WO2020199814A1 - 通信的方法及装置 - Google Patents

通信的方法及装置 Download PDF

Info

Publication number
WO2020199814A1
WO2020199814A1 PCT/CN2020/077314 CN2020077314W WO2020199814A1 WO 2020199814 A1 WO2020199814 A1 WO 2020199814A1 CN 2020077314 W CN2020077314 W CN 2020077314W WO 2020199814 A1 WO2020199814 A1 WO 2020199814A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
time unit
sub
time
control information
Prior art date
Application number
PCT/CN2020/077314
Other languages
English (en)
French (fr)
Inventor
李新县
肖洁华
唐浩
王轶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20784408.5A priority Critical patent/EP3923654A4/en
Publication of WO2020199814A1 publication Critical patent/WO2020199814A1/zh
Priority to US17/485,152 priority patent/US20220015098A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • data transmission and reception corresponding to a transmission block can usually occupy a transmission time interval (TTI).
  • TTI transmission time interval
  • LTE long term evolution
  • NR new radio
  • data transmission and reception corresponding to one TB may occupy one time slot.
  • the main problem of the above mechanism is that the time domain resources occupied by the data transmission and reception corresponding to the TB are not flexible enough in time, so that the time domain resources cannot be used more reasonably according to the size of the TB data. Therefore, how to design a more flexible time-domain resource usage method for data transmission and reception to improve data transmission efficiency has become an urgent problem to be solved.
  • the embodiments of the present application provide a communication method and device.
  • an embodiment of the present application provides a communication method, including: receiving control information from a communication device, where the communication device may be a network device or a terminal. Determine at least one first sub time unit and at least one second sub time unit according to the control information, the at least one first sub time unit and the at least one second sub time unit are included in the at least one time unit .
  • the first data is received on the at least one first sub-time unit, and the second data is received on the at least one second sub-time unit.
  • the time unit is a time slot
  • the sub-time unit is a time slot or a symbol.
  • the at least one time unit is included in a time unit aggregation.
  • different time domain resources carrying different data can be determined in at least one time unit, so the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the actual needs of data transmission, thereby improving data transmission efficiency .
  • the aforementioned control information is used to indicate the position of the at least one first sub-time unit, or the aforementioned control information is used to indicate the at least one second sub-time unit The location of the unit.
  • the aforementioned control information is used to indicate the position of the at least one first sub-time unit and the position of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the number of the at least one first sub-time unit, or the aforementioned control information is used to indicate the number of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the number of the at least one first sub-time unit and the number of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the ratio of the number of the first sub-time unit to the number of the second sub-time unit.
  • the aforementioned control information is used to indicate the ratio of the number of the second sub-time units to the number of the first sub-time units.
  • control information may be configured by the physical downlink control channel (PDCCH), the physical sidelink control channel (PSCCH), and the system message , Radio resource control (radio resource control, RRC) signaling, or media access control (media access control, MAC) control element (CE) bearer.
  • PDCH physical downlink control channel
  • PSCCH physical sidelink control channel
  • RRC Radio resource control
  • CE media access control control element
  • the above control information may be carried by multiple items of the above.
  • the above-mentioned control information includes a bitmap used to indicate the at least one first sub-time unit and the at least one second sub-time unit.
  • the number of bits included in the bitmap is greater than or equal to the number of the foregoing at least one time unit.
  • a bit marked as 0 in the bitmap indicates the at least one first sub-time unit, and a bit marked as 1 in the bitmap indicates the at least one second sub-time unit; or The bit identified as 1 indicates the at least one first sub-time unit, and the bit identified as 0 in the bitmap indicates the at least one second sub-time unit.
  • first configuration information is received from a communication device, where the first configuration information is used to configure at least one time unit.
  • receive first configuration information from the communication device where the first configuration information is used to configure the at least one time unit, and the number of the at least one time unit is two or more; if the first configuration information is not received from the communication device In the first configuration information, the number of the at least one time unit is one by default.
  • the first configuration information is used to configure the number of the at least one time unit.
  • the aforementioned first configuration information may be carried by PDCCH, PSCCH, system message, RRC signaling, or MACCE.
  • the first data is data corresponding to a first transmission block (TB)
  • the second data is data corresponding to a second transmission block TB . Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different TBs, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first hybrid automatic repeat request (HARQ) process
  • the second data is the second Data corresponding to the HARQ process. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different HARQ processes, data transmission efficiency and resource utilization efficiency can be improved.
  • HARQ hybrid automatic repeat request
  • the first data is initially transmitted data, and the second data is retransmitted data.
  • the first data is retransmission data
  • the second data is initial transmission data.
  • the first data is first initial transmission data
  • the second data is second initial transmission data.
  • the first data is first retransmitted data
  • the second data is second retransmitted data. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of initial transmission data and retransmission data, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to a first redundancy version (RV)
  • the second data is data corresponding to a second RV. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different RVs, data transmission efficiency and resource utilization efficiency can be improved.
  • RV redundancy version
  • the first data is data corresponding to a first service
  • the second data is data corresponding to a second service. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different services, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is received on the at least one first sub-time unit, and the first data is received on the at least one second sub-time unit.
  • the aforementioned control information includes scheduling information of the first data and scheduling information of the second data, and the scheduling information includes one or more of resource allocation information, modulation coding scheme (modulation coding scheme, MCS) and other information.
  • MCS modulation coding scheme
  • an embodiment of the present application provides another communication method, including: sending control information to a communication device, where the communication device may be a network device or a terminal.
  • the control information is used to indicate at least one first sub-time unit and at least one second sub-time unit, and the at least one first sub-time unit and the at least one second sub-time unit are included in the at least one time unit in.
  • the first data is sent on the at least one first sub-time unit
  • the second data is sent on the at least one second sub-time unit.
  • the time unit is a time slot
  • the sub-time unit is a time slot or a symbol.
  • the at least one time unit is included in a time unit aggregation.
  • different time domain resources carrying different data can be determined in at least one time unit, so the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the actual needs of data transmission, thereby improving data transmission efficiency .
  • the aforementioned control information is used to indicate the position of the at least one first sub-time unit, or the aforementioned control information is used to indicate the at least one second sub-time unit The location of the unit.
  • the aforementioned control information is used to indicate the position of the at least one first sub-time unit and the position of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the number of the at least one first sub-time unit, or the aforementioned control information is used to indicate the number of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the number of the at least one first sub-time unit and the number of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the ratio of the number of the first sub-time unit to the number of the second sub-time unit.
  • the aforementioned control information is used to indicate the ratio of the number of the second sub-time units to the number of the first sub-time units.
  • control information may be carried by PDCCH, PSCCH, system message, RRC signaling, or MAC CE.
  • the above control information may be carried by multiple items of the above.
  • the above-mentioned control information includes a bitmap for indicating the at least one first sub-time unit and the at least one second sub-time unit.
  • the number of bits included in the bitmap is greater than or equal to the number of the foregoing at least one time unit.
  • a bit marked as 0 in the bitmap indicates the at least one first sub-time unit, and a bit marked as 1 in the bitmap indicates the at least one second sub-time unit; or The bit identified as 1 indicates the at least one first sub-time unit, and the bit identified as 0 in the bitmap indicates the at least one second sub-time unit.
  • first configuration information is sent to the communication device, where the first configuration information is used to configure the above-mentioned at least one time unit.
  • the first configuration information is used to configure the number of the at least one time unit.
  • the aforementioned first configuration information may be carried by PDCCH, PSCCH, system message, RRC signaling, or MACCE.
  • the first data is data corresponding to the first transmission block TB
  • the second data is data corresponding to the second transmission block TB. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different TBs, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to a first HARQ process
  • the second data is data corresponding to a second HARQ process. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different HARQ processes, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is initially transmitted data, and the second data is retransmitted data.
  • the first data is retransmission data
  • the second data is initial transmission data.
  • the first data is first initial transmission data
  • the second data is second initial transmission data.
  • the first data is first retransmitted data
  • the second data is second retransmitted data. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of initial transmission data and retransmission data, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to a first RV
  • the second data is data corresponding to a second RV. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different RVs, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to a first service
  • the second data is data corresponding to a second service. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different services, data transmission efficiency and resource utilization efficiency can be improved.
  • the aforementioned control information includes scheduling information of the first data and scheduling information of the second data, and the scheduling information includes resource allocation information, MCS, and other information One or more of.
  • the signaling overhead of data scheduling can be reduced.
  • an embodiment of the present application provides another communication method, including: receiving second configuration information from a communication device, where the second configuration information is used to configure a time unit corresponding to a bandwidth part (BWP) A collection of the number of time units, the maximum number of time units, or the number of time units in the aggregation.
  • BWP bandwidth part
  • the communication device may be a network device or a terminal. Use one or more time units in the time unit aggregation to receive or send third data on the BWP.
  • the above-mentioned BWP can be understood as a physical resource.
  • the BWP can include at least one resource block group (RBG), at least one physical resource-block group (PRG), and at least one resource block (resource-block group, PRG) in the frequency domain.
  • RBG, PRG, RB, and SC can also be understood as physical resources in the frequency domain.
  • the second configuration information is used to configure the number of time units A1 in the time unit aggregation corresponding to the BWP, and one of the time unit aggregations or The number of multiple time units can be equal to or less than A1. It can be understood that the number of time units A1 in the time unit aggregation corresponding to the BWP can also be understood as the maximum number of time units in the time unit aggregation corresponding to the BWP.
  • the second configuration information is used to configure the set of the number of time units in the time unit aggregation ⁇ A1, A2,..., An ⁇ corresponding to the BWP , Where n is an integer greater than 1, and the number of one or more time units in the time unit aggregation may be one of the above set elements.
  • an embodiment of the present application provides another communication method, including: sending second configuration information to a terminal, where the second configuration information is used to configure the number of time units and the maximum number of time units in the time unit aggregation corresponding to the bandwidth part.
  • the number of time units or a collection of the number of time units. Use one or more time units in the time unit aggregation to send or receive third data on the bandwidth portion.
  • an embodiment of the present application provides another communication method, including: obtaining a reference transmission block size corresponding to a reference time unit.
  • the actual transmission block size corresponding to multiple time units (M time units, M is an integer greater than 1) is determined according to the reference transmission block size.
  • the foregoing multiple time units are included in a time unit aggregation, or the foregoing multiple time units form a time unit aggregation. This time unit aggregation can also be understood as a collection of time units.
  • the transmission block size used for multi-time unit transmission can be obtained accurately and simply, and the implementation complexity of network equipment or terminal is reduced.
  • the reference transmission block size corresponding to the reference time unit is N (N is an integer greater than 0).
  • the actual transmission block size corresponding to M time units is determined according to the reference transmission block size N, including the actual transmission block size N'corresponding to the M time units satisfying one of the following:
  • the reference time unit includes a first reference time unit and a second reference time unit.
  • the first reference time unit can be understood as a reference time unit that carries the first information and/or the first signal
  • the second reference time unit can be understood as a reference time unit that does not carry the first information and/or the first signal.
  • L is the number of time units carrying the first information and/or the first signal in the above M time units, C3 and C4 are positive real numbers, and f(x) represents rounding x.
  • the first information and/or the first signal may include one or more of the following items: control information, reference signal, synchronization signal (synchronization signal, SS), synchronization signal block (SS block, SSB) , Or random access signal.
  • the control information includes uplink control information (uplink control information, UCI) and/or downlink control information (downlink control information, DCI) carried by the control channel.
  • the reference signal includes a demodulation reference signal (demodulation reference signal, DMRS), a phase tracking reference signal (phase tracking reference signal, PTRS), a sounding reference signal (sounding reference signal, SRS), or a channel state information reference signal (channel state information).
  • CSI-RS information reference signal
  • the synchronization signal includes a primary synchronization signal (primary SS, PSS) and/or a secondary synchronization signal (secondary SS, SSS).
  • the synchronization signal block includes a synchronization signal and/or a physical broadcast channel (physical broadcast channel, PBCH).
  • the time unit aggregation includes both the time unit that carries the first information and/or the first signal and the time unit that does not carry the first information and/or the first signal, more accurate calculations can be required.
  • the transmission block size is increased to improve the utilization of time resources.
  • an embodiment of the present application provides another communication method, including: obtaining the number of resource elements corresponding to multiple time units.
  • the foregoing multiple time units are included in a time unit aggregation, or the foregoing multiple time units form a time unit aggregation.
  • This time unit aggregation can also be understood as a collection of time units. Determine the actual transmission block size corresponding to the multiple time units according to the number of REs.
  • the RE in the embodiment of this application can be understood as a physical resource.
  • one RE can occupy one subcarrier in the frequency domain and one symbol in the time domain.
  • the transmission block size used for multi-time unit transmission can be obtained accurately and simply, and the implementation complexity of network equipment or terminal is reduced.
  • the time unit is a time slot.
  • N RE the number of REs corresponding to multiple time slots as N RE , and satisfy among them Is the number of subcarriers contained in an RB (e.g. ), Is the number of symbols scheduled in the above multiple time slots, Is the number of REs occupied by DMRS in the above multiple time slots, The number of REs included for other overheads (for example, overhead configured by higher layer signaling).
  • embodiments of the present application provide a communication device that can implement the foregoing first aspect, any possible implementation manner of the first aspect, any second aspect, any possible implementation manner of the second aspect, the third aspect, and the third aspect
  • the communication device includes corresponding units or components for executing the above methods.
  • the units included in the communication device may be implemented in software and/or hardware.
  • the communication device may be, for example, a terminal, or a network device (such as a base station), or a chip, a chip system, or a processor that can support the terminal or network device to implement the above-mentioned functions.
  • the present application provides a communication device, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor,
  • the communication device implements the foregoing first aspect, any possible implementation manner of the first aspect, any second aspect, any possible implementation manner of the second aspect, the third aspect, any possible implementation manner of the third aspect, the fourth aspect, and the fourth aspect Any possible implementation manner, the fifth aspect, any possible implementation manner of the fifth aspect, the sixth aspect, or the method described in any possible implementation manner of the sixth aspect.
  • this application provides a storage medium on which a computer program or instruction is stored.
  • the computer executes any possible implementation of the first aspect, the first aspect, and the second aspect.
  • the computer executes any possible implementation of the second aspect, any possible implementation of the third aspect, any possible implementation of the third aspect, any possible implementation of the fourth aspect, any possible implementation of the fourth aspect, any possible implementation of the fifth aspect, the fifth aspect, the first The method described in the sixth aspect or any possible implementation of the sixth aspect.
  • an embodiment of the present application provides a communication system, including: the first aspect, any possible implementation manner of the first aspect, the second aspect, any possible implementation manner of the second aspect, the third aspect, Any possible implementation of the third aspect, any possible implementation of the fourth aspect, any possible implementation of the fourth aspect, any possible implementation of the fifth aspect, any possible implementation of the fifth aspect, the sixth aspect, or any possible implementation of the sixth aspect
  • the communication device of the method including: the first aspect, any possible implementation manner of the first aspect, the second aspect, any possible implementation manner of the second aspect, the third aspect, Any possible implementation of the third aspect, any possible implementation of the fourth aspect, any possible implementation of the fourth aspect, any possible implementation of the fifth aspect, any possible implementation of the fifth aspect, the sixth aspect, or any possible implementation of the sixth aspect.
  • FIG. 1 is a schematic diagram of a communication system applied by an embodiment provided by this application;
  • Figure 2 shows a schematic diagram of an example architecture of a communication system
  • FIG. 3 shows a schematic flowchart of a communication method provided by an embodiment of the present application
  • FIG. 4 shows a schematic diagram of time domain resources in an embodiment of the present application
  • FIG. 5 shows another schematic diagram of time domain resources in an embodiment of the present application
  • FIG. 6A shows another schematic diagram of time domain resources in an embodiment of the present application
  • FIG. 6B shows another schematic diagram of time domain resources in an embodiment of the present application.
  • FIG. 7 shows a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 8 shows a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 9 shows a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 10 shows a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 11 shows a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 1 shows a schematic diagram of a communication system structure.
  • the communication system includes one or more network devices (for clarity, the figure shows the network device 10 and the network device 20), and one or more terminal devices that communicate with the one or more network devices.
  • the terminal device 11 and the terminal device 12 shown in FIG. 1 communicate with the network device 10, and the terminal device 21 and the terminal device 22 shown in FIG. 1 communicate with the network device 20.
  • network devices and terminal devices may also be referred to as communication devices.
  • the technology described in the embodiments of the present invention can be used in various communication systems, such as 2G, 3G, 4G, 4.5G, 5G communication systems, systems where multiple communication systems are integrated, or future evolution networks.
  • LTE long term evolution
  • NR new radio
  • WiFi wireless fidelity
  • 3GPP 3rd generation partnership project
  • FIG 2 shows a schematic diagram of an example of a possible architecture of a communication system.
  • the network equipment in the radio access network is a centralized unit (CU) and a distributed unit (CU).
  • unit, DU A base station with a separate architecture (such as gNodeB or gNB).
  • the RAN can be connected to a core network (for example, it can be an LTE core network, or a 5G core network, etc.).
  • CU and DU can be understood as the division of base stations from the perspective of logical functions.
  • CU and DU can be physically separated or deployed together. Multiple DUs can share one CU.
  • One DU can also be connected to multiple CUs (not shown in the figure).
  • the CU and DU can be connected through an interface, for example, an F1 interface.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • the functions of the packet data convergence protocol (PDCP) layer and the radio resource control (radio resource control, RRC) layer are set in the CU, while the radio link control (RLC) and media access control
  • the functions of the (media access control, MAC) layer and the physical layer are set in the DU.
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • RLC radio link control
  • MAC media access control
  • the division of CU and DU processing functions according to this protocol layer is only an example, and it can also be divided in other ways.
  • CU or DU can be divided into functions with more protocol layers.
  • the CU or DU can also be divided into part of the processing functions with the protocol layer.
  • the functions of the CU or DU can also be divided according to business types or other system requirements. For example, it is divided by time delay, and functions whose processing time needs to meet the delay requirement are set in DU, and functions that do not need to meet the delay requirement are set in CU.
  • the network architecture shown in FIG. 2 can be applied to a 5G communication system, and it can also share one or more components or resources with an LTE system.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally or separately.
  • CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio frequency functions, or the radio frequency functions can be set remotely.
  • the function of the CU can be realized by one entity, or the control plane (CP) and the user plane (UP) can be further separated, that is, the control plane (CU-CP) and the user plane (CU-UP) of the CU can be composed of different functions It is realized by an entity, and the CU-CP and CU-UP can be coupled with the DU to jointly complete the function of the base station.
  • the network device can be any device with a wireless transceiver function. Including but not limited to: evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional NodeB), base station in NR (gNodeB or gNB) or transmission receiving point/transmission reception point (TRP), 3GPP Subsequent evolution of base stations, access nodes in the WiFi system, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc. Multiple base stations can support networks of the same technology mentioned above, or networks of different technologies mentioned above.
  • the base station can contain one or more co-site or non-co-site TRPs.
  • the network device may also be a wireless controller, CU, and/or DU in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the following description takes the network device as a base station as an example.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment, and it can also communicate with the terminal equipment through the relay station.
  • a terminal device can communicate with multiple base stations of different technologies.
  • a terminal device can communicate with a base station that supports an LTE network, can also communicate with a base station that supports a 5G network, and can also support communication with a base station of an LTE network and a base station of a 5G network. Double connection.
  • a terminal is a device with a wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, etc.) And satellite class).
  • the terminal may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control (industrial control) Wireless terminals in control), vehicle-mounted terminal equipment, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety (transportation safety) ), wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, and so on.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • Wireless terminals in control vehicle-mounted terminal equipment, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety (transportation safety) ), wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, and so on.
  • the embodiment of this application does not limit the application scenario.
  • Terminals can sometimes be called terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile Equipment, UE terminal equipment, terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal can also be fixed or mobile.
  • data transmission and reception corresponding to a transmission block can usually occupy a transmission time interval (TTI).
  • TTI transmission time interval
  • LTE long term evolution
  • NR new radio
  • data transmission and reception corresponding to one TB may occupy one time slot.
  • the main problem of the above mechanism is that the time domain resources occupied by the data transmission and reception corresponding to the TB are not flexible enough in time, so that the time domain resources cannot be used more reasonably according to the size of the TB data. Therefore, how to design a more flexible time-domain resource usage method for data transmission and reception to improve data transmission efficiency has become an urgent problem to be solved.
  • the communication device can determine different time domain resources carrying different data in the time unit aggregation, and therefore can flexibly adjust the time domain resources occupied by data transmission and reception according to the actual needs of data transmission, thereby improving data transmission effectiveness.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the application, and the method may be executed by a terminal. As shown in Fig. 3, the method of this embodiment may include:
  • Part 300 Receive control information from communication equipment.
  • the communication device may be a network device or a terminal.
  • Part 310 Determine at least one first sub-time unit and at least one second sub-time unit according to the control information, the at least one first sub-time unit and the at least one second sub-time unit are included in at least one time unit in.
  • the at least one time unit may be composed of the at least one first sub-time unit and the at least one second sub-time unit, or the at least one time unit is divided by the at least one first sub-time unit In addition to the at least one second sub-time unit, other sub-time units are included.
