WO2020202730A1 - X線分析装置 - Google Patents

X線分析装置 Download PDF

Info

Publication number
WO2020202730A1
WO2020202730A1 PCT/JP2020/002468 JP2020002468W WO2020202730A1 WO 2020202730 A1 WO2020202730 A1 WO 2020202730A1 JP 2020002468 W JP2020002468 W JP 2020002468W WO 2020202730 A1 WO2020202730 A1 WO 2020202730A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
rays
sample
fresnel zone
multicapillary
Prior art date
Application number
PCT/JP2020/002468
Other languages
English (en)
French (fr)
Inventor
啓義 副島
Original Assignee
株式会社応用科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社応用科学研究所 filed Critical 株式会社応用科学研究所
Priority to US17/059,838 priority Critical patent/US11467103B2/en
Priority to JP2020567061A priority patent/JP6851107B2/ja
Priority to EP20785371.4A priority patent/EP3790025B1/en
Publication of WO2020202730A1 publication Critical patent/WO2020202730A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • G01N23/085X-ray absorption fine structure [XAFS], e.g. extended XAFS [EXAFS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • G01N23/2076Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2209Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using wavelength dispersive spectroscopy [WDS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • G01N23/2273Measuring photoelectron spectrum, e.g. electron spectroscopy for chemical analysis [ESCA] or X-ray photoelectron spectroscopy [XPS]
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • G01N2223/04Investigating materials by wave or particle radiation by transmission and measuring absorption
    • G01N2223/041X-ray absorption fine structure [EXAFS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/071Investigating materials by wave or particle radiation secondary emission combination of measurements, at least 1 secondary emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/085Investigating materials by wave or particle radiation secondary emission photo-electron spectrum [ESCA, XPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/316Accessories, mechanical or electrical features collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/66Specific applications or type of materials multiple steps inspection, e.g. coarse/fine
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/065Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators using refraction, e.g. Tomie lenses
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/067Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators using surface reflection, e.g. grazing incidence mirrors, gratings

