WO2020202840A1 - Method for manufacturing solar cell and solar cell - Google Patents

Method for manufacturing solar cell and solar cell Download PDF

Info

Publication number
WO2020202840A1
WO2020202840A1 PCT/JP2020/006030 JP2020006030W WO2020202840A1 WO 2020202840 A1 WO2020202840 A1 WO 2020202840A1 JP 2020006030 W JP2020006030 W JP 2020006030W WO 2020202840 A1 WO2020202840 A1 WO 2020202840A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
region
semiconductor substrate
surface side
outer peripheral
Prior art date
Application number
PCT/JP2020/006030
Other languages
French (fr)
Japanese (ja)
Inventor
中野邦裕
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021511194A priority Critical patent/JP7459059B2/en
Publication of WO2020202840A1 publication Critical patent/WO2020202840A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a back electrode type (back contact type) solar cell and a solar cell.
  • Solar cells using a semiconductor substrate include a double-sided electrode type solar cell in which semiconductor layers and electrodes are formed on both the light receiving surface side and the back surface side, and a back electrode type solar cell in which the semiconductor layer and electrodes are formed only on the back surface side. There is a solar cell.
  • the semiconductor layer on the front surface side is formed on substantially the entire surface of the semiconductor substrate, and the semiconductor layer on the back surface side is formed in a smaller area than the back surface of the semiconductor substrate. According to this, since the semiconductor layer on the back surface side has a smaller area than the semiconductor substrate, the semiconductor layer on the back surface side is not formed on the side surface or the end portion on the front surface side of the semiconductor substrate, and the output characteristics are less deteriorated. .. In addition, since the semiconductor on the surface side is formed on substantially the entire surface, there are few ineffective portions and the characteristics are good.
  • the exposure of the outer peripheral region of the main surface of the semiconductor substrate is also one of the factors for the deterioration of the performance and reliability of the solar cell.
  • the semiconductor layer formed on one surface wraps around the side surface or the other surface of the semiconductor substrate as compared with the double-sided electrode type solar cell. There is little deterioration in characteristics due to. Therefore, the inventor of the present application attempts to form a semiconductor layer up to the outer peripheral region on the back surface side of the semiconductor substrate in the back electrode type solar cell.
  • the inventor of the present application forms a good semiconductor layer in the outer peripheral region of the back surface of the semiconductor substrate and the outer peripheral region of the light receiving surface when patterning the semiconductor layer using, for example, a photoresist using a photolithography technique. It has been found that this is difficult (details will be described later).
  • An object of the present invention is to provide a method for manufacturing a solar cell and a solar cell that suppresses performance deterioration and reliability deterioration due to exposure of the outer peripheral region of the main surface of the semiconductor substrate.
  • a first conductive semiconductor layer is sequentially laminated on a semiconductor substrate and a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate.
  • a back electrode type sun including a first electrode layer, a second conductive semiconductor layer and a second electrode layer sequentially laminated in a second region which is a part of the other main surface side of the semiconductor substrate.
  • a method for manufacturing a battery in which the outer peripheral edge region on the other main surface side of the semiconductor substrate is masked, and the first region and the second region on the other main surface side of the semiconductor substrate are covered with the first region.
  • the first semiconductor layer material film forming step of forming the material film of the conductive semiconductor layer, and the first region and the outer peripheral region on the other main surface side of the semiconductor substrate are covered with a resist to cover the second region.
  • the first semiconductor layer forming step of forming the patterned first conductive semiconductor layer in the first region by removing the material film of the first conductive semiconductor layer in the above and removing the resist.
  • the second region and the outer peripheral region are patterned by covering the outer peripheral region with a resist and removing the material film of the second conductive semiconductor layer in the first region. It includes a second semiconductor layer forming step of forming a conductive semiconductor layer.
  • Another method for manufacturing a solar cell according to the present invention is a first conductive type in which a semiconductor substrate is sequentially laminated in a first region which is a part of a semiconductor substrate and a part of the other main surface side opposite to one main surface side of the semiconductor substrate.
  • a back surface electrode type including a semiconductor layer and a first electrode layer, and a second conductive semiconductor layer and a second electrode layer laminated in this order in a second region which is another part of the other main surface side of the semiconductor substrate.
  • the first region and the outer peripheral peripheral region on the other main surface side of the substrate are covered with a resist to remove the material films of the lift-off layer and the first conductive semiconductor layer in the second region.
  • the second conductive semiconductor on the entire surface including the second region and the outer peripheral region, on the lift-off layer in the first region, and on the semiconductor substrate in the second region and the outer peripheral region.
  • the solar cell according to the present invention includes a semiconductor substrate, a first conductive semiconductor layer and a first conductive semiconductor layer, which are sequentially laminated in a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate.
  • a back surface electrode type solar cell including an electrode layer, a second conductive semiconductor layer and a second electrode layer sequentially laminated in a second region which is another part of the other main surface side of the semiconductor substrate. Therefore, the second conductive semiconductor layer is formed in the outer peripheral edge region on the other main surface side of the semiconductor substrate.
  • the present invention it is possible to suppress deterioration in performance and reliability of the solar cell due to exposure of the outer peripheral region of the main surface of the semiconductor substrate.
  • FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG. It is a figure which shows the intrinsic semiconductor layer forming process and the optical adjustment layer forming process in the manufacturing method of the solar cell which concerns on 1st Embodiment. It is a figure which shows the 1st semiconductor layer material film formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment.
  • FIG. 4A It is a figure which shows the state of forming a resist on the whole surface of the back surface side and the entire surface of the light receiving surface side of a semiconductor substrate. It is a partially enlarged view which shows the ideal form of the patterning of the resist shown in FIG. 4A. It is a partially enlarged view which shows an example of the patterning of the resist shown in FIG. 4A. It is a partially enlarged view which shows an example of the patterning of the resist shown in FIG. 4A. It is a partially enlarged view which shows another example of the patterning of the resist shown in FIG. 4A. It is a partially enlarged view which shows another example of the patterning of the resist shown in FIG. 4A.
  • FIG. 1 is a view of the solar cell according to the present embodiment as viewed from the back surface side.
  • the solar cell 1 shown in FIG. 1 is a back electrode type solar cell.
  • the solar cell 1 includes a semiconductor substrate 11 having two main surfaces, and has a first region 7, a second region 8, and an outer peripheral region R on the main surface of the semiconductor substrate 11.
  • the first region 7 has a so-called comb-shaped shape, and has a plurality of finger portions 7f corresponding to comb teeth and a bus bar portion 7b corresponding to a support portion of the comb teeth.
  • the bus bar portion 7b extends in the first direction (X direction) along one side of the semiconductor substrate 11, and the finger portion 7f intersects the bus bar portion 7b in the first direction (X direction). It extends in the direction (Y direction).
  • the second region 8 has a so-called comb-shaped shape, and has a plurality of finger portions 8f corresponding to the comb teeth and a bus bar portion 8b corresponding to the support portion of the comb teeth.
  • the bus bar portion 8b extends in the first direction (X direction) along the other side portion facing one side portion of the semiconductor substrate 11, and the finger portion 8f extends from the bus bar portion 8b in the second direction (Y). Extends in the direction).
  • the finger portions 7f and the finger portions 8f are alternately provided in the first direction (X direction).
  • the first region 7 and the second region 8 may be formed in a striped shape.
  • the outer peripheral edge region R is a region of the outer peripheral edge of the main surface of the semiconductor substrate 11 and surrounds the first region 7 and the second region 8.
  • FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG.
  • the solar cell 1 includes a semiconductor substrate 11, an intrinsic semiconductor layer 13 and optics, which are sequentially laminated on the light receiving surface side, which is one of the main surfaces of the semiconductor substrate 11 on the light receiving side.
  • the adjusting layer 15 is provided.
  • the solar cell 1 is a first intrinsic semiconductor layer 23 which is sequentially laminated on a part (first region 7) of the back surface side which is the other main surface of the main surface of the semiconductor substrate 11 opposite to the light receiving surface.
  • a first conductive semiconductor layer 25 and a first electrode layer 27 are provided.
  • the solar cell 1 includes a second intrinsic semiconductor layer 33, a second conductive semiconductor layer 35, and a second electrode layer 37, which are sequentially laminated on another part (second region 8) on the back surface side of the semiconductor substrate 11. To be equipped.
  • the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 are formed in the outer peripheral region R on the back surface side of the semiconductor substrate 11.
  • the semiconductor substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon.
  • the semiconductor substrate 11 is, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. Examples of the n-type dopant include phosphorus (P).
  • the semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes). By using crystalline silicon as the material of the semiconductor substrate 11, a relatively high output (stable output regardless of the illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
  • the intrinsic semiconductor layer 13 is formed on the light receiving surface side of the semiconductor substrate 11.
  • the first intrinsic semiconductor layer 23 is formed in the first region 7 on the back surface side of the semiconductor substrate 11.
  • the second intrinsic semiconductor layer 33 is formed in the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11.
  • the intrinsic semiconductor layer 13, the first intrinsic semiconductor layer 23, and the second intrinsic semiconductor layer 33 are formed of, for example, a material containing intrinsic (i-type) amorphous silicon as a main component.
  • the intrinsic semiconductor layer 13, the first intrinsic semiconductor layer 23, and the second intrinsic semiconductor layer 33 function as a so-called passivation layer, suppress recombination of carriers generated in the semiconductor substrate 11, and increase carrier recovery efficiency.
  • the optical adjustment layer 15 is formed on the intrinsic semiconductor layer 13 on the light receiving surface side of the semiconductor substrate 11.
  • the optical adjustment layer 15 functions as an antireflection layer for preventing reflection of incident light, and also functions as a protective layer for protecting the light receiving surface side of the semiconductor substrate 11 and the intrinsic semiconductor layer 13.
  • the optical adjustment layer 15 is formed of an insulating material such as a composite thereof such as silicon oxide (SiO), silicon nitride (SiN), or silicon oxynitride (SiON).
  • the first conductive semiconductor layer 25 is formed on the first intrinsic semiconductor layer 23, that is, in the first region 7 on the back surface side of the semiconductor substrate 11.
  • the first conductive semiconductor layer 25 is formed of, for example, an amorphous silicon material.
  • the first conductive semiconductor layer 25 is, for example, a p-type semiconductor layer in which an amorphous silicon material is doped with a p-type dopant. Examples of the p-type dopant include boron (B).
  • the second conductive semiconductor layer 35 is formed on the second intrinsic semiconductor layer 33, that is, in the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11.
  • the second conductive semiconductor layer 35 is formed of, for example, an amorphous silicon material.
  • the second conductive semiconductor layer 35 is, for example, an n-type semiconductor layer in which an amorphous silicon material is doped with an n-type dopant (for example, phosphorus (P) described above).
  • the first conductive semiconductor layer 25 may be an n-type semiconductor layer
  • the second conductive semiconductor layer 35 may be a p-type semiconductor layer
  • the semiconductor substrate 11 may be a p-type semiconductor substrate in which a crystalline silicon material is doped with a p-type dopant (for example, the above-mentioned boron (B)).
  • the first electrode layer 27 is formed on the first conductive semiconductor layer 25, and the second electrode layer 37 is formed on the second conductive semiconductor layer 35.
  • the first electrode layer 27 and the second electrode layer 37 may include a transparent electrode layer and a metal electrode layer, or may include only a metal electrode layer.
  • the first electrode layer 27 has a transparent electrode layer 28 and a metal electrode layer 29, which are sequentially laminated on the first conductive semiconductor layer 25.
  • the second electrode layer 37 has a transparent electrode layer 38 and a metal electrode layer 39, which are sequentially laminated on the second conductive semiconductor layer 35.
  • the transparent electrode layers 28 and 38 are formed of a transparent conductive material.
  • the transparent conductive material examples include ITO (Indium Tin Oxide: a composite oxide of indium tin oxide and tin oxide) and ZnO (Zinc Oxide: zinc oxide).
  • the metal electrode layers 29 and 39 may be formed of a conductive paste material containing a metal powder such as silver.
  • the inventor of the present application forms a good semiconductor layer in the outer peripheral region of the back surface of the semiconductor substrate and the outer peripheral region of the light receiving surface when patterning the semiconductor layer using, for example, a photoresist using a photolithography technique. We have obtained the finding that it is difficult to do so.
  • a mask is also arranged on the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 to perform exposure and development, and the resist 40 is exposed. Patterning is performed.
  • the resist 40 remains in the outer peripheral region R on the back surface side of the semiconductor substrate 11 (actually, due to light reflection and scattering, the influence of the developing solution, etc., the resist 40 remains larger than the mask width. Widely exposed.).
  • a first conductive semiconductor layer material film 25Z (and a first intrinsic semiconductor layer material film 23Z) is formed on the entire surface of the back surface side of the semiconductor substrate 11, and the resist 40 shown in FIG. 5B is used to form a first film.
  • the 1 conductive semiconductor layer material film 25Z (and the 1st intrinsic semiconductor layer material film 23Z) is patterned, as shown in FIG. 7B, the 1st conductive semiconductor layer is formed in the outer peripheral region R on the back surface side of the semiconductor substrate 11. 25 (and the first intrinsic semiconductor layer 23) remains.
  • a second conductive semiconductor layer material film 35Z (and a second intrinsic semiconductor layer material film 33Z) is formed on the entire surface of the back surface side of the semiconductor substrate 11, as shown in FIGS. 5A and 5B.
  • the second conductive semiconductor layer material film 35Z (and the second intrinsic semiconductor layer material film 33Z) is patterned using the formed resist 40, as shown in FIG. 7D, the outer peripheral edge on the back surface side of the semiconductor substrate 11
  • the first conductive semiconductor layer 25 (and the first intrinsic semiconductor layer 23) and the second conductive semiconductor layer 35 (and the second intrinsic semiconductor layer 33) remain in the region R.
  • the semiconductor layer in the outer peripheral region R on the back surface side of the semiconductor substrate 11 cannot be obtained well.
  • the first conductive semiconductor layer material film 25Z (and the first intrinsic semiconductor layer material film 23Z) is formed on the entire surface of the back surface side of the semiconductor substrate 11, and the resist shown in FIG. 6B is formed.
  • the outer peripheral region R on the back surface side of the semiconductor substrate 11 is the first. 1
  • the conductive semiconductor layer 25 (and the first intrinsic semiconductor layer 23) does not remain. However, the outer peripheral edge region of the semiconductor substrate 11 on the light receiving surface side is exposed.
  • a second conductive semiconductor layer material film 35Z (and a second intrinsic semiconductor layer material film 33Z) is formed on the entire back surface side of the semiconductor substrate 11, as shown in FIGS. 6A and 6B.
  • the second conductive semiconductor layer material film 35Z (and the second intrinsic semiconductor layer material film 33Z) is patterned using the formed resist 40, as shown in FIG. 8D, the outer peripheral edge on the back surface side of the semiconductor substrate 11
  • the second conductive semiconductor layer 35 (and the second intrinsic semiconductor layer 33) remains in the region R. However, the outer peripheral edge region of the semiconductor substrate 11 on the light receiving surface side is exposed.
  • the semiconductor layer in the outer peripheral region R on the back surface side of the semiconductor substrate 11 is satisfactorily obtained, but on the light receiving surface side of the semiconductor substrate 11.
  • the outer peripheral area is exposed.
  • the inventor of the present application has found a method for manufacturing a solar cell that masks (for example, a substrate tray) the outer peripheral region on the back surface side of the semiconductor substrate when forming the first conductive type semiconductor layer material film.
  • a method for manufacturing a solar cell that masks (for example, a substrate tray) the outer peripheral region on the back surface side of the semiconductor substrate when forming the first conductive type semiconductor layer material film.
  • -As will be described later, for example, the first conductive semiconductor layer material film 25Z (and the first intrinsic semiconductor layer material film 23Z) in a state where the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 is masked by using the substrate tray 3.
  • First semiconductor layer material film forming step As shown in FIGS.
  • the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side are covered with a resist 40 to cover the first conductive semiconductor layer 25 (and the first intrinsic semiconductor layer 23).
  • the first conductive semiconductor layer 25 (and the first intrinsic semiconductor layer 23) does not remain in the outer peripheral region R on the back surface side of the semiconductor substrate 11 as shown in FIGS. 7A and 7B.
  • the outer peripheral edge region of the semiconductor substrate 11 on the light receiving surface side is not exposed.
  • the second conductive semiconductor layer 35 (and the second intrinsic semiconductor layer 33) can be satisfactorily formed in the outer peripheral region R on the back surface side of the semiconductor substrate 11. That is, it is possible to avoid the formation of an unfavorable semiconductor layer in the outer peripheral region R on the back surface side of the semiconductor substrate 11 as in FIGS. 7C and 7D. Further, unlike FIGS. 8C and 8D, the outer peripheral edge region of the semiconductor substrate 11 on the light receiving surface side is not exposed.
  • two methods for manufacturing the solar cell of the present embodiment will be described.
  • FIG. 3A is a diagram showing an intrinsic semiconductor layer forming step and an optical adjusting layer forming step in the method for manufacturing a solar cell according to the first embodiment.
  • FIG. 3B is a diagram showing a first semiconductor layer material film forming step in the solar cell manufacturing method according to the first embodiment, and
  • FIGS. 3C to 3E are diagrams in the solar cell manufacturing method according to the first embodiment. It is a figure which shows 1 semiconductor layer forming process.
  • FIG. 3A is a diagram showing an intrinsic semiconductor layer forming step and an optical adjusting layer forming step in the method for manufacturing a solar cell according to the first embodiment.
  • FIG. 3B is a diagram showing a first semiconductor layer material film forming step in the solar cell manufacturing method according to the first embodiment
  • FIGS. 3C to 3E are diagrams in the solar cell manufacturing method according to the first embodiment. It is a figure which shows 1 semiconductor layer forming process.
  • FIG. 3A is a diagram showing an intrinsic semiconductor layer forming step and an optical adjusting layer forming step in
  • FIGS. 3G to 3I show a first in the method for manufacturing a solar cell according to the first embodiment. It is a figure which shows 2 semiconductor layer formation process.
  • the intrinsic semiconductor layer 13 is laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side by, for example, the CVD method (intrinsic semiconductor layer forming step).
  • the optical adjustment layer 15 is laminated (film-formed) on the entire surface of the intrinsic semiconductor layer 13 on the light receiving surface side of the semiconductor substrate 11 (optical adjustment layer forming step).
  • the first intrinsic semiconductor layer material film 23Z and the first conductive type semiconductor layer material film 25Z are laminated in order on the back surface side of the semiconductor substrate 11 (film formation). To do. At this time, with the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 masked by the substrate tray 3, the first intrinsic semiconductor layer material film is formed on the first region 7 and the second region 8 on the back surface side of the semiconductor substrate 11. 23Z and the first conductive type semiconductor layer material film 25Z are formed (first semiconductor layer material film forming step).
  • the first intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film 25Z in the second region 8 on the back surface side of the semiconductor substrate 11 By removing the above, the patterned first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 are formed in the first region 7 on the back surface side of the semiconductor substrate 11. At this time, the first region 7 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side are covered with the resist 40, and the first intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film are covered. Patterning of 25Z is performed (first semiconductor layer forming step).
  • the photoresist in the second region 8 on the back surface side is exposed and developed to be removed by using a mask. ..
  • a resist 40 that covers the first region 7 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side is formed.
  • the first intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film 25Z in the second region 8 on the back surface side of the semiconductor substrate 11 are etched with the resist 40 as a mask to achieve a semiconductor.
  • a patterned first intrinsic semiconductor layer 23 and a first conductive semiconductor layer 25 are formed in the first region 7 on the back surface side of the substrate 11.
  • an acidic solution such as a mixed solution of hydrofluoric acid and nitric acid is used.
  • the resist 40 is removed.
  • an organic solvent such as acetone is used depending on the type of resist.
  • the entire surface of the semiconductor substrate 11 on the back surface side that is, the first region 7, the second region 8, and the outer peripheral region R, more specifically,
  • the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z are formed on the first conductive semiconductor layer 25 in the first region 7 and on the semiconductor substrate 11 in the second region 8 and the outer peripheral region R.
  • Laminate (film formation) in order.
  • the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z are formed by the substrate tray 3 in a state of being held in the opposite direction (second semiconductor layer material film forming step).
  • the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z in the first region 7 on the back surface side of the semiconductor substrate 11
  • the patterned second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 are formed in the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11.
  • the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side are covered with a resist to cover the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z.
  • a photoresist is applied to the entire surface of the semiconductor substrate 11 on both sides by using a photolithography method, and then the photoresist in the first region 7 on the back surface side is exposed and developed to be removed by using a mask. ..
  • a resist 40 that covers the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side is formed.
  • the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z in the first region 7 on the back surface side of the semiconductor substrate 11 are etched with the resist 40 as a mask to achieve a semiconductor.
  • a patterned second intrinsic semiconductor layer 33 and a second conductive semiconductor layer 35 are formed in the second region 8 and the outer peripheral region R on the back surface side of the substrate 11.
  • an acidic solution such as a mixed solution of hydrofluoric acid and nitric acid is used.
  • the resist 40 is removed.
  • an organic solvent such as acetone is used depending on the type of resist.
  • the first electrode layer 27 and the second electrode layer 37 are formed on the back surface side of the semiconductor substrate 11 (electrode layer forming step).
  • a PVD method physical vapor deposition method
  • a sputtering method is used to laminate (form) a transparent electrode layer material film on the entire back surface side of the semiconductor substrate 11.
  • the transparent electrode layers 28 and 38 are patterned by removing a part of the transparent electrode layer material film by, for example, an etching method using an etching paste.
  • the etching solution for the transparent electrode layer material film for example, hydrochloric acid or an aqueous ferric chloride solution is used.
  • a metal electrode layer 29 is formed on the transparent electrode layer 28, and a metal electrode layer 39 is formed on the transparent electrode layer 38, whereby the first electrode layer 27 and The second electrode layer 37 is formed.
  • the first conductive semiconductor layer material film 25Z (and the first intrinsic semiconductor layer material film 23Z) is formed in a state where the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 is masked by using the substrate tray 3 (the first). 1 Semiconductor layer material film forming process), The outer peripheral edge region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side are covered with a resist to pattern the first conductive semiconductor layer 25 (and the first intrinsic semiconductor layer 23) (formation of the first semiconductor layer). Process).
  • the first conductive semiconductor layer 25 (and the first intrinsic semiconductor layer 23) is not formed in the outer peripheral region R on the back surface side of the semiconductor substrate 11 as shown in FIGS. 7A and 7B. Further, as shown in FIGS. 8A and 8B, the outer peripheral edge region of the semiconductor substrate 11 on the light receiving surface side is not exposed.
  • the method for manufacturing a solar cell of the present embodiment On the entire surface including the first region 7, the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11, the top of the first conductive semiconductor layer 25 in the first region 7 and the second region 8 and the outer peripheral edge A second conductive semiconductor layer material film 35Z (and a second intrinsic semiconductor layer material film 33Z) is formed on the semiconductor substrate 11 in the region (second semiconductor layer material film forming step).
  • the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side are covered with a resist to pattern the second conductive semiconductor layer 35 (and the second intrinsic semiconductor layer 33) (formation of the second semiconductor layer). Process).
  • the second conductive semiconductor layer 35 (and the second intrinsic semiconductor layer 33) can be satisfactorily formed in the outer peripheral region R on the back surface side of the semiconductor substrate 11. That is, it is possible to avoid the formation of an unfavorable semiconductor layer in the outer peripheral region R on the back surface side of the semiconductor substrate 11 as shown in FIGS. 7C and 7D. Further, unlike FIGS. 8C and 8D, the outer peripheral edge region of the semiconductor substrate 11 on the light receiving surface side is not exposed.
  • a good second conductive semiconductor layer 35 is formed in the outer peripheral edge region R on the back surface side and the outer peripheral edge region on the light receiving surface side of the semiconductor substrate 11. Therefore, it is possible to suppress deterioration in the performance and reliability of the solar cell due to the exposure of the outer peripheral region of the main surface of the semiconductor substrate 11. Further, it is possible to suppress a decrease in the yield of the solar cell due to the exposure of the outer peripheral region of the main surface of the semiconductor substrate 11.
  • the back electrode type solar cell for example, i-layer / p-layer film formation ⁇ patterning ⁇ i-layer / n-layer film formation, so that it is after the integrated film formation of i-layer / p-layer film formation. Therefore, the outer peripheral region of the main surface of the semiconductor substrate can be covered before the integrated film formation of the i-layer / n-layer film formation.
  • masks such as substrate trays can be designed with a certain degree of freedom according to the design of solar cells, as compared with resists.
  • FIG. 10A is a diagram showing an intrinsic semiconductor layer forming step and an optical adjusting layer forming step in the method for manufacturing a solar cell according to the second embodiment.
  • FIG. 10B is a diagram showing a first semiconductor layer material film forming step and a lift-off layer forming step in the method for manufacturing a solar cell according to the second embodiment, and
  • FIGS. 10C to 10E are views of the solar cell according to the second embodiment.
  • FIG. 10F is a diagram showing a second semiconductor layer material film forming step in the method for manufacturing a solar cell according to the second embodiment
  • FIG. 10G is a diagram showing a second semiconductor layer in the method for manufacturing a solar cell according to the second embodiment. It is a figure which shows the forming process.
  • the intrinsic semiconductor layer 13 is laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side by using, for example, the CVD method in the same manner as described above (intrinsic semiconductor layer forming step).
  • the optical adjustment layer 15 is laminated (film-formed) on the entire surface of the intrinsic semiconductor layer 13 on the light receiving surface side of the semiconductor substrate 11 (optical adjustment layer forming step).
  • the first intrinsic semiconductor layer material film 23Z and the first conductive type semiconductor layer material film 25Z are laminated in order on the back surface side of the semiconductor substrate 11 by using, for example, the CVD method in the same manner as described above. Film formation).
  • the first intrinsic semiconductor layer material film is formed on the first region 7 and the second region 8 on the back surface side of the semiconductor substrate 11. 23Z and the first conductive type semiconductor layer material film 25Z are formed (first semiconductor layer material film forming step).
  • the lift-off layer 50 is laminated (film-formed) on the first conductive semiconductor layer material film 25Z on the back surface side of the semiconductor substrate 11. At this time, the lift-off layer 50 is formed in the first region 7 and the second region 8 on the back surface side of the semiconductor substrate 11 in a state where the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 is masked by the substrate tray 3 ( Lift-off layer forming process).
  • the lift-off layer 50 can be formed of, for example, an inorganic material.
  • lift-off proceeds with (treatment with a mixture of acids) and is formed from materials such as their composites such as ITO and ZnO, then acid treatment (hydrochloric acid, nitric acid, or theirs and other types of acids) Lift-off proceeds by treatment with a mixture with and is easily removed.
  • the lift-off layer 50 when the lift-off layer 50 is formed of a material such as silicon oxide (SiO), silicon nitride (SiN), or a composite thereof such as silicon oxynitride (SiON), the lift-off layer has two or more layers or more. Higher lift-off performance can be obtained by using a multi-layer structure. For example, in the case of a two-layer structure, a lift-off layer is formed in the order of a first lift-off layer and a second lift-off layer on the first conductive semiconductor layer material film 25Z, and these layers are etched by the first conductive semiconductor layer material film 25Z. With respect to the liquid, the etching rate of the first conductive semiconductor layer material film 25Z ⁇ the etching rate of the second lift-off layer ⁇ the etching rate of the first lift-off layer ... [Relational formula 1] is satisfied.
  • the first intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film 25Z in the second region 8 on the back surface side of the semiconductor substrate 11 By removing the lift-off layer 50 and the lift-off layer 50, the patterned first intrinsic semiconductor layer 23, the first conductive semiconductor layer 25, and the lift-off layer 50 are formed in the first region 7 on the back surface side of the semiconductor substrate 11. At this time, the first region 7 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side are covered with the resist 40, and the first intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film are covered. Patterning of 25Z and the lift-off layer 50 is performed (first semiconductor layer forming step).
  • the photoresist is applied to the entire surface of the semiconductor substrate 11 on both sides by using the photolithography method in the same manner as described above, and then the photoresist in the second region 8 on the back surface side is exposed and developed using a mask. To remove. As a result, as shown in FIG. 10C, a resist 40 that covers the first region 7 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side is formed.
  • the first intrinsic semiconductor layer material film 23Z, the first conductive semiconductor layer material film 25Z, and the lift-off layer 50 in the second region 8 on the back surface side of the semiconductor substrate 11 are formed. It is etched to form a patterned first intrinsic semiconductor layer 23, a first conductive semiconductor layer 25, and a lift-off layer 50 in the first region 7 on the back surface side of the semiconductor substrate 11.
  • an acidic solution such as a mixed solution of hydrofluoric acid and nitric acid is used as described above.
  • the resist 40 is removed.
  • an organic solvent such as acetone is used according to the type of resist as described above.
  • the CVD method is used to cover the entire surface of the semiconductor substrate 11 on the back surface side, that is, the first region 7, the second region 8, and the outer peripheral region R.
  • the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z are placed on the lift-off layer 50 in the first region 7 and on the semiconductor substrate 11 in the second region 8 and the outer peripheral region R.
  • Laminate (film formation) in order.
  • the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z are formed by the substrate tray 3 in a state of being held in the opposite direction (second semiconductor layer material film forming step).
  • the second intrinsic semiconductor layer material film 33Z and the second conductivity in the first region 7 on the back surface side of the semiconductor substrate 11 are used by using the lift-off method using the lift-off layer (sacrificial layer).
  • the type semiconductor layer material film 35Z is removed, and a patterned second intrinsic semiconductor layer 33 and a second conductive semiconductor layer 35 are formed in the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 ( Second semiconductor layer forming step).
  • the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z on the lift-off layer 50 are removed, and the second intrinsic semiconductor layer 33 and the second.
  • the conductive semiconductor layer 35 is formed.
  • an acidic solution such as hydrofluoric acid or hydrochloric acid is used, depending on the configuration of the lift-off layer 50.
  • the first electrode layer 27 and the second electrode layer 37 are formed on the back surface side of the semiconductor substrate 11 (electrode layer forming step).
  • the back electrode type solar cell 1 of the present embodiment shown in FIGS. 1 and 2 is completed.
  • the solar cell manufacturing method of the second embodiment can also obtain the same advantages as the solar cell manufacturing method of the first embodiment described above.
  • the present invention is not limited to the above-described embodiments, and various modifications and modifications can be made.
  • the method for manufacturing the heterozygous solar cell 1 is illustrated as shown in FIG. 2, but the feature of the present invention is not limited to the heterozygous solar cell, but the homozygous solar cell. It can be applied to various methods for manufacturing solar cells such as batteries.
  • a solar cell having a crystalline silicon substrate has been exemplified, but the present invention is not limited to this.
  • a solar cell may have a gallium arsenide (GaAs) substrate.
  • GaAs gallium arsenide