  • the time unit is a time slot
  • the sub-time unit is a time slot or a symbol (also referred to as a time domain symbol); or, the time unit is a subframe, and the sub-time unit is a subframe , Time slot, or symbol; or, the time unit is a frame, and the sub-time unit is a frame, subframe, time slot, or symbol.
  • the time unit or sub-time unit in the embodiment of the present application and other embodiments may also be understood as a kind of time domain resource.
  • the aforementioned at least one time unit is included in a time unit aggregation, or the aforementioned at least one time unit constitutes a time unit aggregation.
  • This time unit aggregation can also be understood as a collection of time units.
  • the terminal may report whether it supports the ability of time unit aggregation, or the terminal may report the maximum number of time units in the supported time unit aggregation.
  • Part 320 receiving first data on the at least one first sub-time unit, and receiving second data on the at least one second sub-time unit.
  • the aforementioned at least one time unit may also include more sub-time units (for example, at least one third sub-time unit, etc.).
  • sub-time units for example, at least one third sub-time unit, etc.
  • the embodiments of the present application will be described later in terms of including at least one first sub-time unit and at least one second sub-time unit in the above at least one time unit.
  • the terminal can determine different time domain resources carrying different data in at least one time unit, and therefore can flexibly adjust the time domain resources occupied by data transmission and reception according to the actual needs of data transmission, thereby improving data transmission. effectiveness.
  • the foregoing control information is used to indicate the location of the at least one first sub-time unit, or the foregoing control information is used to indicate the location of the at least one second sub-time unit. position. It can be understood that this implementation manner is applicable when the at least one time unit is composed of the at least one first sub-time unit and the at least one second sub-time unit.
  • the at least one first sub-time unit can be determined according to the position of the at least one first sub-time unit indicated by the control information, and since the at least one time unit is determined by the at least one first sub-time unit The sub-time unit and the at least one second sub-time unit are formed, so the at least one second sub-time unit can be determined in the at least one time unit.
  • the at least one second sub-time unit can be determined according to the position of the at least one second sub-time unit indicated by the control information, and since the at least one time unit is determined by the at least one The first sub-time unit and the at least one second sub-time unit are formed, so the at least one first sub-time unit can be determined in the at least one time unit.
  • the aforementioned control information may indicate the position of the at least one first sub-time unit or the at least one second sub-time unit, or may be an index, a number, or an enumeration parameter corresponding to the position.
  • the four time units identified as #0, #1, #2, and #3 are the above-mentioned at least one time unit, which is identified as #0.
  • One time unit of is the above-mentioned at least one first sub-time unit, and three time units identified as #1, #2, and #3 are the above-mentioned at least one second sub-time unit as an example.
  • control information indicates that the position of the at least one first sub-time unit is on the first time unit of the four time units, it can be determined according to the control information that the at least one first sub-time unit is identified as #0
  • the above-mentioned at least one second sub-time unit is a time unit identified as #1, #2, and #3.
  • the control information indicates that the position of the at least one second sub-time unit is on the second, third, and fourth time units of the four time units, then the at least one sub-time unit may be determined according to the control information
  • the second sub-time unit is the time unit identified as #1, #2, and #3, and the above-mentioned at least one first sub-time unit is the time unit identified as #0.
  • the foregoing control information is used to indicate the location of the at least one first sub-time unit and the location of the at least one second sub-time unit.
  • the at least one first sub-time unit and the at least one second sub-time unit can be determined according to the position of the at least one first sub-time unit and the position of the at least one second sub-time unit indicated by the control information.
  • the aforementioned control information may indicate the positions of the at least one first sub-time unit and the at least one second sub-time unit, or may be an index, a number, or an enumeration parameter corresponding to the position.
  • the four time units identified as #0, #1, #2, and #3 are the above-mentioned at least one time unit, which is identified as #0.
  • One time unit of is the above-mentioned at least one first sub-time unit, and three time units identified as #1, #2, and #3 are the above-mentioned at least one second sub-time unit as an example.
  • the control information indicates that the position of the at least one first sub-time unit is on the first time unit of the above four time units, and indicates that the position of the at least one second sub-time unit is on the first time unit of the above four time units.
  • the at least one first sub-time unit is the time unit identified as #0
  • the at least one second sub-time unit is the identifier Into #1, #2, and #3 time units.
  • the five time units identified as #0, #1, #2, #3, and #4 are the at least one time unit
  • One time unit identified as #0 is the above-mentioned at least one first sub-time unit
  • three time units identified as #1, #2, and #3 are the above-mentioned at least one second sub-time unit as an example.
  • the control information indicates that the position of the at least one first sub-time unit is on the first time unit of the above five time units, and indicates that the position of the at least one second sub-time unit is on the first time unit of the above five time units.
  • the at least one first sub-time unit is the time unit identified as #0
  • the at least one second sub-time unit is the identifier Into #1, #2, and #3 time units.
  • the foregoing control information is used to indicate the number of the at least one first sub-time unit, or the foregoing control information is used to indicate the at least one second sub-time unit quantity. It can be understood that this implementation manner is applicable when the at least one time unit is composed of the at least one first sub-time unit and the at least one second sub-time unit.
  • the positional relationship between the at least one first sub-time unit and the at least one second sub-time unit may be predefined or configured by a network device.
  • the control information may indicate the number of the at least one first sub-time unit or the at least one second sub-time unit, or an index, a number, or an enumeration parameter corresponding to the number.
  • the control information indicates that the number of the at least one first sub-time unit is 1, it may be determined according to the control information that the at least one first sub-time unit is a time unit identified as #0, and the at least one second sub-time unit is The time units are time units identified as #1, #2, and #3.
  • control information indicates that the number of the at least one second sub-time unit is 3, it may be determined according to the control information that the at least one second sub-time unit is the time identified as #1, #2, and #3 Unit, and the aforementioned at least one first sub-time unit is a time unit identified as #0.
  • the foregoing control information is used to indicate the number of the at least one first sub-time unit and the number of the at least one second sub-time unit. It can be understood that in this implementation manner, the positional relationship between the at least one first sub-time unit and the at least one second sub-time unit (for example, in the time domain, the at least one first sub-time unit is in the The at least one second sub-time unit before, or the at least one first sub-time unit after the at least one second sub-time unit in the time domain) may be predefined or configured by a network device.
  • the at least one first sub-time unit and the at least one The position relationship of the second sub-time unit may determine the at least one first sub-time unit and the at least one second sub-time unit.
  • the aforementioned control information may indicate the number of the at least one first sub-time unit and the at least one second sub-time unit, or an index, a number, or an enumeration parameter corresponding to the number.
  • the control information indicates that the number of the at least one first sub-time unit is 1, and indicates that the number of the at least one second sub-time unit is 3, and that the number of the at least one first sub-time unit is predefined or configured according to Unit and the sequence of the at least one second sub-time unit in the time domain, it may be determined according to the control information that the at least one first sub-time unit is a time unit identified as #0, and the at least one second sub-time unit The units are time units identified as #1, #2, and #3.
  • control information is used to indicate the ratio of the number of the first sub-time unit to the number of the second sub-time unit, or the control information It is used to indicate the ratio of the number of the second sub-time unit to the number of the first sub-time unit.
  • the positional relationship between the at least one first sub-time unit and the at least one second sub-time unit (for example, in the time domain, the at least one first sub-time unit is in the The at least one second sub-time unit before, or the at least one first sub-time unit after the at least one second sub-time unit in the time domain) may be predefined or configured by a network device.
  • the at least one first sub-time unit and the at least one second sub-time unit can be determined according to the aforementioned ratio indicated by the control information.
  • the foregoing control information may indicate a combination of the number of the first sub-time unit and the number of the second sub-time unit (or the number of the second sub-time unit and the number of the first sub-time unit)
  • the ratio or ratio may also be an index, number, or enumerated parameter corresponding to the ratio or ratio.
  • the control information indicates that the ratio of the number of the first sub-time units to the number of the second sub-time units is 1:3, or the control information indicates that the number of the second sub-time units is proportional to the The ratio of the number of first sub-time units is 3:1, and according to the predefined or configured order of the at least one first sub-time unit and the at least one second sub-time unit in the time domain,
  • the control information determines that the at least one first sub-time unit is a time unit identified as #0, and the at least one second sub-time unit is a time unit identified as #1, #2, and #3.
  • the above control information may be a physical downlink control channel (PDCCH), a physical sidelink control channel (PSCCH), system messages, Radio resource control (radio resource control, RRC) signaling or media access control (media access control, MAC) control element (CE) is carried.
  • the above control information may be carried by multiple items of the above.
  • the control information may be carried by PDCCH and system messages, or the control information may be carried by PDCCH and RRC signaling.
  • a candidate set is configured or predefined by a system message (or RRC signaling), and the candidate set includes the foregoing positions of multiple candidates, or the foregoing number of multiple candidates, or the foregoing ratio of multiple candidates.
  • Downlink control information (DCI) carried by the PDCCH indicates one of the aforementioned positions of the multiple candidates in the candidate set, or the DCI carried by the PDCCH indicates one of the aforementioned numbers of the multiple candidates in the candidate set, Or the DCI carried by the PDCCH indicates one of the aforementioned ratios of multiple candidates in the candidate set.
  • DCI Downlink control information
  • the aforementioned DCI can also indicate a corresponding index, number, or enumeration parameter of the aforementioned positions of the multiple candidates in the candidate set, or the aforementioned DCI can also indicate one of the aforementioned numbers of the multiple candidates in the candidate set.
  • a corresponding index, number, or enumeration parameter, or the aforementioned DCI may also indicate an index, number, or enumeration parameter corresponding to one of the aforementioned proportions of multiple candidates in the candidate set.
  • the aforementioned control information is used to indicate the ratio of the number of the first sub-time unit to the number of the second sub-time unit, and the aforementioned control information is composed of PDCCH and system messages (or RRC signaling) Take bearer as an example.
  • the candidate set is configured or pre-defined by system messages (or RRC signaling).
  • the candidate set includes the aforementioned ratios of three candidates: ⁇ 1:3, 2:2 (or 1:1), 3:1 ⁇ , and is determined by PDCCH
  • the carried DCI indicates 1:3 in the candidate set.
  • the candidate set is configured or predefined by system messages (or RRC signaling), and the candidate set includes the aforementioned ratios of three candidates ⁇ 1:3, 2:2 (or 1:1), 3:1 ⁇ and corresponding Index (as shown in Table 1), and the DCI carried by the PDCCH indicates index 0 corresponding to 1:3 in the candidate set.
  • the control information includes a bitmap for indicating the at least one first sub-time unit and the at least one second sub-time unit.
  • the number of bits included in the bitmap is greater than or equal to the number of the foregoing at least one time unit.
  • a bit marked as 0 in the bitmap indicates the at least one first sub-time unit, and a bit marked as 1 in the bitmap indicates the at least one second sub-time unit; or The bit identified as 1 indicates the at least one first sub-time unit, and the bit identified as 0 in the bitmap indicates the at least one second sub-time unit.
  • the above bitmap used to indicate the at least one first sub-time unit and the at least one second sub-time unit may include 4 bits "b0, b1, b2, b3", which correspond to the images respectively 4 indicates the four time units "#0, #1, #2, #3".
  • the bitmap may be "0111", indicating that the at least one first sub-time unit includes time unit #0, and the at least one second sub-time unit includes time units #1, #2, and #3.
  • the bitmap may be "1110", indicating that the at least one first sub-time unit includes time unit #0, and the at least one second sub-time unit includes time units #1, #2, and #3.
  • the time unit and the sub-time unit in the foregoing embodiment may be one of the following situations: the time unit is a time slot, and the sub-time unit is a time slot; or, the time unit is a sub-frame, and the sub-time unit is a sub-frame; Or, the time unit is a frame, and the sub-time unit is a frame. That is, the time unit and the sub-time unit may have the same time length.
  • the time unit and the sub-time unit may also have different time lengths, and the time length of the sub-time unit is smaller than the time length of the time unit.
  • the time unit is a time slot
  • the sub-time unit is a symbol (also referred to as a time domain symbol); or, the time unit is a sub-frame, and the sub-time unit is a time slot or symbol; or, The time unit is a frame, and the sub-time unit is a subframe, a time slot, or a symbol.
  • a time slot identified as ##0 is the above at least one time unit, and four symbols identified as #0-#3 are the above At least one first sub-time unit, ten symbols identified as #4-#13 are the above-mentioned at least one second sub-time unit.
  • the time unit is a time slot, and the sub-time unit is a symbol.
  • the two time slots identified as ##0 and ##1 are the above-mentioned at least one time unit
  • the four symbols identified as #0-#3 in the time slot ##0 are the above-mentioned at least A first sub-time unit
  • ten symbols identified as #4-#13 in time slot ##0 and fourteen symbols identified as #0-#13 in time slot ##1 are at least one of the above Two sub-time units.
  • the time unit is a time slot
  • the sub-time unit is a symbol
  • the at least one first sub-time unit (or the at least one second sub-time unit) may include sub-times in different time units. unit.
  • the time unit and the sub-time unit in the embodiments of the present application can have the same time length or different time lengths, which can support more flexible services, and make the use of time domain resources more suitable for service requirements, thereby improving resource use effectiveness.
  • the at least one time unit is predefined or configured by the communication device.
  • first configuration information from the communication device may also be received, and the first configuration information is used to configure the aforementioned At least one unit of time.
  • first configuration information from the communication device may be received, where the first configuration information is used to configure the at least one time unit, and the number of the at least one time unit is two or Two or more; if the first configuration information from the communication device is not received, the number of the at least one time unit is one by default.
  • the aforementioned communication device may be a network device or a terminal.
  • the communication device that receives the control information from the communication device can be called the first communication device, and the communication device that receives the first configuration information from the communication device can be called the second communication device.
  • the device and the second communication device may be the same communication device or different communication devices.
  • the first configuration information is used to configure the number of the at least one time unit.
  • the number of the at least one time unit configured in the first configuration information is 4.
  • the number of the at least one time unit configured in the first configuration information is 5.
  • the number of the at least one time unit configured in the first configuration information is 1.
  • the number of the at least one time unit configured in the first configuration information is 2. It can be understood that the number of at least one time unit mentioned above can also be understood as the number of time units in the time unit aggregation.
  • the foregoing first configuration information may be carried by PDCCH, PSCCH, system message, RRC signaling, or MACCE.
  • the foregoing first configuration information may be carried by multiple items of the foregoing.
  • the first configuration information may be carried by PDCCH and system messages, or the first configuration information may be carried by PDCCH and RRC signaling.
  • the candidate time unit set is configured or predefined by a system message (or RRC signaling), and the candidate time unit set includes the number of the aforementioned at least one time unit of multiple candidates.
  • the DCI carried by the PDCCH indicates one of the numbers of at least one time unit of the multiple candidates in the candidate time unit set. It can be understood that the aforementioned DCI may also indicate an index, number, or enumeration parameter corresponding to one of the number of at least one time unit of the multiple candidates in the candidate time unit set.
  • a set of candidate time units is configured or predefined by a system message (or RRC signaling), and the set of candidate time units includes the number of the aforementioned at least one time unit of three candidates: ⁇ 2,4,8 ⁇ , And the DCI carried by the PDCCH indicates 4 in the candidate time unit set.
  • a set of candidate time units is configured or predefined by a system message (or RRC signaling), and the set of candidate units includes the number ⁇ 2,4,8 ⁇ of the aforementioned at least one time unit of the three candidates and the corresponding index (such as table 2), and the DCI carried by the PDCCH indicates index 1 corresponding to 4 in the candidate time unit set.
  • a set of candidate time units is configured or predefined by a system message (or RRC signaling), and the set of candidate units includes the number ⁇ 2, 4, 8 ⁇ of the aforementioned at least one time unit of the three candidates and the corresponding enumeration parameter ( As shown in Table 3), and the DCI carried by the PDCCH indicates the enumeration parameter n4 corresponding to 4 in the candidate time unit set.
  • the first data is data corresponding to the first TB
  • the second data is data corresponding to the second transmission block TB.
  • the TB in the embodiment of the present application contains multiple data bits
  • the data corresponding to the TB can be understood as data obtained by preprocessing the data bits contained in the TB.
  • the preprocessing includes encoding, modulation, layer mapping, and antenna port.
  • mapping or precoding One or more of mapping or precoding. Taking FIG. 4 as an example, at least one first sub-time unit #0 is used to carry data corresponding to the first TB, and at least one second sub-time unit #1-#3 is used to carry data corresponding to the second TB.
  • the corresponding data may be less than the data corresponding to the second TB.
  • the data corresponding to the first TB is received on at least one first sub-time unit #0
  • the data corresponding to the second TB is received on at least one second sub-time unit #1-#3. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different TBs, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first hybrid automatic repeat request (HARQ) process
  • the second data is the second HARQ Data corresponding to the process.
  • the data corresponding to HARQ in the embodiments of the present application can be understood as data corresponding to the HARQ process number, that is, the first data is data identified by the first HARQ process number, and the second data is data identified by the second HARQ process number.
  • at least one first sub-time unit #0 is used to carry data corresponding to the first HARQ process
  • at least one second sub-time unit #1-#3 is used to carry data corresponding to the second HARQ process.
  • the data corresponding to one HARQ process may be less than the data corresponding to the second HARQ process.
  • the data corresponding to the first HARQ process is received on at least one first sub-time unit #0
  • the data corresponding to the second HARQ process is received on at least one second sub-time unit #1-#3. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different HARQ processes, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is initially transmitted data
  • the second data is retransmitted data.
  • a HARQ process corresponds to a new data indicator (NDI) value, which uses 1 bit to indicate whether the transmitted data is initial transmission data or retransmission data. If the NDI value of a HARQ process has changed compared with the previous one, for example, the value of NDI changes from 1 to 0, it means that the initial transmission data is being transmitted, otherwise it means that the retransmission data is being transmitted. Or for the data corresponding to a HARQ process, if there is no previous NDI, then it can also be considered that the data transmitted this time is the first transmission data.
  • NDI new data indicator
  • the received data can be combined with the previously received data stored in the HARQ buffer of the same HARQ process. If it is newly transmitted data, the HARQ buffer of the HARQ process will be cleared.
  • at least one first sub-time unit #0 is used to carry initial transmission data
  • at least one second sub-time unit #1-#3 is used to carry retransmission data.
  • the initial transmission data may be less than the retransmission data.
  • the initial transmission data is received on at least one first sub-time unit #0
  • the retransmitted data is received on at least one second sub-time unit #1-#3. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of initial transmission data and retransmission data, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is retransmission data
  • the second data is initial transmission data.
  • at least one first sub-time unit #0 is used to carry the retransmitted data
  • at least one second sub-time unit #1-#3 is used to carry the initial transmission data.
  • the retransmission data may be less than the initial transmission data.
  • the retransmission data is received on at least one first sub-time unit #0
  • the initial transmission data is received on at least one second sub-time unit #1-#3. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of initial transmission data and retransmission data, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is the first initial transmission data
  • the second data is the second initial transmission data.
  • at least one first sub-time unit #0 is used to carry the first initial transmission data
  • at least one second sub-time unit #1-#3 is used to carry second initial transmission data
  • the first initial transmission data Can be less than the second initial transmission data.
  • the first initial transmission data is received on at least one first sub-time unit #0
  • the second initial transmission data is received on at least one second sub-time unit #1-#3. Since the time domain resources occupied by the data transmission and reception can be flexibly adjusted according to the amount of data of different initial transmission data, the transmission efficiency of the initial transmission data and the utilization efficiency of resources can be improved.
  • the first data is first retransmitted data
  • the second data is second retransmitted data.
  • at least one first sub-time unit #0 is used to carry first retransmission data
  • at least one second sub-time unit #1-#3 is used to carry second retransmission data
  • first retransmission data It can be less than the second retransmission data.
  • the first retransmitted data is received on at least one first sub-time unit #0
  • the second retransmitted data is received on at least one second sub-time unit #1-#3. Since the time domain resources occupied by the data transmission and reception can be flexibly adjusted according to the amount of data of different retransmission data, the transmission efficiency of the retransmission data and the utilization efficiency of resources can be improved.
  • the first data is data corresponding to a first redundancy version (RV)
  • the second data is data corresponding to a second RV.
  • RV can be understood as used to indicate the redundancy version used for data transmission, and its value range can be 0-3.
  • at least one first sub-time unit #0 is used to carry data corresponding to the first RV
  • at least one second sub-time unit #1-#3 is used to carry data corresponding to the second RV.
  • the corresponding data may be less than the data corresponding to the second RV.
  • the data corresponding to the first RV is received on at least one first sub-time unit #0
  • the data corresponding to the second RV is received on at least one second sub-time unit #1-#3. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different RVs, data transmission efficiency and resource utilization efficiency can be improved.
  • the above-mentioned first RV and second RV may have many different implementations.
  • the above-mentioned first RV and second RV may be different RVs of one TB.
  • the foregoing first RV and second RV may be different RVs corresponding to two TBs respectively.
  • the first RV and the second RV may be the same RV corresponding to the two TBs.
  • the first data is data corresponding to a first service
  • the second data is data corresponding to a second service.
  • at least one first sub-time unit #0 is used to carry data corresponding to the first service
  • at least one second sub-time unit #1-#3 is used to carry data corresponding to the second service.
