WO2021051722A1 - 激光雷达及自动驾驶设备 - Google Patents

激光雷达及自动驾驶设备 Download PDF

Info

Publication number
WO2021051722A1
WO2021051722A1 PCT/CN2020/070276 CN2020070276W WO2021051722A1 WO 2021051722 A1 WO2021051722 A1 WO 2021051722A1 CN 2020070276 W CN2020070276 W CN 2020070276W WO 2021051722 A1 WO2021051722 A1 WO 2021051722A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
lidar
transceiver module
area
transceiver
Prior art date
Application number
PCT/CN2020/070276
Other languages
English (en)
French (fr)
Inventor
李坤仪
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to PCT/CN2020/070276 priority Critical patent/WO2021051722A1/zh
Priority to CN202080004043.0A priority patent/CN112616318A/zh
Publication of WO2021051722A1 publication Critical patent/WO2021051722A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/933Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the embodiment of the present invention relates to the field of radar technology, in particular to a laser radar and automatic driving equipment.
  • Lidar is a radar system that uses lasers to detect the position and speed of a target object. Its working principle is that the transmitting module first transmits the outgoing laser for detection to the target, and then the receiving module receives the echo reflected from the target object. Laser, after processing the received echo laser, the relevant information of the target object can be obtained, such as parameters such as distance, azimuth, height, speed, posture, and even shape.
  • Lidar based on Micro-Electro-Mechanical System (MEMS) micromirror technology has the advantages of fast response, good reliability, and high ranging resolution.
  • MEMS micromirror also called galvanometer
  • the outgoing laser light is deflected on the surface of the MEMS micromirror.
  • the MEMS micromirror vibrates, the emitted laser will cover a certain range of field of view, and the detection area corresponding to the field of view will be scanned to obtain distance information on the surface of the target object.
  • the overall field of view of the MEMS lidar is expanded through the splicing of multiple detection areas; however, the detection resolution within the overall field of view of the MEMS lidar is the same and uniform, which cannot satisfy the difference in the overall field of view. Different regional resolution requirements.
  • the main purpose of the embodiments of the present invention is to provide a lidar and automatic driving equipment, which can realize differentiated detection of different areas.
  • a technical solution adopted in the embodiment of the present invention is to provide a lidar, which includes a transceiver component and a MEMS micromirror;
  • the transceiving assembly includes at least two first transceiving modules arranged along a first direction, and the first transceiving modules are used for emitting outgoing laser light and receiving echoed laser light. A laser beam returned after reflection from an object in the detection area;
  • the MEMS micromirror is used to reflect the outgoing laser light emitted by each of the first transceiver modules to the first detection area, and at the same time to reflect the echo laser light to the corresponding The first transceiver module;
  • At least two of the first detection areas are arranged along a first direction, at least two of the first detection areas have an overlap area between them, the overlap area includes a region of interest, and the resolution of the region of interest is greater than the other The resolution of the area.
  • the transmission frequency and transmission timing of the first transceiver module are adjustable, by adjusting the transmission frequency of at least one first transceiver module to control the resolution of the region of interest, and by adjusting at least one first transceiver module.
  • the transmitting sequence of the module controls the position and size of the region of interest.
  • the resolution of the non-overlapping area in the first detection area is less than or equal to the resolution of the non-interesting area in the overlapping area.
  • the transceiver component includes two first transceiver modules;
  • each said first transceiver module emits laser light to the non-overlapping area of its detection area, its emission frequency is f;
  • the emission frequency is 0.5f
  • each first transceiver module emits laser light to the region of interest in the overlapping area of its detection area, its emission frequency is f.
  • the transceiver component includes two first transceiver modules;
  • each said first transceiver module emits laser light to the non-overlapping area of its detection area, its emission frequency is f;
  • each of the first transceiver modules emit laser light to the non-interest area of the overlapping area of its detection area, its emission frequency is f;
  • each first transceiver module When each first transceiver module emits laser light to the region of interest in the overlapping area of its detection area, its emission frequency is greater than f.
  • the lidar further includes a first folding mirror, and the outgoing lasers emitted by at least two of the first transceiver modules are all directed to the first folding mirror and on the first folding mirror.
  • the echo laser is incident on the corresponding first transceiver module after being reflected.
  • the lidar further includes at least one second transceiver module arranged along a first direction, and the second transceiver module is used to transmit outgoing laser light and receive echo laser light, and the echo laser light is the The outgoing laser light is reflected by the object in the second detection area and then returned;
  • the MEMS micromirror is used to reflect the outgoing laser light emitted by the second transceiver module to the second detection area, and also to reflect the echo laser light to the corresponding second detection area.
  • Transceiver module
  • the second detection area is arranged outside the first detection area, and at least one of the second detection areas is sequentially arranged along the first direction.
  • the lidar further includes at least one fourth fold-back mirror, the fourth fold-back mirror and the second transceiver module are arranged in a one-to-one correspondence, and each fourth fold-back mirror is used to connect its corresponding
  • the outgoing laser light emitted by the second transceiver module is reflected and incident on the MEMS micromirror, and is also used for reflecting the echo laser reflected by the MEMS micromirror and incident on the corresponding second transceiver module .
  • the lidar further includes at least two second folding mirrors and at least two third folding mirrors (33), the second folding mirrors, the third folding mirrors, and the first transceiver module It is arranged in a one-to-one correspondence, and the outgoing laser light emitted by each of the first transceiver modules is sequentially reflected by the second and third folding mirrors and then directed toward the first folding mirror.
  • the number of the first transceiving module is two, the first transceiving module is arranged on both sides of the second transceiving module, and the lidar further includes two first transceiving modules.
  • the two second folding mirrors and the two third folding mirrors corresponding to the transceiver module are connected at an angle between the two third folding mirrors.
  • a mounting limit surface is provided on the back sides of the two second folding mirrors.
  • An embodiment of the present invention also provides an automatic driving device, including a driving device body and the above-mentioned lidar, and the lidar is installed on the driving device body.
  • the beneficial effect of the embodiment of the present invention is that, different from the situation in the prior art, in the laser radar provided by the embodiment of the present invention, by providing at least two first transceiver modules, the first detection of the at least two first transceiver modules is There is an overlapping area between the regions, and the resolution of the overlapping area is greater than or equal to the non-overlapping area of the first detection area; in addition, the overlapping area can include the region of interest, and the resolution of the region of interest is greater than the resolution of other regions. Adjusting the transmission frequency and transmission timing of the first transceiver module can adjust the resolution, position and size of the region of interest; realize differential detection of different regions, and adjust the position and position of the region of interest for more concerned regions and objects. Large and small, to achieve higher resolution detection, to meet the needs of lidar intelligent detection.
  • Figure 1a shows a structural block diagram of a lidar provided by an embodiment of the present invention
  • Figure 1b shows a schematic diagram of a scanning field of view of a lidar provided by an embodiment of the present invention
  • FIG. 2 shows a structural block diagram of a lidar provided by another embodiment of the present invention
  • FIG. 3 shows a comparison schematic diagram of the transmission timing of the first transceiver module responsible for scanning the field of view 1 before full transmission before adjustment and after adjustment in an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of two field-of-view point clouds with overlapping areas implemented by an embodiment of the present invention
  • FIG. 5 shows a comparison schematic diagram of the transmission timing of the first transceiver module responsible for scanning the field of view 1 before full transmission before adjustment and after adjustment in another embodiment of the present invention
  • FIG. 6 shows a schematic diagram of two field-of-view point clouds with overlapping areas implemented by another embodiment of the present invention
  • FIG. 7 shows a structural block diagram of a lidar provided by another embodiment of the present invention.
  • Fig. 8a shows a structural block diagram of a lidar provided by still another embodiment of the present invention.
  • Figure 8b shows a structural block diagram of a lidar provided by another embodiment of the present invention.
  • Fig. 8c shows a schematic diagram of the scanning field of view of the lidar in Fig. 8 of the present invention
  • Figure 8d shows a schematic diagram of a scanning field of view of a lidar in another embodiment of the present invention.
  • FIG. 9 shows a structural block diagram of a lidar provided by another embodiment of the present invention.
  • FIG. 10 shows a structural block diagram of a lidar provided by another embodiment of the present invention.
  • FIG. 11 shows a schematic structural diagram of a lidar provided by a specific example of the present invention with the upper cover removed;
  • Figure 12 shows a top view of the lidar provided by a specific example of the present invention with the lid removed;
  • Figure 13 shows a schematic diagram of the optical path of a lidar provided by a specific example of the present invention
  • FIG. 14 shows a schematic structural diagram of a second reentrant mirror 32 in a lidar provided by a specific example of the present invention
  • FIG. 15 shows a schematic diagram of the structure of the part where the second folding mirror 32 is installed in the lidar provided by a specific example of the present invention
  • FIG. 16 shows a schematic diagram of the assembly of the second folding mirror 32 in the lidar provided by a specific example of the present invention
  • FIG. 17 shows a schematic structural diagram of an automatic driving device provided by an embodiment of the present invention.
  • FIG. 18 shows a schematic structural diagram of an automatic driving device provided by another embodiment of the present invention.
  • Lidar 100 transceiver component 1, MEMS micromirror 2, base 3, mounting block 5, baffle 51, positioning hole 52, first transceiver module 11, first folding mirror 31, second transceiver module 12, second The folding mirror 32, the third folding mirror 33, the reflecting surface 331, the mounting limit surface 332, the positioning column 333, the fourth folding mirror 34, the automatic driving device 200, and the driving device body 201.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may be that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the lidar 100 includes a transceiver component 1 and a MEMS (Micro-Electro-Mechanical System) micromirror 2.
  • the transceiver assembly 1 includes at least two first transceiver modules 11 arranged along a first direction.
  • the first transceiver modules 11 are used to transmit outgoing laser light and receive echoed laser light.
  • the echoed laser light is the area where the outgoing laser light is detected by the first detection area.
  • the laser light that returns after being reflected by an object.
  • the MEMS micromirror 2 is used to reflect the emitted laser light emitted by each first transceiver module 11 to the first detection area, and at the same time to reflect the echo laser light to the corresponding first transceiver module 11.
  • the at least two first detection regions are arranged along the first direction, and there is an overlap area between the at least two first detection regions.
  • the overlap region includes the Region of Interest (ROI), and the resolution of the ROI region is greater than that of other regions. Resolution.
  • Each first transceiver module 11 includes a corresponding transmitting module and a receiving module.
  • the transmitting module is used for transmitting the outgoing laser
  • the receiving module is used for receiving the echoed laser.
  • the echoed laser is the outgoing laser and is first detected. The laser light that returns after reflection from objects in the area.
  • the MEMS micromirror 2 includes a reciprocating mirror surface, which reflects the emitted laser light and the echo laser through the mirror surface; the vibrating mirror surface reflects the emitted laser light and receives the coaxial returning echo laser to realize scanning of the first detection area.
  • the MEMS micromirror 2 can be a two-dimensional MEMS micromirror, which can be rotated and scanned at a certain mechanical angle in the horizontal and vertical directions.
  • the outgoing laser light emitted by the first transceiver module 11 passes through the two-dimensional MEMS micromirror 2 and then scans in a line. For scanning, the horizontal and vertical angles of the scanning field of view are determined by the scanning mechanical angle of the two-dimensional MEMS micromirror 2.
  • the first detection areas (field of view 1 and field of view 2) formed by the plurality of first transceiver modules 11 through the MEMS micromirror 2 have overlapping areas, and the resolution of the overlapping areas may be different from the non-overlapping areas;
  • the multiple first detection areas are arranged along the first direction, which expands the overall field of view of the lidar 100 in the first direction. If the lidar 100 is placed horizontally, the horizontal field of view is expanded; and the overlapping area includes the ROI area, The resolution of the ROI region is greater than the resolution of other regions, which meets the demand for higher resolution detection of the ROI region. While the lidar 100 realizes high-resolution detection of the ROI area, it can also effectively detect other areas, so as to meet the differentiated and intelligent detection requirements of the lidar, and improve the utilization rate of the system.