Definitions

  • the present invention relates to an X-ray analyzer that irradiates a subject with X-rays to analyze and observe the subject.
  • X-ray analysis method for performing the above is conventionally known.
  • Typical X-ray analysis methods include fluorescent X-ray analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption edge microstructure.
  • XRF X-Ray Fluorescence analysis
  • XRD X-ray Diffraction
  • XPS X-ray Photoelectron Spectroscpy
  • XAFS X-ray absorption fine structure
  • a multicapillary X-ray lens disclosed in Patent Document 1 and the like is widely used in order to irradiate a minute region on a sample with X-rays with high efficiency.
  • the multi-capillary X-ray lens is formed by bundling a large number of small-diameter glass capillaries (capillaries) having an inner diameter of about 2 to a dozen ⁇ m into one tubular shape, and X incident on the inside of one capillary. It is an element that efficiently guides X-rays by utilizing the principle that a line travels while being totally reflected on the inner wall surface of glass at an angle equal to or less than the critical angle.
  • the end face is a point focal end face in which each capillary is formed so that the central axes of a number of capillaries intersect one point at a predetermined position outside the end face of the end face.
  • a multicapillary X-ray lens is a useful element for irradiating a minute area while efficiently guiding X-rays, it does not always have sufficient performance in terms of narrowing down the area to irradiate the collected X-rays. ..
  • the main reason for this is that the multicapillary X-ray lens causes defocus in principle. That is, in a multi-capillary X-ray lens, X-rays travel while totally reflecting the inner wall surface of one capillary, but the maximum incident angle that causes total reflection (conventionally, the angle with respect to the reflecting surface is called the incident angle. As defined herein) is the critical angle.
  • the irradiation region of X-rays emitted from the point focal end face of the multicapillary X-ray lens is not an ideal point, and becomes a region having a certain size.
  • an element capable of converging X-rays to a smaller diameter in principle is the Fresnel zone plate described in Patent Document 2 and the like.
  • a Fresnel zone plate is a substantially disk-shaped element that collects light using diffraction and interference, and is a type in which a shielding region that shields X-rays and a passing region that allows X-rays to pass are alternately formed concentrically. It is a transmission type diffraction grating of.
  • synchrotron radiation using synchrotron radiation X-rays with an irradiation diameter of submicron to nano level are realized by using such a Fresnel zone plate.
  • Patent Document 4 describes a device that combines a parallel-end-parallel end type multi-capillary and a Fresnel zone plate in which the central axes of each thin tube are straight and parallel, and parallel X-rays in the front stage of the multi-capillary.
  • a device has been proposed in which a collimator is placed to take out. In such a device, the parallelism of the X-rays incident on the Fresnel zone plate can be further enhanced, and the high focusing performance of the Fresnel zone plate can be further utilized.
  • the sample to be analyzed is irradiated with X-rays, and the characteristic X having a wavelength / energy peculiar to the elements constituting the sample. Generate a line. Since each of these characteristic X-rays requires individual excitation energy, continuous X-rays having continuous energy are used as the X-rays to irradiate the sample.
  • an X-ray beam with an irradiation diameter as small as possible is desirable for analysis of a minute region on a sample, and a Fresnel zone plate capable of narrowing the X-ray with the smallest diameter is suitable for that purpose.
  • the X-ray irradiation device using the Fresnel zone plate has the following problems.
  • FIG. 5 is a conceptual diagram illustrating the state of convergence of X-rays by the Fresnel zone plate on the surface of the sample.
  • FIG. 5A it is assumed that parallel X-ray bundles of various energies are incident on the Fresnel zone plate 100 from the left side.
  • the diffraction angle in the Fresnel zone plate 100 differs depending on the wavelength. Therefore, as shown in FIG. 5A, the position of the focal point where the X-rays of different energies A, B, and C (however, the energies A ⁇ B ⁇ C) converge is the central axis X of the Fresnel zone plate 100. Different on.
  • the X-ray irradiation spot on the X-ray irradiation surface 101 is the energy A, as shown in FIG. 5 (b).
  • the range 102 where the X-rays of B and C reach, the range 103 where the X-rays of energy A and C reach, and the range 104 where only the X-rays of energy A reach are formed substantially concentrically.
  • the range 102 is irradiated with X-rays of energy B with a particularly strong intensity.
  • the heavy element d is overlooked, the heavy element e has an inaccurate needle-like structure length, and the double structure f is detected only as a region of the light element.
  • the conventional X-ray analyzer using the Fresnel zone plate as the X-ray irradiation apparatus can analyze a specific element that is known to exist in a very narrow range in advance, but includes that range. There is a problem that accurate qualitative analysis of unknown elements cannot be performed in a wide range.
  • the present invention has been made to solve the above problems, and an object of the present invention is to carry out accurate elemental qualitative analysis in a wide range to some extent, and then perform details on minute parts of a specific element.
  • the present invention is to provide an X-ray analyzer capable of performing various analyzes.
  • the present invention which has been made to solve the above problems, is an X-ray analyzer that irradiates a sample containing various components with X-rays and detects the X-rays emitted from the sample.
  • the X-ray irradiation part that irradiates X-rays a) X-ray source that emits X-rays and b) A first multicapillary consisting of a large number of X-ray guiding capillaries arranged parallel to each other and whose incident end face is arranged at a position where X-rays emitted from the X-ray source are introduced.
  • a parallel / point-focused multi-capillary X-ray consisting of a large number of X-ray guiding capillaries, which are parallel on the incident end side and gently curved on the exit end face side to converge to one point.
  • the second multi-capillary lens d) Fresnel zone plate and e) Selectively insert either one of the second multicapillary and the Fresnel zone plate into the X-ray optical path until the X-ray emitted from the first multicapillary reaches the sample.
  • the X-ray analyzer is a first type that detects X-rays emitted from the sample in response to the X-rays radiated to the sample via the second multicapillary or the Fresnel zone plate.
  • An X-ray detector may be further provided.
  • the X-rays emitted from the X-ray source unit are introduced into the first multicapillary. Since low-parallel X-rays are removed in the process of passing through each capillary of the first multicapillary, a highly parallel X-ray bundle is emitted from the first multicapillary.
  • Either the second multicapillary or the Fresnel zone plate is placed between the exit end face of the first multicapillary and the sample to be analyzed by the first moving portion.
  • a second multicapillary is selected if you want to perform an accurate qualitative analysis of a relatively wide range of components on the sample, while a detailed analysis of a particular range of components on the sample. If you want to, the Fresnel zone plate is selected.
  • the second multicapillary for example, a parallel / point focus type multicapillary X-ray lens as disclosed in Patent Document 2 or the like is used.
  • this multi-capillary X-ray lens X-rays introduced into a large number of X-ray guiding thin tubes can be narrowed down to a small diameter while being guided without waste.
  • the loss in the process of the X-rays passing through the thin tube for X-ray guidance is small, so the strength is relatively large.
  • X-rays can be emitted.
  • the focal lengths of all energies are the same.
  • X-rays are irradiated to a relatively wide area on the sample. Since there is almost no energy selectivity in the process of passing through the multi-capillary, if the X-rays emitted from the X-ray light source unit are continuous X-rays over a predetermined energy range, all of the above ranges on the sample are continuous. X-rays are emitted and their focal lengths are the same. As a result, the element existing in the range irradiated with X-rays is excited by either a light element or a heavy element, and emits X-rays peculiar to the element. By detecting this X-ray with the first X-ray detector, it is possible to identify an element existing in a certain range on the sample.
  • the highly parallel X-rays emitted from the first multi-capillary are the Fresnel zone.
  • X-rays incident on the plate and diffracted by the Fresnel zone plate are focused on a very small area on the sample. Therefore, at this time, X-rays are applied to a fairly narrow area on the sample. If a sample is set at the position of the X-ray focal length of a specific component among the components qualitatively analyzed using the second multicapillary, a precise analysis of the specific component (element) is performed in a minute region. be able to.
  • X-ray absorption spectroscopy is used to specify a specific X-ray on the sample. Detailed information such as the chemical morphology of the element existing in the minute part can be obtained.
  • the X-ray irradiation unit includes a first rotation unit that integrally rotates the X-ray light source unit and the first multi-capillary, a flat plate spectroscopic crystal, and the first.
  • the configuration can further include a second moving portion that moves the flat plate spectroscopic crystal so as to insert the flat plate spectroscopic crystal at a position where the X-rays emitted from the emission end face of the multi-capillary of the above can reach.
  • the X-ray light source unit and the first multicapillary are integrally rotated by a predetermined angle by the first rotating unit.