  • the corresponding data may be less than the data corresponding to the second service.
  • the data corresponding to the first service is received on at least one first sub-time unit #0
  • the data corresponding to the second service is received on at least one second sub-time unit #1-#3.
  • the first service and the second service may be enhanced mobility broadband (eMBB) services, ultra-reliable low latency communication (URLLC) services, and augmented reality ( Augmented Reality (AR)/Virtual Reality (VR) business, or massive machine-type communications (mMTC) business.
  • eMBB enhanced mobility broadband
  • URLLC ultra-reliable low latency communication
  • mMTC massive machine-type communications
  • the first data may be received on the at least one first sub-time unit, and the first data may be received on the at least one second sub-time unit according to the control information.
  • the above second data includes scheduling information of the first data and scheduling information of the second data, and the scheduling information includes one or more of resource allocation information, modulation coding scheme (modulation coding scheme, MCS) and other information.
  • MCS modulation coding scheme
  • FIG. 7 is a schematic flowchart of another communication method provided by an embodiment of this application. The method may be executed by a network device or a terminal. As shown in FIG. 7, the method of this embodiment may include:
  • Part 700 Send control information to the communication device, where the control information is used to indicate at least one first sub-time unit and at least one second sub-time unit, the at least one first sub-time unit and the at least one second sub-time unit
  • the time unit is included in at least one time unit.
  • the communication device may be a terminal.
  • Part 710 Send first data on the at least one first sub-time unit, and send second data on the at least one second sub-time unit.
  • the at least one time unit is predefined.
  • first configuration information may also be sent to the communication device, where the first configuration information is used to configure the aforementioned at least one time unit. unit.
  • first configuration information may be sent to the communication device, where the first configuration information is used to configure the at least one time unit, and the number of the at least one time unit is two or Two or more; if the first configuration information is not sent, the number of the at least one time unit is one by default.
  • the terminal or network device can determine the different time domain resources for sending different data in at least one time unit, and therefore can flexibly adjust the time domain resources occupied by the data transmission and reception according to the actual needs of data transmission, thereby improving Improve the data transmission efficiency.
  • the description of the time unit, sub-time unit, first sub-time unit, second sub-time unit, control information, first configuration information, first data, and second data in the communication method illustrated in FIG. 7 may refer to FIG. 3
  • the descriptions of the time unit, sub-time unit, first sub-time unit, second sub-time unit, control information, first configuration information, first data, and second data in the communication method are not repeated here.
  • FIG. 8 is a schematic flowchart of another communication method provided by an embodiment of the application, and the method may be executed by a terminal. As shown in FIG. 8, the method of this embodiment may include:
  • Part 800 receiving second configuration information from the communication device, the second configuration information being used to configure the number of time units, the maximum number of time units, or the time unit in the time unit aggregation corresponding to the bandwidth part (BWP) Number of collections.
  • the communication device may be a network device or a terminal.
  • the above-mentioned BWP can be understood as a physical resource.
  • the BWP can include at least one resource block group (RBG), at least one physical resource-block group (PRG), and at least one resource block (resource-block group, PRG) in the frequency domain.
  • RBG, PRG, RB, and SC can also be understood as physical resources in the frequency domain.
  • Part 810 Use one or more time units in the time unit aggregation to receive or send third data on the BWP.
  • the time unit aggregation corresponding to the BWP can also be understood as the time unit aggregation used on the BWP, the time unit aggregation that can be used on the BWP, or Aggregation of candidate time units used on the BWP, etc.
  • the second configuration information is used to configure the number of time units A1 in the time unit aggregation corresponding to the BWP, then the time unit in the above section 810
  • the number of one or more time units in the aggregation can be equal to or less than A1. It can be understood that the number of time units A1 in the time unit aggregation corresponding to the BWP can also be understood as the maximum number of time units in the time unit aggregation corresponding to the BWP.
  • the second configuration information is used to configure the set of the number of time units in the time unit aggregation corresponding to the BWP ⁇ A1, A2,..., An ⁇ , where n is an integer greater than 1, the number of one or more time units in the time unit aggregation described in section 810 above may be one of the above set elements.
  • the foregoing second configuration information may be carried by PDCCH, PSCCH, system message, RRC signaling, or MACCE.
  • the foregoing second configuration information may be carried by multiple items of the foregoing.
  • the first configuration information may be carried by PDCCH and system messages, or the first configuration information may be carried by PDCCH and RRC signaling.
  • FIG. 8 may be implemented separately or in combination with the communication method illustrated in FIG. 3.
  • the above-mentioned second configuration information and the first configuration information may be the same information or different information.
  • the 800 part can be executed before the 310 part, and the execution order of the 800 part and the 300 part may not be limited.
  • one or more time units in the time unit aggregation in section 810 may include at least one first sub-time unit in section 320, and the third data may be It is the first data in the 320 part, and the 810 part can be understood as using one or more time units (at least one first sub-time unit) in the time unit aggregation to receive the third data (first data) on the BWP ).
  • one or more time units in the time unit aggregation in section 810 may include at least one second sub-time unit in section 320, the third data may be the second data in section 320, and section 810 may be It is understood that one or more time units (at least one second sub-time unit) in the time unit aggregation are used to receive third data (second data) on the BWP.
  • FIG. 9 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • the method may be executed by a network device or a terminal. As shown in FIG. 9, the method of this embodiment may include:
  • Part 900 Send second configuration information to the terminal, where the second configuration information is used to configure the number of time units, the maximum number of time units, or the set of the number of time units in the time unit aggregation corresponding to the bandwidth part.
  • Part 910 Use one or more time units in the time unit aggregation to send or receive third data on the bandwidth part.
  • the above-mentioned second configuration information and the first configuration information may be the same information or different information.
  • the 900 part can be executed before the 710 part, and the execution order of the 900 part and the 700 part may not be limited.
  • one or more time units in the time unit aggregation in section 910 may include at least one first sub-time unit in section 710, and the third data may It is the first data in part 710, and part 910 can be understood as using one or more time units (at least one first sub-time unit) in the time unit aggregation to send the third data (first data) on the BWP ).
  • one or more time units in the time unit aggregation in section 910 may include at least one second sub-time unit in section 710, the third data may be the second data in section 710, and section 910 may be It is understood that one or more time units (at least one second sub-time unit) in the time unit aggregation are used to receive third data (second data) on the BWP.
  • FIG. 10 is a schematic flowchart of another communication method provided by an embodiment of this application. The method may be executed by a network device or a terminal. As shown in FIG. 10, the method of this embodiment may include:
  • Part 1000 Obtain the reference transport block size corresponding to the reference time unit.
  • Part 1010 Determine the actual transmission block size corresponding to multiple time units (M time units, M is an integer greater than 1) according to the reference transmission block size.
  • M time units M is an integer greater than 1
  • the foregoing multiple time units are included in a time unit aggregation, or the foregoing multiple time units form a time unit aggregation.
  • This time unit aggregation can also be understood as a collection of time units.
  • the reference time unit in the embodiment of the present application is predefined, or configured by higher layer signaling (such as system message or RRC signaling), or indicated by the DCI carried by the PDCCH.
  • the reference time unit may be the first time unit or the last time unit among the above M time units.
  • the transmission block size used for multi-time unit transmission can be obtained accurately and simply, and the implementation complexity of the network device or terminal is reduced.
  • the reference transmission block size corresponding to the reference time unit is obtained as N (N is an integer greater than 0).
  • the actual transport block size corresponding to M time units is determined according to the reference transport block size N, including the actual transport block size N'corresponding to M time units satisfying one of the following:
  • the reference transport block size N corresponding to the reference time unit is obtained according to the number of symbols scheduled in the reference time unit .
  • the RE in the embodiment of the present application can be understood as a physical resource (for example, one RE can occupy one subcarrier in the frequency domain and one symbol in the time domain). According to the value of the above N info , it is judged whether the above reference transmission block size is obtained based on a table lookup or a formula calculation.
  • N info ⁇ 3824
  • the above reference transmission block size is obtained based on the table look-up, and N info is first quantized to obtain N′ info , and the N′ info satisfies:
  • max(x,y) means to take the larger value of x and y
  • N info 3824
  • the aforementioned reference transmission block size is obtained based on the formula, and N info is first quantized to obtain N′ info , and this N′ info satisfies: And Among them, round(x) means to round x, and then use the following method to obtain the aforementioned reference transmission block size N:
  • the reference time unit includes a first reference time unit and a second reference time unit.
  • the reference transmission block size corresponding to the first reference time unit is obtained as J (J is an integer greater than 0)
  • the reference transmission block size corresponding to the second reference time unit is obtained as K(K Is an integer greater than 0).
  • the first reference time unit can be understood as a reference time unit that carries the first information and/or the first signal
  • the second reference time unit can be understood as a reference time unit that does not carry the first information and/or the first signal.
  • the actual transmission block size corresponding to the above M time units is determined according to the above reference transmission block sizes J and K, including the actual transmission block size N′ corresponding to the above M time units, which satisfies one of the following :
  • L is the number of time units carrying the first information and/or the first signal in the above M time units, C3 and C4 are positive real numbers, and f(x) represents rounding x.
  • the reference time unit corresponding to the reference time unit is obtained according to the number of symbols scheduled in the first reference time unit
  • N for details, please refer to the description in the foregoing embodiment in which the reference transmission block size corresponding to the reference time unit is N, which will not be repeated here.
  • the reference time unit corresponding to the reference time unit is obtained according to the number of symbols scheduled in the second reference time unit
  • N For the transmission block size N, for details, please refer to the description in the foregoing embodiment in which the reference transmission block size corresponding to the reference time unit is N, which will not be repeated here.
  • the first information and/or the first signal may include one or more of the following items: control information, reference signal, synchronization signal (synchronization signal, SS), synchronization signal block (SS block, SSB) , Or random access signal.
  • the control information includes uplink control information (uplink control information, UCI) and/or downlink control information (downlink control information, DCI) carried by the control channel.
  • the reference signal includes a demodulation reference signal (demodulation reference signal, DMRS), a phase tracking reference signal (phase tracking reference signal, PTRS), a sounding reference signal (sounding reference signal, SRS), or a channel state information reference signal (channel state information).
  • CSI-RS information reference signal
  • the synchronization signal includes a primary synchronization signal (primary SS, PSS) and/or a secondary synchronization signal (secondary SS, SSS).
  • the synchronization signal block includes a synchronization signal and/or a physical broadcast channel (physical broadcast channel, PBCH).
  • the time unit aggregation includes both the time unit that carries the first information and/or the first signal and the time unit that does not carry the first information and/or the first signal, more accurate calculations can be required.
  • the transmission block size is increased to improve the utilization of time resources.
  • FIG. 10 may be implemented separately or in combination with the communication method illustrated in FIG. 3, FIG. 7, FIG. 8, or FIG. 9.
  • the multiple time units (M time units) in section 1010 may include at least one first sub-time unit and/or at least one second sub-time unit in section 320.
  • the method illustrated in FIG. 10 may be executed after part 700 and before part 710.
  • the multiple time units (M time units) in section 1010 may include at least one first sub-time unit and/or at least one second sub-time unit in section 710.
  • the method illustrated in FIG. 10 may be executed after part 800 and before part 810.
  • the multiple time units (M time units) in section 1010 may include one or more time units in section 810.
  • the method illustrated in FIG. 10 may be executed after part 900 and before part 910.
  • the multiple time units (M time units) in the 1010 section may include one or more time units in the 910 section.
  • FIG. 11 is a schematic flowchart of another communication method provided by an embodiment of this application. The method may be executed by a network device or a terminal. As shown in FIG. 11, the method of this embodiment may include:
  • Part 1100 Obtain the number of REs corresponding to multiple time units.
  • the foregoing multiple time units are included in a time unit aggregation, or the foregoing multiple time units form a time unit aggregation.
  • This time unit aggregation can also be understood as a collection of time units.
  • Part 1110 Determine the actual transmission block size corresponding to the multiple time units according to the number of REs.
  • the RE in the embodiment of this application can be understood as a physical resource.
  • one RE can occupy one subcarrier in the frequency domain and one symbol in the time domain.
  • the transmission block size used for multi-time unit transmission can be obtained accurately and simply, and the implementation complexity of the network device or terminal is reduced.
  • the time unit is a time slot.
  • N RE the number of REs corresponding to multiple time slots as N RE , and satisfy among them Is the number of subcarriers contained in an RB (e.g. ), Is the number of symbols scheduled in the above multiple time slots, Is the number of REs occupied by DMRS in the above multiple time slots, The number of REs included for other overheads (for example, overhead configured by higher layer signaling).
  • the actual transmission block size corresponding to the multiple time units is determined according to the number of REs.
  • the reference transmission block size corresponding to the reference time unit is N The description in the implementation manner will not be repeated here.
  • FIG. 11 can be implemented separately or in combination with the communication method shown in FIG. 3, FIG. 7, FIG. 8, or FIG. 9.
  • the corresponding relationships shown in the above tables can be configured or pre-defined.
  • the value of the information in each table is only an example and can be configured to other values, which is not limited in this application.
  • it is not necessarily required to configure all the correspondences indicated in the tables.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters indicated in the titles in the above tables may also adopt other names that the communication device can understand, and the values or expression modes of the parameters may also be other values or expression modes that the communication device understands.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the pre-definition in this application can be understood as definition, pre-definition, protocol definition, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-burning.
  • the description of the relationship between a and b (which can also be understood as a functional relationship) involved in this application does not force a and b to accurately meet the relationship.
  • the value a'and the value b exactly satisfy the above relationship
  • the value a obtained by de-floating, rounding, or rounding the value a' can also be understood as a and b satisfying the above relationship.
  • a and b satisfying the relationship may also refer to a relationship in which a and b satisfy the relationship after equivalent modification, which is not limited in the embodiment of the present application.
  • the embodiment of the present application does not limit the specific implementation manner of satisfying the relationship between a and b.
  • the mapping manner may be implemented through a formula, or the mapping manner may be implemented in the form of a table, or the mapping manner may also be implemented through It can be implemented in other ways, which is not limited in the embodiment of the present application.
  • the methods implemented by the communication device in the foregoing method embodiments may also be implemented by components (for example, integrated circuits, chips, etc.) that can be used for communication devices.
  • the embodiment of the present application also provides a corresponding communication device (also referred to as a communication device).
  • the communication device includes a corresponding communication device for executing each part of the foregoing embodiment.
  • Module can be software, hardware, or a combination of software and hardware.
  • Figure 12 shows a schematic diagram of the structure of a communication device.
  • the communication apparatus 1200 may be the network device 10 or 20 in FIG. 1, or may be the terminal 11, 12, 21, or 22 in FIG.
  • the communication device 1200 can be used to implement the method corresponding to the terminal or the network device described in the foregoing method embodiment. For details, please refer to the description in the foregoing method embodiment.
  • the communication device 1200 may be used to implement the method described in FIG. 3, FIG. 7, FIG. 8, FIG. 9, FIG. 10, or FIG. 11.
  • the communication device 1200 may include one or more processors 1201, and the processor 1201 may also be referred to as a processing unit, which may implement certain control functions.
  • the processor 1201 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, baseband chips, DUs or CUs, etc.), execute software programs, and process data in the software programs.
  • the processor 1201 may also store instructions and/or data 1203, and the instructions and/or data 1203 may be executed by the processor, so that the communication device 1200 executes the foregoing method embodiments.
  • the method described in corresponds to the terminal or network device.
  • the processor 1201 may include a transceiver unit for implementing receiving and sending functions.
  • the transceiver unit may be a transceiver circuit or an interface.
  • the circuits or interfaces used to implement the receiving and sending functions can be separate or integrated.
  • the communication device 1200 may include a circuit, and the circuit may implement the sending or receiving or communication functions in the foregoing method embodiments.
  • the communication device 1200 may include one or more memories 1202, on which instructions 1204 may be stored, and the instructions may be executed on the processor, so that the communication device 1200 executes the foregoing method implementation The method described in the example.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and memory can be provided separately or integrated together.
  • the various correspondence relationships described in the foregoing method embodiments may be stored in a memory or in a processor.
  • the communication device 1200 may further include a transceiver 1205 and/or an antenna 1206.
  • the processor 1201 may be called a processing unit, and controls a communication device (terminal or network device).
  • the transceiver 1205 may be called a transceiver unit, a transceiver, a transceiver circuit or a transceiver, etc., and is used to implement the transceiver function of the communication device.
  • a communication device 1200 may include a processor 1201 and a transceiver 1205.
  • the transceiver 1205 receives control information from a communication device, where the communication device may be a network device or a terminal.
  • the processor 1201 determines at least one first sub-time unit and at least one second sub-time unit according to the control information, and the at least one first sub-time unit and the at least one second sub-time unit are included in the at least one In a time unit.
  • the transceiver 1205 receives the first data on the at least one first sub-time unit, and receives the second data on the at least one second sub-time unit.
  • the time unit is a time slot
  • the sub-time unit is a time slot or a symbol.
  • the at least one time unit is included in a time unit aggregation.
  • the communication device provided in the embodiment of the present application can determine different time domain resources carrying different data in at least one time unit, and therefore can flexibly adjust the time domain resources occupied by data transmission and reception according to the actual needs of data transmission, thereby improving data transmission effectiveness.
  • the foregoing control information is used to indicate the location of the at least one first sub-time unit, or the foregoing control information is used to indicate the location of the at least one second sub-time unit .
  • the aforementioned control information is used to indicate the location of the at least one first sub-time unit and the location of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the number of the at least one first sub-time unit, or the aforementioned control information is used to indicate the number of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the number of the at least one first sub-time unit and the number of the at least one second sub-time unit.
  • control information is used to indicate the ratio of the number of the first sub-time unit to the number of the second sub-time unit.
  • the aforementioned control information is used to indicate the ratio of the number of the second sub-time units to the number of the first sub-time units.
  • the foregoing control information may be PDCCH, PSCCH, system message, RRC signaling, or MAC CE Bearer.
  • the above control information may be carried by multiple items of the above.
  • the foregoing control information includes instructions for indicating the at least one first sub-time unit and A bitmap of at least one second sub-time unit.
  • the number of bits included in the bitmap is greater than or equal to the number of the foregoing at least one time unit.
  • a bit marked as 0 in the bitmap indicates the at least one first sub-time unit, and a bit marked as 1 in the bitmap indicates the at least one second sub-time unit; or
  • the bit identified as 1 indicates the at least one first sub-time unit, and the bit identified as 0 in the bitmap indicates the at least one second sub-time unit.
  • the transceiver 1205 receives first configuration information from the communication device, and the first configuration information is The configuration information is used to configure at least one time unit described above.
  • the transceiver 1205 receives the first configuration information from the communication device, the first configuration information is used to configure the at least one time unit, and the number of the at least one time unit is two or more; if not received When receiving the first configuration information from the communication device, the number of the at least one time unit is one by default.
  • the first configuration information is used to configure the number of the at least one time unit.
  • the aforementioned first configuration information may be carried by PDCCH, PSCCH, system message, RRC signaling, or MACCE.
  • the first data is data corresponding to the first TB
  • the second data It is the data corresponding to the second transmission block TB. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different TBs, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first HARQ process
  • the second The data is data corresponding to the second HARQ process. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different HARQ processes, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is initial transmission data
  • the second data is retransmission data.
  • the first data is retransmission data
  • the second data is initial transmission data.
  • the first data is first initial transmission data
  • the second data is second initial transmission data.
  • the first data is first retransmitted data
  • the second data is second retransmitted data. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of initial transmission data and retransmission data, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first RV
  • the second data Data corresponding to the second RV. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different RVs, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first service
  • the second data Data corresponding to the second business. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different services, data transmission efficiency and resource utilization efficiency can be improved.
  • the processor 1201 controls the transceiver 1205 in the at least one first implementation manner according to the foregoing control information.
  • the first data is received on one sub-time unit
  • the second data is received on the at least one second sub-time unit.
  • the aforementioned control information includes scheduling information of the first data and scheduling information of the second data
  • the scheduling information includes one or more of resource allocation information, MCS, and other information.
  • a communication device 1200 may include the transceiver 1205.
  • the transceiver 1205 sends control information to the communication device, where the communication device may be a network device or a terminal.
  • the control information is used to indicate at least one first sub-time unit and at least one second sub-time unit, and the at least one first sub-time unit and the at least one second sub-time unit are included in the at least one time unit in.
  • the transceiver 1205 sends the first data on the at least one first sub-time unit, and sends the second data on the at least one second sub-time unit.
  • the time unit is a time slot
  • the sub-time unit is a time slot or a symbol.
  • the at least one time unit is included in a time unit aggregation.
  • different time domain resources carrying different data can be determined in at least one time unit, so the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the actual needs of data transmission, thereby improving data transmission efficiency .
  • the foregoing control information is used to indicate the location of the at least one first sub-time unit, or the foregoing control information is used to indicate the location of the at least one second sub-time unit .
  • the aforementioned control information is used to indicate the position of the at least one first sub-time unit and the position of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the number of the at least one first sub-time unit, or the aforementioned control information is used to indicate the number of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the number of the at least one first sub-time unit and the number of the at least one second sub-time unit.
  • control information is used to indicate the ratio of the number of the first sub-time unit to the number of the second sub-time unit.
