WO2020203197A1 - リーケージトランス - Google Patents

リーケージトランス Download PDF

Info

Publication number
WO2020203197A1
WO2020203197A1 PCT/JP2020/011271 JP2020011271W WO2020203197A1 WO 2020203197 A1 WO2020203197 A1 WO 2020203197A1 JP 2020011271 W JP2020011271 W JP 2020011271W WO 2020203197 A1 WO2020203197 A1 WO 2020203197A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic leg
magnetic
coil
winding
layer
Prior art date
Application number
PCT/JP2020/011271
Other languages
English (en)
French (fr)
Inventor
小谷 淳一
制 森家
久賀 加藤
朝日 俊行
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080021061.XA priority Critical patent/CN113574619A/zh
Priority to US17/441,437 priority patent/US20220189687A1/en
Priority to JP2021511369A priority patent/JP7373775B2/ja
Publication of WO2020203197A1 publication Critical patent/WO2020203197A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/08High-leakage transformers or inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers

Definitions

  • This disclosure relates to a leakage transformer.
  • Patent Document 1 includes a core having a middle leg and a side leg, a primary side winding wound around the middle leg and the side leg, respectively, and a secondary side winding wound around the side leg.
  • the transformer is disclosed.
  • An object of the present disclosure is to provide a leakage transformer capable of preventing an increase in electrical resistance and power loss due to the generation of leakage inductance.
  • the leakage transformer includes a core and a printed wiring board.
  • the core includes a first magnetic leg and a second magnetic leg.
  • the second magnetic leg is arranged at a distance from the first magnetic leg.
  • the printed wiring board includes an insulating portion and a conductor wiring.
  • the conductor wiring includes a first coil and a second coil.
  • the first coil comprises a first winding.
  • the first coil is wound around the first magnetic leg and is not wound around the second magnetic leg.
  • the second coil is composed of a second winding.
  • the second coil includes a first portion and a second portion.
  • the first portion is wound around the first magnetic leg and is not wound around the second magnetic leg.
  • the second portion is wound so as to straddle both the first magnetic leg and the second magnetic leg.
  • FIG. 1 is a schematic view of a leakage transformer according to the first embodiment.
  • FIG. 2 is a perspective view of the leakage transformer according to the first embodiment.
  • FIG. 3A is a plan view of the same leakage transformer as viewed from one direction orthogonal to the direction in which the first magnetic leg and the second magnetic leg are lined up.
  • FIG. 3B is a sectional view taken along the line AA of FIG. 3A.
  • FIG. 4 is an explanatory diagram of the leakage transformer of the same as above. 5A to 5D are explanatory views of the same leakage transformer.
  • FIG. 6 is a circuit diagram including the same leakage transformer.
  • FIG. 7 is a perspective view of the leakage transformer according to the second embodiment.
  • FIG. 8A is a plan view of the same leakage transformer as viewed from one direction orthogonal to the direction in which the first magnetic leg and the second magnetic leg are lined up.
  • FIG. 8B is a sectional view taken along the line BB of FIG. 8A.
  • FIG. 9 is an explanatory diagram of the leakage transformer of the same as above.
  • 10A to 10D are explanatory views of the leakage transformer of the same.
  • 11A and 11B are explanatory views of the same leakage transformer.
  • FIG. 12 is a circuit diagram including the same leakage transformer.
  • a winding is wound around each of the middle leg and the side leg, and the winding is wound around the side leg in the direction opposite to the direction in which the winding is wound around the middle leg. are doing. Then, other legs other than the middle leg and the side leg, which are not wound with windings, are provided in the core, and the leakage inductance in the core is adjusted by leaking magnetic flux to the other legs.
  • the inventors have discovered that the winding of the leakage transformer tends to be long by winding the winding around each of the middle leg and the side leg. The longer the winding, the greater the electrical resistance and power loss.
  • FIG. 1 is a schematic view, and the leakage transformer 1 according to the present embodiment includes a printed circuit board 5 as shown in FIGS. 2 to 5, but in FIG. 1, for the sake of explanation, a printed circuit board is provided. The illustration of 5 is omitted.
  • the leakage transformer 1 according to the present embodiment includes a core 2, a first coil W1, and a second coil W2.
  • the core 2 includes a first magnetic leg 21 and a second magnetic leg 22.
  • the second magnetic legs 22 are arranged at intervals from the first magnetic legs 21.
  • the first coil W1 is composed of the first winding A1.
  • the first coil W1 is wound around the first magnetic leg 21 and is not wound around the second magnetic leg 22.
  • the second coil W2 is composed of the second winding A2.
  • the second coil W2 includes a first portion P1 and a second portion P2.
  • the first portion P1 is wound around the first magnetic leg 21 and is not wound around the second magnetic leg 22.
  • the second portion P2 is wound so as to straddle both the first magnetic leg 21 and the second magnetic leg 22.
  • the second winding in the second coil W2 A2 can be shortened.
  • the second winding A2 is the first magnetic leg 21 and the second magnetic leg, as compared with the case where the second winding A2 is wound around each of the first magnetic leg 21 and the second magnetic leg 22.
  • the part passing between 22 can be omitted. Therefore, the second winding A2 in the second coil W2 can be shortened, and the electric resistance and the power loss in the second coil W2 can be reduced.
  • FIG. 1 schematically shows the relationship between the core 2, the first coil W1, and the second coil W2.
  • the leakage transformer 1 includes a core 2, a first coil W1, and a second coil W2.
  • the core 2 includes a first magnetic leg 21, a second magnetic leg 22, a third magnetic leg 23, a fourth magnetic leg 24, a first connecting portion 25, and a second connecting portion 26.
  • the direction in which the first magnetic leg 21 and the second magnetic leg 22 are lined up is the X direction
  • the direction orthogonal to the X direction is the Y direction.
  • orthogonal includes not only a mode in which the X direction and the Y direction are strictly orthogonal to each other, but also a mode in which the X direction and the Y direction are substantially orthogonal to each other.
  • the core 2 includes the first to fourth magnetic legs 21, 22, 23, 24. That is, in the core 2, in addition to the first and second magnetic legs 21, 22, two magnetic legs (third and fourth magnetic legs) 23, which are different from the first magnetic leg 21 and the second magnetic leg 22, 24 is provided.
  • the first and second magnetic legs 21 and 22 are between the third magnetic leg 23 and the fourth magnetic leg 24.
  • the first to fourth magnetic legs 21, 22, 23, and 24 are arranged at intervals in the X direction (see FIG. 1). No coil is wound on any of the third and fourth magnetic legs 23 and 24.
  • All of the first to fourth magnetic legs 21, 22, 23, and 24 are columnar.
  • the cross-sectional shapes of the first to fourth magnetic legs 21, 22, 23, and 24 in the X direction can be arbitrarily selected. Examples of the cross-sectional shape include polygons such as a circle, an ellipse, and a quadrangle.
  • the core 2 includes a first connection portion 25 and a second connection portion 26.
  • the first and second connecting portions 25 and 26 are arranged at intervals in the Y direction.
  • the first to fourth magnetic legs 21, 22, 23, and 24 are located between the first and second connecting portions 25 and 26, and the first and second connecting portions 25 and 26 and the first to fourth magnetic legs are provided.
  • the legs 21, 22, 23, and 24 are integrated to form the core 2.
  • the first connecting portion 25 is connected to one end of each of the first to fourth magnetic legs 21, 22, 23, 24, and the second connecting portion 26 is connected to the first to fourth magnetic legs 21, 22, 23. , 24 are connected to the other end of each.
  • the first coil W1 is wound around the first magnetic leg 21 and is not wound around the second magnetic leg 22.
  • the first portion P1 of the second coil W2 is a coil-shaped portion that is wound around the first magnetic leg 21 and is not wound around the second magnetic leg 22.
  • the number of turns of the second coil W2 with respect to the first magnetic leg 21 is not particularly limited and can be set arbitrarily.
  • the second part P2 is a part wound so as to straddle both the first magnetic leg 21 and the second magnetic leg 22.
  • the second winding A2 does not pass between the first and second magnetic legs 21 and 22. Therefore, the second winding A2 in the second coil W2 can be shortened as compared with the case where the second winding A2 is wound around each of the first magnetic leg 21 and the second magnetic leg 22. Thereby, the electric resistance and the power loss in the second coil W2 can be reduced.