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a method for manufacturing a solar cell (1) such that performance reduction and reliability reduction caused by an outer peripheral edge region of a main surface of a semiconductor substrate (11) being exposed can be suppressed. The method for manufacturing a solar cell (1) includes: a step of forming a first conductivity type semiconductor layer material film in a first region (7) and a second region (8) on a rear side of the semiconductor substrate (11) with an outer peripheral edge region (R) of the rear side of the semiconductor substrate (11) being masked; a step of covering the first region (7) and the outer peripheral edge region (R) of the rear side of the semiconductor substrate (11) with a resist and forming a patterned semiconductor layer (25) of a first conductivity type in the first region (7); a step of forming a second conductivity type semiconductor layer material film on the entire surface including the first region (7), the second region (8), and the outer peripheral edge region (R) of the rear side of the semiconductor substrate (11); and a step of covering the second region (8) and the outer peripheral edge region (R) of the rear side of the semiconductor substrate (11) with a resist and forming a patterned semiconductor layer (35) of a second conductivity type in the second region (8) and the outer peripheral edge region (R).

Description

太陽電池の製造方法および太陽電池Manufacturing method of solar cells and solar cells
 本発明は、裏面電極型(バックコンタクト型)の太陽電池の製造方法および太陽電池に関する。 The present invention relates to a method for manufacturing a back electrode type (back contact type) solar cell and a solar cell.
 半導体基板を用いた太陽電池として、受光面側および裏面側の両面に半導体層および電極が形成された両面電極型の太陽電池と、裏面側のみに半導体層および電極が形成された裏面電極型の太陽電池とがある。 Solar cells using a semiconductor substrate include a double-sided electrode type solar cell in which semiconductor layers and electrodes are formed on both the light receiving surface side and the back surface side, and a back electrode type solar cell in which the semiconductor layer and electrodes are formed only on the back surface side. There is a solar cell.
 両面電極型の太陽電池では、一方の面に形成される半導体層が半導体基板の側面または他面に不所望に回り込むと、特性が低下する。これを防止するため、特許文献1に記載の太陽電池では、両面において半導体基板より小面積に半導体層を形成していた。しかし、このような構造においては、上記のように回り込みによる特性低下は低減できるものの、半導体基板の外周部が無効部となるため、この分、特性が低い。 In a double-sided electrode type solar cell, if the semiconductor layer formed on one surface undesirably wraps around the side surface or the other surface of the semiconductor substrate, the characteristics deteriorate. In order to prevent this, in the solar cell described in Patent Document 1, a semiconductor layer is formed in a smaller area than the semiconductor substrate on both sides. However, in such a structure, although the deterioration of the characteristics due to the wraparound can be reduced as described above, the outer peripheral portion of the semiconductor substrate becomes an invalid portion, so that the characteristics are low by this amount.
 特許文献2に記載の太陽電池では、表面側の半導体層は半導体基板の表面上の略全面に形成され、裏面側の半導体層は半導体基板の裏面より小面積に形成される。これによれば、裏面側の半導体層が半導体基板より小面積であるので、半導体基板の側面または表面側の端部に、裏面側の半導体層が形成されることなく、出力特性の低下が少ない。加えて、表面側の半導体は略全面に形成されているので、無効部が少なく、特性が良好である。 In the solar cell described in Patent Document 2, the semiconductor layer on the front surface side is formed on substantially the entire surface of the semiconductor substrate, and the semiconductor layer on the back surface side is formed in a smaller area than the back surface of the semiconductor substrate. According to this, since the semiconductor layer on the back surface side has a smaller area than the semiconductor substrate, the semiconductor layer on the back surface side is not formed on the side surface or the end portion on the front surface side of the semiconductor substrate, and the output characteristics are less deteriorated. .. In addition, since the semiconductor on the surface side is formed on substantially the entire surface, there are few ineffective portions and the characteristics are good.
特開平9-129904号公報JP-A-9-129904 特開2006-222469号公報Japanese Unexamined Patent Publication No. 2006-222469
 しかし、本願発明者の知見によれば、半導体基板の主面の外周縁領域が露出することも、太陽電池の性能低下および信頼性低下の要因の一つである。更に、本願発明者の知見によれば、裏面電極型の太陽電池では、両面電極型の太陽電池と比較して、一方の面に形成される半導体層が半導体基板の側面または他面に回り込むことによる特性の低下は少ない。そこで、本願発明者は、裏面電極型の太陽電池において、半導体基板の裏面側の外周縁領域まで半導体層を形成することを試みる。 However, according to the knowledge of the inventor of the present application, the exposure of the outer peripheral region of the main surface of the semiconductor substrate is also one of the factors for the deterioration of the performance and reliability of the solar cell. Further, according to the findings of the inventor of the present application, in the back electrode type solar cell, the semiconductor layer formed on one surface wraps around the side surface or the other surface of the semiconductor substrate as compared with the double-sided electrode type solar cell. There is little deterioration in characteristics due to. Therefore, the inventor of the present application attempts to form a semiconductor layer up to the outer peripheral region on the back surface side of the semiconductor substrate in the back electrode type solar cell.
 しかし、本願発明者は、例えばフォトリソグラフィ技術を利用したフォトレジストを用いて半導体層のパターニングを行う際、半導体基板の裏面の外周縁領域および受光面の外周縁領域に良好な半導体層を形成することが困難であるとの知見を得ている(詳細は後述する)。 However, the inventor of the present application forms a good semiconductor layer in the outer peripheral region of the back surface of the semiconductor substrate and the outer peripheral region of the light receiving surface when patterning the semiconductor layer using, for example, a photoresist using a photolithography technique. It has been found that this is difficult (details will be described later).
 本発明は、半導体基板の主面の外周縁領域が露出することに起因する性能低下および信頼性低下を抑制する太陽電池の製造方法および太陽電池を提供することを目的とする。 An object of the present invention is to provide a method for manufacturing a solar cell and a solar cell that suppresses performance deterioration and reliability deterioration due to exposure of the outer peripheral region of the main surface of the semiconductor substrate.
 本発明に係る太陽電池の製造方法は、半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1導電型半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2導電型半導体層および第2電極層とを備える裏面電極型の太陽電池の製造方法であって、前記半導体基板の前記他方主面側の外周縁領域をマスクした状態で、前記半導体基板の前記他方主面側の前記第1領域および前記第2領域に、前記第1導電型半導体層の材料膜を形成する第1半導体層材料膜形成工程と、前記半導体基板の前記他方主面側の前記第1領域および前記外周縁領域をレジストで覆って、前記第2領域における前記第1導電型半導体層の材料膜を除去することにより、前記第1領域に、パターン化された前記第1導電型半導体層を形成し、前記レジストを除去する第1半導体層形成工程と、前記半導体基板の前記他方主面側の前記第1領域、前記第2領域および前記外周縁領域を含む全面において、前記第1領域における前記第1導電型半導体層の上、および前記第2領域および前記外周縁領域における前記半導体基板の上に、前記第2導電型半導体層の材料膜を形成する第2半導体層材料膜形成工程と、前記半導体基板の前記他方主面側の前記第2領域および前記外周縁領域をレジストで覆って、前記第1領域における前記第2導電型半導体層の材料膜を除去することにより、前記第2領域および前記外周縁領域に、パターン化された前記第2導電型半導体層を形成する第2半導体層形成工程と、を含む。 In the method for manufacturing a solar cell according to the present invention, a first conductive semiconductor layer is sequentially laminated on a semiconductor substrate and a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate. A back electrode type sun including a first electrode layer, a second conductive semiconductor layer and a second electrode layer sequentially laminated in a second region which is a part of the other main surface side of the semiconductor substrate. A method for manufacturing a battery, in which the outer peripheral edge region on the other main surface side of the semiconductor substrate is masked, and the first region and the second region on the other main surface side of the semiconductor substrate are covered with the first region. 1 The first semiconductor layer material film forming step of forming the material film of the conductive semiconductor layer, and the first region and the outer peripheral region on the other main surface side of the semiconductor substrate are covered with a resist to cover the second region. In the first semiconductor layer forming step of forming the patterned first conductive semiconductor layer in the first region by removing the material film of the first conductive semiconductor layer in the above and removing the resist. On the entire surface including the first region, the second region, and the outer peripheral edge region on the other main surface side of the semiconductor substrate, above the first conductive semiconductor layer in the first region, and in the second region. A second semiconductor layer material film forming step of forming a material film of the second conductive semiconductor layer on the semiconductor substrate in the outer peripheral region, and the second region on the other main surface side of the semiconductor substrate. The second region and the outer peripheral region are patterned by covering the outer peripheral region with a resist and removing the material film of the second conductive semiconductor layer in the first region. It includes a second semiconductor layer forming step of forming a conductive semiconductor layer.
 本発明に係る他の太陽電池の製造方法は、半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1導電型半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2導電型半導体層および第2電極層とを備える裏面電極型の太陽電池の製造方法であって、前記半導体基板の前記他方主面側の外周縁領域をマスクした状態で、前記半導体基板の前記他方主面側の前記第1領域および前記第2領域に、前記第1導電型半導体層の材料膜を形成する第1半導体層材料膜形成工程と、前記第1導電型半導体層の材料膜の上に、リフトオフ層を形成するリフトオフ層形成工程と、前記半導体基板の前記他方主面側の前記第1領域および前記外周縁領域をレジストで覆って、前記第2領域における前記リフトオフ層および前記第1導電型半導体層の材料膜を除去することにより、前記第1領域に、パターン化された前記第1導電型半導体層および前記リフトオフ層を形成し、前記レジストを除去する第1半導体層形成工程と、前記半導体基板の前記他方主面側の前記第1領域、前記第2領域および前記外周縁領域を含む全面において、前記第1領域における前記リフトオフ層の上、および前記第2領域および前記外周縁領域における前記半導体基板の上に、前記第2導電型半導体層の材料膜を形成する第2半導体層材料膜形成工程と、前記リフトオフ層を除去することにより、前記第1領域における前記第2導電型半導体層の材料膜を除去し、前記第2領域および前記外周縁領域に、パターン化された前記第2導電型半導体層を形成する第2半導体層形成工程と、を含む。 Another method for manufacturing a solar cell according to the present invention is a first conductive type in which a semiconductor substrate is sequentially laminated in a first region which is a part of a semiconductor substrate and a part of the other main surface side opposite to one main surface side of the semiconductor substrate. A back surface electrode type including a semiconductor layer and a first electrode layer, and a second conductive semiconductor layer and a second electrode layer laminated in this order in a second region which is another part of the other main surface side of the semiconductor substrate. In the method for manufacturing a solar cell of the above, in a state where the outer peripheral edge region on the other main surface side of the semiconductor substrate is masked, the first region and the second region on the other main surface side of the semiconductor substrate are covered. A first semiconductor layer material film forming step of forming a material film of the first conductive semiconductor layer, a lift-off layer forming step of forming a lift-off layer on the material film of the first conductive semiconductor layer, and the semiconductor. The first region and the outer peripheral peripheral region on the other main surface side of the substrate are covered with a resist to remove the material films of the lift-off layer and the first conductive semiconductor layer in the second region. A first semiconductor layer forming step of forming the patterned first conductive semiconductor layer and the lift-off layer in one region and removing the resist, and the first region on the other main surface side of the semiconductor substrate. The second conductive semiconductor on the entire surface including the second region and the outer peripheral region, on the lift-off layer in the first region, and on the semiconductor substrate in the second region and the outer peripheral region. By removing the lift-off layer and the second semiconductor layer material film forming step of forming the material film of the layer, the material film of the second conductive semiconductor layer in the first region is removed, and the second region and the second region and the material film are removed. The outer peripheral edge region includes a second semiconductor layer forming step of forming the patterned second conductive semiconductor layer.
 本発明に係る太陽電池は、半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1導電型半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2導電型半導体層および第2電極層とを備える裏面電極型の太陽電池であって、前記半導体基板の前記他方主面側の外周縁領域に、前記第2導電型半導体層が形成されている。 The solar cell according to the present invention includes a semiconductor substrate, a first conductive semiconductor layer and a first conductive semiconductor layer, which are sequentially laminated in a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate. A back surface electrode type solar cell including an electrode layer, a second conductive semiconductor layer and a second electrode layer sequentially laminated in a second region which is another part of the other main surface side of the semiconductor substrate. Therefore, the second conductive semiconductor layer is formed in the outer peripheral edge region on the other main surface side of the semiconductor substrate.
 本発明によれば、半導体基板の主面の外周縁領域が露出することに起因する太陽電池の性能低下および信頼性低下を抑制することができる。 According to the present invention, it is possible to suppress deterioration in performance and reliability of the solar cell due to exposure of the outer peripheral region of the main surface of the semiconductor substrate.
