WO2020203134A1 - 質量分析システム、および質量分析装置の性能を判定する方法 - Google Patents

質量分析システム、および質量分析装置の性能を判定する方法 Download PDF

Info

Publication number
WO2020203134A1
WO2020203134A1 PCT/JP2020/010709 JP2020010709W WO2020203134A1 WO 2020203134 A1 WO2020203134 A1 WO 2020203134A1 JP 2020010709 W JP2020010709 W JP 2020010709W WO 2020203134 A1 WO2020203134 A1 WO 2020203134A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
ratio
performance
measured value
value
Prior art date
Application number
PCT/JP2020/010709
Other languages
English (en)
French (fr)
Inventor
佑香 炭竈
橋本 雄一郎
安田 博幸
益之 杉山
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2021511344A priority Critical patent/JP7470102B2/ja
Priority to CN202080026023.3A priority patent/CN113677988B/zh
Priority to EP20782302.2A priority patent/EP3951378A4/en
Priority to US17/599,231 priority patent/US12106951B2/en
Publication of WO2020203134A1 publication Critical patent/WO2020203134A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0009Calibration of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/025Detectors specially adapted to particle spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns

Definitions

  • the present disclosure relates to a mass spectrometry system and a method for determining the performance of a mass spectrometer.
  • the mass spectrometer is a device for ionizing a sample and analyzing the ions according to the mass-to-charge ratio.
  • a mass spectrometer is composed of an ion source for ionizing a sample, a mass spectrometer for separating ions according to a mass-to-charge ratio, and a detection unit for detecting the amount of ions that have passed through the mass spectrometer.
  • the detection unit is configured using an electron multiplier tube or a photomultiplier tube.
  • These photomultiplier tubes generally contain multiple dynodes and anodes.
  • the electron multiplier tube collides charged particles and the photomultiplier tube collides photons with the first dynode to convert them into electrons, and the generated electrons are amplified by the subsequent dynodes.
  • the abundance of particles to be measured can be measured by collecting the amplified electrons at the anode and measuring the current or voltage value thereof.
  • the electron multiplier tube has the dynode exposed (not sealed), but the photomultiplier tube has parts sealed in the vacuum tube. Therefore, the electron multiplier tube has a shorter life than the photomultiplier tube.
  • a scintillator is a general term for substances that fluoresce when particles collide.
  • various forms of substances such as organic crystals, organic liquids, and inorganic crystals are used. Since the scintillator is exposed (not sealed) like the photomultiplier tube, it deteriorates for the same reason as the photomultiplier tube.
  • the detector when the detector deteriorates, the measurement intensity decreases, which greatly affects the performance of the mass spectrometer. If the detector deteriorates, it is necessary to restore its performance by, for example, adjusting the gain of the electron multiplier tube or photomultiplier tube, or replacing it with a new detector.
  • Patent Document 1 describes whether or not the decrease in output signal strength is due to deterioration of the detector itself by examining the deviation / intensity ratio of the output signal. It is stated that it is judged appropriately.
  • the mass spectrometry system includes an ion source for ionizing a measurement sample, a mass spectrometer for analyzing ions generated by the ion source according to a mass-to-charge ratio, and the mass spectrometry.
  • a mass spectrometer including a detector that detects ions that have passed through the unit, and A first converter that calculates the first measured value based on the intensity and area of the pulse in the electrical signal output from the detector, and A second converter that obtains a second measured value by counting the number of pulses of the electric signal, and A calculation unit that calculates the A / P ratio indicating the ratio of the first measured value to the second measured value, and A determination unit that determines the performance of the detector based on the value of the A / P ratio, and It includes at least a control unit that controls the output of the determination result by the determination unit.
  • the performance of the detector of the mass spectrometer can be accurately and quickly determined regardless of the presence or absence of dirt on the portion other than the detector.
  • the measured values and the A / P ratio in this embodiment will be described in the form of a "table”, but this does not necessarily have to be represented by a data structure by a table, and a data structure such as a list, a DB, or a queue. It may be expressed by or other than that. Therefore, "table”, “list”, “DB”, “queue” and the like can be simply called “information” to show that they do not depend on the data structure.
  • FIG. 1 is a diagram showing a schematic configuration example of the mass spectrometry system 10 according to the present embodiment.
  • the mass spectrometry system 10 includes an ion source 101 that ionizes a measurement sample, a mass spectrometry unit 102 that analyzes ions generated by the ion source 101 according to a mass charge ratio, and a mass spectrometry unit 102.
  • a mass spectrometer 104 including a detector 103 that detects ions that have passed through the detector 103, and an analog arithmetic unit (first converter) that calculates a measured value based on the intensity and area of a pulse in an electric signal output from the detector 103.
  • first converter analog arithmetic unit
  • a pulse counting unit (second converter) 106 that obtains a measured value by counting the number of pulses of the electric signal output from the detector 103, and a measured value and an analog operation obtained from the pulse counting unit 106.
  • the calculation unit 107 that calculates the ratio (A / P ratio) to the measured value obtained by the unit 105, the determination unit 108 that determines the performance of the detector 103 based on the A / P ratio, and the operation of each component.
  • a control unit (controller) 109 for controlling the above and a display device 110 for displaying the A / P ratio, the determination result, and the like on the GUI are provided.
  • the ion source 101 ionizes a measurement sample (target sample) supplied by a syringe or a liquid chromatograph by various chemical and physical methods, for example.
  • the ionization method include an electron ionization method, a chemical ionization method, an electrospray ionization method, an atmospheric pressure chemical ionization method, and a matrix-assisted laser desorption ionization method.
  • There is also a method of ionizing using plasma such as an inductively coupled plasma mass spectrometer.
  • the measurement sample ionized by the ion source 101 is taken into the mass spectrometer 102 by a chemical or physical action.
  • an ionized measurement sample is taken in by applying an appropriate voltage to an electrode provided near the ion uptake port of the mass spectrometer 102.
  • the ions taken into the mass spectrometer 102 are electrically and magnetically separated according to the mass-to-charge ratio.
  • a magnetic field type that bends the orbit of an ion by a magnetic field
  • a quadrupole type that separates ions by applying a high-frequency AC voltage and a DC voltage to an electrode processed so that the cross section becomes a bipolar surface
  • an ion flight time There is a flight time type to detect.
  • the ions separated by the mass spectrometer 102 are finally detected by the detector 103.
  • An electron multiplier tube or a photomultiplier tube is generally used for the detector 103 of the mass spectrometer 104.
  • An electron multiplier tube is a multiplier tube that converts charged particles into electrons and amplifies them
  • a photomultiplier tube is a photomultiplier tube that converts photons into electrons and amplifies them.
  • charged particles described here may be ions that have passed through the mass spectrometry unit 102, or particles that have been generated by colliding the ions that have passed through the mass spectrometry unit 102 with the conversion dynode.
  • the electrons amplified by the detector 103 can be detected as an electric signal (current or voltage).
  • the component having the processing function of the analog method is the analog arithmetic unit (first converter) 105
  • the component having the processing function of the pulse counting method is the pulse counting unit (second conversion). Vessel) 106. Both the analog arithmetic unit (first converter) 105 and the pulse count unit (second converter) 106 are connected to the detector 103, and can be processed at the same time.
  • FIG. 2 is a diagram showing an example of signal processing by an analog method.
  • the analog calculation unit (first converter) 105 reads the height or area of the pulse appearing in the waveform diagram in which the horizontal axis is time and the vertical axis is an electric signal. The height and area are calculated, for example, by converting a pulse, which is an analog waveform, into a digital waveform with an analog-to-digital converter (ADC), and reading or integrating the values.
  • ADC analog-to-digital converter
  • the calculation unit 107 calculates the number of ions by dividing the calculated intensity or area by the intensity or area per ion to be measured that has been obtained in advance.
  • FIG. 3 is a diagram showing an example of signal processing by the pulse count method.
  • the pulse counting unit (second converter) 106 among the pulses appearing in the waveform diagram in which the horizontal axis is time and the vertical axis is an electric signal (current value or potential difference), a pulse having a threshold value or more set in advance is set to "1". By processing the pulse below the threshold value as "0", the number of pulses appearing in a certain period of time is counted.
  • the pulse counting unit (second converter) 106 may have functions such as signal amplification processing by an amplifier and noise removal before, during, or during this series of processing.
  • analog arithmetic unit (first converter) 105 may also have functions such as signal amplification processing and noise removal by an amplifier before, during, or during this series of processing. Further, the analog calculation unit (first converter) 105 may include an amplifier or the like shared with the pulse counting unit (second converter) 106.
  • FIG. 4 is a diagram showing the relationship between the measured values and the sample concentration.
  • the ions reach the detector 103 with high frequency, so that the limit value of the number of ions counted by the pulse counting method is exceeded.
  • the frequency of pulse appearance time interval between adjacent pulses
  • the number of pulses cannot be counted appropriately, so the specific shape of measurement by the pulse counting method becomes dull. (Measured values are saturated).
  • FIG. 5 is a diagram showing an example of a waveform when the detector 103 is deteriorated.
  • the gain of the electron multiplier tube decreases, and the efficiency of converting the ions of the scintillator into photons decreases. Therefore, as shown in B of FIG. 5, the intensity of the electric signal when the detector 103 is deteriorated is higher than that of the electric signal (A in FIG. 5) detected by the detector 103 in the non-deteriorated state. It becomes weaker and the pulse area becomes smaller. Although the pulse area after deterioration becomes smaller, it can be seen that the number of electrical signals that exceed the pulse count threshold is the same as before deterioration.
  • FIG. 6 is a table showing the relationship between the measured value and the A / P ratio when the sample having the concentration C is measured.
  • the pulse count method the number of pulses is used as the measured value.
  • the measured value is calculated assuming that the pulse area (reference area) per ion is "100".
  • the result of 2 shows an example in which the detector 103 is deteriorated and there is no dirt on the portion other than the detector 103.
  • the measured value by the pulse count method is No. It is the same as 1 and is "2".
  • the pulse area corresponding to one ion decreases due to the deterioration of the detector 103
  • the measured value by the analog method decreases to "1". Therefore, the A / P ratio drops to 0.5.
  • the result of 3 shows an example in the case where the detector 103 is not deteriorated and the portion other than the detector 103 is dirty.
  • the measured value by the pulse count method becomes “1”.
  • the pulse area corresponding to one ion does not change, so the measured value is "1", which is the same as in the pulse count method. Therefore, the A / P ratio becomes "1", and No. It becomes the same value as 1.
  • the number of pulses is No. Since it is less than the result of 1 (previous result in time series: for example, initial value), it can be determined that there is dirt (dirt on the device) in a portion other than the detector 103.
  • No. The result of No. 4 shows an example in which the detector 103 is deteriorated and the portion other than the detector 103 is also contaminated.
  • the pulse area corresponding to one ion is reduced, so that the measured value is "0.5".
  • the A / P ratio is "0.5".