  • a flat plate spectroscopic crystal was inserted at a position where the X-rays emitted from the emission end face of the first multicapillary reached by the second moving portion, and the incident angle of the X-rays on the crystal plane corresponded to the predetermined angle. Adjust so that it is an angle.
  • X-rays having a specific energy extracted by the flat plate spectroscopic crystal that is, monochromatic X-rays are introduced into the Fresnel zone plate and irradiated from the Fresnel zone plate to a narrow area on the sample.
  • the focus becomes clear and precise analysis can be performed only by the characteristic X-ray of a specific element.
  • by changing the angle of rotating the X-ray light source unit and the first multicapillary and the angle of the flat plate spectroscopic crystal in conjunction with each other it is possible to scan the energy of X-rays irradiating a narrow range on the sample. it can. This makes it possible to analyze the distribution of each of a plurality of elements in a minute region and the minute part using X-ray absorption spectroscopy.
  • a second X-ray detector is arranged at a position where X-rays diffracted from the X-ray diffraction analysis sample placed at the position where the sample is placed can be detected. And a second rotating portion that rotates the X-ray diffraction analysis sample and the second X-ray detector while maintaining a predetermined relationship. Both the second multi-capillary and the Fresnel zone plate are retracted from the X-ray optical path emitted from the first multi-capillary or emitted from the first multi-capillary and taken out by hitting the flat plate spectroscopic crystal.
  • the second X-ray detector may be used to detect the diffracted X-rays corresponding to the X-rays applied to the X-ray diffraction analysis sample.
  • a parallel X-ray flux monochromaticized by a flat plate spectroscopic crystal can be irradiated on a sample for X-ray diffraction analysis to perform X-ray diffraction analysis.
  • the second rotating unit rotates the sample for X-ray diffraction analysis and the second X-ray detector so as to maintain a predetermined relationship, thereby detecting diffracted X-rays having different diffraction angles. Can be done.
  • the X-ray analyzer having the above configuration further includes a third moving portion for moving the Fresnel zone plate on its optical axis, and is taken out from the position of the Fresnel zone plate on the optical axis and the flat plate spectroscopic crystal.
  • a third moving portion for moving the Fresnel zone plate on its optical axis, and is taken out from the position of the Fresnel zone plate on the optical axis and the flat plate spectroscopic crystal.
  • the energy or wavelength of monochromatic X-rays irradiating a minute region on a sample can be scanned or changed in a plurality of steps to perform detailed analysis of various elements existing in the minute region. ..
  • the X-ray analyzer having the above configuration may further include a photoelectron spectroscopic detector that detects photoelectrons emitted from the sample in response to irradiation of X-rays taken out by the flat plate spectroscopic crystal.
  • photoelectron spectroscopy enables elemental analysis and state analysis of the very surface of the sample.
  • an X-ray having a specific wavelength (energy) such as AlK ⁇ ray or CrK ray is irradiated to a sample, but according to the above configuration, the wavelength (energy) of the X-ray to irradiate the sample.
  • the wavelength (energy) of the X-ray to irradiate the sample. Can be easily changed, so that the range of application of X-ray photoelectron spectroscopy can be expanded.
  • the X-ray light source unit and the first multi-capillary are integrally rotated by the first rotating unit, and the X-rays extracted by the flat plate spectroscopic crystal are irradiated.
  • the absorption edge spectrum can also be obtained by detecting the X-rays emitted from the sample.
  • X-ray absorption fine structure analysis can be performed, and the electronic structure of atoms in the sample can also be analyzed.
  • the qualification of the component in the region of about 10 ⁇ m to 100 ⁇ m on the sample is accurately performed, and a good space of about 1 ⁇ m or less is obtained for a specific component in the sample. Detailed analysis can be performed with resolution.
  • FIG. 6 is a schematic configuration diagram of a main part of an X-ray analyzer according to another embodiment of the present invention.
  • FIG. 6 is a schematic configuration diagram of a main part of an X-ray composite analyzer according to still another embodiment of the present invention.
  • FIG. 6 is a schematic configuration diagram of an example of an X-ray detector in the X-ray analyzer shown in FIG.
  • FIG. 1 is a principle configuration diagram of an X-ray analyzer according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a modified example of the principle configuration shown in FIG.
  • FIG. 3 is a schematic configuration diagram of a main part of the X-ray analyzer of the present embodiment.
  • FIG. 1A is a diagram showing the arrangement of X-ray optical elements in the preliminary analysis mode
  • FIG. 1B is a diagram showing the arrangement of X-ray optical elements in the microsite analysis mode. These two modes are switchable.
  • the straight tube type multicapillary 12, the parallel / point focus type multicapillary X-ray lens 13, and the sample S1 are arranged on a straight line (central axis C).
  • the X-ray bundle emitted from the X-ray source portion (not shown) is introduced into the straight tube type multicapillary 12, and the X-ray bundle that has passed through the straight tube type multicapillary 12 is introduced into the parallel / point focus type multicapillary X-ray lens 13. ..
  • the X-ray focused by the parallel / point focus type multicapillary X-ray lens 13 is applied to the sample S1.
  • FIG. 1A the straight tube type multicapillary 12, the parallel / point focus type multicapillary X-ray lens 13, and the sample S1 are arranged on a straight line (central axis C).
  • the parallel / point focus type multicapillary X-ray lens 13 is retracted from the X-ray optical path by a moving mechanism (not shown), and the Fresnel zone plate 14 is instead placed on the X-ray optical path. Is inserted in place. Therefore, the X-ray bundle emitted from the straight tube type multi-capillary 12 is introduced into the Fresnel zone plate 14, and the X-ray focused to a small diameter by the Fresnel zone plate 14 is irradiated to the sample S1.
  • the straight tube type multicapillary 12 is an aggregate of a large number of capillaries (capillaries) made of borosilicate glass that extend linearly along the central axis C.
  • capillaries capillaries
  • X-rays incident parallel to the central axis are emitted without being reflected or absorbed.
  • X-rays incident at an incident angle equal to or lower than the critical angle are guided and emitted while being reflected by the inner wall surface of the capillary.
  • X-rays incident with an incident angle exceeding the critical angle do not reach the exit side end surface because they are absorbed or scattered by the inner wall surface of the capillary. Therefore, the straight tube type multi-capillary 12 is a kind of high-efficiency filter having a function of extracting only X-rays having high parallelism.
  • the parallel / point focus type multicapillary X-ray lens 13 generally used for accurate analysis of a region of about several tens of ⁇ m is an aggregate of a large number of capillaries made of borosilicate glass like the straight tube type multicapillary 12.
  • each capillary is narrowed in a curved shape so as to approach the central axis C. Therefore, the X-rays that are efficiently guided while being reflected by the inner wall surface of the capillary are emitted from the exit side end face so as to be directed toward one point.
  • the efficiency of receiving X-rays at the incident side end face of the parallel / point focus type multi-capillary X-ray lens 13 is high, and the attenuation of X-rays while passing through each capillary is small. Therefore, the sample S1 can be irradiated with high-intensity X-rays.
  • the X-rays have a spread of about a critical angle when they are emitted, the diameter of the X-rays irradiated to the sample S1 does not become a minute diameter, which affects the performance of the parallel / point focus type multicapillary X-ray lens 13. Although it depends, it is generally about 50 ⁇ m, which is somewhat large.
  • high-intensity X-rays can be applied to a range of a certain large area on the sample S1.
  • the X-rays incident on the parallel / point focus type multicapillary X-ray lens 13 are continuous X-rays, the entire irradiation range on the sample S1 is irradiated with continuous X-rays. Therefore, regardless of whether a light element or a heavy element is present in the range, it is excited by the irradiated X-rays and the characteristic X-rays corresponding to each element are emitted.
  • an X-ray detector not shown in FIG. 1
  • the Fresnel zone plate 14 used in the microsite analysis mode has a substantially disk-shaped outer shape, and is a type in which a shielding region that shields X-rays and a passing region that allows X-rays to pass are alternately formed concentrically. It is a transmission type diffraction grating of. The distance between the passing regions adjacent to each other in the radial direction gradually narrows from the center to the outside, so that the X-rays incident on the outer peripheral side are greatly bent by diffraction.
  • X-rays incident parallel to the central axis of the Fresnel zone plate 14 within the effective diameter range converge to one point at a position separated from the exit surface on the opposite side of the incident surface by a predetermined distance.
  • the Fresnel zone plate 14 is arranged so that its central axis coincides with the central axis C, and X-rays are applied to a very narrow range on the sample S1. That is, in the microsite analysis mode, X-rays can be applied to a very narrow area on the sample S1, and high spatial resolution can be achieved.
  • the X-ray source 10 emits continuous X-rays over a predetermined energy range (wavelength range).
  • the X-ray source 10 and the two-stage straight tube type multicapillaries 11 and 12 are integrally rotatable by the first rotating portion 18.