  • the aforementioned control information is used to indicate the ratio of the number of the second sub-time units to the number of the first sub-time units.
  • the foregoing control information may be PDCCH, PSCCH, system message, RRC signaling, or MAC CE Bearer.
  • the above control information may be carried by multiple items of the above.
  • the foregoing control information includes instructions for indicating the at least one first sub-time unit and A bitmap of at least one second sub-time unit.
  • the number of bits included in the bitmap is greater than or equal to the number of the aforementioned at least one time unit.
  • a bit marked as 0 in the bitmap indicates the at least one first sub-time unit, and a bit marked as 1 in the bitmap indicates the at least one second sub-time unit; or
  • the bit identified as 1 indicates the at least one first sub-time unit, and the bit identified as 0 in the bitmap indicates the at least one second sub-time unit.
  • the transceiver 1205 sends first configuration information to the communication device.
  • the first configuration The information is used to configure at least one time unit mentioned above.
  • the transceiver 1205 sends first configuration information to the communication device, where the first configuration information is used to configure the at least one time unit, and the number of the at least one time unit is two or more;
  • the first configuration information is used to configure the number of the at least one time unit.
  • the aforementioned first configuration information may be carried by PDCCH, PSCCH, system message, RRC signaling, or MACCE.
  • the first data is data corresponding to the first TB
  • the second data It is the data corresponding to the second transmission block TB. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different TBs, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first HARQ process
  • the second The data is data corresponding to the second HARQ process. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different HARQ processes, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is initial transmission data
  • the second data is retransmission data.
  • the first data is retransmission data
  • the second data is initial transmission data.
  • the first data is first initial transmission data
  • the second data is second initial transmission data.
  • the first data is first retransmitted data
  • the second data is second retransmitted data. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of initial transmission data and retransmission data, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first RV
  • the second data Data corresponding to the second RV. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different RVs, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first service
  • the second data Data corresponding to the second business. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different services, data transmission efficiency and resource utilization efficiency can be improved.
  • the foregoing control information includes scheduling information of the first data and the second data
  • the scheduling information includes one or more of resource allocation information, MCS and other information.
  • the processor and transceiver described in this application can be implemented in integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit board ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), and P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device is described by taking a network device or a terminal as an example, the scope of the communication device described in this application is not limited to this, and the structure of the communication device may not be limited by FIG. 12.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the device may be:
  • the IC collection may also include storage components for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • Figure 13 provides a schematic structural diagram of a terminal.
  • the terminal can be applied to the system shown in Figure 1.
  • FIG. 13 only shows the main components of the terminal.
  • the terminal 1300 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal out in the form of electromagnetic waves through the antenna. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and performs processing on the data. deal with.
  • FIG. 13 only shows a memory and a processor. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal and execute software. Programs, which process the data of software programs.
  • the processor in FIG. 13 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as a bus.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capabilities, and the various components of the terminal may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • an antenna and a control circuit with a transceiving function can be regarded as the transceiving unit 1311 of the terminal 1300, and a processor with a processing function can be regarded as the processing unit 1312 of the terminal 1300.
  • the terminal 1300 includes a transceiver unit 1311 and a processing unit 1312.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiver unit 1311 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1311 as the sending unit, that is, the transceiver unit 1311 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the foregoing receiving unit and sending unit may be an integrated unit or multiple independent units.
  • the above-mentioned receiving unit and sending unit may be in one geographic location, or may be scattered in multiple geographic locations.
  • the communication device may be a terminal (for example, the terminal in the system shown in FIG. 1) or a component of the terminal (for example, an integrated circuit, a chip, etc.).
  • the communication device may also be a network device (for example, the communication device is a base station device that can be applied to the system of FIG. 1), or a component of the network device (for example, an integrated circuit, a chip, etc.).
  • the communication device may also be another communication module, which is used to implement the operation corresponding to the communication device or node in the method embodiment of the present application.
  • the communication device 1400 may include: a processing module 1402 (processing unit).
  • the communication device 1400 may further include a transceiving module 1401 (transceiving unit) and/or a storage module 1403 (storing unit).
  • one or more modules as shown in Figure 14 may be implemented by one or more processors, or by one or more processors and memories; or by one or more processors It can be implemented with a transceiver; or implemented by one or more processors, memories, and transceivers, which is not limited in the embodiment of the present application.
  • the processor, memory, and transceiver can be set separately or integrated.
  • the communication device has the function of implementing the terminal described in the embodiment of this application.
  • the communication device includes the module or unit or means corresponding to the terminal to execute the steps described in the embodiment of this application.
  • the function or unit or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the communication device has the function of implementing the network equipment described in the embodiments of the present application.
  • the communication device includes the modules or units or means corresponding to the steps involved in the network equipment described in the embodiments of the present application. ), the function or unit or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the function or unit or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • each module in the communication device 1400 in the embodiment of the present application may be used to execute the method described in FIG. 3, FIG. 7, FIG. 8, FIG. 9, FIG. 10, or FIG. 11 in the embodiment of the present application.
  • a communication device 1400 may include a transceiver module 1401 and a processing module 1402.
  • the transceiver module 1401 receives control information from a communication device, where the communication device may be a network device or a terminal.
  • the processing module 1402 determines at least one first sub-time unit and at least one second sub-time unit according to the control information, and the at least one first sub-time unit and the at least one second sub-time unit are included in the at least one In a time unit.
  • the transceiver module 1401 receives the first data on the at least one first sub-time unit, and receives the second data on the at least one second sub-time unit.
  • the time unit is a time slot
  • the sub-time unit is a time slot or a symbol.
  • the at least one time unit is included in a time unit aggregation.
  • the communication device provided in the embodiment of the present application can determine different time domain resources carrying different data in at least one time unit, and therefore can flexibly adjust the time domain resources occupied by data transmission and reception according to the actual needs of data transmission, thereby improving data transmission effectiveness.
  • the foregoing control information is used to indicate the location of the at least one first sub-time unit, or the foregoing control information is used to indicate the location of the at least one second sub-time unit .
  • the aforementioned control information is used to indicate the position of the at least one first sub-time unit and the position of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the number of the at least one first sub-time unit, or the aforementioned control information is used to indicate the number of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the number of the at least one first sub-time unit and the number of the at least one second sub-time unit.
  • control information is used to indicate the ratio of the number of the first sub-time unit to the number of the second sub-time unit.
  • the aforementioned control information is used to indicate the ratio of the number of the second sub-time units to the number of the first sub-time units.
  • the foregoing control information may be PDCCH, PSCCH, system message, RRC signaling, or MAC CE Bearer.
  • the above control information may be carried by multiple items of the above.
  • the foregoing control information includes instructions for indicating the at least one first sub-time unit and A bitmap of at least one second sub-time unit.
  • the number of bits included in the bitmap is greater than or equal to the number of the foregoing at least one time unit.
  • a bit marked as 0 in the bitmap indicates the at least one first sub-time unit, and a bit marked as 1 in the bitmap indicates the at least one second sub-time unit; or
  • the bit identified as 1 indicates the at least one first sub-time unit, and the bit identified as 0 in the bitmap indicates the at least one second sub-time unit.
  • the transceiver module 1401 receives first configuration information from the communication device.
  • the configuration information is used to configure at least one time unit described above.
  • the transceiver module 1401 receives first configuration information from the communication device, the first configuration information is used to configure the at least one time unit, and the number of the at least one time unit is two or more; if not received
  • the first configuration information is used to configure the number of the at least one time unit.
  • the aforementioned first configuration information may be carried by PDCCH, PSCCH, system message, RRC signaling, or MACCE.
  • the first data is data corresponding to the first TB
  • the second data It is the data corresponding to the second transmission block TB. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different TBs, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first HARQ process
  • the second The data is data corresponding to the second HARQ process. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different HARQ processes, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is initial transmission data, and the second data is retransmission. data.
  • the first data is retransmission data
  • the second data is initial transmission data.
  • the first data is first initial transmission data
  • the second data is second initial transmission data.
  • the first data is first retransmitted data
  • the second data is second retransmitted data. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of initial transmission data and retransmission data, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first RV
  • the second data Data corresponding to the second RV. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different RVs, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first service
  • the second data Data corresponding to the second business. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different services, data transmission efficiency and resource utilization efficiency can be improved.
  • the processing module 1402 controls the transceiver module 1401 in the at least one first
  • the first data is received on one sub-time unit
  • the second data is received on the at least one second sub-time unit.
