WO2023112156A1 - 飛行時間型質量分析装置 - Google Patents

飛行時間型質量分析装置 Download PDF

Info

Publication number
WO2023112156A1
WO2023112156A1 PCT/JP2021/046087 JP2021046087W WO2023112156A1 WO 2023112156 A1 WO2023112156 A1 WO 2023112156A1 JP 2021046087 W JP2021046087 W JP 2021046087W WO 2023112156 A1 WO2023112156 A1 WO 2023112156A1
Authority
WO
WIPO (PCT)
Prior art keywords
saturation
time
mass
mass spectrum
range
Prior art date
Application number
PCT/JP2021/046087
Other languages
English (en)
French (fr)
Inventor
雄太 宮崎
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2023567344A priority Critical patent/JPWO2023112156A1/ja
Priority to PCT/JP2021/046087 priority patent/WO2023112156A1/ja
Publication of WO2023112156A1 publication Critical patent/WO2023112156A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the present invention relates to a Time Of Flight Mass Spectrometer (TOFMS).
  • TOFMS Time Of Flight Mass Spectrometer
  • TOFMS TOFMS
  • ions derived from components in a sample are given a certain amount of energy and injected into a flight space, and the ions are divided into respective mass-to-charge ratios m/z (strictly, the italicized “m/z” are separated in time according to their time-of-flight, which reflects their "mass-to-charge ratio” or "m/z", as is customary herein, and then detected by a detector. Based on this detection signal, a time-of-flight spectrum indicating the relationship between time-of-flight and ion intensity can be obtained, and a mass spectrum can be created by converting the time-of-flight in the time-of-flight spectrum into an m/z value. .
  • the detector In TOFMS, it is necessary to accurately measure the flight time of each ion species with high time resolution. Therefore, the detector is required to have high speed response and high sensitivity, and generally an ion detection system using a micro-channel plate (MCP) or an electron multiplier is used.
  • MCP micro-channel plate
  • the MCP has a wide ion-receiving surface for detecting ions, and can detect ions with the same m/z value spread out to some extent in the direction orthogonal to the ion optical axis substantially simultaneously. It is widely used in high-resolution TOFMS such as (see Patent Document 1, etc.).
  • detectors such as MCP generally tend to saturate the output current signal when a large amount of ions are incident simultaneously.
  • signal saturation occurs, the shape of part of the mass spectrum waveform created based on the detection signal does not reflect the number of ions incident on the detector, and the ion intensity value and m/z value (precise mass) becomes inaccurate.
  • TOFMS many commercially available TOFMS have a function of notifying the user when the acquired mass spectrum is signal saturated.
  • a conventional TOFMS has a function of displaying a mass spectrum containing data in which the signal saturation has occurred in a color different from that of a normal mass spectrum.
  • the user can avoid performing analysis such as component identification using a mass spectrum whose waveform shape is inaccurate, and can prevent erroneous identification and overlooking of components.
  • the present invention was made to solve these problems, and its main purpose is to analyze the acquired mass spectrum data without wastefully discarding it even when signal saturation occurs in the detector. To provide a TOFMS that can be effectively used for
  • TOFMS is a detector that detects ions separated in time according to their mass-to-charge ratio; a saturation detection unit that detects saturation of the detection signal by the detection unit; From the point of time preceding a first predetermined time including zero from the start point of the saturation period in which saturation is detected by the saturation detection unit to the point of time delayed from the end point of the saturation period by a second predetermined time which is non-zero.
  • a range identifying unit that identifies a saturation influence time range
  • a mass spectrum creation unit that creates a mass spectrum based on the detection signal from the detection unit
  • a display processing unit that displays the mass spectrum in such a manner that a mass-to-charge ratio range region corresponding to the saturation effect time range and another mass-to-charge ratio range region can be visually identified in the mass spectrum;
  • Another aspect of the TOFMS according to the present invention is a detector that detects ions separated in time according to their mass-to-charge ratio; a saturation detection unit that detects saturation of the detection signal by the detection unit; From the point of time preceding a first predetermined time including zero from the start point of the saturation period in which saturation is detected by the saturation detection unit to the point of time delayed from the end point of the saturation period by a second predetermined time which is non-zero.
  • a range identifying unit that identifies a saturation influence time range
  • a mass spectrum creation unit that creates a mass spectrum based on the detection signal from the detection unit; In the mass spectrum, the waveform of the mass-to-charge ratio range corresponding to the saturation influence time range or the data constituting the waveform is subjected to processing different from the processing of the waveform of the other mass-to-charge ratio range or the data constituting the same.
  • a processing unit Prepare.
  • a certain area can be visually distinguished and notified to the user.
  • the user can avoid undesirable situations such as erroneous identification or overlooking of components due to the use of inaccurate mass spectrum waveforms.
  • processing such as component identification can be performed using a normal mass spectrum waveform that is not affected by signal saturation in one mass spectrum. As a result, the obtained mass spectrum data can be effectively used for analysis without wasting it.
  • the data existing in the region where the mass spectrum waveform generated before and/or after the saturation period due to the saturation of the detection signal is disturbed for example, component identification processing, quantitative processing, Alternatively, it can be excluded from various processing targets such as precursor ion selection processing for MS/MS analysis.
  • processing targets such as precursor ion selection processing for MS/MS analysis.
  • FIG. 1 is a schematic block diagram of a TOFMS that is an embodiment of the present invention
  • FIG. 4 is a diagram showing another example of mass spectrum display in TOFMS of the present embodiment;
  • FIG. 4 is a diagram showing another example of mass spectrum display in TOFMS of the present embodiment;
  • FIG. 2 is a schematic block diagram of a TOFMS that is another embodiment of the present invention;
  • FIG. 2 is a schematic block diagram of a TOFMS that is another embodiment of the present invention;
  • ToFMS detectors are required to be high speed, so ringing is likely to occur in the output signal. If such ringing appears in the mass spectrum, it may be erroneously detected as an ion-derived peak. Therefore, in TOFMS, the following countermeasures against ringing are usually taken.
  • ⁇ Countermeasure 1> As the simplest countermeasure, a judgment threshold is set for the detection signal level (that is, ion intensity), and the signal waveform whose ion intensity is below the judgment threshold is removed (zeroed) to reduce the effects of ringing. There is a way to reduce In this method, not only ringing but also minute detection signals derived from normal ions are removed, so there is a disadvantage that the detection lower limit performance of the device is deteriorated. can be effectively reduced.
  • the detection signal level that is, ion intensity
  • Countermeasure 2 As another countermeasure, there is a method of reducing ringing by performing signal processing that cancels out the ringing waveform. For example, in the data processing method described in Patent Document 2, an approximation waveform of ringing accompanying a peak waveform to be observed in a detection signal output from a detector is calculated by an FIR filter, and the ringing is approximated from the original detection signal. Ringing is removed by subtracting the waveform. According to this method, it is possible to effectively reduce the ringing while avoiding the problem of deterioration of the detection lower limit performance of the device that occurs in the measure 1. In addition, it is possible to suppress ringing that exceeds the determination threshold in Countermeasure 1.
  • the influence of the signal processing may cause mass spectral waveform anomalies in m/z ranges other than the m/z range corresponding to signal saturation.
  • FIG. 1 is a schematic block diagram of the TOFMS of this embodiment.
  • the TOFMS of this embodiment includes a measurement unit 1, a data processing unit 2, and a display unit 3.
  • the measurement section 1 includes an ion source 10, an orthogonal acceleration section 11, a flight tube 12, a reflector 13, and a detector .
  • Detector 14 is typically an MCP.
  • an orthogonal acceleration type reflectron type TOF mass separator is used, but the method and configuration of the TOF mass separator are not limited to this.
  • the data processing unit 2 includes, as functional blocks, an analog-to-digital conversion unit (ADC) 20, a ringing removal unit 21, a data integration unit 22, a mass spectrum creation unit 23, a saturation detection unit 24, a saturation influence region determination unit 25, a saturation influence m A /z range identification unit 26, a display processing unit 27, and a data storage unit 28 are included.
  • ADC analog-to-digital conversion unit
  • FIG. 2 is a schematic diagram showing an example of detection signals and saturation effect time ranges acquired in this TOFMS.
  • 3 to 5 are diagrams each showing an example of a mass spectrum display.
  • the ion source 10 ionizes the components (compounds) in the sample.