  • the flat plate spectroscopic crystal 15 is movable on the X-ray optical path near the center point of the rotation by the second moving portion 17.
  • the flat plate spectroscopic crystal 15 is rotatable by the second moving portion 17.
  • the first moving unit 16 selectively inserts the parallel / point focus type multicapillary X-ray lens 13 and the Fresnel zone plate 14 into the X-ray optical path.
  • the X-ray source 10 In the preliminary analysis mode, as shown in FIG. 2A, the X-ray source 10, the two-stage straight tube type multicapillaries 11 and 12, the parallel / point focus type multicapillary X-ray lens 13 and the sample S1 are aligned. Arranged, the flat plate spectroscopic crystal 15 is retracted from the X-ray optical path. As a result, continuous X-rays emitted from the X-ray source 10 are irradiated on the sample S1 over a fairly wide area having a diameter of, for example, several tens of ⁇ m, and each element excited by the X-rays is irradiated. Unique characteristic X-rays are emitted from sample S1 and detected by the X-ray detector 30.
  • FIG. 7 is a schematic view showing an example of the configuration of the X-ray detector 30.
  • the X-ray detector 30 is a point / parallel type multi-capillary X-ray lens 300 that collects X-rays (see FIG. 6B of Patent Document 2 and the like), and flat plate spectroscopy that is rotated by a drive mechanism (not shown). It is a wavelength scanning type configuration including a crystal 301 and a detector 302 that is rotated at a rotation angle twice the rotation angle of the flat plate spectroscopic crystal 301.
  • an energy dispersive X-ray detector specifically, a semiconductor detector
  • the X-ray detector 30 may be used as the X-ray detector 30.
  • the flat plate spectroscopic crystal 15 is inserted on the X-ray optical path. Then, the X-ray source 10, the two-stage straight tube type multicapillaries 11 and 12, and the flat plate spectroscopic crystal 15 are rotated in conjunction with each other. Specifically, when the X-ray source 10 and the two-stage straight tube type multicapillaries 11 and 12 are rotated by an angle 2 ⁇ c with respect to the central axis C, the flat plate spectroscopic crystal 15 has an angle ⁇ c with respect to the central axis C. Is rotated only.
  • X-rays having a specific wavelength (energy) corresponding to the angle ⁇ c are taken out by the flat plate spectroscopic crystal 15 and directed to the Fresnel zone plate 14. Since the parallelism of X-rays emitted through the straight tube type multicapillaries 11 and 12 is high, accurate monochromaticization can be easily performed with the flat plate spectroscopic crystal 15, and X-rays having a specific narrow energy range and high parallelism can be easily obtained. It is incident on the Fresnel zone plate 14. As a result, monochromatic X-rays can be applied to a very small region on the sample S1.
  • the sample S1 By rotating the X-ray source 10, the two-stage straight tube type multicapillaries 11 and 12, and the flat plate spectroscopic crystal 15 in conjunction with each other so as to scan the angle ⁇ c in a predetermined range, the sample S1 It is possible to scan the energy of X-rays irradiating a minute part of the body and obtain, for example, an X-ray absorption fine structure spectrum reflecting the detailed chemical form of the element.
  • the focal length of the Fresnel zone plate depends on the energy (wavelength) of X-rays. Therefore, as described above, the single color extracted from the flat plate spectroscopic crystal 15 by rotating the X-ray source 10 and the two-stage straight tube type multicapillaries 11 and 12 in conjunction with the flat plate spectroscopic crystal 15.
  • the size of the spot on the sample S1 due to the monochromatic X-rays focused on the Fresnel zone plate 14 changes.
  • a third moving portion 19 for moving the Fresnel zone plate 14 on its optical axis is added to the above, and the moving operation of the Fresnel zone plate 14 by the third moving portion 19, the X-ray source 10, and the two-stage direct movement. It is preferable that the tube-shaped multicapillaries 11 and 12 and the interlocking rotation operation of the flat plate spectroscopic crystal 15 are interlocked. As a result, the sample S1 can be positioned at the focal length of the Fresnel zone plate 14 even when the X-ray energy changes.
  • continuous X-rays are introduced into the Fresnel zone plate 14 without interlocking the operations of the first rotating portion 18, the second moving portion 17, and the first moving portion 16, and continuous X-rays are introduced to a minute portion on the sample S1.
  • the X-rays may be irradiated, or monochromatic X-rays having a specific energy may be introduced into the parallel / point focus type multicapillary X-ray lens 13 to cover a relatively wide range on the sample S1. You may irradiate X-rays with a specific energy.
  • FIG. 3 is a schematic configuration diagram of an X-ray analyzer according to another embodiment of the present invention. With this X-ray analyzer, not only fluorescent X-ray analysis but also X-ray diffraction analysis is possible.
  • the components that are the same as or correspond to the components shown in FIG. 2 in FIG. 3 are designated by the same reference numerals.
  • a sample holder (not shown) provided at the placement position of the sample S1 and a position where the X-ray diffraction by the X-ray diffraction analysis sample S2 held in the sample holder reaches.
  • the X-ray diffraction analysis detector 20 and the X-ray diffraction analysis detector 20 are each rotated by the second rotating unit 21. Further, both the parallel / point focus type multicapillary X-ray lens 13 and the Fresnel zone plate 14 can be retracted from the X-ray optical path.
  • both the parallel / point focus type multi-capillary X-ray lens 13 and the Frenel zone plate 14 are retracted from the X-ray optical path, and the continuous X-ray bundle or flat plate emitted from the straight tube type multi-capillary 12 is emitted.
  • the monochromatic parallel X-ray flux emitted from the spectroscopic crystal 15 is irradiated onto the sample S2.
  • the parallel X-ray bundle hits a wide range on the sample S2, and the diffracted X-rays for the parallel X-rays reach the X-ray diffraction analysis detector 20.
  • the crystal structure of the sample can be analyzed by acquiring the diffraction pattern. Further, when the sample S2 is rotated by the angle ⁇ s by the second rotating unit 21 and the X-ray diffraction analysis detector 20 is rotated by the angle 2 ⁇ s in conjunction with this, the diffraction angle can be scanned or changed. it can. Thereby, the diffracted X-rays emitted from the sample S2 at various angles can be detected.
  • FIG. 4 is a schematic configuration diagram of an X-ray composite analyzer according to still another embodiment of the present invention.
  • this X-ray composite analyzer can also perform X-ray photoelectron spectroscopic analysis and near-wide-area spectroscopic analysis of the absorption edge spectrum.
  • FIG. 4 the same or corresponding components as those shown in FIGS. 2 and 3 are designated by the same reference numerals.
  • This X-ray composite analyzer is provided with a photoelectron spectroscopic detector 31 at a position facing the X-ray irradiation surface of the sample S1.
  • the photoelectron spectroscopy detector 31 receives photoelectrons emitted from the sample S1 by X-ray irradiation and counts the number of photoelectrons for each kinetic energy, and can obtain an energy spectrum of photoelectrons.
  • X-ray fluorescence analysis for sample S1 and X-ray diffraction analysis for sample S2 can be performed. Further, X-ray photoelectron spectroscopy analysis and X-ray absorption fine structure analysis on the sample S1 can be performed.
  • the flat plate spectroscopic crystal 15 is inserted on the X-ray optical path as in the microsite analysis mode of fluorescent X-ray analysis, and the X-ray source 10 and the straight tube type multi-capillary 11, 12 Is rotated to a predetermined position with respect to the flat plate spectroscopic crystal 15. Further, a Fresnel zone plate 14 or a parallel / point focus type multicapillary X-ray lens 13 is inserted on the X-ray optical path. As a result, the sample S is irradiated with X-rays that have been monochromaticized and appropriately narrowed down.
  • Both the Fresnel zone plate 14 and the parallel / point focus type multicapillary X-ray lens 13 may be retracted from the X-ray optical path.
  • the sample S is irradiated with monochromatic parallel X-rays.
  • Photoelectrons are generated on the surface of sample S1 by being irradiated with X-rays, and the kinetic energy of the photoelectrons depends on the type of element and the like.
  • the photoelectron spectroscopy detector 31 outputs energy spectrum data showing the relationship between the kinetic energy of incident photoelectrons and the electron intensity. This makes it possible to perform elemental analysis and state analysis of the very surface of sample S1.
  • the sample is placed in a vacuum atmosphere during X-ray photoelectron spectroscopy. Therefore, it is advisable to place the sample S1 in a container that can be evacuated inside, and if necessary, evacuate the inside of the container to perform analysis.
  • the flat plate spectroscopic crystal 15 is inserted on the X-ray optical path, and the X-ray source 10, the straight tube type multi-capillaries 11 and 12, and the flat plate spectroscopic crystal 15 are interlocked with each other. Be moved. Further, the Fresnel zone plate 14 or the parallel / point focus type multicapillary X-ray lens 13 is inserted on the X-ray optical path. As a result, the sample S is irradiated with X-rays that are monochromatic and appropriately narrowed down, and the energy of the X-rays is scanned in a predetermined range.
  • the X-ray detector 30 detects the intensity of the X-rays emitted from the sample S1 in response to the irradiation of the X-rays scanned by energy, and acquires an absorption spectrum. Since the absorption edge peculiar to the element in the sample S1 is observed in the absorption spectrum, the electronic structure of the atom can be grasped from this.
  • the X-ray composite analyzer of the present embodiment it is possible to perform X-ray analysis of a sample by various methods with one apparatus.