  • the winding direction of the second winding A2 in the first portion P1 and the winding direction of the second winding A2 in the second portion P2 are the same. Therefore, when the leakage transformer 1 is energized, the magnetic flux generated by the second portion P2 and directed from the second magnetic leg 22 to the 21st magnetic leg 22 in the core 2 is generated in the first and second connecting portions 25 and 26. It is offset by the magnetic flux generated by the first portion P1. Therefore, the interlinkage magnetic flux in the core 2 is reduced. As a result, the coupling coefficient between the first and second coils W1 and W2 tends to be small, and therefore the leakage inductance tends to be large.
  • FIG. 1 when the second coil W2 is viewed through the first connecting portion 25 in the Y direction, the winding direction of the second winding A2 in each of the first and second portions P1 and P2 is counterclockwise. It shows the aspect which is.
  • the winding direction of the second winding A2 in the first portion and the winding direction of the second winding A2 in the second portion are schematically indicated by arrows.
  • the winding direction of the first and second portions P1 and P2 may be the same, and the winding direction of the second winding A2 in the first and second portions P1 and P2 may be clockwise.
  • the second coil W2 may include a plurality of first portions P1 and a plurality of second portions P2. In this case, it is preferable that the first portion P1 and the second portion P2 are alternately connected.
  • the core 2 includes the third and fourth magnetic legs 23 and 24, so that the magnetic flux passing through the first magnetic leg 21 passes through the first and second connecting portions 25 and 26 and the third magnetic leg 23 is provided. You will be guided through. Further, the magnetic flux passing through the second magnetic leg 22 is guided to pass through the fourth magnetic leg 24 via the first and second connecting portions 25 and 26. Therefore, the magnetic flux generated by the leakage transformer 1 is less likely to leak to the outside of the core 2.
  • a gap may be provided in the magnetic legs for the purpose of avoiding magnetic saturation. By providing the gap, the leakage of magnetic flux to the outside becomes large.
  • the core 2 it is preferable that the core 2 has no gap in any of the first to fourth magnetic legs 21, 22, 23, and 24. Therefore, the magnetic flux in the core 2 is less likely to leak to the outside.
  • the generation of noise can be suppressed. Specifically, since the magnetic flux is less likely to leak to the outside of the core 2, the magnetic flux interlinking with the conductor wiring (for example, copper wire) provided on the printed wiring board or the like is reduced, and the noise due to the magnetic flux is reduced in the conductor wiring. It is less likely to occur.
  • the conductor wiring for example, copper wire
  • core 2 has no gap means that core 2 has substantially no gap. Since the core 2 is generally manufactured by joining two members, this "substantially” refers to the interface or small gap between the members generated during the manufacture of the core 2, or the two members. It means allowing the presence of an adhesive layer to adhere.
  • the core 2 may be made of a metal-based magnetic material that transmits magnetic flux, and this metal-based magnetic material is not particularly limited.
  • Examples of the core using the metallic magnetic material include a dust core.
  • the leakage transformer 1 includes a core 2 and a printed wiring board 5 as shown in FIGS. 2 and 3A.
  • the core 2 includes a first magnetic leg 21, a second magnetic leg 22, a third magnetic leg 23, a fourth magnetic leg 24, a first connecting portion 25, and a second connecting portion 26. And.
  • the printed wiring board 5 has a first through hole 52 and a second through hole 53.
  • the first through hole 52 is a hole through which the first magnetic leg 21 is passed.
  • the second through hole 53 is a hole through which the second magnetic leg 22 is passed.
  • the printed wiring board 5 further includes an insulating portion 51 and a conductor wiring 56. Further, the printed wiring board 5 has a first surface 5a and a second surface 5b parallel to each other.
  • the conductor wiring 56 includes a plurality of wiring layers (specifically, the first layer L1, the second layer L2, the third layer L3, and the fourth layer L4).
  • the insulating portion 51 includes, for example, a plurality of insulating layers. In the printed wiring board 5, for example, wiring layers and insulating layers are alternately arranged and laminated.
  • the conductor wiring 56 includes a first coil W1 and a second coil W2.
  • each wiring layer has at least one of a first wiring portion 91 forming at least a part of the first coil W1 and a second wiring portion 92 forming at least a part of the second coil W2. (See FIGS. 5A-5D).
  • the second wiring portion 92 includes at least one of a portion 921 constituting at least a part of the first portion P1 and a portion 922 constituting at least a part of the second portion P2 (see FIGS. 5A and 5B). ).
  • the portion 921 is spirally formed so as to surround only the first through hole 52 of the first and second through holes 52 and 53.
  • the portion 922 is spirally formed so as to surround both the first and second through holes 52 and 53 at the same time.
  • the first wiring portion 91 is spirally formed so as to surround only the first through hole 52 of the first and second through holes 52 and 53 (see FIGS. 5C and 5D).
  • the first coil W1 is configured by electrically connecting the first wiring portions 91 with vias.
  • FIG. 4 is a schematic view of the printed wiring board 5, and in order to make it easier to explain the connection in the printed wiring board 5, the core 2 is not shown, and the first via V1 and the second via V2 do not overlap. In addition, the third via V3 and the fourth via V4 are shown so as not to overlap.
  • the conductor wiring 56 includes the first layer L1, the second layer L2, the third layer L3, the fourth layer L4, the first via V1, the second via V2, the third via V3, and the fourth via. It includes V4, via V6, and via V7.
  • the first layer L1, the second layer L2, the third layer L3, and the fourth layer L4 are arranged in this order from the first surface 5a along the Y direction. It has a lined laminated structure.
  • the first via V1 is connected to the first surface 5a and the third layer L3.
  • the second via V2 is connected to the first surface 5a and the fourth layer L4.
  • the third via V3 is connected to the first surface 5a and the first layer L1.
  • the fourth via V4 is connected to the first surface 5a and the second layer L2.
  • the first layer L1 is connected to the via V7, and this via V7 is connected to the second layer L2.
  • the third layer L3 is connected to the via V6, and the via V6 is connected to the fourth layer L4.
  • the first layer L1 is a layer having a first portion P1 and a second portion P2 connected to the first portion P1 and the third via V3 as shown in FIG. 5A, and is composed of a second winding A2. ..
  • the first portion P1 is a portion wound around the first magnetic leg 21 and not wound around the second magnetic leg 22.
  • the second portion P2 is a portion wound so as to straddle both the first magnetic leg 21 and the second magnetic leg 22.
  • the second winding A2 in the second portion P2 passes between the fourth magnetic leg 24 and the second magnetic leg 22, and does not pass between the first magnetic leg 21 and the second magnetic leg 22.
  • the second layer L2 is a layer having a first portion P1 and a second portion P2 connected to the first portion P1 and the fourth via V4, and is composed of the second winding A2. ..
  • the first portion P1 is a portion wound around the first magnetic leg 21 and not wound around the second magnetic leg 22.
  • the second portion P2 is a portion wound so as to straddle both the first magnetic leg 21 and the second magnetic leg 22.
  • the second winding A2 in the second portion P2 passes between the fourth magnetic leg 24 and the second magnetic leg 22, and does not pass between the first magnetic leg 21 and the second magnetic leg 22.
  • the second winding A2 is made of a metal foil such as copper foil. That is, when each of the first layer L1 and the second layer L2 is formed, the second winding A2 is formed by etching the metal foil to remove unnecessary portions.
  • the second coil W2 is formed by connecting the first layer L1 and the second layer L2 with a via V7.
  • the second winding A2 in the second coil W2 can be shortened. Therefore, the electric resistance and the power loss in the second coil W2 can be reduced.
  • the winding direction of the second winding A2 in the first portion P1 and the winding direction of the second winding A2 in the second portion P2 are the same. That is, when the second winding A2 is energized, a current flows in the same direction as the first portion P1 and the second portion P2 when viewed from the axial direction of the second coil W2. Therefore, when the leakage transformer 1 is energized, the magnetic flux generated in the first magnetic leg 21 is canceled by the magnetic flux generated in the second magnetic leg 22 in the first and second connecting portions 25 and 26, so that the first coil W1 The magnetic flux interlinking with is reduced.
  • the via V7 When connecting the first layer L1 and the second layer L2 with a via V7, the via V7 is connected to the tip of the second winding A2 located at the position farthest from the third via V3 in the first layer L1. , In the second layer L2, is between the tip of the second winding A2 located at the position farthest from the fourth via V4.