本実施形態に係る太陽電池を裏面側からみた図である。It is the figure which looked at the solar cell which concerns on this embodiment from the back side. 図1の太陽電池におけるII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG. 第1実施形態に係る太陽電池の製造方法における真性半導体層形成工程および光学調整層形成工程を示す図である。It is a figure which shows the intrinsic semiconductor layer forming process and the optical adjustment layer forming process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における第1半導体層材料膜形成工程を示す図である。It is a figure which shows the 1st semiconductor layer material film formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における第2半導体層材料膜形成工程を示す図である。It is a figure which shows the 2nd semiconductor layer material film formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である。It is a figure which shows the 2nd semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である。It is a figure which shows the 2nd semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である。It is a figure which shows the 2nd semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 半導体基板の裏面側の全面および受光面側の全面にレジストを形成する様子を示す図である。It is a figure which shows the state of forming a resist on the whole surface of the back surface side and the entire surface of the light receiving surface side of a semiconductor substrate. 図4Aに示すレジストのパターニングの理想形を示す一部拡大図である。It is a partially enlarged view which shows the ideal form of the patterning of the resist shown in FIG. 4A. 図4Aに示すレジストのパターニングの一例を示す一部拡大図である。It is a partially enlarged view which shows an example of the patterning of the resist shown in FIG. 4A. 図4Aに示すレジストのパターニングの一例を示す一部拡大図である。It is a partially enlarged view which shows an example of the patterning of the resist shown in FIG. 4A. 図4Aに示すレジストのパターニングの他の一例を示す一部拡大図である。It is a partially enlarged view which shows another example of the patterning of the resist shown in FIG. 4A. 図4Aに示すレジストのパターニングの他の一例を示す一部拡大図である。It is a partially enlarged view which shows another example of the patterning of the resist shown in FIG. 4A. 図5Bに示すレジストの一例を用いた半導体層のパターニングの一例を示す一部拡大図である。It is a partially enlarged view which shows an example of the patterning of the semiconductor layer using the example of the resist shown in FIG. 5B. 図5Bに示すレジストの一例を用いた半導体層のパターニングの一例を示す一部拡大図である。It is a partially enlarged view which shows an example of the patterning of the semiconductor layer using the example of the resist shown in FIG. 5B. 図5Bに示すレジストの一例を用いた半導体層のパターニングの一例を示す一部拡大図である。It is a partially enlarged view which shows an example of the patterning of the semiconductor layer using the example of the resist shown in FIG. 5B. 図5Bに示すレジストの一例を用いた半導体層のパターニングの一例を示す一部拡大図である。It is a partially enlarged view which shows an example of the patterning of the semiconductor layer using the example of the resist shown in FIG. 5B. 図6Bに示すレジストの他の一例を用いた半導体層のパターニングの他の一例を示す一部拡大図である。It is a partially enlarged view which shows another example of the patterning of the semiconductor layer using another example of the resist shown in FIG. 6B. 図6Bに示すレジストの他の一例を用いた半導体層のパターニングの他の一例を示す一部拡大図である。It is a partially enlarged view which shows another example of the patterning of the semiconductor layer using another example of the resist shown in FIG. 6B. 図6Bに示すレジストの他の一例を用いた半導体層のパターニングの他の一例を示す一部拡大図である。It is a partially enlarged view which shows another example of the patterning of the semiconductor layer using another example of the resist shown in FIG. 6B. 図6Bに示すレジストの他の一例を用いた半導体層のパターニングの他の一例を示す一部拡大図である。It is a partially enlarged view which shows another example of the patterning of the semiconductor layer using another example of the resist shown in FIG. 6B. 本実施形態のレジストを用いた半導体層のパターニングの一例を示す一部拡大図である。It is a partially enlarged view which shows an example of the patterning of the semiconductor layer using the resist of this embodiment. 本実施形態のレジストを用いた半導体層のパターニングの一例を示す一部拡大図である。It is a partially enlarged view which shows an example of the patterning of the semiconductor layer using the resist of this embodiment. 本実施形態のレジストを用いた半導体層のパターニングの一例を示す一部拡大図である。It is a partially enlarged view which shows an example of the patterning of the semiconductor layer using the resist of this embodiment. 本実施形態のレジストを用いた半導体層のパターニングの一例を示す一部拡大図である。It is a partially enlarged view which shows an example of the patterning of the semiconductor layer using the resist of this embodiment. 第2実施形態に係る太陽電池の製造方法における真性半導体層形成工程および光学調整層形成工程を示す図である。It is a figure which shows the intrinsic semiconductor layer forming process and the optical adjustment layer forming process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 第2実施形態に係る太陽電池の製造方法における第1半導体層材料膜形成工程およびリフトオフ層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer material film formation | lift-off layer formation process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 第2実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 第2実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 第2実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 第2実施形態に係る太陽電池の製造方法における第2半導体層材料膜形成工程を示す図である。It is a figure which shows the 2nd semiconductor layer material film formation process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 第2実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である。It is a figure which shows the 2nd semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 2nd Embodiment.
 以下、添付の図面を参照して本発明の実施形態の一例について説明する。なお、各図面において同一または相当の部分に対しては同一の符号を附すこととする。また、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。 Hereinafter, an example of the embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the same reference numerals are given to the same or corresponding parts in each drawing. Further, for convenience, hatching, member codes, etc. may be omitted, but in such cases, other drawings shall be referred to.
(太陽電池)
 図1は、本実施形態に係る太陽電池を裏面側からみた図である。図1に示す太陽電池1は、裏面電極型の太陽電池である。太陽電池1は、2つの主面を備える半導体基板11を備え、半導体基板11の主面において第1領域7、第2領域8、および外周縁領域Rを有する。
(Solar cell)
FIG. 1 is a view of the solar cell according to the present embodiment as viewed from the back surface side. The solar cell 1 shown in FIG. 1 is a back electrode type solar cell. The solar cell 1 includes a semiconductor substrate 11 having two main surfaces, and has a first region 7, a second region 8, and an outer peripheral region R on the main surface of the semiconductor substrate 11.
 第1領域7は、いわゆる櫛型の形状をなし、櫛歯に相当する複数のフィンガー部7fと、櫛歯の支持部に相当するバスバー部7bとを有する。バスバー部7bは、半導体基板11の一方の辺部に沿って第1方向(X方向)に延在し、フィンガー部7fは、バスバー部7bから、第1方向(X方向)に交差する第2方向(Y方向)に延在する。
 同様に、第2領域8は、いわゆる櫛型の形状であり、櫛歯に相当する複数のフィンガー部8fと、櫛歯の支持部に相当するバスバー部8bとを有する。バスバー部8bは、半導体基板11の一方の辺部に対向する他方の辺部に沿って第1方向(X方向)に延在し、フィンガー部8fは、バスバー部8bから、第2方向(Y方向)に延在する。
 フィンガー部7fとフィンガー部8fとは、第1方向(X方向)に交互に設けられている。
 なお、第1領域7および第2領域8は、ストライプ状に形成されてもよい。
The first region 7 has a so-called comb-shaped shape, and has a plurality of finger portions 7f corresponding to comb teeth and a bus bar portion 7b corresponding to a support portion of the comb teeth. The bus bar portion 7b extends in the first direction (X direction) along one side of the semiconductor substrate 11, and the finger portion 7f intersects the bus bar portion 7b in the first direction (X direction). It extends in the direction (Y direction).
Similarly, the second region 8 has a so-called comb-shaped shape, and has a plurality of finger portions 8f corresponding to the comb teeth and a bus bar portion 8b corresponding to the support portion of the comb teeth. The bus bar portion 8b extends in the first direction (X direction) along the other side portion facing one side portion of the semiconductor substrate 11, and the finger portion 8f extends from the bus bar portion 8b in the second direction (Y). Extends in the direction).
The finger portions 7f and the finger portions 8f are alternately provided in the first direction (X direction).
The first region 7 and the second region 8 may be formed in a striped shape.
 外周縁領域Rは、半導体基板11の主面の外周縁の領域であって、第1領域7および第2領域8を囲う。外周縁領域Rは、半導体基板11の端から半導体基板11の中心に向かって幅W1=5mm以下の領域である。 The outer peripheral edge region R is a region of the outer peripheral edge of the main surface of the semiconductor substrate 11 and surrounds the first region 7 and the second region 8. The outer peripheral edge region R is a region having a width W1 = 5 mm or less from the edge of the semiconductor substrate 11 toward the center of the semiconductor substrate 11.
 図2は、図1の太陽電池におけるII-II線断面図である。図2に示すように、太陽電池1は、半導体基板11と、半導体基板11の主面のうちの受光する側の一方の主面である受光面側に順に積層された真性半導体層13および光学調整層15を備える。また、太陽電池1は、半導体基板11の主面のうちの受光面の反対側の他方の主面である裏面側の一部(第1領域7)に順に積層された第1真性半導体層23、第1導電型半導体層25および第1電極層27を備える。また、太陽電池1は、半導体基板11の裏面側の他の一部(第2領域8)に順に積層された第2真性半導体層33、第2導電型半導体層35、および第2電極層37を備える。なお、半導体基板11の裏面側の外周縁領域Rには、第2真性半導体層33および第2導電型半導体層35が形成されている。 FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG. As shown in FIG. 2, the solar cell 1 includes a semiconductor substrate 11, an intrinsic semiconductor layer 13 and optics, which are sequentially laminated on the light receiving surface side, which is one of the main surfaces of the semiconductor substrate 11 on the light receiving side. The adjusting layer 15 is provided. Further, the solar cell 1 is a first intrinsic semiconductor layer 23 which is sequentially laminated on a part (first region 7) of the back surface side which is the other main surface of the main surface of the semiconductor substrate 11 opposite to the light receiving surface. , A first conductive semiconductor layer 25 and a first electrode layer 27 are provided. Further, the solar cell 1 includes a second intrinsic semiconductor layer 33, a second conductive semiconductor layer 35, and a second electrode layer 37, which are sequentially laminated on another part (second region 8) on the back surface side of the semiconductor substrate 11. To be equipped. The second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 are formed in the outer peripheral region R on the back surface side of the semiconductor substrate 11.
 半導体基板11は、単結晶シリコンまたは多結晶シリコン等の結晶シリコン材料で形成される。半導体基板11は、例えば結晶シリコン材料にn型ドーパントがドープされたn型の半導体基板である。n型ドーパントとしては、例えばリン(P)が挙げられる。
 半導体基板11は、受光面側からの入射光を吸収して光キャリア(電子および正孔)を生成する光電変換基板として機能する。
 半導体基板11の材料として結晶シリコンが用いられることにより、暗電流が比較的に小さく、入射光の強度が低い場合であっても比較的高出力(照度によらず安定した出力)が得られる。
The semiconductor substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon. The semiconductor substrate 11 is, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. Examples of the n-type dopant include phosphorus (P).
The semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes).
By using crystalline silicon as the material of the semiconductor substrate 11, a relatively high output (stable output regardless of the illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
 真性半導体層13は、半導体基板11の受光面側に形成されている。第1真性半導体層23は、半導体基板11の裏面側の第1領域7に形成されている。第2真性半導体層33は、半導体基板11の裏面側の第2領域8および外周縁領域Rに形成されている。真性半導体層13、第1真性半導体層23および第2真性半導体層33は、例えば真性(i型)アモルファスシリコンを主成分とする材料で形成される。
 真性半導体層13、第1真性半導体層23および第2真性半導体層33は、いわゆるパッシベーション層として機能し、半導体基板11で生成されたキャリアの再結合を抑制し、キャリアの回収効率を高める。
The intrinsic semiconductor layer 13 is formed on the light receiving surface side of the semiconductor substrate 11. The first intrinsic semiconductor layer 23 is formed in the first region 7 on the back surface side of the semiconductor substrate 11. The second intrinsic semiconductor layer 33 is formed in the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11. The intrinsic semiconductor layer 13, the first intrinsic semiconductor layer 23, and the second intrinsic semiconductor layer 33 are formed of, for example, a material containing intrinsic (i-type) amorphous silicon as a main component.
The intrinsic semiconductor layer 13, the first intrinsic semiconductor layer 23, and the second intrinsic semiconductor layer 33 function as a so-called passivation layer, suppress recombination of carriers generated in the semiconductor substrate 11, and increase carrier recovery efficiency.
 光学調整層15は、半導体基板11の受光面側の真性半導体層13上に形成されている。光学調整層15は、入射光の反射を防止する反射防止層として機能するとともに、半導体基板11の受光面側および真性半導体層13を保護する保護層として機能する。光学調整層15は、例えば酸化珪素(SiO)、窒化珪素(SiN)、または酸窒化珪素(SiON)のようなそれらの複合物等の絶縁体材料で形成される。 The optical adjustment layer 15 is formed on the intrinsic semiconductor layer 13 on the light receiving surface side of the semiconductor substrate 11. The optical adjustment layer 15 functions as an antireflection layer for preventing reflection of incident light, and also functions as a protective layer for protecting the light receiving surface side of the semiconductor substrate 11 and the intrinsic semiconductor layer 13. The optical adjustment layer 15 is formed of an insulating material such as a composite thereof such as silicon oxide (SiO), silicon nitride (SiN), or silicon oxynitride (SiON).
 第1導電型半導体層25は、第1真性半導体層23上に、すなわち半導体基板11の裏面側の第1領域7に形成されている。第1導電型半導体層25は、例えばアモルファスシリコン材料で形成される。第1導電型半導体層25は、例えばアモルファスシリコン材料にp型ドーパントがドープされたp型の半導体層である。p型ドーパントとしては、例えばホウ素(B)が挙げられる。 The first conductive semiconductor layer 25 is formed on the first intrinsic semiconductor layer 23, that is, in the first region 7 on the back surface side of the semiconductor substrate 11. The first conductive semiconductor layer 25 is formed of, for example, an amorphous silicon material. The first conductive semiconductor layer 25 is, for example, a p-type semiconductor layer in which an amorphous silicon material is doped with a p-type dopant. Examples of the p-type dopant include boron (B).
 第2導電型半導体層35は、第2真性半導体層33上に、すなわち半導体基板11の裏面側の第2領域8および外周縁領域Rに形成されている。第2導電型半導体層35は、例えばアモルファスシリコン材料で形成される。第2導電型半導体層35は、例えばアモルファスシリコン材料にn型ドーパント(例えば、上述したリン(P))がドープされたn型半導体層である。 The second conductive semiconductor layer 35 is formed on the second intrinsic semiconductor layer 33, that is, in the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11. The second conductive semiconductor layer 35 is formed of, for example, an amorphous silicon material. The second conductive semiconductor layer 35 is, for example, an n-type semiconductor layer in which an amorphous silicon material is doped with an n-type dopant (for example, phosphorus (P) described above).
 なお、第1導電型半導体層25がn型半導体層であり、第2導電型半導体層35がp型半導体層であってもよい。
 また、半導体基板11は、結晶シリコン材料にp型ドーパント(例えば、上述したホウ素(B))がドープされたp型半導体基板であってもよい。
The first conductive semiconductor layer 25 may be an n-type semiconductor layer, and the second conductive semiconductor layer 35 may be a p-type semiconductor layer.
Further, the semiconductor substrate 11 may be a p-type semiconductor substrate in which a crystalline silicon material is doped with a p-type dopant (for example, the above-mentioned boron (B)).
 第1電極層27は、第1導電型半導体層25上に形成されており、第2電極層37は、第2導電型半導体層35上に形成されている。
 第1電極層27および第2電極層37は、透明電極層と金属電極層とを含んでもよいし、金属電極層のみを含んでもよい。本実施形態では、第1電極層27は、第1導電型半導体層25上に順に積層された透明電極層28と金属電極層29とを有する。第2電極層37は、第2導電型半導体層35上に順に積層された透明電極層38と金属電極層39とを有する。
 透明電極層28,38は、透明な導電性材料で形成される。透明導電性材料としては、ITO(Indium Tin Oxide:酸化インジウムおよび酸化スズの複合酸化物)、ZnO(Zinc Oxide:酸化亜鉛)が挙げられる。金属電極層29,39は、銀等の金属粉末を含有する導電性ペースト材料で形成されてもよい。
The first electrode layer 27 is formed on the first conductive semiconductor layer 25, and the second electrode layer 37 is formed on the second conductive semiconductor layer 35.
