JP6416578B2 - 質量分析装置 - Google Patents

質量分析装置 Download PDF

Info

Publication number
JP6416578B2
JP6416578B2 JP2014216826A JP2014216826A JP6416578B2 JP 6416578 B2 JP6416578 B2 JP 6416578B2 JP 2014216826 A JP2014216826 A JP 2014216826A JP 2014216826 A JP2014216826 A JP 2014216826A JP 6416578 B2 JP6416578 B2 JP 6416578B2
Authority
JP
Japan
Prior art keywords
unit
ions
mass
detection
mass spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014216826A
Other languages
English (en)
Other versions
JP2016085817A (ja
Inventor
村上 真一
真一 村上
琢真 西元
琢真 西元
康 照井
康 照井
富士夫 大西
富士夫 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2014216826A priority Critical patent/JP6416578B2/ja
Publication of JP2016085817A publication Critical patent/JP2016085817A/ja
Application granted granted Critical
Publication of JP6416578B2 publication Critical patent/JP6416578B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

本発明は、質量分析装置に関する。
特許文献1には、「二次電子増倍管からの二次電子出力をパルスとして検出するパルスカウント手段と、二次電子増倍管からの二次電子出力を電流として検出する出力電流検出手段と、パルスカウント段及び出力電流検出手段の検出出力を受けて二次電子出力をいずれの検出手段で検出するかを判定する判定手段と、判定手段での判定出力を受けて二次電子増倍管からの二次電子出力をパルスカウント手段若しくは出力電流検出手段のいずれか一方に導く切り換え手段とを備えた。」ことが記載されている。加えて、「イオン量が少ないときには二次電子増倍管19の出力をパルスとしてカウントし、イオン量が多くなりパルスカウントが困難な時点からは電流値として測定を行うようにしている。このため、イオン量が多い領域での測定が可能になり、ダイナミックレンジが拡大される。」ことが記載されている。
特開平05−34303号公報
質量分析装置として四重極マスフィルタを用いた四重極型質量分析計は、小型で比較的安価であることから最も広く利用されている質量分析装置の一つである。
四重極型質量分析計は、4本の円柱状電極から構成される。円柱状電極は横断面において円の中心を正方形の頂点に置いて組み合わされる。固定された円柱状電極の隣り合った電極に、それぞれに正負の直流電圧と交流電圧を重畳して印加すると、電荷を持ったイオンが円柱状電極の中を通過する際に振動しながら通過し、電圧及び周波数に応じて特定のイオンのみが安定な振動をして電極内を通過する。一方、それ以外のイオンは電極内を通過中に振動が大きくなり、電極に衝突し通過することができなくなる。この直流電圧と交流電圧の比を一定に保ちつつ交流電圧を変化させる事で、特定の質量電荷比(m/z)を有するイオンのみが四重極マスフィルタを通過し、所定の質量電荷比に対するイオン量を収集することができる。
質量分析装置におけるイオンの検出方式には、四重極マスフィルタを通過したイオンの個数を計数するパルス数検出方式と、イオンの平均電流を測定するアナログ(電流)検出方式の2つの方式が知られている。一般的に、パルス数検出方式は、到達イオンが個数として測定されるため、微小なイオン量を測定する場合でもノイズの影響による計数誤差を減らすことが可能である。しかし、イオン量が増加した場合には、複数のイオンが重畳されるため、正確なイオンの個数を計数することができない。パルス検出方式での検出限界以上におけるイオン量の検出は、アナログ検出方式で行うことになる。
従って、イオン検出において広いダイナミックレンジを得るためには、パルス数検出方式による検出系と、アナログ検出方式による検出系の両方を備え、何れかを選択できるようになされていることが望ましいといえる。