  • the number of pulses is No. Since it is less than the result of 1 (previous result in time series: for example, initial value), it can be determined that there is also dirt (dirt on the device) in a portion other than the detector 103.
  • the A / P ratio is a value capable of determining the performance of the detector 103 regardless of the presence or absence of dirt on the portion other than the detector 103. Therefore, by monitoring the A / P ratio, it is possible to accurately determine whether the detector 103 has deteriorated. Further, since the measurement of the A / P ratio does not involve the complicated work of removing the detector 103 from the mass spectrometer 104, the performance of the detector 103 can be quickly determined.
  • the calculation unit 107 has a function of calculating the A / P ratio
  • the determination unit 108 has a function of determining the performance of the detector 103.
  • the calculation unit 107 and the determination unit 108 may be electrical processing on the circuit board or software processing by a program together with the control unit (controller) 109. That is, a processor (for example, a CPU) (not shown) may read and expand the program from a memory (not shown) to form the calculation unit 107 and the determination unit 108.
  • the graphical user interface may have a calculation unit 107 and a determination unit 108 as a part of the function.
  • the control unit (controller) 109 controls the operations of the mass spectrometer 104, the analog calculation unit (first converter) 105, the pulse count unit (second converter) 106, the calculation unit 107, and the determination unit 108.
  • the control unit (controller) 109 may be included in, for example, a GUI.
  • FIG. 7 is an example of a flowchart for explaining a process of determining the performance (presence or absence of deterioration) of the detector 103 in the mass spectrometry system 10 of FIG.
  • the performance determination process of the detector 103 can be executed at an arbitrary timing.
  • the mass calibration is a work of correcting the relationship between the value of the electric / magnetic action applied to the device and the mass-to-charge ratio. Since a measurement sample having a high sample concentration is generally used, it can also be used for measuring the A / P ratio.
  • mass calibration is a work that is carried out regularly, such as once every few months and once a year.
  • the detector performance determination process will be described according to the flowchart.
  • Step 701 After starting the performance check of the detector 103, the sample is measured by the analog method and the pulse count method. That is, the analog calculation unit (first converter) 105 obtains the area (example) of the electric signal obtained by the detector 103 (see FIG. 2), and divides it by the reference area to obtain the measured value of the analog method. calculate. On the other hand, the pulse count unit (second converter) 106 calculates the measured value of the pulse count method based on a predetermined threshold value (pulse count threshold value: see FIG. 3). Incidentally, the sample is better to use the equivalent of the range of sample concentration C 1 ⁇ C 3 in FIG.
  • Each measurement in step 701 may be performed by simultaneously executing the analog method and the pulse counting method, or may be measured individually.
  • a physical switch may be provided in the circuit to switch the measurement method, or a method in which the measurement method can be selected by software may be used.
  • the control unit (controller) 109 may have a function of selecting a measurement method. Further, the measurement may be performed in a short cycle of nanoseconds to seconds, or in a long cycle of several tens of seconds to several minutes. The measurement may be repeated a plurality of times.
  • the A / P ratio may be calculated by, for example, an average value.
  • Step 703 The determination unit 108 compares the A / P ratio calculated in step 702 with a predetermined reference range (passing range) of the A / P ratio, and determines whether or not the A / P ratio is within the reference range. If the A / P ratio is within the reference range (Yes in step 703), the process proceeds to step 704. When the A / P ratio is out of the reference range (No in step 703), the process proceeds to step 705.
  • the criteria for determining the A / P ratio in step 703 can be determined when the detector 103 is new.
  • the A / P ratio when the detector 103 is new is set to [A / P] 0, and the process according to the flowchart of FIG. 7 is executed at the time t from the start of use of the detector 103, and the A / P ratio at that time is executed.
  • the reference range is, for example, [A / P] t- [A / P] 0 , [A / P] t / [A / P] 0 , ([A / P] t- [A / P] 0 ) / ⁇ t.
  • the difference between [a / P] 0, the ratio may define such as percent change from [a / P] 0. Further, the difference from the previously measured value, the ratio, the rate of change, etc. may be used. Further, the rate of change with respect to the cumulative amount of ions measured by the apparatus up to that point may be used.
  • pass / fail is determined by whether or not the rate of change of the A / P ratio, that is, the value of ([A / P] t- [A / P] 0) / ⁇ t (that is, the slope) is larger than the predetermined set value. You may. Further, if the deviation of the A / P ratio is small but the rate of change (slope) is large, it may be determined as rejected early.
  • Step 704 The determination unit 108 determines that the detector 103 has passed, assuming that the deterioration of the target detector 103 has not progressed.
  • Step 705 The determination unit 108 determines that the deterioration of the target detector 103 exceeds the permissible range and rejects the detector 103.
  • the control unit (controller) 109 may execute the maintenance process of the detector 103.
  • the gain may be adjusted by adjusting the voltage applied to the photomultiplier tube to restore the apparent performance of the detector 103.
  • the process of adjusting the gain may be automatically instructed and executed by the control unit (controller) 109 (for example, the user sets an adjustment value in advance and automatically gains with the result of failure as a trigger. Make adjustments).
  • a warning alarm may be displayed on the GUI, or a message such as "Please replace the detector" may be displayed.
  • FIG. 8 is a diagram showing an example of a GUI result display screen.
  • the GUI screen generally has an area for displaying sample measurement conditions, visual measurement results such as mass spectrum and mass chromatogram, and peak information (peak center position, full width at half maximum, intensity) of the spectrum and chromatogram. Etc.) and include an area for displaying numerical measurement results. For example, if information on the A / P ratio is displayed in the column of the numerical measurement result, it becomes easy to inform the user of the state of the detector 103. Further, for example, there may be a screen for displaying the measurement result of the A / P ratio, such as a graph showing the change in the A / P ratio with respect to the time and the accumulated amount of measured ions.
  • the A / P ratio is calculated from the measured value of the analog method and the measured value of the pulse counting method, and the pass / fail judgment of the detector 103 is performed based on the value. By doing so, it becomes possible to determine whether or not there is performance deterioration in the detector 103 alone, regardless of whether or not the portion other than the detector is dirty.
  • the second embodiment relates to a mass spectrometry system that executes a process of determining dirt on the mass spectrometer 104 at the same time as measuring the A / P ratio (performance determination process of the detector 103). ..
  • the configuration of the mass spectrometry system 10 according to the first embodiment can also be applied to the second embodiment.
  • FIG. 9 is an example of a flowchart for explaining the performance determination process (performance confirmation process) of the mass spectrometer according to the second embodiment.
  • a determination process of dirt (performance deterioration) of a portion other than the detector 103 is included.
  • the pass / fail determination of the detector 103 is the same as that of the first embodiment (steps 701 to 705 in FIG. 7). That is, after the performance confirmation of the mass spectrometer 104 is started, an arbitrary sample is measured (step 701), and the A / P ratio is calculated by the calculation unit 107 (step 702). Then, the determination unit 108 determines the performance of the detector 103 (steps 703 to 705).
  • a process of determining whether or not the mass spectrometer 104 is dirty is executed from the measured values (step 901). After the determination, the performance confirmation of the mass spectrometer 104 is completed.
  • Step 901 is a process of determining dirt on a device other than the detector 103 from the data measured in step 701.
  • the presence or absence of dirt is determined from the measured value, not from the A / P ratio.
  • the determination unit 108 compares the past measurement values measured under the same type and concentration and the same measurement conditions with the measurement results (measured values) in step 701 under the control of the control unit (controller) 109.
  • the measured values of the pulse counting method which are not affected by the deterioration of the detector 103, may be compared. Further, the measured value of the analog method may be corrected by the A / P ratio measured in the past and compared.
  • the determination unit 108 can determine when the measured value tends to decrease (for example, how much the measured value decreases from the initial measured value: whether or not the decreased value exceeds a predetermined threshold value). ) Or when it is out of the arbitrarily set reference range (for example, it can be determined whether or not the rate of change over time of the measured value exceeds a predetermined value), the mass spectrometer 104 is dirty (mass). There is a performance deterioration in the analyzer 104). Further, the control unit 109 may display the determination result on the display screen (GUI screen) of the display device 110 in the same manner as the A / P ratio.
  • GUI screen display screen
  • the performance determination process (FIG. 9) of the mass spectrometer 104 can be performed, for example, at the timing of mass calibration.
  • the sample, concentration, and measurement conditions used for mass calibration are always the same. Therefore, at the time of mass calibration, it is easy to determine the performance of the detector 103 and the dirtiness of the mass spectrometer 104.
  • ⁇ Summary of the second embodiment> for example, by performing a process of comparing the measured values of the pulse count method in time series together with the performance determination of the detector 103 based on the A / P ratio, at the same time as the performance of the detector 103.
  • the dirt on the mass spectrometer 104 can also be confirmed, and a plurality of failure factors can be confirmed in a short time.
  • the third embodiment relates to a mass spectrometric system that determines the performance (deterioration status) of a detector according to a plurality of determination criteria in the determination unit 108.
  • the configuration of the mass spectrometry system 10 according to the first embodiment can also be applied to the second embodiment.
  • FIG. 10 is an example of a flowchart for explaining the performance determination process (performance confirmation process) of the detector 103 according to the third embodiment.
  • Step 1001 After starting the performance check of the detector 103, the sample is measured by the analog method and the pulse count method. That is, the analog calculation unit (first converter) 105 obtains the area (example) of the electric signal obtained by the detector 103 (see FIG. 2), and divides it by the reference area to obtain the measured value of the analog method. calculate. On the other hand, the pulse count unit (second converter) 106 calculates the measured value of the pulse count method based on a predetermined threshold value (pulse count threshold value: see FIG. 3). Incidentally, the sample is better to use the equivalent of the range of sample concentration C 1 ⁇ C 3 in FIG.
  • each measurement in step 1001 may be performed by simultaneously executing the analog method and the pulse counting method, or may be measured individually.
  • a physical switch may be provided in the circuit to switch the measurement method, or a method in which the measurement method can be selected by software may be used.
  • the control unit (controller) 109 may have a function of selecting a measurement method. Further, the measurement may be performed in a short cycle of nanoseconds to seconds, or in a long cycle of several tens of seconds to several minutes. The measurement may be repeated a plurality of times.
  • the A / P ratio may be calculated by, for example, an average value.
  • Step 1003 The determination unit 108 determines whether or not the value of the A / P ratio calculated in step 1002 is equal to or greater than the preset pass reference value (first reference value) (may be "whether or not it is larger than the first reference value"). ..
