WO2020218000A1 - Solar cell and method for manufacturing solar cell - Google Patents

Solar cell and method for manufacturing solar cell Download PDF

Info

Publication number
WO2020218000A1
WO2020218000A1 PCT/JP2020/015916 JP2020015916W WO2020218000A1 WO 2020218000 A1 WO2020218000 A1 WO 2020218000A1 JP 2020015916 W JP2020015916 W JP 2020015916W WO 2020218000 A1 WO2020218000 A1 WO 2020218000A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
conductive
solar cell
region
type
Prior art date
Application number
PCT/JP2020/015916
Other languages
French (fr)
Japanese (ja)
Inventor
訓太 吉河
暢 入江
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021515970A priority Critical patent/JP7202456B2/en
Publication of WO2020218000A1 publication Critical patent/WO2020218000A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a back surface bonding type (also referred to as a back contact type or a back surface electrode type) solar cell and a method for manufacturing the solar cell.
  • a back surface bonding type also referred to as a back contact type or a back surface electrode type
  • a solar cell using a semiconductor substrate for example, a heterojunction type in which semiconductor layers are formed on both the light receiving surface side and the back surface side (hereinafter, referred to as a double-sided bonding type as opposed to a back surface bonding type, also referred to as a double-sided electrode type).
  • a double-sided bonding type as opposed to a back surface bonding type
  • a double-sided electrode type there are two types of solar cells: a back-side bonded solar cell in which a semiconductor layer is formed only on the back side.
  • an electrode is formed on the light receiving surface side, so that the electrode shields sunlight.
  • the back surface bonded type solar cell since the electrode is not formed on the light receiving surface side, the light receiving rate of sunlight is higher than that of the double-sided bonded type solar cell.
  • Patent Documents 1 and 2 disclose a back surface bonded type solar cell.
  • the solar cells described in Patent Documents 1 and 2 include a semiconductor substrate that functions as a photoelectric conversion layer, a first conductive semiconductor layer formed in a first region that is a part of the back surface side of the semiconductor substrate, and a semiconductor substrate. It includes a second region which is another part on the back surface side, and a second conductive semiconductor layer formed on the first conductive semiconductor layer in the first region. According to such a solar cell, after patterning the first conductive semiconductor layer, the second conductive semiconductor layer may be formed on the entire back surface side of the semiconductor substrate, so that the manufacturing process can be simplified. is there.
  • a method for manufacturing a solar cell there is a method using a CVD (chemical vapor deposition) process and a wet process.
  • CVD chemical vapor deposition
  • CVD process and A first semiconductor layer forming step (patterning) in which the material film of the first conductive semiconductor layer in the second region is removed by using an etching method to form a patterned first conductive semiconductor layer in the first region.
  • a second semiconductor layer forming step (second CVD process) of forming a second conductive semiconductor layer on the first conductive semiconductor layer in the first region and on the intrinsic semiconductor layer in the second region by using the CVD method.
  • second CVD process A second semiconductor layer forming step of forming a second conductive semiconductor layer on the first conductive semiconductor layer in the first region and on the intrinsic semiconductor layer in the second region by using the CVD method.
  • An object of the present invention is to provide a solar cell and a method for manufacturing a solar cell, which can further simplify the manufacturing process and improve the output.
  • the solar cell according to the present invention is a back surface bonded type solar cell, which is a semiconductor substrate, a first region which is a part of one main surface side of the semiconductor substrate, and the one main surface side of the semiconductor substrate.
  • the first conductive type semiconductor layer formed in the second region which is a part of the other, and formed on the first conductive type semiconductor layer which is the first conductive type and the first conductive type semiconductor layer in the second region.
  • a second electrode layer formed on the conductive semiconductor layer is provided.
  • the method for manufacturing a solar cell according to the present invention is a method for manufacturing a back-bonded type solar cell, in which a first region which is a part of one main surface side of the semiconductor substrate and the one main surface side of the semiconductor substrate.
  • the second semiconductor layer forming step of forming the patterned second conductive semiconductor layer in the second region by removing the material film of the conductive semiconductor layer is included.
  • FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG. It is a figure which shows the intrinsic semiconductor layer forming step, the 1st conductive type semiconductor layer forming step, and the 2nd conductive type semiconductor layer material film forming step in the manufacturing method of the solar cell which concerns on this embodiment (CVD process). It is a figure which shows the 2nd semiconductor layer formation process in the manufacturing method of the solar cell which concerns on this embodiment (patterning: wet process). It is a figure which shows the 2nd semiconductor layer formation process in the manufacturing method of the solar cell which concerns on this embodiment (patterning: wet process). It is a figure which shows the 2nd semiconductor layer formation process in the manufacturing method of the solar cell which concerns on this embodiment (patterning: wet process). It is a figure which shows the 2nd semiconductor layer formation process in the manufacturing method of the solar cell which concerns on this embodiment (patterning: wet process).
  • FIG. 1 is a view of the solar cell according to the present embodiment as viewed from the back surface side.
  • the solar cell 1 shown in FIG. 1 is a back surface bonded type solar cell.
  • the solar cell 1 includes a semiconductor substrate 11 having two main surfaces, and has a first region 7 and a second region 8 on the main surface of the semiconductor substrate 11.
  • the first region 7 has a so-called comb-shaped shape, and has a plurality of finger portions 7f corresponding to comb teeth and a bus bar portion 7b corresponding to a support portion of the comb teeth.
  • the bus bar portion 7b extends in the first direction (X direction) along one side of the semiconductor substrate 11, and the finger portion 7f extends from the bus bar portion 7b in the second direction (Y direction) intersecting the first direction. ) Extends.
  • the second region 8 has a so-called comb-shaped shape, and has a plurality of finger portions 8f corresponding to the comb teeth and a bus bar portion 8b corresponding to the support portion of the comb teeth.
  • the bus bar portion 8b extends in the first direction (X direction) along the other side portion facing one side portion of the semiconductor substrate 11, and the finger portion 8f extends from the bus bar portion 8b in the second direction (Y). Extends in the direction).
  • the finger portions 7f and the finger portions 8f are alternately provided in the first direction (X direction).
  • the first region 7 and the second region 8 may be formed in a striped shape.
  • FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG.
  • the solar cell 1 is an intrinsic semiconductor layer laminated in order on the semiconductor substrate 11 and the light receiving surface side, which is the main surface (the other main surface) of the semiconductor substrate 11 on the light receiving side. It includes (second intrinsic semiconductor layer) 13 and an optical adjustment layer 15. Further, the solar cell 1 includes a part (first region 7) on the back surface side, which is the main surface (one main surface) on the opposite side of the light receiving surface of the main surface of the semiconductor substrate 11, and another part (second).
  • the solar cell 1 includes a first electrode layer 27 formed in the first region 7 and a second electrode layer 37 formed in the second region 8.
  • the semiconductor substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon.
  • the semiconductor substrate 11 is, for example, a p-type semiconductor substrate in which a crystalline silicon material is doped with a p-type dopant. Examples of the p-type dopant include boron (B).
  • the semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes). By using crystalline silicon as the material of the semiconductor substrate 11, a relatively high output (stable output regardless of the illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
  • the intrinsic semiconductor layer 13 is formed on the light receiving surface side of the semiconductor substrate 11.
  • the intrinsic semiconductor layer 23 is continuously formed in the first region 7 and the second region 8 on the back surface side of the semiconductor substrate 11, that is, on the entire surface on the back surface side of the semiconductor substrate 11.
  • the intrinsic semiconductor layers 13 and 23 are formed of, for example, a material mainly composed of substantially intrinsic (i-type) amorphous (amorphous) silicon.
  • substantially intrinsic i-type amorphous (amorphous) silicon.
  • substantially true is not limited to a completely true layer that does not contain conductive impurities, but a weak p-type or n-type impurity that contains trace amounts of p-type or n-type impurities to the extent that the silicon-based layer can function as a true layer. It also includes a weak n-type substantially true layer.
  • an aluminum oxide layer may be formed on the light receiving surface side of the semiconductor substrate 11 instead of the intrinsic semiconductor layer 13 (so-called PERK structure).
  • the intrinsic semiconductor layers 13 and 23 function as so-called passivation layers, suppress the recombination of carriers generated in the semiconductor substrate 11, and increase the carrier recovery efficiency.
  • the optical adjustment layer 15 is formed on the intrinsic semiconductor layer 13 (or aluminum oxide layer) on the light receiving surface side of the semiconductor substrate 11.
  • the optical adjustment layer 15 functions as an antireflection layer that prevents reflection of incident light, and also functions as a protective layer that protects the light receiving surface side of the semiconductor substrate 11 and the intrinsic semiconductor layer 13 (or the aluminum oxide layer).