  • the third layer L3 is a layer that is wound around the first magnetic leg 21 and not wound around the second magnetic leg 22, and is composed of the first winding A1.
  • the third layer L3 is connected to the first via V1.
  • the fourth layer L4 is a layer that is wound around the first magnetic leg 21 and not wound around the second magnetic leg 22, and is composed of the first winding A1.
  • the fourth layer L4 is connected to the second via V2.
  • the first winding A1 is made of a metal foil such as copper foil. That is, when each of the third layer L3 and the fourth layer L4 is formed, the first winding A1 is formed by etching the metal foil to remove unnecessary portions.
  • the first coil W1 is formed by connecting the third layer L3 and the fourth layer L4 with a via V6.
  • the via V6 is connected to the tip of the first winding A1 located at the position farthest from the first via V1 in the third layer L3. , It is between the tip of the first winding A1 located at the position farthest from the second via V2 in the fourth layer L4.
  • the winding direction of the first winding A1 when the printed wiring board 5 is viewed through the first connecting portion 25 in the Y direction is a clock with reference to the first via V1. It is around.
  • the printed wiring board 5 includes an insulating portion 51.
  • the insulating portion 51 covers the first to fourth layers L1, L2, L3, L4, the first to fourth vias V1, V2, V3, V4, the via V6, and the via V7.
  • the insulating portion 51 is interposed between the second layer L2 and the third layer L3. Therefore, the first and second layers L1 and L2 are insulated from the third and fourth layers L3 and L4 by the insulating portion 51. A part of each of the first to fourth vias V1, V2, V3, and V4 may be exposed on the first surface 5a.
  • the insulating portion 51 is made of a material having electrical insulating properties. This material is any compound that can be used in the manufacture of printed wiring boards. Examples of the material having electrical insulation include an epoxy resin.
  • the shapes of the first coil W1 and the second coil W2 can be easily stabilized. As a result, even if the leakage transformer 1 is manufactured in large quantities, the variation in the leakage inductance for each manufactured product can be reduced.
  • the printed wiring board 5 further includes a first through hole 52 and a second through hole 53.
  • the first through hole 52 is a hole that penetrates the printed wiring board 5 in the Y direction.
  • the first magnetic leg 21 is inserted into the first through hole 52.
  • the second through hole 53 is a hole that penetrates the printed wiring board 5 in the Y direction.
  • the second magnetic leg 22 is inserted into the second through hole 53.
  • the printed wiring board 5 further includes a first groove portion 54 and a second groove portion 55.
  • the first groove portion 54 is a groove-shaped portion along the Y direction, and is located at a position corresponding to the third magnetic leg 23.
  • the second groove portion 55 is a groove-shaped portion along the Y direction, and is located at a position corresponding to the fourth magnetic leg 24.
  • any method for manufacturing the multilayer printed wiring board can be adopted.
  • the core 2 includes a first magnetic leg 21, a second magnetic leg 22, a third magnetic leg 23, and a fourth magnetic leg 24.
  • the cross-sectional shapes of the first to fourth magnetic legs 21, 22, 23, and 24 are quadrangular in the examples of FIGS. 5A to 5D, but are not particularly limited.
  • Other examples of the cross-sectional shapes of the first to fourth magnetic legs 21, 22, 23, and 24 include a circle, an ellipse, and a polygon.
  • a connection example of the leakage transformer 1 according to the present embodiment is as shown in FIG.
  • the power supply circuit unit 6 includes a leakage transformer 1, a diode D, and a capacitor 3 (see FIG. 6).
  • the primary circuit C1 is connected to the first coil W1 and the secondary circuit C2 is connected to the second coil W2. Of the primary circuit C1 and the secondary circuit C2, power is supplied to the primary circuit C1. Further, the secondary circuit C2 is electrically connected to the load 4.
  • the power supply circuit unit 6 can be used as a switching power supply using an FET (Field Effect Transistor). As a result, power can be supplied to the primary circuit C1 to obtain a desired output power.
  • FET Field Effect Transistor
  • the leakage transformer 1 includes a core 2 and a printed wiring board 5 as shown in FIGS. 7 and 8A.
  • the core 2 includes a first magnetic leg 21, a second magnetic leg 22, a third magnetic leg 23, a fourth magnetic leg 24, a first connecting portion 25, and a second connecting portion 26. And.
  • the printed wiring board 5 has a first through hole 52 and a second through hole 53 as shown in FIG. 8B. As shown in FIG. 9, the printed wiring board 5 further includes an insulating portion 51 and a conductor wiring 56. Further, the printed wiring board 5 has a first surface 5a and a second surface 5b parallel to each other.
  • the conductor wiring 56 includes a plurality of wiring layers (specifically, the first layer L1, the second layer L2, the third layer L3, the fourth layer L4, the fifth layer L5, and the sixth layer L6).
  • the insulating portion 51 includes, for example, a plurality of insulating layers. In the printed wiring board 5, for example, wiring layers and insulating layers are alternately arranged and laminated.
  • the conductor wiring 56 includes a first coil W1, a second coil W2, and a third coil W3.
  • each wiring layer has a first wiring portion 91 forming at least a part of the first coil W1, a second wiring portion 92 forming at least a part of the second coil W2, and a third coil W3.
  • the third wiring portion 93 constituting at least a part of the above, at least one is included (see FIGS. 10A to 11B).
  • the third wiring portion 93 includes at least one of a portion 931 constituting at least a part of the third portion P3 and a portion 932 constituting at least a part of the fourth portion P4 (see FIGS. 11A and 11B). ).
  • the portion 931 is spirally formed so as to surround only the first through hole 52 among the first and second through holes 52 and 53.
  • the portion 932 is spirally formed so as to surround both the first and second through holes 52 and 53 at the same time.
  • the conductor wiring 56 includes a plurality of portions 931 and a plurality of portions 932
  • the portions 931 are electrically connected by vias so that the portions 931 and 932 are alternately connected, and the portion 932 is electrically connected by vias.
  • the third coil W3 is configured by connecting to. In this case, the via connecting the portion 931 and the via connecting the portion 932 are not provided at the same position of the insulating layer.
  • FIG. 9 is a schematic view of the printed wiring board 5, and in order to make it easier to explain the connection in the printed wiring board 5, the core 2 is not shown, and the first and second vias V1 and V2 do not overlap. In addition to showing, the third to fifth vias V3, V4, and V5 are shown so as not to overlap.
  • the conductor wiring 56 includes a first layer L1, a second layer L2, a third layer L3, a fourth layer L4, a fifth layer L5, and a sixth layer L6.
  • the conductor wiring 56 further includes a first via V1, a second via V2, a third via V3, a fourth via V4, a fifth via V5, a via V6, a via V7, and a via V8.
  • the printed wiring board 5 as shown in FIG. 9 has a first layer L1, a second layer L2, a third layer L3, a fourth layer L4, and a fifth layer from the first surface 5a along the Y direction.
  • L5 and the sixth layer L6 have a laminated structure in which they are arranged in this order.
  • the first via V1 is connected to the first surface 5a and the third layer L3.
  • the second via V2 is connected to the first surface 5a and the fourth layer L4.
  • the third via V3 is connected to the first surface 5a and the first layer L1.
  • the fourth via V4 is connected to the first surface 5a, the second layer L2, and the fifth layer L5.
  • the fifth via V5 is connected to the first surface 5a and the sixth layer L6.
  • the via V7 is connected to the first layer L1 and the second layer L2 as shown in FIG.
  • the via V6 is connected to the third layer L3 and the fourth layer L4.
  • the via V8 has conductivity and is connected to the fifth layer L5 and the sixth layer L6.
  • the second coil W2 is formed by connecting the first layer L1 and the second layer L2 with a via V7.
  • the direction in which the second winding A2 is wound is the third via. It is clockwise with respect to V3.
  • the first coil W1 is formed by connecting the third layer L3 and the fourth layer L4 with a via V6.
  • the direction in which the first winding A1 is wound is the first via. It is counterclockwise with respect to V1.
  • the fifth layer L5 is a layer having a third portion P3 and a fourth portion P4 connected to the third portion P3 and the fourth via V4, as shown in FIG. 11A, from the third winding A3.
  • the third portion P3 of the fifth layer L5 is a portion that is wound around the first magnetic leg 21 and is not wound around the second magnetic leg 22.
  • the fourth portion P4 of the fifth layer L5 is a portion wound so as to straddle both the first magnetic leg 21 and the second magnetic leg 22.
  • the third winding A3 of the fourth portion P4 passes between the fourth magnetic leg 24 and the second magnetic leg 22, and between the first magnetic leg 21 and the second magnetic leg 22. It doesn't pass.