  • first reference value the preset pass reference value
  • the acceptance reference value is set to, for example, 0.9, and it is determined whether there is no problem even if the detector 103 is continuously used in the future.
  • step 1034 When the value of the A / P ratio is equal to or greater than the acceptance reference value (greater than the acceptance reference value) (Yes in step 1003), the process proceeds to step 1004. When the value of the A / P ratio is less than the acceptance reference value (or less than the acceptance reference value) (when No in step 1003), the process proceeds to step 1005.
  • Step 1004 The determination unit 108 determines that the detector 103 to be determined has not deteriorated in performance and has passed the test (there is no problem even if it is continuously used). Then, the control unit (controller) 109 outputs the determination result information to the display device 110 so as to display, for example, “Detector continuous use OK” on the GUI screen.
  • the value of the A / P ratio was equal to or higher than the acceptance standard value, but when the rate of change of the A / P ratio (difference from the previous value / time) was equal to or higher than the predetermined value, the performance of this time was achieved. Although the determination was successful, a message may be output on the GUI screen to warn that the performance deterioration of the detector may be detected at the next performance determination process.
  • Step 1005 The determination unit 108 determines whether or not the value of the A / P ratio calculated in step 1002 is equal to or less than the preset rejection reference value (second reference value) (may be "whether or not it is less than the second reference value"). ..
  • the reject reference value (second reference value) is a value larger than the pass reference value (first reference value). That is, the third embodiment is based on two criteria (three or more), and the A / P ratio is within the pass range, the fail range, or between the fail and pass. It determines whether it is within the range.
  • the process proceeds to step 1006.
  • the value of the A / P ratio is larger than the failing reference value (greater than or equal to the failing reference value) (yes in step 1005), the process proceeds to step 1007.
  • Step 1006 The determination unit 108 determines that the target detector 103 cannot be used continuously as it is, but has not deteriorated until it is replaced (determined to be in the range between failure and acceptance). Then, the control unit (controller) 109 outputs the information of the determination result to the display device 110 so as to display, for example, "detector deterioration in progress" on the GUI screen.
  • the function of the detector 103 can be restored by adjusting the voltage applied to the detector 103 instead of replacing the detector 103 (maintenance of the detector 103).
  • the value of the applied voltage at the time of adjustment may be set in advance.
  • Step 1007 The determination unit 108 determines that the target detector 103 cannot be continuously used as it is and has deteriorated to a state where it needs to be replaced (determined as a failure). Then, the control unit (controller) 109 outputs the determination result information to the display device 110 so as to display, for example, "detector replacement required" on the GUI screen.
  • the judgment criteria are the difference between the initial value of the A / P ratio or the previously measured value, the ratio, the rate of change with time, and the cumulative amount of measured ions. It can be set using one or more rate of change.
  • ⁇ Summary of the third embodiment> a plurality of determination criteria are provided, and the performance deterioration of the detector 103 is determined step by step based on the determination results corresponding to the plurality of determination criteria.
  • the state of the detector 103 can be known in more detail. For example, in the example of FIG. 10, when it is determined that the detector is in progress of deterioration, there is a time margin for providing tools and parts necessary for maintenance of the detector 103.
  • the fourth embodiment relates to a mass spectrometric system that calculates an A / P ratio during an arbitrary measurement and stores it as information (performs an A / P ratio and a measured value collection process).
  • the arbitrary measurement means that, for example, LC-MS measurement or GC-MS measurement may be performed in combination with a liquid chromatograph or a gas chromatograph, or mass calibration may be performed.
  • the configuration of the mass spectrometry system 10 according to the first embodiment can also be applied to the second embodiment.
  • FIG. 11 is an example of a flowchart for explaining the A / P ratio and the measured value collecting process according to the fourth embodiment.
  • Step 1101 After starting the performance check of the detector 103, the sample is measured by the analog method and the pulse count method. That is, the analog calculation unit (first converter) 105 obtains the area (example) of the electric signal obtained by the detector 103 (see FIG. 2), and divides it by the reference area to obtain the measured value of the analog method. calculate. On the other hand, the pulse count unit (second converter) 106 calculates the measured value of the pulse count method based on a predetermined threshold value (pulse count threshold value: see FIG. 3). In addition, it is preferable to use a sample corresponding to the sample concentration C1 to C3 in FIG.
  • each measurement in step 1101 may be performed by simultaneously executing the analog method and the pulse counting method, or may be measured individually.
  • a physical switch may be provided in the circuit to switch the measurement method, or a method in which the measurement method can be selected by software may be used.
  • the control unit (controller) 109 may have a function of selecting a measurement method. Further, the measurement may be performed in a short cycle of nanoseconds to seconds, or in a long cycle of several tens of seconds to several minutes. The measurement may be repeated a plurality of times.
  • Step 1102 The determination unit 108 determines whether or not each of the measured values of the analog method and the pulse count method is equal to or higher than a predetermined threshold value (may be "greater than the threshold value"). Threshold at this time can be set arbitrarily in a range corresponding to the sample concentration C 1 ⁇ C 3.
  • a predetermined threshold value may be "greater than the threshold value"
  • Threshold at this time can be set arbitrarily in a range corresponding to the sample concentration C 1 ⁇ C 3.
  • an arbitrary threshold value can be set corresponding to each of the analog method and the pulse count method.
  • the threshold value is a reference for removing a measured value that is not suitable as an object for which the A / P ratio should be calculated because ions are not sufficiently emitted (for example, the concentration in FIG. 4).
  • the measured value corresponding to C 1 can be used).
  • Step 1103 The control unit (controller) 109 stores only the measured value acquired in step 1101 in a storage device (not shown) such as a memory or a storage device.
  • the measured value to be stored may be a measured value of either an analog method or a pulse counting method.
  • the measured values below an arbitrary threshold value (or less) are not discarded, but fluctuations (noise) when ions are not emitted or when only a small amount of ions are emitted that are not suitable for A / P ratio calculation. ) Is saved as information. Since it is important to know the relationship between the fluctuation level and the measured peak value in the experiment, the measured value below an arbitrary threshold value (below) is also saved.
  • the A / P ratio may be calculated by, for example, an average value.
  • the determination unit 108 determines the performance (presence or absence of deterioration) of the detector 103 based on the value of the A / P ratio calculated in step 1104.
  • a plurality of determination criteria may be provided. Since the details of the determination criteria have already been described in the first to third embodiments, they will be omitted here.
  • step 1105 If the value of the A / P ratio is within the reference range (yes in step 1105), the process proceeds to step 1106. When the value of the A / P ratio is out of the reference range (No in step 1105), the process proceeds to step 1107.
  • Step 1106 The determination unit 108 determines that the detector 103 in use can be continuously used (passed) as it is.
  • Step 1107 The determination unit 108 determines (determines that the detector 103 has failed) that the detector 103 in use cannot be continuously used as it is and has deteriorated to a state where it needs to be replaced.
  • Step 1108 The control unit (controller) 109 saves the measured value and the A / P ratio of an arbitrary method (analog method or pulse counting method) after the pass / fail determination of the detector 103. If the A / P ratio and the measured value of one of the methods are retained, the measured value of the other method that is not retained can be obtained by calculation. The data saved in this way can be used for investigating the cause of performance deterioration of the detector 103 during maintenance.
  • the A / P is used every time the mass spectrometer 104 is used without intentionally checking the performance of the detector 103. Accumulate ratio data. Further, when the signal of the sample can be measured only for a few seconds such as LC-MS or GC-MS measurement, the processing 1102 can be adjusted so that the A / P ratio is calculated only by the data for a few seconds when the sample arrives. .. Therefore, the performance of the detector 103 can be determined only by the highly reliable A / P ratio data.
  • the value and tendency of the A / P ratio can be determined more accurately for statistical reasons. Furthermore, it is possible to grasp the tendency of the diurnal change and the daily change of the A / P ratio.
  • the function of this embodiment can also be realized by a software program code.
  • a storage medium in which the program code is recorded is provided to the system or device, and the computer (or CPU or MPU: processor) of the system or device reads out the program code stored in the storage medium. ..
  • the program code itself read from the storage medium realizes the function of the above-described embodiment, and the program code itself and the storage medium storing the program code itself constitute the present embodiment.
  • Storage media for supplying such program codes include, for example, flexible disks, CD-ROMs, DVD-ROMs, hard disks, optical disks, magneto-optical disks, CD-Rs, magnetic tapes, non-volatile memory cards, and ROMs. Etc. are used.
  • the OS operating system
  • the processing enables the functions of the above-described embodiment to be realized. You may. Further, after the program code read from the storage medium is written in the memory on the computer, the CPU of the computer or the like performs a part or all of the actual processing based on the instruction of the program code, and the processing is performed. May realize the functions of the above-described embodiment.
  • the program code of the software that realizes the functions of each embodiment via the network it is distributed as a storage means such as a hard disk or a memory of the system or a device or a storage medium such as a CD-RW or a CD-R.
  • the computer (or CPU or MPU) of the system or device may read and execute the program code stored in the storage means or the storage medium at the time of use.
  • the processes and techniques described here are not essentially related to any particular device and can be implemented with any suitable combination of components.
  • various types of devices for general purpose can be used according to the teachings described here. You may find it useful to build a dedicated device to carry out the steps of the method described here.
  • various inventions can be formed by appropriately combining the plurality of components disclosed in the embodiments. For example, some components may be removed from all the components shown in the embodiments. In addition, components across different embodiments may be combined as appropriate.
  • the present disclosure has been described in connection with specific examples, but these are for illustration purposes only, not for limitation in all respects. Those skilled in the art will find that there are numerous combinations of hardware, software, and firmware suitable for implementing this disclosure.
  • the described software can be implemented in a wide range of programs or scripting languages such as assembler, C / C ++, perl, Shell, PHP, Java®.
  • control lines and information lines indicate those considered necessary for explanation, and the product does not necessarily indicate all the control lines and information lines. All configurations may be interconnected.
  • Mass spectrometry system 101 Ion source 102 Mass spectrometer 103 Detector 104 Mass spectrometer 105 Analog calculation unit (first converter) 106 Pulse count unit (second converter) 107 Calculation unit 108 Judgment unit 109 Control unit (controller)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