  • the field of view formed by the plurality of first transceiver modules 11 has an overlapping area, it is avoided that there is a gap between the field of view and the field of view, leading to missed detection and affecting detection reliability.
  • it may be overlapped in the horizontal direction, that is, the first detection area formed by the plurality of first transceiver modules 11 has an overlapping area in the horizontal direction; it may also be overlapped in the vertical direction, that is, the first detection area formed by the plurality of first transceiver modules 11 may be overlapped in the vertical direction.
  • the formed first detection area has an overlapping area in the vertical direction.
  • the transmission frequency and transmission timing of the first transceiver module 11 are adjustable. By adjusting the transmission frequency of at least one first transceiver module 11, the resolution of the region of interest is controlled, and by adjusting at least one first transceiver module 11, the resolution of the region of interest is controlled.
  • the transmission timing of the module 11 controls the position and size of the region of interest.
  • the resolution, position, and size of the ROI area are adjustable to realize dynamic adjustment of the ROI area; the lidar 100 can adjust the ROI area in real time according to changes in the surrounding environment or the movement of the object of interest.
  • the ROI area at the initial moment is generally located in the center of the overall field of view; when the surrounding environment of the lidar changes, such as entering a turning intersection and paying more attention to the situation in the field of view inside the turn, the position of the ROI area can be adjusted, such as entering a highway Pay more attention to the situation in the farther front, you can adjust the emission frequency and size of the ROI area; when the object of interest is moving, you can adjust the position and emission frequency of the ROI area to achieve real-time tracking of the moving object.
  • the transceiver component 1 of the lidar 100 includes two first transceiver modules 11.
  • the positions and angles of the first transceiver module 11 and the MEMS micromirror 2 are adjustable, so that the angle and angular range of the outgoing laser emitted by the first transceiver module 11 are different, that is, the first detection area is in the laser
  • the range of the field of view covered around the radar is different; by adjusting the relative position of the two first transceiver modules 11 and the angle of the MEMS micromirror 2, an overlap area between the two first detection areas can be made, and the size of the overlap area can be adjusted. Tune. It is also possible to pre-design the positions of the two first transceiver modules 11 and the angle of the MEMS micromirror 2 that meet the size of the overlapping area, and assemble according to the pre-designed positions and angles.
  • the resolution of the ROI area is greater than the resolution of other areas, there are several ways:
  • the transmission frequencies of the two first transceiver modules 11 are the same. Since the overlapping area can be scanned by the two first transceiver modules 11 at the same time, the resolution can be linearly superimposed, so the resolution of the overlapping area will increase; therefore, the entire overlap The resolution of the region is greater than the resolution of the non-overlapping region; this method can realize the key detection of the ROI region, but the time and position of the ROI region cannot be adjusted. The position and size of the ROI region are fixed;
  • the transmission frequency and transmission timing of the first transceiver module 11 are adjustable. By adjusting the transmission frequency of at least one first transceiver module 11, the resolution of the ROI area can be controlled, and at least one first transceiver module can be improved when scanning the ROI area.
  • the emission frequency of group 11 makes its resolution greater than that of other regions.
  • the transmission timing of the first transceiver module 11 is adjusted, and the position and size of the ROI area are controlled by adjusting the transmission timing of at least one first transceiver module 11.
  • the transceiver component 1 includes two first transceiver modules 11, and the two first transceiver modules 11 are the same.
  • the first transceiver module 11 corresponding to the field of view 1 is a schematic diagram of the comparison of the transmission timing and the transmission frequency of the first transceiver module 11 before and after adjustment.
  • FIG. 4 it is a schematic diagram of the resolution of the overall field of view formed by overlapping the field of view 1 and field of view 2 corresponding to the two first transceiver modules 11.
  • the emission timing and the emission frequency of the first transceiver module 11 corresponding to the field of view 2 are the same as the emission timing and emission frequency of the first transceiver module 11 corresponding to the field of view 1.
  • the emission times of the two first transceiving modules 11 are staggered, that is, Between the two adjacent outgoing laser pulses emitted by the first transceiving module 11 corresponding to the field of view 1, the first transceiving module 11 corresponding to the field of view 2 emits one outgoing laser pulse.
  • the resolution of the non-overlapping area of the field of view 1 and the field of view 2 is assumed to be x; the overlapping area is scanned by the two first transceiver modules 11, and the emission frequency of the non-ROI area of the overlapping area is 0.5 f And the transmission times of the two first transceiver modules 11 are staggered, and the resolution of the non-ROI area in the overlapping area is also x; the ROI area is also in the overlapping area, so it is also scanned by the two first transceiver modules 11 respectively At the same time, the emission frequency of the ROI area is f, and the resolution of the ROI area reaches 2x.
  • the outgoing laser light is reflected by the vibrating two-dimensional MEMS micromirror and then scanned, and the outgoing laser light scans the field of view 1 according to a preset path.
  • the outgoing laser is scanned in the field of view 1 in the order from left to right and top to bottom.
  • the outgoing laser scans the non-overlapping area of the field of view 1, then the first transceiver module 11 is fully emitted, that is, the emission frequency of the first transceiver module 11 is f; when T1 ⁇ T2, the outgoing laser scans the view In the non-ROI area of the overlapping area of field 1, the transmission time interval of the first transceiver module 11 is increased and the transmission frequency is halved, that is, the transmission frequency of the first transceiver module 11 is 0.5f; when T2 ⁇ T3, the outgoing laser scans In the ROI area of field 1, the first transceiver module 11 is fully transmitted, that is, the transmission frequency of the first transceiver module 11 is f; the detection resolution in the ROI area is improved, and the resolution of the ROI area is greater than that of other areas rate.
  • the emission timing of the first transceiver module 11 can be controlled, and the dynamic changes of the size and position of the ROI area can be adjusted.
  • the emission frequency of the first transceiver module 11 Change from 0.5f to f.
  • the transmitting frequency of the first transceiver module 11 is changed from 0.5f to f; for the same reason, if the ROI area needs to be reduced downwards
  • the emission frequency of the first transceiver module 11 changes from 0.5f to f.
  • the ROI area can also be enlarged and reduced along the column direction.
  • the position of the ROI area can also be adjusted by controlling the transmission timing of the first transceiver module 11.
  • the transmission timing of the first transceiver module 11 Exemplarily, as shown in FIG. 4, if the ROI area needs to be moved upward, when the outgoing laser emitted by the first transceiver module 11 scans to the third line, the emission frequency is changed from 0.5f to f, and when scanning to the fifth line , The emission frequency is changed from f back to 0.5f.
  • the up, down, left, and right positions of the ROI can be adjusted.
  • the scanning sequence of the emitted laser light in the field of view 1 is not limited, and scanning can also be performed from bottom to top, from right to left, or in any other manner.
  • the resolution of the non-overlapping area in the first detection area can be less than or equal to the resolution of the non-ROI area in the overlapping area. That is, the final effect is to achieve the highest resolution scanning of the most important ROI area in the overall field of view, and the resolution of the non-ROI area in the second most important overlapping area in the overall field of view can be set according to detection requirements.
  • the resolution of the non-ROI area of the overlapping area is the same as that of the non-overlapping area, the resolution of the entire field of view is divided into two levels; as described in the previous embodiment, the first transceiver module 11 corresponding to the field of view 1 transmits to the non-overlapping area
  • the emission frequency of the outgoing laser is f
  • the emission frequency of the outgoing laser to the non-ROI area of the overlapping area is 0.5f
  • the emission frequency of the outgoing laser to the ROI area is f.
  • the resolution of the ROI area in the entire field of view is 2x
  • the resolution of other areas in the non-ROI area is x.
  • the transceiver component 1 includes two first transceiver modules 11, and the two first transceiver modules 11 are the same.
  • the first transceiver module 11 corresponding to the field of view 1 as an example, as shown in FIG. 5, it is a comparative schematic diagram of the transmission timing and the transmission frequency of the first transceiver module 11 before and after adjustment.
  • FIG. 6 it is a schematic diagram of the resolution of the overall field of view formed by overlapping the field of view 1 and field of view 2 corresponding to the two first transceiver modules 11.
  • the emission timing and the emission frequency of the first transceiver module 11 corresponding to the field of view 2 are the same as the emission timing and emission frequency of the first transceiver module 11 corresponding to the field of view 1.
  • the transmission time of the two first transceiving modules 11 are staggered.
  • the resolution of the non-overlapping area of the field of view 1 and the field of view 2 is assumed to be x, then the resolution of the non-ROI area in the overlapping area is 2x, and the resolution of the ROI area reaches 4x.
  • each first transceiver module 11 when each first transceiver module 11 emits laser light to the ROI area of the overlapping area of its detection area, its emission frequency may be other values greater than f, so that the ROI area The resolution is greater than that of other areas.
  • the two first transceiver modules 11 may not be completely the same, as long as the two first pass modules 11 can form an overlapping area through the overlap of the field of view, and control the transmission frequency and the transmission timing to be in the overlap area. Just form a high-resolution ROI area.
  • Two identical first transceiver modules 11 are provided, on the one hand, during the manufacturing process, it is convenient for mass production, and the product manufacturing and assembly process is simplified; on the other hand, the control system is simplified to facilitate the adjustment of the ROI area.
  • the lidar 100 may also include three or more first transceiver modules 11.
  • the overlap between the multiple first detection regions of the multiple first transceiver modules 11 and the adjustment of the ROI area in the overlap region are similar to the manner of the two first transceiver modules 11. Go into details again.
  • the lidar 100 further includes a first reflex mirror 31, and the outgoing laser light emitted by the two first transceiver modules 11 is directed to the first reflex mirror 31 and in the first reflex mirror 31.
  • the light spots on a folding mirror 31 at least partially overlap.
  • the first folding mirror 31 is used to reflect the outgoing laser emitted by the first transceiver module 11 and then enter the MEMS micromirror 2, and is also used to reflect the echo of the MEMS micromirror 2.
  • the laser light is incident on the corresponding first transceiver module 11 after being reflected.
  • the first folding mirror 31 can be a flat mirror, a cylindrical mirror, an aspherical curvature mirror, or the like.
  • the spots of the two outgoing laser lights are at least partially overlapped, and they are directed at the MEMS micromirror 2 at the same angle, and the two outgoing laser lights pass through the MEMS.
  • the micromirror 2 reflects and emits outwards to form two first detection areas that at least partially overlap, so that the lidar 100 can scan the ROI area with high resolution; at the same time, the first reentrant mirror 31 is directed to the first transceiver module 11
  • the optical paths of the outgoing laser and the echo laser are folded to compress the volume of the lidar 100; it also enables the first transceiver module 11 to be arranged on the back side of the MEMS micromirror 2 to prevent the first transceiver module 11 from interacting with the MEMS micromirror. 2 Blocking of the outgoing laser and echo laser in the front improves the detection performance and reliability.
  • the first transceiver module 11 included in the lidar 100 is all involved in scanning the ROI area.
  • the lidar 100 may further include a second transceiver module 12 for expanding the angle of view.
  • the lidar 100 further includes a second transceiver module 12 arranged along the first direction.
  • the second transceiver module 12 is used to emit laser light and receive echoes.
  • Laser and echo laser are the laser light that returns after the outgoing laser light is reflected by the object in the second detection area.
  • the MEMS micromirror 2 is used to reflect the emitted laser light emitted by the second transceiver module 12 to the second detection area, and at the same time to reflect the echo laser light to the corresponding second transceiver module 12.
  • Each second transceiver module 12 also includes a corresponding transmitting module and a receiving module.
  • the transmitting module is used to transmit outgoing laser light
  • the receiving module is used to receive echo laser light.
  • the second detection area is arranged outside the first detection area along the first direction.
  • the first detection regions (field of view 1 and field of view 2) formed by the plurality of first transceiver modules 11 through the MEMS micromirror 2 have overlapping regions.
  • the overlapping regions include the ROI region.
  • the resolution is greater than that of other areas, meeting the scanning requirements for key detection areas.
  • a second detection area (field of view 3) formed by a second transceiver module 12 is located outside the field of view 1, and the field of view 3 is connected to the field of view 1.