  • the sixth layer L6 is a layer having a third portion P3 and a fourth portion P4 connected to the third portion P3 and the fifth via V5, as shown in FIG. 11B, from the third winding A3.
  • the third portion P3 of the sixth layer L6 is a portion wound around the first magnetic leg 21 and not wound around the second magnetic leg 22.
  • the fourth portion P4 of the sixth layer L6 is a portion wound so as to straddle both the first magnetic leg 21 and the second magnetic leg 22.
  • the third winding A3 of the fourth portion P4 passes between the fourth magnetic leg 24 and the second magnetic leg 22, and between the first magnetic leg 21 and the second magnetic leg 22. It doesn't pass.
  • the third winding A3 is made of a metal foil such as copper foil. That is, when each of the fifth layer L5 and the sixth layer L6 is formed, the third winding A3 is formed by etching the metal foil to remove unnecessary portions.
  • the third coil W3 is formed by connecting the fifth layer L5 and the sixth layer L6 with a via V8.
  • the third winding A3 in the third coil W3 can be shortened. Therefore, the electric resistance and the power loss in the third coil W3 can be reduced.
  • the winding direction of the third winding A3 in the third portion P3 and the winding direction of the third winding A3 in the fourth portion P4 are the same. That is, when the third winding A3 is energized, a current flows in the same direction as the third portion P3 and the fourth portion P4 when viewed from the axial direction of the third coil W3. Therefore, when the leakage transformer 1 is energized, the magnetic flux generated in the first magnetic leg 21 is canceled by the magnetic flux generated in the second magnetic leg 22 in the first and second connecting portions 25 and 26, so that the second coil W2 The coupling coefficient between the coil and the third coil W3 tends to be small, and therefore the leakage inductance tends to be large.
  • the winding direction of the third winding A3 is the fourth via when the printed wiring board 5 is viewed through the first connecting portion 25 in the Y direction. It is clockwise with respect to V4.
  • the via V8 In connecting the fifth layer L5 and the sixth layer L6 with the via V8, the via V8 includes the tip of the third winding A3 located at the position farthest from the fourth via V4 in the fifth layer L5. It is between the fourth layer L4 and the tip of the third winding A3 located at the position farthest from the fifth via V5. As a result, the actual number of turns of the third winding A3 in the third coil W3 is unlikely to decrease depending on the position of the via V8.
  • the printed wiring board 5 includes an insulating portion 51.
  • the insulating portion 51 includes the first to sixth layers L1, L2, L3, L4, L5, L6, the first to fifth vias V1, V2, V3, V4, V5, and the via V6. , Covers via V7 and via V8.
  • the insulating portion 51 is interposed between the second layer L2 and the third layer L3 and between the fourth layer L4 and the fifth layer L5. Therefore, the first and second layers L1 and L2 are insulated from the third and fourth layers L3 and L4 by the insulating portion 51, and the third and fourth layers L3 and L4 are insulated from the third and fourth layers L3 and L4 by the insulating portion 51. And the sixth layers L5 and L6 are insulated. A part of each of the first to fifth vias V1, V2, V3, V4, and V5 may be exposed on the first surface 5a.
  • the conductor wiring 56 includes the first to third coils W1, W2, and W3, the shapes of the first to third coils W1, W2, and W3 can be easily stabilized. As a result, even if the leakage transformer 1 is manufactured in large quantities, the variation in the leakage inductance for each manufactured product can be reduced.
  • FIG. 1 An example of connection of the leakage transformer 1 according to the present embodiment is as shown in FIG. 1
  • the power supply circuit 6 as shown in FIG. 12 includes a leakage transformer 1, a first diode D1, a second diode D2, and a capacitor 3.
  • the primary circuit C1 is connected to the first coil W1
  • the secondary circuit C2 is connected to the second coil W2 and the third coil W3. Further, the secondary circuit C2 is electrically connected to the load 4.
  • the core 2 has two magnetic legs (third and fourth magnetic legs 23, 24) different from the first and second magnetic legs 21 and 22, in addition to the first and second magnetic legs 21 and 22. ), but in the modified example, the core 2 may further include other magnetic legs in addition to the first to fourth magnetic legs 21, 22, 23, 24. That is, the core 2 may include, in addition to the first and second magnetic legs 21, 22, two or more magnetic legs different from the first and second magnetic legs 21 and 22. However, it is particularly preferable that the magnetic legs other than the first and second magnetic legs 21 and 22 are only the third and fourth magnetic legs 23 and 24. Even if the core 2 is further provided with magnetic legs different from those of the first to fourth magnetic legs 21, 22, 23, 24, the effect of reducing the leakage of magnetic flux to the outside cannot be improved so much, and the size of the core 2 is increased. Easy to invite.
  • the core 2 includes the first to fourth magnetic legs 21, 22, 23, 24, but in the modified example, the core 2 does not have to include the third and fourth magnetic legs 23, 24. In this case, it is preferable that the core 2 has no gap in the first and second magnetic legs 21 and 22.
  • the primary circuit C1 is connected to the first coil W1 and the secondary circuit C2 is connected to the second coil W2.
  • the primary circuit C1 may be connected to the second coil W2, and the secondary circuit C2 may be connected to the first coil W1.
  • the first aspect is a leakage transformer (1), which includes a core (2) and a printed wiring board (5).
  • the core (2) includes a first magnetic leg (21) and a second magnetic leg (22).
  • the second magnetic leg (22) is arranged at a distance from the first magnetic leg (21).
  • the printed wiring board (5) includes an insulating portion (51) and a conductor wiring (56).
  • the conductor wiring (56) includes a first coil (W1) and a second coil (W2).
  • the first coil (W1) is composed of a first winding (A1).
  • the first coil (W1) is wound around the first magnetic leg (21) and is not wound around the second magnetic leg (22).
  • the second coil (W2) is composed of a second winding (A2).
  • the second coil (W2) includes a first portion (P1) and a second portion (P2).
  • the first portion (P1) is wound around the first magnetic leg (21) and is not wound around the second magnetic leg (22).
  • the second portion (P2) is wound so as to straddle both the first magnetic leg (21) and the second magnetic leg (22).
  • the portion through which the second winding (A2) passes between the first magnetic leg (21) and the second magnetic leg (22) can be omitted. Therefore, as compared with the case where the second winding (A2) is wound around the first magnetic leg (21) and the second magnetic leg (22), the second winding (A2) of the second coil (W2) is wound. It can be shortened, and the electric resistance and power loss in the second coil (W2) can be reduced. Further, according to the first aspect, the shapes of the first coil (W1) and the second coil (W2) can be easily stabilized. As a result, even if the leakage transformer (1) is manufactured in large quantities, the variation in the leakage inductance for each manufactured product can be reduced.
  • the second aspect is the leakage transformer (1) of the first aspect, in which the winding direction of the second winding (A2) in the first portion (P1) and the second winding (A2) in the second portion (P2). ) Is the same as the winding direction.
  • the leakage transformer (1) when the leakage transformer (1) is energized, the magnetic flux generated by the first magnetic leg (21) is canceled by the magnetic flux generated by the second magnetic leg (22), so that the first and second coils
  • the coupling coefficient between (W1 and W2) tends to be small, and the leakage inductance tends to be large.
  • the third aspect is the leakage transformer (1) of the first or second aspect, and the core (2) has two or more magnets different from the first magnetic leg (21) and the second magnetic leg (22). Further provided with legs (23, 24).
  • the magnetic flux passing through the first magnetic leg (21) is induced to pass through the magnetic leg (23), and the magnetic flux passing through the second magnetic leg (22) passes through the magnetic leg (24). Be guided. Therefore, the magnetic flux generated by the leakage transformer (1) is less likely to leak to the outside of the core (2). As a result, the generation of noise can be suppressed.
  • the fourth aspect is the leakage transformer (1) of the third aspect, and the core (2) is in the first magnetic leg (21), in the second magnetic leg (22), and in the magnetic leg (23, 24) There is no gap between the inside and the inside.
  • the magnetic flux in the core (2) is less likely to leak to the outside, so that the generation of noise can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本開示は、リーケージインダクタンスを生じさせることに起因する電気抵抗及び電力損失の増大を生じにくくできるリーケージトランスを提供する。 リーケージトランス(1)は、コア(2)と、プリント配線板(5)とを備える。コア(2)は、第1磁脚(21)と、第2磁脚(22)とを備える。第2磁脚(22)は第1磁脚(21)から間隔をあけて配置されている。プリント配線板(5)は、絶縁部(51)と導体配線(56)とを備える。導体配線(56)は、第1コイル(W1)と、第2コイル(W2)とを含む。第1コイル(W1)は第1巻線(A1)からなる。第1コイル(W1)は第1磁脚(21)に巻かれ、かつ第2磁脚(22)には巻かれていない。第2コイル(W2)は第2巻線(A2)からなる。第2コイル(W2)は第1部分(P1)と第2部分(P2)とを備える。第1部分(P1)は第1磁脚(21)に巻かれ、かつ第2磁脚(22)には巻かれていない。第2部分(P2)は第1磁脚(21)と第2磁脚(22)との両方に跨がって巻かれている。