特許文献1に記載の判定手段は、二次電子増倍管からの電流値が所定の値より増大または減少したことを検出することにより検出方式の切り替えが行われている。しかし、測定試料中の各成分はそれぞれ含有量が異なるため、四重極マスフィルタを通過するイオン量は、制御電圧を変化させるたびに瞬時的に増加又は減少することになる(含有量が多い成分はイオン量が多く、含有量が少ない成分はイオン量が少ない)。
このため、特許文献1による判定手段では、検出方式の切り替えを判断するために所定の処理時間を要するため、適切な検出方法に切り替えるタイミングが遅延し、イオン量を高精度に検出することができないという課題がある。
そこで本発明の目的は、イオン量を高精度に検出できるようにした質量分析装置を提供することにある。
上記課題を解決するために、一例として下記の構成を用いる。質量分析装置において、質量電荷比に応じてイオンを分離する質量分離部と、前記質量分離部で分離されたイオンの信号の個数を計数するカウント部と、前記前記質量分離部で分離されたイオンの信号の面積を積算する面積検出部と、前記質量分離部、前記カウント部および面積検出部の動作を制御する制御部と、を備え、前記制御部は、第一のイオンを前記質量分離部で分離するための制御信号と、前記第一のイオンの検出方式を前記カウント部または前記面積検出部のいずれかに切り替える制御信号と、を同期制御する。
本発明によれば、イオン量を高精度に検出可能な質量分析装置を提供することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
実施例1に係る質量分析装置の構成の一例を示すブロック図。 実施例1に係るパルス数カウント部の閾値処理の一例を示す波形図。 実施例1に係るパルス面積検出部の閾値処理の一例を示す波形図。 実施例1に係る質量分離部に設定される制御電圧と、信号処理部に到達するパルス信号量の関係の一例を示すグラフ。 実施例1に係る記憶部に記憶される、成分ごとの検出方式を示すデータベースの一例。 実施例1に係る質量分析装置の動作の一例を示すフローチャート。 実施例1に係る表示部に表示される、成分ごとの検出方式を設定するインタフェース画面の一例。 実施例1に係る表示部に表示される、成分ごとの検出方式を設定するインタフェース画面の一例。 第2の実施形態に係る質量分析装置の構成を示すブロック図。 実施例2に係る表示部に表示される、成分ごとの検出方式を設定するインタフェース画面の一例。 実施例2に係る表示部に表示される、成分ごとの検出方式を設定するインタフェース画面の一例。 実施例3に係る質量分析装置の動作の一例を示すフローチャート。 実施例4に係る質量分析装置の構成の一例を示すブロック図。 実施例1に係る検量線の一例。
以下、実施例を図面を用いて説明する。
以下、本発明の一実施例を図面を用いて説明する。
図1は、本発明の第1の実施例に係る質量分析装置の構成を示すブロック図である。図1において、ガスクロマトグラフや液体クロマトグラフなどの前処理によって生成された測定試料、あるいは他の方法により供給された測定試料は、イオン化部101で測定試料に電荷が与えられてイオン化される。イオン化の方法は、エレクトロスプレーイオン化(ESI)、大気圧化学イオン化(APCI)、電子イオン化(EI)や化学イオン化(CI)などが考えられ、測定試料の性質に応じたイオン化法が選択される。
イオン化された試料は、質量分離部102でイオンの質量電荷比(m/z)に応じて分離される。ここで、mはイオン質量、zはイオンの帯電価数である。質量分離部102は、4本の円柱状電極からなる四重極型質量分析計であり、固定された円柱状電極の隣り合った電極に、直流電圧と交流電圧の比を一定に保ちつつ交流電圧を変化させることで、特定の質量電荷比(m/z)を有するイオンのみが四重極マスフィルタを通過する。四重極型質量分析計に印加される直流電圧及び交流電圧は、電源部112より供給される。
なお、質量分離部102は、3つの四重極型質量分析計から構成されるトリプル四重極型質量分析計など、より質量選択性の高い構成であってもよい。トリプル四重極型質量分析計では、第1の四重極型質量分析計によって測定試料由来の特定イオンのみを取り出し、第2の四重極型質量分析計によって取り出したイオンをガスなどに衝突させることで解離させ、フラグメントイオンを発生させる。次いで生じたフラグメントイオンを第3の四重極型質量分析計によって質量分離を行うものである。トリプル四重極型質量分析計の場合、電源部112は、第1〜第3の四重極型質量分析計の各々に対し、目的イオン成分が四重極マスフィルタを通過するように、適切な直流電圧及び交流電圧が印加される。
こうして、質量分離部102を通過したイオンがパルス信号変換部103に達すると、イオンがパルス状の電気信号に変換され、パルス信号検出部104に出力される。パルス信号変換部103の構成としては、例えば、イオンの衝突により二次電子を放出するコンバージョンダイノードと、コンバージョンダイノードから放出された二次電子の入射により光を発するシンチレータと、シンチレータで発せられた光を検出する光検出器を備えている。光検出器は、入射した光子により発生する電子を増幅し、パルス状の電気信号(以下、パルス信号)を出力する。