  • the overall field of view of the lidar 100 is formed by the superposition and splicing of the field of view 1, the field of view 2, the field of view 3.
  • the surrounding area can be fully detected with a large field of view; it can meet the requirements of the lidar for differentiated detection of the surrounding area and realize intelligent detection.
  • the edges of the field of view 1 and the field of view 3 can be partially overlapped to prevent the blind area of missed inspection. Improve detection accuracy.
  • a plurality of second transceiver modules 12 may also be arranged along the first direction, for example, 2, 3, 4, etc., the outgoing lasers emitted by the multiple second transceiver modules 12 are respectively directed to the corresponding
  • the plurality of second detection areas are arranged in sequence along the first direction.
  • the second transceiver module 12 is preferably provided with an even number and arranged symmetrically; the second detection area corresponding to the second transceiver module 12 is symmetrically arranged outside the first detection area along the first direction.
  • the second transceiver module 12 is symmetrically arranged inside the first transceiver module 11, and the first transceiver module 11 is arranged outside the second transceiver module 12, as shown in FIG. 8b, the second transceiver module 12 There are two, arranged symmetrically inside the first transceiver module 11.
  • the two second transceiver modules 12 form a field of view 3 and a field of view 4; the field of view 3 is located outside the field of view 1, and is connected to the field of view 1, and the field of view 4 is located outside of the field of view 2. , And connected with the field of view 2.
  • the overall field of view of the lidar 100 is formed by superimposing and splicing the field of view 1, field of view 2, field of view 3, and field of view 4.
  • the ROI area has high-resolution detection, and the overall field of view covers the field of view in the first direction.
  • the large field angle enables comprehensive detection to meet the needs of differentiated and intelligent detection of lidar.
  • the lidar 100 further includes at least two second foldback mirrors 32 and at least two third foldback mirrors 33, the second foldback mirror 32, the third foldback mirror 33, and the first transceiver.
  • the modules 11 are arranged in a one-to-one correspondence, and the outgoing laser light emitted by each first transceiver module 11 is reflected by the second folding mirror 32 and the third folding mirror 33 in turn and then directed toward the first folding mirror 31.
  • the entrance and exit ports of the two adjacent second transceiver modules 12 cannot be close enough, and the two outgoing lasers emitted by the two adjacent second transceiver modules 12 It is not possible to fully overlap on the first folding mirror 31, and the size of the ROI formed in the overlapping area is limited, which cannot well meet the detection requirements. Therefore, the first transceiving module 11 is symmetrically arranged on the outside of the second transceiving module 12, and the outgoing laser light emitted by each first transceiving module 11 is sequentially reflected by the second folding mirror 32 and the third folding mirror 33 and then directed toward In the first folding mirror 31, the two outgoing laser beams sequentially pass through their respective optical paths and then overlap on the first folding mirror 31.
  • the position of the outgoing laser emitted by the first transceiver module 11 toward the first folding mirror 31 is adjusted, and the size of the overlapping area between the first detection areas can be adjusted. Adjust; also can pre-design the position and angle of the second reentrant mirror 32 and the third reentrant mirror 33 that meet the size requirements of the overlapping area between the first detection areas, and then install according to the pre-designed position and angle. At the same time, through multiple reflections and folding, the volume occupied by the optical path of the outgoing laser emitted by the first transceiver module 11 is compressed, and the overall volume of the lidar 100 is reduced.
  • the lidar 100 further includes at least one fourth folding mirror 34.
  • the fourth folding mirror 34 is arranged in a one-to-one correspondence with the second transceiver module 12, and each fourth folding mirror 34 is used for After reflecting the outgoing laser light emitted by the corresponding second transceiver module 12 and then incident on the MEMS micromirror 2, it is also used to reflect the echo laser light reflected by the MEMS micromirror 2 and incident on the corresponding second transceiver module 12.
  • the fourth folding mirror 34 may be a flat mirror, a cylindrical mirror, a mirror with aspheric curvature, or the like.
  • the fourth foldback mirror 34 folds the optical paths of the emitted laser and echo laser of the second transceiver module 12, compressing the volume of the lidar 100; and also enables the second transceiver module 12 to be arranged on the rear side of the MEMS micromirror 2. This prevents the second transceiver module 12 from blocking the outgoing laser light and the echo laser light in front of the MEMS micromirror 2, and improves the detection performance and reliability.
  • second transceiver modules 12 when the number of second transceiver modules 12 is 2 or more, multiple second transceiver modules 12 may be the same or not completely the same, and only multiple second transceiver modules 12 need to be formed.
  • the second detection area of can meet the detection requirements of the lidar 100.
  • the multiple second transceiver modules 12 are all the same; on the one hand, during the manufacturing process, mass production is facilitated, and the product processing, manufacturing and assembly process is simplified; on the other hand, the control system is simplified to realize the intelligent control of the lidar 100.
  • first transceiver module 11 and the second transceiver module 12 may be the same or different.
  • the first transceiver module 11 is different from the second transceiver module 12, which can increase the transmission power and the adjustable range of the transmission frequency of the transmission module of the first transceiver module 11, and improve the reception efficiency of the reception module of the first transceiver module 11. , Detection sensitivity, etc., so that the ROI area in the first detection area of at least two first transceiver modules 11 can have a higher resolution and a longer detection range, and the overall field of view of the lidar 100 can cover a larger At the same time as the field of view angle range, the detection capability of the ROI area has obvious advantages, which can meet the high-demand detection.
  • the first transceiver module 11 and the second transceiver module 12 are the same. On the one hand, during the manufacturing process, it is convenient for mass production and simplifies the product manufacturing and assembly process; on the other hand, it simplifies the system design and control, and facilitates the realization of the lidar 100. Intelligent control.
  • the emission modules mentioned in the above embodiments may all include a laser module, an emission drive module, and an emission optical module.
  • the laser module is used to emit the emitted laser;
  • the emission drive module is connected with the laser module to drive and control the operation of the laser module;
  • the emission optical module is arranged on the optical path of the emitted laser emitted by the laser module and is used to collimate the emitted laser.
  • the transmitting optical module can adopt a collimating module such as an optical fiber and a ball lens group, a separate ball lens group, and a cylindrical lens group.
  • the receiving modules mentioned in the above embodiments may all include a detector module, a receiving driving module and a receiving optical module.
  • the receiving optical module is arranged on the optical path of the echo laser reflected by the MEMS micromirror, and is used to converge the echo laser; the detector module is used to receive the echo laser converged by the receiving optical module; the receiving drive module is connected to the detector module , Used to drive and control the work of the detector module.
  • the receiving optical module may adopt a ball lens, a ball lens group, or a cylindrical lens group.
  • the lidar 100 may also include a control and signal processing module, such as a Field Programmable Gate Array (FPGA), an FPGA and an emission driving module, to control the emission of the emitted laser.
  • FPGA Field Programmable Gate Array
  • the FPGA is also connected to the clock pin, data pin, and control pin of the receiving drive module respectively to control the receiving and controlling of the echo laser.
  • the lidar 100 adopts a transceiving and receiving coaxial transceiver module.
  • the outgoing laser light emitted by the laser module in the transceiver module passes through the beam splitting module after being collimated by the transmitting optical module.
  • the echo laser returned after detecting the target is injected into the transceiver module.
  • the echo laser is deflected by the beam splitter module and then directed to the receiving optical module.
  • the receiving optical module condenses the echo laser and is received by the detector module.
  • the transceiver module adopts a 4+2 combination, the middle 4 channels are the second transceiver modules 12, and the outer 2 channels are symmetrically arranged as the first transceiver modules 11.
  • the middle 4 channels of laser light emitted by the second transceiver module 12 are reflected by the fourth folding mirror 34 and then incident on the MEMS micromirror 2, and then reflected by the MEMS micromirror 2 and then emitted outward for scanning; each second transceiver module 12
  • the corresponding field angle of the second detection area is 25° ⁇ 25°.
  • the laser beams emitted by the two first transceiver modules 11 on both sides are reflected twice by the second folding mirror 32 and the third folding mirror 33 and then directed to the first folding mirror 31, and the spots of the two outgoing lasers are in the first
  • the upper part of the folding mirror 31 is overlapped, and after being reflected by the same first folding mirror 31, it is incident on the MEMS micromirror 2, and then reflected by the MEMS micromirror 2 and then emitted outward for scanning; each first transceiver module 11 corresponds to
  • the first detection area has a field of view angle of 25° ⁇ 25°
  • the overlapping area has a field of view angle of 20° ⁇ 25°.
  • the overall field of view of the lidar 100 is 130° ⁇ 25°; as mentioned above, in order to prevent the gap between the fields of view from causing missed inspections, the field of view and the edge of the field of view overlap, so the overall horizontal field of view of the lidar 100
  • the angle is less than 130°.
  • the actual overall field of view angle is 120° ⁇ 25°.
  • the transmission frequency of the first transceiver modules 11 on both sides is set to be doubled in the non-ROI area of the overlap area instead of Both the first transceiver module 11 in the overlap area and the ROI area are transmitting normally; only the internal angular resolution of the ROI area is doubled, which realizes the differential detection of the entire field of view.
  • the optical path indicated by the dashed line is the optical path of the first transceiver module 11, and the optical path indicated by the solid line is the optical path of the second transceiver module 12.
  • the central optical axis of the emitted laser light is drawn in the light path diagrams. It is understandable that the outgoing laser itself has an emission angle, so the outgoing laser has a certain spot diameter.
  • the central optical axis of the echo laser and the central optical axis of the outgoing laser overlap, but the transmission direction is opposite.
  • the second folding mirror 32 and the fourth folding mirror 34 are arranged at the front ends of the light exit holes of the first transceiver module 11 and the second transceiver module 12, and are fixed on the base of the lidar 100;
  • the three folding mirrors 33 are located between the two second transceiver modules 12 in the middle position, and the two third folding mirrors 33 are connected at an angle and are fixed on the base;
  • the first folding mirrors 31 are located in the middle of the two fourth
  • the foldback mirror 34 is also fixed on the base;
  • the MEMS micromirror 2 is located obliquely above the first foldback mirror 31 and the fourth foldback mirror 34, and the reflective surfaces of the first foldback mirror 31 and the fourth foldback mirror 34 face the MEMS micro The reflecting surface of the mirror 2.
  • the two third folding mirrors 33 are connected at an angle; the two third folding mirrors 33 are angled, and respectively receive two first transmitting and receiving modes emitted from different directions on both sides.
  • the outgoing laser light emitted by the group 11 is reflected and directed to the first folding mirror 31 to meet the optical design requirements; at the same time, the two third folding mirrors 33 are made compact in structure, connected at an angle to fix the structure, and reduce the overall assembly process. Difficulty of light adjustment.
  • the two third folding mirrors 33 adopt an integrated polyhedral structure design, which has two angled reflective surfaces 331 and a mounting limit surface 332 on the back side.
  • the cross section of the third folding mirror 33 is pentagonal, with two angled reflection surfaces 331 and three installation limit surfaces 332.
  • the outer angle between the two reflecting surfaces 331 is >180°.
  • Two positioning posts 333 are provided at the bottom of the third folding mirror 33.
  • the base 3 of the lidar 100 is provided with a mounting block 5 for mounting the third folding mirror 33, and a baffle 51 is provided on the mounting block 5.
  • the baffle 51 has three surfaces, which are enclosed to form one Space for accommodating the third folding mirror 33.
  • the shape of the baffle 51 matches the shape of the three installation limit surfaces 332 of the third folding mirror 33.
  • Two positioning holes 52 are opened on the mounting block 5 at positions corresponding to the positioning posts 333.
  • an embodiment of the present invention proposes an automatic driving device 200 that includes the lidar 100 in the above-mentioned embodiment.
  • the automatic driving device 200 may be a car, an airplane, a boat, or other related applications.
  • Lidar is a device for intelligent sensing and detection.
  • the automatic driving device 200 includes a driving device body 201 and the lidar 100 in the above embodiment, and the lidar 100 is installed on the driving device body 201.
  • the automatic driving device 200 is an unmanned vehicle, and the lidar 100 is installed on the side of the vehicle body.
  • the automatic driving device 200 is also an unmanned car, and the lidar 100 is installed on the roof of the car.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达(100)及自动驾驶设备(200),其中,该激光雷达(100)包括收发组件(1)和MEMS微镜(2);收发组件(1)包括沿第一方向设置的至少两个第一收发模组(11),第一收发模组(11)用于发射出射激光和接收回波激光,回波激光为出射激光被第一探测区域内的物体反射后返回的激光;MEMS微镜(2)用于将每个第一收发模组(11)发射的出射激光反射后射向第一探测区域,同时还用于将回波激光反射后射向对应的第一收发模组(11);至少两个第一探测区域沿第一方向排列,至少两个第一探测区域之间具有重叠区域,重叠区域中包括感兴趣区域,感兴趣区域的分辨率大于其他区域的分辨率。该激光雷达(100)可以为感兴趣区域提供高于其他区域的分辨率。

