2001-11-29 | 2003-05-29 | Jong-Tae Moon | Flip-chip-bonded optical module package and method of packaging optical module using flip chip bonding |
JP2004004195A (ja) * | 2002-05-30 | 2004-01-08 | Ricoh Co Ltd | 光素子の高精度位置合わせ方法、高精度位置合わせ装置、及び光伝送用モジュール |
WO2018101098A1 (ja) * | 2016-11-30 | 2018-06-07 | 日東電工株式会社 | 光電気混載基板 |
JP2018093033A (ja) * | 2016-12-01 | 2018-06-14 | 富士通株式会社 | 光モジュール及び光モジュールの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2020166189A (ja) | 2020-10-08 |
JP7408292B2 (ja) | 2024-01-05 |
TW202043827A (zh) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100399078C (zh) | Lsi插件对光电布线板的安装结构、安装方法 | |
US8333517B2 (en) | Semiconductor submodule, method for connecting connector and semiconductor submodule, and optical module | |
US9134487B2 (en) | Optical connector with alignment structure | |
US8573863B2 (en) | Optical module with optical axis bent perpendicularly within package | |
CN103370644B (zh) | 光学电路板 | |
US10816740B2 (en) | Flip chip bonding onto a photonic integrated circuit | |
US20210149128A1 (en) | Multi-fiber interface apparatus for photonic integrated circuit | |
US9033592B2 (en) | Optical connector module | |
CN110573920B (zh) | 光子组件及其制造方法 | |
US20090148096A1 (en) | Optical interconnection device | |
JP4378285B2 (ja) | 製造可能な光接続アセンブリおよび方法 | |
WO2014141451A1 (ja) | 光コネクタ装置、光ケーブル装置、及び光インターコネクト装置 | |
US6959125B2 (en) | Printed board unit for optical transmission and mounting method | |
CN103713365A (zh) | 具有与基板对准的电学连接器的光学组件及其组装方法 | |
EP2211217A1 (en) | Printed circuit board fiberoptical transceiver in surface mount technology (SMT) | |
WO2020203365A1 (ja) | 光素子付き光電気混載基板およびその製造方法 | |
US6860650B2 (en) | Assembly for aligning an optical array with optical fibers | |
JP3652080B2 (ja) | 光接続構造 | |
JP4360651B2 (ja) | 光モジュール及びその製造方法 | |
JP7033394B2 (ja) | 光電気混載基板、コネクタキットおよびその製造方法 | |
CN103217755B (zh) | 光学模块及其制造方法 | |
US7029185B2 (en) | Optical chip module and optical chip module device | |
JP4739987B2 (ja) | 光ファイバ接続構造及び光ファイバ接続方法 | |
KR20030094466A (ko) | 멀티포트형 광모듈 | |
JP2000028871A (ja) | 光半導体モジュールの実装形態 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20784989 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20784989 Country of ref document: EP Kind code of ref document: A1 |