  • the sample is an eluate containing components separated by a column of a liquid chromatograph (not shown), and the ion source 10 sequentially ionizes the components contained in the continuously introduced sample.
  • Ions generated by the ion source 10 are introduced into the orthogonal acceleration section 11 .
  • the orthogonal acceleration unit 11 periodically applies acceleration energy in a pulsed manner in a direction perpendicular to the direction of incidence of the ions (downward in FIG. 1), thereby ejecting the ions.
  • the ejected ions are introduced into the flight space formed within the flight tube 12 and travel straight, and then are turned back by the reflected electric field formed by the reflector 13 .
  • the ions finally reach the detector 14.
  • the velocity at which various ions are introduced into the flight space depends on the m/z value of the ions. Therefore, ions with different m/z values simultaneously leaving the orthogonal acceleration unit 11 arrive at the detector 14 with a time lag.
  • the detector 14 momentarily generates a detection signal corresponding to the amount of ions that have arrived and sends it to the data processing unit 2 .
  • the detection signal introduced into the data processing unit 2 indicates the relationship between the time of flight and the ion intensity when the ion ejection time from the orthogonal acceleration unit 11 is zero, that is, the time-of-flight spectrum.
  • the orthogonal acceleration unit 11 periodically and repeatedly ejects ions.
  • the detection signal representing the time-of-flight spectrum is repeatedly input to the data processing unit 2 .
  • repetition of ion ejection is called a cycle. That is, a time-of-flight spectrum is obtained for each cycle over a predetermined time-of-flight range.
  • the ADC 20 samples the detection signal at very short time intervals and converts it into digital data.
  • the ringing remover 21 suppresses the ringing waveform accompanying the peak waveform in the detection data, for example, according to the data processing method described in Patent Document 2 (that is, the countermeasure 2 above). However, this may be in accordance with measure 1 above.
  • the data integration unit 22 integrates time-of-flight spectrum data for a predetermined number of continuous cycles to obtain one time-of-flight spectrum data for each predetermined number of cycles.
  • the predetermined number of cycles can be determined appropriately.
  • the mass spectrum creating unit 23 creates a mass spectrum showing the relationship between the m/z value and the ion intensity by converting the flight time in the integrated time-of-flight spectral data into an m/z value. Appropriate waveform processing such as noise removal processing may be performed before the mass spectrum is created. Further, the mass spectrum creating unit 23 creates a mass spectrum of profile display, which is a continuous waveform in the m/z axis direction, and then performs centroid processing to create a mass spectrum of bar graph display. good.
  • the output of the ADC 20 (data obtained by digitizing the detection signal) is also input to the saturation detection section 24.
  • the saturation detector 24 constantly monitors the level of the detection signal and detects the period during which the level exceeds the saturation detection threshold as the saturation region.
  • the saturation detection section 24 may detect the saturation region based on the level of the detection signal before digitization. As an example, when a detection signal as shown in FIG. 2 is input, the range of time t1 to t2 in which the level of the detection signal exceeds the saturation detection threshold value A is detected as the saturation region P.
  • FIG. The detection signal itself peaks out at a level slightly higher than the saturation detection threshold A, as shown in FIG. This plateaued peak is accompanied by ringing that continues for a relatively long time.
  • the saturation affected region determination unit 25 determines a second region from the end time t2 of the region P from the time t0 that is the first predetermined time ta before the start time t1 of the region P.
  • a time range up to a time t3 delayed by a predetermined time tb is determined as a saturation influence region Q.
  • FIG. This saturation influence region Q indicates a time-of-flight range in which the waveform is substantially affected by saturation of the detection signal, and the other regions can be regarded as time-of-flight ranges in which the waveform is substantially unaffected.
  • the first predetermined time ta may be zero and the second predetermined time tb is non-zero. Both the first predetermined time ta and the second predetermined time tb can be experimentally determined in advance by the manufacturer of the apparatus, and can be determined, for example, as follows.
  • the ringing removal unit 21 if ringing is removed by performing a convolution operation with an FIR filter as in the example described in Patent Document 2, even a part of the convolution operation includes data in the saturation region P.
  • the output waveform of the ringing remover 21 becomes abnormal. Therefore, it is preferable to determine the predetermined times ta and tb according to the time corresponding to the filter length (the number of taps) of the FIR filter used for the calculation.
  • the ringing removal unit 21 when the ringing is removed by the method shown in countermeasure 1 above, the characteristic of the detection signal when ions are incident is experimentally investigated, and the peak signal corresponding to the incident ions is output.
  • the saturation effect region P includes the period from when it starts (usually at the beginning of the peak) to when the ringing associated with the peak signal has substantially disappeared (converged below an acceptable level). It is preferable to set the predetermined times ta and tb as follows.
  • the saturation influence region determination unit 25 also determines the saturation influence region Q for each time-of-flight spectrum of one cycle.
  • a saturation effect m/z range identification unit 26 converts a plurality of saturation effect regions Q corresponding to a plurality of time-of-flight spectrum data, which are objects of data integration in the data integration unit 22, into m/z ranges. Further, the OR of the multiple m/z ranges is calculated. That is, an m/z range that includes all m/z values included in any of a plurality of m/z ranges is calculated as the saturation effect m/z range.
  • the data storage unit 28 receives mass spectral data and information on the saturation influence m/z range corresponding to the mass spectral data, associates them, and stores them.
  • the display processing unit 27 similarly receives the mass spectrum and the saturation effect m/z range corresponding to the mass spectrum, and is visually distinguishable between the saturation effect m/z range and other m/z ranges.
  • the mass spectrum is displayed on the display unit 3 as follows.
  • the color of the mass spectrum line in the profile display can be changed between the saturation influence m/z range M1 to ⁇ 2 and others.
  • the color of the background portion of the mass spectrum of the profile display can be changed between the saturation influence m/z range M1 to ⁇ 2 and the others.
  • markings indicating the saturation influence m/z range M1 to ⁇ 2 may be displayed in the mass spectrum of the profile display.
  • centroid peak created using data included in the saturation effect m/z range is considered to be the peak affected by signal saturation, and is drawn in a different color from other peaks, for example. , etc., may be performed.
  • the time-of-flight spectrum data was integrated, but integration is not essential.
  • the mass spectrum was obtained by converting the time of flight into m/z values after integrating the time-of-flight spectrum data, but the order of integration and conversion into m/z values may be changed.
  • FIG. 6 is a schematic block diagram of TOFMS of another embodiment.
  • the same components as those of the TOFMS shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted unless particularly necessary.
  • the measurement unit 1B is a quadrupole-time-of-flight mass spectrometer (Q-TOFMS) capable of MS/MS analysis. That is, various sample-derived ions generated by the ion source 10 are introduced into the quadrupole mass filter 15, and ions having a specific m/z value are selected as precursor ions in the quadrupole mass filter. The precursor ions are dissociated by collision-induced dissociation or the like in the next collision cell 16, and the generated product ions are introduced into the orthogonal acceleration section 11 and separated and detected according to the time of flight. The analysis operation in the measurement section 1B is controlled by the control section 4. FIG.
  • Q-TOFMS quadrupole-time-of-flight mass spectrometer
  • the data processing unit 2B includes a precursor ion selection unit 200 in addition to each functional block included in the data processing unit 2 in TOFMS shown in FIG.
  • DDA Data Dependent Acquisition
  • mass analysis is performed on all ions produced by the ion source 10 without first performing ion selection in the quadrupole mass filter 15 and ion dissociation in the collision cell 16.
  • the precursor ion selection unit 200 receives the mass spectrum and information on the saturation effect m/z range corresponding to the mass spectrum, and when the saturation effect m/z range exists, the saturation effect m/z range in the mass spectrum Set the m/z range excluding to the precursor selectable m/z range. For example, when the mass spectrum and the saturation influence m/z range M1-M2 are in the state shown in FIG. 5, the m/z range other than this M1-M2 is set as the precursor selectable m/z range. Then, the precursor ion selection unit 200 extracts one or more peaks satisfying a predetermined condition from the mass spectrum waveform in the precursor selectable m/z range, and assigns m/z values corresponding to the peaks to precursor ions.