Description

激光雷达及自动驾驶设备 技术领域
本发明实施例涉及雷达技术领域,特别是涉及一种激光雷达及自动驾驶设备。
背景技术
激光雷达是激光来探测目标物体的位置、速度等特征量的雷达系统,其工作原理是发射模组先向目标发射用于探测的出射激光,然后接收模组接收从目标物体反射回来的回波激光,处理接收到的回波激光后可获得目标物体的有关信息,例如距离、方位、高度、速度、姿态、甚至形状等参数。
基于微机电系统(Micro-Electro-Mechanical System,MEMS)微镜技术的激光雷达具有响应快、可靠性好、测距分辨率高等优势。当发射模组发出出射激光并入射到MEMS微镜(也称为振镜)时,出射激光在MEMS微镜表面发生偏转。随着MEMS微镜振动,出射激光会覆盖一定范围的视场角,对该视场角范围对应的探测区域进行扫描,从而获取目标物体表面的距离信息。
现有技术中,通过多个探测区域的拼接扩大MEMS激光雷达的整体视场角;但MEMS激光雷达的整体视场角范围内的探测分辨率相同且均匀,无法满足对整体视场角的不同区域的分辨率差异化需求。
发明内容
针对现有技术的上述缺陷,本发明实施例的主要目的在于提供一种激光雷达及自动驾驶设备,可以实现对不同区域的差异化探测。
本发明实施例采用的一个技术方案是:提供一种激光雷达,所述激光雷达包括收发组件和MEMS微镜;
所述收发组件包括沿第一方向设置的至少两个第一收发模组,所述第一收发模组用于发射出射激光和接收回波激光,所述回波激光为所述出射激光被第一探测区域内的物体反射后返回的激光;
所述MEMS微镜用于将每个所述第一收发模组发射的所述出射激光反射后射向所述第一探测区域,同时还用于将所述回波激光反射后射向对应的所述第一收发模组;
至少两个所述第一探测区域沿第一方向排列,至少两个所述第一探测区域之间具有重叠区域,所述重叠区域中包括感兴趣区域,所述感兴趣区域的分辨率大于其他区域的分辨率。
可选的,所述第一收发模组的发射频率和发射时序可调,通过调整至少一个第一收发模组的发射频率,控制所述感兴趣区域的分辨率,通过调整至少一个第一收发模组的发射时序,控制所述感兴趣区域的位置和大小。
可选的,通过调整至少一个第一收发模组的发射频率,使所述第一探测区域中的非重叠区域的分辨率小于或等于重叠区域中非感兴趣区域的分辨率。
可选的,所述收发组件包括两个第一收发模组;
每个所述第一收发模组向其探测区域的非重叠区域发射出射激光时,其发射频率为f;
每个所述第一收发模组向其探测区域的重叠区域的非感兴趣区域发射出射激光时,其发射频率为0.5f;
每个所述第一收发模组向其探测区域的重叠区域的感兴趣区域发射出射激光时,其发射频率为f。
可选的,所述收发组件包括两个第一收发模组;
每个所述第一收发模组向其探测区域的非重叠区域发射出射激光时,其发射频率为f;
每个所述第一收发模组向其探测区域的重叠区域的非感兴趣区域发射出射激光时,其发射频率为f;
每个所述第一收发模组向其探测区域的重叠区域的感兴趣区域发射出射激光时,其发射频率大于f。
可选的,所述激光雷达还包括第一折返镜,至少两个所述第一收发模组发射的所述出射激光均射向所述第一折返镜且在所述第一折返镜上的光斑至少部分重叠,所述第一折返镜用于将所述第一收发模组发射的所述出射激光反射后入射到所述MEMS微镜,还用于将所述MEMS微镜反射的所述回波激光反射后入射到对应的所述第一收发模组。
可选的,所述激光雷达还包括沿第一方向设置的至少一个第二收发模组,所述第二收发模组用于发射出射激光和接收回波激光,所述回波激光为所述出射激光被第二探测区域内的物体反射后返回的激光;
所述MEMS微镜用于将所述第二收发模组发射的所述出射激光反射后射向所述第二探测区域,同时还用于将所述回波激光反射后射向对应的第二收发模组;
所述第二探测区域设置于所述第一探测区域的外侧,至少一个所述第二探测区域沿第一方向依次排列。
可选的,所述激光雷达还包括至少一个第四折返镜,所述第四折返镜与所述第二收发模组一一对应设置,每个所述第四折返镜用于将与其对应的所述第二收发模组发射的出射激光反射后入射到所述MEMS微镜,还用于将所述MEMS微镜反射的所述回波激光反射后入射到对应的所述第二收发模组。
可选的,所述激光雷达还包括至少两个第二折返镜和至少两个第三折返镜(33),所述第二折返镜、所述第三折返镜和所述第一收发模组一一对应设置,每个所述第一收发模组发射的所述出射激光依次经过所述第二折返镜和第三折返镜反射后射向所述第一折返镜。
可选的,所述第一收发模组的数量为两个,所述第一收发模组设置于所述第二收发模组的两侧,所述激光雷达还包括与两个所述第一收发模组对应的两个所述第二折返镜和两个所述第三折返镜,两个所述第三折返镜之间呈角度相连。
可选的,两个所述第二折返镜的背侧设置有安装限位面。
本发明实施例还提供了一种自动驾驶设备,包括驾驶设备本体以及如上所述的激光雷达,所述激光雷达安装于所述驾驶设备本体。
本发明实施例的有益效果是:区别于现有技术的情况,本发明实施例提供的激光雷达中,通过设置至少两个第一收发模组,至少两个第一收发模组的第一探测区域之间具有重叠区域,重叠区域的分辨率大于或等于第一探测区域的非重叠区域;另外,重叠区域中可以包括感兴趣区域,感兴趣区域的分辨率大于其他区域的分辨 率,通过控制调节第一收发模组的发射频率和发射时序,可以调节感兴趣区域的分辨率、位置和大小;实现对不同区域的差异化探测,对较关注的区域和物体通过调整感兴趣区域的位置和大小,实现较高分辨率的探测,满足激光雷达智能化探测的需求。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1a示出了本发明实施例提供的激光雷达的结构框图;
图1b示出了本发明实施例提供的激光雷达的扫描视场示意图;
图2示出了本发明另一实施例提供的激光雷达的结构框图;
图3示出了本发明一实施例中负责扫描视场1的第一收发模组的发射频率调整前全发和调整后的发射时序对比示意图;
图4示出了本发明一实施例实现的有重叠区域的两个视场点云示意图;
图5示出了本发明另一实施例中负责扫描视场1的第一收发模组的发射频率调整前全发和调整后的发射时序对比示意图;
图6示出了本发明另一实施例实现的有重叠区域的两个视场点云示意图;
图7示出了本发明又一实施例提供的激光雷达的结构框图;
图8a示出了本发明再一实施例提供的激光雷达的结构框图;
图8b示出了本发明又一实施例提供的激光雷达的结构框图;
图8c示出了本发明图8中激光雷达的扫描视场示意图;
图8d示出了本发明另一实施例中激光雷达的扫描视场示意图;
图9示出了本发明另一实施例提供的激光雷达的结构框图;
图10示出了本发明又一实施例提供的激光雷达的结构框图;
图11示出了本发明一具体实例提供的激光雷达去掉上盖的结构示意图;
图12示出了本发明一具体实例提供的激光雷达的去掉上盖的俯视图;
图13示出了本发明一具体实例提供的激光雷达的光路示意图;
图14示出了本发明一具体实例提供的激光雷达中第二折返镜32的结构示意图;
图15示出了本发明一具体实例提供的激光雷达中安装第二折返镜32的部位的结构示意图;
图16示出了本发明一具体实例提供的激光雷达中第二折返镜32的装配示意图;
图17示出了本发明实施例提供的自动驾驶设备的结构示意图;
图18示出了本发明另一实施例提供的自动驾驶设备的结构示意图。
具体实施方式中的附图标号如下:
激光雷达100,收发组件1,MEMS微镜2,底座3,安装块5,挡板51,定位孔52,第一收发模组11,第一折返镜31,第二收发模组12,第二折返镜32,第三折返镜33,反射面331,安装限位面332,定位柱333,第四折返镜34,自动驾驶设备200,驾驶设备本体201。
具体实施方式
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
需要注意的是,除非另有说明,本发明使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“垂直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本发明的描述中,“多个”、“若干”的含义是两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
如图1a所示,该激光雷达100包括收发组件1和MEMS(Micro-Electro-Mechanical System,微机电系统)微镜2。收发组件1包括沿第一方向设置的至少两个第一收发模组11,第一收发模组11用于发射出射激光和接收回波激光,回波激光为出射激光被第一探测区域内的物体反射后返回的激光。MEMS微镜2用于将每个第一收发模组11发射的出射激光反射后射向第一探测区域,同时还用于将回波激光反射后射向对应的第一收发模组11。至少两个第一探测区域沿第一方向排列,至少两个第一探测区域之间具有重叠区域,重叠区域中包括感兴趣区域(Region of Interest,ROI),ROI区域的分辨率大于其他区域的分辨率。
每个第一收发模组11包括对应设置的发射模组和接收模组,发射模组用于发射出射激光,接收模组用于接收回波激光,该回波激光为出射激光被第一探测区域内的物体反射后返回的激光。
MEMS微镜2包括往复振动的镜面,通过镜面反射出射激光和回波激光;通过振动的镜面对出射激光进行反射并接收同轴返回的回波激光,实现对第一探测区域的扫描。MEMS微镜2可以采用二维MEMS微镜,其能够在水平和垂直方向以一定的机械角旋转扫描,第一收发模组11发射的出射激光经过二维MEMS微镜2后以线扫描的方式扫描,扫描视场的水平和垂直角度由二维MEMS微镜2的扫描机 械角决定。
如图1b所示,多个第一收发模组11通过MEMS微镜2形成的第一探测区域(视场1和视场2)具有重叠区域,重叠区域的分辨率可以不同于非重叠区域;多个第一探测区域沿第一方向排列,扩大了激光雷达100的整体沿第一方向的视场角,若激光雷达100水平放置则扩大了水平视场角;并且重叠区域中包括ROI区域,ROI区域的分辨率大于其他区域的分辨率,满足对ROI区域实现较高分辨率探测的需求。激光雷达100实现对ROI区域进行高分辨率探测的同时,对其他区域也能够进行有效探测,满足激光雷达差异化和智能化的探测需求,提高系统的利用率。
由于多个第一收发模组11形成的视场角具有重叠区域,避免了视场与视场之间存在缝隙导致漏检,影响探测可靠性。其中,可以是沿水平方向重叠,也即多个第一收发模组11形成的第一探测区域在水平方向具有重叠区域;也可以是沿垂直方向重叠,也即多个第一收发模组11形成的第一探测区域在垂直方向具有重叠区域。