  • the optical adjustment layer 15 is formed of an insulating material such as a composite thereof such as silicon oxide (SiO), silicon nitride (SiN), or silicon oxynitride (SiON).
  • the first conductive semiconductor layer 25 is continuously formed in the first region 7 and the second region 8 on the back surface side of the semiconductor substrate 11, that is, so as to cover the entire surface on the back surface side of the semiconductor substrate 11. Specifically, the first conductive semiconductor layer 25 is formed on the intrinsic semiconductor layer 23.
  • the first conductive semiconductor layer 25 is formed of, for example, an amorphous silicon material.
  • the first conductive semiconductor layer 25 may include a microcrystalline silicon layer. Further, the crystallinity of the first conductive semiconductor layer 25 may increase toward the interface on the second conductive semiconductor layer 35 side. That is, the semiconductor substrate 11 side of the first conductive semiconductor layer 25 is an amorphous silicon layer, but in the first conductive semiconductor layer 25, the semiconductor substrate 11 side is directed toward the second conductive semiconductor layer 35 side. The degree of crystallization gradually increases, and the second conductive semiconductor layer 35 side of the first conductive semiconductor layer 25 may be a microcrystalline silicon layer. As a result, the interfacial resistance between the first conductive semiconductor layer 25 and the second conductive semiconductor layer 35 is reduced.
  • the first conductive semiconductor layer 25 is, for example, a p-type semiconductor layer in which an amorphous silicon material (and a microcrystalline silicon layer) is doped with a p-type dopant (for example, the above-mentioned boron (B)).
  • a p-type dopant for example, the above-mentioned boron (B)
  • the second conductive semiconductor layer 35 is formed in the second region 8 on the back surface side of the semiconductor substrate 11. Specifically, the second conductive semiconductor layer 35 is formed on the first conductive semiconductor layer 25 in the second region 8.
  • the second conductive semiconductor layer 35 is formed of, for example, an amorphous silicon material.
  • the second conductive semiconductor layer 35 may include a microcrystalline silicon layer. As a result, the interfacial resistance in the second conductive semiconductor layer 35 is reduced.
  • the second conductive semiconductor layer 35 is, for example, an n-type semiconductor layer in which an amorphous silicon material (and a microcrystalline silicon layer) is doped with an n-type dopant.
  • the n-type dopant include phosphorus (P).
  • the film thickness of the first conductive semiconductor layer 25 is 0.7 nm or more and 6 nm or less, and the film thickness of the second conductive semiconductor layer 35 is 8 nm or more and 60 nm or less.
  • the film thickness is the thickness of the semiconductor layer in the stacking direction (direction intersecting the XY plane).
  • the second conductive semiconductor layer 35 is formed on the semiconductor substrate 11 via the first conductive semiconductor layer 25, and the first conductive semiconductor layer 25 is the semiconductor substrate 11. If the first conductive semiconductor layer 25 is of the same conductive type and the thickness of the first conductive semiconductor layer 25 is sufficiently thin, the minority carriers generated in the semiconductor substrate 11 due to the tunnel effect (tunnel current) are transferred to the second conductive semiconductor layer 35. Can be recovered.
  • the etching rate of the first conductive semiconductor layer 25 with respect to the etching solution may be smaller than the etching rate of the second conductive semiconductor layer 35 with respect to the etching solution (for example, alkaline solution).
  • the first conductive semiconductor layer 25 may be an n-type semiconductor layer
  • the second conductive semiconductor layer 35 may be a p-type semiconductor layer.
  • the etching solution that realizes the above-mentioned etching rate relationship Easy to choose eg, alkaline solution.
  • the semiconductor substrate 11 is the same first conductive type semiconductor substrate as the conductive type of the first conductive type semiconductor layer 25 is illustrated, but the semiconductor substrate 11 is the first conductive type semiconductor layer. It may be a second conductive type semiconductor substrate different from the conductive type 25.
  • the first electrode layer 27 is formed on the first conductive semiconductor layer 25 in the first region 7, and the second electrode layer 37 is formed on the second conductive semiconductor layer 35 in the second region 8. There is.
  • the first electrode layer 27 and the second electrode layer 37 may include a transparent electrode layer and a metal electrode layer, or may include only a metal electrode layer.
  • the transparent electrode layer is formed of a transparent conductive material. Examples of the transparent conductive material include ITO (Indium Tin Oxide: a composite oxide of indium tin oxide and tin oxide) and ZnO (Zinc Oxide: zinc oxide).
  • the metal electrode layer is formed of a conductive paste material containing a metal powder such as silver.
  • FIG. 3A is a diagram showing an intrinsic semiconductor layer forming step, a first conductive type semiconductor layer forming step, and a second conductive type semiconductor layer material film forming step in the method for manufacturing a solar cell according to the present embodiment (CVD process).
  • 3B to 3D are diagrams showing a second semiconductor layer forming step in the method for manufacturing a solar cell according to the present embodiment (patterning: wet process).
  • the intrinsic semiconductor layer 23 is formed on the entire surface of the back surface side of the semiconductor substrate 11, that is, on the first region 7 and the second region 8.
  • Lamination (film formation) intrinsic semiconductor layer forming process.
  • the intrinsic semiconductor layer 13 (or the aluminum oxide layer) and the optical adjustment layer 15 are laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side.
  • the first conductive semiconductor layer 25 is laminated (film-forming) on the entire surface of the back surface side of the semiconductor substrate 11, that is, on the intrinsic semiconductor layer 23 in the first region 7 and the second region 8. ) (First semiconductor layer forming step).
  • the second conductive semiconductor layer material film 35Z is placed on the entire surface of the back surface side of the semiconductor substrate 11, that is, on the first conductive semiconductor layer 25 in the first region 7 and the second region 8. Is laminated (film-formed) (second semiconductor layer material film forming step).
  • the intrinsic semiconductor layer 23, the first conductive semiconductor layer 25, and the second conductive semiconductor layer material film 35Z are collectively formed on the back surface side of the semiconductor substrate 11 by the CVD process.
  • the semiconductor substrate 11 is removed by removing the second conductive semiconductor layer material film 35Z in the first region 7 on the back surface side of the semiconductor substrate 11, for example, using a resist 90.
  • a patterned second conductive semiconductor layer 35 is formed in the second region 8 on the back surface side of the above (second semiconductor layer forming step).
  • a resist 90 is formed on the second region 8 on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side by using a photolithography method, a screen printing method, an inkjet coating method, or the like. To do.
  • the second conductive semiconductor layer material film 35Z in the first region 7 on the back surface side of the semiconductor substrate 11 is etched using the resist 90 as a mask, and the second region on the back surface side of the semiconductor substrate 11 is etched.
  • a patterned second conductive semiconductor layer 35 is formed.
  • an alkaline solution is used as the etching solution for the first conductive semiconductor layer material film.
  • the resist 90 is removed.
  • an organic solvent such as acetone is used as the removal solution for the resist 90.
  • the alkaline solution has a higher etching rate than the n-type semiconductor layer and a lower etching rate than the p-type semiconductor layer.
  • the etching rate of the first conductive semiconductor layer 25 with respect to the etching solution becomes smaller than the etching rate of the second conductive semiconductor layer 35 with respect to the etching solution.
  • the first electrode layer 27 and the second electrode layer 37 are formed on the back surface side of the semiconductor substrate 11 (electrode layer forming step).
  • a PVD method physical vapor deposition method
  • a sputtering method is used to laminate (film) a transparent electrode layer material film on the entire back surface side of the semiconductor substrate 11.
  • the transparent electrode layer is patterned by removing a part of the transparent electrode layer material film by, for example, an etching method using an etching paste.
  • the etching solution for the transparent electrode layer material film for example, hydrochloric acid or an aqueous ferric chloride solution is used.
  • the first electrode layer 27 and the second electrode layer 37 are formed by forming the metal electrode layer on the transparent electrode layer by using, for example, a pattern printing method or a coating method.
  • the first conductive semiconductor layer 25 and the second conductive semiconductor layer material film are collectively formed by the CVD process, and then wet.
  • the process only the second conductive semiconductor layer material film in the first region 7 can be selectively etched to leave the first conductive semiconductor layer 25 in the first region 7.
  • the number of CVD processes required twice in the solar cell configurations described in Patent Documents 1 and 2 is reduced to one, and the manufacturing process can be further simplified and the cost can be reduced.
  • the film is continuously formed by the CVD process, the interfacial resistance in the first conductive semiconductor layer 25 and the second conductive semiconductor layer 35 is reduced, and the output of the solar cell is improved.
  • the present invention is not limited to the above-described embodiments, and various modifications and modifications can be made.
  • the method for manufacturing the heterozygous solar cell 1 is illustrated as shown in FIG. 2, but the feature of the present invention is not limited to the heterozygous solar cell, but the homozygous solar cell. It can be applied to various methods for manufacturing solar cells such as batteries.
  • a solar cell having a crystalline silicon substrate has been exemplified, but the present invention is not limited to this.
  • a solar cell may have a gallium arsenide (GaAs) substrate.
  • GaAs gallium arsenide