質量分析部を通過したイオンを検出する検出器単体の性能を正確に判定する技術を提供する。本開示の質量分析システムは、質量分析装置における、質量分析部を通過したイオンを検出する検出器から出力される電気信号におけるパルスの強度や面積に基づいて第1測定値を計算する第1変換器と、当該電気信号のパルスの数を数えることにより第2測定値を求める第2変換器と、第1測定値の第2測定値に対する比率を示すA/P比を計算する計算部と、A/P比の値に基づいて、検出器の性能を判定する判定部と、少なくとも判定部による判定結果の出力を制御する制御部と、を備える(図1参照)。

Description

質量分析システム、および質量分析装置の性能を判定する方法
 本開示は、質量分析システム、および質量分析装置の性能を判定する方法に関する。
 質量分析装置は、試料をイオン化し、イオンを質量電荷比に応じて分析するための装置である。一般的に、質量分析装置は、試料をイオン化するイオン源、イオンを質量電荷比に応じて分離する質量分析部、質量分析部を通過したイオンの量を検出する検出部によって構成される。
 当該検出部は、電子増倍管や光電子増倍管を用いて構成される。これらの増倍管は、一般的には複数のダイノードとアノードを含んでいる。電子増倍管は荷電粒子を、光電子増倍管は光子を、第一ダイノードに衝突させて電子に変換し、生成された電子を後続のダイノードで増幅する。増幅された電子をアノードに収集し、その電流または電圧値を測定することにより測定対象の粒子の存在量を測定することができる。一般的に、電子増倍管はダイノードがむき出し(密閉されていない)となっているが、光電子増倍管は真空管内に部品が密封されている。したがって、電子増倍管は光電子増倍管より寿命が短い。電子増倍管は、荷電粒子が衝突したり汚れたりすることで劣化していくからである。一方、光電子増倍管は、電子増倍管より寿命が長い。しかし、光電子増倍管を使用する場合は、イオンを光子に変換するためにシンチレータを併用する必要がある。シンチレータとは、粒子が衝突すると蛍光する物質の総称である。シンチレータには、例えば、有機結晶や有機液体、無機結晶など様々な形態の物質が用いられる。シンチレータは、電子増倍管と同様にむき出し(密閉されていない)なので、電子増倍管と同様の理由で劣化していく。このように、検出器が劣化すると測定強度が低下し、質量分析装置の性能に大きな影響を与える。検出器が劣化した場合は、例えば電子増倍管または光電子増倍管のゲインを調整する、新しい検出器と交換するなどの方法によって性能を回復させる必要がある。
 しかし、測定強度の低下は装置の他の部分の汚れが原因である場合が多いため、単純に測定強度が低下しただけでは検出器が劣化しているか判定することができない。検出器が劣化しているか判定するためには、質量分析装置から検出器を取り外し、例えば顕微鏡による観察によって劣化しているか判定する必要がある。このように検出器を取り外して調べるのは時間がかかり、かつ煩雑な作業となるため、迅速かつ簡単に検出器の性能を判断する方法や基準を設ける必要がある。
 検出器を迅速かつ簡単に性能判定する技術として、例えば、特許文献1には、出力信号の偏差/強度比を調べることにより、出力信号強度の低下が検出器自体の劣化によるものか否かを適切に判定することが記載されている。
特開2000-57990号公報
 しかしながら、特許文献1に記載された技術を用いたとしても、質量分析装置の検出器以外の部分の汚れと検出器の汚れ(劣化)が組み合わさっている場合には、どちらの劣化か判断することができず、検出器の劣化を見逃す可能性がある。また、汚れが飽和した状態では揺らぎが生じない場合もあるため、誤って検出器が劣化していると判定する可能性がある。
 本開示はこのような状況に鑑みてなされたものであり、質量分析装置における検出器単体の劣化を判定する技術を提供する。
 上記課題を解決するために、本開示による質量分析システムは、測定試料をイオン化するイオン源と、前記イオン源で生成されたイオンを質量電荷比に応じて分析する質量分析部と、前記質量分析部を通過したイオンを検出する検出器と、を含む質量分析装置と、
 前記検出器から出力される電気信号におけるパルスの強度や面積に基づいて第1測定値を計算する第1変換器と、
 前記電気信号のパルスの数を数えることにより第2測定値を求める第2変換器と、
 前記第1測定値の前記第2測定値に対する比率を示すA/P比を計算する計算部と、
 前記A/P比の値に基づいて、前記検出器の性能を判定する判定部と、
 少なくとも前記判定部による判定結果の出力を制御する制御部と、を備える。
 本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される請求の範囲の様態により達成され実現される。
 本明細書の記述は典型的な例示に過ぎず、本開示の請求の範囲又は適用例を如何なる意味においても限定するものではない。
 本開示によれば、検出器以外の部分の汚れの有無にかかわらず、質量分析装置の検出器の性能を正確かつ迅速に判定することができる。
本実施形態(各実施形態で共通)による質量分析システムの概略構成例を示す図である。 アナログ方式による信号処理の例を示す図である。 パルスカウント方式による信号処理の例を示す図である。 試料濃度に対する測定値の関係を示す図である。 検出器103が劣化した場合の波形の例を示す図である。 濃度Cの試料を測定した場合の測定値とA/P比との関係を示す表である。 図2の質量分析システム10において検出器103の性能(劣化の有無)を判定する処理を説明するためのフローチャート例である。 GUIの結果表示画面の例を示す図である。 第2の実施形態による質量分析装置の性能判定処理(性能確認処理)を説明するためのフローチャート例である。 第3の実施形態による、検出器103の性能判定処理(性能確認処理)を説明するためのフローチャート例である。 第4の実施形態によるA/P比および測定値収集処理を説明するためのフローチャート例である。
 以下、添付図面を参照して本開示の実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った具体的な実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
 以後の説明では「テーブル」形式によって本実施形態における測定値とA/P比について説明するが、これは必ずしもテーブルによるデータ構造で表現されていなくても良く、リスト、DB、キュー等のデータ構造やそれ以外で表現されていても良い。そのため、データ構造に依存しないことを示すために「テーブル」、「リスト」、「DB」、「キュー」等について単に「情報」と呼ぶことができる。
(1)第1の実施形態
 <質量分析装置の校正>
 図1は、本実施形態による質量分析システム10の概略構成例を示す図である。図1に示されるように、質量分析システム10は、測定試料をイオン化するイオン源101、イオン源101で生成されたイオンを質量電荷比に応じて分析する質量分析部102、および質量分析部102を通過したイオンを検出する検出器103を含む質量分析装置104と、検出器103から出力された電気信号におけるパルスの強度や面積に基づいて測定値を計算するアナログ演算部(第1変換器)105と、検出器103から出力された電気信号のパルスの数をカウントすることで測定値を求めるパルスカウント部(第2変換器)106と、パルスカウント部106から得られた測定値とアナログ演算部105によって得られた測定値との比率(A/P比)を計算する計算部107と、A/P比に基づいて検出器103の性能を判定する判定部108と、各構成部品の動作を制御する制御部(コントローラ)109と、A/P比や判定結果などをGUIに表示する表示装置110と、を備えている。
 イオン源101は、例えば、シリンジや液体クロマトグラフによって供給される測定試料(ターゲットサンプル)を化学的・物理的に様々な手法でイオン化する。例えば、イオン化する手法として、電子イオン化法、化学イオン化法、エレクトロスプレーイオン化法、大気圧化学イオン化法、マトリクス支援レーザー脱離イオン化法などが挙げられる。また、誘導結合プラズマ質量分析装置のようにプラズマを用いてイオン化する方法もある。
 イオン源101でイオン化された測定試料は、化学的または物理的な作用によって質量分析部102に取り込まれる。例えば、質量分析部102のイオン取り込み口付近に設けた電極に適切な電圧を印加することによりイオン化された測定試料が取り込まれる。そして、質量分析部102に取り込まれたイオンは、電気的・磁気的に質量電荷比に応じて分離される。例えば、磁場によってイオンの軌道を曲げる磁場型、断面が双極面となるように加工された電極に高周波交流電圧と直流電圧を印加することでイオンを分離する四重極型、イオンの飛行時間を検出する飛行時間型などがある。
 質量分析部102で分離されたイオンは、最終的に検出器103で検出される。質量分析装置104の検出器103には、一般的には電子増倍管または光電子増倍管が使用される。電子増倍管は荷電粒子を電子に変換して増幅し、光電子増倍管は光子を電子に変換して増幅する増倍管である。光電子増倍管を使用する場合は、シンチレータを介して荷電粒子を光子に変換することが多い。なお、ここで述べている荷電粒子とは、質量分析部102を通過したイオンでも良いし、質量分析部102を通過したイオンをコンバージョンダイノードに衝突させて発生させた粒子でも良い。
 検出器103で増幅された電子は、電気信号(電流または電圧)として検出することができる。電気信号の処理の方式にはパルスカウント方式とアナログ方式がある。本実施形態では、アナログ方式の処理機能を有している構成要素をアナログ演算部(第1変換器)105、パルスカウント方式の処理機能を有している構成要素をパルスカウント部(第2変換器)106と呼ぶこととする。アナログ演算部(第1変換器)105およびパルスカウント部(第2変換器)106はともに検出器103に接続されており、同時に処理することが可能な構成となっている。