  • the predetermined conditions are generally conditions for selecting precursor ions during DDA, for example, selecting a predetermined number of peaks in descending order of peak intensity, and selecting peaks whose peak intensity is equal to or greater than a predetermined threshold. , and so on.
  • a peak existing in the saturation influence m/z range M1 to M2 is not selected as a precursor ion even if it satisfies the above predetermined conditions.
  • Information on the precursor ions extracted by the precursor ion selection unit 200 is immediately sent to the control unit 4, and the control unit 4 performs normal (that is, ion dissociation is not performed) mass analysis immediately before that, followed by MS/MS analyzes targeting designated precursor ions are performed in order.
  • the measurement unit 1B can obtain the time-of-flight spectrum of the product ions generated by dissociating the specified precursor ions.
  • waveforms that are highly likely to be abnormal due to signal saturation are excluded from selection of precursor ions, so MS/MS analysis is performed for precursor ions with inappropriate m/z values. can be avoided. As a result, useless execution of MS/MS analysis can be eliminated, and MS/MS analysis that yields significant results can be efficiently performed.
  • FIG. 7 is a schematic block diagram of a TOFMS according to still another embodiment.
  • the same components as those of the TOFMS shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted unless particularly required.
  • the data processing unit 2C includes an identification processing unit 201 and an identification database 202 in addition to each functional block included in the data processing unit 2 in the TOFMS shown in FIG.
  • the identification processing unit 201 identifies components using accurate mass derived from m/z values of peaks observed in the mass spectrum. If the measurement unit 1 includes a liquid chromatograph or a gas chromatograph (not shown), the retention time in the chromatograph can also be used for component identification. In addition, the peak pattern of the mass spectrum, the ratio of peak intensities of a plurality of specific ions (so-called confirmation ion ratio), etc. may be used for component identification.
  • the identification database 202 provides information for component identification, and contains appropriate information such as exact mass and standard retention time for each compound.
  • the measurement unit 1 repeatedly acquires the time-of-flight spectrum of ions originating from the sample, and the data processing unit 2C integrates a plurality of time-of-flight spectrum data, and calculates the time-of-flight m Calculate the mass spectrum by converting to /z value. Also, the saturation detector 24, the saturation influence region determiner 25, and the saturation influence m/z range identifier 26 determine the saturation influence m/z range corresponding to the acquired mass spectrum.
  • the identification processing unit 201 receives the mass spectrum and information on the saturation effect m/z range corresponding to the mass spectrum, and if there is a saturation effect m/z range, identifies the saturation effect m/z range in the mass spectrum. Component identification is performed based only on waveforms that fall within the excluded m/z ranges. For example, when the mass spectrum and the saturation influence m/z range M1 to M2 are in the state shown in FIG. conduct.
  • the mass peak is Excluded from the target of component identification.
  • the mass peak ion intensity existing in the saturation influence m/z range M1 to M2 is not used for calculating the confirming ion ratio. This makes it possible to avoid component identification based on inaccurate m/z value and ionic strength information, and reduce erroneous identification and component oversight.
  • the measurement unit may be one that utilizes a TOF mass separator, and includes ion trap-TOFMS and the like in addition to the Q-TOFMS described above. Therefore, the measurement unit may perform MS/MS analysis, MS n analysis where n is 3 or more, as well as simple mass spectrometry. Also, the measurement unit may be one in which a chromatograph such as a liquid chromatograph, a gas chromatograph, or a supercritical fluid chromatograph is connected to the preceding stage of the TOFMS. Moreover, as described above, the method and configuration of the TOF mass separator are not particularly limited.
  • One aspect of TOFMS according to the present invention is a detector that detects ions separated in time according to their mass-to-charge ratio; a saturation detection unit that detects saturation of the detection signal by the detection unit; From the point of time preceding a first predetermined time including zero from the start point of the saturation period in which saturation is detected by the saturation detection unit to the point of time delayed from the end point of the saturation period by a second predetermined time which is non-zero.
  • a range identifying unit that identifies a saturation influence time range
  • a mass spectrum creation unit that creates a mass spectrum based on the detection signal from the detection unit
  • a display processing unit that displays the mass spectrum in such a manner that a mass-to-charge ratio range region corresponding to the saturation effect time range and another mass-to-charge ratio range region can be visually identified in the mass spectrum;
  • a region where the mass spectrum waveform is disturbed before and/or after the saturation period due to the saturation of the detection signal, and a region where there is no disturbance or the disturbance is negligible can be visually distinguished and notified to the user.
  • the user can avoid undesirable situations such as erroneous identification or overlooking of components due to the use of inaccurate mass spectral waveforms.
  • processing such as component identification can be performed using a normal mass spectrum waveform that is not affected by signal saturation in one mass spectrum.
  • the obtained mass spectrum data can be effectively used for analysis without wasting it.
  • the mass spectrum referred to here may be either profile display or bar graph display.
  • the TOFMS according to Section 1 further comprises a ringing removal section that removes or reduces ringing accompanying the peak of the detection signal corresponding to the ions incident on the detection section. can be done.
  • the second predetermined time is a period in which ringing that occurs after the saturation period has substantially no effect on the mass spectrum or is assumed to have substantially no effect. can be assumed to be
  • FIG. 4 Another aspect of the TOFMS according to the present invention is a detector that detects ions separated in time according to their mass-to-charge ratio; a saturation detection unit that detects saturation of the detection signal by the detection unit; From the point of time preceding a first predetermined time including zero from the start point of the saturation period in which saturation is detected by the saturation detection unit to the point of time delayed from the end point of the saturation period by a second predetermined time which is non-zero.
  • a range identifying unit that identifies a saturation influence time range
  • a mass spectrum creation unit that creates a mass spectrum based on the detection signal from the detection unit; In the mass spectrum, the waveform of the mass-to-charge ratio range corresponding to the saturation influence time range or the data constituting the waveform is subjected to processing different from the processing of the waveform of the other mass-to-charge ratio range or the data constituting the same.
  • a processing unit Prepare.
  • the processing unit visually displays the mass spectral waveform of the mass-to-charge ratio range corresponding to the saturation effect time range and the mass spectral waveform of the other mass-to-charge ratio range. It can be a process of displaying in a different manner.
  • the processing unit excludes the waveform of the mass-to-charge ratio range corresponding to the saturation effect time range or the data constituting the waveform from the identification or quantification of the component. However, it can also be a process of identifying or quantifying a component using only waveforms in other mass-to-charge ratio ranges or data that constitutes them.
  • the TOFMS described in Section 4 includes an ion selection unit that selects ions having a specific mass-to-charge ratio among ions derived from a sample as precursor ions, and an ion dissociation unit that dissociates the precursor ions. and a mass separator that temporally separates the ions generated by the dissociation according to their mass-to-charge ratios, wherein the processing unit generates waveforms in the mass-to-charge ratio range corresponding to the saturation influence time range or from the selection of precursor ions, and selects precursor ions only from waveforms in other mass-to-charge ratio ranges or data composing them.
  • the TOFMS described in Section 6 is typically applicable to devices that perform MS/MS analysis by DDA. According to the TOFMS described in item 6, even when signal saturation occurs in the detection signal, precursor ions corresponding to significant components contained in the sample can be accurately selected and MS/MS analysis can be performed. . As a result, it is possible to accurately and efficiently collect spectral information that contributes to structural analysis of the components in the sample.
  • the second predetermined time is a period in which ringing that occurs after the saturation period has substantially no effect on the mass spectrum or is assumed to have substantially no effect. can be assumed to be