Abstract

Provided is a solar cell which enables simplification of manufacturing process and an increase in output. A solar cell 1, which is a back junction solar cell, comprises: a semiconductor substrate 11; a first conductivity-type semiconductor layer 25 of a first conductivity type which is formed in a first region 7, which is a part of a back side of the semiconductor substrate 11, and in a second region 8, which is another part of the back side of the semiconductor substrate 11; a second conductivity-type semiconductor layer 35 of a second conductivity type opposite to the first conductivity type which is formed on the first conductivity-type semiconductor layer 25 in the second region 8; a first electrode layer 27 formed on the first conductivity-type semiconductor layer 25 in the first region 7; and a second electrode layer 37 formed on the second conductivity-type semiconductor layer 35 in the second region 8.

Description

太陽電池および太陽電池の製造方法Solar cells and methods of manufacturing solar cells
 本発明は、裏面接合型(バックコンタクト型、裏面電極型ともいう。)の太陽電池および太陽電池の製造方法に関する。 The present invention relates to a back surface bonding type (also referred to as a back contact type or a back surface electrode type) solar cell and a method for manufacturing the solar cell.
 半導体基板を用いた太陽電池として、受光面側および裏面側の両面に半導体層が形成された例えばヘテロ接合型(以下、裏面接合型に対して両面接合型と称する。両面電極型ともいう。)の太陽電池と、裏面側のみに半導体層が形成された裏面接合型の太陽電池とがある。両面接合型の太陽電池では、受光面側に電極が形成されるため、この電極により太陽光が遮蔽されてしまう。一方、裏面接合型の太陽電池では、受光面側に電極が形成されないため、両面接合型の太陽電池と比較して太陽光の受光率が高い。特許文献1および2には、裏面接合型の太陽電池が開示されている。 As a solar cell using a semiconductor substrate, for example, a heterojunction type in which semiconductor layers are formed on both the light receiving surface side and the back surface side (hereinafter, referred to as a double-sided bonding type as opposed to a back surface bonding type, also referred to as a double-sided electrode type). There are two types of solar cells: a back-side bonded solar cell in which a semiconductor layer is formed only on the back side. In a double-sided solar cell, an electrode is formed on the light receiving surface side, so that the electrode shields sunlight. On the other hand, in the back surface bonded type solar cell, since the electrode is not formed on the light receiving surface side, the light receiving rate of sunlight is higher than that of the double-sided bonded type solar cell. Patent Documents 1 and 2 disclose a back surface bonded type solar cell.
 特許文献1および2に記載の太陽電池は、光電変換層として機能する半導体基板と、半導体基板の裏面側の一部である第1領域に形成された第1導電型半導体層と、半導体基板の裏面側の他の一部である第2領域、および第1領域の第1導電型半導体層上に形成された第2導電型半導体層とを備える。このような太陽電池によれば、第1導電型半導体層をパターニングした後、第2導電型半導体層を半導体基板の裏面側の全面に製膜すればよいので、製造プロセスの簡略化が可能である。 The solar cells described in Patent Documents 1 and 2 include a semiconductor substrate that functions as a photoelectric conversion layer, a first conductive semiconductor layer formed in a first region that is a part of the back surface side of the semiconductor substrate, and a semiconductor substrate. It includes a second region which is another part on the back surface side, and a second conductive semiconductor layer formed on the first conductive semiconductor layer in the first region. According to such a solar cell, after patterning the first conductive semiconductor layer, the second conductive semiconductor layer may be formed on the entire back surface side of the semiconductor substrate, so that the manufacturing process can be simplified. is there.
特開2005-101151号公報Japanese Unexamined Patent Publication No. 2005-101151 国際公開第2014/002257号International Publication No. 2014/002257
 このような太陽電池の製造方法の一例として、CVD(化学気相堆積法)プロセスとウエットプロセスとを用いる方法がある。このような方法では、
・CVD法を用いて、半導体基板の裏面側の第1領域および第2領域に、真性半導体層および第1導電型半導体層の材料膜を形成する第1半導体層材料膜形成工程(1回目のCVDプロセス)と、
・エッチング法を用いて、第2領域における第1導電型半導体層の材料膜を除去し、第1領域に、パターン化された第1導電型半導体層を形成する第1半導体層形成工程(パターニング:ウエットプロセス)と、
・CVD法を用いて、第1領域における第1導電型半導体層上および第2領域における真性半導体層上に、第2導電型半導体層を形成する第2半導体層形成工程(2回目CVDプロセス)と、
を含む。このような太陽電池の製造方法では、2回のCVDプロセスとウエットプロセスとを交互に行う必要があり、太陽電池の出力低下が予想される。
As an example of such a method for manufacturing a solar cell, there is a method using a CVD (chemical vapor deposition) process and a wet process. In this way,
A first semiconductor layer material film forming step of forming a material film of an intrinsic semiconductor layer and a first conductive semiconductor layer in the first region and the second region on the back surface side of a semiconductor substrate by using a CVD method (first time). CVD process) and
A first semiconductor layer forming step (patterning) in which the material film of the first conductive semiconductor layer in the second region is removed by using an etching method to form a patterned first conductive semiconductor layer in the first region. : Wet process) and
A second semiconductor layer forming step (second CVD process) of forming a second conductive semiconductor layer on the first conductive semiconductor layer in the first region and on the intrinsic semiconductor layer in the second region by using the CVD method. When,
including. In such a method for manufacturing a solar cell, it is necessary to alternately perform two CVD processes and a wet process, and it is expected that the output of the solar cell will decrease.
 本発明は、更なる製造プロセスの簡略化と出力の向上が可能である太陽電池および太陽電池の製造方法を提供することを目的とする。 An object of the present invention is to provide a solar cell and a method for manufacturing a solar cell, which can further simplify the manufacturing process and improve the output.
 本発明に係る太陽電池は、裏面接合型の太陽電池であって、半導体基板と、前記半導体基板の一方主面側の一部である第1領域、および前記半導体基板の前記一方主面側の他の一部である第2領域に形成され、第1導電型である第1導電型半導体層と、前記第2領域における前記第1導電型半導体層の上に形成され、前記第1導電型とは逆の第2導電型である第2導電型半導体層と、前記第1領域における前記第1導電型半導体層の上に形成された第1電極層と、前記第2領域における前記第2導電型半導体層の上に形成された第2電極層と、を備える。 The solar cell according to the present invention is a back surface bonded type solar cell, which is a semiconductor substrate, a first region which is a part of one main surface side of the semiconductor substrate, and the one main surface side of the semiconductor substrate. The first conductive type semiconductor layer formed in the second region which is a part of the other, and formed on the first conductive type semiconductor layer which is the first conductive type and the first conductive type semiconductor layer in the second region. A second conductive semiconductor layer which is the opposite of the second conductive type, a first electrode layer formed on the first conductive semiconductor layer in the first region, and the second electrode layer in the second region. A second electrode layer formed on the conductive semiconductor layer is provided.
 本発明に係る太陽電池の製造方法は、裏面接合型の太陽電池の製造方法であって、半導体基板の一方主面側の一部である第1領域、および前記半導体基板の前記一方主面側の他の一部である第2領域に、第1導電型である第1導電型半導体層を形成する第1半導体層形成工程と、前記第1領域および前記第2領域における前記第1導電型半導体層の上に、前記第1導電型とは逆の第2導電型である第2導電型半導体層の材料膜を形成する第2半導体層材料膜形成工程と、前記第1領域における前記第2導電型半導体層の材料膜を除去することにより、前記第2領域に、パターン化された前記第2導電型半導体層を形成する第2半導体層形成工程と、を含む。 The method for manufacturing a solar cell according to the present invention is a method for manufacturing a back-bonded type solar cell, in which a first region which is a part of one main surface side of the semiconductor substrate and the one main surface side of the semiconductor substrate. A first semiconductor layer forming step of forming a first conductive type semiconductor layer which is a first conductive type in a second region which is another part, and the first conductive type in the first region and the second region. A second semiconductor layer material film forming step of forming a material film of a second conductive type semiconductor layer, which is a second conductive type opposite to the first conductive type, on the semiconductor layer, and the first in the first region. 2. The second semiconductor layer forming step of forming the patterned second conductive semiconductor layer in the second region by removing the material film of the conductive semiconductor layer is included.
 本発明によれば、太陽電池の製造プロセスの簡略化および太陽電池の出力の向上が可能である。 According to the present invention, it is possible to simplify the manufacturing process of the solar cell and improve the output of the solar cell.
