WO2022257137A1 - 激光雷达控制方法、装置、激光雷达及存储介质 - Google Patents
激光雷达控制方法、装置、激光雷达及存储介质 Download PDFInfo
- Publication number
- WO2022257137A1 WO2022257137A1 PCT/CN2021/099836 CN2021099836W WO2022257137A1 WO 2022257137 A1 WO2022257137 A1 WO 2022257137A1 CN 2021099836 W CN2021099836 W CN 2021099836W WO 2022257137 A1 WO2022257137 A1 WO 2022257137A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- lidar
- laser radar
- signal
- channels
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 230000003287 optical effect Effects 0.000 claims abstract description 121
- 230000003321 amplification Effects 0.000 claims abstract description 21
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 21
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 238000004590 computer program Methods 0.000 claims description 32
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 claims description 3
- 230000000875 corresponding effect Effects 0.000 description 115
- 238000002310 reflectometry Methods 0.000 description 23
- 238000001514 detection method Methods 0.000 description 22
- 230000001276 controlling effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 230000004927 fusion Effects 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 9
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/484—Transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
Definitions
- the present application relates to the technical field of laser radar, and in particular to a laser radar control method and device, laser radar and a computer-readable storage medium.
- LiDAR is an optical ranging device that can actively transmit light pulses to the measured object and obtain the echo signal corresponding to the light pulse reflected back by the measured object.
- the depth information between the measured object and the lidar can be calculated.
- the angle information of the measured object relative to the lidar can be obtained.
- the point cloud point corresponding to the position where the light pulse arrives can be obtained.
- the point cloud is a collection of multiple point cloud points.
- the embodiment of the present application provides a laser radar control method, device, laser radar and computer-readable storage medium. It exceeds the linear dynamic range of the receiving system, resulting in the technical problem that the target signal cannot be restored.
- the first aspect of the embodiment of the present application provides a laser radar control method, which is applied to a coaxial laser radar, and the method includes:
- the laser emission power corresponding to the second gear is lower than the laser emission power corresponding to the first gear, and/or, the magnification of the receiving circuit corresponding to the second gear is lower than that of the first gear The magnification of the receiving circuit corresponding to the gear position.
- the second aspect of the embodiment of the present application provides a laser radar control method, the laser radar includes a plurality of channels, and the multiple channels simultaneously transmit light pulses and receive echo signals, and the method includes:
- the first power is smaller than the second power.
- the third aspect of the embodiment of the present application provides a laser radar control device, the laser radar is a coaxial laser radar, and the device includes: a processor and a memory storing a computer program, and the processor executes the computer program When performing the following steps:
- the laser emission power corresponding to the second gear is lower than the laser emission power corresponding to the first gear, and/or, the magnification of the receiving circuit corresponding to the second gear is lower than that of the first gear The magnification of the receiving circuit corresponding to the gear position.
- the fourth aspect of the embodiment of the present application provides a laser radar control device, the laser radar includes a plurality of channels, and the multiple channels simultaneously transmit light pulses and receive echo signals, and the device includes: a processor and A memory storing a computer program, the processor implementing the following steps when executing the computer program:
- the first power is smaller than the second power.
- the fifth aspect of the embodiment of the present application provides a laser radar, including:
- a light source for emitting a sequence of light pulses
- the receiving circuit is used to receive the echo signal corresponding to the optical pulse
- the transmitting optical path of the lidar is partially the same as the receiving optical path;
- a processor and a memory storing a computer program the processor, when executing the computer program, implements the following steps:
- the laser emission power corresponding to the second gear is lower than the laser emission power corresponding to the first gear, and/or, the magnification of the receiving circuit corresponding to the second gear is lower than that of the first gear The magnification of the receiving circuit corresponding to the gear position.
- the sixth aspect of the embodiment of the present application provides a laser radar, including:
- each channel includes a light source and a receiving circuit
- the light source is used to emit light pulse sequence
- the receiving circuit is used to receive the echo signal corresponding to the light pulse of the channel where it is located, the multiple channels simultaneously Transmit light pulses and receive echo signals;
- a processor and a memory storing a computer program the processor, when executing the computer program, implements the following steps:
- the first power is smaller than the second power.
- a seventh aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, any method provided in the embodiments of the present application is implemented.
- the lidar control method provided in the embodiment of the present application can control the lidar to switch to the second gear if only one echo signal is received within the time window of the light pulse when the lidar emits light pulses in the first gear. gear, to emit the next light pulse at the second gear. Due to the low laser transmission power and/or the magnification of the receiving circuit in the second gear, the intensity of the target signal reflected by the measured object is also low, and the target signal will not exceed the receiving system of the laser radar after being fused with the interference signal The linear dynamic range, that is, the fused echo signal will not be distorted, so that the real fused echo signal can be used to restore the real target signal, calculate the accurate distance of the measured object, and greatly improve the laser Radar short-range blind spot problem.
- FIG. 1 is a schematic structural diagram of a coaxial laser radar provided by an embodiment of the present application.
- FIG. 2 is a schematic diagram of the generation of an interference signal and a target signal provided by an embodiment of the present application.
- FIG. 3A is a schematic diagram of an unfused target signal and an interference signal provided by an embodiment of the present application.
- FIG. 3B is a schematic diagram of fusion of a target signal and an interference signal provided by an embodiment of the present application.
- Fig. 4 is a flow chart of a lidar control method provided by an embodiment of the present application.
- Fig. 5 is a flow chart of another lidar control method provided by an embodiment of the present application.
- Fig. 6 is a schematic structural diagram of a lidar control device provided by an embodiment of the present application.
- Fig. 7 is a schematic structural diagram of a multi-channel lidar provided by an embodiment of the present application.
- LiDAR is an optical ranging device that can actively transmit light pulses to the measured object and obtain the echo signal corresponding to the light pulse reflected back by the measured object.
- the depth information between the measured object and the lidar can be calculated.
- the angle information of the measured object relative to the lidar can be obtained.
- the point cloud point corresponding to the position where the light pulse arrives can be obtained.
- the point cloud is a collection of multiple point cloud points.
- the laser radar usually includes a transmitting optical path and a receiving optical path.
- the laser radar can be a coaxial laser radar.
- the transmitting optical path and the receiving optical path can be partly the same, that is, the path of the emitted optical pulse and the path of the reflected echo signal. same.
- FIG. 1 is a schematic structural diagram of a coaxial lidar provided in an embodiment of the present application.
- the light source is used to emit light pulse sequences, and the emitted light pulses pass through the optical system, exit in different directions under the refraction of the optical system, and reflect after reaching the measured object.
- the reflected echo signal reaches the receiving circuit through part of the same optical path, and the receiving circuit transmits the collected signal to the processor for analysis and processing.
- the receiving circuit of the laser radar may receive two echo signals corresponding to the light pulse, among which the first The first echo signal is the echo signal reflected by the lidar itself. Since the self-reflected echo signal is not beneficial to the distance measurement of the measured object, it can be called an interference signal. The second echo signal is generated by the measured object. The reflected echo signal can be used to calculate the distance of the measured object, so the echo signal can be called the target signal.
- FIG. 2 is a principle diagram of generating an interference signal and a target signal provided in an embodiment of the present application.
- the interference signal is the echo signal reflected by the laser radar's own optical system
- the generation of the interference signal is related to factors such as the material, manufacture, and installation of the laser radar's optical system.
- the so-called optical system in one embodiment, may at least include optical devices on the optical path, such as lenses, prisms, glass for light exit windows, etc., and in one embodiment, may also include supports for supporting these optical devices pieces.
- the interference signal and the target signal may or may not be fused depending on the distance of the measured object.
- the receiving time of the target signal is positively correlated with the distance of the measured object, the farther the distance of the measured object is, the later the receiving time of the target signal is, and the closer the distance of the measured object is, the shorter the receiving time of the target signal is. morning.
- the receiving time of the interference signal is relatively fixed, usually in the early stage of the time window. Therefore, when the distance of the measured object is relatively long, the receiving time of the target signal and the interference signal can be staggered (as shown in Figure 3A).
- the accurate target signal received later can be used to calculate the accurate distance.
- the receiving time of the target signal and the interference signal is similar, so the target signal and the interference signal will be fused (as shown in Figure 3B), resulting in the inability to measure the accurate distance of the measured object .
- the interference signals corresponding to different emission directions can be pre-calibrated, and then when detecting a certain emission direction, the interference signal corresponding to the emission direction can be determined according to the pre-calibrated correspondence.
- the target signal can be restored from the received echo signal by using the calibrated interference signal, so that the accurate distance of the measured object can be calculated. distance.
- the near-blind area of the lidar can be greatly improved by the above method, but there are still problems to be solved. Specifically, the linear dynamic range of the receiving system of the lidar is limited, and the intensity of the interference signal reflected by the lidar itself is relatively large , the intensity of the target signal reflected by the measured object at a short distance is also relatively large. When the interference signal and the target signal are fused, the intensity of the fused echo signal will exceed the linear dynamic range of the system, causing the received echo signal to generate non-linear distortion. In this way, even if the accurate interference signal is calibrated in advance, the real target signal cannot be restored by using the received echo signal that has been distorted.
- the embodiment of the present application provides a laser radar control method, which is applied to the coaxial laser radar in which the transmitting optical path and the receiving optical path are partly the same, you can refer to Figure 4, which is provided by the embodiment of the present application
- a flowchart of a lidar control method the method may include the following steps:
- the above-mentioned first gear and the second gear are different in the laser transmitting power and/or the magnification of the receiving circuit. Specifically, the laser emission power corresponding to the second gear is lower than the laser emission power corresponding to the first gear, and/or, the magnification of the receiving circuit corresponding to the second gear is lower than that of the receiving circuit corresponding to the first gear gain.
- the first gear is higher than the second gear in terms of laser emission power and/or magnification of the receiving circuit, when the laser radar emits light pulses in the first gear, the intensity of the target signal reflected back by the measured object is Relatively large. At this time, if only one echo signal is received within the time window of the light pulse, it means that one of the following two situations may occur.
- the first situation is that the distance of the measured object is relatively short, and the measured object The reflected target signal and the interference signal reflected by the lidar itself are fused, so that the number of received echo signals is only one; the second case is that there is no measured object in the outgoing direction of the current light pulse, and the reflected The echo signal does not include the target signal reflected by the measured object, that is, the received echo signal is only an interference signal.
- the above two cases can be distinguished. Specifically, since echo signals that have not undergone fusion usually have strong regularity in terms of intensity, pulse width, and slope, etc., if only one echo signal is received within the time window of the optical pulse, the received signal can be extracted.
- the waveform parameter of the received echo signal is compared with the preset waveform parameter.
- the preset waveform parameter may be the waveform parameter of the unfused echo signal stored in advance by the lidar. If the difference between the two waveform parameters exceeds the set threshold, it can be determined that it belongs to the first situation, that is, there is a target signal, and the target signal is fused with the interference signal, resulting in only one echo signal being received within the time window. wave signal. Conversely, if the difference between the two waveform parameters is smaller than the set threshold, it can be determined to belong to the second situation, that is, there is no target signal, and the received echo signal itself is an interference signal.
- the above two cases may not be distinguished, but may be directly regarded as belonging to the first case, so as to ensure safety to the greatest extent.
- the lidar Since the lidar is usually installed on a movable platform such as a vehicle, it is responsible for sensing the surrounding environment of the movable platform. Therefore, if only one echo signal is received within the time window, for safety reasons, it can be assumed that the measured object exists. The distance of the measured object is too close, so that the fusion of the target signal and the interference signal occurs.
- the target signal reflected by the object under test has a higher intensity, and after it is fused with the interference signal, It will exceed the linear dynamic range of the lidar receiving system, that is, the received echo signal will be distorted, so that the real target signal cannot be restored.
- the gear of the lidar when only one echo signal is received within the time window of the light pulse, the gear of the lidar can be directly switched, that is, the gear of the lidar can be switched from the first gear to the second gear position, so that the laser radar can transmit the next light pulse and receive the echo signal corresponding to the next light pulse in the second gear.
- the laser transmission power corresponding to the second gear and/or the magnification of the receiving circuit are low, the intensity of the target signal reflected by the measured object is low, and the fusion of the target signal and the interference signal will not exceed the linear dynamic range of the receiving system , so that the received fused echo signal can be restored according to the pre-calibrated interference signal, the restored target signal can be obtained, and the accurate distance of the measured object can be calculated.