在一些实施例中,第一收发模组11的发射频率和发射时序可调,通过调整至少一个第一收发模组11的发射频率,控制感兴趣区域的分辨率,通过调整至少一个第一收发模组11的发射时序,控制感兴趣区域的位置和大小。
ROI区域的分辨率、位置和大小可调,实现了对ROI区域的动态调整;激光雷达100可以根据周围环境的变化或关注物体的移动实时调整ROI区域。示例性的,初始时刻ROI区域一般位于整体视场的中心;当激光雷达周围环境变化时,如进入转弯路口更关注转弯内侧的视场内的情况,可以调整ROI区域的位置,如进入高速路更关注前方更远距离处的情况,可以调整ROI区域的发射频率和大小;当关注物体移动时,可以调整ROI区域的位置和发射频率,实现对移动物体的实时跟踪。
以两个第一收发模组11为例,进行重叠区域和ROI区域调节的说明。
如图2所示,在一些实施例中,该激光雷达100的收发组件1包括两个第一收发模组11。在组装激光雷达100时,第一收发模组11和MEMS微镜2的位置和角度可调,使第一收发模组11发射的出射激光的角度和角度范围不同,即第一探测区域在激光雷达周围覆盖的视场范围不同;通过调整两个第一收发模组11的相对位置和MEMS微镜2的角度,能够使两个第一探测区域之间具有重叠区域,且重叠区域的大小可调。也可以预先设计好满足重叠区域大小的两个第一收发模组11的位置和MEMS微镜2的角度,按照预先设计好的位置和角度进行组装。
关于如何使重叠区域中包括ROI区域,ROI区域的分辨率大于其他区域的分辨率,有如下几种方式:
1.两个第一收发模组11的发射频率相同,由于重叠区域能够同时被两个第一收发模组11扫描,其分辨率能够线性叠加,因此重叠区域的分辨率会提高;因此整个重叠区域的分辨率大于非重叠区域的分辨率;该方式可以实现对ROI区域的重点探测,但无法调整ROI区域出现的时间和位置,ROI区域的位置和大小是固定的;
2.第一收发模组11的发射频率和发射时序可调,通过调整至少一个第一收发模组11的发射频率可以控制ROI区域的分辨率,在扫描ROI区域时提高至少一个第一收发模组11的发射频率,使其分辨率大于其他区域的分辨率。同时,使第一 收发模组11的发射时序可调,通过调整至少一个第一收发模组11的发射时序,控制ROI区域的位置和大小。
示例性的,在一个激光雷达100中,收发组件1包括两个第一收发模组11,两个第一收发模组11相同。以视场1对应的第一收发模组11为例,如图3所示,为该第一收发模组11的发射时序和发射频率调整前和调整后的对比示意图。如图4所示,为两个第一收发模组11对应的视场1和视场2重叠后形成的整体视场的分辨率示意图。第一收发模组11向非重叠区域发射出射激光时,其发射频率为f;第一收发模组11向重叠区域的非ROI区域发射出射激光时,其发射频率为0.5f;第一收发模组11向重叠区域的ROI区域发射出射激光时,其发射频率为f。视场2对应的第一收发模组11发射出射激光的发射时序、发射频率与视场1对应的第一收发模组11的发射时序、发射频率相同。视场1对应的第一收发模组11和视场2对应的第一收发模组11向重叠区域的非ROI区域发射出射激光时,两个第一收发模组11的发射时间相互错开,即在视场1对应的第一收发模组11发射的相邻两个出射激光的脉冲之间,视场2对应的第一收发模组11发射一个出射激光的脉冲。
如图4所示,视场1和视场2的非重叠区域的分辨率假设为x;重叠区域被两个第一收发模组11分别扫描,同时重叠区域的非ROI区域的发射频率为0.5f且两个第一收发模组11的发射时间相互错开,重叠区域中非ROI区域的分辨率也为x;ROI区域也在重叠区域中,因此也被两个第一收发模组11分别扫描,同时ROI区域的发射频率为f,ROI区域的分辨率则达到2x。
以视场1对应的第一收发模组11为例,在扫描过程中,出射激光被振动的二维MEMS微镜反射后进行扫描,出射激光按预设的路径对视场1进行扫描。可选的,出射激光在视场1中按从左至右、从上至下的顺序扫描。当T0~T1时,出射激光扫描视场1的非重叠区域,则第一收发模组11全发,即第一收发模组11的发射频率为f;当T1~T2时,出射激光扫描视场1的重叠区域的非ROI区域,第一收发模组11发射时间间隔增加、发射频率减半,即第一收发模组11的发射频率为0.5f;当T2~T3时,出射激光扫描视场1的ROI区域,则第一收发模组11全发,即第一收发模组11的发射频率为f;使得ROI区域内的探测分辨率得到提高,ROI区域的分辨率大于其他区域的分辨率。当出射激光扫描进入重叠区域进行扫描时,可以控制第一收发模组11的发射时序,调整ROI区域大小、位置等的动态变化。示例性的,如图4所示,视场1对应的第一收发模组11发射的出射激光扫描至重叠区域的第4行时,进入ROI区域,此时第一收发模组11的发射频率由0.5f变为f。若ROI区域需向上扩大时,出射激光扫描至重叠区域的第2行或第3行时,第一收发模组11的发射频率由0.5f变为f;同理,若ROI区域需向下缩小时,出射激光扫描至重叠区域的第5行时,第一收发模组11的发射频率由0.5f变为f。同理,ROI区域也可以沿列方向扩大和缩小。通过控制第一收发模组11的发射时序,能够任意调整ROI区域的大小,ROI区域最大不超过重叠区域的大小。同时,也可以通过控制第一收发模组11的发射时序,调整ROI区域的位置。示例性的,如图4所示,若ROI区域需向上移动时,第一收发模组11发射的出射激光扫描至第3行时,发射频率由0.5f变为f,扫描至第5行时,发射频率由f变回0.5f。同理,可以对ROI区域上下左右的位置进行调节。可以理解的是,出射激光在视场1中的扫描顺序不限制,也可从下至上、从右至左或按其他任意方式进行扫描。
在一些实施例中,通过调整至少一个第一收发模组11的发射频率,可以使第一探测区域中的非重叠区域的分辨率小于或等于重叠区域中非ROI区域的分辨率。也即最终效果为对整体视场中最重要的ROI区域实现最高分辨率扫描,对整体视场中次重要的重叠区域中非ROI区域的分辨率,可以根据探测需求进行设置。当重叠区域的非ROI区域的分辨率与非重叠区域相同,整个视场的分辨率分为两级;如前述实施例所述,视场1对应的第一收发模组11向非重叠区域发射出射激光的发射频率为f,向重叠区域的非ROI区域发射出射激光的发射频率为0.5f,向ROI区域发射出射激光的发射频率为f。此时,整个视场中ROI区域的分辨率为2x,非ROI区域的其他区域分辨率为x。
或者重叠区域的非ROI区域的分辨率大于非重叠区域、小于ROI区域,使整个视场的分辨率分为三级。示例性的,在一个激光雷达100中,收发组件1包括两个第一收发模组11,两个第一收发模组11相同。以视场1对应的第一收发模组11为例,如图5所示,为该第一收发模组11的发射时序和发射频率调整前和调整后的对比示意图。如图6所示,为两个第一收发模组11对应的视场1和视场2重叠后形成的整体视场的分辨率示意图。第一收发模组11向非重叠区域发射出射激光时,其发射频率为f;第一收发模组11向重叠区域的非ROI区域发射出射激光时,其发射频率为f;第一收发模组11向重叠区域的ROI区域发射出射激光时,其发射频率为2f。视场2对应的第一收发模组11发射出射激光的发射时序、发射频率与视场1对应的第一收发模组11的发射时序、发射频率相同。视场1对应的第一收发模组11和视场2对应的第一收发模组11向重叠区域的非ROI区域发射出射激光时,两个第一收发模组11的发射时间相互错开。如图6所示,视场1和视场2的非重叠区域的分辨率假设为x,则重叠区域中非ROI区域的分辨率为2x,ROI区域的分辨率则达到4x。可以理解的是,在其他实施例中,每个第一收发模组11向其探测区域的重叠区域的ROI区域发射出射激光时,其发射频率可以为大于f的其他值,从而使ROI区域的分辨率大于其他区域的分辨率。
需要说明的是,两个第一收发模组11也可以不完全相同,只要两个第一通过模组11能够通过视场的重叠形成重叠区域,并通过控制发射频率和发射时序在重叠区域内形成高分辨率的ROI区域即可。设置两个相同的第一收发模组11,一方面生产制造过程中,便于量产,简化产品加工制造和组装过程;另一方面,简化控制系统,便于实现ROI区域的调节。
前述实施例均以两个第一收发模组11为例进行说明,激光雷达100也可以包括三个或三个以上数量的第一收发模组11。同理,多个第一收发模组11的多个第一探测区域之间的重叠,以及重叠区域内的ROI区域的调节,均与两个第一收发模组11的方式类似,此处不再赘述。
关于该激光雷达100的光学结构,如图7所示,激光雷达100还包括一个第一折返镜31,两个第一收发模组11发射的出射激光均射向第一折返镜31且在第一折返镜31上的光斑至少部分重叠,第一折返镜31用于将第一收发模组11发射的出射激光反射后入射到MEMS微镜2,还用于将MEMS微镜2反射的回波激光反射后入射到对应的第一收发模组11。第一折返镜31可以采用平面反射镜、柱面反射镜、非球面曲率反射镜等。通过设置第一折返镜31接收两个第一收发模组11发射的出射激光,使两束出射激光的光斑至少部分重叠,并以相同的角度射向MEMS 微镜2,两束出射激光经MEMS微镜2反射后向外出射,形成至少部分重叠的两个第一探测区域,使激光雷达100能够实现对ROI区域高分辨率的扫描;同时,第一折返镜31对第一收发模组11的出射激光和回波激光的光路进行折叠,压缩了激光雷达100的体积;也使得第一收发模组11能够设置在MEMS微镜2的后侧,避免第一收发模组11对MEMS微镜2前方的出射激光和回波激光的遮挡,提高探测性能和可靠性。
以上描述的实施例中,激光雷达100包括的第一收发模组11均参与扫描ROI区域。在一些实施例中,激光雷达100还可以包括用于扩大视场角的第二收发模组12。如图8a所示,激光雷达100在第一收发模组11的基础上还包括沿第一方向设置的一个第二收发模组12,第二收发模组12用于发射出射激光和接收回波激光,回波激光为出射激光被第二探测区域内的物体反射后返回的激光。MEMS微镜2用于将第二收发模组12发射的出射激光反射后射向第二探测区域,同时还用于将回波激光反射后射向对应的第二收发模组12。每个第二收发模组12也包括对应设置的发射模组和接收模组,发射模组用于发射出射激光,接收模组用于接收回波激光,该回波激光为出射激光被第二探测区域内的物体反射后返回的激光。第二探测区域沿第一方向设置于第一探测区域的外侧。