本実施形態に係る太陽電池を裏面側からみた図である。It is the figure which looked at the solar cell which concerns on this embodiment from the back side. 図1の太陽電池におけるII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG. 本実施形態に係る太陽電池の製造方法における真性半導体層形成工程、第1導電型半導体層形成工程、および第2導電型半導体層材料膜形成工程を示す図である(CVDプロセス)。It is a figure which shows the intrinsic semiconductor layer forming step, the 1st conductive type semiconductor layer forming step, and the 2nd conductive type semiconductor layer material film forming step in the manufacturing method of the solar cell which concerns on this embodiment (CVD process). 本実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である(パターニング:ウエットプロセス)。It is a figure which shows the 2nd semiconductor layer formation process in the manufacturing method of the solar cell which concerns on this embodiment (patterning: wet process). 本実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である(パターニング:ウエットプロセス)。It is a figure which shows the 2nd semiconductor layer formation process in the manufacturing method of the solar cell which concerns on this embodiment (patterning: wet process). 本実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である(パターニング:ウエットプロセス)。It is a figure which shows the 2nd semiconductor layer formation process in the manufacturing method of the solar cell which concerns on this embodiment (patterning: wet process).
 以下、添付の図面を参照して本発明の実施形態の一例について説明する。なお、各図面において同一または相当の部分に対しては同一の符号を附すこととする。また、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。 Hereinafter, an example of the embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the same reference numerals are given to the same or corresponding parts in each drawing. Further, for convenience, hatching, member codes, etc. may be omitted, but in such cases, other drawings shall be referred to.
(太陽電池)
 図1は、本実施形態に係る太陽電池を裏面側からみた図である。図1に示す太陽電池1は、裏面接合型の太陽電池である。太陽電池1は、2つの主面を備える半導体基板11を備え、半導体基板11の主面において第1領域7と第2領域8とを有する。
(Solar cell)
FIG. 1 is a view of the solar cell according to the present embodiment as viewed from the back surface side. The solar cell 1 shown in FIG. 1 is a back surface bonded type solar cell. The solar cell 1 includes a semiconductor substrate 11 having two main surfaces, and has a first region 7 and a second region 8 on the main surface of the semiconductor substrate 11.
 第1領域7は、いわゆる櫛型の形状をなし、櫛歯に相当する複数のフィンガー部7fと、櫛歯の支持部に相当するバスバー部7bとを有する。バスバー部7bは、半導体基板11の一方の辺部に沿って第1方向(X方向)に延在し、フィンガー部7fは、バスバー部7bから、第1方向に交差する第2方向(Y方向)に延在する。
 同様に、第2領域8は、いわゆる櫛型の形状であり、櫛歯に相当する複数のフィンガー部8fと、櫛歯の支持部に相当するバスバー部8bとを有する。バスバー部8bは、半導体基板11の一方の辺部に対向する他方の辺部に沿って第1方向(X方向)に延在し、フィンガー部8fは、バスバー部8bから、第2方向(Y方向)に延在する。
 フィンガー部7fとフィンガー部8fとは、第1方向(X方向)に交互に設けられている。
 なお、第1領域7および第2領域8は、ストライプ状に形成されてもよい。
The first region 7 has a so-called comb-shaped shape, and has a plurality of finger portions 7f corresponding to comb teeth and a bus bar portion 7b corresponding to a support portion of the comb teeth. The bus bar portion 7b extends in the first direction (X direction) along one side of the semiconductor substrate 11, and the finger portion 7f extends from the bus bar portion 7b in the second direction (Y direction) intersecting the first direction. ) Extends.
Similarly, the second region 8 has a so-called comb-shaped shape, and has a plurality of finger portions 8f corresponding to the comb teeth and a bus bar portion 8b corresponding to the support portion of the comb teeth. The bus bar portion 8b extends in the first direction (X direction) along the other side portion facing one side portion of the semiconductor substrate 11, and the finger portion 8f extends from the bus bar portion 8b in the second direction (Y). Extends in the direction).
The finger portions 7f and the finger portions 8f are alternately provided in the first direction (X direction).
The first region 7 and the second region 8 may be formed in a striped shape.
 図2は、図1の太陽電池におけるII-II線断面図である。図2に示すように、太陽電池1は、半導体基板11と、半導体基板11の主面のうちの受光する側の主面(他方主面)である受光面側に順に積層された真性半導体層(第2真性半導体層)13および光学調整層15を備える。また、太陽電池1は、半導体基板11の主面のうちの受光面の反対側の主面(一方主面)である裏面側の一部(第1領域7)および他の一部(第2領域8)に順に積層された真性半導体層(第1真性半導体層)23および第1導電型半導体層25と、半導体基板11の裏面側の第2領域8の第1導電型半導体層25上に積層された第2導電型半導体層35とを備える。また、太陽電池1は、第1領域7に形成された第1電極層27と、第2領域8に形成された第2電極層37とを備える。 FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG. As shown in FIG. 2, the solar cell 1 is an intrinsic semiconductor layer laminated in order on the semiconductor substrate 11 and the light receiving surface side, which is the main surface (the other main surface) of the semiconductor substrate 11 on the light receiving side. It includes (second intrinsic semiconductor layer) 13 and an optical adjustment layer 15. Further, the solar cell 1 includes a part (first region 7) on the back surface side, which is the main surface (one main surface) on the opposite side of the light receiving surface of the main surface of the semiconductor substrate 11, and another part (second). On the intrinsic semiconductor layer (first intrinsic semiconductor layer) 23 and the first conductive semiconductor layer 25 laminated in order in the region 8), and on the first conductive semiconductor layer 25 of the second region 8 on the back surface side of the semiconductor substrate 11. It includes a laminated second conductive semiconductor layer 35. Further, the solar cell 1 includes a first electrode layer 27 formed in the first region 7 and a second electrode layer 37 formed in the second region 8.
 半導体基板11は、単結晶シリコンまたは多結晶シリコン等の結晶シリコン材料で形成される。半導体基板11は、例えば結晶シリコン材料にp型ドーパントがドープされたp型の半導体基板である。p型ドーパントとしては、例えばホウ素(B)が挙げられる。
 半導体基板11は、受光面側からの入射光を吸収して光キャリア(電子および正孔)を生成する光電変換基板として機能する。
 半導体基板11の材料として結晶シリコンが用いられることにより、暗電流が比較的に小さく、入射光の強度が低い場合であっても比較的高出力(照度によらず安定した出力)が得られる。
The semiconductor substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon. The semiconductor substrate 11 is, for example, a p-type semiconductor substrate in which a crystalline silicon material is doped with a p-type dopant. Examples of the p-type dopant include boron (B).
The semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes).
By using crystalline silicon as the material of the semiconductor substrate 11, a relatively high output (stable output regardless of the illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
 真性半導体層13は、半導体基板11の受光面側に形成されている。真性半導体層23は、半導体基板11の裏面側の第1領域7および第2領域8に、すなわち半導体基板11の裏面側の全面に連続して形成されている。真性半導体層13,23は、例えば実質的に真性(i型)なアモルファス(非晶質)シリコンを主成分とする材料で形成される。実質的に真性とは、導電型不純物を含まない完全に真性である層に限られず、シリコン系層が真性層として機能し得る範囲で微量のp型不純物またはn型不純物を含む弱p型または弱n型の実質的に真性な層も包含する。 The intrinsic semiconductor layer 13 is formed on the light receiving surface side of the semiconductor substrate 11. The intrinsic semiconductor layer 23 is continuously formed in the first region 7 and the second region 8 on the back surface side of the semiconductor substrate 11, that is, on the entire surface on the back surface side of the semiconductor substrate 11. The intrinsic semiconductor layers 13 and 23 are formed of, for example, a material mainly composed of substantially intrinsic (i-type) amorphous (amorphous) silicon. Substantially true is not limited to a completely true layer that does not contain conductive impurities, but a weak p-type or n-type impurity that contains trace amounts of p-type or n-type impurities to the extent that the silicon-based layer can function as a true layer. It also includes a weak n-type substantially true layer.
 なお、半導体基板11がp型半導体基板である場合、半導体基板11の受光面側には、真性半導体層13に代えて酸化アルミニウム層が形成されてもよい(所謂、PERK構造)。 When the semiconductor substrate 11 is a p-type semiconductor substrate, an aluminum oxide layer may be formed on the light receiving surface side of the semiconductor substrate 11 instead of the intrinsic semiconductor layer 13 (so-called PERK structure).
 真性半導体層13,23(および、酸化アルミニウム層)は、いわゆるパッシベーション層として機能し、半導体基板11で生成されたキャリアの再結合を抑制し、キャリアの回収効率を高める。 The intrinsic semiconductor layers 13 and 23 (and the aluminum oxide layer) function as so-called passivation layers, suppress the recombination of carriers generated in the semiconductor substrate 11, and increase the carrier recovery efficiency.
 光学調整層15は、半導体基板11の受光面側の真性半導体層13(または、酸化アルミニウム層)上に形成されている。光学調整層15は、入射光の反射を防止する反射防止層として機能するとともに、半導体基板11の受光面側および真性半導体層13(または、酸化アルミニウム層)を保護する保護層として機能する。光学調整層15は、例えば酸化珪素(SiO)、窒化珪素(SiN)、または酸窒化珪素(SiON)のようなそれらの複合物等の絶縁体材料で形成される。 The optical adjustment layer 15 is formed on the intrinsic semiconductor layer 13 (or aluminum oxide layer) on the light receiving surface side of the semiconductor substrate 11. The optical adjustment layer 15 functions as an antireflection layer that prevents reflection of incident light, and also functions as a protective layer that protects the light receiving surface side of the semiconductor substrate 11 and the intrinsic semiconductor layer 13 (or the aluminum oxide layer). The optical adjustment layer 15 is formed of an insulating material such as a composite thereof such as silicon oxide (SiO), silicon nitride (SiN), or silicon oxynitride (SiON).