Abstract

本発明の一実施形態のX線分析装置は、X線源(10)、直管型マルチキャピラリ(11、12)と、平板分光結晶(15)と、平行/点焦点型マルチキャピラリX線レンズ(13)と、フレネルゾーンプレート(14)と、を含む。試料(S1)上の或る程度広い範囲における定性分析を実施する場合には、平板分光結晶(15)及びフレネルゾーンプレート(14)をX線光路上から外し、連続X線をマルチキャピラリX線レンズ(13)で集光して試料(S1)に照射する。試料(S1)上の微小部位における元素の化学形態を解析したい場合、マルチキャピラリX線レンズ(13)をX線光路上から退避させる一方、X線源(10)等を回動させ、平板分光結晶(15)及びフレネルゾーンプレート(14)をX線光路上に挿入する。平板分光結晶(15)で取り出した特定のエネルギを有するX線をフレネルゾーンプレート(14)で試料(S1)上のごく狭い範囲に照射する。これにより、試料上の或る程度の範囲における正確な定性分析を実施するとともに、より微小な部位の詳細な解析も可能となる。

Description

X線分析装置
 本発明は、X線を被検体に照射して該被検体の分析や観察を行うX線分析装置に関する。
 X線を試料に照射し該試料から放出されるX線、電子、イオン、又はその他の各種粒子を検出したり試料を透過するX線を検出したりすることによって、該試料についての分析や観察を行うX線分析手法が従来知られている。代表的なX線分析手法には、蛍光X線分析法、X線回折法、X線光電子分光法、X線吸収端微細構造などがある。このうち、蛍光X線分析法(X-Ray Fluorescence analysis:XRF)は、微量元素も含めて、非破壊、高精度な定性、定量分析の代表的な分析法であり、X線回折法(X-Ray Diffraction:XRD)は代表的な構造解析法である。また、X線光電子分光法(X-ray Photoelectron Spectroscpy:XPS)では試料極表面の元素分析や状態分析を行うことができ、X線吸収端微細構造(X-ray Absorption Fine Structure:XAFS)では吸収原子の電子構造を知ることができる。
 蛍光X線分析装置においては、微小領域の分析や観察の空間分解能を上げるために、試料や試料上の対象領域に照射するX線の照射径又は照射面積をできるだけ小さく絞る必要がある。一方、高度なX線回折においては、平行性の高い単色X線を試料に照射する必要がある。
 蛍光X線分析装置等のX線分析装置において、試料上の微小な領域に高い効率でX線を照射するために、特許文献1等に開示されているマルチキャピラリX線レンズが広く用いられている。
 マルチキャピラリX線レンズは、内径が2~十数μm程度の微小径のガラス細管(キャピラリ)を多数束ねて1本の管状に形成したものであり、1本のキャピラリの内側に入射されたX線がガラス内壁面を臨界角以下の角度で以て全反射しながら進行してゆく原理を利用して、X線を効率良く案内する素子である。少なくともいずれか一方の端部においてその端面は、多数のキャピラリの中心軸がその端部の端面の外側の所定位置で1点に交わるように各キャピラリが形成された点焦点端面となっている。これにより、各キャピラリを通して案内されたX線を略一点に集束させるように出射することができる。
 マルチキャピラリX線レンズはX線を効率良く案内しつつ微小領域に照射するのに有用な素子であるものの、収集したX線を照射する面積を小さく絞るという点では必ずしも十分な性能が得られない。その大きな理由は、マルチキャピラリX線レンズでは原理的な焦点ボケが生じることによる。即ち、マルチキャピラリX線レンズでは、X線は1本のキャピラリの内壁面を全反射しながら進行するが、全反射を起こす最大の入射角(慣用的に反射面に対する角度を入射角というので、本明細書でもその定義に従う)は臨界角である。そのため、キャピラリの端面からX線が出射する際に、キャピラリの中心軸に対し臨界角を最大とする開き角度を有してX線が拡がる。その結果、マルチキャピラリX線レンズの点焦点端面から出射したX線の照射領域は理想的な点とはならず、或る程度のサイズを持つ領域となってしまう。
 一方、原理的にX線をより小さい径に収束可能である素子が、特許文献2等に記載されているフレネルゾーンプレートである。フレネルゾーンプレートは回折と干渉とを利用して集光を行う略円盤状の素子であり、X線を遮蔽する遮蔽領域とX線を通過させる通過領域とが同心円状に交互に形成された一種の透過型の回折格子である。シンクロトロン放射を利用した、いわゆる放射光(Synchrotron Radiation)では、こうしたフレネルゾーンプレートを利用してサブミクロン~ナノレベルの照射径のX線が実現されている。
 また、マルチキャピラリX線レンズとフレネルゾーンプレートのそれぞれの特性を活かすために、それらを組み合わせた装置も特許文献2、3等で提案されている。このようにマルチキャピラリX線レンズとフレネルゾーンプレートとの組合せによれば、マルチキャピラリX線レンズ単体と比べて原理的にはX線照射径をかなり絞ることが可能であり、試料のごく狭い領域に存在する成分の分析に威力を発揮する。さらにまた、特許文献4には、各細管の中心軸が一直線状で且つ平行である平行端-平行端型のマルチキャピラリとフレネルゾーンプレートとを組み合わせた装置や、マルチキャピラリの前段に平行X線を取り出すコリメータを配置した装置が提案されている。こうした装置では、フレネルゾーンプレートに入射するX線の平行性を一層高めることができ、フレネルゾーンプレートの高い集束性能をより活かすことが可能である。
特許第2001797号公報 特許第4492507号公報 特許第5338483号公報 特許第6430208号公報
 X線を利用した代表的な分析技術の一つである蛍光X線分析法では、分析対象の試料にX線を照射し、その試料を構成する元素に固有の波長/エネルギを有した特性X線を発生させる。この特性X線はそれぞれに個別の励起エネルギが必要であるため、試料に照射するX線としては連続的なエネルギを有する連続X線が用いられる。他方、試料上の微小領域の分析にはできるだけ照射径を小さく絞ったX線ビームが望ましく、その目的には最も小さくX線を絞ることが可能なフレネルゾーンプレートが適している。しかしながら、フレネルゾーンプレートを利用したX線照射装置では次のような問題がある。
 通常、X線分析の対象である試料には様々な物質が含まれているから、上述したような微小領域の分析に先立って、その微小領域を含む試料上のやや広い領域についてどのような物質が存在するのかを調べる必要がある。即ち、試料上の或る程度の広い領域に亘る定性分析が必要である。図5は、試料の表面上における、フレネルゾーンプレートによるX線の収束状態を説明する概念図である。
 いま、図5(a)に示すように、フレネルゾーンプレート100にその左方から様々なエネルギの平行X線束が入射したものとする。フレネルゾーンプレート100における回折角は波長によって異なる。そのため、図5(a)に示すように、A、B、Cなる互いに異なるエネルギ(但し、エネルギA<B<C)のX線が収束する焦点の位置は、フレネルゾーンプレート100の中心軸X上で異なる。したがって、エネルギBのX線の焦点位置にX線照射面101が存在するとき、該X線照射面101上でのX線の照射スポットは、図5(b)に示すように、エネルギA、B、及びCのX線がいずれも到達する範囲102、エネルギAとエネルギCのX線が到達する範囲103、並びに、エネルギAのX線のみが到達する範囲104、が略同心円状に形成される。なお、このとき、範囲102には、エネルギBのX線が特に強い強度で照射される。
 X線照射面101上に置かれた試料に含まれる元素を蛍光X線分析により検出するものとし、いま、図5(b)に示されているX線照射スポット中に、図6(a)に示すように軽元素及び重元素が分布している状況を想定する。低エネルギのX線と高エネルギのX線とが共に照射される内周側の範囲103では、重元素も軽元素も共に良好に検出される。これに対し、低エネルギのX線しか照射されない最外周の範囲104では、軽元素は検出されるものの重元素は検出されない。即ち、図6(a)中の軽元素aは検出されるものの、重元素d、重元素eの一部、2重構造体fの内側の重元素は検出されない。その結果、重元素dは見逃され、重元素eは針状組織の長さが不正確になり、二重構造体fは単なる軽元素の領域としてしか検出されない。
 このように、フレネルゾーンプレートをX線照射装置に用いた従来のX線分析装置では、ごく狭い範囲に存在することが予め分かっている特定元素を分析することはできるものの、その範囲を含む或る程度広い範囲における未知である元素の正確な定性分析を実施することができない、という問題がある。
 本発明は上記課題を解決するために成されたものであり、その目的とするところは、或る程度の広い範囲における正確な元素定性分析を実施したうえで、特定の元素の微小部位における詳細な分析を行うことができるX線分析装置を提供することである。
 上記課題を解決するためになされた本発明は、種々の成分を含む試料にX線を照射し、それに対して該試料から放出されるX線を検出するX線分析装置であって、試料にX線を照射するX線照射部は、
 a)X線を放出するX線源部と、
 b)多数の互いに平行に配置されたX線案内用細管から成り、前記X線源部から放出されたX線が導入される位置にその入射端面が配置された第1のマルチキャピラリと、
 c)多数のX線案内用細管からなり、該細管が入射端側で平行であり出射端面側で緩やかに湾曲して一点に収束するように形成された平行/点焦点型のマルチキャピラリX線レンズである第2のマルチキャピラリと、
 d)フレネルゾーンプレートと、
 e)前記第2のマルチキャピラリと前記フレネルゾーンプレートとのいずれか一方を選択的に、前記第1のマルチキャピラリから出射されたX線が試料に達するまでのX線光路上に挿入するように、前記第2のマルチキャピラリ及び前記フレネルゾーンプレートを移動させる第1の移動部と、
 を含むものである。
 また本発明に係るX線分析装置は、前記第2のマルチキャピラリ又は前記フレネルゾーンプレートを経て前記試料に照射されるX線に応じて、該試料から放出されるX線を検出する第1のX線検出器、をさらに備えるものとすることができる。
 本発明において、X線源部から放出されたX線は第1のマルチキャピラリに導入される。第1のマルチキャピラリの各細管を通過する過程で平行度の低いX線は除去されるため、平行度の高いX線束が第1のマルチキャピラリから出射する。第1の移動部によって、第1のマルチキャピラリの出射端面と分析対象である試料との間には、第2のマルチキャピラリ又はフレネルゾーンプレートのいずれかが配置される。試料上の比較的広い範囲に存在する成分についての正確な定性分析を実施したい場合には第2のマルチキャピラリが選択され、一方、試料上のごく狭い範囲に存在する特定の成分を詳細に解析したいような場合にはフレネルゾーンプレートが選択される。