The first electrode layer 27 and the second electrode layer 37 may include a transparent electrode layer and a metal electrode layer, or may include only a metal electrode layer. In the present embodiment, the first electrode layer 27 has a transparent electrode layer 28 and a metal electrode layer 29, which are sequentially laminated on the first conductive semiconductor layer 25. The second electrode layer 37 has a transparent electrode layer 38 and a metal electrode layer 39, which are sequentially laminated on the second conductive semiconductor layer 35.
The transparent electrode layers 28 and 38 are formed of a transparent conductive material. Examples of the transparent conductive material include ITO (Indium Tin Oxide: a composite oxide of indium tin oxide and tin oxide) and ZnO (Zinc Oxide: zinc oxide). The metal electrode layers 29 and 39 may be formed of a conductive paste material containing a metal powder such as silver.
 ここで、本願発明者は、例えばフォトリソグラフィ技術を利用したフォトレジストを用いて半導体層のパターニングを行う際、半導体基板の裏面の外周縁領域および受光面の外周縁領域に良好な半導体層を形成することが困難であるとの知見を得ている。 Here, the inventor of the present application forms a good semiconductor layer in the outer peripheral region of the back surface of the semiconductor substrate and the outer peripheral region of the light receiving surface when patterning the semiconductor layer using, for example, a photoresist using a photolithography technique. We have obtained the finding that it is difficult to do so.
 まず、レジストについて検討する。
 図4Aに示すように、レジスト40を、半導体基板11の裏面側の全面および受光面側の全面に形成する場合、実際には半導体基板11の側面側(端面側)にも形成される。
 半導体基板11の裏面側の外周縁領域Rに半導体層を形成する場合、図4Bに示すように、理想的には半導体基板11の裏面側の外周縁領域Rを露出させる必要がある。
First, consider resist.
As shown in FIG. 4A, when the resist 40 is formed on the entire surface of the semiconductor substrate 11 on the back surface side and the entire surface on the light receiving surface side, it is actually formed on the side surface side (end surface side) of the semiconductor substrate 11.
When forming a semiconductor layer on the outer peripheral edge region R on the back surface side of the semiconductor substrate 11, it is ideally necessary to expose the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 as shown in FIG. 4B.
 一般に、半導体基板11の裏面側を露出させる場合、図5Aおよび図5Bに示すように、半導体基板11の裏面側の外周縁領域Rにもマスクを配置して、露光および現像を行い、レジスト40のパターニングを行う。この場合、図5Bに示すように、半導体基板11の裏面側の外周縁領域Rにレジスト40が残る(なお、実際には、光の反射および散乱、現像液の影響等により、マスク幅よりも広く露出する。)。 Generally, when the back surface side of the semiconductor substrate 11 is exposed, as shown in FIGS. 5A and 5B, a mask is also arranged on the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 to perform exposure and development, and the resist 40 is exposed. Patterning is performed. In this case, as shown in FIG. 5B, the resist 40 remains in the outer peripheral region R on the back surface side of the semiconductor substrate 11 (actually, due to light reflection and scattering, the influence of the developing solution, etc., the resist 40 remains larger than the mask width. Widely exposed.).
 これに対して、図6Aおよび図6Bに示すように、半導体基板11の裏面側の外周縁領域Rまでレジスト40を除去するために、半導体基板11の裏面側の外周縁領域Rのマスクをなくすと、受光面側に光が回り込み、受光面側の外周縁領域が露出してしまう。 On the other hand, as shown in FIGS. 6A and 6B, in order to remove the resist 40 up to the outer peripheral edge region R on the back surface side of the semiconductor substrate 11, the mask of the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 is removed. Then, the light wraps around to the light receiving surface side, and the outer peripheral edge region on the light receiving surface side is exposed.
 これを踏まえて、半導体層のパターニングについて検討する。
 図7Aに示すように、半導体基板11の裏面側の全面に第1導電型半導体層材料膜25Z(および第1真性半導体層材料膜23Z)を形成し、図5Bに示すレジスト40を用いて第1導電型半導体層材料膜25Z(および第1真性半導体層材料膜23Z)のパターニングを行うと、図7Bに示すように、半導体基板11の裏面側の外周縁領域Rに第1導電型半導体層25(および第1真性半導体層23)が残る。
Based on this, the patterning of the semiconductor layer will be examined.
As shown in FIG. 7A, a first conductive semiconductor layer material film 25Z (and a first intrinsic semiconductor layer material film 23Z) is formed on the entire surface of the back surface side of the semiconductor substrate 11, and the resist 40 shown in FIG. 5B is used to form a first film. When the 1 conductive semiconductor layer material film 25Z (and the 1st intrinsic semiconductor layer material film 23Z) is patterned, as shown in FIG. 7B, the 1st conductive semiconductor layer is formed in the outer peripheral region R on the back surface side of the semiconductor substrate 11. 25 (and the first intrinsic semiconductor layer 23) remains.
 その後、図7Cに示すように、半導体基板11の裏面側の全面に第2導電型半導体層材料膜35Z(および第2真性半導体層材料膜33Z)を形成し、図5Aおよび図5Bのように形成されたレジスト40を用いて第2導電型半導体層材料膜35Z(および第2真性半導体層材料膜33Z)のパターニングを行うと、図7Dに示すように、半導体基板11の裏面側の外周縁領域Rに第1導電型半導体層25(および第1真性半導体層23)および第2導電型半導体層35(および第2真性半導体層33)が残る。 After that, as shown in FIG. 7C, a second conductive semiconductor layer material film 35Z (and a second intrinsic semiconductor layer material film 33Z) is formed on the entire surface of the back surface side of the semiconductor substrate 11, as shown in FIGS. 5A and 5B. When the second conductive semiconductor layer material film 35Z (and the second intrinsic semiconductor layer material film 33Z) is patterned using the formed resist 40, as shown in FIG. 7D, the outer peripheral edge on the back surface side of the semiconductor substrate 11 The first conductive semiconductor layer 25 (and the first intrinsic semiconductor layer 23) and the second conductive semiconductor layer 35 (and the second intrinsic semiconductor layer 33) remain in the region R.
 このように、図5Bに示すレジスト40を用いて半導体層のパターニングを行うと、半導体基板11の裏面側の外周縁領域Rの半導体層が良好に得られない。 As described above, when the semiconductor layer is patterned using the resist 40 shown in FIG. 5B, the semiconductor layer in the outer peripheral region R on the back surface side of the semiconductor substrate 11 cannot be obtained well.
 これに対して、図8Aに示すように、半導体基板11の裏面側の全面に第1導電型半導体層材料膜25Z(および第1真性半導体層材料膜23Z)を形成し、図6Bに示すレジスト40を用いて第1導電型半導体層材料膜25Z(および第1真性半導体層材料膜23Z)のパターニングを行うと、図8Bに示すように、半導体基板11の裏面側の外周縁領域Rに第1導電型半導体層25(および第1真性半導体層23)が残ることがない。しかし、半導体基板11の受光面側の外周縁領域が露出してしまう。 On the other hand, as shown in FIG. 8A, the first conductive semiconductor layer material film 25Z (and the first intrinsic semiconductor layer material film 23Z) is formed on the entire surface of the back surface side of the semiconductor substrate 11, and the resist shown in FIG. 6B is formed. When the first conductive semiconductor layer material film 25Z (and the first intrinsic semiconductor layer material film 23Z) is patterned using the 40, as shown in FIG. 8B, the outer peripheral region R on the back surface side of the semiconductor substrate 11 is the first. 1 The conductive semiconductor layer 25 (and the first intrinsic semiconductor layer 23) does not remain. However, the outer peripheral edge region of the semiconductor substrate 11 on the light receiving surface side is exposed.
 その後、図8Cに示すように、半導体基板11の裏面側の全面に第2導電型半導体層材料膜35Z(および第2真性半導体層材料膜33Z)を形成し、図6Aおよび図6Bのように形成されたレジスト40を用いて第2導電型半導体層材料膜35Z(および第2真性半導体層材料膜33Z)のパターニングを行うと、図8Dに示すように、半導体基板11の裏面側の外周縁領域Rに第2導電型半導体層35(および第2真性半導体層33)が残る。しかし、半導体基板11の受光面側の外周縁領域が露出してしまう。 After that, as shown in FIG. 8C, a second conductive semiconductor layer material film 35Z (and a second intrinsic semiconductor layer material film 33Z) is formed on the entire back surface side of the semiconductor substrate 11, as shown in FIGS. 6A and 6B. When the second conductive semiconductor layer material film 35Z (and the second intrinsic semiconductor layer material film 33Z) is patterned using the formed resist 40, as shown in FIG. 8D, the outer peripheral edge on the back surface side of the semiconductor substrate 11 The second conductive semiconductor layer 35 (and the second intrinsic semiconductor layer 33) remains in the region R. However, the outer peripheral edge region of the semiconductor substrate 11 on the light receiving surface side is exposed.
 このように、図6Bに示すレジスト40を用いて半導体層のパターニングを行うと、半導体基板11の裏面側の外周縁領域Rの半導体層が良好に得られるが、半導体基板11の受光面側の外周縁領域が露出してしまう。 When the semiconductor layer is patterned using the resist 40 shown in FIG. 6B in this way, the semiconductor layer in the outer peripheral region R on the back surface side of the semiconductor substrate 11 is satisfactorily obtained, but on the light receiving surface side of the semiconductor substrate 11. The outer peripheral area is exposed.
 そこで、本願発明者は、第1導電型半導体層材料膜形成時に、半導体基板の裏面側の外周縁領域をマスク(例えば基板トレイ)する太陽電池の製造方法を見出した。具体的には、
・後述するように、例えば基板トレイ3を用いて半導体基板11の裏面側の外周縁領域Rをマスクした状態で、第1導電型半導体層材料膜25Z(および第1真性半導体層材料膜23Z)を形成し(第1半導体層材料膜形成工程)、
・図9Aおよび図9Bに示すように、半導体基板11の裏面側の外周縁領域Rおよび受光面側の全面をレジスト40で覆って、第1導電型半導体層25(および第1真性半導体層23)のパターニングを行う(第1半導体層形成工程)。
 これにより、図7Aおよび図7Bのように半導体基板11の裏面側の外周縁領域Rに、第1導電型半導体層25(および第1真性半導体層23)が残ることがない。また、図8Aおよび図8Bのように半導体基板11の受光面側の外周縁領域が露出することがない。
Therefore, the inventor of the present application has found a method for manufacturing a solar cell that masks (for example, a substrate tray) the outer peripheral region on the back surface side of the semiconductor substrate when forming the first conductive type semiconductor layer material film. In particular,
-As will be described later, for example, the first conductive semiconductor layer material film 25Z (and the first intrinsic semiconductor layer material film 23Z) in a state where the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 is masked by using the substrate tray 3. (First semiconductor layer material film forming step),
As shown in FIGS. 9A and 9B, the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side are covered with a resist 40 to cover the first conductive semiconductor layer 25 (and the first intrinsic semiconductor layer 23). ) Is patterned (first semiconductor layer forming step).
As a result, the first conductive semiconductor layer 25 (and the first intrinsic semiconductor layer 23) does not remain in the outer peripheral region R on the back surface side of the semiconductor substrate 11 as shown in FIGS. 7A and 7B. Further, unlike FIGS. 8A and 8B, the outer peripheral edge region of the semiconductor substrate 11 on the light receiving surface side is not exposed.
 その後、
・図9Cに示すように、半導体基板11の裏面側の第1領域7、第2領域8および外周縁領域Rを含む全面において、第1領域7における第1導電型半導体層25の上、および第2領域8および外周縁領域における半導体基板11の上に、第2導電型半導体層材料膜35Z(および第2真性半導体層材料膜33Z)を形成し(第2半導体層材料膜形成工程)、
・図9Dに示すように、半導体基板11の裏面側の外周縁領域Rおよび受光面側の全面をレジストで覆って、第2導電型半導体層35(および第2真性半導体層33)のパターニングを行う(第2半導体層形成工程)。
 これにより、半導体基板11の裏面側の外周縁領域Rに、第2導電型半導体層35(および第2真性半導体層33)を良好に形成することができる。すなわち、図7Cおよび図7Dのように半導体基板11の裏面側の外周縁領域Rに良好でない半導体層が形成されることを回避することができる。また、図8Cおよび図8Dのように半導体基板11の受光面側の外周縁領域が露出することがない。
 以下、本実施形態の太陽電池の製造方法を2つ説明する。
afterwards,
As shown in FIG. 9C, on the entire surface including the first region 7, the second region 8, and the outer peripheral region R on the back surface side of the semiconductor substrate 11, on the first conductive semiconductor layer 25 in the first region 7, and on the entire surface including the outer peripheral region R. A second conductive semiconductor layer material film 35Z (and a second intrinsic semiconductor layer material film 33Z) is formed on the semiconductor substrate 11 in the second region 8 and the outer peripheral region (second semiconductor layer material film forming step).
As shown in FIG. 9D, the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side are covered with a resist to pattern the second conductive semiconductor layer 35 (and the second intrinsic semiconductor layer 33). (Second semiconductor layer forming step).
As a result, the second conductive semiconductor layer 35 (and the second intrinsic semiconductor layer 33) can be satisfactorily formed in the outer peripheral region R on the back surface side of the semiconductor substrate 11. That is, it is possible to avoid the formation of an unfavorable semiconductor layer in the outer peripheral region R on the back surface side of the semiconductor substrate 11 as in FIGS. 7C and 7D. Further, unlike FIGS. 8C and 8D, the outer peripheral edge region of the semiconductor substrate 11 on the light receiving surface side is not exposed.
Hereinafter, two methods for manufacturing the solar cell of the present embodiment will be described.
(第1実施形態の太陽電池の製造方法)
 次に、図3A~図3Iを参照して、図1および図2に示す本実施形態の太陽電池1の製造方法について説明する。図3Aは、第1実施形態に係る太陽電池の製造方法における真性半導体層形成工程および光学調整層形成工程を示す図である。図3Bは、第1実施形態に係る太陽電池の製造方法における第1半導体層材料膜形成工程を示す図であり、図3C~図3Eは、第1実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。図3Fは、第1実施形態に係る太陽電池の製造方法における第2半導体層材料膜形成工程を示す図であり、図3G~図3Iは、第1実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である。
(Manufacturing method of the solar cell of the first embodiment)
Next, a method for manufacturing the solar cell 1 of the present embodiment shown in FIGS. 1 and 2 will be described with reference to FIGS. 3A to 3I. FIG. 3A is a diagram showing an intrinsic semiconductor layer forming step and an optical adjusting layer forming step in the method for manufacturing a solar cell according to the first embodiment. FIG. 3B is a diagram showing a first semiconductor layer material film forming step in the solar cell manufacturing method according to the first embodiment, and FIGS. 3C to 3E are diagrams in the solar cell manufacturing method according to the first embodiment. It is a figure which shows 1 semiconductor layer forming process. FIG. 3F is a diagram showing a second semiconductor layer material film forming step in the method for manufacturing a solar cell according to the first embodiment, and FIGS. 3G to 3I show a first in the method for manufacturing a solar cell according to the first embodiment. It is a figure which shows 2 semiconductor layer formation process.
 まず、図3Aに示すように、例えばCVD法を用いて、半導体基板11の受光面側の全面に、真性半導体層13を積層(製膜)する(真性半導体層形成工程)。次に、例えばCVD法を用いて、半導体基板11の受光面側の真性半導体層13上の全面に、光学調整層15を積層(製膜)する(光学調整層形成工程)。 First, as shown in FIG. 3A, the intrinsic semiconductor layer 13 is laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side by, for example, the CVD method (intrinsic semiconductor layer forming step). Next, for example, using a CVD method, the optical adjustment layer 15 is laminated (film-formed) on the entire surface of the intrinsic semiconductor layer 13 on the light receiving surface side of the semiconductor substrate 11 (optical adjustment layer forming step).