 第1導電型半導体層25は、半導体基板11の裏面側の第1領域7および第2領域8に、すなわち半導体基板11の裏面側の全面を覆うように連続して形成されている。具体的には、第1導電型半導体層25は、真性半導体層23上に形成されている。第1導電型半導体層25は、例えばアモルファス(非晶質)シリコン材料で形成される。 The first conductive semiconductor layer 25 is continuously formed in the first region 7 and the second region 8 on the back surface side of the semiconductor substrate 11, that is, so as to cover the entire surface on the back surface side of the semiconductor substrate 11. Specifically, the first conductive semiconductor layer 25 is formed on the intrinsic semiconductor layer 23. The first conductive semiconductor layer 25 is formed of, for example, an amorphous silicon material.
 第1導電型半導体層25は、微結晶シリコン層を含んでいてもよい。また、第1導電型半導体層25の結晶化度は、第2導電型半導体層35側の界面に向けて、増大していてもよい。すなわち、第1導電型半導体層25の半導体基板11側はアモルファス(非晶質)シリコン層であるが、第1導電型半導体層25において半導体基板11側から第2導電型半導体層35側へ向けて次第に結晶化度が増大し、第1導電型半導体層25の第2導電型半導体層35側は微結晶シリコン層であってもよい。これにより、第1導電型半導体層25と第2導電型半導体層35との間の界面抵抗が小さくなる。 The first conductive semiconductor layer 25 may include a microcrystalline silicon layer. Further, the crystallinity of the first conductive semiconductor layer 25 may increase toward the interface on the second conductive semiconductor layer 35 side. That is, the semiconductor substrate 11 side of the first conductive semiconductor layer 25 is an amorphous silicon layer, but in the first conductive semiconductor layer 25, the semiconductor substrate 11 side is directed toward the second conductive semiconductor layer 35 side. The degree of crystallization gradually increases, and the second conductive semiconductor layer 35 side of the first conductive semiconductor layer 25 may be a microcrystalline silicon layer. As a result, the interfacial resistance between the first conductive semiconductor layer 25 and the second conductive semiconductor layer 35 is reduced.
 第1導電型半導体層25は、例えばアモルファスシリコン材料(および、微結晶シリコン層)にp型ドーパント(例えば、上述したホウ素(B))がドープされたp型半導体層である。 The first conductive semiconductor layer 25 is, for example, a p-type semiconductor layer in which an amorphous silicon material (and a microcrystalline silicon layer) is doped with a p-type dopant (for example, the above-mentioned boron (B)).
 第2導電型半導体層35は、半導体基板11の裏面側の第2領域8に形成されている。具体的には、第2導電型半導体層35は、第2領域8における第1導電型半導体層25上に形成されている。第2導電型半導体層35は、例えばアモルファスシリコン材料で形成される。 The second conductive semiconductor layer 35 is formed in the second region 8 on the back surface side of the semiconductor substrate 11. Specifically, the second conductive semiconductor layer 35 is formed on the first conductive semiconductor layer 25 in the second region 8. The second conductive semiconductor layer 35 is formed of, for example, an amorphous silicon material.
 第2導電型半導体層35は微結晶シリコン層を含んでもよい。これにより、第2導電型半導体層35における界面抵抗が小さくなる。 The second conductive semiconductor layer 35 may include a microcrystalline silicon layer. As a result, the interfacial resistance in the second conductive semiconductor layer 35 is reduced.
 第2導電型半導体層35は、例えばアモルファスシリコン材料(および、微結晶シリコン層)にn型ドーパントがドープされたn型の半導体層である。n型ドーパントとしては、例えばリン(P)が挙げられる。 The second conductive semiconductor layer 35 is, for example, an n-type semiconductor layer in which an amorphous silicon material (and a microcrystalline silicon layer) is doped with an n-type dopant. Examples of the n-type dopant include phosphorus (P).
 第1導電型半導体層25の膜厚は、0.7nm以上6nm以下であり、第2導電型半導体層35の膜厚は、8nm以上60nm以下である。膜厚とは、半導体層の積層方向(XY平面に交差する方向)の厚さである。 The film thickness of the first conductive semiconductor layer 25 is 0.7 nm or more and 6 nm or less, and the film thickness of the second conductive semiconductor layer 35 is 8 nm or more and 60 nm or less. The film thickness is the thickness of the semiconductor layer in the stacking direction (direction intersecting the XY plane).
 ここで、第2領域8において、第2導電型半導体層35は、第1導電型半導体層25を介して半導体基板11上に形成されるが、第1導電型半導体層25が半導体基板11と同一の導電型であり、かつ、第1導電型半導体層25の膜厚が十分に薄いと、トンネル効果(トンネル電流)により、半導体基板11で生じた少数キャリアを第2導電型半導体層35で回収することができる。 Here, in the second region 8, the second conductive semiconductor layer 35 is formed on the semiconductor substrate 11 via the first conductive semiconductor layer 25, and the first conductive semiconductor layer 25 is the semiconductor substrate 11. If the first conductive semiconductor layer 25 is of the same conductive type and the thickness of the first conductive semiconductor layer 25 is sufficiently thin, the minority carriers generated in the semiconductor substrate 11 due to the tunnel effect (tunnel current) are transferred to the second conductive semiconductor layer 35. Can be recovered.
 第1導電型半導体層25のエッチング溶液(例えば、アルカリ溶液)に対するエッチングレートは、第2導電型半導体層35のエッチング溶液(例えば、アルカリ溶液)に対するエッチングレートよりも小さくてもよい。これにより、CVDプロセスによって第1導電型半導体層25および第2導電型半導体層材料膜を一括製膜した後、ウエットプロセスにおいて、第1領域7における第2導電型半導体層材料膜のみを選択的にエッチングし、第1領域7に第1導電型半導体層25を残すことができる(詳細は後述する)。 The etching rate of the first conductive semiconductor layer 25 with respect to the etching solution (for example, alkaline solution) may be smaller than the etching rate of the second conductive semiconductor layer 35 with respect to the etching solution (for example, alkaline solution). As a result, after the first conductive semiconductor layer 25 and the second conductive semiconductor layer material film are collectively formed by the CVD process, only the second conductive semiconductor layer material film in the first region 7 is selectively selected in the wet process. The first conductive semiconductor layer 25 can be left in the first region 7 (details will be described later).
 なお、第1導電型半導体層25がn型半導体層であり、第2導電型半導体層35がp型半導体層であってもよい。なお、上述したように、第1導電型半導体層25がp型半導体層であり、第2導電型半導体層35がn型半導体層であると、上述したエッチングレートの関係を実現するエッチング溶液の選択が容易である(例えば、アルカリ溶液)。 The first conductive semiconductor layer 25 may be an n-type semiconductor layer, and the second conductive semiconductor layer 35 may be a p-type semiconductor layer. As described above, when the first conductive type semiconductor layer 25 is a p-type semiconductor layer and the second conductive type semiconductor layer 35 is an n-type semiconductor layer, the etching solution that realizes the above-mentioned etching rate relationship Easy to choose (eg, alkaline solution).
 また、上述した実施形態では、半導体基板11が第1導電型半導体層25の導電型と同一の第1導電型の半導体基板である形態を例示したが、半導体基板11は第1導電型半導体層25の導電型と異なる第2導電型の半導体基板であってもよい。 Further, in the above-described embodiment, the embodiment in which the semiconductor substrate 11 is the same first conductive type semiconductor substrate as the conductive type of the first conductive type semiconductor layer 25 is illustrated, but the semiconductor substrate 11 is the first conductive type semiconductor layer. It may be a second conductive type semiconductor substrate different from the conductive type 25.
 第1電極層27は、第1領域7における第1導電型半導体層25上に形成されており、第2電極層37は、第2領域8における第2導電型半導体層35上に形成されている。
 第1電極層27および第2電極層37は、透明電極層と金属電極層とを含んでもよいし、金属電極層のみを含んでもよい。透明電極層は、透明な導電性材料で形成される。透明導電性材料としては、ITO(Indium Tin Oxide:酸化インジウムおよび酸化スズの複合酸化物)、ZnO(Zinc Oxide:酸化亜鉛)が挙げられる。金属電極層は、銀等の金属粉末を含有する導電性ペースト材料で形成される。
The first electrode layer 27 is formed on the first conductive semiconductor layer 25 in the first region 7, and the second electrode layer 37 is formed on the second conductive semiconductor layer 35 in the second region 8. There is.
The first electrode layer 27 and the second electrode layer 37 may include a transparent electrode layer and a metal electrode layer, or may include only a metal electrode layer. The transparent electrode layer is formed of a transparent conductive material. Examples of the transparent conductive material include ITO (Indium Tin Oxide: a composite oxide of indium tin oxide and tin oxide) and ZnO (Zinc Oxide: zinc oxide). The metal electrode layer is formed of a conductive paste material containing a metal powder such as silver.
(太陽電池の製造方法)
 以下、図3A~図3Dを参照して、図1および図2に示す本実施形態の太陽電池1の製造方法について説明する。図3Aは、本実施形態に係る太陽電池の製造方法における真性半導体層形成工程、第1導電型半導体層形成工程、および第2導電型半導体層材料膜形成工程を示す図であり(CVDプロセス)、図3B~図3Dは、本実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である(パターニング:ウエットプロセス)。
(Solar cell manufacturing method)
Hereinafter, the method for manufacturing the solar cell 1 of the present embodiment shown in FIGS. 1 and 2 will be described with reference to FIGS. 3A to 3D. FIG. 3A is a diagram showing an intrinsic semiconductor layer forming step, a first conductive type semiconductor layer forming step, and a second conductive type semiconductor layer material film forming step in the method for manufacturing a solar cell according to the present embodiment (CVD process). 3B to 3D are diagrams showing a second semiconductor layer forming step in the method for manufacturing a solar cell according to the present embodiment (patterning: wet process).
 まず、図3Aに示すように、例えばCVD法(化学気相堆積法)を用いて、半導体基板11の裏面側の全面に、すなわち第1領域7および第2領域8に、真性半導体層23を積層(製膜)する(真性半導体層形成工程)。
 また、例えばCVD法を用いて、半導体基板11の受光面側の全面に、真性半導体層13(または、酸化アルミニウム層)、および光学調整層15を積層(製膜)する。