  • the aforementioned control information includes scheduling information of the first data and scheduling information of the second data
  • the scheduling information includes one or more of resource allocation information, MCS, and other information.
  • a communication device 1400 may include a transceiver module 1401.
  • the transceiver module 1401 sends control information to a communication device, where the communication device may be a network device or a terminal.
  • the control information is used to indicate at least one first sub-time unit and at least one second sub-time unit, and the at least one first sub-time unit and the at least one second sub-time unit are included in the at least one time unit in.
  • the transceiver module 1401 sends the first data on the at least one first sub-time unit, and sends the second data on the at least one second sub-time unit.
  • the time unit is a time slot
  • the sub-time unit is a time slot or a symbol.
  • the at least one time unit is included in a time unit aggregation.
  • different time domain resources carrying different data can be determined in at least one time unit, so the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the actual needs of data transmission, thereby improving data transmission efficiency .
  • the foregoing control information is used to indicate the location of the at least one first sub-time unit, or the foregoing control information is used to indicate the location of the at least one second sub-time unit .
  • the aforementioned control information is used to indicate the position of the at least one first sub-time unit and the position of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the number of the at least one first sub-time unit, or the aforementioned control information is used to indicate the number of the at least one second sub-time unit.
  • the aforementioned control information is used to indicate the number of the at least one first sub-time unit and the number of the at least one second sub-time unit.
  • control information is used to indicate the ratio of the number of the first sub-time unit to the number of the second sub-time unit.
  • the aforementioned control information is used to indicate the ratio of the number of the second sub-time units to the number of the first sub-time units.
  • the foregoing control information may be PDCCH, PSCCH, system message, RRC signaling, or MAC CE Bearer.
  • the above control information may be carried by multiple items of the above.
  • the foregoing control information includes instructions for indicating the at least one first sub-time unit and A bitmap of at least one second sub-time unit.
  • the number of bits included in the bitmap is greater than or equal to the number of the foregoing at least one time unit.
  • a bit marked as 0 in the bitmap indicates the at least one first sub-time unit, and a bit marked as 1 in the bitmap indicates the at least one second sub-time unit; or
  • the bit identified as 1 indicates the at least one first sub-time unit, and the bit identified as 0 in the bitmap indicates the at least one second sub-time unit.
  • the transceiver module 1401 sends first configuration information to the communication device, and the first configuration The information is used to configure at least one time unit mentioned above.
  • the transceiver module 1401 sends first configuration information to the communication device, where the first configuration information is used to configure the at least one time unit, and the number of the at least one time unit is two or more; For the first configuration information, the number of the at least one time unit is one by default.
  • the first configuration information is used to configure the number of the at least one time unit.
  • the aforementioned first configuration information may be carried by PDCCH, PSCCH, system message, RRC signaling, or MACCE.
  • the first data is data corresponding to the first TB
  • the second data It is the data corresponding to the second transmission block TB. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different TBs, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first HARQ process
  • the second The data is data corresponding to the second HARQ process. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different HARQ processes, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is initial transmission data, and the second data is retransmission. data.
  • the first data is retransmission data
  • the second data is initial transmission data.
  • the first data is first initial transmission data
  • the second data is second initial transmission data.
  • the first data is first retransmitted data
  • the second data is second retransmitted data. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of initial transmission data and retransmission data, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first RV
  • the second data Data corresponding to the second RV. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different RVs, data transmission efficiency and resource utilization efficiency can be improved.
  • the first data is data corresponding to the first service
  • the second data Data corresponding to the second business. Since the time domain resources occupied by data transmission and reception can be flexibly adjusted according to the amount of data corresponding to different services, data transmission efficiency and resource utilization efficiency can be improved.
  • the foregoing control information includes scheduling information of the first data and the second data
  • the scheduling information includes one or more of resource allocation information, MCS and other information.
  • the technology described in this application can be implemented in various ways. For example, these technologies can be implemented in hardware, software, or a combination of hardware.
  • the processing unit used to execute these technologies at a communication device can be implemented on one or more general-purpose processors, digital signal processors (DSP), digital Signal processing device (DSPD), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware component, or the above In any combination.
  • DSP digital signal processors
  • DSPD digital Signal processing device
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, instructions executed by a processor, or a combination of the two.
  • the memory can be RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, register, hard disk, removable disk, CD-ROM or any other storage medium in the art.
  • the memory can be connected to the processor so that the processor can read information from the memory and can write information to the memory.
  • the memory can also be integrated into the processor.
  • the processor and the memory can be arranged in the ASIC, and the ASIC can be arranged in the terminal.
  • the processor and the memory may also be arranged in different components in the terminal.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data package.
  • the center transmits to another website, computer, server, or data packet center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data packet storage device such as a server or a data packet center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信的方法及装置。该方法包括:终端接收来自网络设备的第一配置信息,根据该第一配置信息确定时间单元聚合,该时间单元聚合包括至少一个时间单元。该终端接收来自网络设备的控制信息,根据该控制信息确定上述时间单元聚合中的至少一个第一子时间单元和至少一个第二子时间单元。该终端在上述至少一个第一子时间单元上接收第一传输块对应的数据,在上述至少一个第二子时间单元上接收第二传输块对应的数据。通过本申请提供的方法及装置,能够确定出时间单元聚合中承载不同数据的不同时域资源,因此能够依据数据传输的实际需求灵活调整数据收发占用的时域资源,从而提高了数据传输效率。

Description

通信的方法及装置
本申请要求于2019年3月29日提交中国专利局、申请号为201910247849.1、申请名称为“通信的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信的方法及装置。
背景技术
在无线通信网络中,一个传输块(transmission block,TB)对应的数据收发通常可以占用一个发送时间间隔(transmission time interval,TTI)。例如在长期演进(long term evolution,LTE)网络中,一个TB对应的数据收发可以占用一个子帧。又例如,在新空口(new radio,NR)网络中,一个TB对应的数据收发可以占用一个时隙。上述机制的主要问题是,TB对应的数据收发在时间上占用的时域资源不够灵活,从而无法依据TB的数据量大小更加合理地利用时域资源。因此,如何为数据收发设计更加灵活的时域资源使用方式以提高数据传输效率,成为亟需解决的问题。
发明内容
本申请实施例提供一种通信的方法及装置。
第一方面,本申请实施例提供一种通信的方法,包括:接收来自通信设备的控制信息,其中,该通信设备可以是网络设备,也可以是终端。根据所述控制信息确定至少一个第一子时间单元和至少一个第二子时间单元,所述至少一个第一子时间单元和所述至少一个第二子时间单元包括在所述至少一个时间单元中。在所述至少一个第一子时间单元上接收第一数据,在所述至少一个第二子时间单元上接收第二数据。可选地,所述时间单元为时隙,所述子时间单元为时隙或符号。可选地,所述至少一个时间单元包含在时间单元聚合中。
通过上述实施例描述的方法,能够在至少一个时间单元中确定出承载不同数据的不同时域资源,因此能够依据数据传输的实际需求灵活调整数据收发占用的时域资源,从而提高了数据传输效率。
结合第一方面,在第一方面的某些实现方式中,上述控制信息用于指示所述至少一个第一子时间单元的位置,或者,上述控制信息用于指示所述至少一个第二子时间单元的位置。或者,上述控制信息用于指示所述至少一个第一子时间单元的位置和所述至少一个第二子时间单元的位置。或者,上述控制信息用于指示所述至少一个第一子时间单元的数量,或者,上述控制信息用于指示所述至少一个第二子时间单元的数量。或者,上述控制信息用于指示所述至少一个第一子时间单元的数量和所述至少一个第二子时间单元的数量。或者,上述控制信息用于指示所述第一子时间单元的数量与所述第二子时间单元的数量的比例。或者,上述控制信息用于指示所述第二子时间单元的数量与所述第一子时间单元的数 量的比例。
结合第一方面,在第一方面的某些实现方式中,上述控制信息可由物理下行控制信道(physical downlink control channel,PDCCH)、物理边链路控制信道(physical sidelink control channel,PSCCH)、系统消息、无线资源控制(radio resource control,RRC)信令、或媒体接入控制(media access control,MAC)控制元素(control element,CE)承载。或者,上述控制信息可由上述中的多项承载。
结合第一方面,在第一方面的某些实现方式中,上述控制信息包括用于指示所述至少一个第一子时间单元和所述至少一个第二子时间单元的位图(bitmap)。可选地,位图中包含的比特数量大于或等于上述至少一个时间单元的数量。可选地,位图中被标识为0的比特指示所述至少一个第一子时间单元,位图中被标识为1的比特指示所述至少一个第二子时间单元;或者,位图中被标识为1的比特指示所述至少一个第一子时间单元,位图中被标识为0的比特指示所述至少一个第二子时间单元。
结合第一方面,在第一方面的某些实现方式中,接收来自通信设备的第一配置信息,所述第一配置信息用于配置上述至少一个时间单元。或者,接收来自通信设备的第一配置信息,所述第一配置信息用于配置上述至少一个时间单元,并且上述至少一个时间单元的数量为两个或两个以上;若未接收到来自通信设备的所述第一配置信息,则默认上述至少一个时间单元的数量为一个。可选地,所述第一配置信息用于配置所述至少一个时间单元的数量。可选地,上述第一配置信息可由PDCCH、PSCCH、系统消息、RRC信令、或MACCE承载。
结合第一方面,在第一方面的某些实现方式中,所述第一数据为第一传输块(transmission block,TB)对应的数据,所述第二数据为第二传输块TB对应的数据。由于可以根据不同TB对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合第一方面,在第一方面的某些实现方式中,所述第一数据为第一混合自动重传请求(hybrid automatic repeat request,HARQ)进程对应的数据,所述第二数据为第二HARQ进程对应的数据。由于可以根据不同HARQ进程对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合第一方面,在第一方面的某些实现方式中,所述第一数据为初传数据,所述第二数据为重传数据。或者,所述第一数据为重传数据,所述第二数据为初传数据。或者,所述第一数据为第一初传数据,所述第二数据为第二初传数据。或者,所述第一数据为第一重传数据,所述第二数据为第二重传数据。由于可以根据初传数据和重传数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合第一方面,在第一方面的某些实现方式中,所述第一数据为第一冗余版本(redundancy version,RV)对应的数据,所述第二数据为第二RV对应的数据。由于可以根据不同RV对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合第一方面,在第一方面的某些实现方式中,所述第一数据为第一业务对应的数据,所述第二数据为第二业务对应的数据。由于可以根据不同业务对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合第一方面,在第一方面的某些实现方式中,根据上述控制信息,在所述至少一个第一子时间单元上接收上述第一数据,在所述至少一个第二子时间单元上接收上述第二数据。上述控制信息包括所述第一数据的调度信息和所述第二数据的调度信息,所述调度信息包括资源分配信息、调制编码方案(modulation coding scheme,MCS)等信息中的一个或多个。接收来自通信设备的上述控制信息获得上述调度信息后,则可以根据上述调度信息在所述至少一个第一子时间单元上接收上述第一数据,以及在所述至少一个第二子时间单元上接收上述第二数据。通过该实施方式,能够减少数据调度的信令开销。
第二方面,本申请实施例提供另一种通信的方法,包括:向通信设备发送控制信息,其中,该通信设备可以是网络设备,也可以是终端。所述控制信息用于指示至少一个第一子时间单元和至少一个第二子时间单元,所述至少一个第一子时间单元和所述至少一个第二子时间单元包括在所述至少一个时间单元中。在所述至少一个第一子时间单元上发送第一数据,在所述至少一个第二子时间单元上发送第二数据。可选地,所述时间单元为时隙,所述子时间单元为时隙或符号。可选地,所述至少一个时间单元包含在时间单元聚合中。
通过上述实施例描述的方法,能够在至少一个时间单元中确定出承载不同数据的不同时域资源,因此能够依据数据传输的实际需求灵活调整数据收发占用的时域资源,从而提高了数据传输效率。
结合第二方面,在第二方面的某些实现方式中,上述控制信息用于指示所述至少一个第一子时间单元的位置,或者,上述控制信息用于指示所述至少一个第二子时间单元的位置。或者,上述控制信息用于指示所述至少一个第一子时间单元的位置和所述至少一个第二子时间单元的位置。或者,上述控制信息用于指示所述至少一个第一子时间单元的数量,或者,上述控制信息用于指示所述至少一个第二子时间单元的数量。或者,上述控制信息用于指示所述至少一个第一子时间单元的数量和所述至少一个第二子时间单元的数量。或者,上述控制信息用于指示所述第一子时间单元的数量与所述第二子时间单元的数量的比例。或者,上述控制信息用于指示所述第二子时间单元的数量与所述第一子时间单元的数量的比例。
结合第二方面,在第二方面的某些实现方式中,上述控制信息可由PDCCH、PSCCH、系统消息、RRC信令、或MAC CE承载。或者,上述控制信息可由上述中的多项承载。
结合第二方面,在第二方面的某些实现方式中,上述控制信息包括用于指示所述至少一个第一子时间单元和所述至少一个第二子时间单元的位图。可选地,位图中包含的比特数量大于或等于上述至少一个时间单元的数量。可选地,位图中被标识为0的比特指示所述至少一个第一子时间单元,位图中被标识为1的比特指示所述至少一个第二子时间单元;或者,位图中被标识为1的比特指示所述至少一个第一子时间单元,位图中被标识为0的比特指示所述至少一个第二子时间单元。
结合第二方面,在第二方面的某些实现方式中,向通信设备发送第一配置信息,所述第一配置信息用于配置上述至少一个时间单元。或者,向通信设备发送第一配置信息,所述第一配置信息用于配置上述至少一个时间单元,并且上述至少一个时间单元的数量为两个或两个以上;若未发送所述第一配置信息,则默认上述至少一个时间单元的数量为一个。可选地,所述第一配置信息用于配置所述至少一个时间单元的数量。可选地,上述第一配置信息可由PDCCH、PSCCH、系统消息、RRC信令、或MACCE承载。
结合第二方面,在第二方面的某些实现方式中,所述第一数据为第一传输块TB对应的数据,所述第二数据为第二传输块TB对应的数据。由于可以根据不同TB对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合第二方面,在第二方面的某些实现方式中,所述第一数据为第一HARQ进程对应的数据,所述第二数据为第二HARQ进程对应的数据。由于可以根据不同HARQ进程对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合第二方面,在第二方面的某些实现方式中,所述第一数据为初传数据,所述第二数据为重传数据。或者,所述第一数据为重传数据,所述第二数据为初传数据。或者,所述第一数据为第一初传数据,所述第二数据为第二初传数据。或者,所述第一数据为第一重传数据,所述第二数据为第二重传数据。由于可以根据初传数据和重传数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合第二方面,在第二方面的某些实现方式中,所述第一数据为第一RV对应的数据,所述第二数据为第二RV对应的数据。由于可以根据不同RV对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合第二方面,在第二方面的某些实现方式中,所述第一数据为第一业务对应的数据,所述第二数据为第二业务对应的数据。由于可以根据不同业务对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合第二方面,在第二方面的某些实现方式中,上述控制信息包括所述第一数据的调度信息和所述第二数据的调度信息,所述调度信息包括资源分配信息、MCS等信息中的一个或多个。通过该实施方式,能够减少数据调度的信令开销。
第三方面,本申请实施例提供另一种通信的方法,包括:接收来自通信设备的第二配置信息,所述第二配置信息用于配置与带宽部分(bandwidth part,BWP)对应的时间单元聚合中的时间单元数量、最大时间单元数量、或时间单元数量的集合。其中,该通信设备可以是网络设备,也可以是终端。使用所述时间单元聚合中的一个或多个时间单元在所述BWP上接收或发送第三数据。
上述BWP可以理解为物理资源,该BWP可以包括频域上至少一个资源块组(resource block group,RBG)、至少一个物理资源块组(physical resource-block group,PRG)、至少一个资源块(resource block,RB)、或至少一个子载波(sub-carrier,SC)。其中RBG、PRG、RB、和SC也可以理解为频域上的物理资源。
通过上述方法,通过约束与BWP对应的时间单元聚合中包含的时间单元数量,能够在采用多时间单元传输时,不会受到预定义传输块大小的限制,也不会增加预定义的最大传输块的大小,从而降低了系统设计的复杂度。
结合第三方面,在第三方面的某些实现方式中,所述第二配置信息用于配置与所述BWP对应的时间单元聚合中的时间单元数量A1,所述时间单元聚合中的一个或多个时间单元的数量可以等于A1或者小于A1。可以理解,上述与所述BWP对应的时间单元聚合中的时间单元数量A1也可以理解为与所述BWP对应的时间单元聚合中的最大时间单元数量。
结合第三方面,在第三方面的某些实现方式中,所述第二配置信息用于配置与所述 BWP对应的时间单元聚合中的时间单元数量的集合{A1,A2,…,An},其中n为大于1的整数,所述时间单元聚合中的一个或多个时间单元的数量可以为上述集合元素中一个。
第四方面,本申请实施例提供另一种通信的方法,包括:向终端发送第二配置信息,所述第二配置信息用于配置与带宽部分对应的时间单元聚合中的时间单元数量、最大时间单元数量、或时间单元数量的集合。使用所述时间单元聚合中的一个或多个时间单元在所述带宽部分上发送或接收第三数据。
通过上述方法,通过约束与BWP对应的时间单元聚合中包含的时间单元数量,能够在采用多时间单元传输时,不会受到预定义传输块大小的限制,也不会增加预定义的最大传输块的大小,从而降低了系统设计的复杂度。