 上記第2のマルチキャピラリとしては、例えば特許文献2等に開示されているような平行/点焦点型のマルチキャピラリX線レンズが使用される。
 このマルチキャピラリX線レンズでは、多数のX線案内用細管内に導入されたX線を無駄なく案内しながら小径に絞って出射することができる。この場合、原理的に生じる焦点ボケのためにX線をごく微小径に絞ることはできないものの、X線案内用細管内をX線が通過する過程での損失が小さいので、相対的に大きな強度のX線を出射することができる。しかも、全てのエネルギの焦点距離は同じである。
 第1のマルチキャピラリの出射端面と試料との間に、フレネルゾーンプレートではなく第2のマルチキャピラリが配置されると、試料上の相対的に広い範囲にX線が照射される。マルチキャピラリを通過する過程でのエネルギ選択性はほぼないので、X線光源部から放出されるX線が所定のエネルギ範囲に亘る連続X線であれば、試料上の上記範囲にはいずれも連続X線が照射され、その焦点距離は同じである。これにより、X線が照射される範囲に存在する元素は軽元素、重元素のいずれであっても励起され、元素に特有のX線を放出する。第1のX線検出器によりこのX線を検出することで、試料上の或る範囲に存在する元素を特定することができる。
 一方、第1のマルチキャピラリの出射端面と試料との間に、第2のマルチキャピラリではなくフレネルゾーンプレートが配置されると、第1のマルチキャピラリから出射した平行度が高いX線がフレネルゾーンプレートに入射し、フレネルゾーンプレートで回折したX線は試料上のきわめて微小な領域に集光される。したがって、このときには試料上のかなり狭い範囲にX線が照射される。第2のマルチキャピラリを用いて定性分析された成分の中の特定の成分のX線の焦点距離の位置に試料をセットすれば、その特定の成分(元素)の微小領域における精密な分析を行うことができる。また、フレネルゾーンプレートに導入されるX線が単色化されたX線であってそのエネルギが所定範囲で走査される構成であれば、X線吸収分光法を利用して、試料上の特定の微小部位に存在する元素の化学形態等の詳細な情報を得ることができる。
 本発明に係るX線分析装置において、前記X線照射部は、前記X線光源部及び前記第1のマルチキャピラリを一体に回動させる第1回動部と、平板分光結晶と、前記第1のマルチキャピラリの出射端面から出射されたX線が到達する位置に前記平板分光結晶を挿入するように該平板分光結晶を移動させる第2の移動部と、をさらに含む構成とすることができる。
 この構成では、例えばフレネルゾーンプレートを用いて試料に微小径のX線を照射する際に、第1回動部によってX線光源部及び第1のマルチキャピラリを一体に所定角度だけ回動させるとともに、第2の移動部によって第1のマルチキャピラリの出射端面から出射されたX線が到達する位置に平板分光結晶を挿入し、その結晶面へのX線の入射角度が前記所定角度に応じた角度となるように調整する。すると、平板分光結晶により取り出された特定のエネルギを持つX線、つまりは単色化されたX線がフレネルゾーンプレートに導入され、該フレネルゾーンプレートから試料上の狭い範囲に照射される。このときには、単色X線以外の他のエネルギのX線は存在しないため、焦点は鮮明になり、或る特定の元素の特性X線のみによる精密な分析が可能となる。さらに、X線光源部及び第1のマルチキャピラリを回動させる角度と平板分光結晶の角度とを連動して変化させることで、試料上の狭い範囲に照射するX線のエネルギを走査することができる。それにより、複数の元素それぞれの微小領域内分布やX線吸収分光法を利用した微小部位の分析が可能である。
 また上記構成のX線分析装置では、前記試料が載置される位置に載置されたX線回折分析用試料から回折するX線を検出可能な位置に配置される第2のX線検出器と、該該X線回折分析用試料と該第2のX線検出器とを所定関係を保ちつつ回動させる第2回動部と、をさらに備え、
 前記第1のマルチキャピラリから出射された、又は該第1のマルチキャピラリから出射され前記平板分光結晶に当たって取り出されたX線の光路上から、前記第2のマルチキャピラリ及び前記フレネルゾーンプレートを共に退避させ、前記X線回折分析用試料に照射されたX線に応じた回折X線を前記第2のX線検出器で検出する構成としてもよい。
 この構成によれば、例えば平板分光結晶により単色化された平行X線束をX線回折分析用試料に照射し、X線回折分析を行うことができる。このとき、第2回動部によりX線回折分析用試料と第2のX線検出器とを所定の関係を保つようにそれぞれ回動させることで、異なる回折角度の回折X線を検出することができる。それにより、粉末試料や薄膜試料のみならず、バルク試料をそのままの状態で、その結晶構造の精密解析を実施することができる。
 また、上記構成のX線分析装置では、前記フレネルゾーンプレートをその光軸上で移動させる第3の移動部、をさらに備え、該フレネルゾーンプレートの光軸上の位置と前記平板分光結晶から取り出されるX線のエネルギ又は波長とを連動して変化させるように前記第3の移動部及び前記回動部を制御することにより、所定のエネルギ又は波長のX線の焦点距離位置に前記試料を常に位置させるようにしてもよい。
 この構成によれば、試料上の微小領域に照射する単色X線のエネルギ又は波長を走査して、又は複数段階に変化させ、微小領域に存在する様々な元素の詳細な分析を行うことができる。
 また、上記構成のX線分析装置ではさらに、前記平板分光結晶により取り出されたX線の照射に応じて前記試料から放出された光電子を検出する光電子分光検出器、を備えるようにしてもよい。
 この構成によれば、光電子分光分析により、試料のごく表面の元素分析や状態分析も可能となる。また、一般にX線光電子分光法では、例えばAlKα線、CrK線などの特定の波長(エネルギ)のX線を試料に照射するが、上記構成によれば、試料へ照射するX線の波長(エネルギ)を容易に変更することができるので、X線光電子分光法の応用範囲を拡大することができる。
 また上記構成のX線分析装置では、前記第1回動部により前記X線光源部及び前記第1のマルチキャピラリを一体に回動させ、前記平板分光結晶により取り出されたX線の照射に応じて前記試料から放出されたX線を検出することで吸収端スペクトルを取得することもできる。
 これによれば、X線吸収微細構造分析を行い、試料中の原子の電子構造などの解析も行える。
 本発明に係るX線分析装置によれば、試料上の10μm程度~100μm程度の領域における成分の定性を正確に行うとともに、その中の特定の成分に対し、1μm程度又はそれ以下の良好な空間分解能で以て詳細な分析を行うことができる。
本発明の一実施形態であるX線分析装置の原理構成図。 本発明の一実施形態であるX線分析装置の要部の概略構成図。 本発明の他の実施形態であるX線分析装置の要部の概略構成図。 本発明のさらに他の実施形態であるX線複合分析装置の要部の概略構成図。 フレネルゾーンプレートを用いた従来のX線分析装置の問題点の説明図。 フレネルゾーンプレートを用いた従来のX線分析装置の問題点の説明図。 図2に示したX線分析装置におけるX線検出器の一例の概略構成図。
 以下、本発明に係るX線分析装置の一実施形態について、添付図面を参照しつつ説明する。
 図1は、本発明の一実施形態であるX線分析装置の原理構成図である。図2は、図1に示した原理構成の変形例を示す図である。図3は、本実施形態のX線分析装置の要部の概略構成図である。まず、図1及び図2を参照して、本実施形態であるX線分析装置におけるX線照射部の基本的な構成について説明する。
 図1(a)は予備分析モードでのX線光学素子の配置、図1(b)は微小部位分析モードでのX線光学素子の配置を示す図である。それら二つのモードは切替え可能である。
 図1(a)に示す構成では、直管型マルチキャピラリ12、平行/点焦点型マルチキャピラリX線レンズ13、及び試料S1が直線(中心軸線C)上に配置されている。図示しないX線源部から放出されたX線束は直管型マルチキャピラリ12に導入され、直管型マルチキャピラリ12を通過したX線束は平行/点焦点型マルチキャピラリX線レンズ13に導入される。そして、平行/点焦点型マルチキャピラリX線レンズ13で集束されたX線が試料S1に照射される。一方、図1(b)に示す構成では、図示しない移動機構により、平行/点焦点型マルチキャピラリX線レンズ13はX線光路上から退避され、代わりに、フレネルゾーンプレート14がX線光路上の所定位置に挿入される。そのため、直管型マルチキャピラリ12から出射されたX線束はフレネルゾーンプレート14に導入され、フレネルゾーンプレート14で微小径に集束されたX線が試料S1に照射される。
 直管型マルチキャピラリ12は、中心軸線Cに沿って直線状に延伸する多数の硼珪酸ガラス製のキャピラリ(細管)の集合体である。各キャピラリではそれぞれ、中心軸に平行に入射したX線は反射や吸収を受けずに出射する。また、臨界角以下の入射角で以て入射したX線は、キャピラリの内壁面で反射されつつ案内され出射する。一方、臨界角を超えた入射角を有して入射して来るX線は、キャピラリの内壁面で吸収されたり散乱したりするため出射側端面まで到達しない。したがって、この直管型マルチキャピラリ12は平行度の高いX線のみを取り出す機能を有する一種の高効率フィルタである。
 一般に数十μm程度の領域の正確な分析において使用される平行/点焦点型マルチキャピラリX線レンズ13は、直管型マルチキャピラリ12と同様に多数の硼珪酸ガラス製のキャピラリの集合体であるが、出射側(図1では右側)の端部で各キャピラリが中心軸線Cに近づくように湾曲状に絞られている。そのため、キャピラリの内壁面で反射されながら効率良く案内されたX線は、概ね一点に向かうようにその出射側端面から放出される。平行/点焦点型マルチキャピラリX線レンズ13の入射側端面でのX線の受け容れの効率は高く、また各キャピラリを通過する間のX線の減衰は少ない。そのため、高い強度のX線を試料S1に照射することができる。但し、出射する際にX線は臨界角程度の拡がりを有するため、試料S1に照射されるX線の径は微小径にはならず、平行/点焦点型マルチキャピラリX線レンズ13の性能に依存するが一般的には50μm程度と、或る程度大きくなる。
 即ち、予備分析モードでは、試料S1上の或る程度の大きな面積の範囲に対して高い強度のX線を照射することができる。このとき、平行/点焦点型マルチキャピラリX線レンズ13に入射して来るX線が連続X線であれば、試料S1上の照射範囲全体に連続X線が照射される。したがって、その範囲に軽元素、重元素のいずれが存在していても、照射されたX線により励起され、各元素に応じた特性X線が放出される。この特性X線をX線検出器(図1では記載せず)で検出することで元素を特定し、正確な定性分析を行うことができる。