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本発明に係るTOFMSの一態様は、m/zに応じて時間的に分離されたイオンを検出する検出部(14)と、検出部による検出信号の飽和を検知する飽和検知部(24)と、飽和検知部により飽和が検知された飽和期間の開始点よりゼロを含む第1所定時間だけ遡った時点から、該飽和期間の終了点より非ゼロである第2所定時間だけ遅れた時点までの飽和影響時間範囲を特定する範囲特定部(25)と、検出部による検出信号に基いてマススペクトルを作成するマススペクトル作成部(22、23)と、マススペクトルについて飽和影響時間範囲に対応するm/z範囲の領域と他のm/z範囲の領域とを視覚的に識別可能であるように該マススペクトルを表示する表示処理部(27)と、を備える。

Description

飛行時間型質量分析装置
 本発明は、飛行時間型質量分析装置(Time Of Flight Mass Spectrometer:TOFMS)に関する。
 TOFMSでは、試料中の成分に由来するイオンに一定のエネルギーを付与して飛行空間に投入し、該イオンを各々の質量電荷比m/z(厳密には斜体字の「m/z」であるが、本明細書では慣用に従い「質量電荷比」又は「m/z」という)を反映する飛行時間に応じて時間的に分離したうえで検出器により検出する。この検出信号に基いて、飛行時間とイオン強度との関係を示す飛行時間スペクトルを求めることができ、飛行時間スペクトルにおける飛行時間をm/z値に換算することでマススペクトルを作成することができる。
 TOFMSでは、各イオン種の飛行時間を高い時間分解能で以て精度良く計測する必要がある。そのため、検出器には高速応答性と高感度とが求められ、一般に、マイクロチャンネルプレート(Micro-Channel Plate:MCP)や電子増倍管を利用したイオン検出系システムが用いられる。特にMCPは、イオンを検出するイオン受容面が広く、イオン光軸に直交する方向に或る程度拡がったm/z値が同一であるイオンを略同時に検出することができるため、リフレクトロン型TOFMSなどの高分解能TOFMSに広く採用されている(特許文献1等参照)。
 一方で、MCP等の検出器は一般に、多量のイオンが同時に入射した場合、出力する電流信号の飽和を生じ易い。信号飽和が発生すると、検出信号に基いて作成されるマススペクトル波形の一部の形状が検出器に入射したイオン数を反映しないものとなり、マススペクトルから求まるイオン強度値やm/z値(精密質量)が不正確になる。こうしたことから、一般に市販されている多くのTOFMSは、取得されたマススペクトルが信号飽和した状態である場合に、これをユーザーに通知する機能を備えている。
特開2019-114528号公報 国際公開第2012/039061号
 例えば、測定の過程で信号飽和が検知された場合に、その信号飽和が生じたデータを含むマススペクトルを正常なマススペクトルとは異なる色で表示する機能を有するTOFMSが従来知られている。これにより、ユーザーは、波形形状が不正確であるマススペクトルを利用して成分同定等の解析を行うことを回避し、成分の誤同定や見逃しを防止することができる。
 しかしながら、この場合、一部のm/z範囲に対応するマススペクトル波形に問題が無かった、つまりはその波形形状が正常であったとしても、この正常である波形も成分同定等の解析に利用されない。即ち、取得されたデータが無駄になり、測定データの利用効率が下がる。それによって、測定のやり直し等のためにスループットが低下するおそれがある。また、試料自体が貴重なもの或いは高価なものである場合には、測定のやり直しができずに解析自体に支障をきたすおそれもある。
 本発明はこうした課題を解決するために成されたものであり、その主たる目的は、検出器において信号飽和が生じた場合であっても、取得したマススペクトルデータを無駄に廃棄することなく、解析に有効に活用することができるTOFMSを提供することである。
 本発明に係るTOFMSの一態様は、
 質量電荷比に応じて時間的に分離されたイオンを検出する検出部と、
 前記検出部による検出信号の飽和を検知する飽和検知部と、
 前記飽和検知部により飽和が検知された飽和期間の開始点よりゼロを含む第1所定時間だけ遡った時点から、該飽和期間の終了点より非ゼロである第2所定時間だけ遅れた時点までの飽和影響時間範囲を特定する範囲特定部と、
 前記検出部による検出信号に基いてマススペクトルを作成するマススペクトル作成部と、
 前記マススペクトルについて前記飽和影響時間範囲に対応する質量電荷比範囲の領域と他の質量電荷比範囲の領域とを視覚的に識別可能であるように該マススペクトルを表示する表示処理部と、
 を備える。
 また、本発明に係るTOFMSの別の態様は、
 質量電荷比に応じて時間的に分離されたイオンを検出する検出部と、
 前記検出部による検出信号の飽和を検知する飽和検知部と、
 前記飽和検知部により飽和が検知された飽和期間の開始点よりゼロを含む第1所定時間だけ遡った時点から、該飽和期間の終了点より非ゼロである第2所定時間だけ遅れた時点までの飽和影響時間範囲を特定する範囲特定部と、
 前記検出部による検出信号に基いてマススペクトルを作成するマススペクトル作成部と、
 前記マススペクトルにおいて前記飽和影響時間範囲に対応する質量電荷比範囲の波形又はそれを構成するデータに対し、他の質量電荷比範囲の波形又はそれを構成するデータに対する処理とは異なる処理を実施する処理部と、
 を備える。
 本発明に係るTOFMSの一つの態様によれば、検出信号が飽和することによって飽和期間の前及び/又は後に生じるマススペクトル波形が乱れた領域と、その乱れがない又はその乱れが無視できる程度である領域とを視覚的に区別して、ユーザーに知らせることができる。それにより、ユーザーが、不正確なマススペクトル波形を利用して成分の誤同定や見逃しが発生する等の不所望の事態を回避することができる。また、一つのマススペクトルの中で信号飽和の影響のない、正常なマススペクトル波形を利用して成分同定等の処理を行うことができる。これにより、取得したマススペクトルデータを無駄に廃棄することなく、該データを解析に有効に活用することができる。
 本発明に係るTOFMSの別の態様によれば、検出信号が飽和することによって飽和期間の前及び/又は後に生じるマススペクトル波形が乱れた領域に存在するデータを、例えば成分同定処理や定量処理、或いは、MS/MS分析のためのプリカーサーイオン選択処理などの各種の処理の対象から除外することができる。それにより、信号飽和が生じた場合でも、成分同定や定量解析、或いは化合物の構造解析における正確性を高めることができる。また、或る一つのマススペクトルを構成するデータの取得時に信号飽和が発生した場合でも、その信号飽和の影響のないデータを利用して成分同定等の解析を行うことができ、該データを解析に有効に活用することができる。
本発明の一実施形態であるTOFMSの概略ブロック構成図。 本実施形態のTOFMSにおいて取得される検出信号と飽和影響時間範囲の一例を示す概略図。 本実施形態のTOFMSにおけるマススペクトル表示の一例を示す図。 本実施形態のTOFMSにおけるマススペクトル表示の他の例を示す図。 本実施形態のTOFMSにおけるマススペクトル表示の他の例を示す図。 本発明の他の実施形態であるTOFMSの概略ブロック構成図。 本発明の他の実施形態であるTOFMSの概略ブロック構成図。
  [信号飽和発生時におけるマススペクトル波形の乱れの要因]
 TOFMSの検出器で信号飽和が生じた場合、その信号飽和の期間に対応するm/z範囲においてピークが頭打ちになる等、マススペクトル波形が乱れるのは当然であるが、それ以外のm/z範囲でもマススペクトル波形が乱れる現象が観測される。このようにマススペクトル波形が乱れる一つの要因について説明する。
 TOFMSの検出器には高速性が求められていることもあり、その出力信号にはリンギングが生じ易い。こうしたリンギングがマススペクトルに現れると、そのリンギングがイオン由来のピークとして誤検出される可能性がある。そのため、TOFMSでは、通常、以下のようなリンギング対策が採られている。