 次に、図3Bに示すように、例えばCVD法を用いて、半導体基板11の裏面側に、第1真性半導体層材料膜23Zおよび第1導電型半導体層材料膜25Zを順に積層(製膜)する。このとき、基板トレイ3によって、半導体基板11の裏面側の外周縁領域Rをマスクした状態で、半導体基板11の裏面側の第1領域7および第2領域8に、第1真性半導体層材料膜23Zおよび第1導電型半導体層材料膜25Zを形成する(第1半導体層材料膜形成工程)。 Next, as shown in FIG. 3B, for example, using the CVD method, the first intrinsic semiconductor layer material film 23Z and the first conductive type semiconductor layer material film 25Z are laminated in order on the back surface side of the semiconductor substrate 11 (film formation). To do. At this time, with the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 masked by the substrate tray 3, the first intrinsic semiconductor layer material film is formed on the first region 7 and the second region 8 on the back surface side of the semiconductor substrate 11. 23Z and the first conductive type semiconductor layer material film 25Z are formed (first semiconductor layer material film forming step).
 次に、図3C~図3Eに示すように、例えばレジスト40を用いて、半導体基板11の裏面側の第2領域8における第1真性半導体層材料膜23Zおよび第1導電型半導体層材料膜25Zを除去することにより、半導体基板11の裏面側の第1領域7に、パターン化された第1真性半導体層23および第1導電型半導体層25を形成する。このとき、半導体基板11の裏面側の第1領域7および外周縁領域R、および受光面側の全面をレジスト40で覆って、第1真性半導体層材料膜23Zおよび第1導電型半導体層材料膜25Zのパターニングを行う(第1半導体層形成工程)。 Next, as shown in FIGS. 3C to 3E, for example, using a resist 40, the first intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film 25Z in the second region 8 on the back surface side of the semiconductor substrate 11 By removing the above, the patterned first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 are formed in the first region 7 on the back surface side of the semiconductor substrate 11. At this time, the first region 7 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side are covered with the resist 40, and the first intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film are covered. Patterning of 25Z is performed (first semiconductor layer forming step).
 具体的には、フォトリソグラフィ法を用いて、半導体基板11の両面側の全面にフォトレジストを塗布した後に、マスクを用いて裏面側の第2領域8におけるフォトレジストを露光および現像して除去する。これにより、図3Cに示すように、半導体基板11の裏面側の第1領域7および外周縁領域R、および受光面側の全面を覆うレジスト40を形成する。 Specifically, after applying the photoresist to the entire surface of the semiconductor substrate 11 on both sides by using a photolithography method, the photoresist in the second region 8 on the back surface side is exposed and developed to be removed by using a mask. .. As a result, as shown in FIG. 3C, a resist 40 that covers the first region 7 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side is formed.
 その後、図3Dに示すように、レジスト40をマスクとして、半導体基板11の裏面側の第2領域8における第1真性半導体層材料膜23Zおよび第1導電型半導体層材料膜25Zをエッチングし、半導体基板11の裏面側の第1領域7に、パターン化された第1真性半導体層23および第1導電型半導体層25を形成する。第1真性半導体層材料膜および第1導電型半導体層材料膜に対するエッチング溶液としては、例えばフッ酸と硝酸との混合液等の酸性溶液が用いられる。 Then, as shown in FIG. 3D, the first intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film 25Z in the second region 8 on the back surface side of the semiconductor substrate 11 are etched with the resist 40 as a mask to achieve a semiconductor. A patterned first intrinsic semiconductor layer 23 and a first conductive semiconductor layer 25 are formed in the first region 7 on the back surface side of the substrate 11. As the etching solution for the first intrinsic semiconductor layer material film and the first conductive semiconductor layer material film, for example, an acidic solution such as a mixed solution of hydrofluoric acid and nitric acid is used.
 その後、図3Eに示すように、レジスト40を除去する。レジスト40に対する剥離液としては、レジストの種類に対応して、例えばアセトン等の有機溶剤が用いられる。 After that, as shown in FIG. 3E, the resist 40 is removed. As the stripping solution for the resist 40, an organic solvent such as acetone is used depending on the type of resist.
 次に、図3Fに示すように、例えばCVD法を用いて、半導体基板11の裏面側の全面に、すなわち第1領域7、第2領域8および外周縁領域Rに、より具体的には、第1領域7における第1導電型半導体層25上および第2領域8および外周縁領域Rにおける半導体基板11の上に、第2真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zを順に積層(製膜)する。このとき、基板トレイ3によって、逆向きにホールドした状態で、第2真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zを形成する(第2半導体層材料膜形成工程)。 Next, as shown in FIG. 3F, for example, by using a CVD method, the entire surface of the semiconductor substrate 11 on the back surface side, that is, the first region 7, the second region 8, and the outer peripheral region R, more specifically, The second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z are formed on the first conductive semiconductor layer 25 in the first region 7 and on the semiconductor substrate 11 in the second region 8 and the outer peripheral region R. Laminate (film formation) in order. At this time, the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z are formed by the substrate tray 3 in a state of being held in the opposite direction (second semiconductor layer material film forming step).
 次に、図3G~図3Iに示すように、例えばレジスト40を用いて、半導体基板11の裏面側の第1領域7における第2真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zを除去することにより、半導体基板11の裏面側の第2領域8および外周縁領域Rに、パターン化された第2真性半導体層33および第2導電型半導体層35を形成する。このとき、半導体基板11の裏面側の第2領域8および外周縁領域R、および受光面側の全面をレジストで覆って、第2真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zのパターニングを行う(第2半導体層形成工程)。 Next, as shown in FIGS. 3G to 3I, for example, using the resist 40, the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z in the first region 7 on the back surface side of the semiconductor substrate 11 By removing the above, the patterned second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 are formed in the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11. At this time, the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side are covered with a resist to cover the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z. (Second semiconductor layer forming step).
 具体的には、フォトリソグラフィ法を用いて、半導体基板11の両面側の全面にフォトレジストを塗布した後に、マスクを用いて裏面側の第1領域7におけるフォトレジストを露光および現像して除去する。これにより、図3Gに示すように、半導体基板11の裏面側の第2領域8および外周縁領域R、および受光面側の全面を覆うレジスト40を形成する。 Specifically, a photoresist is applied to the entire surface of the semiconductor substrate 11 on both sides by using a photolithography method, and then the photoresist in the first region 7 on the back surface side is exposed and developed to be removed by using a mask. .. As a result, as shown in FIG. 3G, a resist 40 that covers the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side is formed.
 その後、図3Hに示すように、レジスト40をマスクとして、半導体基板11の裏面側の第1領域7における第2真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zをエッチングし、半導体基板11の裏面側の第2領域8および外周縁領域Rに、パターン化された第2真性半導体層33および第2導電型半導体層35を形成する。第2真性半導体層材料膜および第2導電型半導体層材料膜に対するエッチング溶液としては、例えばフッ酸と硝酸との混合液等の酸性溶液が用いられる。 Then, as shown in FIG. 3H, the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z in the first region 7 on the back surface side of the semiconductor substrate 11 are etched with the resist 40 as a mask to achieve a semiconductor. A patterned second intrinsic semiconductor layer 33 and a second conductive semiconductor layer 35 are formed in the second region 8 and the outer peripheral region R on the back surface side of the substrate 11. As the etching solution for the second intrinsic semiconductor layer material film and the second conductive semiconductor layer material film, for example, an acidic solution such as a mixed solution of hydrofluoric acid and nitric acid is used.
 その後、図3Iに示すように、レジスト40を除去する。レジスト40に対する剥離液としては、レジストの種類に対応して、例えばアセトン等の有機溶剤が用いられる。 After that, as shown in FIG. 3I, the resist 40 is removed. As the stripping solution for the resist 40, an organic solvent such as acetone is used depending on the type of resist.
 次に、半導体基板11の裏面側に、第1電極層27および第2電極層37を形成する(電極層形成工程)。
 具体的には、例えばスパッタリング法等のPVD法(物理気相成長法)を用いて、半導体基板11の裏面側の全面に、透明電極層材料膜を積層(製膜)する。その後、例えばエッチングペーストを用いたエッチング法を用いて、透明電極層材料膜の一部を除去することにより、透明電極層28,38のパターニングを行う。透明電極層材料膜に対するエッチング溶液としては、例えば塩酸または塩化第二鉄水溶液が用いられる。
 その後、例えばパターン印刷法または塗布法を用いて、透明電極層28上に金属電極層29を形成し、透明電極層38の上に金属電極層39を形成することにより、第1電極層27および第2電極層37を形成する。
Next, the first electrode layer 27 and the second electrode layer 37 are formed on the back surface side of the semiconductor substrate 11 (electrode layer forming step).
Specifically, for example, a PVD method (physical vapor deposition method) such as a sputtering method is used to laminate (form) a transparent electrode layer material film on the entire back surface side of the semiconductor substrate 11. After that, the transparent electrode layers 28 and 38 are patterned by removing a part of the transparent electrode layer material film by, for example, an etching method using an etching paste. As the etching solution for the transparent electrode layer material film, for example, hydrochloric acid or an aqueous ferric chloride solution is used.
Then, for example, by using a pattern printing method or a coating method, a metal electrode layer 29 is formed on the transparent electrode layer 28, and a metal electrode layer 39 is formed on the transparent electrode layer 38, whereby the first electrode layer 27 and The second electrode layer 37 is formed.
 以上の工程により、図1および図2に示す本実施形態の裏面電極型の太陽電池1が完成する。 Through the above steps, the back electrode type solar cell 1 of the present embodiment shown in FIGS. 1 and 2 is completed.
 以上説明したように、本実施形態の太陽電池の製造方法によれば、
・例えば基板トレイ3を用いて半導体基板11の裏面側の外周縁領域Rをマスクした状態で、第1導電型半導体層材料膜25Z(および第1真性半導体層材料膜23Z)を形成し(第1半導体層材料膜形成工程)、
・半導体基板11の裏面側の外周縁領域Rおよび受光面側の全面をレジストで覆って、第1導電型半導体層25(および第1真性半導体層23)のパターニングを行う(第1半導体層形成工程)。
 これにより、図7Aおよび図7Bのように半導体基板11の裏面側の外周縁領域Rに、第1導電型半導体層25(および第1真性半導体層23)が形成されることがない。また、図8Aおよび図8Bに示すように、半導体基板11の受光面側の外周縁領域が露出することがない。
As described above, according to the method for manufacturing a solar cell of the present embodiment,
-For example, the first conductive semiconductor layer material film 25Z (and the first intrinsic semiconductor layer material film 23Z) is formed in a state where the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 is masked by using the substrate tray 3 (the first). 1 Semiconductor layer material film forming process),
The outer peripheral edge region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side are covered with a resist to pattern the first conductive semiconductor layer 25 (and the first intrinsic semiconductor layer 23) (formation of the first semiconductor layer). Process).
As a result, the first conductive semiconductor layer 25 (and the first intrinsic semiconductor layer 23) is not formed in the outer peripheral region R on the back surface side of the semiconductor substrate 11 as shown in FIGS. 7A and 7B. Further, as shown in FIGS. 8A and 8B, the outer peripheral edge region of the semiconductor substrate 11 on the light receiving surface side is not exposed.
 また、本実施形態の太陽電池の製造方法によれば、
・半導体基板11の裏面側の第1領域7、第2領域8および外周縁領域Rを含む全面において、第1領域7における第1導電型半導体層25の上、および第2領域8および外周縁領域における半導体基板11の上に、第2導電型半導体層材料膜35Z(および第2真性半導体層材料膜33Z)を形成し(第2半導体層材料膜形成工程)、
・半導体基板11の裏面側の外周縁領域Rおよび受光面側の全面をレジストで覆って、第2導電型半導体層35(および第2真性半導体層33)のパターニングを行う(第2半導体層形成工程)。
 これにより、半導体基板11の裏面側の外周縁領域Rに、第2導電型半導体層35(および第2真性半導体層33)を良好に形成することができる。すなわち、図7Cおよび図7Dのように半導体基板11の裏面側の外周縁領域Rに良好でない半導体層が形成されることを回避することができる。また、図8Cおよび図8Dのように半導体基板11の受光面側の外周縁領域が露出することがない。
Further, according to the method for manufacturing a solar cell of the present embodiment,
On the entire surface including the first region 7, the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11, the top of the first conductive semiconductor layer 25 in the first region 7 and the second region 8 and the outer peripheral edge A second conductive semiconductor layer material film 35Z (and a second intrinsic semiconductor layer material film 33Z) is formed on the semiconductor substrate 11 in the region (second semiconductor layer material film forming step).
The outer peripheral edge region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side are covered with a resist to pattern the second conductive semiconductor layer 35 (and the second intrinsic semiconductor layer 33) (formation of the second semiconductor layer). Process).
As a result, the second conductive semiconductor layer 35 (and the second intrinsic semiconductor layer 33) can be satisfactorily formed in the outer peripheral region R on the back surface side of the semiconductor substrate 11. That is, it is possible to avoid the formation of an unfavorable semiconductor layer in the outer peripheral region R on the back surface side of the semiconductor substrate 11 as shown in FIGS. 7C and 7D. Further, unlike FIGS. 8C and 8D, the outer peripheral edge region of the semiconductor substrate 11 on the light receiving surface side is not exposed.
 このように、本実施形態の太陽電池の製造方法によれば、半導体基板11の裏面側の外周縁領域Rおよび受光面側の外周縁領域に良好な第2導電型半導体層35を形成することができるので、半導体基板11の主面の外周縁領域が露出することに起因する太陽電池の性能低下および信頼性低下を抑制することができる。また、半導体基板11の主面の外周縁領域が露出することに起因する太陽電池の歩留まり低下を抑制することができる。 As described above, according to the method for manufacturing a solar cell of the present embodiment, a good second conductive semiconductor layer 35 is formed in the outer peripheral edge region R on the back surface side and the outer peripheral edge region on the light receiving surface side of the semiconductor substrate 11. Therefore, it is possible to suppress deterioration in the performance and reliability of the solar cell due to the exposure of the outer peripheral region of the main surface of the semiconductor substrate 11. Further, it is possible to suppress a decrease in the yield of the solar cell due to the exposure of the outer peripheral region of the main surface of the semiconductor substrate 11.
 ところで、例えばCVDプロセスを用いて半導体層を一貫製膜して太陽電池を作成すると、大気暴露せず、ダストの影響および太陽電池取り出しによる機械的ダメージがないため、性能が向上する。しかし、基板トレイの問題で、必ず一方の面がマスクされる。
 両面電極型の太陽電池では、受光面、裏面ともに一度ずつしか製膜しないので、一度マスクされた場所は露出し、暴露され続けることになる。これに対して、裏面電極型の太陽電池では、例えばi層/p層製膜→パターニング→i層/n層製膜となるため、i層/p層製膜の一貫製膜の後であって、i層/n層製膜の一貫製膜の前に半導体基板の主面の外周縁領域を覆うことができる。
By the way, for example, when a solar cell is produced by integrally forming a semiconductor layer by using a CVD process, the performance is improved because it is not exposed to the atmosphere and there is no influence of dust and mechanical damage due to removal of the solar cell. However, due to the problem of the board tray, one side is always masked.
In a double-sided electrode type solar cell, since the film is formed only once on both the light receiving surface and the back surface, the once masked area is exposed and continues to be exposed. On the other hand, in the back electrode type solar cell, for example, i-layer / p-layer film formation → patterning → i-layer / n-layer film formation, so that it is after the integrated film formation of i-layer / p-layer film formation. Therefore, the outer peripheral region of the main surface of the semiconductor substrate can be covered before the integrated film formation of the i-layer / n-layer film formation.