- the lidar control method provided in the embodiment of the present application can control the lidar to switch to the second gear if only one echo signal is received within the time window of the light pulse when the lidar emits light pulses in the first gear. gear, to emit the next light pulse at the second gear. Due to the low laser transmission power and/or the magnification of the receiving circuit in the second gear, the intensity of the target signal reflected by the measured object is also low, and the target signal will not exceed the receiving system of the laser radar after being fused with the interference signal The linear dynamic range, that is, the fused echo signal will not be distorted, so that the real fused echo signal can be used to restore the real target signal, calculate the accurate distance of the measured object, and greatly improve the laser Radar short-range blind spot problem.
- the detection positions corresponding to the current light pulse and the next light pulse may be the same or different.
- the optical device in the lidar may maintain the same pose when emitting two light pulses, so that the outgoing directions corresponding to the two emitted light pulses may be the same.
- the optical device in the laser radar can also keep rotating continuously. At this time, if the emission interval between the current light pulse and the next light pulse is very small, the optical device rotates during the emission interval. The magnitude of is also very small, and it can be approximately considered that there is no change in pose, so it can also be considered that the detection position corresponding to the current light pulse and the next light pulse is the same.
- the detection position of the current light pulse will deviate from the detection position of the next light pulse, which belong to two different detection positions, but it needs to be noted Yes, even if there are two different detection positions, since the interval between the two light pulses emitted before and after is not too large, the two detection positions will not be too far apart, for example, it is likely to be the same measured object. two different locations.
- the echo signal corresponding to the next light pulse can be received. Since the next light pulse and the previous light pulse are two light pulses emitted back and forth, there will not be too much difference between the next light pulse and the previous light pulse in the outgoing direction and the position reached, usually For the detection of the same measured object, that is, the distance of the measured object is still relatively close, and an echo signal is still received within the time window.
- the echo signal can be obtained by fusing the target signal reflected by the measured object and the interference signal. of.
- the fusion of the target signal and the interference signal will not exceed the linear dynamic range of the laser radar receiving system, so that it can The target signal is restored from the received echo signal.
- the interference signal corresponding to the emission direction of the next light pulse can be determined according to the pre-calibrated correspondence relationship.
- the correspondence relationship is the correspondence relationship between the pre-calibrated emission direction and the interference signal.
- the factors affecting the interference signal include the laser emission power corresponding to the currently emitted light pulse in addition to the outgoing direction, during the calibration process, all directions can be maintained.
- the corresponding laser emission power is the same.
- the calibrated interference signal is used to restore the target signal, and the target signal can only be restored successfully when the received fusion signal is not distorted, and the received fusion signal does not occur distortion requires the laser radar to be launched in the second gear Therefore, keeping the lidar in the second gear during the calibration process can make the restored target signal more accurate.
- the laser radar emits an optical pulse at the first gear and receives two echo signals in the time window of the optical pulse, it can be determined that the target signal and the interference signal have not merged. At this time, The echo signal received later can be determined as the target signal, and the distance of the measured object can be calculated according to the target signal.
- the laser radar can also be switched from the first gear to the second gear. stalls. At this time, although the laser emission power corresponding to the second gear and/or the magnification of the receiving circuit are relatively low, the object to be measured can still be detected because the distance of the object to be measured is not too far away, so as to meet the requirements of laser safety regulations. , the technical effect of reducing the power consumption of the lidar and prolonging the life of the lidar.
- the next transmission can be continued in the first gear.
- One light pulse, or the next light pulse can be emitted in a third gear, where the laser emission power corresponding to the third gear is higher than the laser emission power corresponding to the first gear, and/or, the third gear corresponds to The magnification factor of the receiving circuit is higher than the magnification factor of the receiving circuit corresponding to the first gear.
- the detection can be continued with the first gear with higher laser emission power and/or the magnification of the receiving circuit, or the laser emission power can be used And/or the third gear with a higher magnification of the receiving circuit is used for detection, so as to improve the ranging accuracy of such low-emissivity or long-distance measured objects.
- the laser radar when the laser radar emits light pulses in the first gear and only receives one echo signal within the time window of the light pulse, it may correspond to two situations.
- the first is that the target signal and the interference signal occur.
- the second is that there is no object under test in the outgoing direction of the current light pulse, that is, there is no target signal reflected by the object under test. If the second situation actually occurs, after the lidar is switched to the second gear, the detection range of the lidar is shortened due to the lower laser emission power and/or the magnification of the receiving circuit corresponding to the second gear , if the measured object appears outside the detection range at this time, the measured object that appears outside the detection range will not be detected. This detection omission is a risk for lidar applied to the field of automatic driving higher.
- N the lidar can be forced to switch from the second gear back to the first gear, and the next light pulse is transmitted in the first gear, or it can be
- the laser radar is switched from the second gear to the third gear, and the next light pulse is emitted in the third gear, and the laser emission power and/or the magnification of the receiving circuit of the third gear is higher than that of the first gear. In this way, it is possible to prevent the lidar from always using the second gear for detection, thereby avoiding the detection of new objects to be detected that appear in the distance.
- the lidar can be configured with multiple gears, and each gear can be different in the laser emission power or in the magnification of the receiving circuit.
- the above-mentioned first gear and the second gear The second gear can be any gear among the multiple gears, but between the first gear and the second gear, the laser emission power and/or the magnification of the receiving circuit of the first gear is higher than that of the second gear bit condition.
- the lidar control method provided in the embodiment of the present application can control the lidar to switch to the second gear if only one echo signal is received within the time window of the light pulse when the lidar emits light pulses in the first gear. gear, to emit the next light pulse at the second gear. Due to the low laser transmission power and/or the magnification of the receiving circuit in the second gear, the intensity of the target signal reflected by the measured object is also low, and the target signal will not exceed the receiving system of the laser radar after being fused with the interference signal The linear dynamic range, that is, the fused echo signal will not be distorted, so that the real fused echo signal can be used to restore the real target signal, calculate the accurate distance of the measured object, and greatly improve the laser Radar short-range blind spot problem.
- the point cloud of the scene collected by the lidar is required to have a sufficiently high point cloud density.
- the lidar can include multiple channels, and each channel can transmit light pulses and receive echo signals, so that multiple channels of the lidar can be detected simultaneously. Sending and receiving can greatly increase the point cloud density.
- crosstalk means that when a channel receives echo signals, in addition to receiving the target echo signals returned by the optical pulses emitted by this channel, it also receives crosstalk signals returned by optical pulses emitted by other channels.
- the target echo signal will be fused with the crosstalk signal, resulting in the inability to calculate a high-precision result.
- the embodiment of the present application provides a laser radar control method, which can be applied to a laser radar that transmits and receives multiple channels at the same time, that is, the laser radar includes multiple channels, and the multiple channels simultaneously transmit light pulses
- FIG. 5 is a flow chart of another laser radar control method provided in an embodiment of the present application.
- the method may include:
- the first power is smaller than the second power.
- the echo signal corresponding to the optical pulse emitted by a channel itself is referred to as the target echo signal here.
- each channel of the laser radar can be used to transmit light pulses with lower power, and the intensity of the target echo signal corresponding to each channel itself is relatively low. The intensity of the crosstalk signal smaller than the target echo signal is lower, so that each channel cannot detect the crosstalk signal from other channels, or the detected crosstalk signal is too small to be ignored.
- the crosstalk signal between the channels cannot be detected or is so small that it can be ignored. Therefore, the target echo signal received by each channel It will not be interfered by crosstalk signals, and each channel can use the target echo signal of its own channel to calculate the accurate distance of the measured object.
- the first power is the lower laser emission power
- the detection range of the lidar is limited, and it can only detect close-range objects or long-distance objects. But the measured object with high reflectivity. If multiple channels of the laser radar can receive the target echo signal of its own channel within the reserved time period after transmitting light pulses with the first power, it means that in the current detection direction of the laser radar, there is The measured object at close range or the measured object with high reflectivity at a long distance, at this time, because there is no influence of crosstalk, the distance of these measured objects can be accurately measured.
- each channel does not receive the target echo signal corresponding to its own channel within the reserved time period, it means that there are no close-distance measured objects and long-distance objects with high reflectivity in the current detection direction.
- the object under test therefore, can control the lidar to emit the next light pulse with a higher second power.
- the lidar can detect long-distance measured objects and short-distance but low-reflectance measured objects, and because the measured objects are far away or relatively close but reflective The rate is low, so the intensity of the target echo signal reflected by the measured object is still low, and the crosstalk signal much smaller than the target echo signal will still not be detected or can be ignored, so each channel can still use the received self
- the target echo signal of the channel is used to calculate the accurate distance of the measured object.
- the laser radar can first detect with the first power. Since the first power is low, there is no crosstalk problem between the channels of the laser radar, and the close-range target can be accurately detected. Objects to be measured and objects to be measured that are far away but have high reflectivity. When the echo signal corresponding to the optical pulse is not received within the reserved time period, the lidar can be controlled to transmit the next optical pulse with a higher second power.
- the lidar control method provided in the embodiment of the present application is to solve the problem of inter-channel crosstalk, and the explanation and description of the method do not consider the interference signal reflected by the lidar itself.
- the interference signal reflected by the channel itself is not considered here, and only the crosstalk signal from the channel and the reflection of the measured object are considered. echo signal.
- the multiple channels of the lidar if within the reserved time period, multiple channels of the lidar receive target echo signals corresponding to their own channels, that is, the object under test is detected, then the multiple channels can be controlled Continue to emit the next light pulse at the first power.
- the lidar is usually mounted on a movable platform, so the scanning scene of the lidar may change with the movement of the movable platform.
- multiple channels of the lidar are detecting (measuring) with the second power, and due to changes in the scanning scene (it can be a change in the scene itself, such as pedestrians appearing at a short distance; it can also be a moving
- signal crosstalk between channels there are many ways to determine whether signal crosstalk between channels occurs.
- it may be determined whether signal crosstalk between channels occurs according to a comparison result of the strength of the received echo signal with a preset threshold. Specifically, it is possible to pre-calibrate the strength of the smallest echo signal that will cause channel crosstalk, and set the strength of the smallest echo signal as the preset threshold, then when the strength of the echo signal received by the channel is high When it is at the preset threshold, it can be determined that a non-negligible crosstalk signal will be generated between the channels.
- the waveform parameters of the target echo signal reflected by the measured object have strong regularity, and the waveform parameters here can include one or more of the following: intensity, slope, and pulse width.
- the waveform parameters of the received echo signal can be compared with the preset waveform parameters, and if the difference between the two waveform parameters is greater than the preset threshold, it can be determined that signal crosstalk between channels occurs .
- the reserved time period is a time period for receiving the echo signal corresponding to the light pulse.
- the duration of the reserved time period may be the flight time corresponding to the maximum range of the laser radar. At this time, when each channel of the laser radar emits light pulses with the first power, due to Long enough to detect objects that are far away but highly reflective.
- the duration of the reserved time period corresponds to the flight time of the specified range, which can be a relatively short distance, so that the long-distance but high reflectivity is used due to the short reserved time period
- the sampling frequency of lidar has been increased, resulting in an increase in point cloud density.
- the laser radar can first detect with the first power. Since the first power is low, there is no crosstalk problem between the channels of the laser radar, and the close-range target can be accurately detected. Objects to be measured and objects to be measured that are far away but have high reflectivity. When the echo signal corresponding to the optical pulse is not received within the reserved time period, the lidar can be controlled to transmit the next optical pulse with a higher second power.
- FIG. 6 is a schematic structural diagram of a lidar control device provided in an embodiment of the present application.
- the device can be used to control the coaxial lidar with the same transmitting optical path and receiving optical path.
- the device includes:
- Processor 610 and memory 620 storing computer programs.
- the processor implements the following steps when executing the computer program:
- the laser emission power corresponding to the second gear is lower than the laser emission power corresponding to the first gear, and/or, the magnification of the receiving circuit corresponding to the second gear is lower than that of the first gear The magnification of the receiving circuit corresponding to the gear position.
- the processor is also used for:
- the distance of the measured object is calculated according to the echo signals received later.
- the processor is also used for:
- the lidar is switched to the second gear, and the next light pulse is emitted at the second gear.
- the processor is also used for:
- the next optical pulse is emitted in a third gear, wherein the laser emission power corresponding to the third gear is higher than the laser emission power corresponding to the first gear, and/or, the third gear
- the amplification factor of the corresponding receiving circuit is higher than the amplification factor of the receiving circuit corresponding to the first gear.