パルス信号検出部104は、A/D変換部105、切替部106、パルス数カウント部107、パルス面積検出部108から構成される。
パルス信号変換部103から出力されたパルス信号は、A/D変換部105で一定のサンプリング周期ごとにアナログーデジタルコンバータ(A/D変換)処理を行い、デジタル値に変換され、切替部106に供給される。切替部106では、制御部109からの指示に従い、入力されたパルス信号をパルス数カウント部107あるいはパルス面積検出部108のどちらか一方に出力する。
パルス数カウント部106は、デジタル化されたパルス信号の各サンプルデータを所定の閾値と比較し、閾値以上のパルスの個数を数える。図2は、パルス数カウント部の閾値処理の波形図の一例を示す。具体的には、図2に示すように、閾値以上の連続するサンプルデータを1パルスとして計数する仕組みであり、同図の例では、2つのパルスが計数されたことを示している。
なお、閾値については、予め設定された閾値を用いてもよいし、表示部110を介してユーザにより設定された任意の閾値を用いてもよい。閾値の別の設定方法として、質量分離部102からイオンが出力されていない時にパルス数カウント部106のノイズ信号を取得し、ノイズ信号の最大値を閾値としてもよいし、ノイズ信号の平均値mとばらつきσから、閾値を(m+3σ)のように決定してもよい。
パルス面積検出部107は、デジタル化されたパルス信号の各サンプリングデータを所定の閾値と比較し、閾値以上のサンプルデータの大きさを計数する。図3は、パルス面積検出部の閾値処理の波形図の一例を示す。具体的には、図3に示すように、サンプルデータ値と予め設定した基準値を引き算して基準値に対するサンプルデータの大きさを求め、これを1パルス分加算した結果を1パルスの面積とする仕組みである。
図3の例では、左側のパルスは面積が20(=2+7+8+3)、右側のパルスは面積が30(=5+8+9+7+1)と計数された結果を示している。なお、基準値については、予め設定された値を用いてもよいし、或いは任意の基準値をユーザが設定してもよいが、パルス面積をより正確に算出するためには、基準値はパルスが入力されていない時の信号レベルに設定されることが望ましい。具体的には、例えば、質量分離部102からイオンが出力されていない時にパルス面積検出部107のノイズ信号を取得し、ノイズ信号の平均値を基準値とする。閾値については、パルス数カウント部106での閾値の設定方法と同様の方法を用いて設定することができる。
パルス数カウント部107で検出されたパルス数、あるいはパルス面積検出部108で検出されたパルス面積は順次、計数データとして制御部109に送られる。
制御部109では、パルス信号検出部104から得られた計数データをもとにイオン量が解析され、成分ごとの定量結果がモニタ画面などに表示される。なお、定量結果を表示する際は、成分ごとの定量結果に加えて、検出方式を合わせて表示することで、ユーザによる定量結果解析の一助となる。
また、定量結果の表示方法として、各成分のイオン量の差異を示すマススペクトルを表示する場合、制御部109は、パルス数あるいはパルス面積のどちらか一方の検出方式に計数単位を統一した解析結果を提示することで、ユーザは検出方式による定量結果の差異を意識する必要が無い。パルスカウント数を計数単位としてイオン量を求める場合は、予め、パルス信号変換部103にイオン1個が入射したときのパルス面積検出部107で検出されるイオン1個のパルス面積を記憶し、イオン1個のパルス面積を基準にしてパルス面積をパルス数に変換する。また、パルス面積を計数単位としてイオン量を求める場合は、前記イオン1個のパルス面積に計数したパルス数を掛け算することにより、パルス数をパルス面積に変換する。
パルス数とパルス面積を変換するための別の方法を、図14を用いて説明する。図14は、検量線の一例を示す。
まず、濃度が既知の試料を用いて、パルス数とパルス面積のそれぞれで、横軸を濃度、縦軸をパルス数及びパルス面積とした検量線を作成する。この結果をもとに、パルス数で作成した検量線1401(以下、第1検量線)とパルス面積で作成した検量線1402(以下、第2検量線)をフィッティングさせる関数を生成し、両者を相互に変換できるようにすることで、計数単位の統一を図ることができる。具体的には、第1検量線1401が直線性を示す範囲(図14では濃度X以下に設定)において、第2検量線1402を第1検量線1401にフィッティングさせる第1の変換関数を生成する。また、第1検量線1401が直線性を示さない範囲(図14では濃度X以上に設定)において、第1検量線1401の直線を伸ばしたライン1403に第2検量線をフィッティングさせる第2の変換関数を生成する。第1及び第2の変換関数を用いてパルス面積をパルス数に換算することで、パルス数を計数単位とした解析結果を提示することができる。