如图8c所示,多个第一收发模组11通过MEMS微镜2形成的第一探测区域(分别为视场1和视场2)具有重叠区域,重叠区域中包括ROI区域,ROI区域的分辨率大于其他区域的分辨率,满足对重点探测区域的扫描需求。一个第二收发模组12形成的第二探测区域(视场3)位于视场1的外侧,且视场3与视场1相接。此时,激光雷达100的整体视场为视场1、视场2、视场3叠加和拼接后形成的,扩大了激光雷达100在第一方向上的视场角,在ROI区域能够进行高分辨率探测的情况下,能够对周围区域进行大视场角的全面探测;满足激光雷达对周围区域进行差异化探测的要求,实现智能化探测。
需要说明的是,为了避免视场1和视场3之间有间隙,导致激光雷达100对间隙区域漏检,视场1和视场3的边缘可以有部分重叠,防止出现漏检的盲区,提高探测准确性。
在其他实施例中,还可以沿第一方向设置多个第二收发模组12,例如2个、3个、4个……多个第二收发模组12发射的出射激光分别射向对应的多个第二探测区域,多个第二探测区域沿第一方向依次排列。第二收发模组12优选设置偶数个,且对称排列;第二收发模组12对应的第二探测区域沿第一方向对称设置于第一探测区域的外侧。
示例性的,第二收发模组12对称排列于第一收发模组11内侧,第一收发模组11设置于第二收发模组12的外侧,如图8b所示,第二收发模组12设置有2个,对称排列于第一收发模组11内侧。
如图8d所示,两个第二收发模组12形成视场3和视场4;视场3位于视场1的外侧,且与视场1相接;视场4位于视场2的外侧,且与视场2相接。激光雷达100的整体视场为视场1、视场2、视场3、视场4叠加和拼接后形成的,ROI区域具有高分辨率的探测,同时整体视场在第一方向覆盖的视场角大,能够实现全面探测,满足激光雷达差异化和智能化探测的需求。
在一些实施例中,如图9所示,激光雷达100还包括至少两个第二折返镜32和至少两个第三折返镜33,第二折返镜32、第三折返镜33和第一收发模组11一一对应设置,每个第一收发模组11发射的出射激光依次经过第二折返镜32和第三折返镜33反射后射向第一折返镜31。
由于第二收发模组12的体积限制,导致相邻的两个第二收发模组12的出入光口无法靠的足够近,相邻的两个第二收发模组12发射的两束出射激光无法在第一折返镜31上充分重叠,在重叠区域内形成的ROI区域大小有限,无法很好的满足探测需求。因此,将第一收发模组11对称设置于第二收发模组12的外侧,每个第一收发模组11发射的出射激光依次经过第二折返镜32和第三折返镜33反射后射向第一折返镜31,两束出射激光依次经过各自的光路后在第一折返镜31上重叠。通过改变第二折返镜32和第三折返镜33的位置和角度,调整第一收发模组11发射的出射激光射向第一折返镜31的位置,第一探测区域之间的重叠区域大小可调;也可以预先设计好满足第一探测区域之间重叠区域大小需求的第二折返镜32和第三折返镜33的位置和角度,再照该预先设计好的位置和角度进行安装。同时,通过多次反射折叠,压缩了第一收发模组11发射的出射激光的光路占用的体积,减小的激光雷达100的整体体积。
在一些实施例中,如图10所示,激光雷达100还包括至少一个第四折返镜34,第四折返镜34与第二收发模组12一一对应设置,每个第四折返镜34用于将与其对应的第二收发模组12发射的出射激光反射后入射到MEMS微镜2,还用于将MEMS微镜2反射的回波激光反射后入射到对应的第二收发模组12。第四折返镜34可以采用平面反射镜、柱面反射镜、非球面曲率反射镜等。第四折返镜34对第二收发模组12的出射激光和回波激光的光路进行折叠,压缩了激光雷达100的体积;也使得第二收发模组12能够设置在MEMS微镜2的后侧,避免第二收发模组12对MEMS微镜2前方的出射激光和回波激光的遮挡,提高探测性能和可靠性。
需要说明的是,当第二收发模组12的数量为2个或2个以上时,多个第二收发模组12可以相同也可以不完全相同,只需多个第二收发模组12形成的第二探测区域能够满足激光雷达100的探测需求即可。优选的,多个第二收发模组12均相同;一方面生产制造过程中,便于量产,简化产品加工制造和组装过程;另一方面,简化控制系统,实现激光雷达100的智能化控制。
还需要说明的是,第一收发模组11和第二收发模组12可以相同也可以不同。第一收发模组11和第二收发模组12不同,可以提高第一收发模组11的发射模块的发射功率、发射频率可调范围等,提高第一收发模组11的接收模块的接收效率、探测灵敏度等,使至少两个第一收发模组11的第一探测区域中的ROI区域,能够有更高的分辨率、更远的探测距离,在激光雷达100的整体视场覆盖较大视场角范围的同时,ROI区域的探测能力有明显的优势,满足高要求的探测。第一收发模组11和第二收发模组12相同,一方面生产制造过程中,便于量产,简化产品加工制造和组装过程;另一方面,简化系统设计和控制,便于实现激光雷达100的智能化控制。
上述实施例中所提及的发射模组均可以包括激光器模块、发射驱动模块和发射光学模块。激光器模块,用于发射出射激光;发射驱动模块与激光器模块连接,用 于驱动和控制激光器模块工作;发射光学模块设置于激光器模块发射的出射激光的光路上,用于准直出射激光。发射光学模块可以采用光纤和球透镜组、单独的球透镜组、柱面透镜组等准直模块。
上述实施例中所提及的接收模组均可以包括探测器模块、接收驱动模块和接收光学模块。接收光学模块设置于MEMS微镜反射的回波激光的光路上,用于对回波激光进行会聚;探测器模块用于接收经过接收光学模块会聚的回波激光;接收驱动模块与探测器模块连接,用于驱动和控制探测器模块工作。接收光学模块可以采用球透镜、球透镜组或柱透镜组等。
此外,激光雷达100还可以包括控制和信号处理模块,例如现场可编程门阵列Field Programmable Gate Array,FPGA),FPGA与发射驱动模块,进行出射激光的发射控制。FPGA还分别与接收驱动模块的时钟引脚、数据引脚和控制引脚连接,进行回波激光的接收控制。
如图11-13所示,在一具体实例中,该激光雷达100采用发射和接收同轴的收发模组,收发模组内激光器模块发射的出射激光经过发射光学模块准直后穿过分光模块后出射,探测目标后返回的回波激光射入收发模组,回波激光被分光模块偏转后射向接收光学模块,接收光学模块会聚回波激光后被探测器模块接收。
收发模组采用4+2的组合方式,中间4路为第二收发模组12,外侧对称设置2路为第一收发模组11。中间4路第二收发模组12的出射激光经第四折返镜34反射后入射到MEMS微镜2上,再经MEMS微镜2反射后向外出射进行扫描;每个第二收发模组12对应的第二探测区域视场角为25°×25°。位于两侧的2路第一收发模组11的出射激光依次通过第二折返镜32和第三折返镜33两次反射后射向第一折返镜31,且两束出射激光的光斑在第一折返镜31上部分重合,再经过同一个第一折返镜31的反射后射到MEMS微镜2上,再经MEMS微镜2反射后向外出射进行扫描;每个第一收发模组11对应的第一探测区域视场角为25°×25°,重叠区域视场角为20°×25°。激光雷达100的整体视场角为130°×25°;如前述,为了防止视场之间的间隙导致漏检,视场和视场的边缘有重合,因此激光雷达100的整体水平方向视场角小于130°,示例性的,实际整体视场角为120°×25°。
本实施例中仅选取重叠区域中20°*8°的区域作为ROI区域,则设置两侧的第一收发模组11的发射频率在重叠区域的非ROI区域的发射频率降低一倍,而非重叠区域和ROI区域内的第一收发模组11都正常发射;则仅有ROI区域内角分辨率提高了一倍,实现了对整个视场进行差异化探测。
如图13所示,虚线所表示的光路为第一收发模组11的光路,实线所表示的光路为第二收发模组12的光路。为简化附图及便于理解上述方案,光路图中均只画出了出射激光的中心光轴。可以理解的是,出射激光本身具有发射角,因此出射激光具有一定的光斑直径。同时,根据光路可逆原理,回波激光的中心光轴和出射激光的中心光轴重叠,但传输方向相反。
在本具体实施例中,第二折返镜32和第四折返镜34设置于第一收发模组11和第二收发模组12的出光孔的前端,并固定于激光雷达100的底座上;第三折返镜33位于中间位置的两个第二收发模组12之间,两个第三折返镜33之间呈角度相连,固定在底座上;第一折返镜31位于中间位置的两个第四折返镜34之间,也 固定在底座上;MEMS微镜2位于第一折返镜31和第四折返镜34的斜上方,且第一折返镜31和第四折返镜34的反射面朝向MEMS微镜2的反射面。通过上述设置使内部的光学器件排列紧凑,有利于压缩激光雷达100的体积。
本实施例中,如图14所示,两个第三折返镜33之间呈角度连接;两个第三折返镜33呈角度,分别接收从两侧不同方向射来的两个第一收发模组11发射的出射激光,并将其反射后射向第一折返镜31,满足光学设计需求;同时,使两个第三折返镜33结构紧凑,呈角度连接使结构固定,降低整体组装过程中的光调难度。
具体的,两个第三折返镜33采用一体的多面体结构设计,其具有成角度的两个反射面331以及背侧的安装限位面332。具体的,第三折返镜33的横截面呈五边形,具有成角度的两个反射面331以及三个安装限位面332。两个反射面331之间的外角度>180°。第三折返镜33的底部设置有两个定位柱333。如图15所示,激光雷达100的底座3上设置有用于安装第三折返镜33的安装块5,安装块5上设有挡板51,挡板51具有3个面,其围合形成一用于容纳第三折返镜33的空间。挡板51的形状与第三折返镜33的三个安装限位面332的形状相配合。安装块5上与定位柱333相对应的位置开设有两个定位孔52。安装第三折返镜33时,将第三折返镜33的定位柱333对准安装块5的定位孔52插入,从而将第三折返镜33的三个安装限位面332卡入挡板51内,实现第三折返镜33的安装,安装后如图16所示。这种结构设计,能够快速定位组装,且在平行于底座3的平面内的两个方向上限位精确,组装后两个第三折返镜33的光学精度好,简化组装和光调。
更进一步的,基于上述激光雷达100,本发明实施例提出了一种包含上述实施例中的激光雷达100的自动驾驶设备200,该自动驾驶设备200可以是汽车、飞机、船以及其他涉及到使用激光雷达进行智能感应和探测的设备,该自动驾驶设备200包括驾驶设备本体201以及如上实施例的激光雷达100,激光雷达100安装于驾驶设备本体201。
如图17所示,该自动驾驶设备200为无人驾驶汽车,激光雷达100安装于汽车的车身侧面。如图18所示,该自动驾驶设备200同样为无人驾驶汽车,激光雷达100安装于汽车的车顶。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (12)