第五方面,本申请实施例提供另一种通信的方法,包括:获得与参考时间单元对应的参考传输块大小。根据所述参考传输块大小确定与多个时间单元(M个时间单元,M为大于1的整数)对应的实际传输块大小。可选地,上述多个时间单元包含在时间单元聚合中,或者,上述多个时间单元组成时间单元聚合。该时间单元聚合也可理解为时间单元的集合。
通过上述方法,能够在采用多时间单元传输时,准确且简便的获得多时间单元传输使用的传输块大小,降低了网络设备或终端的实现复杂度。
结合第五方面,在第五方面的某些实现方式中,获得与该参考时间单元对应的参考传输块大小为N(N为大于0的整数)。根据所述参考传输块大小N确定与M个时间单元对应的实际传输块大小,包括所述与M个时间单元对应的实际传输块大小N’满足下述中的一项:
N’=N*M,N’=N*M*C1,N’=f(N*M*C1),N’=N*M/C2,或N’=f(N*M/C2),其中C1和C2为正实数,f(x)表示对x进行取整。
结合第五方面,在第五方面的某些实现方式中,所述参考时间单元包括第一参考时间单元和第二参考时间单元。获得与该第一参考时间单元对应的参考传输块大小为J(J为大于0的整数),获得与该第二参考时间单元对应的参考传输块大小为K(K为大于0的整数)。可以将第一参考时间单元理解为承载有第一信息和/或第一信号的参考时间单元,将第二参考时间单元理解为未承载第一信息和/或第一信号的参考时间单元。根据上述参考传输块大小J和K确定与上述M个时间单元对应的实际传输块大小,包括与上述M个时间单元对应的实际传输块大小N’满足下述中的一项:
N’=J*L+K*(M-L),N’=J*L*C3+K*(M-L)*C4,或者,N’=f(J*L*C3+K*(M-L)*C4),L为上述M个时间单元中承载有第一信息和/或第一信号的时间单元的数量,C3和C4为正实数,f(x)表示对x进行取整。
可以理解,第一信息和/或第一信号可以包括下述各项中的一项或多项:控制信息、参考信号、同步信号(synchronization signal,SS)、同步信号块(SS block,SSB)、或随机接入信号。所述控制信息包括由控制信道承载的上行控制信息(uplink control information,UCI)和/或下行控制信息(downlink control information,DCI)。所述参考信号包括解调参考信号(demodulation reference signal,DMRS)、相位跟踪参考信号(phase tracking reference signal,PTRS)、探测参考信号(sounding reference signal,SRS)、或信道状态信息参考信号(channel state information reference signal,CSI-RS)中的一种或多 种。所述同步信号包括主同步信号(primary SS,PSS)和/或辅同步信号(secondary SS,SSS)。所述同步信号块包括同步信号和/或物理广播信道(physical broadcast channel,PBCH)。
通过上述实现方式,能够在时间单元聚合既包含承载有第一信息和/或第一信号的时间单元也包含不承载第一信息和/或第一信号的时间单元时,更加精确的计算所需的传输块大小,从而提高时间资源的利用率。
第六方面,本申请实施例提供另一种通信的方法,包括:获得与多个时间单元对应的资源粒子(resource element)数量。可选地,上述多个时间单元包含在时间单元聚合中,或者,上述多个时间单元组成时间单元聚合。该时间单元聚合也可理解为时间单元的集合。根据所述RE数量确定与所述多个时间单元对应的实际传输块大小。
本申请实施例中的RE可以理解为一种物理资源。可选地,一个RE在频域上可以占用一个子载波,在时域上可以占用一个符号。
通过上述方法,能够在采用多时间单元传输时,准确且简便的获得多时间单元传输使用的传输块大小,降低了网络设备或终端的实现复杂度。
结合第六方面,在第五方面的某些实现方式中,所述时间单元为时隙。获得与多个时隙对应的RE数量为N RE,且满足
Figure PCTCN2020077314-appb-000001
其中
Figure PCTCN2020077314-appb-000002
为一个RB中包含的子载波数量(例如
Figure PCTCN2020077314-appb-000003
),
Figure PCTCN2020077314-appb-000004
为上述多个时隙中被调度的符号数量,
Figure PCTCN2020077314-appb-000005
为上述多个时隙中DMRS占用的RE数量,
Figure PCTCN2020077314-appb-000006
为其他开销(例如由高层信令配置的开销)包含的RE数量。
第七方面,本申请实施例提供一种通信装置,可以实现上述第一方面、第一方面任意可能的实现方式、第二方面、第二方面任意可能的实现方式、第三方面、第三方面任意可能的实现方式、第四方面、第四方面任意可能的实现方式、第五方面、第五方面任意可能的实现方式、第六方面、或第六方面任意可能的实现方式中的一项或多项的方法。所述通信装置包括用于执行上述方法的相应的单元或部件。所述通信装置包括的单元可以通过软件和/或硬件方式实现。所述通信装置,例如可以为终端、或网络设备(如基站)、或者为可支持终端或网络设备实现上述功能的芯片、芯片系统、或处理器等。
第八方面,本申请提供一种通信装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得通信装置实现上述第一方面、第一方面任意可能的实现方式、第二方面、第二方面任意可能的实现方式、第三方面、第三方面任意可能的实现方式、第四方面、第四方面任意可能的实现方式、第五方面、第五方面任意可能的实现方式、第六方面、或第六方面任意可能的实现方式中所述的方法。
第九方面,本申请提供一种存储介质,其上存储有计算机程序或指令,所述计算机程序或指令被执行时使得计算机执行上述第一方面、第一方面任意可能的实现方式、第二方面、第二方面任意可能的实现方式、第三方面、第三方面任意可能的实现方式、第四方面、第四方面任意可能的实现方式、第五方面、第五方面任意可能的实现方式、第六方面、或第六方面任意可能的实现方式中所述的方法。
第十方面,本申请实施例提供一种通信系统,包括:用于执行上述第一方面、第一方面任意可能的实现方式、第二方面、第二方面任意可能的实现方式、第三方面、第 三方面任意可能的实现方式、第四方面、第四方面任意可能的实现方式、第五方面、第五方面任意可能的实现方式、第六方面、或第六方面任意可能的实现方式中所述方法的通信装置。
附图说明
图1为本申请提供的实施例应用的通信系统的示意图;
图2示出了通信系统的一种架构举例示意图;
图3示出了本申请实施例提供的一种通信方法的流程示意图;
图4示出了本申请实施例中的一种时域资源示意图;
图5示出了本申请实施例中的另一种时域资源示意图;
图6A示出了本申请实施例中的另一种时域资源示意图;
图6B示出了本申请实施例中的另一种时域资源示意图;
图7示出了本申请实施例提供的另一种通信方法的流程示意图;
图8示出了本申请实施例提供的另一种通信方法的流程示意图;
图9示出了本申请实施例提供的另一种通信方法的流程示意图;
图10示出了本申请实施例提供的另一种通信方法的流程示意图;
图11示出了本申请实施例提供的另一种通信方法的流程示意图;
图12为本申请实施例提供的一种通信装置的结构示意图;
图13为本申请实施例提供的一种终端的结构示意图;
图14为本申请实施例提供的一种通信设备示意图。
具体实施方式
本申请实施例提供的通信的方法及装置可以应用于通信系统中。如图1示出了一种通信系统结构示意图。该通信系统中包括一个或多个网络设备(清楚起见,图中示出网络设备10和网络设备20),以及与该一个或多个网络设备通信的一个或多个终端设备。图1中所示终端设备11和终端设备12与网络设备10通信,所示终端设备21和终端设备22与网络设备20通信。可以理解的是,网络设备和终端设备也可以被称为通信设备。
本发明实施例描述的技术可用于各种通信系统,例如2G,3G,4G,4.5G,5G通信系统,多种通信系统融合的系统,或者未来演进网络。例如长期演进(long term evolution,LTE)系统,新空口(new radio,NR)系统,无线保真(wireless-fidelity,WiFi)系统,以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统等,以及其他此类通信系统。
图2示出了通信系统的一种可能的架构举例示意图,如图2所示无线接入网(radio access network,RAN)中的网络设备是集中单元(centralized unit,CU)和分布单元(distributed unit,DU)分离架构的基站(如gNodeB或gNB)。RAN可以与核心网相连(例如可以是LTE的核心网,也可以是5G的核心网等)。CU和DU可以理解为是对基站从逻辑功能角度的划分。CU和DU在物理上可以是分离的也可以部署在一起。多个DU可以共用一个CU。一个DU也可以连接多个CU(图中未示出)。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如分组 数据汇聚层协议(packet data convergence protocol,PDCP)层及无线资源控制(radio resource control,RRC)层的功能设置在CU,而无线链路控制(radio link control,RLC),媒体接入控制(media access control,MAC)层,物理(physical)层等的功能设置在DU。可以理解对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。图2所示的网络架构可以应用于5G通信系统,其也可以与LTE系统共享一个或多个部件或资源。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
CU的功能可以由一个实体来实现,也可以进一步将控制面(CP)和用户面(UP)分离,即CU的控制面(CU-CP)和用户面(CU-UP)可以由不同的功能实体来实现,所述CU-CP和CU-UP可以与DU相耦合,共同完成基站的功能。
可以理解的是,本申请中提供的实施例也适用于CU和DU不分离的架构。
本申请中,网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),NR中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、CU,和/或,DU。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同技术的多个基站进行通信,例如,终端设备可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
终端是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端设备等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、 接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端也可以是固定的或者移动的。
在无线通信网络中,一个传输块(transmission block,TB)对应的数据收发通常可以占用一个发送时间间隔(transmission time interval,TTI)。例如在长期演进(long term evolution,LTE)网络中,一个TB对应的数据收发可以占用一个子帧。又例如,在新空口(new radio,NR)网络中,一个TB对应的数据收发可以占用一个时隙。上述机制的主要问题是,TB对应的数据收发在时间上占用的时域资源不够灵活,从而无法依据TB的数据量大小更加合理地利用时域资源。因此,如何为数据收发设计更加灵活的时域资源使用方式以提高数据传输效率,成为亟需解决的问题。
本申请实施例提供的方法中,通信设备能够确定出时间单元聚合中承载不同数据的不同时域资源,因此能够依据数据传输的实际需求灵活调整数据收发占用的时域资源,从而提高了数据传输效率。
下面以具体实施例结合附图对本申请的技术方案进行详细说明。下述实施例和实施方式可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。应理解,本申请中所解释的功能可以通过独立硬件电路、使用结合处理器/微处理器或通用计算机而运行的软件、使用专用集成电路,和/或使用一个或多个数字信号处理器来实现。当本申请描述为方法时,其还可以在计算机处理器和被耦合到处理器的存储器中实现。
图3为本申请实施例提供的一种通信方法的流程示意图,该方法可以由终端执行。如图3所示,该实施例的方法可以包括:
300部分:接收来自通信设备的控制信息。其中,该通信设备可以是网络设备,也可以是终端。
310部分:根据所述控制信息确定至少一个第一子时间单元和至少一个第二子时间单元,所述至少一个第一子时间单元和所述至少一个第二子时间单元包括在至少一个时间单元中。可以理解,所述至少一个时间单元可以由所述至少一个第一子时间单元和所述至少一个第二子时间单元构成,或者,所述至少一个时间单元除所述至少一个第一子时间单元和所述至少一个第二子时间单元以外还包括其他的子时间单元。可选地,所述时间单元为时隙,所述子时间单元为时隙或符号(也可称为时域符号);或者,所述时间单元为子帧,所述子时间单元为子帧、时隙、或符号;或者,所述时间单元为帧,所述子时间单元为帧、子帧、时隙、或符号。本申请实施例以及其他实施例中的时间单元或子时间单元也可以理解为一种时域资源。
可选地,上述至少一个时间单元包含在时间单元聚合中,或者,上述至少一个时间单元组成时间单元聚合。该时间单元聚合也可理解为时间单元的集合。可选地,终端可以上报是否支持时间单元聚合的能力,或者,终端可以上报支持的时间单元聚合中的最大时间单元数量。
320部分:在所述至少一个第一子时间单元上接收第一数据,在所述至少一个第二子时间单元上接收第二数据。
可以理解,上述至少一个时间单元中还可以包括更多的子时间单元(例如至少一个第 三子时间单元等)。本申请实施例为描述方便,后续将以上述至少一个时间单元中包括至少一个第一子时间单元和至少一个第二子时间单元进行描述。
通过上述实施例描述的方法,终端能够在至少一个时间单元中确定出承载不同数据的不同时域资源,因此能够依据数据传输的实际需求灵活调整数据收发占用的时域资源,从而提高了数据传输效率。
在上述控制信息的一种可选的实施方式中,上述控制信息用于指示所述至少一个第一子时间单元的位置,或者,上述控制信息用于指示所述至少一个第二子时间单元的位置。可以理解,该实施方式可适用于当所述至少一个时间单元由所述至少一个第一子时间单元和所述至少一个第二子时间单元构成时。在310部分中,根据该控制信息指示的所述至少一个第一子时间单元的位置可确定出所述至少一个第一子时间单元,又由于所述至少一个时间单元由所述至少一个第一子时间单元和所述至少一个第二子时间单元构成,因此可在所述至少一个时间单元中确定出所述至少一个第二子时间单元。或者,在310部分中,根据该控制信息指示的所述至少一个第二子时间单元的位置可确定出所述至少一个第二子时间单元,又由于所述至少一个时间单元由所述至少一个第一子时间单元和所述至少一个第二子时间单元构成,因此可在所述至少一个时间单元中确定出所述至少一个第一子时间单元。上述控制信息指示的可以是所述至少一个第一子时间单元或所述至少一个第二子时间单元的位置,也可以是与所述位置对应的索引、编号、或枚举参数。
例如以图4示意的一种时域资源为例,图4中以被标识成#0、#1、#2、和#3的四个时间单元为上述至少一个时间单元、被标识成#0的一个时间单元为上述至少一个第一子时间单元、被标识成#1、#2、和#3的三个时间单元为上述至少一个第二子时间单元为例。所述控制信息指示所述至少一个第一子时间单元的位置在上述四个时间单元的第一个时间单元上,则可以根据该控制信息确定上述至少一个第一子时间单元为标识成#0的时间单元,并且上述至少一个第二子时间单元为标识成#1、#2、和#3的时间单元。或者,所述控制信息指示所述至少一个第二子时间单元的位置在上述四个时间单元的第二个、第三个和第四个时间单元上,则可以根据该控制信息确定上述至少一个第二子时间单元为标识成#1、#2、和#3的时间单元,并且上述至少一个第一子时间单元为标识成#0的时间单元。
在上述控制信息的另一种可选的实施方式中,上述控制信息用于指示所述至少一个第一子时间单元的位置和所述至少一个第二子时间单元的位置。在310部分中,根据该控制信息指示的所述至少一个第一子时间单元的位置和所述至少一个第二子时间单元的位置可确定出所述至少一个第一子时间单元和所述至少一个第二子时间单元。上述控制信息指示的可以是所述至少一个第一子时间单元和所述至少一个第二子时间单元的位置,也可以是与所述位置对应的索引、编号、或枚举参数。
例如以图4示意的一种时域资源为例,图4中以被标识成#0、#1、#2、和#3的四个时间单元为上述至少一个时间单元、被标识成#0的一个时间单元为上述至少一个第一子时间单元、被标识成#1、#2、和#3的三个时间单元为上述至少一个第二子时间单元为例。所述控制信息指示所述至少一个第一子时间单元的位置在上述四个时间单元的第一个时间单元上,并且指示所述至少一个第二子时间单元的位置在上述四个时间单元的第二个、第三个和第四个时间单元上,则可以根据该控制信息确定上述至少一个第一子时间单元为标识成#0的时间单元,并且上述至少一个第二子时间单元为标识成#1、#2、和#3的时间 单元。
又例如以图5示意的另一种时域资源为例,图5中以被标识成#0、#1、#2、#3、和#4的五个时间单元为上述至少一个时间单元、被标识成#0的一个时间单元为上述至少一个第一子时间单元、被标识成#1、#2、和#3的三个时间单元为上述至少一个第二子时间单元为例。所述控制信息指示所述至少一个第一子时间单元的位置在上述五个时间单元的第一个时间单元上,并且指示所述至少一个第二子时间单元的位置在上述五个时间单元的第二个、第三个和第四个时间单元上,则可以根据该控制信息确定上述至少一个第一子时间单元为标识成#0的时间单元,并且上述至少一个第二子时间单元为标识成#1、#2、和#3的时间单元。
在上述控制信息的另一种可选的实施方式中,上述控制信息用于指示所述至少一个第一子时间单元的数量,或者,上述控制信息用于指示所述至少一个第二子时间单元的数量。可以理解,该实施方式可适用于当所述至少一个时间单元由所述至少一个第一子时间单元和所述至少一个第二子时间单元构成时。可以理解,在这种实施方式下,所述至少一个第一子时间单元和所述至少一个第二子时间单元的位置关系(例如在时域上所述至少一个第一子时间单元在所述至少一个第二子时间单元之前,或者,在时域上所述至少一个第一子时间单元在所述至少一个第二子时间单元之后)可以是预定义的,或是由网络设备配置的。在310部分中,根据该控制信息指示的所述至少一个第一子时间单元的数量、以及所述至少一个第一子时间单元和所述至少一个第二子时间单元的位置关系,可确定出所述至少一个第一子时间单元,又由于所述至少一个时间单元由所述至少一个第一子时间单元和所述至少一个第二子时间单元构成,因此可在所述至少一个时间单元中确定出所述至少一个第二子时间单元。上述控制信息指示的可以是所述至少一个第一子时间单元或所述至少一个第二子时间单元的数量,也可以是与该数量对应的索引、编号、或枚举参数。
例如以图4示意的一种时域资源为例,并以在时域上所述至少一个第一子时间单元在所述至少一个第二子时间单元之前为例。所述控制信息指示所述至少一个第一子时间单元的数量为1,则可以根据该控制信息确定上述至少一个第一子时间单元为标识成#0的时间单元,并且上述至少一个第二子时间单元为标识成#1、#2、和#3的时间单元。或者,所述控制信息指示所述至少一个第二子时间单元的数量为3,则可以根据该控制信息确定上述至少一个第二子时间单元为标识成#1、#2、和#3的时间单元,并且上述至少一个第一子时间单元为标识成#0的时间单元。
在上述控制信息的另一种可选的实施方式中,上述控制信息用于指示所述至少一个第一子时间单元的数量和所述至少一个第二子时间单元的数量。可以理解,在这种实施方式下,所述至少一个第一子时间单元和所述至少一个第二子时间单元的位置关系(例如在时域上所述至少一个第一子时间单元在所述至少一个第二子时间单元之前,或者,在时域上所述至少一个第一子时间单元在所述至少一个第二子时间单元之后)可以是预定义的,或是由网络设备配置的。在310部分中,根据该控制信息指示的所述至少一个第一子时间单元的数量和所述至少一个第二子时间单元的数量、以及所述至少一个第一子时间单元和所述至少一个第二子时间单元的位置关系,可确定出所述至少一个第一子时间单元和所述至少一个第二子时间单元。上述控制信息指示的可以是所述至少一个第一子时间单元和所述至少一个第二子时间单元的数量,也可以是与该数量对应的索引、编号、或枚举参数。
例如以图4示意的一种时域资源为例,并以在时域上所述至少一个第一子时间单元在所述至少一个第二子时间单元之前为例。所述控制信息指示所述至少一个第一子时间单元的数量为1,并且指示所述至少一个第二子时间单元的数量为3,且根据预定义或配置的所述至少一个第一子时间单元和所述至少一个第二子时间单元在时域上的顺序,则可以根据该控制信息确定上述至少一个第一子时间单元为标识成#0的时间单元,并且上述至少一个第二子时间单元为标识成#1、#2、和#3的时间单元。
在上述控制信息的另一种可选的实施方式中,所述控制信息用于指示所述第一子时间单元的数量与所述第二子时间单元的数量的比例,或者,所述控制信息用于指示所述第二子时间单元的数量与所述第一子时间单元的数量的比例。可以理解,在这种实施方式下,所述至少一个第一子时间单元和所述至少一个第二子时间单元的位置关系(例如在时域上所述至少一个第一子时间单元在所述至少一个第二子时间单元之前,或者,在时域上所述至少一个第一子时间单元在所述至少一个第二子时间单元之后)可以是预定义的,或是由网络设备配置的。在310部分中,根据该控制信息指示的上述比例可确定出所述至少一个第一子时间单元和所述至少一个第二子时间单元。上述控制信息指示的可以是所述第一子时间单元的数量与所述第二子时间单元的数量(或所述第二子时间单元的数量与所述第一子时间单元的数量的)的比例或比值,也可以是与所述比例或比值对应的索引、编号、或枚举参数。
例如以图4示意的一种时域资源为例,并以在时域上所述至少一个第一子时间单元在所述至少一个第二子时间单元之前为例。所述控制信息指示所述第一子时间单元的数量与所述第二子时间单元的数量的比例为1:3,或者,所述控制信息指示所述第二子时间单元的数量与所述第一子时间单元的数量的比例为3:1,且根据预定义或配置的所述至少一个第一子时间单元和所述至少一个第二子时间单元在时域上的顺序,则可以根据该控制信息确定上述至少一个第一子时间单元为标识成#0的时间单元,并且上述至少一个第二子时间单元为标识成#1、#2、和#3的时间单元。
在上述控制信息的另一种可选的实施方式中,上述控制信息可由物理下行控制信道(physical downlink control channel,PDCCH)、物理边链路控制信道(physical sidelink control channel,PSCCH)、系统消息、无线资源控制(radio resource control,RRC)信令、或媒体接入控制(media access control,MAC)控制元素(control element,CE)承载。或者,上述控制信息可由上述中的多项承载。例如,所述控制信息可由PDCCH和系统消息承载,或者所述控制信息可由PDCCH和RRC信令承载等。
例如,由系统消息(或者RRC信令)配置或预定义候选集合,该候选集合中包括多个候选的前述位置,或多个候选的前述数量,或多个候选的前述比例。由PDCCH承载的下行控制信息(downlink control information,DCI)指示该候选集合中多个候选的前述位置中的一个,或由PDCCH承载的DCI指示该候选集合中多个候选的前述数量中的一个,或由PDCCH承载的DCI指示该候选集合中多个候选的前述比例中的一个。可以理解,上述DCI也可以指示该候选集合中多个候选的前述位置中的一个对应的索引、编号、或枚举参数,或上述DCI也可以指示该候选集合中多个候选的前述数量中的一个对应的索引、编号、或枚举参数,或上述DCI也可以指示该候选集合中多个候选的前述比例中的一个对应的索引、编号、或枚举参数。
例如,结合图4,以上述控制信息用于指示所述第一子时间单元的数量与所述第二子时间单元的数量的比例、并且上述控制信息由PDCCH和系统消息(或者RRC信令)承载为例。由系统消息(或者RRC信令)配置或预定义候选集合,该候选集合包括三个候选的前述比例:{1:3,2:2(或1:1),3:1},并由PDCCH承载的DCI指示该候选集合中的1:3。或者,由系统消息(或者RRC信令)配置或预定义候选集合,该候选集合包括三个候选的前述比例{1:3,2:2(或1:1),3:1}以及对应的索引(如表1所示),并由PDCCH承载的DCI指示该候选集合中1:3对应的索引0。
表1
索引 比例
0 1:3
1 2:2(或1:1)
2 3:1
在上述控制信息的另一种可选的实施方式中,该控制信息包括用于指示所述至少一个第一子时间单元和所述至少一个第二子时间单元的位图(bitmap)。可选地,位图中包含的比特数量大于或等于上述至少一个时间单元的数量。可选地,位图中被标识为0的比特指示所述至少一个第一子时间单元,位图中被标识为1的比特指示所述至少一个第二子时间单元;或者,位图中被标识为1的比特指示所述至少一个第一子时间单元,位图中被标识为0的比特指示所述至少一个第二子时间单元。
以图4为例,上述用于指示所述至少一个第一子时间单元和所述至少一个第二子时间单元的位图可包含4个比特“b0,b1,b2,b3”,分别对应图4示意的四个时间单元“#0,#1,#2,#3”。该位图可以为“0111”,指示上述至少一个第一子时间单元包括时间单元#0,以及上述至少一个第二子时间单元包括时间单元#1、#2、和#3。或者,该位图可以为“1110”,指示上述至少一个第一子时间单元包括时间单元#0,以及上述至少一个第二子时间单元包括时间单元#1、#2、和#3。
上述实施方式中的时间单元和子时间单元可以是下述几种情况中的一种:时间单元为时隙,子时间单元为时隙;或者,时间单元为子帧,子时间单元为子帧;或者,时间单元为帧,子时间单元为帧。即,时间单元和子时间单元可以具有相同的时间长度。
可以理解,时间单元和子时间单元也可以具有不同的时间长度,子时间单元的时间长度小于时间单元的时间长度。例如,时间单元为时隙,所述子时间单元为符号(也可称为时域符号);或者,所述时间单元为子帧,所述子时间单元为时隙、或符号;或者,所述时间单元为帧,所述子时间单元为子帧、时隙、或符号。
以图6A为例,并以一个时隙中包含14个符号为例,被标识成##0的一个时隙为上述至少一个时间单元,被标识成#0-#3的四个符号为上述至少一个第一子时间单元,被标识成#4-#13的十个符号为上述至少一个第二子时间单元。在这种可能的实施方式中,时间单元为时隙,子时间单元为符号。
再以图6B为例,被标识成##0和##1的两个时隙为上述至少一个时间单元,时隙##0中被标识成#0-#3的四个符号为上述至少一个第一子时间单元,时隙##0中被标识成#4-#13的十个符号和时隙##1中被标识成#0-#13的十四个符号为上述至少一个第二子时间单元。在这种可能的实施方式中,时间单元为时隙,子时间单元为符号,并且上述至少一个第一 子时间单元(或上述至少一个第二子时间单元)可以包含不同时间单元中的子时间单元。
本申请实施例中的时间单元与子时间单元可具有相同的时间长度,也可具有不同的时间长度,能够支持更加灵活的业务,使时域资源的使用更加匹配业务需求,从而提高资源的使用效率。
在上述至少一个时间单元的一种可能的实施方式中,该至少一个时间单元是预定义的或是由通信设备配置的。
在由通信设备配置上述至少一个时间单元的一种可能的实施方式中,在上述300部分,可选地,还可以接收来自通信设备的第一配置信息,所述第一配置信息用于配置上述至少一个时间单元。或者,在上述300部分,可选地,还可以接收来自通信设备的第一配置信息,所述第一配置信息用于配置上述至少一个时间单元,并且上述至少一个时间单元的数量为两个或两个以上;若未接收到来自通信设备的所述第一配置信息,则默认上述至少一个时间单元的数量为一个。上述通信设备可以是网络设备,也可以是终端。在300部分中,接收来自通信设备的控制信息中的通信设备可以被称为第一通信设备,接收来自通信设备的第一配置信息中的通信设备可以被称为第二通信设备,第一通信设备与第二通信设备可以是相同的通信设备,也可以是不同的通信设备。
在上述第一配置信息的一种可选的实施方式中,所述第一配置信息用于配置所述至少一个时间单元的数量。以图4为例,上述第一配置信息配置所述至少一个时间单元的数量为4。以图5为例,上述第一配置信息配置所述至少一个时间单元的数量为5。以图6A为例,上述第一配置信息配置所述至少一个时间单元的数量为1。以图6B为例,上述第一配置信息配置所述至少一个时间单元的数量为2。可以理解,上述至少一个时间单元的数量也可理解为时间单元聚合中时间单元的数量。
在上述第一配置信息的另一种可选的实施方式中,上述第一配置信息可由PDCCH、PSCCH、系统消息、RRC信令、或MACCE承载。或者,上述第一配置信息可由上述中的多项承载。例如,所述第一配置信息可由PDCCH和系统消息承载,或者所述第一配置信息可由PDCCH和RRC信令承载等。
例如,由系统消息(或者RRC信令)配置或预定义候选时间单元集合,该候选时间单元集合中包括多个候选的前述至少一个时间单元的数量。由PDCCH承载的DCI指示该候选时间单元集合中多个候选的至少一个时间单元的数量中的一个。可以理解,上述DCI也可以指示该候选时间单元集合中多个候选的至少一个时间单元的数量中的一个对应的索引、编号、或枚举参数。
以图4为例,由系统消息(或者RRC信令)配置或预定义候选时间单元集合,该候选时间单元集合包括三个候选的前述至少一个时间单元的数量:{2,4,8},并由PDCCH承载的DCI指示该候选时间单元集合中的4。或者,由系统消息(或者RRC信令)配置或预定义候选时间单元集合,该候选单元集合包括三个候选的前述至少一个时间单元的数量{2,4,8}以及对应的索引(如表2所示),并由PDCCH承载的DCI指示该候选时间单元集合中4对应的索引1。或者,由系统消息(或者RRC信令)配置或预定义候选时间单元集合,该候选单元集合包括三个候选的前述至少一个时间单元的数量{2,4,8}以及对应的枚举参数(如表3所示),并由PDCCH承载的DCI指示该候选时间单元集合中4对应的枚举参数n4。
表2
索引 数量
0 2
1 4
2 8
表3
枚举参数 数量
n2 2
n4 4
n8 8
在上述320部分的一种可选的实施方式中,所述第一数据为第一TB对应的数据,所述第二数据为第二传输块TB对应的数据。可以理解,本申请实施例中的TB包含多个数据比特,TB对应的数据可理解为对TB包含的数据比特进行预处理后的数据,所述预处理包括编码、调制、层映射、天线端口映射、或预编码中的一种或多种。以图4为例,至少一个第一子时间单元#0用于承载第一TB对应的数据,至少一个第二子时间单元#1-#3用于承载第二TB对应的数据,第一TB对应的数据可以少于第二TB对应的数据。对应地,在至少一个第一子时间单元#0上接收第一TB对应的数据,在至少一个第二子时间单元#1-#3上接收第二TB对应的数据。由于可以根据不同TB对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