 また、基板トレイ等のマスクは、レジストと比較して、太陽電池のデザインに合わせてある程度自由度をもって設計することができる。 In addition, masks such as substrate trays can be designed with a certain degree of freedom according to the design of solar cells, as compared with resists.
(第2実施形態の太陽電池の製造方法)
 第2実施形態では、リフトオフ層を用いたリフトオフ法を利用する。
 次に、図10A~図10Gを参照して、図1および図2に示す本実施形態の太陽電池1の製造方法について説明する。図10Aは、第2実施形態に係る太陽電池の製造方法における真性半導体層形成工程および光学調整層形成工程を示す図である。図10Bは、第2実施形態に係る太陽電池の製造方法における第1半導体層材料膜形成工程およびリフトオフ層形成工程を示す図であり、図10C~図10Eは、第2実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。図10Fは、第2実施形態に係る太陽電池の製造方法における第2半導体層材料膜形成工程を示す図であり、図10Gは、第2実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である。
(Method for manufacturing the solar cell of the second embodiment)
In the second embodiment, the lift-off method using the lift-off layer is used.
Next, the method for manufacturing the solar cell 1 of the present embodiment shown in FIGS. 1 and 2 will be described with reference to FIGS. 10A to 10G. FIG. 10A is a diagram showing an intrinsic semiconductor layer forming step and an optical adjusting layer forming step in the method for manufacturing a solar cell according to the second embodiment. FIG. 10B is a diagram showing a first semiconductor layer material film forming step and a lift-off layer forming step in the method for manufacturing a solar cell according to the second embodiment, and FIGS. 10C to 10E are views of the solar cell according to the second embodiment. It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of. FIG. 10F is a diagram showing a second semiconductor layer material film forming step in the method for manufacturing a solar cell according to the second embodiment, and FIG. 10G is a diagram showing a second semiconductor layer in the method for manufacturing a solar cell according to the second embodiment. It is a figure which shows the forming process.
 まず、図10Aに示すように、上述同様に例えばCVD法を用いて、半導体基板11の受光面側の全面に、真性半導体層13を積層(製膜)する(真性半導体層形成工程)。次に、例えばCVD法を用いて、半導体基板11の受光面側の真性半導体層13上の全面に、光学調整層15を積層(製膜)する(光学調整層形成工程)。 First, as shown in FIG. 10A, the intrinsic semiconductor layer 13 is laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side by using, for example, the CVD method in the same manner as described above (intrinsic semiconductor layer forming step). Next, for example, using a CVD method, the optical adjustment layer 15 is laminated (film-formed) on the entire surface of the intrinsic semiconductor layer 13 on the light receiving surface side of the semiconductor substrate 11 (optical adjustment layer forming step).
 次に、図10Bに示すように、上述同様に例えばCVD法を用いて、半導体基板11の裏面側に、第1真性半導体層材料膜23Zおよび第1導電型半導体層材料膜25Zを順に積層(製膜)する。このとき、基板トレイ3によって、半導体基板11の裏面側の外周縁領域Rをマスクした状態で、半導体基板11の裏面側の第1領域7および第2領域8に、第1真性半導体層材料膜23Zおよび第1導電型半導体層材料膜25Zを形成する(第1半導体層材料膜形成工程)。 Next, as shown in FIG. 10B, the first intrinsic semiconductor layer material film 23Z and the first conductive type semiconductor layer material film 25Z are laminated in order on the back surface side of the semiconductor substrate 11 by using, for example, the CVD method in the same manner as described above. Film formation). At this time, with the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 masked by the substrate tray 3, the first intrinsic semiconductor layer material film is formed on the first region 7 and the second region 8 on the back surface side of the semiconductor substrate 11. 23Z and the first conductive type semiconductor layer material film 25Z are formed (first semiconductor layer material film forming step).
 次に、例えばCVD法を用いて、半導体基板11の裏面側の第1導電型半導体層材料膜25Z上に、リフトオフ層50を積層(製膜)する。このとき、基板トレイ3によって、半導体基板11の裏面側の外周縁領域Rをマスクした状態で、半導体基板11の裏面側の第1領域7および第2領域8に、リフトオフ層50を形成する(リフトオフ層形成工程)。
 リフトオフ層50は、例えば無機物質材料で形成することが出来る。酸化珪素(SiO)、窒化珪素(SiN)、または酸窒化珪素(SiON)のようなそれらの複合物等の材料で形成される場合は、フッ酸処理(フッ酸、またはフッ酸と他の種類の酸との混合物での処理)でリフトオフが進行し、ITOやZnOのようなそれらの複合物等の材料で形成される場合は、酸処理(塩酸、硝酸、またはそれらと他の種類の酸との混合物での処理)でリフトオフが進行し、容易に除去される。
 特にリフトオフ層50を前記酸化珪素(SiO)、窒化珪素(SiN)、または酸窒化珪素(SiON)のようなそれらの複合物等の材料で形成する場合、リフトオフ層を2層か3層以上の複数層構成とすることで、より高いリフトオフ性が得られる。例えば2層構成の場合、第1導電型半導体層材料膜25Z上に第1リフトオフ層、第2リフトオフ層の順にリフトオフ層を形成し、これらの層は第1導電型半導体層材料膜25Zのエッチング液に対して、第1導電型半導体層材料膜25Zのエッチング速度<第2リフトオフ層のエッチング速度<第1リフトオフ層のエッチング速度…[関係式1]を満たす。
Next, for example, using the CVD method, the lift-off layer 50 is laminated (film-formed) on the first conductive semiconductor layer material film 25Z on the back surface side of the semiconductor substrate 11. At this time, the lift-off layer 50 is formed in the first region 7 and the second region 8 on the back surface side of the semiconductor substrate 11 in a state where the outer peripheral edge region R on the back surface side of the semiconductor substrate 11 is masked by the substrate tray 3 ( Lift-off layer forming process).
The lift-off layer 50 can be formed of, for example, an inorganic material. If formed from materials such as silicon oxide (SiO), silicon nitride (SiN), or composites thereof such as silicon oxynitride (SiON), hydrofluoric acid treatment (hydrofluoric acid, or hydrofluoric acid and other types). If lift-off proceeds with (treatment with a mixture of acids) and is formed from materials such as their composites such as ITO and ZnO, then acid treatment (hydrochloric acid, nitric acid, or theirs and other types of acids) Lift-off proceeds by treatment with a mixture with and is easily removed.
In particular, when the lift-off layer 50 is formed of a material such as silicon oxide (SiO), silicon nitride (SiN), or a composite thereof such as silicon oxynitride (SiON), the lift-off layer has two or more layers or more. Higher lift-off performance can be obtained by using a multi-layer structure. For example, in the case of a two-layer structure, a lift-off layer is formed in the order of a first lift-off layer and a second lift-off layer on the first conductive semiconductor layer material film 25Z, and these layers are etched by the first conductive semiconductor layer material film 25Z. With respect to the liquid, the etching rate of the first conductive semiconductor layer material film 25Z <the etching rate of the second lift-off layer <the etching rate of the first lift-off layer ... [Relational formula 1] is satisfied.
 次に、図10C~図10Eに示すように、例えばレジスト40を用いて、半導体基板11の裏面側の第2領域8における第1真性半導体層材料膜23Z、第1導電型半導体層材料膜25Zおよびリフトオフ層50を除去することにより、半導体基板11の裏面側の第1領域7に、パターン化された第1真性半導体層23、第1導電型半導体層25およびリフトオフ層50を形成する。このとき、半導体基板11の裏面側の第1領域7および外周縁領域R、および受光面側の全面をレジスト40で覆って、第1真性半導体層材料膜23Z、第1導電型半導体層材料膜25Zおよびリフトオフ層50のパターニングを行う(第1半導体層形成工程)。 Next, as shown in FIGS. 10C to 10E, for example, using the resist 40, the first intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film 25Z in the second region 8 on the back surface side of the semiconductor substrate 11 By removing the lift-off layer 50 and the lift-off layer 50, the patterned first intrinsic semiconductor layer 23, the first conductive semiconductor layer 25, and the lift-off layer 50 are formed in the first region 7 on the back surface side of the semiconductor substrate 11. At this time, the first region 7 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side are covered with the resist 40, and the first intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film are covered. Patterning of 25Z and the lift-off layer 50 is performed (first semiconductor layer forming step).
 具体的には、上述同様にフォトリソグラフィ法を用いて、半導体基板11の両面側の全面にフォトレジストを塗布した後に、マスクを用いて裏面側の第2領域8におけるフォトレジストを露光および現像して除去する。これにより、図10Cに示すように、半導体基板11の裏面側の第1領域7および外周縁領域R、および受光面側の全面を覆うレジスト40を形成する。 Specifically, the photoresist is applied to the entire surface of the semiconductor substrate 11 on both sides by using the photolithography method in the same manner as described above, and then the photoresist in the second region 8 on the back surface side is exposed and developed using a mask. To remove. As a result, as shown in FIG. 10C, a resist 40 that covers the first region 7 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side is formed.
 その後、図10Dに示すように、レジスト40をマスクとして、半導体基板11の裏面側の第2領域8における第1真性半導体層材料膜23Z、第1導電型半導体層材料膜25Zおよびリフトオフ層50をエッチングし、半導体基板11の裏面側の第1領域7に、パターン化された第1真性半導体層23、第1導電型半導体層25およびリフトオフ層50を形成する。第1真性半導体層材料膜、第1導電型半導体層材料膜およびリフトオフ層に対するエッチング溶液としては、上述同様に例えばフッ酸と硝酸との混合液等の酸性溶液が用いられる。 After that, as shown in FIG. 10D, using the resist 40 as a mask, the first intrinsic semiconductor layer material film 23Z, the first conductive semiconductor layer material film 25Z, and the lift-off layer 50 in the second region 8 on the back surface side of the semiconductor substrate 11 are formed. It is etched to form a patterned first intrinsic semiconductor layer 23, a first conductive semiconductor layer 25, and a lift-off layer 50 in the first region 7 on the back surface side of the semiconductor substrate 11. As the etching solution for the first intrinsic semiconductor layer material film, the first conductive semiconductor layer material film and the lift-off layer, an acidic solution such as a mixed solution of hydrofluoric acid and nitric acid is used as described above.
 その後、図10Eに示すように、レジスト40を除去する。レジスト40に対する剥離溶液としては、上述同様にレジストの種類に対応して、例えばアセトン等の有機溶剤が用いられる。 After that, as shown in FIG. 10E, the resist 40 is removed. As the stripping solution for the resist 40, an organic solvent such as acetone is used according to the type of resist as described above.
 次に、図10Fに示すように、上述同様に例えばCVD法を用いて、半導体基板11の裏面側の全面に、すなわち第1領域7、第2領域8および外周縁領域Rに、より具体的には、第1領域7におけるリフトオフ層50上、および第2領域8および外周縁領域Rにおける半導体基板11の上に、第2真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zを順に積層(製膜)する。このとき、基板トレイ3によって、逆向きにホールドした状態で、第2真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zを形成する(第2半導体層材料膜形成工程)。 Next, as shown in FIG. 10F, in the same manner as described above, for example, the CVD method is used to cover the entire surface of the semiconductor substrate 11 on the back surface side, that is, the first region 7, the second region 8, and the outer peripheral region R. The second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z are placed on the lift-off layer 50 in the first region 7 and on the semiconductor substrate 11 in the second region 8 and the outer peripheral region R. Laminate (film formation) in order. At this time, the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z are formed by the substrate tray 3 in a state of being held in the opposite direction (second semiconductor layer material film forming step).
 次に、図10Gに示すように、リフトオフ層(犠牲層)を用いたリフトオフ法を利用して、半導体基板11の裏面側の第1領域7における第2真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zを除去し、半導体基板11の裏面側の第2領域8および外周縁領域Rに、パターン化された第2真性半導体層33および第2導電型半導体層35を形成する(第2半導体層形成工程)。 Next, as shown in FIG. 10G, the second intrinsic semiconductor layer material film 33Z and the second conductivity in the first region 7 on the back surface side of the semiconductor substrate 11 are used by using the lift-off method using the lift-off layer (sacrificial layer). The type semiconductor layer material film 35Z is removed, and a patterned second intrinsic semiconductor layer 33 and a second conductive semiconductor layer 35 are formed in the second region 8 and the outer peripheral region R on the back surface side of the semiconductor substrate 11 ( Second semiconductor layer forming step).
 具体的には、リフトオフ層50を除去することにより、リフトオフ層50上の第2真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zを除去し、第2真性半導体層33および第2導電型半導体層35を形成する。リフトオフ層50の除去溶液としては、リフトオフ層50の構成に対応して、例えばフッ酸または塩酸等の酸性溶液が用いられる。 Specifically, by removing the lift-off layer 50, the second intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z on the lift-off layer 50 are removed, and the second intrinsic semiconductor layer 33 and the second. The conductive semiconductor layer 35 is formed. As the removal solution for the lift-off layer 50, an acidic solution such as hydrofluoric acid or hydrochloric acid is used, depending on the configuration of the lift-off layer 50.
 その後、上述同様に、半導体基板11の裏面側に、第1電極層27および第2電極層37を形成する(電極層形成工程)。
 以上の工程により、図1および図2に示す本実施形態の裏面電極型の太陽電池1が完成する。
Then, in the same manner as described above, the first electrode layer 27 and the second electrode layer 37 are formed on the back surface side of the semiconductor substrate 11 (electrode layer forming step).
Through the above steps, the back electrode type solar cell 1 of the present embodiment shown in FIGS. 1 and 2 is completed.
 この第2実施形態の太陽電池の製造方法でも、上述した第1実施形態の太陽電池の製造方法と同様の利点を得ることができる。 The solar cell manufacturing method of the second embodiment can also obtain the same advantages as the solar cell manufacturing method of the first embodiment described above.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更および変形が可能である。例えば、上述した実施形態では、図2に示すようにヘテロ接合型の太陽電池1の製造方法を例示したが、本発明の特徴は、ヘテロ接合型の太陽電池に限らず、ホモ接合型の太陽電池等の種々の太陽電池の製造方法に適用可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and modifications can be made. For example, in the above-described embodiment, the method for manufacturing the heterozygous solar cell 1 is illustrated as shown in FIG. 2, but the feature of the present invention is not limited to the heterozygous solar cell, but the homozygous solar cell. It can be applied to various methods for manufacturing solar cells such as batteries.
 また、上述した実施形態では、結晶シリコン基板を有する太陽電池を例示したが、これに限定されない。例えば、太陽電池は、ガリウムヒ素(GaAs)基板を有していてもよい。 Further, in the above-described embodiment, a solar cell having a crystalline silicon substrate has been exemplified, but the present invention is not limited to this. For example, a solar cell may have a gallium arsenide (GaAs) substrate.
 1 太陽電池
 7 第1領域
 7b,8b バスバー部
 7f,8f フィンガー部
 8 第2領域
 11 半導体基板
 13 真性半導体層
 15 光学調整層
 23 第1真性半導体層
 23Z 第1真性半導体層材料膜
 25 第1導電型半導体層
 25Z 第1導電型半導体層材料膜
 27 第1電極層
 28,38 透明電極層
 29,39 金属電極層
 33 第2真性半導体層
 33Z 第2真性半導体層材料膜
 35 第2導電型半導体層
 35Z 第2導電型半導体層材料膜
 37 第2電極層
 40 レジスト
 50 リフトオフ層(犠牲層)
 R 外周縁領域
1 Solar cell 7 1st area 7b, 8b Bus bar part 7f, 8f Finger part 8 2nd area 11 Semiconductor substrate 13 Intrinsic semiconductor layer 15 Optical adjustment layer 23 1st intrinsic semiconductor layer 23Z 1st intrinsic semiconductor layer Material film 25 1st conductivity Type semiconductor layer 25Z 1st conductive type semiconductor layer Material film 27 1st electrode layer 28,38 Transparent electrode layer 29,39 Metal electrode layer 33 2nd intrinsic semiconductor layer 33Z 2nd intrinsic semiconductor layer Material film 35 2nd conductive type semiconductor layer 35Z 2nd conductive semiconductor layer Material film 37 2nd electrode layer 40 Resist 50 Lift-off layer (sacrificial layer)
R outer peripheral area