 一方、微小部位分析モードで使用されるフレネルゾーンプレート14は外形が略円盤状であり、X線を遮蔽する遮蔽領域とX線を通過させる通過領域とが同心円状に交互に形成されている一種の透過型の回折格子である。径方向に隣接する通過領域の間隔は中心から外側に向かうに従い徐々に狭くなっており、それによって、外周側に入射したX線ほど回折によって大きく進行方向を曲げる。その結果、フレネルゾーンプレート14の有効径の範囲に、その中心軸に平行に入射したX線は、入射面と反対側の出射面から所定距離離れた位置の1点に収束する。図1(b)の状態では、フレネルゾーンプレート14はその中心軸が中心軸線Cに一致するように配置されており、試料S1上のごく狭い範囲にX線が照射される。
 即ち、微小部位分析モードでは、試料S1上のごく狭い面積の範囲に対してX線を照射することができ、高い空間分解能を達成することができる。
 次に、本実施形態のX線分析装置の構成及び動作を、図2により説明する。図2において図1に示した構成要素と同一又は相当する構成要素には同じ符号を付している。
 X線源10は所定のエネルギ範囲(波長範囲)に亘る連続的なX線を放出するものである。このX線源10、及び、2段の直管型マルチキャピラリ11、12は一体に第1回動部18により回動自在である。また、平板分光結晶15は第2移動部17により、上記回動の中心点付近であるX線光路上に移動自在である。また、平板分光結晶15は第2移動部17により、回動自在である。また第1移動部16は、上記平行/点焦点型マルチキャピラリX線レンズ13とフレネルゾーンプレート14とを択一的にX線光路上に挿入するものである。
 予備分析モードでは、図2(a)に示すように、X線源10、2段の直管型マルチキャピラリ11、12、平行/点焦点型マルチキャピラリX線レンズ13 及び試料S1は一直線上に配置され、平板分光結晶15はX線光路上から退避される。これにより、X線源10から出射された連続X線が試料S1上の、例えば径が数十μm程度である或る程度広い面積の範囲に照射され、該X線によって励起された各元素に特有の特性X線が試料S1から放出され、X線検出器30により検出される。
 図7は、X線検出器30の構成の一例を示す概略図である。このX線検出器30は、X線を集光する点/平行型のマルチキャピラリX線レンズ300(特許文献2の図6(b)等参照)、図示しない駆動機構により回動される平板分光結晶301、平板分光結晶301の回転角の2倍の回転角で以て回動される検出器302、を含む波長走査型の構成である。これにより、試料S1上の小さな領域から放出されたX線を効率良く且つ高い精度で検出することができる。但し、簡便な分析を目的とする場合には、X線検出器30として、エネルギ分散型のX線検出器(具体的には半導体検出器)を用いてもよい。
 微小部位分析モードでは、図2(b)に示すように、平板分光結晶15がX線光路上に挿入される。そして、X線源10、及び、2段の直管型マルチキャピラリ11、12と、平板分光結晶15とは連動して、それぞれ回動される。具体的には、X線源10、及び、2段の直管型マルチキャピラリ11、12が中心軸線Cに対し角度2θcだけ回動されるとき、平板分光結晶15は中心軸線Cに対し角度θcだけ回動される。この場合、X線源10から放出された連続X線のうち、角度θcに対応する特定の波長(エネルギ)のX線が平板分光結晶15で取り出されてフレネルゾーンプレート14に向かう。直管型マルチキャピラリ11、12を通して出射されるX線の平行度は高いので、平板分光結晶15では精度のよい単色化が容易に行え、特定の狭いエネルギ範囲の且つ高い平行度のX線がフレネルゾーンプレート14に入射される。その結果、単色化されたX線を試料S1上のごく微小な領域に照射することができる。
 角度θcを所定の範囲で走査するように、X線源10、及び、2段の直管型マルチキャピラリ11、12と、平板分光結晶15とを連動して回動させることで、試料S1上の微小部位に照射するX線のエネルギを走査し、例えば元素の詳細な化学形態を反映したX線吸収微細構造スペクトルを取得することができる。
 但し、図5で説明したように、フレネルゾーンプレートの焦点距離はX線のエネルギ(波長)に依存する。そのため、上述したように、X線源10、及び、2段の直管型マルチキャピラリ11、12と、平板分光結晶15とを連動して回動させることで、平板分光結晶15から取り出される単色X線のエネルギを変化させると、フレネルゾーンプレート14で集束された単色X線による試料S1上でのスポットの大きさが変化してしまう。そこで、フレネルゾーンプレートの能力を最大限に活かし、X線のエネルギに依らずに試料S1上でできるだけ小さな領域に単色X線を常に照射するには、図2(b)中に示しているように、フレネルゾーンプレート14をその光軸上で移動させる第3移動部19を追加し、その第3移動部19によるフレネルゾーンプレート14の移動動作と、X線源10、及び、2段の直管型マルチキャピラリ11、12と、平板分光結晶15との連動した回動動作とを、連動させるようにするとよい。それにより、X線のエネルギが変化したときでも、フレネルゾーンプレート14の焦点距離の位置に試料S1を位置させることができる。
 なお、第1回動部18及び第2移動部17と第1移動部16との動作を連動させずに、連続X線をフレネルゾーンプレート14に導入し、試料S1上の微小部位に連続X線を照射してもよいし、また、単色化された、特定のエネルギを有するX線を平行/点焦点型マルチキャピラリX線レンズ13に導入して、試料S1上の相対的に広い範囲に特定のエネルギを有するX線を照射してもよい。
 図3は、本発明の別の実施形態であるX線分析装置の概略構成図である。このX線分析装置では、蛍光X線分析のみならずX線回折分析も可能である。図3において図2に示した構成要素と同一又は相当する構成要素には同じ符号を付している。
 このX線分析装置では、試料S1の載置位置に設けられた試料ホルダ(図示せず)と、該試料ホルダに保持されるX線回折分析用試料S2による回折X線が到達する位置に配置されたX線回折分析用検出器20とが、それぞれ第2回動部21により回動されるようになっている。また、平行/点焦点型マルチキャピラリX線レンズ13とフレネルゾーンプレート14とが共にX線光路上から退避可能となっている。
 X線回折分析時には、平行/点焦点型マルチキャピラリX線レンズ13及びフレネルゾーンプレート14が共にX線光路上から退避され、直管型マルチキャピラリ12から出射した連続X線の平行X線束又は平板分光結晶15から出射した単色化された平行X線束が試料S2上に照射される。この場合、X線は絞られていないので試料S2上の広い範囲に平行X線束が当たり、それに対する回折X線がX線回折分析用検出器20に到達する。したがって、例えば試料S2がバルク試料であっても、回折パターンを取得することで該試料の結晶構造解析を行うことができる。また、第2回動部21により試料S2を角度θsだけ回転させるとともに、これに連動してX線回折分析用検出器20を角度2θsだけ回動させると、回折角度を走査又は変更することができる。それによって、試料S2から様々な角度で以て放出される回折X線を検出することができる。
 図4は、本発明のさらに別の実施形態であるX線複合分析装置の概略構成図である。このX線複合分析装置では、蛍光X線分析及びX線回折分析のほかに、X線光電子分光分析、及び吸収端スペクトルの近傍・広域分光分析も可能である。図4において図2及び図3に示した構成要素と同一又は相当する構成要素には同じ符号を付している。
 このX線複合分析装置は、試料S1のX線照射面に向いた位置に光電子分光検出器31を備える。光電子分光検出器31は、X線照射により試料S1から放出された光電子を受け、運動エネルギ毎の光電子数を計数するものであり、光電子のエネルギスペクトルを得ることができる。
 このX線複合分析装置では、図3に示した実施形態の装置と同様に、試料S1に対するX線蛍光分析と試料S2に対するX線回折分析とを行うことができる。さらに、試料S1に対するX線光電子分光分析とX線吸収微細構造分析も行うことができる。
 X線光電子分光分析時には、蛍光X線分析の微小部位分析モードと同様に、平板分光結晶15がX線光路上に挿入され、また、X線源10、及び、直管型マルチキャピラリ11、12は、平板分光結晶15に対し所定位置まで回動される。さらに、フレネルゾーンプレート14又は平行/点焦点型マルチキャピラリX線レンズ13がX線光路上に挿入される。これにより、単色化され適宜に絞られたX線が試料Sに照射される。フレネルゾーンプレート14及び平行/点焦点型マルチキャピラリX線レンズ13の両方をX線光路上から退避させてもよい。その場合には、単色化された平行X線が試料Sに照射される。X線の照射を受けて試料S1の表面では光電子が発生するが、その光電子の運動エネルギは元素の種類等に依存する。光電子分光検出器31は、入射した光電子の運動エネルギと電子強度との関係を示すエネルギスペクトルデータを出力する。これにより、試料S1のごく表面の元素分析や状態分析を行うことができる。
 なお、一般にX線光電子分光分析時には試料を真空雰囲気中に設置する。そこで、内部を真空状態にすることが可能である容器内に試料S1を設置し、必要に応じて該容器内を真空にして分析を実行するとよい。
 X線吸収微細構造分析時には、平板分光結晶15がX線光路上に挿入され、X線源10、及び、直管型マルチキャピラリ11、12と、平板分光結晶15とは連動して、それぞれ回動される。また、フレネルゾーンプレート14又は平行/点焦点型マルチキャピラリX線レンズ13がX線光路上に挿入される。これにより、単色化され適宜に絞られたX線が試料Sに照射され、そのX線のエネルギは所定範囲で走査される。X線検出器30は、エネルギ走査されるX線の照射に応じて試料S1から放出されたX線の強度を検出し、吸収スペクトルを取得する。吸収スペクトルには試料S1中の元素に特有の吸収端が観測されるため、これにより原子の電子構造を把握することができる。
 以上のようにして、本実施形態のX線複合分析装置によれば、1台の装置で、試料についての様々な手法によるX線分析を行うことができる。
 なお、上記実施形態はいずれも本発明の一例であるから、本発明の趣旨の範囲で適宜変形、修正又は追加を行っても本願特許請求の範囲に包含されることは当然である。
10…X線源
11、12…直管型マルチキャピラリ
13…平行/点焦点型マルチキャピラリX線レンズ
14…フレネルゾーンプレート
15…平板分光結晶
16…第1移動部
17…第2移動部
18…第1回動部
19…第3移動部
20…X線回折分析用検出器
21…第2回動部
23…直管テーパ状マルチキャピラリ
30…X線検出器
31…光電子分光検出器
C…中心軸線