在上述320部分的另一种可选的实施方式中,所述第一数据为第一混合自动重传请求(hybrid automatic repeat request,HARQ)进程对应的数据,所述第二数据为第二HARQ进程对应的数据。本申请实施例中HARQ对应的数据可理解为与HARQ进程号对应的数据,即第一数据为以第一HARQ进程号标识的数据,第二数据为以第二HARQ进程号标识的数据。以图4为例,至少一个第一子时间单元#0用于承载第一HARQ进程对应的数据,至少一个第二子时间单元#1-#3用于承载第二HARQ进程对应的数据,第一HARQ进程对应的数据可以少于第二HARQ进程对应的数据。对应地,在至少一个第一子时间单元#0上接收第一HARQ进程对应的数据,在至少一个第二子时间单元#1-#3上接收第二HARQ进程对应的数据。由于可以根据不同HARQ进程对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
在上述320部分的另一种可选的实施方式中,所述第一数据为初传数据,所述第二数据为重传数据。一个HARQ进程会对应一个新数据指示(new data indicator,NDI)值,该值使用1比特来指示传输的数据是初传数据还是重传数据。如果一个HARQ进程的NDI值与之前相比发生了变化,比如NDI的值由1变成了0,则表示传输的是初传数据,否则表示传输的是重传数据。或者对于一个HARQ进程对应的数据,没有之前的NDI,那么也可以认为该次传输的是初传数据。如果是重传数据,那么接收到的数据可以与同一HARQ进程的HARQ缓存中保存的之前接收到的数据进行合并。如果是新传数据,那么会清空所述HARQ进程的HARQ缓存。以图4为例,至少一个第一子时间单元#0用于承载初传数据,至少一个第二子时间单元#1-#3用于承载重传数据,初传数据可以少于重传 数据。对应地,在至少一个第一子时间单元#0上接收初传数据,在至少一个第二子时间单元#1-#3上接收重传数据。由于可以根据初传数据和重传数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
在上述320部分的另一种可选的实施方式中,所述第一数据为重传数据,所述第二数据为初传数据。以图4为例,至少一个第一子时间单元#0用于承载重传数据,至少一个第二子时间单元#1-#3用于承载初传数据,重传数据可以少于初传数据。对应地,在至少一个第一子时间单元#0上接收重传数据,在至少一个第二子时间单元#1-#3上接收初传数据。由于可以根据初传数据和重传数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
在上述320部分的另一种可选的实施方式中,所述第一数据为第一初传数据,所述第二数据为第二初传数据。以图4为例,至少一个第一子时间单元#0用于承载第一初传数据,至少一个第二子时间单元#1-#3用于承载第二初传数据,第一初传数据可以少于第二初传数据。对应地,在至少一个第一子时间单元#0上接收第一初传数据,在至少一个第二子时间单元#1-#3上接收第二初传数据。由于可以根据不同初传数据的数据多少灵活调整数据收发占用的时域资源,因此可以提高初传数据的传输效率和资源的使用效率。
在上述320部分的另一种可选的实施方式中,所述第一数据为第一重传数据,所述第二数据为第二重传数据。以图4为例,至少一个第一子时间单元#0用于承载第一重传数据,至少一个第二子时间单元#1-#3用于承载第二重传数据,第一重传数据可以少于第二重传数据。对应地,在至少一个第一子时间单元#0上接收第一重传数据,在至少一个第二子时间单元#1-#3上接收第二重传数据。由于可以根据不同重传数据的数据多少灵活调整数据收发占用的时域资源,因此可以提高重传数据的传输效率和资源的使用效率。
在上述320部分的另一种可选的实施方式中,所述第一数据为第一冗余版本(redundancy version,RV)对应的数据,所述第二数据为第二RV对应的数据。本申请实施例中,RV可理解为用于指示数据传输所使用的冗余版本,其取值范围可以为0~3。以图4为例,至少一个第一子时间单元#0用于承载第一RV对应的数据,至少一个第二子时间单元#1-#3用于承载第二RV对应的数据,第一RV对应的数据可以少于第二RV对应的数据。对应地,在至少一个第一子时间单元#0上接收第一RV对应的数据,在至少一个第二子时间单元#1-#3上接收第二RV对应的数据。由于可以根据不同RV对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。上述第一RV和第二RV可以有多种不同的实施方式。例如,上述第一RV和第二RV可以是一个TB的不同RV。再例如,上述第一RV和第二RV可以是两个TB分别对应的不同的RV。又例如,上述第一RV和第二RV可以是两个TB分别对应的相同的RV。
在上述320部分的另一种可选的实施方式中,所述第一数据为第一业务对应的数据,所述第二数据为第二业务对应的数据。以图4为例,至少一个第一子时间单元#0用于承载第一业务对应的数据,至少一个第二子时间单元#1-#3用于承载第二业务对应的数据,第一业务对应的数据可以少于第二业务对应的数据。对应地,在至少一个第一子时间单元#0上接收第一业务对应的数据,在至少一个第二子时间单元#1-#3上接收第二业务对应的数据。由于可以根据不同业务对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。可选的,所述的第一业务和第二业务可以为增 强移动带宽(enhanced mobility broadband,eMBB)业务,超高可靠低时延通信(ultra-reliable low latency communication,URLLC)业务,增强现实(Augmented Reality,AR)/虚拟现实(Virtual Reality,VR)业务,或大规模机器通信(massive machine-type communications,mMTC)业务。
在上述320部分的又一种可能的实施方式中,还可以根据上述控制信息,在所述至少一个第一子时间单元上接收上述第一数据,在所述至少一个第二子时间单元上接收上述第二数据。上述控制信息包括所述第一数据的调度信息和所述第二数据的调度信息,所述调度信息包括资源分配信息、调制编码方案(modulation coding scheme,MCS)等信息中的一个或多个。接收来自通信设备的上述控制信息获得上述调度信息后,则可以根据上述调度信息在所述至少一个第一子时间单元上接收上述第一数据,以及在所述至少一个第二子时间单元上接收上述第二数据。通过该实施方式,能够减少数据调度的信令开销。
图7为本申请实施例提供的另一种通信方法的流程示意图,该方法可以由网络设备或终端执行。如图7所示,该实施例的方法可以包括:
700部分:向通信设备发送控制信息,所述控制信息用于指示至少一个第一子时间单元和至少一个第二子时间单元,所述至少一个第一子时间单元和所述至少一个第二子时间单元包括在至少一个时间单元中。其中,该通信设备可以是终端。
710部分:在所述至少一个第一子时间单元上发送第一数据,在所述至少一个第二子时间单元上发送第二数据。
在上述至少一个时间单元的一种可能的实施方式中,该至少一个时间单元是预定义的。
在上述至少一个时间单元的另一种可能的实施方式中,在上述700部分,可选地,还可以向所述通信设备发送第一配置信息,该第一配置信息用于配置上述至少一个时间单元。或者,在上述700部分,可选地,还可以向所述通信设备发送第一配置信息,该第一配置信息用于配置上述至少一个时间单元,并且上述至少一个时间单元的数量为两个或两个以上;若未发送所述第一配置信息,则默认上述至少一个时间单元的数量为一个。
通过上述实施例描述的方法,终端或网络设备能够在至少一个时间单元中确定出发送不同数据的不同时域资源,因此能够依据数据传输的实际需求灵活调整数据收发占用的时域资源,从而提高了数据传输效率。
图7示意的通信方法中关于时间单元、子时间单元、第一子时间单元、第二子时间单元、控制信息、第一配置信息、第一数据、和第二数据的描述可参考图3示意的通信方法中对于时间单元、子时间单元、第一子时间单元、第二子时间单元、控制信息、第一配置信息、第一数据、和第二数据的描述,此处不再赘述。
图8为本申请实施例提供的另一种通信方法的流程示意图,该方法可以由终端执行。如图8所示,该实施例的方法可以包括:
800部分:接收来自通信设备的第二配置信息,所述第二配置信息用于配置与带宽部分(bandwidth part,BWP)对应的时间单元聚合中的时间单元数量、最大时间单元数量、或时间单元数量的集合。其中,该通信设备可以是网络设备,也可以是终端。
上述BWP可以理解为物理资源,该BWP可以包括频域上至少一个资源块组(resource block group,RBG)、至少一个物理资源块组(physical resource-block group,PRG)、至少一个资源块(resource block,RB)、或至少一个子载波(sub-carrier,SC)。其中RBG、 PRG、RB、和SC也可以理解为频域上的物理资源。
本申请实施例中关于时间单元和时间单元聚合的描述可参考图3示意的通信方法中对于时间单元和时间单元聚合的描述,此处不再赘述。
810部分:使用所述时间单元聚合中的一个或多个时间单元在所述BWP上接收或发送第三数据。
在本申请实施例以及本申请其他实施例中,与BWP对应的时间单元聚合,也可以理解为在所述BWP上使用的时间单元聚合、在所述BWP上可以使用的时间单元聚合、或在所述BWP上使用的候选时间单元聚合等。
通过该实施例提供的方法,通过约束与BWP对应的时间单元聚合中包含的时间单元数量,能够在采用多时间单元传输时,不会受到预定义传输块大小的限制,也不会增加预定义的最大传输块的大小,从而降低了系统设计的复杂度。
在上述第二配置信息的一种可选的实施方式中,所述第二配置信息用于配置与所述BWP对应的时间单元聚合中的时间单元数量A1,则上述810部分中所述时间单元聚合中的一个或多个时间单元的数量可以等于A1或者小于A1。可以理解,上述与所述BWP对应的时间单元聚合中的时间单元数量A1也可以理解为与所述BWP对应的时间单元聚合中的最大时间单元数量。
在上述第二配置信息的另一种可选的实施方式中,所述第二配置信息用于配置与所述BWP对应的时间单元聚合中的时间单元数量的集合{A1,A2,…,An},其中n为大于1的整数,则上述810部分中所述时间单元聚合中的一个或多个时间单元的数量可以为上述集合元素中一个。
在上述第二配置信息的另一种可选的实施方式中,上述第二配置信息可由PDCCH、PSCCH、系统消息、RRC信令、或MACCE承载。或者,上述第二配置信息可由上述中的多项承载。例如,所述第一配置信息可由PDCCH和系统消息承载,或者所述第一配置信息可由PDCCH和RRC信令承载等。
可以理解,图8所示的通信方法可以单独实施,也可以与图3示意的通信方法结合实施。
在图8与图3示意的通信方法结合实施时,上述第二配置信息与第一配置信息可以是同一个信息,也可以是不同的信息。800部分可以在310部分之前执行,可以不限定800部分与300部分的执行顺序。
在图8与图3示意的通信方法结合实施时,810部分中所述时间单元聚合中的一个或多个时间单元可以包括320部分中的至少一个第一子时间单元,所述第三数据可以是320部分中的第一数据,810部分可以理解为使用所述时间单元聚合中的一个或多个时间单元(至少一个第一子时间单元)在所述BWP上接收第三数据(第一数据)。或者,810部分中所述时间单元聚合中的一个或多个时间单元可以包括320部分中的至少一个第二子时间单元,所述第三数据可以是320部分中的第二数据,810部分可以理解为使用所述时间单元聚合中的一个或多个时间单元(至少一个第二子时间单元)在所述BWP上接收第三数据(第二数据)。
图9为本申请实施例提供的另一种通信方法的流程示意图,该方法可以由网络设备或终端执行。如图9所示,该实施例的方法可以包括:
900部分:向终端发送第二配置信息,所述第二配置信息用于配置与带宽部分对应的时间单元聚合中的时间单元数量、最大时间单元数量、或时间单元数量的集合。
910部分:使用所述时间单元聚合中的一个或多个时间单元在所述带宽部分上发送或接收第三数据。
本申请实施例中关于BWP和第二配置信息的描述可参考图8示意的通信方法对BWP的描述,本申请实施例中关于时间单元和时间单元聚合的描述可参考图3示意的通信方法中对于时间单元和时间单元聚合的描述,此处不再赘述。
通过该实施例提供的方法,通过约束与BWP对应的时间单元聚合中包含的时间单元数量,能够在采用多时间单元传输时,不会受到预定义传输块大小的限制,也不会增加预定义的最大传输块的大小,从而降低了系统设计的复杂度。
可以理解,图9所示的通信方法可以单独实施,也可以与图7示意的通信方法结合实施。
在图9与图7示意的通信方法结合实施时,上述第二配置信息与第一配置信息可以是同一个信息,也可以是不同的信息。900部分可以在710部分之前执行,可以不限定900部分与700部分的执行顺序。
在图9与图7示意的通信方法结合实施时,910部分中所述时间单元聚合中的一个或多个时间单元可以包括710部分中的至少一个第一子时间单元,所述第三数据可以是710部分中的第一数据,910部分可以理解为使用所述时间单元聚合中的一个或多个时间单元(至少一个第一子时间单元)在所述BWP上发送第三数据(第一数据)。或者,910部分中所述时间单元聚合中的一个或多个时间单元可以包括710部分中的至少一个第二子时间单元,所述第三数据可以是710部分中的第二数据,910部分可以理解为使用所述时间单元聚合中的一个或多个时间单元(至少一个第二子时间单元)在所述BWP上接收第三数据(第二数据)。
图10为本申请实施例提供的另一种通信方法的流程示意图,该方法可以由网络设备或终端执行。如图10所示,该实施例的方法可以包括:
1000部分:获得与参考时间单元对应的参考传输块大小。
1010部分:根据所述参考传输块大小确定与多个时间单元(M个时间单元,M为大于1的整数)对应的实际传输块大小。可选地,上述多个时间单元包含在时间单元聚合中,或者,上述多个时间单元组成时间单元聚合。该时间单元聚合也可理解为时间单元的集合。
本申请实施例中的参考时间单元是预定义的,或者是由高层信令(例如系统消息或RRC信令)配置的,或者是由PDCCH承载的DCI指示的。例如,该参考时间单元可以是上述M个时间单元中的第一个时间单元或最后一个时间单元。
本申请实施例中关于时间单元和时间单元聚合的描述可参考图3示意的通信方法中对于时间单元和时间单元聚合的描述,此处不再赘述。
通过该实施例提供的方法,能够在采用多时间单元传输时,准确且简便的获得多时间单元传输使用的传输块大小,降低了网络设备或终端的实现复杂度。
在图10示意的通信方法一种可能的实施方式中,在1000部分中,获得与该参考时间单元对应的参考传输块大小为N(N为大于0的整数)。在1010部分中,根据所述参考传输块大小N确定与M个时间单元对应的实际传输块大小,包括所述与M个时间单元对 应的实际传输块大小N’满足下述中的一项:
N’=N*M,N’=N*M*C1,N’=f(N*M*C1),N’=N*M/C2,或N’=f(N*M/C2),其中C1和C2为正实数,f(x)表示对x进行取整。
在上述获得与该参考时间单元对应的参考传输块大小为N的一种可能的实施方式中,根据该参考时间单元中被调度的符号数量,获得与该参考时间单元对应的参考传输块大小N。例如,该参考时间单元中被调度的符号数量为
Figure PCTCN2020077314-appb-000007
根据
Figure PCTCN2020077314-appb-000008
可以获得一个临时的比特数量N info,该N info满足:N info=N RE·R·Q m·v,且
Figure PCTCN2020077314-appb-000009
Figure PCTCN2020077314-appb-000010
其中,Q m表示调制阶数,R表示码率,v表示数据流数,
Figure PCTCN2020077314-appb-000011
为一个RB中包含的子载波数量(例如
Figure PCTCN2020077314-appb-000012
)
Figure PCTCN2020077314-appb-000013
为上述参考时间单元中DMRS占用的资源粒子(resource element,RE)数量数量,
Figure PCTCN2020077314-appb-000014
为其他开销(例如由高层信令配置的开销)包含的RE数量。本申请实施例中的RE可以理解为一种物理资源(例如,一个RE在频域上可以占用一个子载波,在时域上可以占用一个符号)。根据上述N info的取值判断是基于查表还是基于公式计算来获得上述参考传输块大小。例如,当N info≤3824时基于查表获得上述参考传输块大小,先对N info进行量化获得N′ info,该N′ info满足:
Figure PCTCN2020077314-appb-000015
Figure PCTCN2020077314-appb-000016
Figure PCTCN2020077314-appb-000017
其中,max(x,y)表示取x和y中较大的值,
Figure PCTCN2020077314-appb-000018
表示对x进行取整;再从预定义的多种传输块大小中找到最接近且不大于N′ info的值作为上述参考传输块大小N。又例如,当N info>3824时基于公式获得上述参考传输块大小,先对N info进行量化得到N′ info,该N′ info满足:
Figure PCTCN2020077314-appb-000019
Figure PCTCN2020077314-appb-000020
Figure PCTCN2020077314-appb-000021
其中round(x)表示对x进行取整,再利用下述方法获得上述参考传输块大小N:
如果R≤1/4,则
Figure PCTCN2020077314-appb-000022
其中
Figure PCTCN2020077314-appb-000023
表示对x进行取整。
如果R>1/4且N′ info>8424,则
Figure PCTCN2020077314-appb-000024
其中
Figure PCTCN2020077314-appb-000025
如果R>1/4且N′ info≤8424,则
Figure PCTCN2020077314-appb-000026
在图10示意的通信方法另一种可能的实施方式中,所述参考时间单元包括第一参考时间单元和第二参考时间单元。所述在1000部分中,获得与该第一参考时间单元对应的参考传输块大小为J(J为大于0的整数),获得与该第二参考时间单元对应的参考传输块大小为K(K为大于0的整数)。可以将第一参考时间单元理解为承载有第一信息和/或第一信号的参考时间单元,将第二参考时间单元理解为未承载第一信息和/或第一信号的参考时间单元。在1010部分中,根据上述参考传输块大小J和K确定与上述M个时间单元对应的实际传输块大小,包括与上述M个时间单元对应的实际传输块大小N’满足下述中的一项:
N’=J*L+K*(M-L),N’=J*L*C3+K*(M-L)*C4,或者,N’=f(J*L*C3+K*(M-L)*C4),L为上述M个时间单元中承载有第一信息和/或第一信号的时间单元的数量,C3和C4为正实数,f(x)表示对x进行取整。
在上述获得与该第一参考时间单元对应的参考传输块大小为J的一种可能的实施方式中,根据该第一参考时间单元中被调度的符号数量,获得与该参考时间单元对应的参考传输块大小N,具体可以参考上述获得与参考时间单元对应的参考传输块大小为N的实施方式中的描述,此处不再赘述。
在上述获得与该第二参考时间单元对应的参考传输块大小为K的一种可能的实施方式中,根据该第二参考时间单元中被调度的符号数量,获得与该参考时间单元对应的参考传输块大小N,具体可以参考上述获得与参考时间单元对应的参考传输块大小为N的实施方式中的描述,此处不再赘述。
可以理解,第一信息和/或第一信号可以包括下述各项中的一项或多项:控制信息、参考信号、同步信号(synchronization signal,SS)、同步信号块(SS block,SSB)、或随机接入信号。所述控制信息包括由控制信道承载的上行控制信息(uplink control information,UCI)和/或下行控制信息(downlink control information,DCI)。所述参考信号包括解调参考信号(demodulation reference signal,DMRS)、相位跟踪参考信号(phase tracking reference signal,PTRS)、探测参考信号(sounding reference signal,SRS)、或信道状态信息参考信号(channel state information reference signal,CSI-RS)中的一种或多种。所述同步信号包括主同步信号(primary SS,PSS)和/或辅同步信号(secondary SS,SSS)。所述同步信号块包括同步信号和/或物理广播信道(physical broadcast channel,PBCH)。
通过上述实施方式,能够在时间单元聚合既包含承载有第一信息和/或第一信号的时间单元也包含不承载第一信息和/或第一信号的时间单元时,更加精确的计算所需的传输块大小,从而提高时间资源的利用率。
可以理解,图10所示的通信方法可以单独实施,也可以与图3、图7、图8、或图9示意的通信方法结合实施。
在图10与图3示意的通信方法结合实施时,图10示意的方法可以在310部分之后且在320部分之前执行。1010部分中的多个时间单元(M个时间单元)可以包括320部分中的至少一个第一子时间单元和/或至少一个第二子时间单元。
在图10与图7示意的通信方法结合实施时,图10示意的方法可以在700部分之后且在710部分之前执行。1010部分中的多个时间单元(M个时间单元)可以包括710部分中的至少一个第一子时间单元和/或至少一个第二子时间单元。
在图10与图8示意的通信方法结合实施时,图10示意的方法可以在800部分之后且在810部分之前执行。1010部分中的多个时间单元(M个时间单元)可以包括810部分中的一个或多个时间单元。
在图10与图9示意的通信方法结合实施时,图10示意的方法可以在900部分之后且在910部分之前执行。1010部分中的多个时间单元(M个时间单元)可以包括910部分中的一个或多个时间单元。
图11为本申请实施例提供的另一种通信方法的流程示意图,该方法可以由网络设备或终端执行。如图11所示,该实施例的方法可以包括:
1100部分:获得与多个时间单元对应的RE数量。可选地,上述多个时间单元包含在时间单元聚合中,或者,上述多个时间单元组成时间单元聚合。该时间单元聚合也可理解为时间单元的集合。
1110部分:根据所述RE数量确定与所述多个时间单元对应的实际传输块大小。
本申请实施例中的RE可以理解为一种物理资源。可选地,一个RE在频域上可以占用一个子载波,在时域上可以占用一个符号。
本申请实施例中关于时间单元和时间单元聚合的描述可参考图3示意的通信方法中对于时间单元和时间单元聚合的描述,此处不再赘述。
通过该实施例提供的方法,能够在采用多时间单元传输时,准确且简便的获得多时间单元传输使用的传输块大小,降低了网络设备或终端的实现复杂度。
在上述1100部分一种可能的实施方式中,所述时间单元为时隙。获得与多个时隙对应的RE数量为N RE,且满足
Figure PCTCN2020077314-appb-000027
其中
Figure PCTCN2020077314-appb-000028
为一个RB中包含的子载波数量(例如
Figure PCTCN2020077314-appb-000029
),
Figure PCTCN2020077314-appb-000030
为上述多个时隙中被调度的符号数量,
Figure PCTCN2020077314-appb-000031
为上述多个时隙中DMRS占用的RE数量,
Figure PCTCN2020077314-appb-000032
为其他开销(例如由高层信令配置的开销)包含的RE数量。
在上述1110部分一种可能的实施方式中,根据所述RE数量确定与所述多个时间单元对应的实际传输块大小,具体可以参考上述获得与参考时间单元对应的参考传输块大小为N的实施方式中的描述,此处不再赘述。
可以理解,图11所示的通信方法可以单独实施,也可以与图3、图7、图8、或图9示意的通信方法结合实施。
上述各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,上述表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信设备可理解的其他名称,其参数的取值或表示方式也可以通信设备可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、协议定义、存储、预存储、预协商、预配置、固化、或预烧制。
本申请中涉及的a与b满足关系(也可以理解为函数关系)的描述并不强制要求a与b精确地满足所述关系。例如,若数值a’与数值b精确地满足所述关系,对数值a’进行去浮点、取整、或四舍五入的操作后获得的数值a,也可以理解为a与b满足所述关系。可以理解的是,a与b满足关系也可以指a与b满足所述关系做等价变形后的关系,本申请实施例对此不做限定。另外可以理解的是,本申请实施例并不限定a与b满足关系的具体实现方式,例如该映射方式可以通过公式实现,或者该映射方式可以通过表格的形式实现,或者该映射方式也可以通过其他的方式实现,本申请实施例对此不做限定。
可以理解的是,上述各个方法实施例中由通信设备实现的方法,也可以由可用于通信设备的部件(例如,集成电路,芯片等等)实现。
相应于上述方法实施例给出的无线通信方法,本申请实施例还提供了相应的通信装置(也可以称为通信设备),所述通信装置包括用于执行上述实施例中每个部分相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
图12给出了一种通信装置的结构示意图。所述通信装置1200可以是图1中的网络设备10或20,也可以是图1中的终端11、12、21或22。通信装置1200可用于实 现上述方法实施例中描述的对应于终端或网络设备的方法,具体可以参见上述方法实施例中的说明。通信装置1200可用于实现上述图3、图7、图8、图9、图10、或图11中描述的方法。
所述通信装置1200可以包括一个或多个处理器1201,所述处理器1201也可以称为处理单元,可以实现一定的控制功能。所述处理器1201可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器1201也可以存有指令和/或数据1203,所述指令和/或数据1203可以被所述处理器运行,使得所述通信装置1200执行上述方法实施例中描述的对应于终端或网络设备的方法。
在另一种可选的设计中,处理器1201中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口。用于实现接收和发送功能的电路或接口可以是分开的,也可以集成在一起。
在又一种可能的设计中,通信装置1200可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述通信装置1200中可以包括一个或多个存储器1202,其上可以存有指令1204,所述指令可在所述处理器上被运行,使得所述通信装置1200执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的各种对应关系可以存储在存储器中,或者存储在处理器中。
所述通信装置1200还可以包括收发器1205和/或天线1206。所述处理器1201可以称为处理单元,对通信装置(终端或者网络设备)进行控制。所述收发器1205可以称为收发单元、收发机、收发电路或者收发器等,用于实现通信装置的收发功能。
在一种可能的设计中,一种通信装置1200(例如,集成电路、无线设备、电路模块,网络设备,终端,芯片,芯片系统等)可包括处理器1201和收发器1205。由收发器1205接收来自通信设备的控制信息,其中,该通信设备可以是网络设备,也可以是终端。由处理器1201根据所述控制信息确定至少一个第一子时间单元和至少一个第二子时间单元,所述至少一个第一子时间单元和所述至少一个第二子时间单元包括在所述至少一个时间单元中。由收发器1205在所述至少一个第一子时间单元上接收第一数据,在所述至少一个第二子时间单元上接收第二数据。可选地,所述时间单元为时隙,所述子时间单元为时隙或符号。可选地,所述至少一个时间单元包含在时间单元聚合中。
本申请实施例提供的通信装置,能够在至少一个时间单元中确定出承载不同数据的不同时域资源,因此能够依据数据传输的实际需求灵活调整数据收发占用的时域资源,从而提高了数据传输效率。
在上述通信装置1200某些可能的实施方式中,上述控制信息用于指示所述至少一个第一子时间单元的位置,或者,上述控制信息用于指示所述至少一个第二子时间单元的位置。或者,上述控制信息用于指示所述至少一个第一子时间单元的位置和所述至少一个第 二子时间单元的位置。或者,上述控制信息用于指示所述至少一个第一子时间单元的数量,或者,上述控制信息用于指示所述至少一个第二子时间单元的数量。或者,上述控制信息用于指示所述至少一个第一子时间单元的数量和所述至少一个第二子时间单元的数量。或者,上述控制信息用于指示所述第一子时间单元的数量与所述第二子时间单元的数量的比例。或者,上述控制信息用于指示所述第二子时间单元的数量与所述第一子时间单元的数量的比例。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,上述控制信息可由PDCCH、PSCCH、系统消息、RRC信令、或MAC CE承载。或者,上述控制信息可由上述中的多项承载。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,上述控制信息包括用于指示所述至少一个第一子时间单元和所述至少一个第二子时间单元的位图(bitmap)。可选地,位图中包含的比特数量大于或等于上述至少一个时间单元的数量。可选地,位图中被标识为0的比特指示所述至少一个第一子时间单元,位图中被标识为1的比特指示所述至少一个第二子时间单元;或者,位图中被标识为1的比特指示所述至少一个第一子时间单元,位图中被标识为0的比特指示所述至少一个第二子时间单元。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,由收发器1205接收来自通信设备的第一配置信息,所述第一配置信息用于配置上述至少一个时间单元。或者,由收发器1205接收来自通信设备的第一配置信息,所述第一配置信息用于配置上述至少一个时间单元,并且上述至少一个时间单元的数量为两个或两个以上;若未接收到来自通信设备的所述第一配置信息,则默认上述至少一个时间单元的数量为一个。可选地,所述第一配置信息用于配置所述至少一个时间单元的数量。可选地,上述第一配置信息可由PDCCH、PSCCH、系统消息、RRC信令、或MACCE承载。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,所述第一数据为第一TB对应的数据,所述第二数据为第二传输块TB对应的数据。由于可以根据不同TB对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,所述第一数据为第一HARQ进程对应的数据,所述第二数据为第二HARQ进程对应的数据。由于可以根据不同HARQ进程对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,所述第一数据为初传数据,所述第二数据为重传数据。或者,所述第一数据为重传数据,所述第二数据为初传数据。或者,所述第一数据为第一初传数据,所述第二数据为第二初传数据。或者,所述第一数据为第一重传数据,所述第二数据为第二重传数据。由于可以根据初传数据和重传数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述 通信装置1200某些可能的实施方式中,所述第一数据为第一RV对应的数据,所述第二数据为第二RV对应的数据。由于可以根据不同RV对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,所述第一数据为第一业务对应的数据,所述第二数据为第二业务对应的数据。由于可以根据不同业务对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,由处理器1201根据上述控制信息控制收发器1205在所述至少一个第一子时间单元上接收上述第一数据,在所述至少一个第二子时间单元上接收上述第二数据。上述控制信息包括所述第一数据的调度信息和所述第二数据的调度信息,所述调度信息包括资源分配信息、MCS等信息中的一个或多个。通过该实施方式,能够减少数据调度的信令开销。