 <対策1> 最も簡単な対策として、検出信号のレベル(つまりイオン強度)に判定閾値を設け、イオン強度がその判定閾値以下である信号波形を除去する(ゼロにする)ことによって、リンギングの影響を軽減するという方法がある。この方法では、リンギングのみならず正規のイオン由来の微小な検出信号も除去されてしまうため、装置の検出下限性能を悪化させるという不利益があるものの、低廉なコストで以てリンギングの影響を効果的に軽減することができる。
 <対策2> 別の対策として、リンギング波形を打ち消すような信号処理を行うことによってリンギングを軽減する方法がある。例えば特許文献2に記載のデータ処理方法では、検出器から出力される検出信号において観測対象であるピーク波形に付随するリンギングの近似波形をFIRフィルターにより算出し、元の検出信号からそのリンギングの近似波形を差し引く処理を行うことでリンギングを除去している。この方法によれば、対策1において生じる、装置の検出下限性能の悪化という問題を回避しつつ、効果的にリンギングを軽減することができる。また、対策1における判定閾値を超えるようなリンギングも抑制することが可能である。
 上述したように、検出器で信号飽和が生じると、その信号飽和に対応するピーク波形が頭打ちになるのみならず、そのピーク波形に付随するリンギングも大きくなる。そのため、上記対策1の場合、判定閾値を超えてしまうリンギングが多くなり、そうしたリンギングがマススペクトルにも現れる。これによって、信号飽和に対応するm/z範囲以外のマススペクトル波形もイオン強度を正確に反映したものでなくなる可能性がある。信号飽和に伴うリンギングの増大を考慮して判定閾値を予め高めに設定にしておくことにより、リンギング除去の効果を高めることが可能であるが、その場合、検出下限性能が一層低下する。また、実際にはリンギングがどの程度大きくなるのか不明であるため、根本的な解決策とはならない。
 一方、対策2の場合、ピーク信号が飽和して頭打ちになると、FIRフィルターにおいてリンギングを的確に近似した波形を生成することができなくなり、リンギングを軽減できないどころか、場合によっては異常な波形を生成するおそれもある。これによって、信号飽和に対応するm/z範囲以外のマススペクトル波形もイオン強度を正確に反映したものでなくなる可能性がある。
 また、こうしたリンギング除去を目的とした信号処理だけでなく、例えばピーク幅の調整、ピークのテーリングやリーディングの改善など、検出信号に現れるピーク波形を利用した信号処理を行う場合、その信号処理の影響により、信号飽和に対応するm/z範囲以外のm/z範囲においてマススペクトル波形が異常になる可能性がある。
  [一実施形態のTOFMS]
 以下、本発明の一実施形態であるTOFMSについて、添付図面を参照して説明する。
 図1は、本実施形態のTOFMSの概略ブロック構成図である。
 本実施形態のTOFMSは、測定部1、データ処理部2、及び、表示部3、を含む。
 測定部1は、イオン源10、直交加速部11、フライトチューブ12、リフレクター13、検出器14、を含む。検出器14は典型的にはMCPである。なお、ここでは直交加速方式のリフレクトロン型TOF質量分離器を用いているが、TOF質量分離器の方式及び構成はこれに限らないことは当然である。
 データ処理部2は、機能ブロックとして、アナログデジタル変換部(ADC)20、リンギング除去部21、データ積算部22、マススペクトル作成部23、飽和検知部24、飽和影響領域決定部25、飽和影響m/z範囲特定部26、表示処理部27、データ保存部28、を含む。
 次に、本実施形態のTOFMSの動作を説明する。図2は、このTOFMSにおいて取得される検出信号と飽和影響時間範囲の一例を示す概略図である。図3~図5はそれぞれ、マススペクトル表示の一例を示す図である。
 イオン源10は、試料中の成分(化合物)をイオン化する。例えば試料は、図示しない液体クロマトグラフのカラムで分離された成分を含む溶出液であり、イオン源10は連続的に導入される試料に含まれる成分を順次イオン化する。イオン源10で生成されたイオンは直交加速部11に導入される。直交加速部11は、周期的に、そのイオンの入射方向と直交する方向(図1では下方向)にパルス的に加速エネルギーを付与することで、イオンを射出する。射出されたイオンはフライトチューブ12内に形成されている飛行空間に導入され直進したあと、リフレクター13により形成される反射電場で折り返される。
 そのイオンは、最終的に検出器14に到達する。各種イオンが飛行空間に導入される際の速度は、そのイオンのm/z値に依存する。そのため、同時に直交加速部11を出発した異なるm/z値のイオンは、時間的にずれて検出器14に到達する。検出器14は到達したイオンの量に応じた検出信号を時々刻々と生成しデータ処理部2に送る。データ処理部2に導入される検出信号は、直交加速部11からのイオン射出時点を時間ゼロとした飛行時間とイオン強度との関係、つまり飛行時間スペクトルを示すものである。直交加速部11は周期的に繰り返しイオンを射出する。従って、データ処理部2には、飛行時間スペクトルを表す検出信号が繰り返し入力される。ここでは、イオン射出の繰り返しをサイクルという。即ち、サイクル毎に所定の飛行時間範囲に亘る飛行時間スペクトルが得られる。
 ADC20は検出信号をごく短い時間間隔でサンプリングしてデジタルデータに変換する。リンギング除去部21は、例えば特許文献2に記載の(つまりは上記対策2の)データ処理方法に則り、検出データにおいてピーク波形に付随するリンギング波形を抑制するものである。但し、これは上記対策1に則ったものであってもよい。
 データ積算部22は、連続的な所定サイクル数の飛行時間スペクトルデータを積算することで、その所定サイクル数毎に一つの飛行時間スペクトルデータを得る。所定サイクル数は適宜に決めることができる。
 マススペクトル作成部23は、積算された飛行時間スペクトルデータにおける飛行時間をm/z値に換算することにより、m/z値とイオン強度との関係を示すマススペクトルを作成する。なお、マススペクトルを作成するまでの過程で、ノイズ除去処理等の適宜の波形処理を行ってもよい。また、マススペクトル作成部23は、m/z軸方向に連続的な波形であるプロファイル表示のマススペクトルを作成したあと、セントロイド処理を行うことにより、バーグラフ表示のマススペクトルを作成してもよい。
 一方、ADC20の出力(検出信号をデジタル化したデータ)は飽和検知部24にも入力される。飽和検知部24は、検出信号のレベルを常に監視し、そのレベルが飽和検知閾値を超える期間を飽和領域として検知する。飽和検知部24は、デジタル化する前の検出信号のレベルを基に飽和領域を検知するものであってもよい。一例として、図2に示すような検出信号が入力された場合、検出信号のレベルが飽和検知閾値Aを超える時間t1~t2の範囲を飽和領域Pとして検知する。検出信号自体は、図2中に示すように、飽和検知閾値Aよりも僅かに大きいレベルで頭打ちになる。この頭打ちとなったピークには、比較的長い時間に亘り継続するリンギングが付随している。
 飽和影響領域決定部25は、上記飽和領域Pの情報を受けて、その領域Pの開始時間t1より第1の所定時間taだけ遡った時間t0から、その領域Pの終了時間t2より第2の所定時間tbだけ遅れた時間t3までの時間範囲を、飽和影響領域Qとして決定する。この飽和影響領域Qは、検出信号の飽和によって波形に実質的な影響がある飛行時間範囲を示し、それ以外の領域は、波形に実質的に影響のない飛行時間範囲であるとみなし得る。ここで、第1の所定時間taはゼロであってもよく、第2の所定時間tbは非ゼロである。第1の所定時間ta及び第2の所定時間tbはいずれも、本装置のメーカーにより予め実験的に定められるものとすることができるが、例えば次のように定めることができる。
 リンギング除去部21において、特許文献2に記載の例のようにFIRフィルターで畳み込み演算を行うことでリンギングを除去する構成の場合、その畳み込み演算の一部にでも飽和領域Pのデータが含まれるとリンギング除去部21の出力波形が異常をきたす。そのため、演算に使用するFIRフィルターのフィルター長(タップ数)に対応する時間に応じて所定時間ta、tbを定めることが好ましい。
 一方、リンギング除去部21において、上記対策1に示した方法でリンギングを除去する構成の場合には、イオンが入射したときの検出信号の特性を実験的に調べ、入射イオンに対するピーク信号が出力され始める時点(通常はピークの開始点)から、そのピーク信号に伴うリンギングが実質的になくなるまで(許容可能なレベル以下に収束するまで)の時点までの間の期間が飽和影響領域Pに含まれるように、所定時間ta、tbを定めることが好ましい。