Description

リーケージトランス
 本開示は、リーケージトランスに関する。
 特許文献1には、中脚及び側脚を備えるコアと、中脚及び側脚にそれぞれ巻装された1次側巻線と、側脚に巻装された2次側巻線とを備える、変圧器が開示されている。
 しかし、特許文献1の場合、1次側巻線は中脚及び側脚の各々に巻装されているため、巻線が長くなりやすい。そして、巻線が長いほど、この巻線の長さに応じて電気抵抗及び電力損失が大きくなりやすい。
国際公開第2017/061329号
 本開示の目的は、リーケージインダクタンスを生じさせることに起因する電気抵抗及び電力損失の増大を生じにくくできるリーケージトランスを提供することである。
 本開示の一態様に係るリーケージトランスは、コアと、プリント配線板とを備える。前記コアは、第1磁脚と、第2磁脚とを備える。前記第2磁脚は前記第1磁脚から間隔をあけて配置されている。前記プリント配線板は、絶縁部と導体配線とを備える。前記導体配線は、第1コイルと、第2コイルとを含む。前記第1コイルは第1巻線からなる。前記第1コイルは前記第1磁脚に巻かれ、かつ前記第2磁脚には巻かれていない。前記第2コイルは第2巻線からなる。前記第2コイルは第1部分と第2部分とを備える。前記第1部分は前記第1磁脚に巻かれ、かつ前記第2磁脚には巻かれていない。前記第2部分は前記第1磁脚と前記第2磁脚との両方に跨がって巻かれている。
図1は、第1実施形態に係るリーケージトランスの模式図である。 図2は、第1実施形態に係るリーケージトランスの斜視図である。 図3Aは、同上のリーケージトランスを、第1磁脚と第2磁脚とが並ぶ方向と直交する一方向から見た平面図である。図3Bは、図3AのA-A断面図である。 図4は、同上のリーケージトランスの説明図である。 図5A~図5Dは、同上のリーケージトランスの説明図である。 図6は、同上のリーケージトランスを含む回路図である。 図7は、第2実施形態に係るリーケージトランスの斜視図である。 図8Aは、同上のリーケージトランスを、第1磁脚と第2磁脚とが並ぶ方向と直交する一方向から見た平面図である。図8Bは、図8AのB-B断面図である。 図9は、同上のリーケージトランスの説明図である。 図10A~図10Dは、同上のリーケージトランスの説明図である。 図11A及び図11Bは、同上のリーケージトランスの説明図である。 図12は、同上のリーケージトランスを含む回路図である。
 まず、本開示に至った理由を説明する。
 特許文献1のようなリーケージトランスでは、中脚及び側脚の各々に巻線を巻装し、かつ中脚に巻線を巻装する方向とは逆方向にして側脚に巻線を巻装している。そして、中脚及び側脚以外に巻線を巻装しない他の脚をコアに設け、この他の脚に磁束を漏らすことでコア内のリーケージインダクタンスを調整している。
 そこで、発明者らは、鋭意研究を重ねた結果、中脚と側脚の各々に巻線を巻装することによって、リーケージトランスの巻線が長くなりやすいことを発見した。そして、巻線が長くなると電気抵抗及び電力損失が大きくなる。
 以上より、発明者らは、巻線を短くし、かつ電気抵抗及び電力損失を小さくすることを図るため、本開示に至った。
 <第1実施形態>
 次に、第1実施形態に係るリーケージトランス1の概要を説明する。
 図1は模式図であり、本実施形態に係るリーケージトランス1は、図2~図5に示すように、プリント基板5を備えたものであるが、図1においては、説明のため、プリント基板5の図示を省略している。本実施形態に係るリーケージトランス1は、図1のように、コア2と、第1コイルW1と、第2コイルW2とを備える。コア2は第1磁脚21と、第2磁脚22とを備える。第2磁脚22は第1磁脚21から間隔をあけて配置されている。第1コイルW1は第1巻線A1からなる。第1コイルW1は第1磁脚21に巻かれ、かつ第2磁脚22には巻かれていない。第2コイルW2は第2巻線A2からなる。第2コイルW2は第1部分P1と第2部分P2とを備える。第1部分P1は第1磁脚21に巻かれ、かつ第2磁脚22には巻かれていない。第2部分P2は第1磁脚21と第2磁脚22との両方に跨がって巻かれている。
 このようなリーケージトランス1によれば、第2巻線A2からなる第2部分P2が第1磁脚21及び第2磁脚22の両方に跨っているため、第2コイルW2における第2巻線A2を短くできる。言い換えると、第2巻線A2を第1磁脚21及び第2磁脚22の各々に巻く場合と比べて、第2部分P2では第2巻線A2が第1磁脚21及び第2磁脚22の間を通る部分を省略できる。このため、第2コイルW2における第2巻線A2を短くでき、第2コイルW2における電気抵抗及び電力損失を小さくすることができる。
 次に、本実施形態に係るリーケージトランス1を、図1を参照して詳細に説明する。図1は、コア2と第1コイルW1と第2コイルW2との関係を模式的に示す。
 リーケージトランス1は、図1のように、コア2と、第1コイルW1と、第2コイルW2とを備える。コア2は、第1磁脚21と、第2磁脚22と、第3磁脚23と、第4磁脚24と、第1接続部25と、第2接続部26とを備える。
 ここで、本実施形態を説明するにあたり、図1のように、第1磁脚21と第2磁脚22とが並ぶ方向をX方向とし、X方向と直交する方向をY方向とする。本明細書では「直交する」とは、X方向とY方向とが厳密に直交する態様だけでなく、実質的に直交する態様も含む。
 コア2は、上記の通り、第1~第4磁脚21、22、23、24を備える。すなわち、コア2は、第1及び第2磁脚21、22に加えて、この第1磁脚21及び第2磁脚22とは異なる2つの磁脚(第3及び第4磁脚)23、24を備える。第1及び第2磁脚21、22は、第3磁脚23と第4磁脚24との間にある。そして、第1~第4磁脚21、22、23、24は、X方向において、間隔を空けて配置されている(図1参照)。第3及び第4磁脚23、24のいずれにも、コイルは巻かれていない。
 第1~第4磁脚21、22、23、24のいずれも柱状である。X方向における第1~第4磁脚21、22、23、24の各々の断面形状は任意に選択できる。この断面形状としては、例えば、円、楕円、及び四角形等の多角形が挙げられる。
 コア2は、上記の通り、第1接続部25と、第2接続部26とを備える。第1及び第2接続部25、26は、Y方向において、間隔を空けて並んでいる。そして、第1及び第2接続部25、26の間に第1~第4磁脚21、22、23、24があり、第1及び第2接続部25、26と、第1~第4磁脚21、22、23、24とが一体となってコア2を構成する。Y方向において、第1接続部25は第1~第4磁脚21、22、23、24の各々の一端に接続し、第2接続部26は第1~第4磁脚21、22、23、24の各々の他端に接続する。
 第1コイルW1は、第1磁脚21に巻かれ、かつ第2磁脚22には巻かれていない。
 第2コイルW2の第1部分P1は第1磁脚21に巻かれ、かつ第2磁脚22には巻かれていないコイル状の部分である。なお、第1磁脚21に対する第2コイルW2の巻き数は、特に限定されず、任意に設定できる。
 第2部分P2は第1磁脚21と第2磁脚22との両方に跨がって巻かれた部分である。第2部分P2では、第2巻線A2が第1及び第2磁脚21、22の間を通らない。このため、第2巻線A2を第1磁脚21及び第2磁脚22の各々に巻く場合と比べて、第2コイルW2における第2巻線A2を短くすることができる。これにより、第2コイルW2における電気抵抗及び電力損失を小さくすることができる。
 本実施形態では、第1部分P1における第2巻線A2の巻き方向と、第2部分P2における第2巻線A2の巻き方向とは、同じである。このため、リーケージトランス1の通電時に、第2部分P2によって発生してコア2内で第2磁脚22から第21磁脚22へ向かう磁束は、第1及び第2接続部25、26において、第1部分P1によって発生した磁束によって相殺される。このため、コア2内の鎖交磁束が減る。これにより、第1及び第2コイルW1、W2間の結合係数が小さくなりやすく、そのため、リーケージインダクタンスが大きくなりやすい。
 なお、図1は、Y方向において第1接続部25越しで第2コイルW2を見たときの、第1及び第2部分P1、P2の各々における第2巻線A2の巻き方向が反時計回りである態様を示している。なお、図1では、第1部分における第2巻線A2の巻き方向、及び第2部分における第2巻線A2の巻き方向を、それぞれ矢印で模式的に示してある。しかし、第1及び第2部分P1、P2で巻き方向が同じであればよく、第1及び第2部分P1、P2における第2巻線A2の巻き方向は時計回りであってもよい。
 第2コイルW2は、複数の第1部分P1と複数の第2部分P2とを備えてもよい。この場合、第1部分P1と第2部分P2とが交互に繋がっていることが好ましい。
 コア2が、上記の通り、第3及び第4磁脚23、24を備えることで、第1磁脚21を通る磁束が第1及び第2接続部25、26を介して第3磁脚23を通るように誘導される。また、第2磁脚22を通る磁束が第1及び第2接続部25、26を介して第4磁脚24を通るように誘導される。このため、リーケージトランス1で発生する磁束が、コア2の外部へ漏れにくくなる。
 また、一般的なリーケージトランスでは、磁気飽和を避けることを目的として、磁脚にギャップを設けることがある。ギャップを設けることで、外部への磁束の漏れが大きくなる。これに対し、本実施形態では、コア2は、第1~第4磁脚21、22、23、24内のいずれにもギャップを有さないことが好ましい。このため、コア2内の磁束は外部に漏れにくくなる。
 上記のように磁束がコア2の外部に漏れにくくなると、ノイズの発生を抑制することができる。具体的には、コア2の外部へ磁束が漏れにくくなることで、例えばプリント配線板等に設けられた導体配線(例えば銅線)と鎖交する磁束が小さくなり、磁束によるノイズが導体配線で発生しにくくなる。
 なお、「コア2はギャップを有さない」とは、コア2が実質的にギャップを有さないことを意味する。コア2は2つの部材を接合して作製されることが一般的であるため、この「実質的に」は、コア2の作製時に生じた部材同士間の界面又は小さな空隙、あるいは2つの部材を接着する接着層の存在を許容することを意味する。
 コア2は磁束を伝達する金属系磁性材料により構成されていてもよく、この金属系磁性材料は特に限定されない。金属系磁性材料を用いたコアとしては、例えば、ダストコアが挙げられる。
 次に、第1実施形態に係るリーケージトランス1の具体的な構造を、図2~図6を参照して説明する。下記説明において、図1に示したリーケージトランスと共通する構成は、図面に同じ符号を付して、詳細な説明を省略する。
 本実施形態に係るリーケージトランス1は、図2及び図3Aのように、コア2と、プリント配線板5とを備える。
 コア2は、図3Bのように、第1磁脚21と、第2磁脚22と、第3磁脚23と、第4磁脚24と、第1接続部25と、第2接続部26とを備える。
 プリント配線板5は、図3Bのように、第1貫通孔52と、第2貫通孔53とを有する。第1貫通孔52は、第1磁脚21が通される孔である。第2貫通孔53は、第2磁脚22が通される孔である。プリント配線板5は、図4のように、絶縁部51と、導体配線56とを更に有する。また、プリント配線板5は、互いに平行な第1面5a及び第2面5bを有する。