  1. 一种激光雷达(100),其特征在于,所述激光雷达(100)包括收发组件(1)和MEMS微镜(2);
    所述收发组件(1)包括沿第一方向设置的至少两个第一收发模组(11),所述第一收发模组(11)用于发射出射激光和接收回波激光,所述回波激光为所述出射激光被第一探测区域内的物体反射后返回的激光;
    所述MEMS微镜(2)用于将每个所述第一收发模组(11)发射的所述出射激光反射后射向所述第一探测区域,同时还用于将所述回波激光反射后射向对应的所述第一收发模组(11);
    至少两个所述第一探测区域沿第一方向排列,至少两个所述第一探测区域之间具有重叠区域,所述重叠区域中包括感兴趣区域,所述感兴趣区域的分辨率大于其他区域的分辨率。
  2. 如权利要求1所述的激光雷达(100),其特征在于,所述第一收发模组(11)的发射频率和发射时序可调,通过调整至少一个第一收发模组(11)的发射频率,控制所述感兴趣区域的分辨率,通过调整至少一个第一收发模组(11)的发射时序,控制所述感兴趣区域的位置和大小。
  3. 如权利要求2所述的激光雷达(100),其特征在于,通过调整至少一个第一收发模组(11)的发射频率,使所述第一探测区域中的非重叠区域的分辨率小于或等于重叠区域中非感兴趣区域的分辨率。
  4. 如权利要求3所述的激光雷达(100),其特征在于,所述收发组件(1)包括两个第一收发模组(11);
    每个所述第一收发模组(11)向其探测区域的非重叠区域发射出射激光时,其发射频率为f;
    每个所述第一收发模组(11)向其探测区域的重叠区域的非感兴趣区域发射出射激光时,其发射频率为0.5f;
    每个所述第一收发模组(11)向其探测区域的重叠区域的感兴趣区域发射出射激光时,其发射频率为f。
  5. 如权利要求3所述的激光雷达(100),其特征在于,所述收发组件(1)包括两个第一收发模组(11);
    每个所述第一收发模组(11)向其探测区域的非重叠区域发射出射激光时,其发射频率为f;
    每个所述第一收发模组(11)向其探测区域的重叠区域的非感兴趣区域发射出射激光时,其发射频率为f;
    每个所述第一收发模组(11)向其探测区域的重叠区域的感兴趣区域发射出射激光时,其发射频率大于f。
  6. 如权利要求1所述的激光雷达(100),其特征在于,所述激光雷达(100)还包括第一折返镜(31),至少两个所述第一收发模组(11)发射的所述出射激光均射向所述第一折返镜(31)且在所述第一折返镜(31)上的光斑至少部分重叠,所述第一折返镜(31)用于将所述第一收发模组(11)发射的所述出射 激光反射后入射到所述MEMS微镜(2),还用于将所述MEMS微镜(2)反射的所述回波激光反射后入射到对应的所述第一收发模组(11)。
  7. 如权利要求6所述的激光雷达(100),其特征在于,所述激光雷达(100)还包括沿第一方向设置的至少一个第二收发模组(12),所述第二收发模组(12)用于发射出射激光和接收回波激光,所述回波激光为所述出射激光被第二探测区域内的物体反射后返回的激光;
    所述MEMS微镜(2)用于将所述第二收发模组(12)发射的所述出射激光反射后射向所述第二探测区域,同时还用于将所述回波激光反射后射向对应的第二收发模组(12);
    所述第二探测区域设置于所述第一探测区域的外侧,至少一个所述第二探测区域沿第一方向依次排列。
  8. 如权利要求7所述的激光雷达(100),其特征在于,所述激光雷达(100)还包括至少一个第四折返镜(34),所述第四折返镜(34)与所述第二收发模组(12)一一对应设置,每个所述第四折返镜(34)用于将与其对应的所述第二收发模组(12)发射的出射激光反射后入射到所述MEMS微镜(2),还用于将所述MEMS微镜(2)反射的所述回波激光反射后入射到对应的所述第二收发模组(12)。
  9. 如权利要求8所述的激光雷达(100),其特征在于,所述激光雷达(100)还包括至少两个第二折返镜(32)和至少两个第三折返镜(33),所述第二折返镜(32)、所述第三折返镜(33)和所述第一收发模组(11)一一对应设置,每个所述第一收发模组(11)发射的所述出射激光依次经过所述第二折返镜(32)和第三折返镜(33)反射后射向所述第一折返镜(31)。
  10. 如权利要求9所述的激光雷达(100),其特征在于,所述第一收发模组(11)的数量为两个,所述第一收发模组(11)设置于所述第二收发模组(12)的两侧,所述激光雷达(100)还包括与两个所述第一收发模组(11)对应的两个所述第二折返镜(32)和两个所述第三折返镜(33),两个所述第三折返镜(33)之间呈角度相连。
  11. 如权利要求10所述的激光雷达(100),其特征在于,两个所述第二折返镜(32)的背侧设置有安装限位面。
  12. 一种自动驾驶设备(200),其特征在于,包括驾驶设备本体(201)以及如权利要求1-11任一项所述的激光雷达(100),所述激光雷达(100)安装于所述驾驶设备本体(201)。
PCT/CN2020/070276 2020-01-03 2020-01-03 激光雷达及自动驾驶设备 WO2021051722A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/070276 WO2021051722A1 (zh) 2020-01-03 2020-01-03 激光雷达及自动驾驶设备
CN202080004043.0A CN112616318A (zh) 2020-01-03 2020-01-03 激光雷达及自动驾驶设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070276 WO2021051722A1 (zh) 2020-01-03 2020-01-03 激光雷达及自动驾驶设备