 上述したように、サイクル毎に飛行時間スペクトルが得られるから、飽和影響領域決定部25においても、一つのサイクルの飛行時間スペクトル毎に、飽和影響領域Qを決定する。飽和影響m/z範囲特定部26は、データ積算部22におけるデータ積算の対象である複数の飛行時間スペクトルデータに対応する複数の飽和影響領域Qをそれぞれm/z範囲に換算する。さらに、その複数のm/z範囲の論理和を計算する。即ち、複数のm/z範囲のいずれかに含まれるm/z値を全て含むようなm/z範囲を、飽和影響m/z範囲として算出する。
 データ保存部28は、マススペクトルデータとそのマススペクトルデータに対応する飽和影響m/z範囲の情報とを受け取り、それらを関連付けて保存する。
 表示処理部27は同様に、マススペクトルとそのマススペクトルに対応する飽和影響m/z範囲とを受け取り、飽和影響m/z範囲とそれ以外のm/z範囲とが視覚的に識別可能であるようにマススペクトルを表示部3に表示する。その表示の態様としては、例えば図3に示すように、プロファイル表示のマススペクトルの線の色を、飽和影響m/z範囲M1~М2とそれ以外とで変えるものとすることができる。また、図4に示すように、プロファイル表示のマススペクトルの背景部分の色を、飽和影響m/z範囲M1~М2とそれ以外とで変えるものとすることができる。さらにまた、図5に示すように、プロファイル表示のマススペクトル中に、飽和影響m/z範囲M1~М2を示すマーキングを表示するようにしてもよい。
 これにより、ユーザーは、マススペクトルの表示上で、正常な波形と信号飽和の影響を受けているために異常である可能性がある波形とを明確に区別することができる。それによって、例えば異常な波形を利用して成分同定等の解析を行うことを回避することができる。また、従来であれば解析に使用することができなかった、異常な波形を除く一部の正常な波形を有効に利用して、成分同定等の解析を行うことができる。
 なお、上記説明は、プロファイル表示マススペクトルを表示する場合の例であるが、バーグラフ表示マススペクトルを表示する場合でも同様の処理を行うことが可能である。その場合、飽和影響m/z範囲に含まれるデータを使用して作成されたセントロイドピークが、信号飽和の影響のあるピークであるとみなして、例えばそれ以外のピークとは異なる色で描画する、等の表示処理を行えばよい。
 また、上記説明では、飛行時間スペクトルデータを積算していたが、積算することは必須ではない。また、飛行時間スペクトルデータを積算したあとに飛行時間をm/z値に換算してマススペクトルを求めていたが、積算とm/z値への換算の順序を入れ替えてもよい。
  [他の実施形態のTOFMS]
 図6は、他の実施形態のTOFMSの概略ブロック構成図である。図6において図1に示したTOFMSと同じ構成要素には同じ符号を付しており、特に要しない限り説明を省略する。
 この実施形態のTOFMSにおいて、測定部1Bは、MS/MS分析が可能な四重極-飛行時間型質量分析装置(Q-TOFMS)である。即ち、イオン源10で生成された試料由来の各種イオンは四重極マスフィルター15に導入され、四重極マスフィルターにおいて特定のm/z値を有するイオンがプリカーサーイオンとして選択される。そのプリカーサーイオンは次のコリジョンセル16において衝突誘起解離等により解離され、生成されたプロダクトイオンが直交加速部11に導入されて飛行時間に応じて分離及び検出される。測定部1Bにおける分析動作は制御部4により制御される。
 データ処理部2Bは、図1に示したTOFMSにおけるデータ処理部2に含まれる各機能ブロックのほか、プリカーサーイオン選定部200を備える。
 このTOFMSでは、データ依存性解析(Data Dependent Acquisition:DDA)によるMS/MS分析を行うことが可能であり、その際に飽和影響m/z範囲が利用される。周知のようにDDAでは、まず四重極マスフィルター15でのイオン選択及びコリジョンセル16でのイオンの解離を実施することなく、イオン源10で生成された全てのイオンに対する質量分析を実行することでマススペクトルを取得する。この質量分析の際に、既に述べたような手順で、取得されたマススペクトルに対応する飽和影響m/z範囲を求める。
 プリカーサーイオン選定部200は、マススペクトルとそのマススペクトルに対応する飽和影響m/z範囲の情報とを受け取り、飽和影響m/z範囲が存在する場合には、マススペクトルにおいて飽和影響m/z範囲を除外したm/z範囲をプリカーサー選択可能m/z範囲に設定する。例えばマススペクトルと飽和影響m/z範囲M1~M2とが図5に示す状態である場合には、このM1~M2以外のm/z範囲をプリカーサー選択可能m/z範囲とする。そして、プリカーサーイオン選定部200は、プリカーサー選択可能m/z範囲にあるマススペクトル波形に対して所定の条件を満たすピークを一又は複数抽出し、そのピークに対応するm/z値をプリカーサーイオンに定める。ここで、所定の条件とは、一般的にDDAの際にプリカーサーイオンを選択する条件であり、例えばピーク強度が高い順に所定数のピークを選択、ピーク強度が所定の閾値以上であるピークを選択、などとすることができる。
 飽和影響m/z範囲M1~M2に存在するピークはたとえ上記の所定の条件を満たしていても、プリカーサーイオンとして選択されない。プリカーサーイオン選定部200により抽出されたプリカーサーイオンの情報は直ぐに制御部4へと送られ、制御部4はその直前に実行された通常の(つまりはイオン解離を行わない)質量分析に引き続いて、指定されたプリカーサーイオンをターゲットとするMS/MS分析を順番に実行する。こうして、測定部1Bでは、指定されたプリカーサーイオンを解離させることで生成されたプロダクトイオンの飛行時間スペクトルを得ることができる。
 この実施形態のTOFMSによれば、信号飽和によって異常となる可能性が高い波形はプリカーサーイオンの選択対象から除外されるので、適切でないm/z値のプリカーサーイオンについてのMS/MS分析が実行されることを回避することができる。それにより、無駄なMS/MS分析の実行を排して、有意な結果が得られるMS/MS分析を効率的に実施することができる。
 図7は、さらに他の実施形態のTOFMSの概略ブロック構成図である。図7において図1に示したTOFMSと同じ構成要素には同じ符号を付しており、特に要しない限り説明を省略する。
 この実施形態のTOFMSにおいて、データ処理部2Cは、図1に示したTOFMSにおけるデータ処理部2に含まれる各機能ブロックのほか、同定処理部201及び同定用データベース202、を備える。同定処理部201は、マススペクトルにおいて観測されるピークのm/z値から導出される精密質量などを利用して、成分同定を行うものである。測定部1が図示しない液体クロマトグラフやガスクロマトグラフを含む構成である場合には、そのクロマトグラフにおける保持時間も成分同定に利用することができる。また、それ以外に、マススペクトルのピークパターンや特定の複数のイオンのピーク強度の比(いわゆる確認イオン比)などを、成分同定に利用してもよい。同定用データベース202は、成分同定のための情報を提供するものであり、化合物毎に精密質量、標準的な保持時間などの適宜の情報が収録されている。
 本実施形態のTOFMSにおいて、測定部1は上述したように、試料由来のイオンについての飛行時間スペクトルを繰り返し取得し、データ処理部2Cは、複数の飛行時間スペクトルデータを積算し、飛行時間をm/z値に換算することでマススペクトルを算出する。また、飽和検知部24、飽和影響領域決定部25、及び飽和影響m/z範囲特定部26は、取得されたマススペクトルに対応する飽和影響m/z範囲を求める。
 同定処理部201は、マススペクトルとそのマススペクトルに対応する飽和影響m/z範囲の情報とを受け取り、飽和影響m/z範囲が存在する場合には、マススペクトルにおいて飽和影響m/z範囲を除外したm/z範囲に含まれる波形のみに基いて成分同定を実行する。例えばマススペクトルと飽和影響m/z範囲M1~M2とが図5に示す状態である場合には、このM1~M2以外のm/z範囲に含まれるマススペクトル波形のみを利用して成分同定を行う。