First, as shown in FIG. 3A, for example, by using a CVD method (chemical vapor deposition method), the intrinsic semiconductor layer 23 is formed on the entire surface of the back surface side of the semiconductor substrate 11, that is, on the first region 7 and the second region 8. Lamination (film formation) (intrinsic semiconductor layer forming process).
Further, for example, by using a CVD method, the intrinsic semiconductor layer 13 (or the aluminum oxide layer) and the optical adjustment layer 15 are laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side.
 次に、例えばCVD法を用いて、半導体基板11の裏面側の全面に、すなわち第1領域7および第2領域8における真性半導体層23上に、第1導電型半導体層25を積層(製膜)する(第1半導体層形成工程)。 Next, for example, using a CVD method, the first conductive semiconductor layer 25 is laminated (film-forming) on the entire surface of the back surface side of the semiconductor substrate 11, that is, on the intrinsic semiconductor layer 23 in the first region 7 and the second region 8. ) (First semiconductor layer forming step).
 次に、例えばCVD法を用いて、半導体基板11の裏面側の全面に、すなわち第1領域7および第2領域8における第1導電型半導体層25上に、第2導電型半導体層材料膜35Zを積層(製膜)する(第2半導体層材料膜形成工程)。 Next, for example, using the CVD method, the second conductive semiconductor layer material film 35Z is placed on the entire surface of the back surface side of the semiconductor substrate 11, that is, on the first conductive semiconductor layer 25 in the first region 7 and the second region 8. Is laminated (film-formed) (second semiconductor layer material film forming step).
 このように、CVDプロセスによって、半導体基板11の裏面側に、真性半導体層23、第1導電型半導体層25、および第2導電型半導体層材料膜35Zを一括製膜する。 In this way, the intrinsic semiconductor layer 23, the first conductive semiconductor layer 25, and the second conductive semiconductor layer material film 35Z are collectively formed on the back surface side of the semiconductor substrate 11 by the CVD process.
 次に、図3B~図3Dに示すように、例えばレジスト90を用いて、半導体基板11の裏面側の第1領域7における第2導電型半導体層材料膜35Zを除去することにより、半導体基板11の裏面側の第2領域8に、パターン化された第2導電型半導体層35を形成する(第2半導体層形成工程)。 Next, as shown in FIGS. 3B to 3D, the semiconductor substrate 11 is removed by removing the second conductive semiconductor layer material film 35Z in the first region 7 on the back surface side of the semiconductor substrate 11, for example, using a resist 90. A patterned second conductive semiconductor layer 35 is formed in the second region 8 on the back surface side of the above (second semiconductor layer forming step).
 具体的には、図3Bに示すように、フォトリソグラフィ法、スクリーン印刷法、インクジェット塗布法等を用いて、半導体基板11の裏面側の第2領域8および受光面側の全面にレジスト90を形成する。 Specifically, as shown in FIG. 3B, a resist 90 is formed on the second region 8 on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side by using a photolithography method, a screen printing method, an inkjet coating method, or the like. To do.
 その後、図3Cに示すように、レジスト90をマスクとして、半導体基板11の裏面側の第1領域7における第2導電型半導体層材料膜35Zをエッチングし、半導体基板11の裏面側の第2領域8に、パターン化された第2導電型半導体層35を形成する。第1導電型半導体層材料膜に対するエッチング溶液としては、例えばアルカリ溶液が用いられる。 Then, as shown in FIG. 3C, the second conductive semiconductor layer material film 35Z in the first region 7 on the back surface side of the semiconductor substrate 11 is etched using the resist 90 as a mask, and the second region on the back surface side of the semiconductor substrate 11 is etched. In 8, a patterned second conductive semiconductor layer 35 is formed. As the etching solution for the first conductive semiconductor layer material film, for example, an alkaline solution is used.
 その後、図3Dに示すように、レジスト90を除去する。レジスト90に対する除去溶液としては、例えばアセトン等の有機溶剤が用いられる。 After that, as shown in FIG. 3D, the resist 90 is removed. As the removal solution for the resist 90, for example, an organic solvent such as acetone is used.
 ここで、アルカリ溶液は、n型半導体層に対してエッチングレートが大きく、p型半導体層に対してエッチングレートが小さい。これにより、第1導電型半導体層25のエッチング溶液に対するエッチングレートが、第2導電型半導体層35のエッチング溶液に対するエッチングレートよりも小さくなる。 Here, the alkaline solution has a higher etching rate than the n-type semiconductor layer and a lower etching rate than the p-type semiconductor layer. As a result, the etching rate of the first conductive semiconductor layer 25 with respect to the etching solution becomes smaller than the etching rate of the second conductive semiconductor layer 35 with respect to the etching solution.
 このように、ウエットプロセスにおいて、第1領域7における第2導電型半導体層材料膜のみを選択的にエッチングし、第1領域7に第1導電型半導体層25を残す。 As described above, in the wet process, only the second conductive semiconductor layer material film in the first region 7 is selectively etched, and the first conductive semiconductor layer 25 is left in the first region 7.
 次に、半導体基板11の裏面側に、第1電極層27および第2電極層37を形成する(電極層形成工程)。
 具体的には、例えばスパッタリング法等のPVD法(物理気相成長法)を用いて、半導体基板11の裏面側の全面に、透明電極層材料膜を積層(製膜)する。その後、例えばエッチングペーストを用いたエッチング法を用いて、透明電極層材料膜の一部を除去することにより、透明電極層のパターニングを行う。透明電極層材料膜に対するエッチング溶液としては、例えば塩酸または塩化第二鉄水溶液が用いられる。
 その後、例えばパターン印刷法または塗布法を用いて、透明電極層上に金属電極層を形成することにより、第1電極層27および第2電極層37を形成する。
Next, the first electrode layer 27 and the second electrode layer 37 are formed on the back surface side of the semiconductor substrate 11 (electrode layer forming step).
Specifically, for example, a PVD method (physical vapor deposition method) such as a sputtering method is used to laminate (film) a transparent electrode layer material film on the entire back surface side of the semiconductor substrate 11. After that, the transparent electrode layer is patterned by removing a part of the transparent electrode layer material film by, for example, an etching method using an etching paste. As the etching solution for the transparent electrode layer material film, for example, hydrochloric acid or an aqueous ferric chloride solution is used.
Then, the first electrode layer 27 and the second electrode layer 37 are formed by forming the metal electrode layer on the transparent electrode layer by using, for example, a pattern printing method or a coating method.
 以上の工程により、図1および図2に示す本実施形態の裏面接合型の太陽電池1が得られる。 Through the above steps, the back surface bonded type solar cell 1 of the present embodiment shown in FIGS. 1 and 2 can be obtained.
 以上説明したように、本実施形態の太陽電池1および太陽電池の製造方法によれば、CVDプロセスによって第1導電型半導体層25および第2導電型半導体層材料膜を一括製膜した後、ウエットプロセスにおいて、第1領域7における第2導電型半導体層材料膜のみを選択的にエッチングし、第1領域7に第1導電型半導体層25を残すことができる。これにより、特許文献1および2に記載の太陽電池の構成では2回必要であったCVDプロセス回数が1回になり、更なる製造プロセスの簡略化、低コスト化が可能である。 As described above, according to the solar cell 1 and the method for manufacturing the solar cell of the present embodiment, the first conductive semiconductor layer 25 and the second conductive semiconductor layer material film are collectively formed by the CVD process, and then wet. In the process, only the second conductive semiconductor layer material film in the first region 7 can be selectively etched to leave the first conductive semiconductor layer 25 in the first region 7. As a result, the number of CVD processes required twice in the solar cell configurations described in Patent Documents 1 and 2 is reduced to one, and the manufacturing process can be further simplified and the cost can be reduced.
 また、CVDプロセスによる連続製膜であるので、第1導電型半導体層25および第2導電型半導体層35における界面抵抗が低減し、太陽電池の出力が向上する。 Further, since the film is continuously formed by the CVD process, the interfacial resistance in the first conductive semiconductor layer 25 and the second conductive semiconductor layer 35 is reduced, and the output of the solar cell is improved.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更および変形が可能である。例えば、上述した実施形態では、図2に示すようにヘテロ接合型の太陽電池1の製造方法を例示したが、本発明の特徴は、ヘテロ接合型の太陽電池に限らず、ホモ接合型の太陽電池等の種々の太陽電池の製造方法に適用可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and modifications can be made. For example, in the above-described embodiment, the method for manufacturing the heterozygous solar cell 1 is illustrated as shown in FIG. 2, but the feature of the present invention is not limited to the heterozygous solar cell, but the homozygous solar cell. It can be applied to various methods for manufacturing solar cells such as batteries.
 また、上述した実施形態では、結晶シリコン基板を有する太陽電池を例示したが、これに限定されない。例えば、太陽電池は、ガリウムヒ素(GaAs)基板を有していてもよい。 Further, in the above-described embodiment, a solar cell having a crystalline silicon substrate has been exemplified, but the present invention is not limited to this. For example, a solar cell may have a gallium arsenide (GaAs) substrate.
 1 太陽電池
 7 第1領域
 7b,8b バスバー部
 7f,8f フィンガー部
 8 第2領域
 11 半導体基板
 13 真性半導体層(第2真性半導体層)
 15 光学調整層
 23 真性半導体層(第1真性半導体層)
 25 第1導電型半導体層
 27 第1電極層
 35 第2導電型半導体層
 25Z 第2導電型半導体層材料膜
 37 第2電極層
 90 レジスト
1 Solar cell 7 1st area 7b, 8b Bus bar part 7f, 8f Finger part 8 2nd area 11 Semiconductor substrate 13 Intrinsic semiconductor layer (2nd intrinsic semiconductor layer)
15 Optical adjustment layer 23 Intrinsic semiconductor layer (first intrinsic semiconductor layer)
25 First Conductive Semiconductor Layer 27 First Electrode Layer 35 Second Conductive Semiconductor Layer 25Z Second Conductive Semiconductor Layer Material Film 37 Second Electrode Layer 90 Resist