制御部109は、質量分析装置の全体動作を制御する。表示部110は、ディスプレイ、マウス、キーボードなどから構成され、制御部109で算出した定量結果の表示や、マウスやキーボードなどで操作されたユーザの指示を制御部109に送る。記憶部111は、制御部109で処理された各種データを格納する。
本実施例の質量分析装置により定量測定を行う場合の制御部109の詳細動作は次の通りである。ここでは、質量分離部102において、指定された複数のイオン成分を順に切り替えながら、成分ごとのイオン信号強度を測定する場合について述べる。
図4は、指定された複数のイオン成分を順番に切り替えるために、質量分離部102に対して時分割で印加される制御電圧と、制御電圧の切り替えによってパルス信号変換部103から出力されるパルス信号発生量の関係を示した一例である。そして図5は、記憶部に記憶される、成分ごとの検出方式を示すデータベースの一例、図6は、質量分析装置の動作の一例を示すフローチャートである。
制御部109は、図5に示すように、予めイオン成分ごとに、パルス信号の発生量に応じた適切な検出方式と制御電圧をデータベース化して記憶部111に格納している。制御部109は、このデータベースを参照し、図6に示すステップに従って各成分のイオン信号強度の測定を行う。
まず、ステップS601において、記憶部111に格納した図5のデータベースを基に、電源部112に送る制御データを変更し、これを受けて電源部112は質量分離部102への供給電圧を、分離するイオン成分に適した制御電圧に変更する。これと同期して、制御部109は、ステップS602を実行し、パルス信号検出部104に送る検出方式データも変更する。これによって、パルス信号変換部103から出力されるパルス信号の検出方式がイオン成分ごとに切り替わる。そして制御部109は、ステップS603にて、パルス信号検出部104から出力される計数データを受信する。その後、制御部109は、ステップS604にて測定が終了したか否かを判断する。
この結果、パルス信号の発生量がイオン成分ごとに変化しても、適切な検出方式を用いてイオン量を測定することができる。
例えば、図4に示すように、制御電圧V1(401)が印加されると、パルス信号が多量に発生するが、これと同時に、検出方式としてパルス面積(403)が選択される。また、制御電圧がV2(402)に変更されると、パルス信号の発生量が減少するが、これと同時に、検出方式としてパルス数(404)が選択される。
制御部109では、ステップS601〜S604の処理を、指定の測定時間が経過するまで、あるいは、指定の測定回数に達するまで繰り返し実行する。
なお、ステップS601とステップS602は同期処理されることと説明したが、電源部112に制御信号を出力してから対象イオン成分のパルス信号が切替部106に到達するまでの遅延時間を考慮し、制御部109は、電源部112に制御信号を出力してから前記遅延時間に相当する時間のウエイトを設けた後、切替部115への検出方式データの設定を行うようにすることも可能である。
図7は、表示部110に表示される、切替部106に設定するための、成分ごとの検出方式設定用の入力画面の一例である。図7において、701は、質量電荷比(m/z)を横軸、イオン量を縦軸としたマススペクトルデータである。このマススペクトルデータは、定量測定を行う前に、例えば測定試料中にどのような成分が含まれているかを調べる定性分析などの測定を実施した際の結果を示している。また、マススペクトルデータの事前測定を省略するために、測定試料の種類やサンプル量などの情報をもとに、マススペクトルの予測結果を示してもよい。
各成分がどちらの検出方式を採用するかに関しては、マススペクトルデータ701に図示した閾値を用いて決定することができる。閾値よりもイオン量が大きい、すなわち、パルス検出量が多い成分の場合は検出方式をパルス面積とし、閾値よりもイオン量が小さい、すなわち、パルス発生量が少ない成分の場合は検出方式をパルス数とする。閾値はユーザが任意に設定することが可能であり、閾値設定の結果、成分と検出方式の対応表702に示すように、イオン成分ごとに検出方式が決定される。また、イオン成分ごとに定量測定の実施要否を選択するチェックボックスが用意され、ユーザの指示で定量対象イオン成分を選択することができる。
図8は、表示部110に表示される、切替部106に設定するための、成分ごとの検出方式設定用の入力画面の別の一例である。図8において、試料種類、試料のサンプル量、及び定量したいイオン成分について、ユーザが記入またはプルダウンメニューから選択することができる。記憶部111には様々な試料種類、試料のサンプル量、及びそこから定量可能なイオン成分と予測されるイオン量などがデータベース化されて記憶されており、ユーザの設定条件をもとに各イオン成分の検出方式が決定され、イオン成分名の右側に検出方式が表示される。ユーザは表示された検出方式に従い定量測定を実施してもよいし、ユーザ自身で検出方式を変更することもできる。