Claims (5)

  1.  半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1導電型半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2導電型半導体層および第2電極層とを備える裏面電極型の太陽電池の製造方法であって、
     前記半導体基板の前記他方主面側の外周縁領域をマスクした状態で、前記半導体基板の前記他方主面側の前記第1領域および前記第2領域に、前記第1導電型半導体層の材料膜を形成する第1半導体層材料膜形成工程と、
     前記半導体基板の前記他方主面側の前記第1領域および前記外周縁領域をレジストで覆って、前記第2領域における前記第1導電型半導体層の材料膜を除去することにより、前記第1領域に、パターン化された前記第1導電型半導体層を形成し、前記レジストを除去する第1半導体層形成工程と、
     前記半導体基板の前記他方主面側の前記第1領域、前記第2領域および前記外周縁領域を含む全面において、前記第1領域における前記第1導電型半導体層の上、および前記第2領域および前記外周縁領域における前記半導体基板の上に、前記第2導電型半導体層の材料膜を形成する第2半導体層材料膜形成工程と、
     前記半導体基板の前記他方主面側の前記第2領域および前記外周縁領域をレジストで覆って、前記第1領域における前記第2導電型半導体層の材料膜を除去することにより、前記第2領域および前記外周縁領域に、パターン化された前記第2導電型半導体層を形成する第2半導体層形成工程と、
    を含む、太陽電池の製造方法。
    A semiconductor substrate, a first conductive semiconductor layer and a first electrode layer laminated in order in a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate, and the semiconductor substrate. A method for manufacturing a back electrode type solar cell including a second conductive semiconductor layer and a second electrode layer which are sequentially laminated in a second region which is another part on the other main surface side.
    In a state where the outer peripheral edge region on the other main surface side of the semiconductor substrate is masked, the material film of the first conductive semiconductor layer is formed on the first region and the second region on the other main surface side of the semiconductor substrate. First semiconductor layer material film forming step to form
    By covering the first region and the outer peripheral region on the other main surface side of the semiconductor substrate with a resist and removing the material film of the first conductive semiconductor layer in the second region, the first region In the first semiconductor layer forming step of forming the patterned first conductive semiconductor layer and removing the resist.
    On the entire surface of the semiconductor substrate including the first region, the second region, and the outer peripheral region on the other main surface side, above the first conductive semiconductor layer in the first region, and in the second region and A second semiconductor layer material film forming step of forming a material film of the second conductive semiconductor layer on the semiconductor substrate in the outer peripheral region.
    By covering the second region and the outer peripheral region on the other main surface side of the semiconductor substrate with a resist and removing the material film of the second conductive semiconductor layer in the first region, the second region A second semiconductor layer forming step of forming the patterned second conductive semiconductor layer in the outer peripheral region, and
    Manufacturing methods for solar cells, including.
  2.  半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1導電型半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2導電型半導体層および第2電極層とを備える裏面電極型の太陽電池の製造方法であって、
     前記半導体基板の前記他方主面側の外周縁領域をマスクした状態で、前記半導体基板の前記他方主面側の前記第1領域および前記第2領域に、前記第1導電型半導体層の材料膜を形成する第1半導体層材料膜形成工程と、
     前記第1導電型半導体層の材料膜の上に、リフトオフ層を形成するリフトオフ層形成工程と、
     前記半導体基板の前記他方主面側の前記第1領域および前記外周縁領域をレジストで覆って、前記第2領域における前記リフトオフ層および前記第1導電型半導体層の材料膜を除去することにより、前記第1領域に、パターン化された前記第1導電型半導体層および前記リフトオフ層を形成し、前記レジストを除去する第1半導体層形成工程と、
     前記半導体基板の前記他方主面側の前記第1領域、前記第2領域および前記外周縁領域を含む全面において、前記第1領域における前記リフトオフ層の上、および前記第2領域および前記外周縁領域における前記半導体基板の上に、前記第2導電型半導体層の材料膜を形成する第2半導体層材料膜形成工程と、
     前記リフトオフ層を除去することにより、前記第1領域における前記第2導電型半導体層の材料膜を除去し、前記第2領域および前記外周縁領域に、パターン化された前記第2導電型半導体層を形成する第2半導体層形成工程と、
    を含む、太陽電池の製造方法。
    A semiconductor substrate, a first conductive semiconductor layer and a first electrode layer laminated in order in a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate, and the semiconductor substrate. A method for manufacturing a back electrode type solar cell including a second conductive semiconductor layer and a second electrode layer which are sequentially laminated in a second region which is another part on the other main surface side.
    In a state where the outer peripheral edge region on the other main surface side of the semiconductor substrate is masked, the material film of the first conductive semiconductor layer is formed on the first region and the second region on the other main surface side of the semiconductor substrate. First semiconductor layer material film forming step to form
    A lift-off layer forming step of forming a lift-off layer on the material film of the first conductive semiconductor layer,
    By covering the first region and the outer peripheral region on the other main surface side of the semiconductor substrate with a resist, the material films of the lift-off layer and the first conductive semiconductor layer in the second region are removed. A first semiconductor layer forming step of forming the patterned first conductive semiconductor layer and the lift-off layer in the first region and removing the resist.
    On the entire surface of the semiconductor substrate including the first region, the second region, and the outer peripheral region on the other main surface side, above the lift-off layer in the first region, and on the second region and the outer peripheral region. The second semiconductor layer material film forming step of forming the material film of the second conductive type semiconductor layer on the semiconductor substrate in
    By removing the lift-off layer, the material film of the second conductive semiconductor layer in the first region is removed, and the second conductive semiconductor layer patterned in the second region and the outer peripheral region. The second semiconductor layer forming step of forming
    Manufacturing methods for solar cells, including.
  3.  前記第1半導体層形成工程では、前記半導体基板の前記一方主面側をレジストで覆って、前記第1導電型半導体層の材料膜のパターニングを行い、
     前記第2半導体層形成工程では、前記半導体基板の前記一方主面側をレジストで覆って、前記第2導電型半導体層の材料膜のパターニングを行う、
    請求項1または2に記載の太陽電池の製造方法。
    In the first semiconductor layer forming step, the one main surface side of the semiconductor substrate is covered with a resist, and the material film of the first conductive semiconductor layer is patterned.
    In the second semiconductor layer forming step, the one main surface side of the semiconductor substrate is covered with a resist to pattern the material film of the second conductive semiconductor layer.
    The method for manufacturing a solar cell according to claim 1 or 2.
  4.  半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1導電型半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2導電型半導体層および第2電極層とを備える裏面電極型の太陽電池であって、
     前記半導体基板の前記他方主面側の外周縁領域に、前記第2導電型半導体層が形成されている、太陽電池。
    A semiconductor substrate, a first conductive semiconductor layer and a first electrode layer laminated in order in a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate, and the semiconductor substrate. A back electrode type solar cell including a second conductive semiconductor layer and a second electrode layer which are sequentially laminated in a second region which is another part of the other main surface side.
    A solar cell in which the second conductive semiconductor layer is formed in an outer peripheral region of the semiconductor substrate on the other main surface side.
  5.  前記外周縁領域は、前記半導体基板の端から前記半導体基板の中心に向かって幅5mm以下の領域である、請求項4に記載の太陽電池。 The solar cell according to claim 4, wherein the outer peripheral edge region is a region having a width of 5 mm or less from the edge of the semiconductor substrate toward the center of the semiconductor substrate.
PCT/JP2020/006030 2019-03-29 2020-02-17 Method for manufacturing solar cell and solar cell WO2020202840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021511194A JP7459059B2 (en) 2019-03-29 2020-02-17 Method for manufacturing solar cell and solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-066261 2019-03-29
JP2019066261 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202840A1 true WO2020202840A1 (en) 2020-10-08