 アナログ方式では、一定時間の間に検出したパルスの強度や面積を計算することでイオンの存在量を求める。図2は、アナログ方式による信号処理の例を示す図である。まず、アナログ演算部(第1変換器)105は、横軸を時間、縦軸を電気信号とした波形図に現れるパルスの高さまたは面積を読み取る。高さや面積は、例えば、アナログ波形であるパルスをアナログ/デジタル変換器(ADC)でデジタル波形に変換し、その値を読み取るまたは積算することによって計算する。そして、計算部107は、計算した強度や面積を、あらかじめ求めておいた測定対象のイオン1個あたりの強度または面積で除することでイオンの数を計算する。
 パルスカウント方式では、一定時間の間に検出されたパルスの個数を数えることでイオンの存在量を求める。図3は、パルスカウント方式による信号処理の例を示す図である。パルスカウント部(第2変換器)106は、横軸を時間、縦軸を電気信号(電流値または電位差)とした波形図に現れるパルスのうち、あらかじめ定めた閾値以上のパルスを「1」、閾値未満のパルスを「0」と処理することで、一定時間の間にパルスが何個現れるかを数える。パルスカウント部(第2変換器)106では、この一連の処理の前後、あるいは途中にアンプによる信号増幅処理やノイズ除去などの機能があっても良い。
 なお、アナログ演算部(第1変換器)105には、この一連の処理の前後、あるいは途中にアンプによる信号増幅処理やノイズ除去などの機能もあっても良い。また、アナログ演算部(第1変換器)105は、パルスカウント部(第2変換器)106と共有のアンプなどを備えていても良い。
 <試料濃度と測定値との関係>
 図4は、試料濃度に対する測定値の関係を示す図である。試料濃度が低い時(濃度C以下)は電流量が小さいため、アナログ方式による測定が不可能またはS/N比が悪い測定となる。図4において、濃度Cよりも小さい濃度のときには、アナログ方式による測定特性の形状がS/N比の悪化により鈍っていることが分かる。
 Cより濃度が大きくなると、アナログ方式・パルスカウント方式の双方による測定が可能な領域となる(例えば濃度C)。
 さらに濃度が大きくなると(濃度C以上)、イオンが高頻度で検出器103に到達するため、パルスカウント方式で数えられるイオンの個数の限界値を超える。つまり、パルスの出現頻度(隣接するパルス間の時間間隔)がディジタルクロックの幅よりも小さい場合には、適切にパルス数をカウントすることができないため、パルスカウント方式による測定特定の形状が鈍っている(測定値が飽和している)。
 図4に示されるように、アナログ方式による測定値とパルスカウント方式による測定値との比率をA/P比と定義すると、濃度C~Cの領域ではA/P比は試料濃度に依らず一定であることが分かる。
 <劣化した波形の例>
 図5は、検出器103が劣化した場合の波形の例を示す図である。検出器103が劣化すると、例えば電子増倍管のゲインが低下したり、シンチレータのイオンを光子に変換する効率が低下したりする。そのため、図5のBに示されるように、劣化していない状態の検出器103によって検出された電気信号(図5のA)と比べて、検出器103が劣化した場合の電気信号の強度が弱くなり、パルス面積が小さくなる。劣化後のパルス面積は小さくなるが、パルスカウントの閾値を超える電気信号の数自体は劣化前と同一であることも分かる。
 <測定値とA/P比との関係>
 図6は、濃度Cの試料を測定した場合の測定値とA/P比との関係を示す表である。図6では、パルスカウント方式ではパルスの数を測定値とする。アナログ方式では、イオン1個あたりのパルス面積(基準面積)が“100”であるものとして測定値を計算するものとする。
 No.1の結果は、検出器103が劣化しておらず、質量分析装置104の他の部分にも汚れがない場合の例を示している。No.1ではパルスカウント方式による測定値、アナログ方式による測定値はともに“2”であり、A/P比は“1”となる。
 No.2の結果は、検出器103が劣化し、検出器103以外の部分の汚れがない場合の例を示している。この場合、パルスカウント方式による測定値はNo.1と同じで“2”である。一方、検出器103の劣化によりイオン1個に相当するパルス面積が低下するため、アナログ方式による測定値は“1”に低下する。したがって、A/P比は0.5に低下する。
 No.3の結果は、検出器103の劣化がなく、検出器103以外の部分の汚れがある場合の例を示している。この場合、イオンが検出器103に到達する頻度が低下するため、パルスカウント方式による測定値は“1”となる。一方、アナログ方式では、イオン1個に相当するパルス面積は変化しないため、測定値はパルスカウント方式と同じ“1”となる。よって、A/P比は“1”となり、No.1と同じ値となる。しかし、パルス数が、No.1の結果(時系列で前の結果:例えば、初期値)よりも少ないため、検出器103以外の部分の汚れ(装置の汚れ)があると判断することができる。
 No.4の結果は、検出器103の劣化があり、かつ検出器103以外の部分の汚れもある場合の例を示している。この場合はNo.3と同様にイオンが検出器103に到達する頻度が低下するため、パルスカウント方式による測定値は“1”となる。一方、アナログ方式では、イオン1個に相当するパルス面積が低下するため、測定値は“0.5”となる。この場合はA/P比は“0.5”となる。そして、パルス数が、No.1の結果(時系列で前の結果:例えば、初期値)よりも少ないため、検出器103以外の部分の汚れ(装置の汚れ)もあると判断することができる。
 このように、A/P比は、検出器103以外の部分の汚れの有無に関わらず検出器103の性能を判定することができる値である。したがって、A/P比を監視すれば検出器103が劣化したか正確に判定することができる。また、A/P比の測定は検出器103を質量分析装置104から取り外す煩雑な作業を伴わないため、迅速に検出器103の性能を判定することができる。
 図1に示す構成例では、計算部107がA/P比を計算する機能を有し、判定部108が検出器103の性能を判定する機能を有する。計算部107や判定部108は、制御部(コントローラ)109と併せて回路基板上における電気的な処理でもプログラムによるソフトウェア的な処理でも良い。つまり、図示しないプロセッサ(例えばCPU)が図示しないメモリからプログラムを読み込んで展開し、計算部107および判定部108を構成するようにしてもよい。また、例えば、グラフィカルユーザーインターフェース(GUI)が機能の一部として計算部107や判定部108を有していても良い。
 制御部(コントローラ)109は、質量分析装置104、アナログ演算部(第1変換器)105、パルスカウント部(第2変換器)106、計算部107、および判定部108の動作を制御する。制御部(コントローラ)109は、例えばGUIが有していても良い。
 <検出器の性能判定処理>
 図7は、図2の質量分析システム10において検出器103の性能(劣化の有無)を判定する処理を説明するためのフローチャート例である。当該検出器103の性能判定処理は、任意のタイミングで実行可能である。例えば、質量校正をする時、装置のクリーニングの前などがある。ここで、質量校正とは、装置に加える電気的・磁気的な作用の値と質量電荷比との関係を補正する作業である。一般的に試料濃度が高い測定試料を使用するので、A/P比の測定にも利用できる。また、質量校正は数カ月に1回、年に1回というように定期的に実施する作業である。質量校正の度にA/P比を測定すれば、手間をかけずに検出器103の経時的な状態変化を把握することができる。装置のクリーニングも質量校正と同様に定期的に実施する作業である。装置のクリーニング前にA/P比を測定すれば、検出器103が劣化していた場合、装置のクリーニングと同時に検出器103を交換することができる。以下、当該フローチャートに従って検出器性能判定処理について説明する。
(i)ステップ701
 検出器103の性能確認の開始後、試料がアナログ方式とパルスカウント方式で測定される。つまり、アナログ演算部(第1変換器)105は、検出器103によって得られる電気信号の面積(一例)を求め(図2参照)、それを基準面積で除算することによりアナログ方式の測定値を算出する。一方、パルスカウント部(第2変換器)106は、所定の閾値(パルスカウントの閾値:図3参照)に基づいてパルスカウント方式の測定値を算出する。なお、試料は図5において試料濃度C~Cの範囲に相当するものを使用するのが良い。
 ステップ701における各測定は、アナログ方式とパルスカウント方式を同時に実行しても、それぞれ個別に測定しても良い。個別に測定する場合は、回路中に物理的なスイッチを設けて測定方式を切り替えても良いし、ソフトウェアで測定方式を選択できる方式でも良い。ソフトウェアで選択する場合は制御部(コントローラ)109が測定方式を選択する機能を有していても良い。また、測定はナノ秒~秒単位の短い周期で実行しても、数十秒~数分の長い周期で実行しても良い。測定は複数回繰り返しても良い。
(ii)ステップ702
 計算部107は、ステップ701で得られた2つの方式による結果(測定値)からA/P比(=アナログ方式の測定値/パルスカウント方式の測定値)を算出する。各方式の測定で得られたデータ点が複数ある場合は、例えば平均値でA/P比を計算しても良い。
(iii)ステップ703
 判定部108は、ステップ702で算出したA/P比とあらかじめ定めたA/P比の基準範囲(合格範囲)を比較し、A/P比が基準範囲以内の値か否か判定する。A/P比が基準範囲以内の値である場合(ステップ703でYesの場合)、処理はステップ704に移行する。A/P比が基準範囲から外れる場合(ステップ703でNoの場合)、処理はステップ705に移行する。
 ステップ703におけるA/P比の判定基準は、検出器103が新品の状態で定めておくことができる。検出器103が新品の時のA/P比を[A/P]とし、検出器103の使用開始からの時間tで図7のフローチャートに従った処理を実行し、その時のA/P比を[A/P]とする。基準範囲は、例えば[A/P]-[A/P]、[A/P]/[A/P]、([A/P]-[A/P])/Δtなど、[A/P]との差、比、[A/P]からの変化率などを定めると良い。また、前回測定値との差、比、変化率などでも良い。また、それまでにその装置で測定したイオンの累計量に対する変化率などでも良い。