以上、本実施例の質量分析装置は、四重極型質量分析計に供給する制御電圧の変更と同期して、パルス信号検出部104での検出方式を変更するように構成したことで、パルス信号変換部103から出力されるパルス信号の検出方式をイオン成分ごとに切り替えることができる。これにより、パルス信号の発生量がイオン成分ごとに異なっている場合においても、適切な検出方式を適用してイオン量を測定することが可能となる。
次に、図9〜図11を用いて本発明による第2の実施例を説明する。
図9は、本発明の第2の実施形態に係る質量分析装置の構成を示すブロック図である。同図において、図1と同一符号は同一処理を示すので、再度の説明は省略する。
図9において、フィルタ113は、パルス信号変換部103から出力されたパルス信号に対してフィルタ処理を適用し、フィルタ処理が適用されたパルス信号がA/D変換器105に供給される構成である。フィルタ113は、パルス信号変換部103からのパルス信号に対してフィルタ処理を適用せずに、A/D変換器105に直接供給することも可能であり、制御部109からの指示に従い、フィルタの適用可否が選択される。制御部109は、電源部112への制御信号及び切替部115への検出方式選択信号を出力すると同時に、フィルタ適用可否の指示信号をフィルタ113に供給する。
フィルタ113のフィルタ処理は、パルス信号の波形を鈍化させることが可能なローパスフィルタであり、フィルタの適用によりパルス信号の波高値が低下する作用がある。フィルタ処理の方式は、どのような方式であっても構わないが、フィルタ適用後のパルス信号の面積がフィルタ適用前と変化が無いほうが望ましい。
なお、実施例1と同様に、予めイオン成分ごとに、フィルタ適用の可否をデータベース化して記憶部111に格納しておいても良い。データベース化しておくことで、制御部109は、このデータベースを参照し、各成分のイオン信号強度の測定を行うことができる。
図10は、表示部110に表示され、切替部106及びフィルタ113に設定するための、成分ごとの検出方式設定用の入力画面の一例である。図10において、1001は、質量電荷比(m/z)を横軸、イオン量を縦軸としたマススペクトルデータである。このマススペクトルデータは、定量測定を行う前に、例えば測定試料中にどのような成分が含まれているかを調べる定性分析などの測定を実施した際の結果を示している。または、測定試料の種類やサンプル量などの情報をもとに、予測されるマススペクトルを示してもよい。
各成分がどのような検出方式を適用するかについて、マススペクトル1001に図示した閾値1、閾値2を用いて決定することができる。閾値2よりもイオン量が大きい成分の場合は、検出方式をパルス面積及びフィルタを適用する(ON)とする。また、イオン量が閾値1から閾値2の間を示す成分の場合は検出方式をパルス面積とし、フィルタは適用しない(OFF)とする。閾値1よりもイオン量が少ない成分の場合は検出方式をパルス数とする。閾値1、閾値2はユーザが任意に設定することが可能であり、閾値設定の結果、成分と検出方式の対応表1002に示すように、イオン成分ごとに検出方式が決定される。また、イオン成分ごとに定量測定の実施要否を選択するチェックボックスが用意され、ユーザの指示で定量対象イオン成分を選択することができる。
図11は、表示部110に表示され、切替部106に設定するための、成分ごとの検出方式設定用の入力画面の別の一例である。図11において、試料種類、試料のサンプル量、及び定量したいイオン成分について、ユーザが記入またはプルダウンメニューから選択することができる。記憶部111には様々な試料種類、試料のサンプル量、及びそこから定量可能なイオン成分と予測されるイオン量などがデータベース化されて記憶されており、ユーザの設定条件をもとに各イオン成分の検出方式及びフィルタ適用要否が決定され、イオン成分名の右側に検出方式及びフィルタ適用要否が表示される。ユーザは表示された検出方式及びフィルタ適用要否に従って定量測定を実施しても良いし、ユーザ自身で検出方式及びフィルタ適用要否の設定を変更することも可能である。
以上、本実施例の質量分析装置は、四重極型質量分析計に供給する制御電圧の変更やパルス信号検出部104への検出方式の変更と同期して、フィルタ適用要否を設定するように構成したことで、パルス信号変換部103から出力されるパルス信号が多量で、パルス信号振幅が増大する成分の場合に、フィルタ処理によりパルス信号振幅を低減し、A/D変換器105の入力レンジオーバを回避することができる。これにより、パルス信号の発生量がイオン成分ごとに異なっている場合においても、フィルタの適用要否を適切に制御し、A/D変換器105の入力レンジオーバを回避してイオン量を測定することが可能となる。
次に、図12を用いて本発明による第3の実施例を説明する。なお、図12において、図6と同一符号は同一処理を示すので、再度の説明は省略する。
図12が示す第3の実施例の質量分析装置の構成は、図1で示した第1の実施例の質量分析装置の構成と同様である。第1の実施例では、制御部109は、記憶部111に予めイオン成分ごとにパルス発生量に応じた適切な検出方式を記憶していたが、本実施例では、イオン成分ごとのパルス発生量を予め把握することができず、パルス発生量が時間変動する場合における制御部109の動作を説明する。
図12は、本発明の第2の実施形態に係る質量分析装置の動作を示すフローチャートである。図6のステップと同じ処理を行うステップについては説明を省略する。図12のステップS1201〜S1203に示すように、制御部109は、ステップS603の処理で受信した計数データを閾値と比較し(ステップ1201)、計数データが閾値より大きい場合は、図3に示したデータベースの当該イオン成分の検出方式をパルス面積に設定し(ステップS1202)、計数データが閾値より小さい場合は、図3に示したデータベースの当該イオン成分の検出方式をパルス数に設定する(ステップS1203)。この結果、当該イオン成分のパルス発生量が時間とともに変動し、適切な検出方式が変化しても、パルス発生量の変化に追随して適切な検出方式が自動的に設定される。したがって、時間とともにイオン量が変動する成分に対しても、適切な検出方式を用いた高精度なイオン量測定を実現することができる。
次に、図13を用いて本発明による第4の実施例を説明する。なお、図13において、図1と同一符号は同一部品を示すので、再度の説明は省略する。
図13は、第4の実施例の質量分析装置の構成を示す。第1の実施例では、切替部106を制御してパルス数カウント部107又はパルス面積検出部108のどちらか一方の検出方式を選択したが、第4の実施例では、パルス数カウント部107及びパルス面積検出部108の両方でパルス発生量を計数し、適切な検出方式を判断した後、どちらか一方のデータを制御部109に送るようにした点が第1の実施例と比較した場合の変更点である。
図13に示すように、パルス信号検出部104では、パルス信号変換部103から出力されたパルス信号がA/D変換部105でデジタル化され、パルス数カウント部107及びパルス面積検出部108にそれぞれ供給される。パルス数カウント部107及びパルス面積検出部108では、四重極型質量分析計に供給する制御電圧の変更と同期して、計数開始信号が供給され、これを受けると、実施例1で述べた手順と同様の手順に従い、パルス数及びパルス面積をそれぞれ計数する。計数されたパルス数データ及びパルス面積データは、パルス量検出部1301に供給されるとともに、それぞれの計数データはパルス信号検出部104の図示しない内部メモリに一時的に格納される。パルス量検出部1301では、供給されたパルス数データ又はパルス面積データのどちらか一方のデータ、あるいは両方のデータが所定の閾値と比較され、計数データが所定の閾値より大きい場合はパルス面積検出部108に対してパルス面積データを制御部109に送るよう指示し、計数データ値が閾値より小さい場合はパルス数カウント部107に対してパルス数データを制御部109に送るよう指示する。なお、指示を受けたパルス数カウント部107あるいはパルス面積検出部108は、はじめに前記内部メモリに一時的に格納した計数データを読み出して制御部109に送り、続いて順次計数されたデータを制御部109に送るようにする。
以上、本実施例の質量分析装置は、パルス信号検出部104の内部に検出方式を決定するパルス量検出部1301を設け、四重極型質量分析計に供給する制御電圧の変更と同期して、パルス信号検出部104にて検出方式の選定処理を実行している。この結果、当該イオン成分のパルス発生量が時間とともに変化しても、パルス発生量を把握してから適切な検出方式を決定するため、常に適切な検出方式を用いてイオン量を測定することができる。
上記実施例1〜実施例4において、パルス数とパルス面積のどちらを選択して計数測定を実施するかの決定は、閾値判定を用いることとした。一般的なイオン検出器では1秒間におけるパルス数の発生量が10の6乗以上あるいは10の7乗以上になるとパルスの重畳が発生してパルス数に計数誤差が発生してくるため、例えば、閾値としてこれらの値が目安となる。もちろん、これらの値に限定するものではなく、ユーザによって任意の値を用いることができる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
101…イオン化部、102…質量分離部、103…パルス信号変換部、104…パルス信号検出部、105…A/D変換部、106…切替部、107…パルス数カウント部、108…パルス面積検出部、109…制御部、110…表示部、111…記憶部、112…電源部、113…フィルタ、701、1001…マススペクトル、702、1002…成分と検出方式の対応表、1301…パルス量検出部、1401、1402、1403…検量線。

Claims (8)

  1. 質量電荷比に応じてイオンを分離する質量分離部と、
    前記質量分離部で分離されたイオンの信号の個数を計数するカウント部と、
    記質量分離部で分離されたイオンの信号の面積を積算する面積検出部と、
    前記質量分離部、前記カウント部および面積検出部の動作を制御する制御部と、
    前記質量分離部で分離されたイオンの信号波形を整形処理するフィルタ部と、
    を備え、
    前記制御部は、第一のイオンを前記質量分離部で分離するための制御信号と、前記第一のイオンの信号を整形処理するか否かを示す制御信号と、前記第一のイオンの検出方式を前記カウント部または前記面積検出部のいずれかに切り替える制御信号と、を同期制御する、質量分析装置。
  2. 請求項1に記載された質量分析装置において、
    前記質量分離部で分離するイオンと、前記イオンの検出方式を対応づけたデータベースを格納した記憶部、を備え、
    前記制御部は、前記データベースに基づいて、前記第一のイオンの検出方式を前記カウント部または前記面積検出部のいずれかに切替えることを特徴とする、質量分析装置。
  3. 請求項1に記載された質量分析装置において、
    前記質量分離部で分離するイオンと、前記イオンの検出方式の少なくとも一つを入力可能な入力部、を備えることを特徴とする質量分析装置。
  4. 請求項1に記載された質量分析装置において、
    前記質量分離部で分離するイオンと、前記イオンの検出方式または前記フィルタ部において前記イオンの信号を整形処理するか否か、を対応づけたデータベースを格納した記憶部、を備え、
    前記制御部は、前記データベースに基づいて、前記第一のイオンの検出方式を前記カウント部または前記面積検出部のいずれかに切替えることを特徴とする、質量分析装置。
  5. 請求項に記載された質量分析装置において、
    前記質量分離部で分離するイオンと、前記第一のイオンの検出方式、前記フィルタ部において整形処理をするか否か、のうち少なくとも一つを入力可能な入力部、を備えることを特徴とする質量分析装置。
  6. 請求項1に記載された質量分析装置において、
    前記第一のイオンを前記カウント部または前記面積検出部で検出し、
    前記検出結果が所定の閾値より大きい場合は、検出方式を前記面積検出部に設定し、前記検出結果が所定の閾値よりも小さい場合は、検出方式を前記カウント部に設定する、ことを特徴とする質量分析装置。
  7. 質量電荷比に応じてイオンを分離する質量分離部と、
    前記質量分離部で分離されたイオンの信号の個数を計数するカウント部と、
    記質量分離部で分離されたイオンの信号の面積を積算する面積検出部と、
    前記質量分離部、前記カウント部および面積検出部の動作を制御する制御部と、を備え、
    前記制御部は、第一のイオンを前記質量分離部で分離するための制御信号と、前記カウント部での計数結果と前記面積検出部での積算結果に基づいて前記第一のイオンの検出方式を前記カウント部または前記面積検出部のいずれかに切り替える制御信号と、を同期制御する、質量分析装置。
  8. 請求項に記載された質量分析装置であって、
    前記制御部は、前記計数結果または前記積算結果の少なくとも一つを所定の閾値と比較し、
    前記計数結果または記積算結果が所定の閾値より大きい場合は、検出方式を前記面積検出部に設定し、前記計数結果または記積算結果が所定の閾値よりも小さい場合は、検出方式を前記カウント部に設定する、ことを特徴とする質量分析装置。
JP2014216826A 2014-10-24 2014-10-24 質量分析装置 Active JP6416578B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014216826A JP6416578B2 (ja) 2014-10-24 2014-10-24 質量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014216826A JP6416578B2 (ja) 2014-10-24 2014-10-24 質量分析装置