 導体配線56は、複数の配線層(具体的には、第1層L1、第2層L2、第3層L3、及び第4層L4)を含む。絶縁部51は、例えば複数の絶縁層を含む。プリント配線板5では、例えば、配線層と絶縁層とが交互に並んで積層している。
 導体配線56は、第1コイルW1と、第2コイルW2とを含む。導体配線56において、各配線層は、第1コイルW1の少なくとも一部を構成する第一配線部分91と、第2コイルW2の少なくとも一部を構成する第二配線部分92とのうち、少なくとも一方を含む(図5A~図5D参照)。
 第二配線部分92は、第1部分P1の少なくとも一部を構成する部分921と、第2部分P2の少なくとも一部を構成する部分922とのうち、少なくとも一方を含む(図5A及び図5B参照)。
 部分921は、第1及び第2貫通孔52、53のうち、第1貫通孔52のみを取り巻くように螺旋状に形成されている。
 部分922は、第1及び第2貫通孔52、53との両方を同時に取り巻くように螺旋状に形成されている。
 第一配線部分91は、第1及び第2貫通孔52、53のうち、第1貫通孔52のみを取り巻くように螺旋状に形成されている(図5C及び図5D参照)。
 導体配線56が複数の第一配線部分91を含む場合、第一配線部分91をビアで電気的に接続することで、第1コイルW1が構成される。
 次に、本実施形態に係るプリント配線板5を、図4~図5Bを参照して、詳細に説明する。図4は、プリント配線板5の略図であって、プリント配線板5内の接続を説明しやすくするため、コア2を示していなく、しかも第1ビアV1及び第2ビアV2が重ならないように示すと共に、第3ビアV3及び第4ビアV4が重ならないように示している。
 導体配線56は、第1層L1と、第2層L2と、第3層L3と、第4層L4と、第1ビアV1と、第2ビアV2と、第3ビアV3と、第4ビアV4と、ビアV6と、ビアV7とを備える。
 図4のようなプリント配線板5は、Y方向に沿って、第1面5aから、第1層L1と、第2層L2と、第3層L3と、第4層L4とがこの順で並んだ積層構造を有する。第1ビアV1は、第1面5aと第3層L3とに接続する。第2ビアV2は、第1面5aと第4層L4とに接続する。第3ビアV3は、第1面5aと第1層L1とに接続する。第4ビアV4は、第1面5aと第2層L2とに接続する。
 第1層L1はビアV7に接続し、このビアV7は第2層L2に接続している。第3層L3はビアV6に接続し、このビアV6は第4層L4に接続している。
 第1層L1は、図5Aのように、第1部分P1と、第1部分P1と第3ビアV3とに接続する第2部分P2とを有する層であって、第2巻線A2からなる。第1部分P1は、第1磁脚21に巻かれ、かつ第2磁脚22には巻かれていない部分である。第2部分P2は、第1磁脚21と第2磁脚22との両方に跨がって巻かれた部分である。第2部分P2における第2巻線A2は、第4磁脚24と第2磁脚22との間を通り、第1磁脚21と第2磁脚22との間を通らない。
 第2層L2は、図5Bのように、第1部分P1と、第1部分P1と第4ビアV4とに接続する第2部分P2とを有する層であって、第2巻線A2からなる。第1部分P1は、第1磁脚21に巻かれ、かつ第2磁脚22には巻かれていない部分である。第2部分P2は、第1磁脚21と第2磁脚22との両方に跨がって巻かれた部分である。第2部分P2における第2巻線A2は、第4磁脚24と第2磁脚22との間を通り、第1磁脚21と第2磁脚22との間を通らない。
 第2巻線A2は、銅箔等の金属箔からなる。すなわち、第1層L1及び第2層L2の各々を形成する際、金属箔にエッチング処理を施して不要な部分を取り除くことで第2巻線A2が形成される。
 第1層L1と第2層L2との間をビアV7で接続することにより、第2コイルW2が形成される。
 第2コイルW2の第2部分P2では、第2巻線A2が第1磁脚21及び第2磁脚22の間を通らないため、第2コイルW2における第2巻線A2を短くできる。このため、第2コイルW2における電気抵抗及び電力損失を小さくすることができる。
 また、図5A及び図5Bのように、第1部分P1における第2巻線A2の巻き方向と、第2部分P2における第2巻線A2の巻き方向とは、同じである。つまり、第2巻線A2が通電されると、第2コイルW2の軸方向から見て、第1部分P1と第2部分P2とには同じ向きに電流が流れる。このため、リーケージトランス1の通電時に、第1磁脚21で生じる磁束は、第1及び第2接続部25、26において、第2磁脚22で生じる磁束により相殺されるため、第1コイルW1に鎖交する磁束が減る。これにより第1及び第2コイルW1、W2間の結合係数が小さくなりやすく、そのため、リーケージインダクタンスが大きくなりやすい。なお、図5A及び図5Bの例では、Y方向において第1接続部25越しでプリント配線板5を見たときの、第2巻線A2の巻き方向は、第3ビアV3を基準にして反時計回りである。
 第1層L1と第2層L2との間をビアV7で接続するにあたって、このビアV7は、第1層L1において第3ビアV3から最も離れた位置にある第2巻線A2の先端部と、第2層L2において第4ビアV4から最も離れた位置にある第2巻線A2の先端部との間にある。
 第3層L3は、図5Cのように、第1磁脚21に巻かれ、かつ第2磁脚22には巻かれていない層であって、第1巻線A1からなる。第3層L3は、第1ビアV1に接続する。
 第4層L4は、図5Dのように、第1磁脚21に巻かれ、かつ第2磁脚22には巻かれていない層であって、第1巻線A1からなる。第4層L4は、第2ビアV2に接続する。
 第1巻線A1は、銅箔等の金属箔からなる。すなわち、第3層L3及び第4層L4の各々を形成する際、金属箔にエッチング処理を施して不要な部分を取り除くことで第1巻線A1が形成される。
 第3層L3と第4層L4との間をビアV6で接続することにより、第1コイルW1が形成される。
 第3層L3と第4層L4との間をビアV6で接続するにあたって、このビアV6は、第3層L3において第1ビアV1から最も離れた位置にある第1巻線A1の先端部と、第4層L4において第2ビアV2から最も離れた位置にある第1巻線A1の先端部との間にある。なお、図5C及び図5Dの例では、Y方向において第1接続部25越しでプリント配線板5を見たときの、第1巻線A1の巻き方向は、第1ビアV1を基準にして時計回りである。
 プリント配線板5は、上記の通り、絶縁部51を備える。絶縁部51は、図4のように第1~第4層L1、L2、L3、L4と、第1~第4ビアV1、V2、V3、V4と、ビアV6と、ビアV7とを覆っている。特に、絶縁部51は、第2層L2と第3層L3との間に介在している。このため、第1及び第2層L1、L2は、絶縁部51により、第3及び第4層L3、L4と絶縁されている。なお、第1~第4ビアV1、V2、V3、V4の各々の一部は、第1面5aで露出していてもよい。
 絶縁部51は、電気絶縁性を有する材料により構成される。この材料は、プリント配線板の製造に利用できる任意の化合物である。電気絶縁性を有する材料として、例えばエポキシ樹脂が挙げられる。
 本実施形態では、第1コイルW1及び第2コイルW2を導体配線56として形成することにより、第1コイルW1及び第2コイルW2の各々の形状が安定しやすくなる。これにより、リーケージトランス1を大量に製造しても、この製造品毎のリーケージインダクタンスのバラツキを小さくできる。
 プリント配線板5は、図3Bのように、第1貫通孔52と、第2貫通孔53とを更に備える。
 第1貫通孔52は、Y方向にプリント配線板5を貫通する孔である。この第1貫通孔52に第1磁脚21が挿入されている。
 第2貫通孔53は、Y方向にプリント配線板5を貫通する孔である。この第2貫通孔53に第2磁脚22が挿入されている。
 プリント配線板5は、図3Aのように、第1溝部54と、第2溝部55とを更に備える。第1溝部54は、Y方向に沿った溝状の部分であって、第3磁脚23に対応する位置にある。第2溝部55は、Y方向に沿った溝状の部分であって、第4磁脚24に対応する位置にある。
 本実施形態に係るプリント配線板5を製造する際は、多層プリント配線板を製造する任意の方法を採用することができる。
 コア2は、上記の通り、第1磁脚21と、第2磁脚22と、第3磁脚23と、第4磁脚24とを備える。第1~第4磁脚21、22、23、24の各々の断面形状は、図5A~図5Dの例では四角形であるが、特に限定されない。第1~第4磁脚21、22、23、24の各々の断面形状の他例として、円、楕円、多角形が挙げられる。
 本実施形態に係るリーケージトランス1の接続例は、図6のようになる。
 電源回路部6は、リーケージトランス1と、ダイオードDと、コンデンサ3と、を備える(図6参照)。本実施形態の電源回路部6では、一次回路C1は第1コイルW1に接続し、二次回路C2は第2コイルW2に接続している。一次回路C1及び二次回路C2のうち、一次回路C1に電力が供給される。また、二次回路C2は負荷4と電気的に接続している。
 電源回路部6は、FET(Field Effenct Transister)を用いたスイッチング電源に利用することができる。これにより、一次回路C1に電力を供給し所望の出力電力を得ることができる。
 <第2実施形態>
 次に第2実施形態に係るリーケージトランス1を、図7~図12を参照して説明する。下記説明において、第1実施形態と共通する構成は、図面に同じ符号を付して、詳細な説明を省略する。
 本実施形態に係るリーケージトランス1は、図7及び図8Aのように、コア2と、プリント配線板5とを備える。
 コア2は、図8Bのように、第1磁脚21と、第2磁脚22と、第3磁脚23と、第4磁脚24と、第1接続部25と、第2接続部26とを備える。
 プリント配線板5は、図8Bのように第1貫通孔52と、第2貫通孔53とを有する。プリント配線板5は、図9のように、絶縁部51と、導体配線56とを更に有する。また、プリント配線板5は、互いに平行な第1面5a及び第2面5bを有する。
 導体配線56は、複数の配線層(具体的には、第1層L1、第2層L2、第3層L3、第4層L4、第5層L5、及び第6層L6)を含む。絶縁部51は、例えば複数の絶縁層を含む。プリント配線板5では、例えば、配線層と絶縁層とが交互に並んで積層している。
 導体配線56は、第1コイルW1と、第2コイルW2と、第3コイルW3とを含む。導体配線56において、各配線層は、第1コイルW1の少なくとも一部を構成する第一配線部分91と、第2コイルW2の少なくとも一部を構成する第二配線部分92と、第3コイルW3の少なくとも一部を構成する第三配線部分93とのうち、少なくとも一方を含む(図10A~図11B参照)。
 第三配線部分93は、第3部分P3の少なくとも一部を構成する部分931と、第4部分P4の少なくとも一部を構成する部分932とのうち、少なくとも一方を含む(図11A及び図11B参照)。
 部分931は、第1及び第2貫通孔52、53のうち、第1貫通孔52のみを取り巻くように螺旋状に形成されている。
 部分932は、第1及び第2貫通孔52、53との両方を同時に取り巻くように螺旋状に形成されている。