Claims (8)

  1.  種々の成分を含む試料にX線を照射し、それに対して該試料から放出されるX線を検出するX線分析装置であって、試料にX線を照射するX線照射部は、
     a)X線を放出するX線源部と、
     b)多数の互いに平行に配置されたX線案内用細管から成り、前記X線源部から放出されたX線が導入される位置にその入射端面が配置された第1のマルチキャピラリと、
     c)多数のX線案内用細管からなり、該細管が入射端側で平行であり出射端面側で緩やかに湾曲したテーパ状に収束するように形成された平行/点焦点型のマルチキャピラリレンズである第2のマルチキャピラリと、
     d)フレネルゾーンプレートと、
     e)前記第2のマルチキャピラリと前記フレネルゾーンプレートとのいずれか一方を選択的に、前記第1のマルチキャピラリから出射されたX線が試料に達するまでのX線光路上に挿入するように、前記第2のマルチキャピラリ及び前記フレネルゾーンプレートを移動させる第1の移動部と、
     を含むX線分析装置。
  2.  前記第2のマルチキャピラリ又は前記フレネルゾーンプレートを経て前記試料に照射されるX線に応じて、該試料から放出されるX線を検出する第1のX線検出器、をさらに備える、請求項1に記載のX線分析装置。
  3.  前記X線照射部は、前記X線光源部及び前記第1のマルチキャピラリを一体に回動させる第1回動部と、平板分光結晶と、前記第1のマルチキャピラリの出射端面から出射されたX線が到達する位置に前記平板分光結晶を挿入するように該平板分光結晶を移動させる第2の移動部と、をさらに含む、請求項2に記載のX線分析装置。
  4.  前記試料が載置される位置に載置されたX線回折分析用試料から回折するX線を検出可能な位置に配置される第2のX線検出器と、該該X線回折分析用試料と該第2のX線検出器とを所定関係を保ちつつ回動させる第2回動部と、をさらに備え、
     前記第1のマルチキャピラリから出射された、又は該第1のマルチキャピラリから出射され前記平板分光結晶に当たって取り出されたX線の光路上から、前記第2のマルチキャピラリ及び前記フレネルゾーンプレートを共に退避させ、前記X線回折分析用試料に照射されたX線に応じた回折X線を前記第2のX線検出器で検出する、請求項3に記載のX線分析装置。
  5.  前記フレネルゾーンプレートをその光軸上で移動させる第3の移動部、をさらに備え、該フレネルゾーンプレートの光軸上の位置と前記平板分光結晶から取り出されるX線のエネルギ又は波長とを連動して変化させるように前記第3の移動部及び前記回動部を制御することにより、所定のエネルギ又は波長のX線の焦点距離位置に前記試料を常に位置させる、請求項3に記載のX線分析装置。
  6.  前記フレネルゾーンプレートをその光軸上で移動させる第3の移動部、をさらに備え、該フレネルゾーンプレートの光軸上の位置と前記平板分光結晶から取り出されるX線のエネルギ又は波長とを連動して変化させるように前記第3の移動部及び前記回動部を制御することにより、所定のエネルギ又は波長のX線の焦点距離位置に前記試料を常に位置させる、請求項4に記載のX線分析装置。
  7.  前記平板分光結晶により取り出されたX線の照射に応じて前記試料から放出された光電子を検出する光電子分光検出器、をさらに備える、請求項3に記載のX線分析装置。
  8.  前記第1回動部により前記X線光源部及び前記第1のマルチキャピラリを一体に回動させ、前記平板分光結晶により取り出されたX線の照射に応じて前記試料から放出されたX線を検出することで吸収端スペクトルを取得する、請求項3に記載のX線分析装置。
PCT/JP2020/002468 2019-03-29 2020-01-24 X線分析装置 WO2020202730A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/059,838 US11467103B2 (en) 2019-03-29 2020-01-24 X-ray analyzer
JP2020567061A JP6851107B2 (ja) 2019-03-29 2020-01-24 X線分析装置
EP20785371.4A EP3790025B1 (en) 2019-03-29 2020-01-24 X-ray analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067958 2019-03-29
JP2019067958 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202730A1 true WO2020202730A1 (ja) 2020-10-08

Family

ID=72668021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002468 WO2020202730A1 (ja) 2019-03-29 2020-01-24 X線分析装置

Country Status (4)

Country Link
US (1) US11467103B2 (ja)
EP (1) EP3790025B1 (ja)
JP (1) JP6851107B2 (ja)
WO (1) WO2020202730A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109374A (zh) * 2021-03-30 2021-07-13 中国科学院合肥物质科学研究院 一种长光路能量色散x-射线衍射装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6851107B2 (ja) * 2019-03-29 2021-03-31 株式会社応用科学研究所 X線分析装置
GB2614075A (en) * 2021-12-21 2023-06-28 The Nottingham Trent Univ An X-ray system
CN114720496B (zh) * 2022-06-08 2022-08-26 四川大学 实现全场x射线荧光成像分析的衍射分析装置及方法
CN115389538B (zh) * 2022-08-09 2023-12-29 深圳市埃芯半导体科技有限公司 X射线分析装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338483B2 (ja) 1975-08-04 1978-10-16
JPH0130208B2 (ja) 1983-10-21 1989-06-16 Hitachi Ltd
US6271534B1 (en) * 1994-07-08 2001-08-07 Muradin Abubekirovich Kumakhov Device for producing the image of an object using a flux of neutral or charged particles, and an integrated lens for converting such flux of neutral or charged particles
JP2003194744A (ja) * 2001-12-28 2003-07-09 Rigaku Corp X線回折装置
JP2007093316A (ja) * 2005-09-28 2007-04-12 Shimadzu Corp X線集束装置
JP2016080607A (ja) * 2014-10-21 2016-05-16 浜松ホトニクス株式会社 X線照射装置
JP2017151082A (ja) * 2015-12-18 2017-08-31 ブルーカー アーイクスエス ゲーエムベーハーBruker AXS GmbH 3つのビーム経路のための切り換えシステムを備えるx線光学アセンブリ、及び関連するx線回折装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711600B2 (ja) 1988-07-08 1995-02-08 株式会社島津製作所 X線集中装置
JP4860418B2 (ja) * 2006-10-10 2012-01-25 株式会社リガク X線光学系
JP5338483B2 (ja) 2009-05-27 2013-11-13 株式会社島津製作所 X線集束装置
US7972062B2 (en) * 2009-07-16 2011-07-05 Edax, Inc. Optical positioner design in X-ray analyzer for coaxial micro-viewing and analysis
JP6937380B2 (ja) * 2017-03-22 2021-09-22 シグレイ、インコーポレイテッド X線分光を実施するための方法およびx線吸収分光システム
WO2019027761A1 (en) * 2017-07-31 2019-02-07 Sigray, Inc. SPECTROMETER SYSTEM WITH X-RAY TRANSMISSION
JP6851107B2 (ja) * 2019-03-29 2021-03-31 株式会社応用科学研究所 X線分析装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338483B2 (ja) 1975-08-04 1978-10-16
JPH0130208B2 (ja) 1983-10-21 1989-06-16 Hitachi Ltd
US6271534B1 (en) * 1994-07-08 2001-08-07 Muradin Abubekirovich Kumakhov Device for producing the image of an object using a flux of neutral or charged particles, and an integrated lens for converting such flux of neutral or charged particles
JP2003194744A (ja) * 2001-12-28 2003-07-09 Rigaku Corp X線回折装置
JP2007093316A (ja) * 2005-09-28 2007-04-12 Shimadzu Corp X線集束装置
JP4492507B2 (ja) 2005-09-28 2010-06-30 株式会社島津製作所 X線集束装置
JP2016080607A (ja) * 2014-10-21 2016-05-16 浜松ホトニクス株式会社 X線照射装置
JP2017151082A (ja) * 2015-12-18 2017-08-31 ブルーカー アーイクスエス ゲーエムベーハーBruker AXS GmbH 3つのビーム経路のための切り換えシステムを備えるx線光学アセンブリ、及び関連するx線回折装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3790025A4
SNIGIREV A., BJEOUMIKHOV A., ERKO A., SNIGIREVA I., GRIGORIEV M., YUNKIN V., ERKO M., BJEOUMIKHOVA S.: "Two-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary", J.SYNCHROTRON RAD., vol. 14, no. 4, pages 326 - 330, XP055746146 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109374A (zh) * 2021-03-30 2021-07-13 中国科学院合肥物质科学研究院 一种长光路能量色散x-射线衍射装置
CN113109374B (zh) * 2021-03-30 2022-08-26 中国科学院合肥物质科学研究院 一种长光路能量色散x-射线衍射装置

Also Published As

Publication number Publication date
EP3790025A1 (en) 2021-03-10
JP6851107B2 (ja) 2021-03-31
US11467103B2 (en) 2022-10-11
EP3790025A4 (en) 2021-08-04
JPWO2020202730A1 (ja) 2021-04-30
EP3790025B1 (en) 2022-03-09
US20220003691A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2020202730A1 (ja) X線分析装置
JP6937380B2 (ja) X線分光を実施するための方法およびx線吸収分光システム
US5497008A (en) Use of a Kumakhov lens in analytic instruments
US6711234B1 (en) X-ray fluorescence apparatus
JP5100063B2 (ja) X線分析装置
US20090161829A1 (en) Monochromatic x-ray micro beam for trace element mapping
CN1829910A (zh) 实现xanes分析的方法和设备
JP4492507B2 (ja) X線集束装置
EP1348949B1 (en) Apparatus and method for X-ray analysis with simultaneous optical imaging
JP4470816B2 (ja) X線集束装置
JP5102549B2 (ja) X線分析装置及びx線分析方法
JP4715345B2 (ja) X線分析装置
Gao et al. 3.3 Polycapillary X-ray Optics
JP4837964B2 (ja) X線集束装置
EP3602020A1 (en) Method of performing x-ray spectroscopy and x-ray absorption spectrometer system
JP2002528859A (ja) 毛細管光学系を含むx源を有するx線照射装置
JP5684032B2 (ja) 荷電粒子線分析装置および分析方法
US4857730A (en) Apparatus and method for local chemical analyses at the surface of solid materials by spectroscopy of X photoelectrons
JPH08220027A (ja) 蛍光x線分析装置
JP4639971B2 (ja) X線分析装置
JP2017211290A (ja) X線照射装置
JP6430208B2 (ja) X線照射装置
WO2022118585A1 (ja) 全反射蛍光x線分析装置
JPH0560702A (ja) X線を用いた断層像撮像方法及び装置
JP2020095003A (ja) X線分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567061

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020785371

Country of ref document: EP

Effective date: 20201127

NENP Non-entry into the national phase

Ref country code: DE