Publications (2)

Publication Number Publication Date
JP2016085817A JP2016085817A (ja) 2016-05-19
JP6416578B2 true JP6416578B2 (ja) 2018-10-31

Family

ID=55973131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014216826A Active JP6416578B2 (ja) 2014-10-24 2014-10-24 質量分析装置

Country Status (1)

Country Link
JP (1) JP6416578B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203134A1 (ja) * 2019-04-05 2020-10-08 株式会社日立ハイテク 質量分析システム、および質量分析装置の性能を判定する方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153337B2 (ja) * 1992-06-08 2001-04-09 横河アナリティカルシステムズ株式会社 誘導結合プラズマ質量分析装置
JPH06118176A (ja) * 1992-10-06 1994-04-28 Hitachi Ltd 荷電粒子等の検出装置及びこれを用いた質量分析計
JPH08102282A (ja) * 1994-09-30 1996-04-16 Shimadzu Corp 質量分析装置
JPH09251079A (ja) * 1996-03-14 1997-09-22 Jeol Ltd イオン検出システム
US6586728B1 (en) * 1999-05-13 2003-07-01 Ciphergen Biosystems, Inc. Variable width digital filter for time-of-flight mass spectrometry
US7265346B2 (en) * 2001-05-25 2007-09-04 Analytica Of Brandford, Inc. Multiple detection systems
JP2009266444A (ja) * 2008-04-23 2009-11-12 Shimadzu Corp 質量分析装置

Also Published As

Publication number Publication date
JP2016085817A (ja) 2016-05-19

Similar Documents

Publication Publication Date Title
JP5305053B2 (ja) 質量分析装置
US20130338935A1 (en) Mass spectrometry data processing device
US20140110574A1 (en) Transient level data acquisition and peak correction for time-of-flight mass spectrometry
JP6305543B2 (ja) 標的化した質量分析
US20130268212A1 (en) Data Acquisition System and Method for Mass Spectrometry
CN104781659B (zh) 质量分析装置和质量校正方法
JP6090479B2 (ja) 質量分析装置
JP5737419B2 (ja) 質量分析装置を用いた定量分析方法及び質量分析装置
US8803083B2 (en) Time of flight mass spectrometer
JP6495905B2 (ja) Tofデータ取得のための強度補正
US8030611B2 (en) Mass spectrometer, method of mass spectrometry and program for mass spectrometry
JP6365661B2 (ja) 質量分析方法及び質量分析装置
CN113287186B (zh) 减少了背景和峰重叠的用于自顶向下分析的获取策略
US11031226B2 (en) Mass spectrometer and mass spectrometry
JP6416578B2 (ja) 質量分析装置
JP6418702B2 (ja) 改善された感度のためのイオンの多重化
JP2016505833A (ja) 飛行時間型msのadcデータの飛行ごとの補正
JP6750687B2 (ja) 質量分析装置
JP2016053500A (ja) クロマトグラフ質量分析装置
US11152201B2 (en) Time-of-flight mass spectrometer
CN108352293A (zh) 四极杆滤质器以及四极杆质谱分析装置
JP6591565B2 (ja) 質量分析装置及びそのイオン検出方法
JP2011014481A (ja) 質量分析装置
WO2023112156A1 (ja) 飛行時間型質量分析装置
JP2019124610A (ja) クロマトグラフ質量分析装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181004

R150 Certificate of patent or registration of utility model

Ref document number: 6416578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350