 つまり、検出器103の劣化が始まるとA/P比が小さくなってくる(1よりも小さくなる)ので、例えば、AP比の値がバラツキσ値(例えば、0.95)よりも大きいか否かで合否判定をすることができる。また、A/P比の変化率、つまり([A/P]t-[A/P]0)/Δtの値(つまり、傾き)が所定の設定値よりも大きいか否かによって合否を判定しても良い。また、A/P比の偏差は小さいが変化率(傾き)が大きい場合には早目に不合格と判定しても良い。
(iv)ステップ704
 判定部108は、対象の検出器103の劣化は進んでいないとして、検出器103を合格と判定する。
(v)ステップ705
 判定部108は、対象の検出器103の劣化は許容範囲を超えており、検出器103を不合格と判定する。
 ステップ705によって検出器103の性能が不合格と判断された場合、制御部(コントローラ)109が検出器103のメンテナンス処理を実行しても良い。例えば、増倍管に印加する電圧を調整することでゲインを調整し、検出器103の見かけ上の性能を回復させても良い。ゲインを調整する処理は、制御部(コントローラ)109が自動的に指示して実行しても良い(例えば、ユーザーが予め調整値を設定しておき、不合格の結果をトリガーとして自動的にゲイン調整をする)。
 また、GUI上に警告アラームを表示したり、「検出器を交換してください」というようなメッセージを表示したりしても良い。
 <GUI構成例>
 質量分析装置104のユーザーが検出器103の状態を把握できるように、ステップ710、ステップ702、ステップ703から705の結果は、GUI画面上に表示しても良い。図8は、GUIの結果表示画面の例を示す図である。
 GUI画面は、一般的には、試料の測定条件、マススペクトルやマスクロマトグラムなどの視覚的な測定結果を表示する領域と、スペクトルやクロマトグラムのピーク情報(ピークの中心位置、半値幅、強度など)など数値的な測定結果を表示する領域と、を含んでいる。例えば、数値的な測定結果の欄にA/P比に関する情報を表示すればユーザーに検出器103の状態を伝えやすくなる。また、例えば、時間や測定したイオンの累計量に対するA/P比の変化がわかるグラフなど、A/P比の測定結果を表示する画面があっても良い。
 <第1の実施形態のまとめ>
 第1の実施形態によれば、アナログ方式の測定値およびパルスカウント方式の測定値からA/P比を算出し、その値に基づいて検出器103の合否判定を行っている。このようにすることにより、検出器以外の部分の汚れの有無に左右されず、検出器103単体における性能劣化の有無を判断することができるようになる。
(2)第2の実施形態
 第2の実施形態は、A/P比の測定(検出器103の性能判定処理)と同時に、質量分析装置104の汚れを判定する処理を実行する質量分析システムに関する。なお、第1の実施形態による質量分析システム10の構成は、第2の実施形態にも適用することができる。
 <質量分析装置の性能判定処理>
 図9は、第2の実施形態による質量分析装置の性能判定処理(性能確認処理)を説明するためのフローチャート例である。ここでは、検出器103の合否判定の他、検出器103以外の部分の汚れ(性能劣化)の判定処理が含まれている。検出器103の合否判定については第1の実施形態(図7のステップ701から705)と同様である。つまり、質量分析装置104の性能確認の開始後、任意の試料を測定し(ステップ701)、計算部107によってA/P比を計算する(ステップ702)。そして、判定部108によって検出器103の性能を判定する(ステップ703から705)。
 第2の実施形態では、ステップ702から705の処理と並行して測定値から質量分析装置104の汚れの有無の判定処理が実行される(ステップ901)。判定後、質量分析装置104の性能確認が終了する。
 ステップ901は、ステップ701で測定したデータから検出器103以外の装置の汚れを判定する処理である。A/P比ではなく、測定値から汚れの有無(検出器103以外の部分の性能劣化の有無)が判定される。例えば、判定部108は、制御部(コントローラ)109の制御の下、同じ種類と濃度、同じ測定条件で測定した過去の測定値とステップ701の測定結果(測定値)とを比較する。検出器103の劣化の影響を受けないパルスカウント方式の測定値で比較するようにしてもよい。また、アナログ方式の測定値を過去に測定したA/P比で補正して比較しても良い。判定部108は、上記比較の結果、測定値が減少傾向である場合(例えば、初期測定値からどの程度減少しているか:当該減少値が所定の閾値を超えたか否かで判断することができる)や、任意に定めた基準範囲を外れていた場合(例えば、測定値の時間的変化率が所定値を超えたか否かで判断することができる)に質量分析装置104が汚れている(質量分析装置104に性能劣化がある)と判定する。また、制御部109は、判定結果を、A/P比と同様に表示装置110の表示画面(GUI画面)に表示するようにしても良い。
 なお、このような質量分析装置104の性能判定処理(図9)は、例えば、質量校正のタイミングで実施することができる。一般的に、質量校正に使用する試料、濃度、測定条件は常に同じである。したがって、質量校正時は検出器103の性能も、質量分析装置104の汚れも判定しやすいタイミングである。
 <第2の実施形態のまとめ>
 第2の実施形態によれば、例えば、A/P比による検出器103の性能判定と共に、パルスカウント方式の測定値を時系列で比較する処理を実行することにより、検出器103の性能と同時に質量分析装置104の汚れも確認することができ、少ない時間で複数の不具合要因を確認することができるようになる。
(3)第3の実施形態
 第3の実施形態は、判定部108において、複数の判定基準に従って検出器の性能(劣化状況)を判定する質量分析システムに関する。なお、第1の実施形態による質量分析システム10の構成は、第2の実施形態にも適用することができる。
 <検出器の性能判定処理>
 図10は、第3の実施形態による、検出器103の性能判定処理(性能確認処理)を説明するためのフローチャート例である。
(i)ステップ1001
 検出器103の性能確認の開始後、試料がアナログ方式とパルスカウント方式で測定される。つまり、アナログ演算部(第1変換器)105は、検出器103によって得られる電気信号の面積(一例)を求め(図2参照)、それを基準面積で除算することによりアナログ方式の測定値を算出する。一方、パルスカウント部(第2変換器)106は、所定の閾値(パルスカウントの閾値:図3参照)に基づいてパルスカウント方式の測定値を算出する。なお、試料は図5において試料濃度C~Cの範囲に相当するものを使用するのが良い。
 ステップ1001における各測定は、ステップ701(図7参照)と同様に、アナログ方式とパルスカウント方式を同時に実行しても、それぞれ個別に測定しても良い。個別に測定する場合は、回路中に物理的なスイッチを設けて測定方式を切り替えても良いし、ソフトウェアで測定方式を選択できる方式でも良い。ソフトウェアで選択する場合は制御部(コントローラ)109が測定方式を選択する機能を有していても良い。また、測定はナノ秒~秒単位の短い周期で実行しても、数十秒~数分の長い周期で実行しても良い。測定は複数回繰り返しても良い。
(ii)ステップ1002
 計算部107は、ステップ701で得られた2つの方式による結果(測定値)からA/P比(=アナログ方式の測定値/パルスカウント方式の測定値)を算出する。各方式の測定で得られたデータ点が複数ある場合は、例えば平均値でA/P比を計算しても良い。
(iii)ステップ1003
 判定部108は、ステップ1002で算出したA/P比の値が予め設定した合格基準値(第1基準値)以上か否か(「第1基準値より大きいか否か」でもよい)判断する。前述のように、検出器103の劣化が始まると、アナログ方式の測定値が減少し始め、よって、A/P比の値が1より小さくなる。そこで、合格基準値を例えば0.9に設定し、検出器103を今後継続的に使用しても問題ないか判断する。A/P比の値が合格基準値以上である(合格基準値より大きい)場合(ステップ1003でYesの場合)、処理はステップ1004に移行する。A/P比の値が合格基準値未満である(合格基準値以下である)場合(ステップ1003でNoの場合)、処理はステップ1005に移行する。
(iv)ステップ1004
 判定部108は、判定対象の検出器103について、性能の劣化は進んでおらず合格である(継続的に使用しても問題ない)と判定する。そして、制御部(コントローラ)109は、例えば、「検出器継続使用OK」とGUI画面上に表示するように判定結果の情報を表示装置110に出力する。
 なお、A/P比の値は合格基準値以上であったが、A/P比の変化率(前回との値との差分/時間)が所定値以上であった場合には、今回の性能判定では合格であったが、次回以降の性能判定処理時には検出器の性能劣化が検知される可能性があることを注意喚起するようなメッセージをGUI画面上に出力するようにしてもよい。
(v)ステップ1005
 判定部108は、ステップ1002で算出したA/P比の値が予め設定した不合格基準値(第2基準値)以下か否か(「第2基準値未満か否か」でもよい)判断する。ここで、不合格基準値(第2基準値)は、合格基準値(第1基準値)よりも大きい値である。つまり、第3の実施形態は、2つの基準(3つ以上でもよい)に基づいて、A/P比が合格とする範囲内か、不合格とする範囲内か、不合格と合格の間の範囲であるか判定するものである。A/P比の値が不合格基準値以下である(不合格基準値未満である)場合(ステップ1005でNoの場合)、処理はステップ1006に移行する。A/P比の値が不合格基準値より大きい(不合格基準値以上である)場合(ステップ1005でYesの場合)、処理はステップ1007に移行する。
(vi)ステップ1006
 判定部108は、対象の検出器103について、このまま継続して使用はできないが交換するまで劣化は進んでいないと判定(不合格と合格の間の範囲であると判定)する。そして、制御部(コントローラ)109は、例えば「検出器劣化進行中」とGUI画面上に表示するように判定結果の情報を表示装置110に出力する。
 この場合、検出器103を交換するのではなく、検出器103への印加電圧を調整することにより、検出器103の機能を回復することができる(検出器103のメンテナンス)。調整時の印加電圧の値は予め設定しておけばよい。
(vii)ステップ1007