 従って、例えばマスピークから精密質量を求め、この精密質量を同定用データベース202に照会して成分同定を行う場合であれば、飽和影響m/z範囲M1~M2にマスピークが存在したとしても該マスピークは成分同定の対象から除外される。また、例えば確認イオン比を成分同定に利用する場合であれば、飽和影響m/z範囲M1~M2に存在するマスピークのイオン強度は確認イオン比の算出に利用されない。これにより、不正確なm/z値やイオン強度の情報に基いて成分同定が実施されることを避けることができ、誤った同定や成分の見逃しを軽減することができる。
 なお、試料中の成分の同定のみならず、試料中の成分の定量や半定量の際に、マススペクトルから得られる情報を利用する場合にも、同様に、飽和影響m/z範囲M1~M2に含まれる波形やマスピークを除外することで、定量の正確性を向上させることができる。
 なお、上記実施形態やその変形例は本発明の一例にすぎず、本発明の趣旨の範囲で適宜に変形、追加、修正を行っても本願特許請求の範囲に包含されることは当然である。
 例えば、測定部はTOF型質量分離器を利用したものであればよく、上述したQ-TOFMSのほか、イオントラップ-TOFMSなども含む。従って、測定部は、単純な質量分析のほか、MS/MS分析、nが3以上であるMSn分析を行うものであってもよい。また、測定部は、TOFMSの前段に液体クロマトグラフ、ガスクロマトグラフ、超臨界流体クロマトグラフなどのクロマトグラフを接続したものでもよい。また、TOF型質量分離器の方式や構成も特に限定されないことは既述の通りである。
  [種々の態様]
 上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)本発明に係るTOFMSの一態様は、
 質量電荷比に応じて時間的に分離されたイオンを検出する検出部と、
 前記検出部による検出信号の飽和を検知する飽和検知部と、
 前記飽和検知部により飽和が検知された飽和期間の開始点よりゼロを含む第1所定時間だけ遡った時点から、該飽和期間の終了点より非ゼロである第2所定時間だけ遅れた時点までの飽和影響時間範囲を特定する範囲特定部と、
 前記検出部による検出信号に基いてマススペクトルを作成するマススペクトル作成部と、
 前記マススペクトルについて前記飽和影響時間範囲に対応する質量電荷比範囲の領域と他の質量電荷比範囲の領域とを視覚的に識別可能であるように該マススペクトルを表示する表示処理部と、
 を備える。
 第1項に記載のTOFMSによれば、検出信号が飽和することによって飽和期間の前及び/又は後に生じるマススペクトル波形が乱れた領域と、その乱れがない又はその乱れが無視できる程度である領域とを視覚的に区別して、ユーザーに知らせることができる。それにより、ユーザーが、不正確なマススペクトル波形を利用して成分の誤同定や見逃しが発生する等の不所望の事態を回避することができる。また、一つのマススペクトルの中で信号飽和の影響のない、正常なマススペクトル波形を利用して成分同定等の処理を行うことができる。これにより、取得したマススペクトルデータを無駄に廃棄することなく、該データを解析に有効に活用することができる。なお、ここでいうマススペクトルは、プロファイル表示、バーグラフ表示のいずれでもよい。
 (第2項)第1項に記載のTOFMSは、前記検出部に入射するイオンに応じた検出信号上のピークに付随するリンギングを除去する又は軽減するリンギング除去部、をさらに備えるものとすることができる。
 (第3項)第2項に記載のTOFMSにおいて、前記第2所定時間は、前記飽和期間のあとに生じるリンギングがマススペクトルに及ぼす影響が実質的にない又は実質的にないと想定される期間であるものとすることができる。
 第3項に記載のTOFMSによれば、検出信号上のピークが飽和し、その飽和によって該ピークに付随するリンギングの大きさが変化する場合であっても、さらには、リンギング除去部による処理の結果としてリンギングの大きさが変化する場合であっても、そのリンギングの変化に伴ってマススペクトルが乱れるm/z範囲をユーザーが的確に把握することができる。
 (第4項)また本発明に係るTOFMSの別の態様は、
 質量電荷比に応じて時間的に分離されたイオンを検出する検出部と、
 前記検出部による検出信号の飽和を検知する飽和検知部と、
 前記飽和検知部により飽和が検知された飽和期間の開始点よりゼロを含む第1所定時間だけ遡った時点から、該飽和期間の終了点より非ゼロである第2所定時間だけ遅れた時点までの飽和影響時間範囲を特定する範囲特定部と、
 前記検出部による検出信号に基いてマススペクトルを作成するマススペクトル作成部と、
 前記マススペクトルにおいて前記飽和影響時間範囲に対応する質量電荷比範囲の波形又はそれを構成するデータに対し、他の質量電荷比範囲の波形又はそれを構成するデータに対する処理とは異なる処理を実施する処理部と、
 を備える。
 第4項に記載のTOFMSにおいて、前記処理部は、上述したように、飽和影響時間範囲に対応する質量電荷比範囲のマススペクトル波形と他の質量電荷比範囲のマススペクトル波形とを視覚的に異なる態様で表示する処理とすることができる。
 (第5項)また第4項に記載のTOFMSにおいて、前記処理部は、前記飽和影響時間範囲に対応する質量電荷比範囲の波形又はそれを構成するデータを成分の同定又は定量の対象から除外し、他の質量電荷比範囲の波形又はそれを構成するデータのみを利用して成分の同定又は定量を実施する処理であるものとすることができる。
 第5項に記載のTOFMSによれば、検出信号に信号飽和が生じた場合でも、成分同定や定量解析における正確性を高めることができる。また、或る一つのマススペクトルを構成するデータの取得時に信号飽和が発生した場合でも、その信号飽和の影響のないデータを利用して成分同定や定量解析を行うことができ、該データを解析に有効に活用することができる。
 (第6項)また第4項に記載のTOFMSは、試料由来のイオンの中で特定の質量電荷比を有するイオンをプリカーサーイオンとして選択するイオン選択部と、該プリカーサーイオンを解離させるイオン解離部と、解離によって生成されたイオンを質量電荷比に応じて時間的に分離する質量分離器と、をさらに備え、前記処理部は、前記飽和影響時間範囲に対応する質量電荷比範囲の波形又はそれを構成するデータをプリカーサーイオンの選択の対象から除外し、他の質量電荷比範囲の波形又はそれを構成するデータのみからプリカーサーイオンを選択する処理であるものとすることができる。
 第6項に記載のTOFMSは、典型的にはDDAによるMS/MS分析を行う装置に適用し得る。第6項に記載のTOFMSによれば、検出信号に信号飽和が生じた場合でも、試料に含まれる有意な成分に対応するプリカーサーイオンを的確に選択してMS/MS分析を実行することができる。それにより、試料中の成分の構造解析等に資するスペクトル情報を正確に且つ効率良く収集することができる。
 (第7項)第4項~第6項のうちのいずれかの1項に記載のTOFMSは、前記検出部に入射するイオンに応じた検出信号上のピークに付随するリンギングを除去する又は軽減するリンギング除去部、をさらに備えるものとすることができる。
 (第8項)第7項に記載のTOFMSにおいて、前記第2所定時間は、前記飽和期間のあとに生じるリンギングがマススペクトルに及ぼす影響が実質的にない又は実質的にないと想定される期間であるものとすることができる。
 第3項に記載のTOFMSと同様に、第8項に記載のTOFMSによれば、検出信号上のピークが飽和し、その飽和によって該ピークに付随するリンギングの大きさが変化する場合であっても、さらには、リンギング除去部による処理の結果としてリンギングの大きさが変化する場合であっても、そのリンギングの変化に伴ってマススペクトルが乱れるm/z範囲のマススペクトル情報を除外して、的確な成分同定等の処理が可能である。
1…測定部
 10…イオン源
 11…直交加速部
 12…フライトチューブ
 13…リフレクター
 14…検出器
 15…四重極マスフィルター
 16…コリジョンセル
2、2B、2C…データ処理部
 20…アナログデジタル変換部(ADC)
 21…リンギング除去部
 22…データ積算部
 23…マススペクトル作成部
 24…飽和検知部
 25…飽和影響領域決定部
 26…飽和影響m/z範囲特定部
 27…表示処理部
 28…データ保存部
 200…プリカーサーイオン選定部
 201…同定処理部
 202…同定用データベース
3…表示部
4…制御部