Publications (1)

Publication Number Publication Date
WO2021051722A1 true WO2021051722A1 (zh) 2021-03-25

Family

ID=74883696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070276 WO2021051722A1 (zh) 2020-01-03 2020-01-03 激光雷达及自动驾驶设备

Country Status (2)

Country Link
CN (1) CN112616318A (zh)
WO (1) WO2021051722A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220018967A1 (en) * 2020-07-20 2022-01-20 Beijing Voyager Technology Co., Ltd. METHODS AND APPARATUSES FOR SECURING OPTICAL MODULES IN A LiDAR SYSTEM

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904899B (zh) * 2021-04-25 2023-03-21 成都华航职业技能培训学校 无人机飞行轨迹感知装置及无人机飞行训练系统
CN115616533A (zh) * 2021-07-16 2023-01-17 上海禾赛科技有限公司 激光雷达的探测方法、发射单元以及激光雷达
CN115704904B (zh) * 2021-08-09 2023-09-15 北京一径科技有限公司 激光雷达系统
CN113721256A (zh) * 2021-09-24 2021-11-30 探维科技(北京)有限公司 一种角度拼接激光雷达系统
CN114170826B (zh) * 2021-12-03 2022-12-16 地平线(上海)人工智能技术有限公司 自动驾驶控制方法和装置、电子设备和存储介质
CN114325741B (zh) * 2021-12-31 2023-04-07 探维科技(北京)有限公司 探测模组及激光测距系统
WO2023155048A1 (zh) * 2022-02-15 2023-08-24 华为技术有限公司 一种探测装置、终端设备及分辨率的调控方法
WO2023159499A1 (zh) * 2022-02-25 2023-08-31 华为技术有限公司 一种控制方法和激光雷达
WO2023164906A1 (zh) * 2022-03-03 2023-09-07 华为技术有限公司 一种扫描方法及装置
CN114419572B (zh) * 2022-03-31 2022-06-17 国汽智控(北京)科技有限公司 多雷达目标检测方法、装置、电子设备及存储介质
WO2023201742A1 (zh) * 2022-04-22 2023-10-26 华为技术有限公司 一种扫描方法、探测装置及终端
CN117368886A (zh) * 2022-06-30 2024-01-09 深圳市速腾聚创科技有限公司 一种激光发射模组及激光雷达
CN117630861A (zh) * 2022-08-10 2024-03-01 上海禾赛科技有限公司 激光雷达的探测方法及应用其的激光雷达
CN115694652A (zh) * 2022-11-03 2023-02-03 中国南方电网有限责任公司超高压输电公司广州局 光通讯系统及光通讯方法
CN115792930B (zh) * 2023-02-06 2023-04-18 长沙思木锐信息技术有限公司 一种正交收发的激光雷达及其扫描方法、系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060006337A1 (en) * 2003-12-12 2006-01-12 Kane David M Optical system
CN102520412A (zh) * 2011-11-18 2012-06-27 西安交通大学 基于微机械mems 二维扫描镜阵列的激光主动探测装置
CN109031345A (zh) * 2018-06-13 2018-12-18 北京经纬恒润科技有限公司 一种mems微镜扫描激光雷达系统及其扫描方法
CN109997057A (zh) * 2016-09-20 2019-07-09 创新科技有限公司 激光雷达系统和方法
CN110632618A (zh) * 2019-11-22 2019-12-31 深圳市速腾聚创科技有限公司 激光雷达及其控制方法以及自动驾驶装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204679638U (zh) * 2015-06-24 2015-09-30 武汉万集信息技术有限公司 一种可变扫描分辨率的激光测距传感器
CN108267746A (zh) * 2018-01-17 2018-07-10 上海禾赛光电科技有限公司 激光雷达系统、激光雷达点云数据的处理方法、可读介质
US11353587B2 (en) * 2018-03-26 2022-06-07 Facebook Technologies, Llc Lidar depth measurement systems and methods
CN109828259A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种激光雷达及组合扫描装置
CN110275177B (zh) * 2019-06-10 2021-07-02 深圳市速腾聚创科技有限公司 固态激光雷达、结构及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060006337A1 (en) * 2003-12-12 2006-01-12 Kane David M Optical system
CN102520412A (zh) * 2011-11-18 2012-06-27 西安交通大学 基于微机械mems 二维扫描镜阵列的激光主动探测装置
CN109997057A (zh) * 2016-09-20 2019-07-09 创新科技有限公司 激光雷达系统和方法
CN109031345A (zh) * 2018-06-13 2018-12-18 北京经纬恒润科技有限公司 一种mems微镜扫描激光雷达系统及其扫描方法
CN110632618A (zh) * 2019-11-22 2019-12-31 深圳市速腾聚创科技有限公司 激光雷达及其控制方法以及自动驾驶装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220018967A1 (en) * 2020-07-20 2022-01-20 Beijing Voyager Technology Co., Ltd. METHODS AND APPARATUSES FOR SECURING OPTICAL MODULES IN A LiDAR SYSTEM

Also Published As

Publication number Publication date
CN112616318A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2021051722A1 (zh) 激光雷达及自动驾驶设备
US20220128667A1 (en) Multi-beam laser radar and self-moving vehicle
CN110632618B (zh) 激光雷达及其控制方法以及自动驾驶装置
WO2021035428A1 (zh) 激光雷达及自动驾驶设备
US20210247498A1 (en) Laser Measurement Module And Laser Radar
US20230393246A1 (en) A lidar system
CN211236225U (zh) 一种大视场激光雷达光机系统
CN112219130B (zh) 一种测距装置
CN109239693B (zh) 收发共路扫描激光雷达
WO2023202282A1 (zh) 激光雷达装置
US20230145710A1 (en) Laser receiving device, lidar, and intelligent induction apparatus
WO2021196191A1 (zh) 激光雷达及自动驾驶设备
WO2020098771A1 (zh) 一种激光雷达系统
WO2023035326A1 (zh) 一种混合固态激光雷达及其扫描方法
WO2022110062A1 (zh) 光学测距装置及其光学窗口、可移动设备
CN111263898A (zh) 一种光束扫描系统、距离探测装置及电子设备
CN112327310A (zh) 一种激光雷达及激光雷达的二维扫描方法
CN116457698A (zh) 一种激光雷达及移动平台
WO2022198475A1 (zh) 一种探测方法及装置
CN114415149A (zh) 一种大角度收发同步激光雷达光学系统
WO2021035427A1 (zh) 激光雷达及自动驾驶设备
CN112444791A (zh) 减小近距离盲区的激光雷达
CN116125436B (zh) 一种用于单光子雷达的集成化同轴收发装置及单光子雷达
US20220260677A1 (en) Laser radar and method for performing detection by using the same
CN218158327U (zh) 多波长的扫描装置、发射模块和激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20864598

Country of ref document: EP

Kind code of ref document: A1