 判定部108は、対象の検出器103について、このまま継続して使用はできず交換が必要な状態まで劣化は進んでいると判定(不合格であると判定)する。そして、制御部(コントローラ)109は、例えば「検出器交換要」とGUI画面上に表示するように判定結果の情報を表示装置110に出力する。
 なお、判定基準(合格基準値および不合格基準値)は、前述したように、A/P比の初期値または前回測定値との差、比、時間に対する変化率、測定したイオンの累計量に対する変化率などを1つ以上用いて設定することができる。
 <第3の実施形態のまとめ>
 第3の実施形態によれば、複数の判定基準を設け、それぞれに対応する判定結果に基づいて、段階的に検出器103の性能劣化を判定する。このようにすることにより、検出器103の状態をより詳しく知ることができる。例えば、図10の例では検出器劣化進行中の判定が出た時に、検出器103のメンテナンスに必要な道具や部品を備える時間的な余裕が生じる。
 なお、3つ以上の複数基準を設ける場合、検出器103の劣化が未だ軽い場合、不合格(検出器103の交換)までは行かないが検出器103の劣化がかなり進んでいる場合のように、さらに細分化された性能判定を実現することができる。
(4)第4の実施形態
 第4の実施形態は、任意の測定中にA/P比を計算し、情報として蓄積する(A/P比および測定値収集処理を実行する)質量分析システムに関する。ここで、任意の測定とは、例えば、液体クロマトグラフやガスクロマトグラフと組み合わせてLC-MS測定、GC-MS測定をする時でも、質量校正をする時でも良いという意味である。なお、第1の実施形態による質量分析システム10の構成は、第2の実施形態にも適用することができる。
 <A/P比および測定値収集処理の詳細>
 図11は、第4の実施形態によるA/P比および測定値収集処理を説明するためのフローチャート例である。
(i)ステップ1101
 検出器103の性能確認の開始後、試料がアナログ方式とパルスカウント方式で測定される。つまり、アナログ演算部(第1変換器)105は、検出器103によって得られる電気信号の面積(一例)を求め(図2参照)、それを基準面積で除算することによりアナログ方式の測定値を算出する。一方、パルスカウント部(第2変換器)106は、所定の閾値(パルスカウントの閾値:図3参照)に基づいてパルスカウント方式の測定値を算出する。なお、試料は図5において試料濃度C1~C3の範囲に相当するものを使用するのが良い。
 ステップ1101における各測定は、ステップ701(図7参照)と同様に、アナログ方式とパルスカウント方式を同時に実行しても、それぞれ個別に測定しても良い。個別に測定する場合は、回路中に物理的なスイッチを設けて測定方式を切り替えても良いし、ソフトウェアで測定方式を選択できる方式でも良い。ソフトウェアで選択する場合は制御部(コントローラ)109が測定方式を選択する機能を有していても良い。また、測定はナノ秒~秒単位の短い周期で実行しても、数十秒~数分の長い周期で実行しても良い。測定は複数回繰り返しても良い。
(ii)ステップ1102
 判定部108は、アナログ方式とパルスカウント方式の各測定値のいずれかについて、あらかじめ定めた閾値以上(「閾値よりも大きい」でもよい)であるか判定する。この時の閾値は試料濃度C~Cに相当する範囲で任意に設定することができる。ステップ1101で求めた測定値が任意の閾値以上である(閾値より大きい)場合(ステップ1102でYesの場合)、処理はステップ1104に移行する。当該測定値が任意の閾値未満である(閾値以下である)場合(ステップ1102でNoの場合)、処理はステップ1103に移行する。
 なお、任意の閾値は、アナログ方式あるいはパルスカウント方式それぞれの方式に対応して設定することができる。当該閾値は、例えば、質量校正の場合には、イオンが十分に出ていないため、A/P比を算出すべき対象として適切ではない測定値を除去するための基準(例えば、図4の濃度Cに対応する測定値を用いることができる)である。
(iii)ステップ1103
 制御部(コントローラ)109は、ステップ1101で取得した測定値のみをメモリやストレージデバイス等の記憶デバイス(図示せず)に保存する。保存対象の測定値は、アナログ方式あるいはパルスカウント方式の何れの方式の測定値であってもよい。ステップ1102で任意の閾値未満(以下)の測定値は捨ててしまうのではなく、イオンが出ていない場合、あるいはA/P比算出に適さないほど微量のイオンしか出ていない場合のゆらぎ(ノイズ)の情報として保存する。ゆらぎレベルと測定ピーク値との関係を知ることも実験上重要となるため、任意の閾値未満(以下)の測定値も保存することとしている。
(iv)ステップ1104
 計算部107は、ステップ1101で得られた2つの方式による結果(測定値)からA/P比(=アナログ方式の測定値/パルスカウント方式の測定値)を算出する。各方式の測定で得られたデータ点が複数ある場合は、例えば平均値でA/P比を計算しても良い。
(v)ステップ1105
 判定部108は、ステップ1104で算出したA/P比の値に基づいて、検出器103の性能(劣化の有無)を判定する。当該判定処理では、例えば、第3の実施形態で説明したように、複数の判定基準を設けても良い。判定基準の詳細については、第1から第3の実施形態で既に述べているのでここでは省略する。
 A/P比の値が基準範囲内である場合(ステップ1105でYesの場合)、処理はステップ1106に移行する。A/P比の値が基準範囲外である場合(ステップ1105でNoの場合)、処理はステップ1107に移行する。
(vi)ステップ1106
 判定部108は、使用中の検出器103について、このまま継続して使用可能である(合格)と判定する。
(vii)ステップ1107
 判定部108は、使用中の検出器103について、このまま継続して使用はできず交換が必要な状態まで劣化は進んでいると判定(不合格であると判定)する。
(viii)ステップ1108
 制御部(コントローラ)109は、検出器103の合否判定後、任意の方式(アナログ方式あるいはパルスカウント方式)の測定値とA/P比を保存する。A/P比と、何れかの方式の測定値を保持しておけば、保持していない他方の方式の測定値を演算によって求めることができる。このように保存したデータは、メンテナンス時に検出器103の性能劣化の原因を調査するために用いることができる。
 <第4の実施形態のまとめ>
 第4の実施形態によれば、任意の測定中にA/P比を計算する場合は、意図的に検出器103の性能を確認することなく、質量分析装置104を使用する度にA/P比のデータを蓄積する。また、LC-MSやGC-MS測定など数秒間しか試料のシグナルが測定できない場合は、処理1102によって、試料が到達した数秒間のデータのみでA/P比を計算するように調整可能である。したがって、信頼性の高いA/P比データのみで検出器103の性能を判定することができる。また、A/P比のデータ数が増えるため、統計的な理由から、A/P比の値や傾向などをより正確に判定することができる。さらに、A/P比の日内変化や日間変化の傾向も把握することができる。
 <変形例>
 本実施形態の機能は、ソフトウェアのプログラムコードによっても実現できる。この場合、プログラムコードを記録した記憶媒体をシステム或は装置に提供し、そのシステム或は装置のコンピュータ(又はCPUやMPU:プロセッサと称してもよい)が記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコード自体、及びそれを記憶した記憶媒体は本実施形態を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD-ROM、DVD-ROM、ハードディスク、光ディスク、光磁気ディスク、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。
 また、プログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。さらに、記憶媒体から読み出されたプログラムコードが、コンピュータ上のメモリに書きこまれた後、そのプログラムコードの指示に基づき、コンピュータのCPUなどが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。
 さらに、各実施形態の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することにより、それをシステム又は装置のハードディスクやメモリ等の記憶手段又はCD-RW、CD-R等の記憶媒体に格納し、使用時にそのシステム又は装置のコンピュータ(又はCPUやMPU)が当該記憶手段や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしても良い。
 また、ここで述べたプロセス及び技術は本質的に如何なる特定の装置に関連することはなく、コンポーネントの如何なる相応しい組み合わせによっても実装できる。さらに、汎用目的の多様なタイプのデバイスがここで記述した教授に従って使用可能である。ここで述べた方法のステップを実行するのに、専用の装置を構築するのが有益であることが判るかもしれない。また、実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。本開示は、具体例に関連して記述したが、これらは、すべての観点に於いて限定の為ではなく説明の為である。本分野にスキルのある者には、本開示を実施するのに相応しいハードウェア、ソフトウェア、及びファームウエアの多数の組み合わせがあることが解るであろう。例えば、記述したソフトウェアは、アセンブラ、C/C++、perl、Shell、PHP、Java(登録商標)等の広範囲のプログラム又はスクリプト言語で実装できる。
 上述の各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていても良い。
 本開示の技術的思想は、上記各実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。
10 質量分析システム
101 イオン源
102 質量分析部
103 検出器
104 質量分析装置
105 アナログ演算部(第1変換器)
106 パルスカウント部(第2変換器)
107 計算部
108 判定部
109 制御部(コントローラ)