Claims (14)

  1.  裏面接合型の太陽電池であって、
     半導体基板と、
     前記半導体基板の一方主面側の一部である第1領域、および前記半導体基板の前記一方主面側の他の一部である第2領域に形成され、第1導電型である第1導電型半導体層と、
     前記第2領域における前記第1導電型半導体層の上に形成され、前記第1導電型とは逆の第2導電型である第2導電型半導体層と、
     前記第1領域における前記第1導電型半導体層の上に形成された第1電極層と、
     前記第2領域における前記第2導電型半導体層の上に形成された第2電極層と、
    を備える、太陽電池。
    It is a back-bonded solar cell
    With a semiconductor substrate
    A first conductive type, which is formed in a first region which is a part of one main surface side of the semiconductor substrate and a second region which is another part of the one main surface side of the semiconductor substrate and is a first conductive type. Type semiconductor layer and
    A second conductive semiconductor layer formed on the first conductive semiconductor layer in the second region and which is a second conductive type opposite to the first conductive type,
    A first electrode layer formed on the first conductive semiconductor layer in the first region,
    A second electrode layer formed on the second conductive semiconductor layer in the second region,
    With a solar cell.
  2.  前記第1導電型はp型であり、前記第2導電型はn型である、請求項1に記載の太陽電池。 The solar cell according to claim 1, wherein the first conductive type is a p-type and the second conductive type is an n-type.
  3.  前記半導体基板は前記第1導電型の半導体基板である、請求項1または2に記載の太陽電池。 The solar cell according to claim 1 or 2, wherein the semiconductor substrate is the first conductive type semiconductor substrate.
  4.  前記半導体基板と前記第1導電型半導体層との間に形成され、実質的に真性な第1真性半導体層を更に備える、請求項1~3のいずれかに記載の太陽電池。 The solar cell according to any one of claims 1 to 3, further comprising a substantially intrinsic first intrinsic semiconductor layer formed between the semiconductor substrate and the first conductive type semiconductor layer.
  5.  前記第1導電型半導体層のエッチング溶液に対するエッチングレートは、前記第2導電型半導体層のエッチング溶液に対するエッチングレートよりも小さい、請求項1~4のいずれか1項に記載の太陽電池。 The solar cell according to any one of claims 1 to 4, wherein the etching rate of the first conductive semiconductor layer with respect to the etching solution is smaller than the etching rate of the second conductive semiconductor layer with respect to the etching solution.
  6.  前記第1導電型半導体層は微結晶シリコン層を含む、請求項1~5のいずれか1項に記載の太陽電池。 The solar cell according to any one of claims 1 to 5, wherein the first conductive semiconductor layer includes a microcrystalline silicon layer.
  7.  前記第2導電型半導体層は微結晶シリコン層を含む、請求項1~6のいずれか1項に記載の太陽電池。 The solar cell according to any one of claims 1 to 6, wherein the second conductive semiconductor layer includes a microcrystalline silicon layer.
  8.  前記第1導電型半導体層の結晶化度は、前記第2導電型半導体層側の界面に向けて、増大している、請求項6に記載の太陽電池。 The solar cell according to claim 6, wherein the crystallinity of the first conductive semiconductor layer increases toward the interface on the second conductive semiconductor layer side.
  9.  前記半導体基板の前記一方主面側と反対側の他方主面側に形成され、実質的に真性な第2真性半導体層を更に備える、請求項1~8のいずれか1項に記載の太陽電池。 The solar cell according to any one of claims 1 to 8, further comprising a second intrinsic semiconductor layer formed on the other main surface side opposite to the one main surface side of the semiconductor substrate and further comprising a substantially intrinsic second intrinsic semiconductor layer. ..
  10.  前記半導体基板の前記一方主面側と反対側の他方主面側に形成された酸化アルミニウム層を更に備える、請求項1~8のいずれか1項に記載の太陽電池。 The solar cell according to any one of claims 1 to 8, further comprising an aluminum oxide layer formed on the other main surface side opposite to the one main surface side of the semiconductor substrate.
  11.  前記第1導電型半導体層は、前記半導体基板の前記一方主面側の全面を覆っている、請求項1~10のいずれか1項に記載の太陽電池。 The solar cell according to any one of claims 1 to 10, wherein the first conductive type semiconductor layer covers the entire surface of the semiconductor substrate on one main surface side.
  12.  裏面接合型の太陽電池の製造方法であって、
     半導体基板の一方主面側の一部である第1領域、および前記半導体基板の前記一方主面側の他の一部である第2領域に、第1導電型である第1導電型半導体層を形成する第1半導体層形成工程と、
     前記第1領域および前記第2領域における前記第1導電型半導体層の上に、前記第1導電型とは逆の第2導電型である第2導電型半導体層の材料膜を形成する第2半導体層材料膜形成工程と、
     前記第1領域における前記第2導電型半導体層の材料膜を除去することにより、前記第2領域に、パターン化された前記第2導電型半導体層を形成する第2半導体層形成工程と、
    を含む、太陽電池の製造方法。
    This is a method for manufacturing a back-bonded solar cell.
    A first conductive semiconductor layer that is a first conductive type in a first region that is a part of one main surface side of a semiconductor substrate and a second region that is another part of the one main surface side of the semiconductor substrate. The first semiconductor layer forming step of forming
    A second material film of a second conductive type semiconductor layer, which is a second conductive type opposite to the first conductive type, is formed on the first conductive type semiconductor layer in the first region and the second region. Semiconductor layer material film formation process and
    A second semiconductor layer forming step of forming the patterned second conductive semiconductor layer in the second region by removing the material film of the second conductive semiconductor layer in the first region.
    Manufacturing methods for solar cells, including.
  13.  前記第2半導体層形成工程では、エッチング溶液を用いて、前記第1領域における前記第2導電型半導体層の材料膜を除去し、
     前記第1導電型半導体層の前記エッチング溶液に対するエッチングレートは、前記第2導電型半導体層の前記エッチング溶液に対するエッチングレートよりも小さい、請求項12に記載の太陽電池の製造方法。
    In the second semiconductor layer forming step, the material film of the second conductive semiconductor layer in the first region is removed by using an etching solution.
    The method for manufacturing a solar cell according to claim 12, wherein the etching rate of the first conductive semiconductor layer with respect to the etching solution is smaller than the etching rate of the second conductive semiconductor layer with respect to the etching solution.
  14.  前記第1導電型はp型であり、
     前記第2導電型はn型であり、
     前記エッチング溶液はアルカリ溶液である、
    請求項13に記載の太陽電池の製造方法。
    The first conductive type is a p type.
    The second conductive type is n type.
    The etching solution is an alkaline solution.
    The method for manufacturing a solar cell according to claim 13.
PCT/JP2020/015916 2019-04-23 2020-04-09 Solar cell and method for manufacturing solar cell WO2020218000A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021515970A JP7202456B2 (en) 2019-04-23 2020-04-09 SOLAR CELL AND SOLAR CELL MANUFACTURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-082186 2019-04-23
JP2019082186 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020218000A1 true WO2020218000A1 (en) 2020-10-29