- the processor is also used for:
- the lidar If the number of consecutive occurrences of events in which only one echo signal is received within the time window of the optical pulse reaches a preset number threshold, switch the lidar to the first gear, and transmit in the first gear The next light pulse, or, switch the lidar to the third gear, and transmit the next light pulse with the third gear, wherein the laser emission power corresponding to the third gear is higher than that of the first gear
- the laser emission power corresponding to the first gear, and/or, the amplification factor of the receiving circuit corresponding to the third gear is higher than the amplification factor of the receiving circuit corresponding to the first gear.
- the processor is also used for:
- the interference signal being an echo signal reflected by the lidar itself
- the target signal is obtained by subtracting the interference signal from the echo signal corresponding to the next optical pulse.
- the processor determines the corresponding interference signal according to the outgoing direction corresponding to the next light pulse:
- the interference signal corresponding to the outgoing direction of the next light pulse is determined.
- the lidar when calibrating the corresponding relationship, the lidar emits light pulses at the laser emission power corresponding to the second gear.
- the lidar is configured with a plurality of gears, and different gears correspond to different laser emission powers and/or different magnifications of the receiving circuit, and the first gear is all of the multiple gears. Any gear other than the second gear described above.
- the laser radar control device provided in the embodiment of the present application can control the laser radar to switch to the second gear if only one echo signal is received within the time window of the optical pulse when the laser radar emits light pulses in the first gear. gear, to emit the next light pulse at the second gear. Due to the low laser transmission power and/or the magnification of the receiving circuit in the second gear, the intensity of the target signal reflected by the measured object is also low, and the target signal will not exceed the receiving system of the laser radar after being fused with the interference signal The linear dynamic range, that is, the fused echo signal will not be distorted, so that the real fused echo signal can be used to restore the real target signal, calculate the accurate distance of the measured object, and greatly improve the laser Radar short-range blind spot problem.
- the embodiment of the present application also provides a laser radar control device, which can be applied to a laser radar that transmits and receives multiple channels at the same time, that is, the laser radar can include multiple channels, and the multiple channels transmit and echo light pulses at the same time signal reception.
- the structure of the device can refer to FIG. 6, wherein the processor can implement the following steps when executing the computer program:
- the first power is smaller than the second power.
- the processor is also used for:
- the multiple channels are controlled to continue to transmit the next optical pulse with the first power.
- the processor is also used for:
- the signal crosstalk between the channels is determined according to a comparison result of the strength of the received echo signal with a preset threshold.
- the signal crosstalk between the channels is determined according to a comparison result between waveform parameters of the received echo signal and preset waveform parameters.
- the reserved time period matches the flight time corresponding to the maximum range of the lidar.
- the laser radar can first detect with the first power. Since the first power is low, there is no crosstalk problem between the channels of the laser radar, and the close-range target can be accurately detected. Objects to be measured and objects to be measured that are far away but have high reflectivity. When the echo signal corresponding to the optical pulse is not received within the reserved time period, the lidar can be controlled to transmit the next optical pulse with a higher second power.
- the embodiment of this application provides a laser radar, whose structure can refer to Figure 1, the laser radar includes:
- a light source for emitting a sequence of light pulses
- the receiving circuit is used to receive the echo signal corresponding to the optical pulse
- the transmitting optical path of the lidar is partially the same as the receiving optical path;
- a processor and a memory storing a computer program the processor, when executing the computer program, implements the following steps:
- the laser emission power corresponding to the second gear is lower than the laser emission power corresponding to the first gear, and/or, the magnification of the receiving circuit corresponding to the second gear is lower than that of the first gear The magnification of the receiving circuit corresponding to the gear position.
- the processor is also used for:
- the distance of the measured object is calculated according to the echo signals received later.
- the processor is also used for:
- the lidar is switched to the second gear, and the next light pulse is emitted at the second gear.
- the processor is also used for:
- the next optical pulse is emitted in a third gear, wherein the laser emission power corresponding to the third gear is higher than the laser emission power corresponding to the first gear, and/or, the third gear
- the amplification factor of the corresponding receiving circuit is higher than the amplification factor of the receiving circuit corresponding to the first gear.
- the processor is also used for:
- the lidar If the number of consecutive occurrences of events in which only one echo signal is received within the time window of the optical pulse reaches a preset number threshold, switch the lidar to the first gear, and transmit in the first gear The next light pulse, or, switch the lidar to the third gear, and transmit the next light pulse with the third gear, wherein the laser emission power corresponding to the third gear is higher than that of the first gear
- the laser emission power corresponding to the first gear, and/or, the amplification factor of the receiving circuit corresponding to the third gear is higher than the amplification factor of the receiving circuit corresponding to the first gear.
- the processor is also used for:
- the interference signal being an echo signal reflected by the lidar itself
- the target signal is obtained by subtracting the interference signal from the echo signal corresponding to the next optical pulse.
- the processor determines the corresponding interference signal according to the outgoing direction corresponding to the next light pulse:
- the interference signal corresponding to the outgoing direction of the next light pulse is determined.
- the lidar when calibrating the corresponding relationship, the lidar emits light pulses at the laser emission power corresponding to the second gear.
- the lidar is configured with a plurality of gears, and different gears correspond to different laser emission powers and/or different magnifications of the receiving circuit, and the first gear is all of the multiple gears. Any gear other than the second gear described above.
- the laser radar when the laser radar emits light pulses in the first gear, if only one echo signal is received within the time window of the light pulse, the laser radar can be controlled to switch to the second gear , to emit the next light pulse at the second gear. Due to the low laser transmission power and/or the magnification of the receiving circuit in the second gear, the intensity of the target signal reflected by the measured object is also low, and the target signal will not exceed the receiving system of the laser radar after being fused with the interference signal The linear dynamic range, that is, the fused echo signal will not be distorted, so that the real fused echo signal can be used to restore the real target signal, calculate the accurate distance of the measured object, and greatly improve the laser Radar short-range blind spot problem.
- FIG. 7 is a schematic structural diagram of the multi-channel laser radar provided in the embodiment of the present application.
- the lidar includes:
- each channel includes a light source 710 and a receiving circuit 720, the light source is used to emit light pulse trains, and the receiving circuit is used to receive the light pulse corresponding to the channel where it is located.
- echo signals the plurality of channels transmit light pulses and receive echo signals simultaneously;
- the optical system 730 is used to adjust the outgoing direction of the light pulse
- a processor 740 and a memory 750 storing a computer program the processor implements the following steps when executing the computer program:
- the first power is smaller than the second power.
- the processor is also used for:
- the multiple channels are controlled to continue to transmit the next optical pulse with the first power.
- the processor is also used for:
- the signal crosstalk between the channels is determined according to a comparison result of the strength of the received echo signal with a preset threshold.
- the signal crosstalk between the channels is determined according to a comparison result between waveform parameters of the received echo signal and preset waveform parameters.
- the reserved time period matches the flight time corresponding to the maximum range of the lidar.
- the laser radar can first detect with the first power. Since the first power is low, there is no crosstalk problem between the channels of the laser radar, and the measured object at a close distance can be accurately detected. And long-distance but high-reflectance measured objects. When the echo signal corresponding to the optical pulse is not received within the reserved time period, the lidar can be controlled to transmit the next optical pulse with a higher second power.
- the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, any lidar control method provided in the embodiment of the present application is implemented.
- Embodiments of the present application may take the form of a computer program product implemented on one or more storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having program code embodied therein.
- Computer usable storage media includes both volatile and non-permanent, removable and non-removable media, and may be implemented by any method or technology for information storage.
- Information may be computer readable instructions, data structures, modules of a program, or other data.
- Examples of storage media for computers include, but are not limited to: phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridge, tape magnetic disk storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
- PRAM phase change memory
- SRAM static random access memory
- DRAM dynamic random access memory
- RAM random access memory
- ROM read only memory
- EEPROM Electrically Erasable Programmable Read-Only Memory
- Flash memory or other memory technology
- CD-ROM Compact Disc Read-Only Memory
- DVD Digital Versatile Disc
- Magnetic tape cartridge tape magnetic disk storage or other magnetic storage device or any other non-transmission medium that can be used to
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
一种激光雷达控制方法,激光雷达是同轴激光雷达,方法包括:控制激光雷达以第一档位发射光脉冲,并接收光脉冲对应的回波信号;若在光脉冲的时间窗口内仅接收到一个回波信号,将激光雷达切换至第二档位,使激光雷达以第二档位发射下一个光脉冲;第二档位对应的激光发射功率和/或接收电路的放大倍数低于第一档位。解决被测物体反射的目标信号和激光雷达自身反射的干扰信号融合后超出接收系统的线性动态范围,导致无法还原出目标信号的技术问题;另一种激光雷达控制方法,激光雷达包括多个通道,多个通道同时进行光脉冲的发射和回波信号的接收,方法包括:控制激光雷达的多个通道均以第一功率发射光脉冲;若在预留的时间段内多个通道均未接收到自身通道发射的光脉冲对应的回波信号,控制激光雷达的多个通道均以第二功率发射下一个光脉冲;其中,第一功率小于第二功率。
Description
本申请涉及激光雷达技术领域,尤其涉及一种激光雷达控制方法、装置、激光雷达和计算机可读存储介质。
激光雷达是一种光学测距设备,其可以主动向被测物体发射光脉冲,并获取被测物体反射回来的光脉冲对应的回波信号。根据发射光脉冲的时刻与接收到回波信号的时刻之间的时间差,可以计算出被测物体与激光雷达之间的深度信息。根据发射该光脉冲时已知的出射方向,可以获得被测物体相对于激光雷达的角度信息。结合测得的深度信息和角度信息,可以获得该光脉冲所到达位置对应的点云点。通过对不同的方向分别发射光脉冲,可以获得当前场景对应的点云,重建被测物体相对于激光雷达的空间三维信息,这里,点云即多个所述点云点的集合。
发明内容
有鉴于此,本申请实施例提供了一种激光雷达控制方法、装置、激光雷达和计算机可读存储介质,目的之一是解决被测物体反射的目标信号和激光雷达自身反射的干扰信号融合后超出接收系统的线性动态范围,导致无法还原出目标信号的技术问题。
本申请实施例第一方面提供一种激光雷达控制方法,应用于同轴激光雷达,所述方法包括:
控制所述激光雷达以第一档位发射光脉冲,并接收所述光脉冲对应的回波信号;
若在所述光脉冲的时间窗口内仅接收到一个回波信号,将所述激光雷达切换至第二档位,使所述激光雷达以所述第二档位发射下一个光脉冲;
其中,所述第二档位对应的激光发射功率低于所述第一档位对应的激光发射功率,和/或,所述第二档位对应的接收电路的放大倍数低于所述第一档位对应的接收电路的放大倍数。
本申请实施例第二方面提供一种激光雷达控制方法,所述激光雷达包括多个通道, 所述多个通道同时进行光脉冲的发射和回波信号的接收,所述方法包括:
控制所述激光雷达的所述多个通道均以第一功率发射光脉冲;
若在预留的时间段内所述多个通道均未接收到自身通道发射的光脉冲对应的回波信号,控制所述激光雷达的所述多个通道均以第二功率发射下一个光脉冲;
其中,所述第一功率小于所述第二功率。
本申请实施例第三方面提供一种激光雷达控制装置,所述激光雷达为同轴激光雷达,所述装置包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
控制所述激光雷达以第一档位发射光脉冲,并接收所述光脉冲对应的回波信号;
若在所述光脉冲的时间窗口内仅接收到一个回波信号,将所述激光雷达切换至第二档位,使所述激光雷达以所述第二档位发射下一个光脉冲;
其中,所述第二档位对应的激光发射功率低于所述第一档位对应的激光发射功率,和/或,所述第二档位对应的接收电路的放大倍数低于所述第一档位对应的接收电路的放大倍数。
本申请实施例第四方面提供一种激光雷达控制装置,所述激光雷达包括多个通道,所述多个通道同时进行光脉冲的发射和回波信号的接收,所述装置包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
控制所述激光雷达的所述多个通道均以第一功率发射光脉冲;
若在预留的时间段内所述多个通道均未接收到自身通道发射的光脉冲对应的回波信号,控制所述激光雷达的所述多个通道均以第二功率发射下一个光脉冲;
其中,所述第一功率小于所述第二功率。
本申请实施例第五方面提供一种激光雷达,包括:
光源,用于发射光脉冲序列;
光学系统,用于调整光脉冲的出射方向;
接收电路,用于接收光脉冲对应的回波信号;
所述激光雷达的发射光路和接收光路部分相同;
处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
控制所述激光雷达以第一档位发射光脉冲,并接收所述光脉冲对应的回波信号;
若在所述光脉冲的时间窗口内仅接收到一个回波信号,将所述激光雷达切换至第二档位,使所述激光雷达以所述第二档位发射下一个光脉冲;
其中,所述第二档位对应的激光发射功率低于所述第一档位对应的激光发射功率,和/或,所述第二档位对应的接收电路的放大倍数低于所述第一档位对应的接收电路的放大倍数。
本申请实施例第六方面提供一种激光雷达,包括:
多个通道,每个通道包括一个光源和一个接收电路,所述光源用于发射光脉冲序列,所述接收电路用于接收其所在通道的光脉冲对应的回波信号,所述多个通道同时进行光脉冲的发射和回波信号的接收;
光学系统,用于调整光脉冲的出射方向;
处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
控制所述激光雷达的所述多个通道均以第一功率发射光脉冲;
若在预留的时间段内所述多个通道均未接收到自身通道发射的光脉冲对应的回波信号,控制所述激光雷达的所述多个通道均以第二功率发射下一个光脉冲;
其中,所述第一功率小于所述第二功率。
本申请实施例第七方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供任一种方法。
本申请实施例提供的激光雷达控制方法,在激光雷达以第一档位发射光脉冲时,若在光脉冲的时间窗口内仅接收到的一个回波信号,则可以控制激光雷达切换到第二档位,以第二档位发射下一个光脉冲。由于第二档位的激光发射功率和/或接收电路的放大倍数较低,因此被测物体反射的目标信号的强度也较低,该目标信号与干扰信号融合后不会超出激光雷达的接收系统的线性动态范围,即融合后的回波信号不会发生畸变,从而,可以利用该真实的融合后的回波信号还原出真实的目标信号,计算出准确的被测物体的距离,大大改善激光雷达的近距离盲区问题。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的同轴激光雷达的结构示意图。
图2是本申请实施例提供的干扰信号和目标信号的产生原理图。
图3A是本申请实施例提供的目标信号与干扰信号未融合的示意图。
图3B是本申请实施例提供的目标信号与干扰信号融合的示意图。
图4是本申请实施例提供的激光雷达控制方法的流程图。
图5是本申请实施例提供的另一激光雷达控制方法的流程图。
图6是本申请实施例提供的激光雷达控制装置的结构示意图。
图7是本申请实施例提供的多通道激光雷达的结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
激光雷达是一种光学测距设备,其可以主动向被测物体发射光脉冲,并获取被测物体反射回来的光脉冲对应的回波信号。根据发射光脉冲的时刻与接收到回波信号的时刻之间的时间差,可以计算出被测物体与激光雷达之间的深度信息。根据发射该光脉冲时已知的出射方向,可以获得被测物体相对于激光雷达的角度信息。结合测得的深度信息和角度信息,可以获得该光脉冲所到达位置对应的点云点。通过对不同的方向分别发射光脉冲,可以获得当前场景对应的点云,重建被测物体相对于激光雷达的空间三维信息,这里,点云即多个所述点云点的集合。
激光雷达通常包括发射光路和接收光路,激光雷达可以是同轴激光雷达,发射光路和接收光路可以部分相同,即发射出去的光脉冲所经过的路径与反射回来的回波信号所经过的路径部分相同。可以参考图1,图1是本申请实施例提供的同轴激光雷达的结构示意图。其中,光源用于发射光脉冲序列,发射出去的光脉冲经过光学系统,在光学系统的折射下朝不同的方向出射,并在到达被测物体后发生反射。反射回来的回波信号经过部分相同的光路到达接收电路,接收电路将采集的信号传输给处理器进行分析和处理。
由于同轴激光雷达的发射光路和接收光路部分相同,因此,在同轴激光雷达发射一束光脉冲后,激光雷达的接收电路可能接收到该光脉冲对应的两种回波信号,其中 第一种回波信号是由激光雷达自身反射的回波信号,由于该自身反射的回波信号无益于被测物体的距离测量,因此可以称为干扰信号,第二种回波信号是由被测物体反射的回波信号,其可以用于计算被测物体的距离,因此可以将该回波信号称为目标信号。
可以参考图2,图2是本申请实施例提供的干扰信号和目标信号的产生原理图。其中,干扰信号是激光雷达自身的光学系统反射的回波信号,干扰信号的产生与激光雷达的光学系统的材料、制造、安装等因素相关。所谓光学系统,在一种实施方式中,至少可以包括光路上的光学器件,如透镜、棱镜、出光窗口的玻璃等等,在一种实施方式中,还可以包括用于支撑这些光学器件的支撑件。
在激光雷达进行测距时,若某个方向存在被测物体,则根据被测物体距离的不同,干扰信号与目标信号可能发生融合,也可能不发生融合。可以理解的,目标信号的接收时间与被测物体的距离正相关,被测物体的距离越远,则目标信号的接收时间越晚,被测物体的距离越近,则目标信号的接收时间越早。干扰信号的接收时间则相对固定,通常是在时间窗口的前期。因此,当被测物体的距离较远时,目标信号与干扰信号的接收时间可以错开(如图3A所示),此时可以利用在后接收到的目标信号,计算出准确的被测物体的距离。但当被测物体的距离较近时,目标信号与干扰信号的接收时间相近,因此目标信号与干扰信号将会发生融合(如图3B所示),导致无法测出准确的被测物体的距离。
对于目标信号与干扰信号发生融合导致测距精度大大下降的问题,在一种实施方式中,可以通过还原目标信号的方式解决。具体的,可以预先标定不同出射方向对应的干扰信号,则在对某个出射方向进行探测时,可以根据预先标定的对应关系,确定该出射方向对应的干扰信号。此时,即便接收到的回波信号是干扰信号和目标信号融合的结果,也可以利用标定的干扰信号从接收到的回波信号中还原出目标信号,从而可以计算出准确的被测物体的距离。
通过上述方式可以大大改善激光雷达的近处盲区,但还存在需要解决的问题,具体而言,激光雷达的接收系统的线性动态范围是有限的,而激光雷达自身反射的干扰信号的强度较大,近距离的被测物体反射的目标信号的强度也较大,当干扰信号和目标信号融合后,融合后的回波信号的强度将超出系统的线性动态范围,造成接收到的回波信号产生非线性的畸变。如此,即便预先标定了准确的干扰信号,也无法利用接收到的已经发生畸变的回波信号还原出真实的目标信号。
为解决上述问题,本申请实施例提供了一种激光雷达控制方法,该方法应用于发射光路与接收光路是部分相同的同轴激光雷达,可以参考图4,图4是本申请实施例 提供的激光雷达控制方法的流程图,该方法可以包括以下步骤:
S402、控制激光雷达以第一档位发射光脉冲,并接收光脉冲对应的回波信号。
S404、若在光脉冲的时间窗口内仅接收到一个回波信号,将激光雷达切换至第二档位,使激光雷达以第二档位发射下一个光脉冲。
上述的第一档位与第二档位在激光发射功率和/或接收电路的放大倍数上有所区别。具体的,第二档位对应的激光发射功率低于第一档位对应的激光发射功率,和/或,第二档位对应的接收电路的放大倍数低于第一档位对应的接收电路的放大倍数。
可以理解的,激光雷达发射光脉冲时采用的激光发射功率越高,则接收到的光脉冲对应的回波信号的强度也会越高,即激光发射功率与回波信号的强度是正相关的。而激光雷达在探测时采用的接收电路的放大倍数越高,则接收到的回波信号的强度也越高(因为被放大了更多),即接收电路的放大倍数也与回波信号的强度正相关。
由于第一档位在激光发射功率和/或接收电路的放大倍数上高于第二档位,因此当激光雷达以第一档位发射光脉冲时,被测物体反射回来的目标信号的强度是比较大的。此时,若在光脉冲的时间窗口内仅接收到一个回波信号,即意味着可能发生以下两种情况的其中一种,第一种情况是,被测物体的距离较近,被测物体反射的目标信号和激光雷达自身反射的干扰信号发生了融合,从而接收到的回波信号的数量仅有一个;第二种情况是,当前光脉冲的出射方向上不存在被测物体,反射回来的回波信号中并不包括被测物体反射的目标信号,即接收到的回波信号仅为干扰信号。
在一种实施方式中,可以对上述的两种情况进行区分。具体的,由于未发生融合的回波信号通常在强度、脉宽、斜率等方面具有较强的规律性,因此,若在光脉冲的时间窗口内仅接收到一个回波信号,则可以提取接收到的回波信号的波形参数,将该波形参数与预设波形参数进行比较,这里,预设波形参数可以是激光雷达预先存储的未发生融合的回波信号的波形参数。若两者在波形参数上的差距超过设定的阈值,则可以确定属于第一种情况,即存在目标信号,该目标信号与干扰信号发生了融合,从而导致在时间窗口内仅接收到一个回波信号。反之,若两者在波形参数上的差距小于设定的阈值,则可以确定属于第二种情况,即不存在目标信号,接收到的回波信号本身即为干扰信号。
在一种实施方式中,也可以不对上述的两种情况进行区分,而是可以直接认为属于第一种情况,以最大限度的保证安全。由于激光雷达通常安装在车辆等可移动平台上,负责感知可移动平台周边的环境,因此,若在时间窗口内仅接收到一个回波信号,出于安全考虑,可以默认被测物体存在,该被测物体的距离过近,从而发生了目标信 号和干扰信号的融合。而在此基础上,由于当前的光脉冲和回波信号是激光雷达在第一档位下发射和接收的,因此被测物体反射的目标信号的强度较大,其与干扰信号发生融合后,将超出激光雷达的接收系统的线性动态范围,即接收到的回波信号会发生畸变,从而无法还原出真实的目标信号。
考虑到上述问题,本申请实施例在光脉冲的时间窗口内仅接收到一个回波信号时,可以直接切换激光雷达的档位,即将激光雷达的档位从第一档位切换到第二档位,使激光雷达以第二档位发射下一个光脉冲和接收该下一个光脉冲对应的回波信号。由于第二档位对应的激光发射功率和/或接收电路的放大倍数较低,因此被测物体反射的目标信号的强度较低,目标信号与干扰信号融合后不会超出接收系统的线性动态范围,从而可以根据预先标定的干扰信号对接收到的融合后的回波信号进行还原,还原得到目标信号,计算出准确的被测物体的距离。
本申请实施例提供的激光雷达控制方法,在激光雷达以第一档位发射光脉冲时,若在光脉冲的时间窗口内仅接收到的一个回波信号,则可以控制激光雷达切换到第二档位,以第二档位发射下一个光脉冲。由于第二档位的激光发射功率和/或接收电路的放大倍数较低,因此被测物体反射的目标信号的强度也较低,该目标信号与干扰信号融合后不会超出激光雷达的接收系统的线性动态范围,即融合后的回波信号不会发生畸变,从而,可以利用该真实的融合后的回波信号还原出真实的目标信号,计算出准确的被测物体的距离,大大改善激光雷达的近距离盲区问题。
可以理解的,当前光脉冲与下一个光脉冲对应的探测位置可以是相同的,也可以是不同的。例如,在一种实施方式中,激光雷达中的光学器件可以在发射两个光脉冲时保持在相同的位姿,从而,这两个发射的光脉冲对应的出射方向可以是相同的。在一种实施方式中,激光雷达中的光学器件也可以是持续保持转动的,此时,若当前光脉冲与下一个光脉冲之间的发射间隔很小,则在该发射间隔内光学器件转动的幅度也很小,可以近似认为没有发生位姿的变化,从而,也可以认为当前光脉冲与下一个光脉冲对应的探测位置相同。当然,若当前光脉冲与下一个光脉冲之间的发射间隔较大,则当前光脉冲的探测位置与下一个光脉冲的探测位置会产生偏差,属于两个不同的探测位置,但需要注意的是,即便是两个不同的探测位置,由于前后发射的两个光脉冲的发射间隔不会太大,因此这两个探测位置也不会相距太远,比如很可能是同一个被测物体的两个不同位置。
在一种实施方式中,在激光雷达以第二档位发射下一个光脉冲后,可以接收该下一个光脉冲对应的回波信号。由于该下一个光脉冲与上一个光脉冲是前后发射的两个 光脉冲,因此,该下一个光脉冲与上一个光脉冲在出射方向和所到达的位置上不会有过大差距,通常是对同一个被测物体的探测,即被测物体的距离仍然较近,在时间窗口内仍然是接收到一个回波信号,该回波信号可以是被测物体反射的目标信号和干扰信号融合得到的。
在前文已有说明,由于第二档位的激光发射功率和/或接收电路的放大倍数较低,因此,目标信号与干扰信号融合后不会超出激光雷达的接收系统的线性动态范围,从而可以从接收到的回波信号中还原出目标信号。而在具体进行还原时,可以根据预先标定的对应关系,确定所述下一个光脉冲的出射方向对应的干扰信号,这里,对应关系是预先标定的出射方向与干扰信号的对应关系。在确定干扰信号,或者说确定干扰信号对应的波形参数后,可以基于干扰信号和接收到的回波信号计算目标信号,具体的,可以将接收到的回波信号与确定的干扰信号进行相减,从而可以得到目标信号。在得到目标信号后,可以根据目标信号对应的接收时间计算被测物体的距离。
需要说明的是,在标定出射方向和干扰信号的对应关系时,由于影响干扰信号的因素除了出射方向以外还包括当前发射的光脉冲对应的激光发射功率,因此在标定过程中,可以保持各个方向对应的激光发射功率相同。在一种实施方式中,可以在标定所述对应关系时,确保激光雷达是以第二档位朝各个待标定方向发射光脉冲的。由于标定的干扰信号是用于还原目标信号的,而目标信号只有在接收到的融合信号不发生畸变时才可以还原成功,而接收到的融合信号不发生畸变需要激光雷达以第二档位发射光脉冲,因此,在标定的过程中保持激光雷达处于第二档位,可以使还原出的目标信号更准确。
在一种实施方式中,若激光雷达以第一档位发射光脉冲,且在该光脉冲的时间窗口接收到了两个回波信号,则可以确定目标信号和干扰信号未发生融合,此时,可以将在后接收到的回波信号确定为目标信号,根据该目标信号计算得到被测物体的距离。
在一种实施方式中,若计算得到的被测物体的距离小于预设的距离阈值,出于降低功耗和延长激光雷达寿命的考虑,也可以将激光雷达从第一档位切换到第二档位。此时,虽然第二档位对应的激光发射功率和/或接收电路的放大倍数较低,但由于被测物体的距离不会太远,仍然可以探测到被测物体,从而达到满足激光安规,降低激光雷达功耗和延长激光雷达寿命的技术效果。
在一种实施方式中,若计算得到的被测物体的距离大于预设的距离阈值或者在后接收到的回波信号的能量小于预设的能量阈值,则可以继续以第一档位发射下一个光脉冲,或者,可以以第三档位发射下一个光脉冲,这里,第三档位对应的激光发射功 率高于第一档位对应的激光发射功率,和/或,第三档位对应的接收电路的放大倍数高于第一档位对应的接收电路的放大倍数。
需要说明的是,在后接收到的回波信号的能量小于预设的能量阈值时,说明当前探测方向的被测物体的反射率较低或者该被测物体的距离较远,因此,对于低反射率或距离较远的被测物体,在发射下一个光脉冲时,可以以激光发射功率和/或接收电路的放大倍数较高的第一档位继续进行探测,或者,可以以激光发射功率和/或接收电路的放大倍数更高的第三档位进行探测,以提高对这种低发射率或距离远的被测物体的测距精度。
如前所述,当激光雷达以第一档位发射光脉冲,且在光脉冲的时间窗口内仅接收到一个回波信号时,可能对应两种情况,第一种是目标信号与干扰信号发生了融合,第二种是当前光脉冲的出射方向上不存在被测物体,即没有被测物体反射的目标信号。若实际发生的是第二种情况,则在激光雷达切换到第二档位后,由于第二档位对应的激光发射功率和/或接收电路的放大倍数较低,因此激光雷达的探测量程缩短,若此时在探测量程外出现了被测物体,则该出现在探测量程外的被测物体将无法被探测到,这种探测上的遗漏对应用到自动驾驶领域的激光雷达而言是风险较高的。
为解决上述问题,在一种实施方式中,若在激光雷达发射光脉冲进行探测的过程中,连续出现了N次在光脉冲的时间窗口内仅接收到的一个回波信号(此处的N可以根据实际需求进行设定,其可以是预设的次数阈值),则可以强制将激光雷达从第二档位切换回第一档位,下一个光脉冲以第一档位进行发射,或者可以将激光雷达从第二档位切换至第三档位,以第三档位发射下一个光脉冲,该第三档位的激光发射功率和/或接收电路的放大倍数高于第一档位。通过这种方式,可以避免激光雷达一直采用第二档位进行探测,从而可以避免新出现在远处的被测物体无法被探测到。
在一种实施方式中,激光雷达可以配置有多个档位,每个档位可以在激光发射功率上有所区别或者在接收电路的放大倍数上有所区别,上述的第一档位和第二档位可以是所述多个档位中任意档位,但第一档位和第二档位之间满足第一档位的激光发射功率和/或接收电路的放大倍数高于第二档位的条件。
本申请实施例提供的激光雷达控制方法,在激光雷达以第一档位发射光脉冲时,若在光脉冲的时间窗口内仅接收到的一个回波信号,则可以控制激光雷达切换到第二档位,以第二档位发射下一个光脉冲。由于第二档位的激光发射功率和/或接收电路的放大倍数较低,因此被测物体反射的目标信号的强度也较低,该目标信号与干扰信号融合后不会超出激光雷达的接收系统的线性动态范围,即融合后的回波信号不会发生 畸变,从而,可以利用该真实的融合后的回波信号还原出真实的目标信号,计算出准确的被测物体的距离,大大改善激光雷达的近距离盲区问题。
在一些激光雷达的应用中,要求激光雷达采集到的场景的点云有足够高的点云密度。一种提高点云密度的方式是,激光雷达可以包括多个通道,每个通道都可以进行光脉冲的发射和回波信号的接收,从而,可以使激光雷达的多个通道在探测时同时进行收发,则可以大幅度提高点云密度。
而在多个通道同时进行收发时,由于杂散光、离焦等等原因,通道之间可能会发生串扰。所谓串扰,即一个通道在进行回波信号的接收时,除了接收到本通道发射的光脉冲返回的目标回波信号,还接收到了其他通道发射的光脉冲返回的串扰信号。而当一个通道接收到其他多个通道引起的串扰信号,又同时接收到本通道的目标回波信号时,目标回波信号将与串扰信号发生融合,导致无法计算出精度较高的结果。
为解决上述问题,本申请实施例提供了一种激光雷达控制方法,该方法可以应用于多通道同时收发的激光雷达,即该激光雷达包括多个通道,且多个通道同时进行光脉冲的发射和回波信号的接收,可以参考图5,图5是本申请实施例提供的另一激光雷达控制方法的流程图,该方法可以包括:
S502、控制激光雷达的多个通道均以第一功率发射光脉冲。
S504、若在预留的时间段内所述多个通道均未接收到自身通道发射的光脉冲对应的回波信号,控制激光雷达以第二功率发射下一个光脉冲。
其中,所述第一功率小于所述第二功率。
为方便区分,这里将一个通道自身发射的光脉冲对应的回波信号称为目标回波信号。
对于多通道激光雷达,当多通道同时进行收发时,通道之间可能会发生串扰,但来自其他通道的串扰信号通常远小于自身通道对应的目标回波信号,比如A通道和B通道均以相同功率发射光脉冲,若A通道接收到的自身通道的目标回波信号的强度是K,则其接收到的来自B通道的串扰信号的强度可以是K/10000。因此,在一种实施方式中,可以使激光雷达的各个通道均以采用较低的功率发射光脉冲,则各个通道自身对应的目标回波信号的强度是较低的,在此基础上,远小于目标回波信号的串扰信号的强度则更低,以至于各个通道无法探测到来自其他通道的串扰信号,或者探测到的串扰信号过小,可以忽略不计。
当激光雷达的多个通道均以较低的第一功率发射光脉冲时,通道之间的串扰信号无法被探测到或者小到可以忽略,因此,各个通道接收到的自身通道的目标回波信号 不会被串扰信号干扰,各个通道均可以利用自身通道的目标回波信号计算出准确的被测物体的距离。
但需要注意的是,第一功率是较低的激光发射功率,因此当激光雷达以第一功率进行探测时,激光雷达的探测量程有限,仅能探测到近距离的被测物体,或者远距离但反射率很高的被测物体。若激光雷达的多个通道在以第一功率发射光脉冲后,各通道均能够在预留的时间段内接收到自身通道的目标回波信号,则意味着激光雷达当前的探测方向上,存在近距离的被测物体或者存在远距离但反射率很高的被测物体,此时,由于没有串扰的影响,可以准确的测出这些被测物体的距离。
而若在预留的时间段内,各个通道均未接收到自身通道对应的目标回波信号,则意味着当前的探测方向上不存在近距离的被测物体与远距离但反射率很高的被测物体,因此,可以控制激光雷达以较高的第二功率发射下一个光脉冲。由于第二功率高于第一功率,因此激光雷达可以对远距离的被测物体和近距离但反射率低的被测物体进行探测,又由于被测物体的距离较远或者距离较近但反射率较低,因此被测物体反射回来的目标回波信号的强度仍然较低,远小于目标回波信号的串扰信号仍然不会被探测到或者可以忽略,因此各个通道仍可以利用接收到的自身通道的目标回波信号计算出准确的被测物体的距离。
本申请实施例提供的激光雷达控制方法,激光雷达可以先以第一功率进行探测,由于第一功率较低,因此激光雷达的各通道之间不存在串扰问题,可以准确测出近距离的被测物体以及远距离但反射率高的被测物体。而在预留的时间段内未接收到光脉冲对应的回波信号时,可以控制激光雷达以较高的第二功率发射下一个光脉冲。由于在预留的时间段未接收到回波信号意味着不存在近距离的被测物体以及远距离但反射率高的被测物体,因此,以较高的第二功率发射下一个光脉冲时,由于被测物体或是远距离的,或是近距离但反射率低的,因此被测物体反射的回波信号的强度仍然较低,各通道之间仍然不会发生串扰,从而可以准确测量出这部分远距离或者近距离但反射率低的被测物体的距离。
需要说明的是,本申请实施例提供的为解决通道间串扰问题的激光雷达控制方法,关于该方法的说明和描述没有考虑激光雷达自身反射的干扰信号。比如,对于步骤S504中的在预留的时间段内多个通道均未接收到的回波信号的表述,这里不考虑通道自身反射的干扰信号,仅考虑来自通道的串扰信号和被测物体反射的回波信号。
在一种实施方式中,若在预留的时间段内,激光雷达的多个通道均接收到的自身通道对应的目标回波信号,即探测到了被测物体,则可以控制所述多个通道继续以第 一功率发射下一个光脉冲。
结合前文的内容可知,激光雷达通常搭载在可移动平台上,因此激光雷达的扫描场景随着可移动平台的运动可能会发生变化。在一种情况中,激光雷达的多个通道正在以第二功率进行探测(测量),而由于扫描场景的变化(可以是场景自身的变化,比如近距离处出现了行人;也可以是可移动平台的运动导致的场景变化,比如可移动平台进行了朝向的调整),当前的出射方向上出现了近距离的被测物体或者出现了远距离但反射率高的被测物体,此时,由于被测物体反射回来的回波信号的强度较高,因此通道之间将会产生串扰信号。对于这种情况,由于串扰信号会导致通道接收到的回波信号发生畸变和失真,因此,在一种实施方式中,可以舍弃本次测量的结果,并控制多个通道以第一功率发射下一个光脉冲,以消除通道间串扰的影响。
在确定是否发生通道间的信号串扰时,可以有多种方式。在一种实施方式中,可以根据接收到的回波信号的强度与预设阈值的比较结果确定是否发生通道间的信号串扰。具体的,可以预先标定会发生通道串扰的最小的回波信号的强度,并将该最小的回波信号的强度设定为所述预设阈值,则当通道接收到的回波信号的强度高于所述预设阈值时,则可以确定通道之间会产生不可忽略的串扰信号。
在一种实施方式中,还可以根据接收到的回波信号的波形参数与预设波形参数的比较结果确定的。在通道之间不存在串扰时,被测物体反射的目标回波信号的波形参数是具有较强的规律性的,这里的波形参数可以包括以下一种或多种:强度、斜率、脉宽。而当目标回波信号与串扰信号融合时,融合后的波形将与为融合的目标回波信号的波形具有较大差异。因此,在本实施方式中,可以将接收到的回波信号的波形参数与预设波形参数进行比较,若两者在波形参数上的差距大于预设阈值,则可以确定发生通道间的信号串扰。
预留的时间段是用于接收光脉冲对应的回波信号的时间段。在一种实施方式中,预留的时间段的时长可以是激光雷达的最大量程对应的飞行时间,此时,在激光雷达的各个通道以第一功率发射光脉冲时,由于预留的时间段足够长,因此对于远距离但反射率高的被测物体也能够探测到。但考虑到远距离且反射率高的被测物体在现实中的出现频率较低,为提高采样频率,即减小前后两次发射光脉冲之间的时间间隔,在一种实施方式中,可以使预留的时间段的时长与指定的量程的飞行时间相对应,该指定的量程可以是一个较近的距离,从而,由于预留的时间段较短,因此远距离但反射率高的被测物体无法探测到,但也由于预留的时间段较短,激光雷达的采样频率得到了提高,从而带来点云密度的提高。
本申请实施例提供的激光雷达控制方法,激光雷达可以先以第一功率进行探测,由于第一功率较低,因此激光雷达的各通道之间不存在串扰问题,可以准确测出近距离的被测物体以及远距离但反射率高的被测物体。而在预留的时间段内未接收到光脉冲对应的回波信号时,可以控制激光雷达以较高的第二功率发射下一个光脉冲。由于在预留的时间段未接收到回波信号意味着不存在近距离的被测物体以及远距离但反射率高的被测物体,因此,以较高的第二功率发射下一个光脉冲时,由于被测物体或是远距离的,或是近距离但反射率低的,因此被测物体反射的回波信号的强度仍然较低,各通道之间仍然不会发生串扰,从而可以准确测量出这部分远距离或者近距离但反射率低的被测物体的距离。
下面可以参考图6,图6是本申请实施例提供的激光雷达控制装置的结构示意图。该装置可以用于控制发射光路和接收光路部分相同的同轴激光雷达,该装置包括:
处理器610和存储有计算机程序的存储器620。
在一种实施方式中,所述处理器在执行所述计算机程序时实现以下步骤:
控制所述激光雷达以第一档位发射光脉冲,并接收所述光脉冲对应的回波信号;
若在所述光脉冲的时间窗口内仅接收到一个回波信号,将所述激光雷达切换至第二档位,使所述激光雷达以所述第二档位发射下一个光脉冲;
其中,所述第二档位对应的激光发射功率低于所述第一档位对应的激光发射功率,和/或,所述第二档位对应的接收电路的放大倍数低于所述第一档位对应的接收电路的放大倍数。
可选的,所述处理器还用于:
若在所述光脉冲的时间窗口内接收到两个回波信号,根据在后接收到的回波信号计算被测物体的距离。
可选的,所述处理器还用于:
若计算得到的所述被测物体的距离小于预设的距离阈值,将所述激光雷达切换至所述第二档位,以所述第二档位发射下一个光脉冲。
可选的,所述处理器还用于:
若计算得到的所述被测物体的距离大于预设的距离阈值或者所述在后接收的回波信号的能量小于预设的能量阈值,继续以所述第一档位发射下一个光脉冲,或者,以第三档位发射下一个光脉冲,其中,所述第三档位对应的激光发射功率高于所述第一档位对应的激光发射功率,和/或,所述第三档位对应的接收电路的放大倍数高于所述第一档位对应的接收电路的放大倍数。
可选的,所述处理器还用于:
若在光脉冲的时间窗口内仅接收到一个回波信号的事件的连续发生次数达到预设的次数阈值,将所述激光雷达切换至所述第一档位,以所述第一档位发射下一个光脉冲,或者,将所述激光雷达切换至第三档位,以所述第三档位发射下一个光脉冲,其中,所述第三档位对应的激光发射功率高于所述第一档位对应的激光发射功率,和/或,所述第三档位对应的接收电路的放大倍数高于所述第一档位对应的接收电路的放大倍数。
可选的,所述处理器还用于:
根据所述下一个光脉冲的出射方向确定对应的干扰信号,所述干扰信号是所述激光雷达自身反射的回波信号;
基于所述干扰信号和接收到的所述下一个光脉冲对应的回波信号计算目标信号;
根据所述目标信号计算被测物体的距离。
可选的,所述目标信号是所述下一个光脉冲对应的回波信号减去所述干扰信号得到的。
可选的,所述处理器根据所述下一个光脉冲对应的出射方向确定对应的干扰信号时用于:
根据预先标定的出射方向和干扰信号的对应关系,确定所述下一个光脉冲的出射方向对应的干扰信号。
可选的,在标定所述对应关系时,所述激光雷达以所述第二档位对应的激光发射功率发射光脉冲。
可选的,所述激光雷达配置了多个档位,不同档位对应的激光发射功率不同和/或接收电路的放大倍数不同,所述第一档位是所述多个档位中的所述第二档位以外的任一档位。
以上所提供的激光雷达控制装置的各种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请实施例提供的激光雷达控制装置,在激光雷达以第一档位发射光脉冲时,若在光脉冲的时间窗口内仅接收到的一个回波信号,则可以控制激光雷达切换到第二档位,以第二档位发射下一个光脉冲。由于第二档位的激光发射功率和/或接收电路的放大倍数较低,因此被测物体反射的目标信号的强度也较低,该目标信号与干扰信号融合后不会超出激光雷达的接收系统的线性动态范围,即融合后的回波信号不会发生畸变,从而,可以利用该真实的融合后的回波信号还原出真实的目标信号,计算出准 确的被测物体的距离,大大改善激光雷达的近距离盲区问题。
本申请实施例还提供一种激光雷达控制装置,该装置可以应用于多通道同时收发的激光雷达,即该激光雷达可以包括多个通道,所述多个通道同时进行光脉冲的发射和回波信号的接收。
该装置的结构可以参考图6,其中,处理器在执行所述计算机程序时可以实现以下步骤:
控制所述激光雷达的所述多个通道均以第一功率发射光脉冲;
若在预留的时间段内所述多个通道均未接收到自身通道发射的光脉冲对应的回波信号,控制所述激光雷达的所述多个通道均以第二功率发射下一个光脉冲;
其中,所述第一功率小于所述第二功率。
可选的,所述处理器还用于:
若在预留的时间段内所述多个通道均接收到自身通道发射的光脉冲对应的回波信号,控制所述多个通道继续以所述第一功率发射下一个光脉冲。
可选的,所述处理器还用于:
若在所述多个通道以所述第二功率进行测量时发生了通道间的信号串扰,舍弃本次测量的结果,并控制所述多个通道以所述第一功率发射下一个光脉冲。
可选的,所述通道间的信号串扰是根据接收到的回波信号的强度与预设阈值的比较结果确定的。
可选的,所述通道间的信号串扰是根据接收到的回波信号的波形参数与预设波形参数的比较结果确定的。
可选的,所述预留的时间段与所述激光雷达的最大量程对应的飞行时间相匹配。
以上所提供的激光雷达控制装置的各种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请实施例提供的激光雷达控制装置,激光雷达可以先以第一功率进行探测,由于第一功率较低,因此激光雷达的各通道之间不存在串扰问题,可以准确测出近距离的被测物体以及远距离但反射率高的被测物体。而在预留的时间段内未接收到光脉冲对应的回波信号时,可以控制激光雷达以较高的第二功率发射下一个光脉冲。由于在预留的时间段未接收到回波信号意味着不存在近距离的被测物体以及远距离但反射率高的被测物体,因此,以较高的第二功率发射下一个光脉冲时,由于被测物体或是远距离的,或是近距离但反射率低的,因此被测物体反射的回波信号的强度仍然较低,各通道之间仍然不会发生串扰,从而可以准确测量出这部分远距离或者近距离但反射 率低的被测物体的距离。
本申请实施例提供一种激光雷达,其结构可以参考图1,该激光雷达包括:
光源,用于发射光脉冲序列;
光学系统,用于调整光脉冲的出射方向;
接收电路,用于接收光脉冲对应的回波信号;
所述激光雷达的发射光路和接收光路部分相同;
处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
控制所述激光雷达以第一档位发射光脉冲,并接收所述光脉冲对应的回波信号;
若在所述光脉冲的时间窗口内仅接收到一个回波信号,将所述激光雷达切换至第二档位,使所述激光雷达以所述第二档位发射下一个光脉冲;
其中,所述第二档位对应的激光发射功率低于所述第一档位对应的激光发射功率,和/或,所述第二档位对应的接收电路的放大倍数低于所述第一档位对应的接收电路的放大倍数。
可选的,所述处理器还用于:
若在所述光脉冲的时间窗口内接收到两个回波信号,根据在后接收到的回波信号计算被测物体的距离。
可选的,所述处理器还用于:
若计算得到的所述被测物体的距离小于预设的距离阈值,将所述激光雷达切换至所述第二档位,以所述第二档位发射下一个光脉冲。
可选的,所述处理器还用于:
若计算得到的所述被测物体的距离大于预设的距离阈值或者所述在后接收的回波信号的能量小于预设的能量阈值,继续以所述第一档位发射下一个光脉冲,或者,以第三档位发射下一个光脉冲,其中,所述第三档位对应的激光发射功率高于所述第一档位对应的激光发射功率,和/或,所述第三档位对应的接收电路的放大倍数高于所述第一档位对应的接收电路的放大倍数。
可选的,所述处理器还用于:
若在光脉冲的时间窗口内仅接收到一个回波信号的事件的连续发生次数达到预设的次数阈值,将所述激光雷达切换至所述第一档位,以所述第一档位发射下一个光脉冲,或者,将所述激光雷达切换至第三档位,以所述第三档位发射下一个光脉冲,其中,所述第三档位对应的激光发射功率高于所述第一档位对应的激光发射功率,和/ 或,所述第三档位对应的接收电路的放大倍数高于所述第一档位对应的接收电路的放大倍数。
可选的,所述处理器还用于:
根据所述下一个光脉冲的出射方向确定对应的干扰信号,所述干扰信号是所述激光雷达自身反射的回波信号;
基于所述干扰信号和接收到的所述下一个光脉冲对应的回波信号计算目标信号;
根据所述目标信号计算被测物体的距离。
可选的,所述目标信号是所述下一个光脉冲对应的回波信号减去所述干扰信号得到的。
可选的,所述处理器根据所述下一个光脉冲对应的出射方向确定对应的干扰信号时用于:
根据预先标定的出射方向和干扰信号的对应关系,确定所述下一个光脉冲的出射方向对应的干扰信号。
可选的,在标定所述对应关系时,所述激光雷达以所述第二档位对应的激光发射功率发射光脉冲。
可选的,所述激光雷达配置了多个档位,不同档位对应的激光发射功率不同和/或接收电路的放大倍数不同,所述第一档位是所述多个档位中的所述第二档位以外的任一档位。
以上所提供的激光雷达的各种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请实施例提供的激光雷达,在激光雷达以第一档位发射光脉冲时,若在光脉冲的时间窗口内仅接收到的一个回波信号,则可以控制激光雷达切换到第二档位,以第二档位发射下一个光脉冲。由于第二档位的激光发射功率和/或接收电路的放大倍数较低,因此被测物体反射的目标信号的强度也较低,该目标信号与干扰信号融合后不会超出激光雷达的接收系统的线性动态范围,即融合后的回波信号不会发生畸变,从而,可以利用该真实的融合后的回波信号还原出真实的目标信号,计算出准确的被测物体的距离,大大改善激光雷达的近距离盲区问题。
本申请实施例还提供一种激光雷达,可以参考图7,图7是本申请实施例提供的多通道激光雷达的结构示意图。该激光雷达包括:
多个通道(图7示出3个通道),每个通道包括一个光源710和一个接收电路720,所述光源用于发射光脉冲序列,所述接收电路用于接收其所在通道的光脉冲对应的回 波信号,所述多个通道同时进行光脉冲的发射和回波信号的接收;
光学系统730,用于调整光脉冲的出射方向;
处理器740和存储有计算机程序的存储器750,所述处理器在执行所述计算机程序时实现以下步骤:
控制所述激光雷达的所述多个通道均以第一功率发射光脉冲;
若在预留的时间段内所述多个通道均未接收到自身通道发射的光脉冲对应的回波信号,控制所述激光雷达的所述多个通道均以第二功率发射下一个光脉冲;
其中,所述第一功率小于所述第二功率。
可选的,所述处理器还用于:
若在预留的时间段内所述多个通道均接收到自身通道发射的光脉冲对应的回波信号,控制所述多个通道继续以所述第一功率发射下一个光脉冲。
可选的,所述处理器还用于:
若在所述多个通道以所述第二功率进行测量时发生了通道间的信号串扰,舍弃本次测量的结果,并控制所述多个通道以所述第一功率发射下一个光脉冲。
可选的,所述通道间的信号串扰是根据接收到的回波信号的强度与预设阈值的比较结果确定的。
可选的,所述通道间的信号串扰是根据接收到的回波信号的波形参数与预设波形参数的比较结果确定的。
可选的,所述预留的时间段与所述激光雷达的最大量程对应的飞行时间相匹配。
以上所提供的激光雷达的各种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请实施例提供的激光雷达,激光雷达可以先以第一功率进行探测,由于第一功率较低,因此激光雷达的各通道之间不存在串扰问题,可以准确测出近距离的被测物体以及远距离但反射率高的被测物体。而在预留的时间段内未接收到光脉冲对应的回波信号时,可以控制激光雷达以较高的第二功率发射下一个光脉冲。由于在预留的时间段未接收到回波信号意味着不存在近距离的被测物体以及远距离但反射率高的被测物体,因此,以较高的第二功率发射下一个光脉冲时,由于被测物体或是远距离的,或是近距离但反射率低的,因此被测物体反射的回波信号的强度仍然较低,各通道之间仍然不会发生串扰,从而可以准确测量出这部分远距离或者近距离但反射率低的被测物体的距离。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有 计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的任一种激光雷达控制方法。
以上针对每个保护主题均提供了多种实施方式,在不存在冲突或矛盾的基础上,本领域技术人员可以根据实际情况自由对各种实施方式进行组合,由此构成各种不同的技术方案。而本申请文件限于篇幅,未能对所有组合而得的技术方案展开说明,但可以理解的是,这些未能展开的技术方案也属于本申请实施例公开的范围。
本申请实施例可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机可用存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (50)
- 一种激光雷达控制方法,其特征在于,应用于同轴激光雷达,所述方法包括:控制所述激光雷达以第一档位发射光脉冲,并接收所述光脉冲对应的回波信号;若在所述光脉冲的时间窗口内仅接收到一个回波信号,将所述激光雷达切换至第二档位,使所述激光雷达以所述第二档位发射下一个光脉冲;其中,所述第二档位对应的激光发射功率低于所述第一档位对应的激光发射功率,和/或,所述第二档位对应的接收电路的放大倍数低于所述第一档位对应的接收电路的放大倍数。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:若在所述光脉冲的时间窗口内接收到两个回波信号,根据在后接收到的回波信号计算被测物体的距离。
- 根据权利要求2所述的方法,其特征在于,所述方法还包括:若计算得到的所述被测物体的距离小于预设的距离阈值,将所述激光雷达切换至所述第二档位,以所述第二档位发射下一个光脉冲。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:若计算得到的所述被测物体的距离大于预设的距离阈值或者所述在后接收的回波信号的能量小于预设的能量阈值,继续以所述第一档位发射下一个光脉冲,或者,以第三档位发射下一个光脉冲,其中,所述第三档位对应的激光发射功率高于所述第一档位对应的激光发射功率,和/或,所述第三档位对应的接收电路的放大倍数高于所述第一档位对应的接收电路的放大倍数。
- 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:若在光脉冲的时间窗口内仅接收到一个回波信号的事件的连续发生次数达到预设的次数阈值,将所述激光雷达切换至所述第一档位,以所述第一档位发射下一个光脉冲,或者,将所述激光雷达切换至第三档位,以所述第三档位发射下一个光脉冲,其中,所述第三档位对应的激光发射功率高于所述第一档位对应的激光发射功率,和/或,所述第三档位对应的接收电路的放大倍数高于所述第一档位对应的接收电路的放大倍数。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:根据所述下一个光脉冲的出射方向确定对应的干扰信号,所述干扰信号是所述激光雷达自身反射的回波信号;基于所述干扰信号和接收到的所述下一个光脉冲对应的回波信号计算目标信号;根据所述目标信号计算被测物体的距离。
- 根据权利要求6所述的方法,其特征在于,所述目标信号是所述下一个光脉冲对应的回波信号减去所述干扰信号得到的。
- 根据权利要求6所述的方法,其特征在于,所述根据所述下一个光脉冲对应的出射方向确定对应的干扰信号,包括:根据预先标定的出射方向和干扰信号的对应关系,确定所述下一个光脉冲的出射方向对应的干扰信号。
- 根据权利要求8所述的方法,其特征在于,在标定所述对应关系时,所述激光雷达以所述第二档位对应的激光发射功率发射光脉冲。
- 根据权利要求1-9任一项所述的方法,其特征在于,所述激光雷达配置了多个档位,不同档位对应的激光发射功率不同和/或接收电路的放大倍数不同,所述第一档位是所述多个档位中的所述第二档位以外的任一档位。
- 一种激光雷达控制方法,其特征在于,所述激光雷达包括多个通道,所述多个通道同时进行光脉冲的发射和回波信号的接收,所述方法包括:控制所述激光雷达的所述多个通道均以第一功率发射光脉冲;若在预留的时间段内所述多个通道均未接收到自身通道发射的光脉冲对应的回波信号,控制所述激光雷达的所述多个通道均以第二功率发射下一个光脉冲;其中,所述第一功率小于所述第二功率。
- 根据权利要求11所述的方法,其特征在于,所述方法还包括:若在预留的时间段内所述多个通道均接收到自身通道发射的光脉冲对应的回波信号,控制所述多个通道继续以所述第一功率发射下一个光脉冲。
- 根据权利要求11所述的方法,其特征在于,所述方法还包括:若在所述多个通道以所述第二功率进行测量时发生了通道间的信号串扰,舍弃本次测量的结果,并控制所述多个通道以所述第一功率发射下一个光脉冲。
- 根据权利要求13所述的方法,其特征在于,所述通道间的信号串扰是根据接收到的回波信号的强度与预设阈值的比较结果确定的。
- 根据权利要求13所述的方法,其特征在于,所述通道间的信号串扰是根据接收到的回波信号的波形参数与预设波形参数的比较结果确定的。
- 根据权利要求11所述的方法,其特征在于,所述预留的时间段与所述激光雷达的最大量程对应的飞行时间相匹配。
- 一种激光雷达控制装置,其特征在于,所述激光雷达为同轴激光雷达,所述装置包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:控制所述激光雷达以第一档位发射光脉冲,并接收所述光脉冲对应的回波信号;若在所述光脉冲的时间窗口内仅接收到一个回波信号,将所述激光雷达切换至第二档位,使所述激光雷达以所述第二档位发射下一个光脉冲;其中,所述第二档位对应的激光发射功率低于所述第一档位对应的激光发射功率,和/或,所述第二档位对应的接收电路的放大倍数低于所述第一档位对应的接收电路的放大倍数。
- 根据权利要求17所述的装置,其特征在于,所述处理器还用于:若在所述光脉冲的时间窗口内接收到两个回波信号,根据在后接收到的回波信号计算被测物体的距离。
- 根据权利要求18所述的装置,其特征在于,所述处理器还用于:若计算得到的所述被测物体的距离小于预设的距离阈值,将所述激光雷达切换至所述第二档位,以所述第二档位发射下一个光脉冲。
- 根据权利要求18所述的装置,其特征在于,所述处理器还用于:若计算得到的所述被测物体的距离大于预设的距离阈值或者所述在后接收的回波信号的能量小于预设的能量阈值,继续以所述第一档位发射下一个光脉冲,或者,以第三档位发射下一个光脉冲,其中,所述第三档位对应的激光发射功率高于所述第一档位对应的激光发射功率,和/或,所述第三档位对应的接收电路的放大倍数高于所述第一档位对应的接收电路的放大倍数。
- 根据权利要求17-20任一项所述的装置,其特征在于,所述处理器还用于:若在光脉冲的时间窗口内仅接收到一个回波信号的事件的连续发生次数达到预设的次数阈值,将所述激光雷达切换至所述第一档位,以所述第一档位发射下一个光脉冲,或者,将所述激光雷达切换至第三档位,以所述第三档位发射下一个光脉冲,其中,所述第三档位对应的激光发射功率高于所述第一档位对应的激光发射功率,和/或,所述第三档位对应的接收电路的放大倍数高于所述第一档位对应的接收电路的放大倍数。
- 根据权利要求17所述的装置,其特征在于,所述处理器还用于:根据所述下一个光脉冲的出射方向确定对应的干扰信号,所述干扰信号是所述激 光雷达自身反射的回波信号;基于所述干扰信号和接收到的所述下一个光脉冲对应的回波信号计算目标信号;根据所述目标信号计算被测物体的距离。
- 根据权利要求22所述的装置,其特征在于,所述目标信号是所述下一个光脉冲对应的回波信号减去所述干扰信号得到的。
- 根据权利要求22所述的装置,其特征在于,所述处理器根据所述下一个光脉冲对应的出射方向确定对应的干扰信号时用于:根据预先标定的出射方向和干扰信号的对应关系,确定所述下一个光脉冲的出射方向对应的干扰信号。
- 根据权利要求24所述的装置,其特征在于,在标定所述对应关系时,所述激光雷达以所述第二档位对应的激光发射功率发射光脉冲。
- 根据权利要求17-25任一项所述的装置,其特征在于,所述激光雷达配置了多个档位,不同档位对应的激光发射功率不同和/或接收电路的放大倍数不同,所述第一档位是所述多个档位中的所述第二档位以外的任一档位。
- 一种激光雷达控制装置,其特征在于,所述激光雷达包括多个通道,所述多个通道同时进行光脉冲的发射和回波信号的接收,所述装置包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:控制所述激光雷达的所述多个通道均以第一功率发射光脉冲;若在预留的时间段内所述多个通道均未接收到自身通道发射的光脉冲对应的回波信号,控制所述激光雷达的所述多个通道均以第二功率发射下一个光脉冲;其中,所述第一功率小于所述第二功率。
- 根据权利要求27所述的装置,其特征在于,所述处理器还用于:若在预留的时间段内所述多个通道均接收到自身通道发射的光脉冲对应的回波信号,控制所述多个通道继续以所述第一功率发射下一个光脉冲。
- 根据权利要求27所述的装置,其特征在于,所述处理器还用于:若在所述多个通道以所述第二功率进行测量时发生了通道间的信号串扰,舍弃本次测量的结果,并控制所述多个通道以所述第一功率发射下一个光脉冲。
- 根据权利要求29所述的装置,其特征在于,所述通道间的信号串扰是根据接收到的回波信号的强度与预设阈值的比较结果确定的。
- 根据权利要求29所述的装置,其特征在于,所述通道间的信号串扰是根据接 收到的回波信号的波形参数与预设波形参数的比较结果确定的。
- 根据权利要求27所述的装置,其特征在于,所述预留的时间段与所述激光雷达的最大量程对应的飞行时间相匹配。
- 一种激光雷达,其特征在于,包括:光源,用于发射光脉冲序列;光学系统,用于调整光脉冲的出射方向;接收电路,用于接收光脉冲对应的回波信号;所述激光雷达的发射光路和接收光路部分相同;处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:控制所述激光雷达以第一档位发射光脉冲,并接收所述光脉冲对应的回波信号;若在所述光脉冲的时间窗口内仅接收到一个回波信号,将所述激光雷达切换至第二档位,使所述激光雷达以所述第二档位发射下一个光脉冲;其中,所述第二档位对应的激光发射功率低于所述第一档位对应的激光发射功率,和/或,所述第二档位对应的接收电路的放大倍数低于所述第一档位对应的接收电路的放大倍数。
- 根据权利要求33所述的激光雷达,其特征在于,所述处理器还用于:若在所述光脉冲的时间窗口内接收到两个回波信号,根据在后接收到的回波信号计算被测物体的距离。
- 根据权利要求34所述的激光雷达,其特征在于,所述处理器还用于:若计算得到的所述被测物体的距离小于预设的距离阈值,将所述激光雷达切换至所述第二档位,以所述第二档位发射下一个光脉冲。
- 根据权利要求34所述的激光雷达,其特征在于,所述处理器还用于:若计算得到的所述被测物体的距离大于预设的距离阈值或者所述在后接收的回波信号的能量小于预设的能量阈值,继续以所述第一档位发射下一个光脉冲,或者,以第三档位发射下一个光脉冲,其中,所述第三档位对应的激光发射功率高于所述第一档位对应的激光发射功率,和/或,所述第三档位对应的接收电路的放大倍数高于所述第一档位对应的接收电路的放大倍数。
- 根据权利要求33-36任一项所述的激光雷达,其特征在于,所述处理器还用于:若在光脉冲的时间窗口内仅接收到一个回波信号的事件的连续发生次数达到预设的次数阈值,将所述激光雷达切换至所述第一档位,以所述第一档位发射下一个光脉冲,或者,将所述激光雷达切换至第三档位,以所述第三档位发射下一个光脉冲,其中,所述第三档位对应的激光发射功率高于所述第一档位对应的激光发射功率,和/或,所述第三档位对应的接收电路的放大倍数高于所述第一档位对应的接收电路的放大倍数。
- 根据权利要求33所述的激光雷达,其特征在于,所述处理器还用于:根据所述下一个光脉冲的出射方向确定对应的干扰信号,所述干扰信号是所述激光雷达自身反射的回波信号;基于所述干扰信号和接收到的所述下一个光脉冲对应的回波信号计算目标信号;根据所述目标信号计算被测物体的距离。
- 根据权利要求38所述的激光雷达,其特征在于,所述目标信号是所述下一个光脉冲对应的回波信号减去所述干扰信号得到的。
- 根据权利要求38所述的激光雷达,其特征在于,所述处理器根据所述下一个光脉冲对应的出射方向确定对应的干扰信号时用于:根据预先标定的出射方向和干扰信号的对应关系,确定所述下一个光脉冲的出射方向对应的干扰信号。
- 根据权利要求40所述的激光雷达,其特征在于,在标定所述对应关系时,所述激光雷达以所述第二档位对应的激光发射功率发射光脉冲。
- 根据权利要求33-41任一项所述的激光雷达,其特征在于,所述激光雷达配置了多个档位,不同档位对应的激光发射功率不同和/或接收电路的放大倍数不同,所述第一档位是所述多个档位中的所述第二档位以外的任一档位。
- 一种激光雷达,其特征在于,包括:多个通道,每个通道包括一个光源和一个接收电路,所述光源用于发射光脉冲序列,所述接收电路用于接收其所在通道的光脉冲对应的回波信号,所述多个通道同时进行光脉冲的发射和回波信号的接收;光学系统,用于调整光脉冲的出射方向;处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:控制所述激光雷达的所述多个通道均以第一功率发射光脉冲;若在预留的时间段内所述多个通道均未接收到自身通道发射的光脉冲对应的回波信号,控制所述激光雷达的所述多个通道均以第二功率发射下一个光脉冲;其中,所述第一功率小于所述第二功率。
- 根据权利要求43所述的激光雷达,其特征在于,所述处理器还用于:若在预留的时间段内所述多个通道均接收到自身通道发射的光脉冲对应的回波信号,控制所述多个通道继续以所述第一功率发射下一个光脉冲。
- 根据权利要求43所述的激光雷达,其特征在于,所述处理器还用于:若在所述多个通道以所述第二功率进行测量时发生了通道间的信号串扰,舍弃本次测量的结果,并控制所述多个通道以所述第一功率发射下一个光脉冲。
- 根据权利要求45所述的激光雷达,其特征在于,所述通道间的信号串扰是根据接收到的回波信号的强度与预设阈值的比较结果确定的。
- 根据权利要求45所述的激光雷达,其特征在于,所述通道间的信号串扰是根据接收到的回波信号的波形参数与预设波形参数的比较结果确定的。
- 根据权利要求43所述的激光雷达,其特征在于,所述预留的时间段与所述激光雷达的最大量程对应的飞行时间相匹配。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-10任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求11-16任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180083705.2A CN116601518A (zh) | 2021-06-11 | 2021-06-11 | 激光雷达控制方法、装置、激光雷达及存储介质 |
PCT/CN2021/099836 WO2022257137A1 (zh) | 2021-06-11 | 2021-06-11 | 激光雷达控制方法、装置、激光雷达及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/099836 WO2022257137A1 (zh) | 2021-06-11 | 2021-06-11 | 激光雷达控制方法、装置、激光雷达及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022257137A1 true WO2022257137A1 (zh) | 2022-12-15 |
Family
ID=84424523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/099836 WO2022257137A1 (zh) | 2021-06-11 | 2021-06-11 | 激光雷达控制方法、装置、激光雷达及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116601518A (zh) |
WO (1) | WO2022257137A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117471431A (zh) * | 2023-12-28 | 2024-01-30 | 武汉市品持科技有限公司 | 一种激光雷达光功率自动增益调节方法、装置及系统 |
CN118259243A (zh) * | 2024-05-31 | 2024-06-28 | 浙江宜通华盛科技有限公司 | 相控阵天气雷达标定方法及标定系统 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117075128B (zh) * | 2023-09-11 | 2024-04-09 | 深圳市速腾聚创科技有限公司 | 测距方法、装置、电子设备和计算机可读存储介质 |
CN118091618B (zh) * | 2024-02-29 | 2024-08-16 | 探维科技(苏州)有限公司 | 激光雷达及其串扰的测试装置、测试方法、标定方法 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003130953A (ja) * | 2001-10-24 | 2003-05-08 | Nikon Corp | 測距装置 |
WO2013014931A1 (ja) * | 2011-07-26 | 2013-01-31 | 日本無線株式会社 | レーダ受信機 |
CN107957581A (zh) * | 2018-01-10 | 2018-04-24 | 深圳市镭神智能系统有限公司 | 一种雷达探测方法、装置、存储介质及雷达 |
CN108089201A (zh) * | 2017-12-08 | 2018-05-29 | 上海禾赛光电科技有限公司 | 障碍物信息获取方法、激光脉冲的发射方法及装置 |
CN108303690A (zh) * | 2018-01-17 | 2018-07-20 | 武汉煜炜光学科技有限公司 | 一种消除激光雷达盲区的测距方法及测距系统 |
CN109696691A (zh) * | 2018-12-26 | 2019-04-30 | 北醒(北京)光子科技有限公司 | 一种激光雷达及其进行测量的方法、存储介质 |
CN109997057A (zh) * | 2016-09-20 | 2019-07-09 | 创新科技有限公司 | 激光雷达系统和方法 |
CN209387867U (zh) * | 2018-11-13 | 2019-09-13 | 北京万集科技股份有限公司 | 一种激光雷达接收装置 |
CN110412594A (zh) * | 2019-07-22 | 2019-11-05 | 北京光勺科技有限公司 | 一种激光多通道探测系统 |
CN110456376A (zh) * | 2019-07-25 | 2019-11-15 | 深圳奥锐达科技有限公司 | Tof测距方法及设备 |
CN111239753A (zh) * | 2020-03-18 | 2020-06-05 | 福建海创光电有限公司 | 一种有效解决回返杂散光干扰的激光测距装置 |
CN211123268U (zh) * | 2019-09-24 | 2020-07-28 | 北醒(北京)光子科技有限公司 | 一种增加激光雷达测距动态范围的装置 |
US20200386870A1 (en) * | 2019-04-01 | 2020-12-10 | Suteng Innovation Technology Co., Ltd. | Optical scanning apparatus and lidar |
CN112198520A (zh) * | 2020-09-29 | 2021-01-08 | 上海兰宝传感科技股份有限公司 | 一种红外光电传感器测距盲区减小方法 |
CN112867938A (zh) * | 2020-12-24 | 2021-05-28 | 深圳市速腾聚创科技有限公司 | 激光发射控制方法、装置及相关设备 |
-
2021
- 2021-06-11 CN CN202180083705.2A patent/CN116601518A/zh active Pending
- 2021-06-11 WO PCT/CN2021/099836 patent/WO2022257137A1/zh active Application Filing
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003130953A (ja) * | 2001-10-24 | 2003-05-08 | Nikon Corp | 測距装置 |
WO2013014931A1 (ja) * | 2011-07-26 | 2013-01-31 | 日本無線株式会社 | レーダ受信機 |
CN109997057A (zh) * | 2016-09-20 | 2019-07-09 | 创新科技有限公司 | 激光雷达系统和方法 |
CN108089201A (zh) * | 2017-12-08 | 2018-05-29 | 上海禾赛光电科技有限公司 | 障碍物信息获取方法、激光脉冲的发射方法及装置 |
CN107957581A (zh) * | 2018-01-10 | 2018-04-24 | 深圳市镭神智能系统有限公司 | 一种雷达探测方法、装置、存储介质及雷达 |
CN108303690A (zh) * | 2018-01-17 | 2018-07-20 | 武汉煜炜光学科技有限公司 | 一种消除激光雷达盲区的测距方法及测距系统 |
CN209387867U (zh) * | 2018-11-13 | 2019-09-13 | 北京万集科技股份有限公司 | 一种激光雷达接收装置 |
CN109696691A (zh) * | 2018-12-26 | 2019-04-30 | 北醒(北京)光子科技有限公司 | 一种激光雷达及其进行测量的方法、存储介质 |
US20200386870A1 (en) * | 2019-04-01 | 2020-12-10 | Suteng Innovation Technology Co., Ltd. | Optical scanning apparatus and lidar |
CN110412594A (zh) * | 2019-07-22 | 2019-11-05 | 北京光勺科技有限公司 | 一种激光多通道探测系统 |
CN110456376A (zh) * | 2019-07-25 | 2019-11-15 | 深圳奥锐达科技有限公司 | Tof测距方法及设备 |
CN211123268U (zh) * | 2019-09-24 | 2020-07-28 | 北醒(北京)光子科技有限公司 | 一种增加激光雷达测距动态范围的装置 |
CN111239753A (zh) * | 2020-03-18 | 2020-06-05 | 福建海创光电有限公司 | 一种有效解决回返杂散光干扰的激光测距装置 |
CN112198520A (zh) * | 2020-09-29 | 2021-01-08 | 上海兰宝传感科技股份有限公司 | 一种红外光电传感器测距盲区减小方法 |
CN112867938A (zh) * | 2020-12-24 | 2021-05-28 | 深圳市速腾聚创科技有限公司 | 激光发射控制方法、装置及相关设备 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117471431A (zh) * | 2023-12-28 | 2024-01-30 | 武汉市品持科技有限公司 | 一种激光雷达光功率自动增益调节方法、装置及系统 |
CN117471431B (zh) * | 2023-12-28 | 2024-05-14 | 武汉市品持科技有限公司 | 一种激光雷达光功率自动增益调节方法、装置及系统 |
CN118259243A (zh) * | 2024-05-31 | 2024-06-28 | 浙江宜通华盛科技有限公司 | 相控阵天气雷达标定方法及标定系统 |
Also Published As
Publication number | Publication date |
---|---|
CN116601518A (zh) | 2023-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022257137A1 (zh) | 激光雷达控制方法、装置、激光雷达及存储介质 | |
US10795023B2 (en) | Laser scanning apparatus and method | |
CN110749898B (zh) | 一种激光雷达测距系统及其测距方法 | |
EP3009859B1 (en) | Distance measuring device | |
CA2742687C (en) | Return pulse shape analysis for falling edge object discrimination of aerosol lidar | |
US20110310377A1 (en) | Distance measuring apparatus and distance measuring method | |
GB2161340A (en) | Detecting objects in obscuring medium | |
KR102019844B1 (ko) | 라이다 신호 처리 장치 및 처리 방법 | |
JPWO2019116641A1 (ja) | 距離測定装置、距離測定装置の制御方法、および距離測定装置の制御プログラム | |
KR101790864B1 (ko) | 주파수 변조 방식의 라이다 센서 시스템에서 멀티패스에 의한 상호 간섭 제거 방법 및 그 장치 | |
US11624811B2 (en) | Apparatus and method for increasing LIDAR sensing distance | |
CN116224291A (zh) | 带同轴可见引导激光的位移和距离激光测量装置和方法 | |
US20210270568A1 (en) | Laser irradiation apparatus and laser irradiation method | |
WO2022257138A1 (zh) | 标定方法和装置、激光雷达、探测系统和存储介质 | |
US20230184911A1 (en) | Method and system for evaluating point cloud quality of lidar, and apparatus | |
CN116184358A (zh) | 激光测距方法、装置和激光雷达 | |
US20030185138A1 (en) | Optical pickup, manufacturing method thereof, and optical disk system | |
JPH0220933B2 (zh) | ||
CN116930931A (zh) | 评估激光雷达点云拖点程度的方法、测试装置及激光雷达 | |
KR102180113B1 (ko) | 두께 측정 장치 | |
US11513192B2 (en) | Lidar signal processing apparatus and method | |
CN110308460B (zh) | 传感器的参数确定方法及系统 | |
KR101670474B1 (ko) | 광학 장치 및 이의 동작 방법 | |
WO2023181308A1 (ja) | コンピュータシステム、方法およびプログラム | |
US20220155416A1 (en) | Laser emission control in light detection and ranging (lidar) systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21944644 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180083705.2 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21944644 Country of ref document: EP Kind code of ref document: A1 |