Claims (12)

  1.  測定試料をイオン化するイオン源と、前記イオン源で生成されたイオンを質量電荷比に応じて分析する質量分析部と、前記質量分析部を通過したイオンを検出する検出器と、を含む質量分析装置と、
     前記検出器から出力される電気信号におけるパルスの強度や面積に基づいて第1測定値を計算する第1変換器と、
     前記電気信号のパルスの数を数えることにより第2測定値を求める第2変換器と、
     前記第1測定値の前記第2測定値に対する比率を示すA/P比を計算する計算部と、
     前記A/P比の値に基づいて、前記検出器の性能を判定する判定部と、
     少なくとも前記判定部による判定結果の出力を制御する制御部と、
    を備える質量分析システム。
  2.  請求項1において、
     前記検出器は、
      前記質量分析部を通過したイオンを光子に変換するシンチレータと、
      前記シンチレータから放出した光子を電子に変換して増幅する光電子増倍管と、
    を含む、質量分析システム。
  3.  請求項1において、
     前記検出器は、前記質量分析部を通過したイオン増幅する電子増倍管を含む、質量分析システム。
  4.  請求項1において、
     前記計算部は、前記第1測定値および前記第2測定値の時間平均値を用いて、前記A/P比を計算する、質量分析システム。
  5.  請求項1において、
     前記判定部は、前記A/P比の初期値または前回A/P比と今回A/P比との差、前記A/P比の初期値または前回A/P比と今回A/P比との比、あるいは前記A/P比の初期値または前回A/P比と今回A/P比との変化率を基準として前記検出器の性能を判定する、質量分析システム。
  6.  請求項1において、
     前記判定部は、前記A/P比と複数の判定基準のそれぞれとを比較することにより前記検出器の性能を判定する、質量分析システム。
  7.  請求項1において、
     前記制御部は、前記判定結果によって前記検出器の性能を確認し、警告アラームまたはメッセージを表示装置のGUI画面上に表示する、質量分析システム。
  8.  請求項1において、
     前記制御部は、さらに、前記判定結果によって前記検出器の性能を確認し、前記検出器のゲインを調整する処理を実行する質量分析システム。
  9.  請求項1において、
     前記判定部は、前記検出器の性能判定に加えて、前記第2測定値に基づいて前記質量分析装置の性能を判定する、質量分析システム。
  10.  請求項1において、
     前記制御部は、前記検出器の性能判定処理を任意の測定時に実行する、質量分析システム。
  11.  請求項10において、
     前記制御部は、前記検出器の性能判定処理を実行することにより得られる前記A/P比の値と、前記第1測定値あるいは前記第2測定値の少なくとも1つと、を記憶デバイスに保存する、質量分析システム。
  12.  測定試料の質量分析を行う質量分析に含まれる検出器の性能を判定する方法であって、 イオン化された前記測定試料のイオンを質量電荷比に応じて分析する質量分析部を通過したイオンを検出器で検出することと、
     第1変換器で、前記検出器から出力される電気信号におけるパルスの強度や面積に基づいて第1測定値を計算することと、
     第2変換器で、前記電気信号のパルスの数を数えることにより第2測定値を求めることと、
     計算部で、前記第1測定値の前記第2測定値に対する比率を示すA/P比を計算することと、
     判定部で、前記A/P比の値に基づいて、前記検出器の性能を判定することと、
     制御部で、少なくとも前記判定部による判定結果の出力を制御することと、
    を含む、方法。
PCT/JP2020/010709 2019-04-05 2020-03-12 質量分析システム、および質量分析装置の性能を判定する方法 WO2020203134A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021511344A JP7470102B2 (ja) 2019-04-05 2020-03-12 質量分析システム、および質量分析装置の性能を判定する方法
CN202080026023.3A CN113677988B (zh) 2019-04-05 2020-03-12 质量分析系统以及判定质量分析装置的性能的方法
EP20782302.2A EP3951378A4 (en) 2019-04-05 2020-03-12 MASS ANALYSIS SYSTEM AND METHOD FOR DETERMINING MASS ANALYSIS DEVICE PERFORMANCE
US17/599,231 US12106951B2 (en) 2019-04-05 2020-03-12 Mass analysis system, and method for determining performance of mass analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-072798 2019-04-05
JP2019072798 2019-04-05

Publications (1)

Publication Number Publication Date
WO2020203134A1 true WO2020203134A1 (ja) 2020-10-08

Family

ID=72668711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010709 WO2020203134A1 (ja) 2019-04-05 2020-03-12 質量分析システム、および質量分析装置の性能を判定する方法

Country Status (5)

Country Link
US (1) US12106951B2 (ja)
EP (1) EP3951378A4 (ja)
JP (1) JP7470102B2 (ja)
CN (1) CN113677988B (ja)
WO (1) WO2020203134A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107079A1 (en) * 2020-11-19 2022-05-27 Dh Technologies Development Pte. Ltd. Systems and methods for improved mass analysis instrument operations
WO2023235862A1 (en) * 2022-06-02 2023-12-07 Northwestern University Methods and systems for individual ion mass spectrometry

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2620442A (en) * 2022-07-08 2024-01-10 Thermo Fisher Scient Bremen Gmbh Processing ion peak areas in mass spectrometry

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085817A (ja) * 2014-10-24 2016-05-19 株式会社日立ハイテクノロジーズ 質量分析装置
JP2017191739A (ja) * 2016-04-15 2017-10-19 国立大学法人大阪大学 質量分析装置及び質量分析方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201342A (ja) * 1995-01-31 1996-08-09 Japan Atom Energy Res Inst 四極子質量分析計
JP3740853B2 (ja) 1998-08-04 2006-02-01 株式会社島津製作所 質量分析計
JP4644560B2 (ja) * 2005-08-09 2011-03-02 株式会社日立ハイテクノロジーズ 質量分析システム
US9322814B2 (en) * 2012-04-12 2016-04-26 Shimadzu Corporation Mass spectrometer
US9293312B2 (en) * 2013-03-15 2016-03-22 Thermo Finnigan Llc Identifying the occurrence and location of charging in the ion path of a mass spectrometer
JP5945245B2 (ja) * 2013-05-13 2016-07-05 株式会社日立ハイテクノロジーズ 信号パルス検出装置、質量分析装置、および信号パルス検出方法
US9543138B2 (en) * 2013-08-19 2017-01-10 Virgin Instruments Corporation Ion optical system for MALDI-TOF mass spectrometer
EP3075001A4 (en) * 2013-11-26 2017-02-15 PerkinElmer Health Sciences, Inc. Detectors and methods of using them
DE112015001542B4 (de) 2014-03-31 2020-07-09 Leco Corporation Rechtwinkliger Flugzeitdetektor mit verlängerter Lebensdauer
GB2528875A (en) * 2014-08-01 2016-02-10 Thermo Fisher Scient Bremen Detection system for time of flight mass spectrometry
EP3241230A4 (en) * 2014-12-29 2018-09-19 Fluidigm Canada Inc. Mass cytometry apparatus and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085817A (ja) * 2014-10-24 2016-05-19 株式会社日立ハイテクノロジーズ 質量分析装置
JP2017191739A (ja) * 2016-04-15 2017-10-19 国立大学法人大阪大学 質量分析装置及び質量分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951378A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107079A1 (en) * 2020-11-19 2022-05-27 Dh Technologies Development Pte. Ltd. Systems and methods for improved mass analysis instrument operations
WO2023235862A1 (en) * 2022-06-02 2023-12-07 Northwestern University Methods and systems for individual ion mass spectrometry

Also Published As

Publication number Publication date
US20220189755A1 (en) 2022-06-16
CN113677988B (zh) 2024-09-17
EP3951378A4 (en) 2022-12-21
CN113677988A (zh) 2021-11-19
JP7470102B2 (ja) 2024-04-17
JPWO2020203134A1 (ja) 2020-10-08
US12106951B2 (en) 2024-10-01
EP3951378A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2020203134A1 (ja) 質量分析システム、および質量分析装置の性能を判定する方法
JP5890921B2 (ja) イオン又は後にイオン化される中性粒子を試料から検出する方法、質量分析計、及びその使用
JP6122386B2 (ja) データ収集システムおよび質量分析方法
US8723108B1 (en) Transient level data acquisition and peak correction for time-of-flight mass spectrometry
US9293307B2 (en) Discrete dynode detector with dynamic gain control
US9633818B2 (en) Charged particle beam apparatus, image forming method using a charged particle beam apparatus, and image processing apparatus
EP1805782B1 (en) Ion detection in mass spectrometry with extended dynamic range
WO2010150301A1 (ja) 質量分析装置
US20090294643A1 (en) Real-time control of ion detection with extended dynamic range
TWI442041B (zh) 氣體分析器、氣體分析器修正方法、及氣體分析器用修正程式之記憶媒體
US20150153223A1 (en) Light signal detecting circuit, light amount detecting device, and charged particle beam device
US20150187550A1 (en) Electron multiplier for mass spectrometer
US9035244B2 (en) Automatic gain control with defocusing lens
JP2018120804A (ja) 質量分析装置及び質量分析方法
KR101662727B1 (ko) 자가 진단 기능을 갖는 bf3 중성자 계측시스템 및 그 방법
JP2000357487A (ja) 質量分析装置
US20230114569A1 (en) Particle detector for detecting charged particles
JP5922256B2 (ja) 質量分析装置
GB2559067A (en) Setting ion detector gain using ion area
JP6591565B2 (ja) 質量分析装置及びそのイオン検出方法
JP6416578B2 (ja) 質量分析装置
JP4714768B2 (ja) 二次電子増倍素子を使用した測定方法及び二次電子増倍素子を使用した装置
JP5208429B2 (ja) 質量分析計
JP3706711B2 (ja) 質量分析計のデータ処理方法及び質量分析計並びに質量分析計のデータ処理プログラムを記録した記録媒体
JP2023161647A (ja) 質量分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511344

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020782302

Country of ref document: EP

Effective date: 20211105