Family

ID=72942606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015916 WO2020218000A1 (en) 2019-04-23 2020-04-09 Solar cell and method for manufacturing solar cell

Country Status (2)

Country Link
JP (1) JP7202456B2 (en)
WO (1) WO2020218000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113964216A (en) * 2021-09-22 2022-01-21 泰州隆基乐叶光伏科技有限公司 Back contact battery and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100108130A1 (en) * 2008-10-31 2010-05-06 Crystal Solar, Inc. Thin Interdigitated backside contact solar cell and manufacturing process thereof
JP2012164961A (en) * 2011-02-08 2012-08-30 Samsung Sdi Co Ltd Solar cell and method of manufacturing the same
JP2016066709A (en) * 2014-09-25 2016-04-28 パナソニックIpマネジメント株式会社 solar battery
JP2018532273A (en) * 2015-11-02 2018-11-01 セエスウエム サントル スイス デレクトロニクエ ドゥ ミクロテクニク ソシエテ アノニム−ルシェルシェ エ デブロップマン Photovoltaic device and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118758A (en) 1999-10-14 2001-04-27 Sony Corp Manufacturing of semiconductor element
JP2002368238A (en) 2001-06-07 2002-12-20 Toyota Motor Corp Tandem solar cell and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100108130A1 (en) * 2008-10-31 2010-05-06 Crystal Solar, Inc. Thin Interdigitated backside contact solar cell and manufacturing process thereof
JP2012164961A (en) * 2011-02-08 2012-08-30 Samsung Sdi Co Ltd Solar cell and method of manufacturing the same
JP2016066709A (en) * 2014-09-25 2016-04-28 パナソニックIpマネジメント株式会社 solar battery
JP2018532273A (en) * 2015-11-02 2018-11-01 セエスウエム サントル スイス デレクトロニクエ ドゥ ミクロテクニク ソシエテ アノニム−ルシェルシェ エ デブロップマン Photovoltaic device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113964216A (en) * 2021-09-22 2022-01-21 泰州隆基乐叶光伏科技有限公司 Back contact battery and manufacturing method thereof
CN113964216B (en) * 2021-09-22 2023-10-27 泰州隆基乐叶光伏科技有限公司 Back contact battery and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2020218000A1 (en) 2021-11-25
JP7202456B2 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
EP2434548B1 (en) Solar cell and method for manufacturing the same
JP6106403B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
KR101142861B1 (en) Solar cell and manufacturing method of the same
US20140116507A1 (en) Solar cell and method for manufacturing the same
US9006564B2 (en) Method of manufacturing solar cell and solar cell
US20100132792A1 (en) Solar cell and method of manufacturing the same
US10121917B2 (en) Solar cell and solar cell module
KR101630526B1 (en) Solar cell
KR101166361B1 (en) Solar cell
WO2020218000A1 (en) Solar cell and method for manufacturing solar cell
US20220140162A1 (en) Solar cell and method for manufacturing solar cell
US20130127005A1 (en) Photovoltaic device and method of manufacturing the same
JP7053851B2 (en) Manufacturing method of photoelectric conversion element and photoelectric conversion element
JP7459059B2 (en) Method for manufacturing solar cell and solar cell
JP7241173B2 (en) Element manufacturing method
WO2020217999A1 (en) Method for manufacturing solar cell and solar cell
US20240021742A1 (en) Solar cell and method for manufacturing solar cell
WO2020195570A1 (en) Method for producing solar cell and in-process product of solar cell
JP2023111632A (en) Method for manufacturing solar cell and solar cell
KR101507767B1 (en) Manufacturing Method of Solar Cell
WO2019053957A1 (en) Solar cell, solar cell production method, and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794569

Country of ref document: EP

Kind code of ref document: A1