 導体配線56が複数の部分931と複数の部分932とを含む場合、部分931と部分932とが交互に繋がるようにして部分931をビアで電気的に接続すると共に、部分932をビアで電気的に接続することで、第3コイルW3が構成される。この場合、部分931を接続するビアと、部分932を接続するビアとが同じ絶縁層の位置に設けられていない。
 次に、本実施形態に係るプリント配線板5を、図9~図11Bを参照して詳細に説明する。図9は、プリント配線板5の略図であって、プリント配線板5内の接続を説明しやすくするため、コア2を示していなく、しかも第1及び第2ビアV1、V2が重ならないように示すと共に、第3~第5ビアV3、V4、V5が重ならないように示している。
 導体配線56は、第1層L1と、第2層L2と、第3層L3と、第4層L4と、第5層L5と、第6層L6とを備える。導体配線56は、第1ビアV1と、第2ビアV2と、第3ビアV3と、第4ビアV4と、第5ビアV5と、ビアV6と、ビアV7と、ビアV8と更に備える。
 図9のようなプリント配線板5は、Y方向に沿って、第1面5aから、第1層L1と、第2層L2と、第3層L3と、第4層L4と、第5層L5と、第6層L6とがこの順で並んだ積層構造を有する。第1ビアV1は、第1面5aと第3層L3とに接続する。第2ビアV2は、第1面5aと第4層L4とに接続する。第3ビアV3は、第1面5aと第1層L1とに接続する。第4ビアV4は、第1面5aと第2層L2と第5層L5とに接続する。第5ビアV5は、第1面5aと第6層L6とに接続する。
 ビアV7は、図9のように第1層L1と第2層L2とに接続している。ビアV6は、第3層L3と第4層L4とに接続している。ビアV8は、導電性を有し、第5層L5と第6層L6とに接続している。
 第1層L1と第2層L2との間をビアV7で接続することにより、第2コイルW2が形成される。なお、図10A及び図10Bに示す第2コイルW2の例では、Y方向において第1接続部25越しでプリント配線板5を見たときの、第2巻線A2を巻く方向は、第3ビアV3を基準にして時計回りである。
 また、第3層L3と第4層L4との間をビアV6で接続することにより、第1コイルW1が形成される。なお、図10C及び図10Dに示す第1コイルW1の例では、Y方向において第1接続部25越しでプリント配線板5を見たときの、第1巻線A1を巻く方向は、第1ビアV1を基準にして反時計回りである。
 第5層L5は、図11Aのように、第3部分P3と、この第3部分P3と第4ビアV4とに接続する第4部分P4とを有する層であって、第3巻線A3からなる。第5層L5の第3部分P3は、第1磁脚21に巻かれ、かつ第2磁脚22には巻かれていない部分である。第5層L5の第4部分P4は、第1磁脚21と第2磁脚22との両方に跨がって巻かれた部分である。第5層L5において、第4部分P4の第3巻線A3は、第4磁脚24と第2磁脚22との間を通り、第1磁脚21と第2磁脚22との間を通らない。
 第6層L6は、図11Bのように、第3部分P3と、この第3部分P3と第5ビアV5とに接続する第4部分P4とを有する層であって、第3巻線A3からなる。第6層L6の第3部分P3は、第1磁脚21に巻かれ、かつ第2磁脚22には巻かれていない部分である。第6層L6の第4部分P4は、第1磁脚21と第2磁脚22との両方に跨がって巻かれた部分である。第6層L6において、第4部分P4の第3巻線A3は、第4磁脚24と第2磁脚22との間を通り、第1磁脚21と第2磁脚22との間を通らない。
 第3巻線A3は、銅箔等の金属箔からなる。すなわち、第5層L5及び第6層L6の各々を形成する際、金属箔にエッチング処理を施して不要な部分を取り除くことで第3巻線A3が形成される。
 第5層L5と第6層L6との間をビアV8で接続することにより、第3コイルW3が形成される。
 第3コイルW3の第4部分P4では、第3巻線A3が第1磁脚21及び第2磁脚22の間を通らないため、第3コイルW3における第3巻線A3を短くできる。このため、第3コイルW3における電気抵抗及び電力損失を小さくすることができる。
 また、図11A及び図11Bのように、第3部分P3における第3巻線A3の巻き方向と、第4部分P4における第3巻線A3の巻き方向とは、同じである。つまり、第3巻線A3が通電されると、第3コイルW3の軸方向から見て、第3部分P3と第4部分P4とには同じ向きに電流が流れる。このため、リーケージトランス1の通電時に、第1磁脚21で生じる磁束は、第1及び第2接続部25、26において、第2磁脚22で生じる磁束により相殺されるため、第2コイルW2と第3コイルW3との間の結合係数が小さくなりやすく、そのため、リーケージインダクタンスが大きくなりやすい。なお、図11A及び図11Bに示す第3コイルW3の例では、Y方向において第1接続部25越しでプリント配線板5を見たときの、第3巻線A3の巻き方向は、第4ビアV4を基準にして時計回りである。
 第5層L5と第6層L6との間をビアV8で接続するにあたって、ビアV8は、第5層L5において第4ビアV4から最も離れた位置にある第3巻線A3の先端部と、第4層L4において第5ビアV5から最も離れた位置にある第3巻線A3の先端部との間にある。これにより、第3コイルW3における実質的な第3巻線A3の巻き数は、ビアV8の位置により減りにくい。
 プリント配線板5は、上記の通り、絶縁部51を備える。絶縁部51は、図9のように、第1~第6層L1、L2、L3、L4、L5、L6と、第1~第5ビアV1、V2、V3、V4、V5と、ビアV6と、ビアV7と、ビアV8を覆っている。特に、絶縁部51は、第2層L2及び第3層L3の間と、第4層L4及び第5層L5の間とに介在している。このため、第1及び第2層L1、L2は、絶縁部51により、第3及び第4層L3、L4と絶縁され、第3及び第4層L3、L4は、絶縁部51により、第5及び第6層L5、L6と絶縁されている。なお、第1~第5ビアV1、V2、V3、V4、V5の各々の一部は、第1面5aで露出していてもよい。
 本実施形態では、導体配線56が第1~第3コイルW1、W2、W3を含むことにより、第1~第3コイルW1、W2、W3の各々の形状が安定しやすくなる。これにより、リーケージトランス1を大量に製造しても、この製造品毎のリーケージインダクタンスのバラツキを小さくできる。
 本実施形態に係るリーケージトランス1の接続例は、図12のようになる。
 図12のような電源回路6は、リーケージトランス1と、第1ダイオードD1と、第2ダイオードD2と、コンデンサ3と、を備える。本実施形態の電源回路6では、一次回路C1は第1コイルW1に接続し、二次回路C2は第2コイルW2および第3コイルW3に接続している。また、二次回路C2は負荷4と電気的に接続している。
 (変形例)
 上記実施形態ではコア2は、第1及び第2磁脚21、22に加えて、この第1及び第2磁脚21、22と異なる2つの磁脚(第3及び第4磁脚23、24)を備えるが、変形例ではコア2は第1~第4磁脚21、22、23、24に加えて、他の磁脚を更に備えてもよい。すなわち、コア2は、第1及び第2磁脚21、22に加えて、この第1及び第2磁脚21、22と異なる2以上の磁脚を備えてもよい。ただし、第1及び第2磁脚21、22以外の磁脚は、第3及び第4磁脚23、24のみであることが特に好ましい。コア2が第1~第4磁脚21、22、23、24とは異なる磁脚を更に備えても、磁束の外部への漏れを低減する作用をあまり向上できず、コア2の大型化を招きやすい。
 上記実施形態ではコア2は第1~第4磁脚21、22、23、24を備えているが、変形例ではコア2は第3及び第4磁脚23、24を備えなくてもよい。この場合、コア2は、第1及び第2磁脚21、22内にいずれにもギャップを有さないことが好ましい。
 上記第1及び第2実施形態では一次回路C1は第1コイルW1に接続し、二次回路C2は第2コイルW2に接続している。しかし、変形例では一次回路C1は第2コイルW2に接続し、二次回路C2は第1コイルW1に接続してもよい。
 (まとめ)
 上記の通り、第1態様は、リーケージトランス(1)であって、コア(2)と、プリント配線板(5)とを備える。コア(2)は、第1磁脚(21)と、第2磁脚(22)とを備える。第2磁脚(22)は第1磁脚(21)から間隔をあけて配置されている。プリント配線板(5)は、絶縁部(51)と導体配線(56)とを備える。導体配線(56)は、第1コイル(W1)と、第2コイル(W2)とを含む。第1コイル(W1)は第1巻線(A1)からなる。第1コイル(W1)は第1磁脚(21)に巻かれ、かつ第2磁脚(22)には巻かれていない。第2コイル(W2)は第2巻線(A2)からなる。第2コイル(W2)は第1部分(P1)と第2部分(P2)とを備える。第1部分(P1)は第1磁脚(21)に巻かれ、かつ第2磁脚(22)には巻かれていない。第2部分(P2)は第1磁脚(21)と第2磁脚(22)との両方に跨がって巻かれている。
 第1態様によれば、第2部分(P2)では第2巻線(A2)が第1磁脚(21)及び第2磁脚(22)の間を通る部分を省略できる。このため、第2巻線(A2)を第1磁脚(21)及び第2磁脚(22)の各々に巻く場合と比べて、第2コイル(W2)の第2巻線(A2)を短くでき、第2コイル(W2)における電気抵抗及び電力損失を小さくすることができる。また、第1態様によれば、第1コイル(W1)及び第2コイル(W2)の各々の形状が安定しやすくなる。これにより、リーケージトランス(1)を大量に製造しても、この製造品毎のリーケージインダクタンスのバラツキを小さくできる。
 第2態様は、第1態様のリーケージトランス(1)であって、第1部分(P1)における第2巻線(A2)の巻き方向と、第2部分(P2)における第2巻線(A2)の巻き方向とは、同じである。
 第2態様によれば、リーケージトランス(1)の通電時に、第1磁脚(21)で生じる磁束は、第2磁脚(22)で生じる磁束により相殺されるため、第1及び第2コイル(W1、W2)間の結合係数が小さくなりやすく、リーケージインダクタンスが大きくなりやすい。
 第3態様は、第1又は第2態様のリーケージトランス(1)であって、コア(2)は、第1磁脚(21)及び第2磁脚(22)とは異なる2つ以上の磁脚(23、24)を更に備える。
 第3態様によれば、第1磁脚(21)を通る磁束が磁脚(23)を通るように誘導され、第2磁脚(22)を通る磁束が磁脚(24)を通るように誘導される。このため、リーケージトランス(1)で発生する磁束が、コア(2)の外部へ漏れにくくなる。これにより、ノイズの発生を抑制することができる。
 第4態様は、第3態様のリーケージトランス(1)であって、コア(2)は、第1磁脚(21)内と、第2磁脚(22)内と、前記磁脚(23、24)内とのいずれにもギャップを有さない。
 第4態様によれば、コア(2)内の磁束は外部に漏れにくくなるため、ノイズの発生を抑制することができる。
 1  リーケージトランス
 2  コア
 21 第1磁脚
 22 第2磁脚
 23 磁脚(第3磁脚)
 24 磁脚(第4磁脚)
 5  プリント配線板
 A1 第1巻線
 A2 第2巻線
 P1 第1部分
 P2 第2部分
 W1 第1コイル
 W2 第2コイル