Claims (8)

  1.  質量電荷比に応じて時間的に分離されたイオンを検出する検出部と、
     前記検出部による検出信号の飽和を検知する飽和検知部と、
     前記飽和検知部により飽和が検知された飽和期間の開始点よりゼロを含む第1所定時間だけ遡った時点から、該飽和期間の終了点より非ゼロである第2所定時間だけ遅れた時点までの飽和影響時間範囲を特定する範囲特定部と、
     前記イオン検出部による検出信号に基いてマススペクトルを作成するマススペクトル作成部と、
     前記マススペクトルについて、前記飽和影響時間範囲に対応する質量電荷比範囲のマススペクトルと他の質量電荷比範囲のマススペクトルとを視覚的に識別可能であるように表示する表示処理部と、
     を備える飛行時間型質量分析装置。
  2.  前記検出部に入射するイオンに応じた検出信号上のピークに付随するリンギングを除去する又は軽減するリンギング除去部、をさらに備える、請求項1に記載の飛行時間型質量分析装置。
  3.  前記第2所定時間は、前記飽和期間のあとに生じるリンギングがマススペクトルに及ぼす影響が実質的にない又は実質的にないと想定される期間である、請求項2に記載の飛行時間型質量分析装置。
  4.  質量電荷比に応じて時間的に分離されたイオンを検出する検出部と、
     前記検出部による検出信号の飽和を検知する飽和検知部と、
     前記飽和検知部により飽和が検知された飽和期間の開始点よりゼロを含む第1所定時間だけ遡った時点から、該飽和期間の終了点より非ゼロである第2所定時間だけ遅れた時点までの飽和影響時間範囲を特定する範囲特定部と、
     前記検出部による検出信号に基いてマススペクトルを作成するマススペクトル作成部と、
     前記マススペクトルにおいて前記飽和影響時間範囲に対応する質量電荷比範囲の波形又はそれを構成するデータに対し、他の質量電荷比範囲の波形又はそれを構成するデータに対する処理とは異なる処理を実施する処理部と、
     を備える飛行時間型質量分析装置。
  5.  前記処理部は、前記飽和影響時間範囲に対応する質量電荷比範囲の波形又はそれを構成するデータを成分の同定又は定量の対象から除外し、他の質量電荷比範囲の波形又はそれを構成するデータのみを利用して成分の同定又は定量を実施する処理である、請求項4に記載の飛行時間型質量分析装置。
  6.  試料由来のイオンの中で特定の質量電荷比を有するイオンをプリカーサーイオンとして選択するイオン選択部と、該プリカーサーイオンを解離させるイオン解離部と、解離によって生成されたイオンを質量電荷比に応じて時間的に分離する質量分離器と、をさらに備え、前記処理部は、前記飽和影響時間範囲に対応する質量電荷比範囲の波形又はそれを構成するデータをプリカーサーイオンの選択の対象から除外し、他の質量電荷比範囲の波形又はそれを構成するデータのみからプリカーサーイオンを選択する処理である、請求項4に記載の飛行時間型質量分析装置。
  7.  前記検出部に入射するイオンに応じた検出信号上のピークに付随するリンギングを除去する又は軽減するリンギング除去部、をさらに備える、請求項4に記載の飛行時間型質量分析装置。
  8.  前記第2所定時間は、前記飽和期間のあとに生じるリンギングがマススペクトルに及ぼす影響が実質的にない又は実質的にないと想定される期間である、請求項4に記載の飛行時間型質量分析装置。
PCT/JP2021/046087 2021-12-14 2021-12-14 飛行時間型質量分析装置 WO2023112156A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023567344A JPWO2023112156A1 (ja) 2021-12-14 2021-12-14
PCT/JP2021/046087 WO2023112156A1 (ja) 2021-12-14 2021-12-14 飛行時間型質量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046087 WO2023112156A1 (ja) 2021-12-14 2021-12-14 飛行時間型質量分析装置

Publications (1)

Publication Number Publication Date
WO2023112156A1 true WO2023112156A1 (ja) 2023-06-22

Family

ID=86773739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046087 WO2023112156A1 (ja) 2021-12-14 2021-12-14 飛行時間型質量分析装置

Country Status (2)

Country Link
JP (1) JPWO2023112156A1 (ja)
WO (1) WO2023112156A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073322A1 (ja) * 2010-11-30 2012-06-07 株式会社島津製作所 質量分析データ処理装置
JP2013170995A (ja) * 2012-02-22 2013-09-02 Shimadzu Corp クロマトグラフ質量分析用データ処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073322A1 (ja) * 2010-11-30 2012-06-07 株式会社島津製作所 質量分析データ処理装置
JP2013170995A (ja) * 2012-02-22 2013-09-02 Shimadzu Corp クロマトグラフ質量分析用データ処理装置

Also Published As

Publication number Publication date
JPWO2023112156A1 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
US9514922B2 (en) Mass analysis data processing apparatus
US10410847B2 (en) Targeted mass analysis
US7312441B2 (en) Method and apparatus for controlling the ion population in a mass spectrometer
EP1397823B1 (en) A time-of-flight mass spectrometer for monitoring of fast processes
EP0970504B1 (en) Time of flight mass spectrometer and dual gain detector therefor
EP1897114B1 (en) Mass spectrometer
US8723108B1 (en) Transient level data acquisition and peak correction for time-of-flight mass spectrometry
US6707033B2 (en) Mass spectrometer
JP6090479B2 (ja) 質量分析装置
US20060016977A1 (en) Time-of-flight analyzer
WO2003103010A1 (en) Two-dimensional tandem mass spectrometry
US8803083B2 (en) Time of flight mass spectrometer
JP6004002B2 (ja) タンデム四重極型質量分析装置
JP5772611B2 (ja) タンデム四重極型質量分析装置
JP4851273B2 (ja) 質量分析方法および質量分析装置
CN113287186A (zh) 减少了背景和峰重叠的用于自顶向下分析的获取策略
JP6897870B2 (ja) 飛行時間型質量分析装置
WO2023112156A1 (ja) 飛行時間型質量分析装置
JP2016053500A (ja) クロマトグラフ質量分析装置
US20070152149A1 (en) Systems and methods for calculating ion flux in mass spectrometry
JP2006275530A (ja) 質量分析装置
JP2024008919A (ja) 質量分析法におけるイオンピーク面積の処理
JP2014224732A (ja) Maldi質量分析装置
JP2010277970A (ja) 多重周回飛行時間型質量分析装置
JP2008089543A (ja) イオントラップ形質量分析装置およびその質量分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968073

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567344

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE