WO2020200206A1 - 光扫描装置和激光雷达 - Google Patents

光扫描装置和激光雷达 Download PDF

Info

Publication number
WO2020200206A1
WO2020200206A1 PCT/CN2020/082485 CN2020082485W WO2020200206A1 WO 2020200206 A1 WO2020200206 A1 WO 2020200206A1 CN 2020082485 W CN2020082485 W CN 2020082485W WO 2020200206 A1 WO2020200206 A1 WO 2020200206A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
light
scanning device
diaphragm
light signal
Prior art date
Application number
PCT/CN2020/082485
Other languages
English (en)
French (fr)
Inventor
王吉
谭斌
魏威
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to CN202310919481.5A priority Critical patent/CN117031737A/zh
Priority to CN202080004329.9A priority patent/CN112689786B/zh
Priority to EP20783194.2A priority patent/EP3951474A4/en
Priority to US17/002,682 priority patent/US11085997B2/en
Publication of WO2020200206A1 publication Critical patent/WO2020200206A1/zh
Priority to US17/371,050 priority patent/US11662438B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0048Details about the mounting of the diaphragm to its support or about the diaphragm edges, e.g. notches, round shapes for stress relief
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the embodiments of the application relate to the field of optical technology, and in particular to an optical scanning device and a laser radar device.
  • Solid-state lidar has attracted wide attention because of its advantages such as good system reliability, good detection effect, and easy cost control.
  • micro-electromechanical systems are usually used as the core device of the scanning component.
  • the receiving module of the lidar is extremely sensitive, and it is very sensitive to these stray light signals.
  • a response is generated, causing the nearby echo light signal to be submerged in the internal stray light signal.
  • the receiving module cannot distinguish the nearby echo light signal, and cannot effectively identify nearby objects, resulting in a larger detection blind area.
  • embodiments of the present application provide an optical scanning device and a laser radar, which overcome the foregoing problems or at least partially solve the foregoing problems.
  • an optical scanning device comprising: a reflector, a reflector base, and a matting element; the reflector is mounted on the reflector base, and the matting element is disposed In front of the reflector base;
  • the reflecting mirror is used to reflect incident light
  • the matting member is used to reduce the scattered light generated by the incident light on the reflector base.
  • an optical scanning device comprising: a reflector, a connecting frame, a reflector substrate, and a matting layer, the reflector and the reflector substrate pass through The connection frame is connected; the connection frame is provided with a coil; the front surface of the connection frame and the reflector base is provided with the extinction layer for reducing incident light signals and then the connection frame and the reflector Stray light signal generated on the substrate.
  • a laser radar including the aforementioned optical scanning device.
  • the optical scanning device includes a reflector, a reflector base, and a delustering member, wherein the reflector is installed on the reflector base, and the reflector is used to reflect incident light;
  • the extinction element is placed in front of the reflector substrate, and the extinction element can reduce the incident light falling on the reflector substrate, thereby reducing the scattered light generated by the incident light on the reflector substrate; at the same time, the scattering coefficient of the surface of the extinction element is lower than
  • the scattering system on the front of the reflector substrate greatly reduces the scattered light inside the lidar, reduces the detection blind area caused by stray light, and greatly improves the receiving and detecting ability of the lidar.
  • Figure 1 shows a structure diagram of a lidar
  • Figure 2 shows a structural diagram of an embodiment of an optical scanning device of the present application
  • Fig. 3 shows the generation path of the main optical signal in the laser radar embodiment of the present application
  • FIG. 4 shows a schematic diagram of a light spot and a reflecting mirror of an incident light signal according to an embodiment of the optical scanning device of the present application
  • Fig. 5 shows a schematic diagram of determining the preset height of the diaphragm setting of the optical scanning device of the present application
  • Fig. 6 shows a structural diagram of another embodiment of the optical scanning device of the present application.
  • FIG. 7 shows a schematic diagram of the optical path in the laser radar embodiment of the present application.
  • 8a and 8b respectively show schematic diagrams of the front and back sides of the diaphragm in an embodiment of the optical scanning device of the present application.
  • FIG. 1 shows a laser radar 10, which includes at least one transceiver component 11, at least one folding mirror 12, an optical scanning device 13 and a control component (not shown in the figure); the transceiver component 11 and the folding The mirrors 12 are set in one-to-one correspondence.
  • the transceiving component 11 emits the emitted light signal and is directed to the reentrant mirror 12, and the reentrant mirror 12 reflects the emitted light signal to the optical scanning device 13, and the optical scanning device 13 receives it.
  • the emitted light signal reflected by the folding mirror 12 is then emitted outward for scanning; the emitted light signal emitted outward is reflected by the object in the detection area and then returned to the reflected light signal; the part of the reflected light signal with the same optical path and opposite direction as the emitted light signal
  • Coaxially directed light scanning device 13 the light scanning device 13 deflects the received reflected light signal and then shoots it to the return mirror 12, the return mirror 12 reflects the reflected light signal to the transceiver component 11; emits the light signal and the corresponding reflected light signal
  • the optical path passes through a set of correspondingly arranged transceiver components 11 and folding mirror 12, and is scanned and received by the optical scanning device 13, forming a detection field of view.
  • the control component is used to drive and control the transceiver component 11 and the optical scanning device 13.
  • the lidar 10 may include a set of transceiving components 11 and a reentrant mirror 12, or multiple sets of correspondingly arranged transceiving components 11 and reentrant mirrors 12; the combination of multiple transceiving components 11 and reentrant mirrors 12 is arranged in sequence, and the optical path and light scanning
  • the device 13 is at different angles, that is, the multiple-channel transmitted light signals are directed to the optical scanning device 13 at different angles, and then emitted outward after being reflected by the optical scanning device 13 to scan in different spatial areas, and the multiple-channel reflected optical signals return coaxially It is received by the corresponding transceiver component 11; forms a plurality of detection fields that do not completely overlap in space; forms a plurality of detection fields after being scanned and received by the optical scanning device 13, thereby expanding the overall detection field of the lidar 10.
  • the lidar 10 further includes a housing assembly including a top cover (not shown in the figure) and a bottom plate 14.
  • the bottom plate 14 is provided with 6 sets of corresponding transceiving components 11 and a folding mirror 12.
  • the six transceiving components 11 are arranged in sequence and fixed on the bottom plate 14, and the front end of each transceiver component 11 is correspondingly provided with a folding mirror 12, a total of 6 .
  • the optical scanning device 13 is fixed on the bottom plate 14 by a mounting bracket.
  • the lidar 10 can form 6 fields of view arranged in a horizontal direction, which greatly expands the horizontal field of view of the lidar after splicing, for example, the horizontal field of view can reach 120°, which improves the detection of lidar ability.
  • Each transceiver component 11 includes a transmitting module, a beam splitting module, and a receiving module; the transmitted light signal sent by the transmitting module passes through the beam splitting module and then exits, and the coaxially incident reflected light signal enters the transceiver component 11 After being deflected by the beam splitting module, it is received by the receiving module.
  • the aforementioned control component is used for driving the transmitting module and the receiving module, and is also used for signal processing and transmission of the echo optical signal received by the receiving module.
  • the aforementioned optical scanning device 13 may be a microelectromechanical system (Microelectro Mechanical Systems, MEMS for short), or other galvanometer systems. 4, because the reflector 100 of the optical scanning device is very small, the light spots of the emitted light signal and the reflected light signal falling on the optical scanning device are often larger than the working surface of the optical scanning device, that is, the reflector of the optical scanning device The mirror surface of 100, especially the light spot of reflected light signal is relatively large. The part of the optical signal whose light spot exceeds the reflector 100 falls on the reflector substrate 200. The reflector substrate 200 reflects or scatters the optical signal, and the scattered optical signal is different from its original optical path direction and becomes a stray optical signal.
  • MEMS Microelectro Mechanical Systems
  • the stray light signal is received by the transceiving component 11, causing the receiving module of the transceiving component 11 to respond to the stray light signal, so that the receiving module saturates in advance and cannot respond to the reflected light signal returning quickly.
  • the receiving module cannot distinguish the nearby echo optical signal, and cannot effectively identify the nearby objects, resulting in a large detection blind zone.
  • FIG. 2 shows a schematic structural diagram of an optical scanning device provided by an embodiment.
  • the optical scanning device includes: a reflecting mirror 100, a reflecting mirror substrate 200 and a delustering member 300; the reflecting mirror 100 is mounted on the reflecting mirror substrate 200, the extinction element 300 is placed in front of the reflector substrate 200; the reflector 100 is used to reflect incident light (that is, the incident light signal); the extinction element 300 is used to reduce the incidence of the incident light (that is, the incident light signal) The scattered light generated on the mirror substrate 200.
  • the laser collimation system (ie, the emission module) is a laser emission system with a small emission divergence angle, which is composed of a laser light source and a collimating optical system.
  • the laser light source may include, but is not limited to, a solid laser light source, a gas Laser light source, semiconductor laser light source, liquid laser light source, chemical laser light source, fiber laser light source and free electron laser light source lamp.
  • the collimating optical system may include, but is not limited to, a combination of spherical lens optical system, a combination of cylindrical lens optical system, a combination of aspherical optical system, a combination of reentrant hybrid optical system, and a combination of graded index composite optical system.
  • the laser radar transmits the transmitted light signal through the laser collimation system (i.e. the transmitting module), and the transmitted light signal reaches the target object through the optical scanning device. This part of the transmitted light signal is reflected by the target object and then returns to the receiving system of the lidar (i.e. Receiver module); In addition, some optical signals are scattered inside the optical scanning device.
  • the incident light (that is, the incident light signal) may be any one or more of the emitted light signal directed to the light scanning device and the reflected light signal received by the light scanning device.
  • the incident light signal emitted light signal or reflected light signal
  • the incident light signal enters the optical scanning device, most of the incident light signal is concentrated on the mirror 200 and reflected to the target object, but the light spot protrudes from the part of the mirror 100 incident
  • the light signal is scattered by the reflector substrate 200 and exhibits similar high-order cosine scattering characteristics.
  • the scattered light is captured by the receiving system (ie receiving module), resulting in internal scattering (ie stray light signal) in the receiving system (ie receiving module) Signal response, so that the receiving system (receiving module) is saturated in advance, unable to respond to the nearby return light signal (ie reflected light signal), so that the return light signal (ie reflected light signal) is submerged in the internal stray light (ie stray light) Signal) In the signal generated, there is a detection dead zone.
  • the above-mentioned optical scanning device includes a reflecting mirror 100, a reflecting mirror base 200 and a delustering member 300.
  • the reflector 100 is mounted on the reflector substrate 200, and the matting member 300 is placed in front of the reflector substrate 200.
  • the delustering member 300 may be attached to the front of the reflector substrate 200, or may be arranged at a certain distance in front of the reflector substrate 200, which is not limited in this embodiment.
  • the extinction member 300 When a light signal (emitted light signal or reflected light signal) is incident on the light scanning device, since the extinction member 300 is in front of the reflector 200, most of the incident light signal (ie, transmitted light signal or reflected light signal) enters the reflector After 100 is reflected, a small part of the incident light signal first passes through the extinction part 300.
  • the extinction part 300 can reduce or nearly eliminate the part of the incident light signal that does not fall on the reflector 100, thereby greatly reducing the amount of incident light signal that would otherwise fall on the reflector.
  • the incident light signal on the substrate 200 thus greatly reduces the scattered light generated by the mirror substrate 200 to the incident light signal.
  • the light scanning device includes a mirror, a mirror substrate, and a light extinction element
  • the reflector is mounted on the reflector substrate to reflect incident light signals, and because the light extinction element is placed in front of the reflector substrate , And the extinction element can reduce the incident light signal falling on the reflector substrate, thereby reducing the scattered light generated by the incident light signal on the reflector substrate; at the same time, the scattering coefficient of the surface of the extinction element is lower than the scattering system on the front of the reflector substrate.
  • the scattered light (ie stray light signal) inside the lidar is greatly reduced, and the detection blind area caused by the stray light signal is reduced, so that the receiving and detecting ability of the lidar is greatly improved.
  • the extinction member 300 may be a diaphragm, and the diaphragm is arranged on the front of the reflector 100, and the light-passing hole of the diaphragm is aligned with the reflection Mirror 100.
  • the incident light signal is selected through the diaphragm first, because the aperture of the diaphragm is aligned The reflector 100, so the incident light signal can reach the reflector 100 at the part that falls into the aperture of the diaphragm, and the remaining part of the incident light signal that falls on the diaphragm can be prevented from falling on the reflector substrate 200 through the function of the diaphragm. .
  • the light signal falling on the reflector substrate is greatly reduced, thereby reducing the incident light signal on the reflector substrate.
  • the scattered light generated on the optical scanning device greatly reduces the scattered light (ie stray light signal) inside the optical scanning device, which greatly reduces the detection blind area caused by the stray light signal, and greatly improves the receiving and detecting ability of the lidar.
  • the surface scattering coefficient of the aforementioned diaphragm is lower than the scattering coefficient of the front surface of the mirror substrate 200.
  • the diaphragm so that the surface scattering coefficient is lower than the scattering coefficient of the front surface of the mirror substrate 200, compared with the degree of scattering of the incident light signal by the mirror substrate 200, the impact on the incident light signal falling on the diaphragm can be greatly reduced. Scattering greatly reduces the scattered light, thereby greatly reducing the scattered light (ie stray light signal) inside the lidar, reducing the detection blind area caused by the stray light signal, and greatly improving the receiving and detecting ability of the lidar.
  • a light-absorbing film or a reflective film can be attached to the diaphragm to reduce the scattering coefficient of the surface of the diaphragm.
  • objects have three types of response to optical signals: incident, reflection and scattering. Due to the conservation of energy, by increasing absorption and reflection, the scattering characteristics can be reduced. Therefore, by attaching a light-absorbing film on the surface of the diaphragm, more incident light signals can be absorbed, thereby greatly reducing scattered light; or by attaching a reflective film on the surface of the diaphragm, more light signals can be reflected, and the reflection can It has directivity, so it can reflect the light signal to the direction that does not affect the receiving system, thereby greatly reducing the scattered light.
  • a light-absorbing film is attached to the diaphragm to enhance the absorption of the incident light signal to reduce scattering
  • a reflective film is attached to the diaphragm to enhance the reflection of the incident light signal to reduce the scattering, thereby reducing light
  • the scattering coefficient of the surface of the stop reduces the detection blind area caused by stray light, which greatly improves the receiving and detecting ability of the lidar.
  • the thickness of the diaphragm is smaller than a preset thickness threshold, and the thickness threshold is determined by not blocking the incident light signal reflected by the mirror.
  • the thickness of the aforementioned diaphragm needs to be smaller than a preset thickness threshold. Because the thickness of the diaphragm is too thick, it will interfere with the incident light signal and affect the receiving performance of the receiving system. Therefore, the thickness threshold can be set to make the thickness of the diaphragm smaller than the thickness threshold to ensure that the diaphragm will not be too thick. Block the incident light signal reflected by the mirror. Specifically, the thickness of the aforementioned diaphragm should be as small as possible to minimize the impact on the incident light signal.
  • the area of the aperture of the diaphragm is greater than or equal to the area of the reflector 100.
  • the area of the light-passing hole of the diaphragm may be greater than or equal to the area of the reflector 100, it may be slightly greater than the area of the reflector 100, or it may be equal to the area of the reflector 100.
  • the area of the aperture of the diaphragm By setting the area of the aperture of the diaphragm to be greater than or equal to the area of the reflector, it is ensured that the incident light signal can fall on the reflector as much as possible, while reducing the scattering of the incident light signal by the reflector substrate as much as possible, and then While ensuring the response of the optical scanning device to the optical signal, the detection blind area caused by stray light is reduced, so that the receiving and detecting ability of the lidar is greatly improved.
  • the diaphragm is set on the front of the reflector 100 according to a preset height; the set height is based on the maximum incident angle of the incident light signal and the radius difference between the diaphragm and the reflector. The determined height.
  • the height of the diaphragm setting can be determined according to the maximum incident angle of the incident light signal and the difference between the radius of the diaphragm and the mirror 100. It can be seen as shown in Figure 5.
  • d is the difference between the radius of the aperture and the radius of the mirror 100, which is the maximum incident angle of the incident light signal
  • h is the height of the aperture
  • the height is the value of the aperture.
  • the distance between the front and the mirror 100 is different.
  • the height of the diaphragm setting can be determined by a formula or a variant of the formula.
  • the diaphragm is set on the front of the reflector at a preset height. Since the set height is a height determined based on the maximum incident angle of the incident light signal and the difference in radius between the diaphragm and the reflector, Therefore, it can ensure that the incident light signal passes through the aperture of the diaphragm to the greatest extent and is directed to the reflector, so that the incident light signal can be reflected to the greatest extent, thereby improving the light utilization rate and the detection ability of the radar.
  • a matting layer 400 may be attached to the front surface of the mirror substrate 200, and the matting layer 400 is used to reduce the scattering of the incident light signal by the mirror substrate 200.
  • the diaphragm cannot completely eliminate the incident light signal irradiated on the mirror substrate 200, it is also possible to attach the extinction layer 400 on the front surface of the mirror substrate 200.
  • the matting layer can further reduce the scattering of the incident light signal by the mirror substrate 200.
  • the matting layer 400 may be a light reflecting layer or a light absorbing layer.
  • the matting layer 400 is a reflective layer, it can reduce the scattering characteristics by increasing the reflection characteristics of incident light signals; when the matting layer 400 is a light-absorbing layer, it can reduce the scattering characteristics by increasing the absorption characteristics of the incident light signals. Therefore, the scattering of the incident light signal by the reflector base can be further reduced, and the detection blind area caused by stray light can be reduced, so that the receiving and detecting ability of the lidar is greatly improved.
  • FIG. 6 is a schematic structural diagram of an optical scanning device according to another embodiment.
  • the optical scanning device includes a mirror 110, a connecting frame 120 and a mirror substrate 130.
  • the mirror base 130 is fixed relative to the mounting bracket, the mirror 110 vibrates relative to the mirror base 130 to realize scanning, and the mirror 110 and the mirror base 130 are connected by a connecting frame 120.
  • the reflector base 130 and the connecting frame 120 are connected by an outer connecting bridge 140, and the connecting frame 120 and the reflector 110 are connected by an inner connecting bridge 150.
  • a coil 121 is provided on the connecting frame 120, and the coil 121 is forced to vibrate through electromagnetic drive, thereby driving the mirror 110 to vibrate. It should be noted that the coil 121 may be arranged on the back of the connection frame 120 or on the front of the connection frame 120. Since the area of the reflector base 130 is small, the circuits on the back of the reflector base 130 are densely arranged. In order to save space on the back of the reflector base 130, the coil 121 can be arranged on the front side of the connection frame 120, and the coil 121 does not block the access The optical signal of the mirror 110 is sufficient.
  • both the front surface of the mirror substrate 130 and the connecting frame 120 are provided with a matting layer, and the matting layer is used to reduce the scattering of the incident light signal by the mirror substrate 130 and the connecting frame 120.
  • the front surface of the reflector base 130 is a metallic reflective plane. Most of the incident light signals (such as emitted light signals and reflected light signals) are directed toward the front of the reflector 110, and the edge of the incident light signal exceeds the reflector 110 and falls on the reflector base.
  • the incident light signal deviates from its preset propagation trajectory after reflection by the mirror substrate 130; for example, the preset propagation trajectory of the emitted light signal is directed to the mirror at the designed incident angle, and then exits at the designed angle after being reflected by the mirror 110
  • the preset propagation trajectory of the reflected light signal is directed toward the reflecting mirror 110 at an angle coaxial with the transmitted light signal, and then directed toward the corresponding folding mirror 12 after being reflected by the reflecting mirror 110.
  • the incident light signal deviating from the preset propagation trajectory forms a stray light signal inside the radar system, resulting in a larger detection blind zone.
  • the front of the connecting frame 120 is a metal coil 121, the surface of the coil 121 is uneven, and there are many small grooves distributed.
  • the incident light signal falls on the connecting frame 120 and is reflected in the groove multiple times, which also deviates from the incident.
  • the preset propagation trajectory of the optical signal forms a large number of stray optical signals. Therefore, a matting layer is provided on the front surface of the mirror substrate 130 and the connection frame 120, which can absorb the incident light signal to the mirror substrate 130 and the connection frame 120, and reduce the scattering generated on the surface of the mirror substrate 130 and the connection frame 120, Then reduce the generation of stray light signals.
  • the optical scanning device further includes a diaphragm 160, which is arranged on the front side of the reflector 110, the connecting frame 120 and the reflector substrate 130; the diaphragm 160 is used to limit the incident light signal and restrict the light spot from falling on the reflector.
  • the part of the incident light signal other than 110 such as directed to the connection frame 120 and the mirror substrate 130, reduces the disordered stray light signal formed after the incident light signal is reflected or scattered on the connection frame 120 and the mirror substrate 130, and reduces the spurious
  • the detection blind area caused by the astigmatism signal greatly improves the receiving and detecting ability of the lidar.
  • the diaphragm 160 includes a light-shielding plate 161 and a light-passing hole 162.
  • the light-passing hole 162 is used to pass the transmitted light signal to the mirror 110 and the light signal after the reflection of the mirror.
  • the light-shielding plate 161 is used to block the edges of the normal light path.
  • the optical signal reduces the stray optical signal generated by the optical signal directed to the connecting frame 120 and the mirror base 130.
  • the incident light signal directed to the mirror 110 includes the transmitted light signal and the reflected light signal, if the opening of the light through hole 162 is small, the light signal can be effectively blocked, so that the incident light signal is directed to the reflector 110, even the incident light
  • the signal spot size is smaller than the mirror size of the reflector 110, and there is no incident light signal directed to the connecting frame 120 and the reflector base 130; but this will also reduce the emitted light signal and the reflected light signal used for detection, making the lidar It is unable to effectively detect long distances, which reduces the ranging ability of lidar.
  • the shape of the through-light hole 162 is based on not blocking the light signal directed to the reflector 110 and the light signal reflected by the reflector, which can ensure that the ranging capability of the lidar is not affected, and can reduce stray light Signal, improve the ability to receive and detect.
  • the shape of the light-passing hole 162 is trapezoidal; when the diaphragm is installed in the lidar shown in Fig. 1, the longer side of the trapezoid of the light-passing hole 162 is set above, and the shorter side of the trapezoid is set Below, the light through hole 162 is arranged in an inverted trapezoid shape.
  • the transmitted optical signal and the reflected optical signal are coaxial in the optical path between the transceiver module 11-the reentrant mirror 12-the optical scanning device 13, that is, they overlap in space, but in opposite directions, only the transmitted optical signal will be described as an example in the following.
  • the emitted light signal is reflected by the folding mirror 12 and is directed toward the mirror 110 of the light scanning device 13 in an oblique upward direction, the emitted light signal reflected by the reflecting mirror 110 also exits in an oblique upward direction.
  • the distance between the folding mirror 12 and the folding mirror 12 is relatively short, and the angle between the emitted light signals that are reflected by the two outermost folding mirrors 12 and directed to the reflecting mirror 110 is small;
  • the mirror 110 of the scanning device 13 is constantly vibrating, and the angle between the two outermost emitted light signals of the emitted light signal after being reflected by the mirror 110 becomes significantly larger;
  • the angle between the emitted light signals of the reflector 110 is relatively small, and the angle between the emitted light signals that exit the reflector 110 obliquely upward is relatively large.
  • the light-passing hole 162 of the diaphragm 160 is set to have a shorter side at the lower side and a longer side at the upper side; so that the diaphragm 160 can effectively block the light signal at the edge of the normal light path, and reduce the incident on the connecting frame 120 and the mirror substrate.
  • the stray light signal generated by the light signal of 130 can make the emitted light signal and the reflected light signal to the mirror 110 of the light scanning device 13 as much as possible to ensure the ranging ability of the lidar.
  • a transition surface 163 is provided at the light passing hole 162 of the diaphragm 160, and the transition surface 163 is provided on the side facing the front of the diaphragm 160. From the foregoing, it can be seen that the emitted light signal is emitted from the bottom to the top toward the mirror 110, and is emitted out of the mirror 110 in an obliquely upward direction.
  • the reflected light signal has the same optical path as the emitted light signal, but the direction is opposite; therefore, the light through hole 162 faces the
  • a transition surface 163 is provided on the front side of the stop 160, which can reduce the problem of blocking the light signal due to the thickness of the light shielding plate 161, reduce unnecessary blocking of the emitted light signal and the reflected light signal, and ensure the ranging capability of the lidar.
  • the shape of the transition surface 163 is consistent with the direction of the light signal emitted to the reflecting mirror 110 and out of the reflecting mirror 110.
  • the diaphragm 162 is arranged on the front surface of the mirror 110 at a preset height; as shown in FIG. 8, under the condition that the spot size requirements of the aforementioned incident light signal are met, in order to reduce as much as possible the transmitted light signal and the light signal blocked by the diaphragm 162 In order to reflect the light signal, it is best if the diaphragm 162 is directly attached to the optical scanning device 13 under ideal circumstances.
  • the diaphragm 160 is directly attached to the connecting frame 120 and the mirror base 130, and the mirror 110 is exposed; but the connecting frame 120 and the mirror 110 are driven to vibrate, and the diaphragm 160 cannot be directly set on the connecting frame 120 and the mirror base 130; therefore, the diaphragm 160 is fixed on the front of the mirror 110 at a preset height without affecting the connecting frame 120 and When the mirror 110 vibrates, it is as close as possible to the optical scanning device 13.
  • a transition surface is provided on the side of the light-passing hole 162 facing the front of the diaphragm 160.
  • the transitional surface 163 is closer to one end of the light-passing hole 162, and extends to the rear side.
  • the light-passing hole 162 is compared to the front of the light-shielding plate 161. The plane is further back, so that the light-passing hole 162 of the diaphragm 160 is closer to the light scanning device, and the effect is better.
  • the back surface of the light-shielding plate 161 near the light-passing hole 162 protrudes backward, reducing the space between the connecting frame 120 and the mirror base 130;
  • the connecting frame 120 and the reflector 110 are driven to vibrate, and the back of the light shielding plate 161 is too close to the connecting frame 120.
  • the connecting frame 120 vibrates, it will be interfered by the light shielding plate 161, affecting the connection frame 120 and the reflector 110. normal work.
  • a space for accommodating the vibration of the mirror 110 and the connection frame 120 is provided on the back of the diaphragm 160.
  • the back of the light-shielding plate 161 is provided with a plurality of inclined surfaces that gradually extend outward from the light-passing hole 162, and one end of the inclined surface away from the light-passing hole 162 gradually extends to the front side.
  • the aforementioned laser radar it includes 6 sets of correspondingly arranged transceiver components 11 and reentrant mirrors 12, that is, 6 optical paths for emitting light signals and corresponding reflected light signals are arranged along the first axis direction; The 6 arrays of transmitted light signals and corresponding reflected light signals pass through, and the diameter of the through-light hole 162 in the first axis direction is larger than the diameter in other directions.
  • the light-shielding plates 161 at the two sides of the light-passing hole 162 that are perpendicular or approximately perpendicular to the first axis direction have little influence on the connecting frame 120, and the upper and the light-shielding holes 162 that are parallel or approximately parallel to the first axis direction
  • the shading plate 161 at the lower side has a greater influence on the connection frame 120.
  • the multiple inclined surfaces provided on the back of the light-shielding plate 161 can extend from the middle to the two sides gradually to the front side along the direction perpendicular to the first axis; as shown in FIG. 8, the back of the light-shielding plate 161 is provided with a first inclined surface 164 and a first inclined surface.
  • Two inclined planes 165, the intersection line 166 of the first inclined plane 164 and the second inclined plane 165 is parallel to the first axis, and the light shielding plate 161 at the intersection line 166 is the rearmost, from the intersection line 166 to both sides perpendicular to the first axis direction Extending separately, the first inclined surface 164 and the second inclined surface 165 are farther from the end of the intersection line 166 forward. As a result, the space between the light shielding plate 161 at the upper and lower sides of the light through hole 162 and the connecting frame 120 is increased, and the problem of the vibration of the light shielding plate 161 on the connecting frame 120 is solved.
  • a laser radar is also provided.
  • the laser radar includes any optical scanning device as in the above-mentioned embodiments.
  • the technical principles and technical effects involved in the laser radar are the same as the above-mentioned optical scanning device, and will not be repeated here.
  • the first feature "on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features Features are indirectly contacted through intermediaries.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种光扫描装置和激光雷达,涉及光学技术领域,装置包括反射镜(100)、反射镜基底(200)和消光件(300);反射镜(100)设置在反射镜基底(200)上,消光件(300)置于反射镜基底(200)前方;反射镜(100),用于对入射光线进行反射;消光件(300),用于减少入射光线在反射镜基底(200)上产生的散射光。通过上述方式,其能够使得激光雷达(10)内部的散射光大大减少,减少了杂散光造成的探测盲区,使得激光雷达(10)的接收探测能力大大提高。

Description

光扫描装置和激光雷达 技术领域
本申请实施例涉及光学技术领域,具体涉及一种光扫描装置及激光雷达设备。
背景技术
随着激光雷达技术的发展,人们对激光雷达的探测性能要求越来越高。固态激光雷达因为其系统可靠性好、探测效果好、便于控制成本等优点,被广泛关注。
发明人发现:固态激光雷达中,通常使用微机电系统作为扫描组件的核心器件。然而,由于微机电系统自身对激光光信号具有反射特性和散射特性,因此会在激光雷达的内部产生无序的杂散光信号;而激光雷达的接收模组敏感度极高,对这些杂散光信号产生响应,导致近处的回波光信号淹没于内部杂散光信号中,接收模组无法分辨近处的回波光信号,无法对近处的物体进行有效的识别,产生较大的探测盲区。
发明内容
鉴于上述问题,本申请实施例提供了一种光扫描装置和激光雷达,克服了上述问题或者至少部分地解决了上述问题。
根据本申请实施例的一个方面,提供了一种光扫描装置,所述装置包括:反射镜、反射镜基底和消光件;所述反射镜安装在所述反射镜基底上,所述消光件置于所述反射镜基底前方;
所述反射镜,用于对入射光线进行反射;
所述消光件,用于减少所述入射光线在所述反射镜基底上产生的散射光。
根据本申请实施例的另一个方面,提供了一种光扫描装置,所述装置包括: 反射镜、连接框、反射镜基底和消光层,所述反射镜和所述反射镜基底之间通过所述连接框进行连接;所述连接框上设置有线圈;所述连接框和所述反射镜基底的正面设置有所述消光层,用于减少入射光信号再所述连接框和所述反射镜基底上产生的杂散光信号。
根据本申请实施例的另一方面,提供了一种激光雷达,包括前述的光扫描装置。
本申请实施例所述的光扫描装置和激光雷达,光扫描装置包括反射镜、反射镜基底和消光件,其中,反射镜安装在反射镜基底上,且反射镜用于对入射光线进行反射;另外由于消光件置于反射镜基底前方,且消光件能够通过减少落在反射镜基底上的入射光线,从而减少入射光线在反射镜基底上产生的散射光;同时消光件表面的散射系数低于反射镜基底正面的散射系统,进而使得激光雷达内部的散射光大大减少,减少了杂散光造成的探测盲区,使得激光雷达的接收探测能力大大提高。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了一种激光雷达的结构图;
图2示出了本申请光扫描装置实施例的结构图;
图3示出了本申请激光雷达实施例中主要光信号的产生路径;
图4示出了本申请光扫描装置实施例的入射光信号的光斑与反射镜示意图;
图5示出了本申请光扫描装置的光阑设置的预先设定高度确定的示意图;
图6示出了本申请光扫描装置另一个实施例的结构图;
图7示出了本申请激光雷达实施例中的光路示意图;
图8a、8b分别示出了本申请光扫描装置实施例中的光阑的正面和背面的结构示意图。
具体实施方式中的附图标号如下:
10、激光雷达;11、收发组件;12、折返镜;13、光扫描装置;14、底板;
100、反射镜;200、反射镜基底;300、消光件;400、消光层;
110、反射镜;120、连接框;121、线圈;130、反射镜基底;140、外连接桥;150、内连接桥;160、光阑;161、遮光板;162、通光孔;163、过渡面;164、第一斜面;165、第二斜面;166、相交线。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
请参阅图1,图1示出了一种激光雷达10,其包括至少一个收发组件11、至少一个折返镜12、光扫描装置13和控制组件(图中未示出);收发组件11和折返镜12一一对应设置。
以一个收发组件11和对应的一个折返镜12为例说明,收发组件11发射发射光信号并射向折返镜12,折返镜12将发射光信号反射至光光扫描装置13,光扫描装置13接收到折返镜12反射的发射光信号后向外出射进行扫描;向外出射的发射光信号被探测区域内的物体反射后返回反射光信号;与发射光信号光路相同、方向相反的部分反射光信号同轴射向光扫描装置13,光扫描装置13将接收到的反射光信号偏转后射向折返镜12,折返镜12将反射光信号反射至收发组件11;发射光信号和对应的反射光信号的光路经过一组对应设置的收发组件11和折返镜12,并通过光扫描装置13扫描和接收,形成一个探测视场。控制组件用于驱动控制收发组件11和光扫描装置13。
激光雷达10可以包括一组收发组件11和折返镜12,也可以包括多组对应设置的收发组件11和折返镜12;多个收发组件11和折返镜12的组合依次排列,其光路与光扫描装置13呈不同角度,即多路发射光信号以不同的角度射向光扫描装置13,经光扫描装置13反射后向外出射,在不同的空间区域进行扫描,多路反射光信号同轴返回被对应的收发组件11接收;形成多个在空间上不完全重叠的探测视场;通过光扫描装置13扫描和接收后形成多个探测视场,从而扩大激光雷达10的整体探测视场。如图1所示,激光雷达10还包括外壳组件,包括顶盖(图中未示出)和底板14。底板14上设置有6组对应设置的收发组件11和折返镜12。6个收发组件11依次顺序排列并固定在底板14上,每个收发组件11的前端对应设置有折返镜12,共6个。光扫描装置13通过安装支架固定于底板14上。由前述可知,该激光雷达10能够形成6个沿水平方向依次排列的视场,拼接后大大扩展了激光雷达的水平视场角,例如水平视场角可以达到120°,提高了激光雷达的探测能力。
每个收发组件11包括发射模组、分束模组和接收模组;发射模组发出的发射光信号在穿过分束模组后向外出射,同轴入射的反射光信号进入收发组件11后被分束模组偏转后,由接收模组接收。前述控制组件用于驱动发射模块和接收模块,还用于对接收模块接收的回波光信号进行信号处理和传输。
上述光扫描装置13可以为一个微机电系统(Microelectro Mechanical Systems,简称MEMS),或者其他振镜系统。请参阅图4,由于光扫描装置的反射镜100很小,而落在光扫描装置上的发射光信号和反射光信号的光斑往往会大于光扫描装置的工作面,即光扫描装置的反射镜100的镜面,尤其是反射光信号的光斑较大。光斑超出反射镜100的部分光信号落在反射镜基底200上,反射镜基底200反射或散射光信号,散射的光信号不同于其原有的光路方向成为杂散光信号。杂散光信号被收发组件11接收,导致收发组件11的接收模组响应杂散光信号,从而使接收模组提前饱和,无法响应近处较快返回的反射光信号。接收模组无法分辨近处的回波光信号,无法对近处的物体进行有效的识别,产生较大的探测盲区。
基于上述技术问题,图2示出了一个实施例提供的一种光扫描装置的结构 示意图,光扫描装置包括:反射镜100、反射镜基底200和消光件300;反射镜100安装在反射镜基底200上,消光件300置于反射镜基底200前方;反射镜100,用于对入射光线(即入射光信号)进行反射;消光件300,用于减少所述入射光线(即入射光信号)在反射镜基底200上产生的散射光。
需要说明的是,可以参见图3所示,图3为一个激光雷达中主要光信号的产生路径。其中,激光准直系统(即发射模组)为具有出射发散角较小的激光出射系统,由激光光源和准直光学系统组成,可选地,激光光源可以包括但不限于固体激光器光源、气体激光器光源、半导体激光器光源、液体激光器光源、化学激光器光源、光纤激光器光源和自由电子激光器光源灯。可选地,准直光学系统可以包括但不限于球面镜光学系统组合、柱面镜光学系统组合、非球面光学系统组合、折返式混合光学系统组合和渐变折射率复合光学系统组合等。通常,激光雷达通过激光准直系统(即发射模组)发射发射光信号,经由光扫描装置,发射光信号到达目标物体,这部分发射光信号由目标物体反射后返回激光雷达的接收系统(即接收模组);另外,有部分光信号在光扫描装置内部产生散射。入射光线(即入射光信号)可以是射向光扫描装置的发射光信号和光扫描装置接收到的反射光信号中的任意一种或多种。如前述,当入射光信号(发射光信号或反射光信号)进入光扫描装置的时候,大部分入射光信号集中在反射镜200上,并反射至目标物体,但光斑突出反射镜100的部分入射光信号,被反射镜基底200散射,呈类高次余弦散射特征,散射光被接收系统(即接收模组)捕获,导致接收系统(即接收模组)形成内部散射(即杂散光信号)的信号响应,从而使接收系统(即接收模组)提前饱和,无法响应近处的返回光信号(即反射光信号),使返回光信号(即反射光信号)淹没于内部杂散光(即杂散光信号)产生的信号中,产生探测盲区。
具体的,上述光扫描装置包括反射镜100、反射镜基底200和消光件300。其中,反射镜100安装在反射镜基底200上,消光件300置于反射镜基底200前方。可选地,消光件300可以是贴合在反射镜基底200的前方,也可以是设置在反射镜基底200前方的一定距离处,对此本实施例并不做限定。当光信号(发射光信号或反射光信号)入射光扫描装置的时候,由于消光件300至于反射镜200的前方,因此,大部分入射光信号(即发射光信号或反射光信号)进入反射镜100之后被反射,一小部分入射光信号首先经过消光件300,该消光件 300能够对部分没有落在反射镜100上的入射光信号进行减少甚至接近消除,从而大大减少原本会落在反射镜基底200上的入射光信号,因此大大减少了反射镜基底200对入射光信号所产生的散射光。
本实施例中,由于光扫描装置包括反射镜、反射镜基底和消光件,其中,反射镜安装在反射镜基底上,用于对入射光信号进行反射,另外由于消光件置于反射镜基底前方,且消光件能够通过减少落在反射镜基底上的入射光信号,从而减少入射光信号在反射镜基底上产生的散射光;同时消光件表面的散射系数低于反射镜基底正面的散射系统,进而使得激光雷达内部的散射光(即杂散光信号)大大减少,减少了杂散光信号造成的探测盲区,使得激光雷达的接收探测能力大大提高。
可选地,继续参见图2所示,在上述实施例的基础上,消光件300可以为光阑,且该光阑设置在反射镜100的正面,并且该光阑的通光孔对准反射镜100。
具体的,由于光阑设置在反射镜100的正面,即入射的一面,因此入射光信号在进入反射镜100之前,首先通过光阑对入射光信号进行选择,由于光阑的通光孔对准反射镜100,因此入射光信号在落入光阑的通光孔的部分能够到达反射镜100,其余落在光阑上的部分入射光信号能够通过光阑的作用避免落在反射镜基底200上。
本实施例中,通过将光阑设置在反射镜的正面,且光阑的通光孔对准反射镜,从而大大减少落在反射镜基底上的光信号,进而减少入射光信号在反射镜基底上产生的散射光,使得光扫描装置的内部的散射光(即杂散光信号)大大减少,其极大地减少了杂散光信号造成的探测盲区,使得激光雷达的接收探测能力大大提高。
可选地,上述光阑的表面散射系数低于反射镜基底200正面的散射系数。通过将光阑设置为的表面散射系数低于反射镜基底200正面的散射系数,其相比反射镜基底200对入射光信号的散射程度,能够大大降低对落在光阑上的入射光信号的散射,进而极大的减少了散射光线,从而使得激光雷达内部的散射光(即杂散光信号)大大减少,减少了杂散光信号造成的探测盲区,使得激光雷达的接收探测能力大大提高。
可选地,可以采用在光阑上附着吸光膜或者反光膜降低光阑的表面的散射 系数。通常物体对光信号具有入射、反射和散射三种响应,由于能量守恒,通过增加吸收和反射,就可以降低散射特性。因此,通过在光阑的表面附着吸光膜,可以吸收较多的入射光信号,从而大大减少了散射光线;或者通过在光阑的表面附着反射膜,可以反射较多的光信号,由于反射可以具有方向性,因此可以将光信号反射到不影响接收系统的方向,从而大大减少了散射光线。本实施例中,通过在光阑上附着吸光膜来增强对入射光信号的吸收以减少散射,或者通过在光阑上附着反光膜来增强对入射光信号的反射以减少散射,从而降低了光阑的表面的散射系数,减少了杂散光造成的探测盲区,使得激光雷达的接收探测能力大大提高。
可选地,上述光阑的厚度小于预设的厚度阈值,厚度阈值通过不遮挡反射镜反射的入射光信号确定。
具体的,上述光阑的厚度需要小于预设的厚度阈值。由于光阑的厚度过厚,会对入射光信号产生干扰,影响接收系统的接收性能,因此可以通过设定厚度阈值,使得光阑的厚度小于厚度阈值,从而确保光阑不会由于过厚而遮挡反射镜反射的入射光信号。具体的,上述光阑的厚度应尽可能小,尽量减少对入射光信号的影响。
可选地,在上述实施例的基础上,光阑的通光孔的面积大于或等于反射镜100的面积。
具体的,光阑的通光孔的面积可以大于或等于反射镜100的面积,其可以是略大于反射镜100的面积,也可以是等于反射镜100的面积。通过将光阑的通光孔的面积设置为大于或等于反射镜的面积,确保入射光信号能够尽量多的落在反射镜上,同时又尽可能减少反射镜基底对入射光信号的散射,进而使得确保光扫描装置对光信号的响应的同时,减少了杂散光造成的探测盲区,使得激光雷达的接收探测能力大大提高。
可选地,在上述实施例的基础上,光阑按照预先的设定高度设置在反射镜100的正面;设定高度是根据入射光信号的最大入射角、以及光阑与反射镜的半径差所确定的高度。
具体的,由于入射光射向反射镜100的时候,会存在与反射镜的平面之间的夹角,当夹角过大,则可能会无法进入反射镜100,而落在反射镜基底200上。 为了保证射向反射镜的入射光信号尽可能少的被光阑阻挡,则可以根据入射光信号最大入射角、光阑和反射镜100的半径差确定光阑设置的高度。其可以参见图5所示,图5中,d为光阑半径和反射镜100的半径差值,为入射光信号的最大入射角,h为光阑设置的高度,该高度值为光阑的正面与与反射镜100的距离差。可选地,可以通过公式或该公式的变形式计算确定光阑设置的高度。
本实施例中,通过将光阑按照预先的设定高度设置在反射镜的正面,由于设定高度是根据入射光信号的最大入射角、以及光阑与反射镜的半径差所确定的高度,因此,其可以保证入射光信号最大程度的通过光阑的通光孔并射向反射镜,使得入射光信号能够最大程度的被反射,进而提高了光线利用率,也提高了雷达的探测能力。
可选地,在上述各个实施例的基础上,还可以在反射镜基底200的正面附消光层400,消光层400用于减少反射镜基底200对入射光信号的散射。
具体的,由于光阑无法完全消除照射到反射镜基底200上的入射光信号,因此还可以通过在反射镜基底200的正面附着消光层400。该消光层能够进一步减少反射镜基底200对入射光信号的散射。可选地,该消光层400可以为反光层或吸光层。当消光层400为反光层时,其可以通过增加对入射光信号的反射特性从而降低散射特性;当消光层400为吸光层时,其可以通过增加对入射光信号的吸收特性从而降低散射特性,因此可以进一步降低反射镜基底对入射光信号的散射,减少了杂散光造成的探测盲区,使得激光雷达的接收探测能力大大提高。
请参阅图6,图6为另一个实施例提供的光扫描装置的结构示意图,光扫描装置包括:反射镜110、连接框120和反射镜基底130。反射镜基底130相对于安装支架固定不动,反射镜110相对于反射镜基底130振动实现扫描,反射镜110和反射镜基底130之间通过连接框120进行连接。反射镜基底130和连接框120之间通过外连接桥140相连,连接框120和反射镜110之间通过内连接桥150相连。外连接桥140可以设置为两个,且两个外连接桥140位于第二轴上;内连接桥150也可以设置为两个,且两个内连接桥150位于第一轴上;反射镜110相对于第一轴和第二轴振动。连接框120上设置有线圈121,通过电磁驱动 使线圈121受力振动,从而带动反射镜110振动。需要说明的是,线圈121可以设置在连接框120背面,也可以设置在连接框120的正面。由于反射镜基底130的面积较小,以致于反射镜基底130的背面的电路排列密集,为了节省反射镜基底130的背面空间,可以将线圈121设置在连接框120的正面,线圈121不遮挡出入反射镜110的光信号即可。
可选的,反射镜基底130和连接框120的正面均设置有消光层,消光层用于减少反射镜基底130和连接框120对入射光信号的散射。反射镜基底130的正面是金属色反射平面,入射光信号(例如发射光信号和反射光信号)大部分射向反射镜110的正面,入射光信号的边沿超出反射镜110并落在反射镜基底130上,反射镜基底130反射后入射光信号偏离其预设的传播轨迹;如发射光信号的预设传播轨迹为以设计入射角射向反射镜,经反射镜110反射后以设计角度向外出射;如反射光信号的预设传播轨迹为与发射光信号同轴的角度射向反射镜110,经反射镜110反射后射向对应的折返镜12。偏离预设传播轨迹的入射光信号在雷达系统内部形成杂散光信号,导致较大的探测盲区。同理,连接框120的正面是金属的线圈121,线圈121表面不平整,分布了许多细小的凹槽,入射光信号落在连接框120上后在凹槽内多次反射,也偏离了入射光信号的预设传播轨迹,形成大量杂散光信号。因此,在反射镜基底130和连接框120的正面设置消光层,能够吸收射向反射镜基底130和连接框120的入射光信号,减少在反射镜基底130和连接框120的表面产生的散射,进而减少杂散光信号的产生。
可选的,光扫描装置还包括光阑160,光阑160设置于反射镜110、连接框120和反射镜基底130的前侧;光阑160用于限制入射光信号,限制光斑落在反射镜110以外的部分入射光信号,如射向连接框120和反射镜基底130,减少入射光信号在连接框120和反射镜基底130上反射或散射后形成的无序的杂散光信号,减少了杂散光信号造成的探测盲区,使得激光雷达的接收探测能力大大提高。
光阑160包括遮光板161和通光孔162,通光孔162用于使射向反射镜110的发射光信号和反射镜反射后的光信号穿过,遮光板161用于阻挡正常光路边沿的光信号,减少射向连接框120和反射镜基底130的光信号产生的杂散光信号。由于射向反射镜110的入射光信号包括发射光信号和反射光信号,若通光 孔162开设的很小,的确能够有效阻挡光信号,使入射光信号均射向反射镜110,甚至入射光信号的光斑尺寸小于反射镜110的镜面尺寸,完全没有射向连接框120和反射镜基底130的入射光信号;但这样同样也会减少用于探测的发射光信号和反射光信号,使激光雷达无法对远距离处进行有效探测,降低激光雷达的测距能力。因此,通光孔162开设的形状以不遮挡射向反射镜110的光信号和反射镜反射后的光信号为准,这样既能保证激光雷达的测距能力不受影响,又能减少杂散光信号,提高接收探测能力。如图8所示,通光孔162的形状为梯形;当光阑安装在图1所示的激光雷达中时,通光孔162的梯形的较长边设置于上方,梯形的较短边设置于下方,通光孔162呈倒梯形设置。由于发射光信号和反射光信号在收发模组11-折返镜12-光扫描装置13之间的光路同轴,即在空间上重叠,仅方向相反,后续仅以发射光信号为例进行说明。如图7所示,由于发射光信号通过折返镜12反射后以斜向上的方向射向光扫描装置13的反射镜110,经过反射镜110反射的发射光信号也同样以斜向上的方向向外出射。由于激光雷达内部结构紧凑,折返镜12与折返镜12之间的距离较近,最外侧的两个折返镜12反射后射向反射镜110的发射光信号之间的夹角较小;而光扫描装置13的反射镜110在不断振动,经过反射镜110反射后的发射光信号的最外侧的两束发射光信号之间的夹角明显变大;由此可知,以由下向上方向射向反射镜110的发射光信号之间的夹角较小,以斜向上方向射出反射镜110的发射光信号之间的夹角较大。因此光阑160的通光孔162设置为位于下方的边较短、位于上方的边较长;使得光阑160既能够有效阻挡正常光路边沿的光信号,减少射向连接框120和反射镜基底130的光信号产生的杂散光信号,又能尽可能多的使发射光信号和反射光信号射向光扫描装置13的反射镜110,保证激光雷达的测距能力。
如图8所示,光阑160的通光孔162处设置有一圈过渡面163,过渡面163设置于朝向光阑160正面的一侧。由前述内容可知,发射光信号由下向上射向反射镜110、并以斜向上方向射出反射镜110,反射光信号与发射光信号光路相同,仅方向相反;因此,在通光孔162朝向光阑160正面的一侧设置一圈过渡面163,能够减少由于遮光板161的厚度导致遮挡光信号的问题,减少对发射光信号和反射光信号的不必要遮挡,保证激光雷达的测距能力。优选的,过渡面163的形状与射向反射镜110和射出反射镜110的光信号的方向一致。
另外,光阑162以预设高度设置在反射镜110的正面;如图8所示,在满足前述入射光信号的光斑尺寸要求的情况下,为了尽可能减少光阑162遮挡的发射光信号和反射光信号,理想情况下光阑162直接贴在光扫描装置13上最佳,例如光阑160直接贴在连接框120和反射镜基底130上,将反射镜110露出来即可;但是连接框120和反射镜110受驱振动,光阑160无法直接设置在连接框120和反射镜基底130上;因此将光阑160以预设高度固定在反射镜110的正面,在不影响连接框120和反射镜110振动的情况下,尽可能贴近光扫描装置13。在通光孔162朝向光阑160正面的一侧设置一圈过渡面,过渡面163越靠近通光孔162的一端,越向后侧延伸,通光孔162相较于遮光板161的正面所在的平面更靠后,以使光阑160的通光孔162更靠近光扫描装置,效果更佳。
由于光阑160的通光孔162向后靠近光扫描装置13,使得靠近通光孔162处的遮光板161的背面向后凸起,与连接框120和反射镜基底130之间的空间减少;如前述可知,连接框120和反射镜110受驱振动,遮光板161的背面离连接框120过近,连接框120振动时将会受到遮光板161的干涉,影响连接框120和反射镜110的正常工作。光阑160的背面设置有容留反射镜110和连接框120振动的空间。遮光板161的背面设置有由通光孔162起逐渐向外延伸的多个斜面,斜面远离通光孔162的一端逐渐向前侧延伸。优选的,如前述激光雷达,包括6组对应设置的收发组件11和折返镜12,即沿第一轴方向排列6路发射光信号和对应的反射光信号的光路;为了使沿第一轴方向排列的6路发射光信号和对应的反射光信号通过,通光孔162在第一轴方向上的直径大于其他方向上的直径。因此垂直或者近似垂直于第一轴方向的通光孔162的两侧边处的遮光板161对连接框120的影响较小,平行或者近似平行于第一轴方向的通光孔162的上、下边处的遮光板161对连接框120的影响较大。遮光板161背面设置的多个斜面,可以沿垂直于第一轴的方向,由中间向两侧逐渐向前侧延伸;如图8所示,遮光板161的背面设置有第一斜面164和第二斜面165,第一斜面164和第二斜面165的相交线166平行于第一轴,相交线166处的遮光板161最靠后,从相交线166起向垂直于第一轴方向的两侧分别延伸,第一斜面164和第二斜面165越远离相交线166的一端越靠前。由此,通光孔162的上、下边处的遮光板161与连接框120之间的空间有所增大,解决了遮光板161对连接框120振动影响的问题。
在一个实施例中,还提供了一种激光雷达所述激光雷达包括如上述实施例中的任一种光扫描装置。关于激光雷达中涉及到的技术原理和技术效果与上述光扫描装置相同,此处不再赘述。
需要注意的是,除非另有说明,本申请实施例使用的技术术语或者科学术语应当为本申请实施例所属领域技术人员所理解的通常意义。
在本实施新型实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
此外,技术术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本实施新型实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本实施新型实施例的描述中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种光扫描装置,其特征在于,所述装置包括:反射镜、反射镜基底和消光件;所述反射镜安装在所述反射镜基底上,所述消光件置于所述反射镜基底前方;
    所述反射镜,用于对入射光线进行反射;
    所述消光件,用于减少所述入射光线在所述反射镜基底上产生的散射光。
  2. 根据权利要求1所述的光扫描装置,其特征在于,所述消光件为光阑,所述光阑设置在所述反射镜的正面,所述光阑的通光孔对准所述反射镜。
  3. 根据权利要求2所述的光扫描装置,其特征在于,所述光阑的通光孔的面积大于或等于所述反射镜的面积。
  4. 根据权利要求3所述的光扫描装置,其特征在于,所述光阑按照预先的设定高度设置在所述反射镜的正面;所述设定高度是根据所述入射光线的最大入射角、以及所述光阑与所述反射镜的半径差所确定的高度。
  5. 根据权利要求2所述的光扫描装置,其特征在于,所述光阑的表面散射系数低于所述反射镜基底正面的散射系数。
  6. 根据权利要求5所述的光扫描装置,其特征在于,所述光阑上附着吸光膜或反光膜。
  7. 根据权利要求2至6任一项所述的光扫描装置,其特征在于,所述光阑的厚度小于预设的厚度阈值,所述厚度阈值通过不遮挡所述反射镜反射的入射光线确定。
  8. 根据权利要求1任一项所述的光扫描装置,其特征在于,所述反射镜基底的正面附有消光层,所述消光层用于减少所述反射镜基底对所述入射光线的散射。
  9. 根据权利要求8所述的光扫描装置,其特征在于,所述消光层为反光层或吸光层。
  10. 一种激光雷达,其特征在于,所述激光雷达包括如权利要求1至9任一 项所述的光扫描装置。
PCT/CN2020/082485 2019-04-01 2020-03-31 光扫描装置和激光雷达 WO2020200206A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202310919481.5A CN117031737A (zh) 2019-04-01 2020-03-31 光扫描装置
CN202080004329.9A CN112689786B (zh) 2019-04-01 2020-03-31 光扫描装置和激光雷达
EP20783194.2A EP3951474A4 (en) 2019-04-01 2020-03-31 OPTICAL SCANNING DEVICE AND LASER RADAR
US17/002,682 US11085997B2 (en) 2019-04-01 2020-08-25 Optical scanning apparatus and lidar
US17/371,050 US11662438B2 (en) 2019-04-01 2021-07-08 Optical scanning apparatus and lidar with extinction component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910255918.3A CN110045498A (zh) 2019-04-01 2019-04-01 光扫描装置和激光雷达
CN201910255918.3 2019-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/002,682 Continuation US11085997B2 (en) 2019-04-01 2020-08-25 Optical scanning apparatus and lidar

Publications (1)

Publication Number Publication Date
WO2020200206A1 true WO2020200206A1 (zh) 2020-10-08

Family

ID=67275676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082485 WO2020200206A1 (zh) 2019-04-01 2020-03-31 光扫描装置和激光雷达

Country Status (4)

Country Link
US (2) US11085997B2 (zh)
EP (1) EP3951474A4 (zh)
CN (3) CN110045498A (zh)
WO (1) WO2020200206A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110045498A (zh) * 2019-04-01 2019-07-23 深圳市速腾聚创科技有限公司 光扫描装置和激光雷达
CN113424080B (zh) * 2020-01-03 2023-08-29 深圳市速腾聚创科技有限公司 激光雷达及汽车
EP4086658A4 (en) * 2020-01-03 2023-04-05 Suteng Innovation Technology Co., Ltd LASER TRANSMITTER-RECEIVER MODULE AND LIDAR
CN116601518A (zh) * 2021-06-11 2023-08-15 深圳市大疆创新科技有限公司 激光雷达控制方法、装置、激光雷达及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991016A (en) * 1995-12-04 1999-11-23 Nikon Corporation Apparatus for producing variable levels of uniform light flux
CN2689219Y (zh) * 2004-04-05 2005-03-30 苏州市百神科技有限公司 手持式激光尘埃粒子计数器的光学传感器
CN102221525A (zh) * 2010-04-14 2011-10-19 深圳迈瑞生物医疗电子股份有限公司 一种样本检测光学系统、样本分析装置
CN106644074A (zh) * 2016-11-16 2017-05-10 中国科学院光电研究院 一种三维立体光谱成像系统
CN110045498A (zh) * 2019-04-01 2019-07-23 深圳市速腾聚创科技有限公司 光扫描装置和激光雷达
CN210038328U (zh) * 2019-04-01 2020-02-07 深圳市速腾聚创科技有限公司 光扫描装置和激光雷达

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6959870B2 (en) * 1999-06-07 2005-11-01 Metrologic Instruments, Inc. Planar LED-based illumination array (PLIA) chips
DE202005015719U1 (de) * 2005-10-07 2005-12-08 Trumpf Laser Gmbh + Co. Kg F/theta-Objektiv und Scannervorrichtung damit
CN101331419A (zh) * 2005-12-15 2008-12-24 皇家飞利浦电子股份有限公司 Mems扫描仪系统和方法
EP3143926B1 (en) * 2006-02-08 2020-07-01 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
US8305561B2 (en) * 2010-03-25 2012-11-06 Hokuyo Automatic Co., Ltd. Scanning-type distance measuring apparatus
CN104330843A (zh) * 2014-07-22 2015-02-04 凯迈(洛阳)环测有限公司 一种激光测云仪光学系统及其分光反射镜
WO2016097409A2 (en) * 2014-12-19 2016-06-23 Windar Photonic A/S Lidar based on mems
JPWO2017065048A1 (ja) * 2015-10-16 2018-08-02 コニカミノルタ株式会社 光走査型の対象物検出装置
DE102016213980A1 (de) * 2016-07-29 2018-02-01 Robert Bosch Gmbh Optische Anordnung für ein LiDAR-System, LiDAR-System und Arbeitsvorrichtung
JP7215996B2 (ja) * 2016-11-17 2023-01-31 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング 少なくとも1つの物体を光学的に検出するための検出器
JP6330162B2 (ja) * 2016-11-24 2018-05-30 株式会社新川 ボンディング装置およびボンディング対象物の高さ検出方法
DE102017209645B4 (de) * 2017-06-08 2022-11-17 Robert Bosch Gmbh Mikromechanische Lichtumlenkvorrichtung, Verfahren zur Umlenkung von Licht mittels einer mikromechanischen Lichtumlenkvorrichtung und Lichtsendevorrichtung
JP6818702B2 (ja) * 2018-01-15 2021-01-20 株式会社東芝 光学検査装置及び光学検査方法
US10429495B1 (en) * 2018-04-03 2019-10-01 Hesai Photonics Technology Co., Ltd. Lidar system and method
US11561284B2 (en) * 2018-11-02 2023-01-24 Waymo Llc Parallax compensating spatial filters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991016A (en) * 1995-12-04 1999-11-23 Nikon Corporation Apparatus for producing variable levels of uniform light flux
CN2689219Y (zh) * 2004-04-05 2005-03-30 苏州市百神科技有限公司 手持式激光尘埃粒子计数器的光学传感器
CN102221525A (zh) * 2010-04-14 2011-10-19 深圳迈瑞生物医疗电子股份有限公司 一种样本检测光学系统、样本分析装置
CN106644074A (zh) * 2016-11-16 2017-05-10 中国科学院光电研究院 一种三维立体光谱成像系统
CN110045498A (zh) * 2019-04-01 2019-07-23 深圳市速腾聚创科技有限公司 光扫描装置和激光雷达
CN210038328U (zh) * 2019-04-01 2020-02-07 深圳市速腾聚创科技有限公司 光扫描装置和激光雷达

Also Published As

Publication number Publication date
US20210341589A1 (en) 2021-11-04
CN112689786A (zh) 2021-04-20
US11662438B2 (en) 2023-05-30
US20200386870A1 (en) 2020-12-10
CN112689786B (zh) 2023-08-25
CN117031737A (zh) 2023-11-10
US11085997B2 (en) 2021-08-10
EP3951474A1 (en) 2022-02-09
EP3951474A4 (en) 2022-06-01
CN110045498A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
WO2020200206A1 (zh) 光扫描装置和激光雷达
WO2021051722A1 (zh) 激光雷达及自动驾驶设备
WO2022028496A9 (zh) 激光雷达的光学系统和激光雷达系统
CN110850437B (zh) 激光雷达
WO2021051723A1 (zh) 激光收发模块和激光雷达
CN211236225U (zh) 一种大视场激光雷达光机系统
CN112219130B (zh) 一种测距装置
US20220171028A1 (en) Flash lidar
US20230145710A1 (en) Laser receiving device, lidar, and intelligent induction apparatus
CN217425688U (zh) 光学透镜、激光发射系统及激光收发装置
JP2000193748A (ja) 大測定範囲用のレ―ザ―距離測定器
CN210347918U (zh) 一种激光发射装置以及激光雷达系统
JP7234816B2 (ja) 測距装置
US20220120869A1 (en) Receiving system for lidar, lidar and method for inhibiting ghost lines
WO2021125027A1 (ja) センサ装置及び筐体
US20220260677A1 (en) Laser radar and method for performing detection by using the same
CN219456491U (zh) 激光收发模块及激光雷达
CN217425671U (zh) 一种激光雷达光学系统
CN220367413U (zh) 激光雷达
CN219302659U (zh) 发射模组及激光雷达
CN217954732U (zh) 激光发射模组及激光雷达
CN217954731U (zh) 激光接收模组及激光雷达
CN210347921U (zh) 一种激光发射装置以及激光雷达系统
US20210302546A1 (en) Laser Radar
CN115267800A (zh) 用于激光雷达的视窗和激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783194

Country of ref document: EP

Effective date: 20211102