Claims (4)

  1.  第1磁脚と、前記第1磁脚から間隔をあけて配置されている第2磁脚とを備えるコアと、
     絶縁部と導体配線とを有するプリント配線板と、
    を備え、
     前記導体配線は、
      第1巻線からなり、前記第1磁脚に巻かれ、かつ前記第2磁脚には巻かれていない第1コイルと、
      第2巻線からなり、前記第1磁脚に巻かれ、かつ前記第2磁脚には巻かれていない第1部分と、前記第1磁脚と前記第2磁脚との両方に跨がって巻かれている第2部分とを備える第2コイルと、
    を含む、
    リーケージトランス。
  2.  前記第1部分における前記第2巻線の巻き方向と、前記第2部分における前記第2巻線の巻き方向とは、同じである、
     請求項1に記載のリーケージトランス。
  3.  前記コアは、前記第1磁脚及び前記第2磁脚とは異なる2つ以上の磁脚を更に備える、
     請求項1又は2に記載のリーケージトランス。
  4.  前記コアは、前記第1磁脚内と、前記第2磁脚内と、前記磁脚内とのいずれにもギャップを有さない、
     請求項3に記載のリーケージトランス。
PCT/JP2020/011271 2019-03-29 2020-03-13 リーケージトランス WO2020203197A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080021061.XA CN113574619A (zh) 2019-03-29 2020-03-13 漏磁变压器
US17/441,437 US20220189687A1 (en) 2019-03-29 2020-03-13 Leakage transformer
JP2021511369A JP7373775B2 (ja) 2019-03-29 2020-03-13 リーケージトランス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019069213 2019-03-29
JP2019-069213 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203197A1 true WO2020203197A1 (ja) 2020-10-08

Family

ID=72667950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011271 WO2020203197A1 (ja) 2019-03-29 2020-03-13 リーケージトランス

Country Status (4)

Country Link
US (1) US20220189687A1 (ja)
JP (1) JP7373775B2 (ja)
CN (1) CN113574619A (ja)
WO (1) WO2020203197A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11657951B2 (en) * 2020-06-24 2023-05-23 Murata Manufacturing Co., Ltd. Integrated embedded transformer module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057045A (ja) * 2000-08-08 2002-02-22 Shindengen Electric Mfg Co Ltd トランス
JP2014063856A (ja) * 2012-09-20 2014-04-10 Murata Mfg Co Ltd 複合磁性部品及びスイッチング電源装置
WO2017061329A1 (ja) * 2015-10-05 2017-04-13 オムロン株式会社 変圧器およびそれを備えた共振型回路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60004311T2 (de) * 1999-06-15 2004-01-29 Matsushita Electric Ind Co Ltd Steuermittel eines erhöhungstransformators bei einem magnetron und versorgungsstromsteuermittel von einem transformator bei einem magnetron
JP2006049469A (ja) * 2004-08-03 2006-02-16 Matsushita Electric Ind Co Ltd コイル部品
JP5830915B2 (ja) * 2011-04-26 2015-12-09 株式会社デンソー 電力変換回路
CN103890874A (zh) * 2011-10-31 2014-06-25 株式会社日立制作所 电抗器、变压器及使用该电抗器、变压器的电力转换器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057045A (ja) * 2000-08-08 2002-02-22 Shindengen Electric Mfg Co Ltd トランス
JP2014063856A (ja) * 2012-09-20 2014-04-10 Murata Mfg Co Ltd 複合磁性部品及びスイッチング電源装置
WO2017061329A1 (ja) * 2015-10-05 2017-04-13 オムロン株式会社 変圧器およびそれを備えた共振型回路

Also Published As

Publication number Publication date
US20220189687A1 (en) 2022-06-16
CN113574619A (zh) 2021-10-29
JPWO2020203197A1 (ja) 2020-10-08
JP7373775B2 (ja) 2023-11-06

Similar Documents

Publication Publication Date Title
US6867678B2 (en) Transformer structure
JP4304019B2 (ja) 磁心型積層インダクタ
JP5339398B2 (ja) 積層インダクタ
JP4873522B2 (ja) 積層インダクタ
US9153371B2 (en) Coil device
JP2010129692A (ja) インダクタンス部品
JP5974832B2 (ja) コイル装置
US20170194088A1 (en) Isolation Transformer Topology
JP2014063856A (ja) 複合磁性部品及びスイッチング電源装置
KR101251843B1 (ko) 변압기
WO2020203197A1 (ja) リーケージトランス
US6861938B2 (en) High-frequency power inductance element
KR101610339B1 (ko) 코일 부품 및 그 제조 방법
JPH11345715A (ja) 小形電気巻線部品
JP2014075535A (ja) 誘導機器
JP2008205350A (ja) 磁気デバイス
KR101656013B1 (ko) 코일 부품
JP2010153616A (ja) 積層インダクタ
JP2000101213A (ja) プリント基板およびその製造方法
JP7147342B2 (ja) トランス
Quilici Embedded magnetic power transformer
JP4183194B2 (ja) インダクタンス素子
US20240136120A1 (en) Coil device
WO2022107432A1 (ja) アンテナ装置
JP2009176989A (ja) 共振型スイッチング電源回路用トランスユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511369

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783022

Country of ref document: EP

Kind code of ref document: A1