Family

ID=72667919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006030 WO2020202840A1 (en) 2019-03-29 2020-02-17 Method for manufacturing solar cell and solar cell

Country Status (2)

Country Link
JP (1) JP7459059B2 (en)
WO (1) WO2020202840A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076397A (en) * 2000-08-29 2002-03-15 Sanyo Electric Co Ltd Manufacturing method of photovoltaic device
JP2004296550A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Photovoltaic element and its fabricating process
JP2014053459A (en) * 2012-09-07 2014-03-20 Sharp Corp Process of manufacturing photoelectric conversion element
JP2016063129A (en) * 2014-09-19 2016-04-25 シャープ株式会社 Heterojunction back contact cell and photoelectric conversion device
JP2016149508A (en) * 2015-02-13 2016-08-18 株式会社カネカ Method of manufacturing solar cell
EP3223318A1 (en) * 2016-03-23 2017-09-27 Meyer Burger (Germany) AG Hetero junction photovoltaic cell and method of manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150214398A1 (en) * 2012-08-29 2015-07-30 Mitsubishi Electric Corporation Photovoltaic element and manufacturing method thereof
TWI676299B (en) * 2014-10-06 2019-11-01 日商鐘化股份有限公司 Solar cell and solar cell module, and manufacturing method of solar cell and solar cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076397A (en) * 2000-08-29 2002-03-15 Sanyo Electric Co Ltd Manufacturing method of photovoltaic device
JP2004296550A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Photovoltaic element and its fabricating process
JP2014053459A (en) * 2012-09-07 2014-03-20 Sharp Corp Process of manufacturing photoelectric conversion element
JP2016063129A (en) * 2014-09-19 2016-04-25 シャープ株式会社 Heterojunction back contact cell and photoelectric conversion device
JP2016149508A (en) * 2015-02-13 2016-08-18 株式会社カネカ Method of manufacturing solar cell
EP3223318A1 (en) * 2016-03-23 2017-09-27 Meyer Burger (Germany) AG Hetero junction photovoltaic cell and method of manufacturing same

Also Published As

Publication number Publication date
JP7459059B2 (en) 2024-04-01
JPWO2020202840A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
EP2590233A2 (en) Photovoltaic device and method of manufacturing the same
JP7101264B2 (en) How to manufacture solar cells
JP7274899B2 (en) Solar cell manufacturing method
WO2020202840A1 (en) Method for manufacturing solar cell and solar cell
US12107176B2 (en) Solar cell and method for manufacturing solar cell
JP2014183073A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
JP7053892B2 (en) How to manufacture solar cells
WO2020218000A1 (en) Solar cell and method for manufacturing solar cell
JP7433152B2 (en) Solar cells and solar cell manufacturing methods
WO2020217999A1 (en) Method for manufacturing solar cell and solar cell
US11177407B2 (en) Method for manufacturing solar cell, solar cell, and solar cell module
JP2013168605A (en) Manufacturing method of solar cell
JP7241173B2 (en) Element manufacturing method
WO2021124991A1 (en) Solar cell manufacturing method
JP2021145056A (en) Solar cell and manufacturing method for solar cell
WO2020195324A1 (en) Solar cell manufacturing method
WO2022210611A1 (en) Solar cell and method for manufacturing solar cell
JP7526086B2 (en) Solar cell manufacturing method and film forming method
WO2020195570A1 (en) Method for producing solar cell and in-process product of solar cell
JP2022130823A (en) Solar cell and manufacturing method thereof
JP7506593B2 (en) How solar cells are manufactured
JP2023111632A (en) Method for manufacturing solar cell and solar cell
JP5957102B2 (en) Manufacturing method of solar cell
JP2022098247A (en) Method for manufacturing solar cel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784173

Country of ref document: EP

Kind code of ref document: A1