在另一种可能的设计中,一种通信装置1200(例如,集成电路、无线设备、电路模块,网络设备,终端,芯片,芯片系统等)可包括收发器1205。由收发器1205向通信设备发送控制信息,其中,该通信设备可以是网络设备,也可以是终端。所述控制信息用于指示至少一个第一子时间单元和至少一个第二子时间单元,所述至少一个第一子时间单元和所述至少一个第二子时间单元包括在所述至少一个时间单元中。由收发器1205在所述至少一个第一子时间单元上发送第一数据,在所述至少一个第二子时间单元上发送第二数据。可选地,所述时间单元为时隙,所述子时间单元为时隙或符号。可选地,所述至少一个时间单元包含在时间单元聚合中。
通过上述实施例描述的方法,能够在至少一个时间单元中确定出承载不同数据的不同时域资源,因此能够依据数据传输的实际需求灵活调整数据收发占用的时域资源,从而提高了数据传输效率。
在上述通信装置1200某些可能的实施方式中,上述控制信息用于指示所述至少一个第一子时间单元的位置,或者,上述控制信息用于指示所述至少一个第二子时间单元的位置。或者,上述控制信息用于指示所述至少一个第一子时间单元的位置和所述至少一个第二子时间单元的位置。或者,上述控制信息用于指示所述至少一个第一子时间单元的数量,或者,上述控制信息用于指示所述至少一个第二子时间单元的数量。或者,上述控制信息用于指示所述至少一个第一子时间单元的数量和所述至少一个第二子时间单元的数量。或者,上述控制信息用于指示所述第一子时间单元的数量与所述第二子时间单元的数量的比例。或者,上述控制信息用于指示所述第二子时间单元的数量与所述第一子时间单元的数量的比例。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,上述控制信息可由PDCCH、PSCCH、系统消息、RRC信令、或MAC CE承载。或者,上述控制信息可由上述中的多项承载。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,上述控制信息包括用于指示所述至少一个第一子时间单元和所述至少一个第二子时间单元的位图。可选地,位图中包含的比特数量大于或 等于上述至少一个时间单元的数量。可选地,位图中被标识为0的比特指示所述至少一个第一子时间单元,位图中被标识为1的比特指示所述至少一个第二子时间单元;或者,位图中被标识为1的比特指示所述至少一个第一子时间单元,位图中被标识为0的比特指示所述至少一个第二子时间单元。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,由收发器1205向通信设备发送第一配置信息,所述第一配置信息用于配置上述至少一个时间单元。或者,由收发器1205向通信设备发送第一配置信息,所述第一配置信息用于配置上述至少一个时间单元,并且上述至少一个时间单元的数量为两个或两个以上;若未发送所述第一配置信息,则默认上述至少一个时间单元的数量为一个。可选地,所述第一配置信息用于配置所述至少一个时间单元的数量。可选地,上述第一配置信息可由PDCCH、PSCCH、系统消息、RRC信令、或MACCE承载。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,所述第一数据为第一TB对应的数据,所述第二数据为第二传输块TB对应的数据。由于可以根据不同TB对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,所述第一数据为第一HARQ进程对应的数据,所述第二数据为第二HARQ进程对应的数据。由于可以根据不同HARQ进程对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,所述第一数据为初传数据,所述第二数据为重传数据。或者,所述第一数据为重传数据,所述第二数据为初传数据。或者,所述第一数据为第一初传数据,所述第二数据为第二初传数据。或者,所述第一数据为第一重传数据,所述第二数据为第二重传数据。由于可以根据初传数据和重传数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,所述第一数据为第一RV对应的数据,所述第二数据为第二RV对应的数据。由于可以根据不同RV对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,所述第一数据为第一业务对应的数据,所述第二数据为第二业务对应的数据。由于可以根据不同业务对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1200、或者上述通信装置1200任意一种可能的实施方式,在上述通信装置1200某些可能的实施方式中,上述控制信息包括所述第一数据的调度信息和所述第二数据的调度信息,所述调度信息包括资源分配信息、MCS等信息中的一个或多个。通过该实施方式,能够减少数据调度的信令开销。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟 IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
虽然在以上的实施例描述中,通信装置以网络设备或者终端为例来描述,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图12的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述设备可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
图13提供了一种终端的结构示意图。该终端可适用于图1所示出的系统中。为了便于说明,图13仅示出了终端的主要部件。如图13所示,终端1300包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当用户设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图13仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图13中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多 个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端1300的收发单元1311,将具有处理功能的处理器视为终端1300的处理单元1312。如图13所示,终端1300包括收发单元1311和处理单元1312。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1311中用于实现接收功能的器件视为接收单元,将收发单元1311中用于实现发送功能的器件视为发送单元,即收发单元1311包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
如图14所示,本申请又一实施例提供了一种通信装置(通信设备)1400。该通信装置可以是终端(例如图1所示系统中的终端),也可以是终端的部件(例如,集成电路,芯片等等)。该通信装置还可以是网络设备(例如,该通信装置是可以应用到图1系统的基站设备),也可以是网络设备的部件(例如,集成电路,芯片等等)。该通信装置也可以是其他通信模块,用于实现本申请方法实施例中对应于通信设备或节点的操作。该通信装置1400可以包括:处理模块1402(处理单元)。该通信装置1400还可以包括收发模块1401(收发单元)和/或存储模块1403(存储单元)。
在一种可能的设计中,如图14中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述通信装置具备实现本申请实施例描述的终端的功能,比如,所述通信装置包括所述终端执行本申请实施例描述的终端涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。详细可进一步参考前述对应方法实施例中的相应描述。
或者所述通信装置具备实现本申请实施例描述的网络设备的功能,比如,所述通信装置包括所述网络设备执行本申请实施例描述的网络设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。详细可进一步参考前述对应方法实施例中的相应描述。
可选的,本申请实施例中的通信装置1400中各个模块可以用于执行本申请实施例中图3、图7、图8、图9、图10、或图11描述的方法。
在一种可能的设计中,一种通信装置1400可包括收发模块1401和处理模块1402。由收发模块1401接收来自通信设备的控制信息,其中,该通信设备可以是网络设备,也 可以是终端。由处理模块1402根据所述控制信息确定至少一个第一子时间单元和至少一个第二子时间单元,所述至少一个第一子时间单元和所述至少一个第二子时间单元包括在所述至少一个时间单元中。由收发模块1401在所述至少一个第一子时间单元上接收第一数据,在所述至少一个第二子时间单元上接收第二数据。可选地,所述时间单元为时隙,所述子时间单元为时隙或符号。可选地,所述至少一个时间单元包含在时间单元聚合中。
本申请实施例提供的通信装置,能够在至少一个时间单元中确定出承载不同数据的不同时域资源,因此能够依据数据传输的实际需求灵活调整数据收发占用的时域资源,从而提高了数据传输效率。
在上述通信装置1400某些可能的实施方式中,上述控制信息用于指示所述至少一个第一子时间单元的位置,或者,上述控制信息用于指示所述至少一个第二子时间单元的位置。或者,上述控制信息用于指示所述至少一个第一子时间单元的位置和所述至少一个第二子时间单元的位置。或者,上述控制信息用于指示所述至少一个第一子时间单元的数量,或者,上述控制信息用于指示所述至少一个第二子时间单元的数量。或者,上述控制信息用于指示所述至少一个第一子时间单元的数量和所述至少一个第二子时间单元的数量。或者,上述控制信息用于指示所述第一子时间单元的数量与所述第二子时间单元的数量的比例。或者,上述控制信息用于指示所述第二子时间单元的数量与所述第一子时间单元的数量的比例。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,上述控制信息可由PDCCH、PSCCH、系统消息、RRC信令、或MAC CE承载。或者,上述控制信息可由上述中的多项承载。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,上述控制信息包括用于指示所述至少一个第一子时间单元和所述至少一个第二子时间单元的位图(bitmap)。可选地,位图中包含的比特数量大于或等于上述至少一个时间单元的数量。可选地,位图中被标识为0的比特指示所述至少一个第一子时间单元,位图中被标识为1的比特指示所述至少一个第二子时间单元;或者,位图中被标识为1的比特指示所述至少一个第一子时间单元,位图中被标识为0的比特指示所述至少一个第二子时间单元。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,由收发模块1401接收来自通信设备的第一配置信息,所述第一配置信息用于配置上述至少一个时间单元。或者,由收发模块1401接收来自通信设备的第一配置信息,所述第一配置信息用于配置上述至少一个时间单元,并且上述至少一个时间单元的数量为两个或两个以上;若未接收到来自通信设备的所述第一配置信息,则默认上述至少一个时间单元的数量为一个。可选地,所述第一配置信息用于配置所述至少一个时间单元的数量。可选地,上述第一配置信息可由PDCCH、PSCCH、系统消息、RRC信令、或MACCE承载。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,所述第一数据为第一TB对应的数据,所述第二数据为第二传输块TB对应的数据。由于可以根据不同TB对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,所述第一数据为第一HARQ进程对应的数据,所述第二数据为第二HARQ进程对应的数据。由于可以根据不同HARQ进程对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,所述第一数据为初传数据,所述第二数据为重传数据。或者,所述第一数据为重传数据,所述第二数据为初传数据。或者,所述第一数据为第一初传数据,所述第二数据为第二初传数据。或者,所述第一数据为第一重传数据,所述第二数据为第二重传数据。由于可以根据初传数据和重传数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,所述第一数据为第一RV对应的数据,所述第二数据为第二RV对应的数据。由于可以根据不同RV对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,所述第一数据为第一业务对应的数据,所述第二数据为第二业务对应的数据。由于可以根据不同业务对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,由处理模块1402根据上述控制信息控制收发模块1401在所述至少一个第一子时间单元上接收上述第一数据,在所述至少一个第二子时间单元上接收上述第二数据。上述控制信息包括所述第一数据的调度信息和所述第二数据的调度信息,所述调度信息包括资源分配信息、MCS等信息中的一个或多个。通过该实施方式,能够减少数据调度的信令开销。
在另一种可能的设计中,一种通信装置1400可包括收发模块1401。由收发模块1401向通信设备发送控制信息,其中,该通信设备可以是网络设备,也可以是终端。所述控制信息用于指示至少一个第一子时间单元和至少一个第二子时间单元,所述至少一个第一子时间单元和所述至少一个第二子时间单元包括在所述至少一个时间单元中。由收发模块1401在所述至少一个第一子时间单元上发送第一数据,在所述至少一个第二子时间单元上发送第二数据。可选地,所述时间单元为时隙,所述子时间单元为时隙或符号。可选地,所述至少一个时间单元包含在时间单元聚合中。
通过上述实施例描述的方法,能够在至少一个时间单元中确定出承载不同数据的不同时域资源,因此能够依据数据传输的实际需求灵活调整数据收发占用的时域资源,从而提高了数据传输效率。
在上述通信装置1400某些可能的实施方式中,上述控制信息用于指示所述至少一个第一子时间单元的位置,或者,上述控制信息用于指示所述至少一个第二子时间单元的位置。或者,上述控制信息用于指示所述至少一个第一子时间单元的位置和所述至少一个第二子时间单元的位置。或者,上述控制信息用于指示所述至少一个第一子时间单元的数量,或者,上述控制信息用于指示所述至少一个第二子时间单元的数量。或者,上述控制信息 用于指示所述至少一个第一子时间单元的数量和所述至少一个第二子时间单元的数量。或者,上述控制信息用于指示所述第一子时间单元的数量与所述第二子时间单元的数量的比例。或者,上述控制信息用于指示所述第二子时间单元的数量与所述第一子时间单元的数量的比例。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,上述控制信息可由PDCCH、PSCCH、系统消息、RRC信令、或MAC CE承载。或者,上述控制信息可由上述中的多项承载。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,上述控制信息包括用于指示所述至少一个第一子时间单元和所述至少一个第二子时间单元的位图。可选地,位图中包含的比特数量大于或等于上述至少一个时间单元的数量。可选地,位图中被标识为0的比特指示所述至少一个第一子时间单元,位图中被标识为1的比特指示所述至少一个第二子时间单元;或者,位图中被标识为1的比特指示所述至少一个第一子时间单元,位图中被标识为0的比特指示所述至少一个第二子时间单元。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,由收发模块1401向通信设备发送第一配置信息,所述第一配置信息用于配置上述至少一个时间单元。或者,由收发模块1401向通信设备发送第一配置信息,所述第一配置信息用于配置上述至少一个时间单元,并且上述至少一个时间单元的数量为两个或两个以上;若未发送所述第一配置信息,则默认上述至少一个时间单元的数量为一个。可选地,所述第一配置信息用于配置所述至少一个时间单元的数量。可选地,上述第一配置信息可由PDCCH、PSCCH、系统消息、RRC信令、或MACCE承载。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,所述第一数据为第一TB对应的数据,所述第二数据为第二传输块TB对应的数据。由于可以根据不同TB对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,所述第一数据为第一HARQ进程对应的数据,所述第二数据为第二HARQ进程对应的数据。由于可以根据不同HARQ进程对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,所述第一数据为初传数据,所述第二数据为重传数据。或者,所述第一数据为重传数据,所述第二数据为初传数据。或者,所述第一数据为第一初传数据,所述第二数据为第二初传数据。或者,所述第一数据为第一重传数据,所述第二数据为第二重传数据。由于可以根据初传数据和重传数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,所述第一数据为第一RV对应的数据,所述第二数据为第二RV对应的数据。由于可以根据不同RV对应数据的多少灵活调整数据收发占 用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,所述第一数据为第一业务对应的数据,所述第二数据为第二业务对应的数据。由于可以根据不同业务对应数据的多少灵活调整数据收发占用的时域资源,因此可以提高数据的传输效率和资源的使用效率。
结合上述通信装置1400、或者上述通信装置1400任意一种可能的实施方式,在上述通信装置1400某些可能的实施方式中,上述控制信息包括所述第一数据的调度信息和所述第二数据的调度信息,所述调度信息包括资源分配信息、MCS等信息中的一个或多个。通过该实施方式,能够减少数据调度的信令开销。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请所描述的技术可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、数字信号处理器(DSP)、数字信号处理器件(DSPD)、专用集成电路(ASIC)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的指令、或者这两者的结合。存储器可以是RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介。例如,存储器可以与处理器连接,以使得处理器可以从存储器 中读取信息,并可以向存储器存写信息。可选地,存储器还可以集成到处理器中。处理器和存储器可以设置于ASIC中,ASIC可以设置于终端中。可选地,处理器和存储器也可以设置于终端中的不同的部件中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据包中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据包中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据包中心等数据包存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。上面的组合也应当包括在计算机可读介质的保护范围之内。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。

Claims (32)

  1. 一种通信方法,其特征在于,包括:
    接收来自通信设备的第一配置信息,所述第一配置信息用于配置至少一个时间单元;
    接收来自通信设备的控制信息;
    根据所述控制信息确定至少一个第一子时间单元和至少一个第二子时间单元,所述至少一个第一子时间单元和所述至少一个第二子时间单元包括在所述至少一个时间单元中;
    在所述至少一个第一子时间单元上接收第一数据,在所述至少一个第二子时间单元上接收第二数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一数据为第一传输块TB对应的数据,所述第二数据为第二传输块TB对应的数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一数据为第一混合自动重传请求HARQ进程对应的数据,所述第二数据为第二HARQ进程对应的数据。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,
    所述第一数据为初传数据,所述第二数据为重传数据;或者
    所述第一数据为重传数据,所述第二数据为初传数据;或者
    所述第一数据为初传数据,所述第二数据为初传数据;或者
    所述第一数据为重传数据,所述第二数据为重传数据。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一数据为第一冗余版本RV对应的数据,所述第二数据为第二RV对应的数据。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一数据为第一业务对应的数据,所述第二数据为第二业务对应的数据。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一配置信息由下述的一项或多项承载:物理下行控制信道PDCCH、系统消息、无线资源控制RRC信令、或媒体接入控制MAC控制元素CE。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一配置信息用于配置所述时间单元的数量。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述控制信息由下述的一项或多项承载:PDCCH、系统消息、RRC信令、或MAC CE。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,
    所述控制信息用于指示所述至少一个第一子时间单元的位置;或者
    所述控制信息用于指示所述至少一个第二子时间单元的位置;或者
    所述控制信息用于指示所述至少一个第一子时间单元的位置和所述至少一个第二子时间单元的位置;或者
    所述控制信息用于指示所述第一子时间单元的数量;或者
    所述控制信息用于指示所述第二子时间单元的数量;或者
    所述控制信息用于指示所述第一子时间单元的数量和所述第二子时间单元的数量;或者
    所述控制信息用于指示所述第一子时间单元的数量与所述第二子时间单元的数量的 比例;或者
    所述控制信息用于指示所述第二子时间单元的数量与所述第一子时间单元的数量的比例。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述时间单元为时隙,所述子时间单元为时隙或符号。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述至少一个时间单元包含在时间单元聚合中。
  13. 一种通信方法,其特征在于,包括:
    向通信设备发送第一配置信息,所述第一配置信息用于配置至少一个时间单元;
    向所述通信设备发送控制信息,所述控制信息用于指示至少一个第一子时间单元和至少一个第二子时间单元,所述至少一个第一子时间单元和所述至少一个第二子时间单元包括在所述至少一个时间单元中;
    在所述至少一个第一子时间单元上发送第一数据,在所述至少一个第二子时间单元上发送第二数据。
  14. 根据权利要求13所述的方法,其特征在于,所述第一数据为第一传输块TB对应的数据,所述第二数据为第二传输块TB对应的数据。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一数据为第一混合自动重传请求HARQ进程对应的数据,所述第二数据为第二HARQ进程对应的数据。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,
    所述第一数据为初传数据,所述第二数据为重传数据;或者
    所述第一数据为重传数据,所述第二数据为初传数据;或者
    所述第一数据为初传数据,所述第二数据为初传数据;或者
    所述第一数据为重传数据,所述第二数据为重传数据。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,所述第一数据为第一冗余版本RV对应的数据,所述第二数据为第二RV对应的数据。
  18. 根据权利要求13-17任一项所述的方法,其特征在于,所述第一数据为第一业务对应的数据,所述第二数据为第二业务对应的数据。
  19. 根据权利要求13-18任一项所述的方法,其特征在于,所述第一配置信息由下述的一项或多项承载:物理下行控制信道PDCCH、系统消息、无线资源控制RRC信令、或媒体接入控制MAC控制元素CE。
  20. 根据权利要求13-19任一项所述的方法,其特征在于,所述第一配置信息用于配置所述时间单元的数量。
  21. 根据权利要求13-20任一项所述的方法,其特征在于,所述控制信息由下述的一项或多项承载:PDCCH、系统消息、RRC信令、或MAC CE。
  22. 根据权利要求13-21任一项所述的方法,其特征在于,
    所述控制信息用于指示所述至少一个第一子时间单元的位置;或者
    所述控制信息用于指示所述至少一个第二子时间单元的位置;或者
    所述控制信息用于指示所述至少一个第一子时间单元的位置和所述至少一个第二子时间单元的位置;或者
    所述控制信息用于指示所述第一子时间单元的数量;或者
    所述控制信息用于指示所述第二子时间单元的数量;或者
    所述控制信息用于指示所述第一子时间单元的数量和所述第二子时间单元的数量;或者
    所述控制信息用于指示所述第一子时间单元的数量与所述第二子时间单元的数量的比例;或者
    所述控制信息用于指示所述第二子时间单元的数量与所述第一子时间单元的数量的比例。
  23. 根据权利要求13-22任一项所述的方法,其特征在于,所述时间单元为时隙,所述子时间单元为时隙或符号。
  24. 根据权利要求13-23任一项所述的方法,其特征在于,所述至少一个时间单元包含在时间单元聚合中。
  25. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1-12中任一项所述的方法。
  26. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求13-24中任一项所述的方法。
  27. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1-12中任一项所述的方法。
  28. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求13-24中任一项所述的方法。
  29. 一种计算机可读介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1-12中任一项所述的方法或执行如权利要求13-24中任一项所述的方法。
  30. 一种通信系统,包括:如权利要求27所述的装置,和/或,如权利要求28所述的装置。
  31. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现权利要求1-12中任一项所述的方法或者实现权利要求13-24中任一项所述的方法。
  32. 一种芯片,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述芯片执行如权利要求1-12中任一项所述的方法或者如权利要求13-24中任一项所述的方法。
PCT/CN2020/077314 2019-03-29 2020-02-29 通信的方法及装置 WO2020199814A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20784408.5A EP3923654A4 (en) 2019-03-29 2020-02-29 COMMUNICATION METHOD AND APPARATUS
US17/485,152 US20220015098A1 (en) 2019-03-29 2021-09-24 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910247849.1 2019-03-29
CN201910247849.1A CN111757479B (zh) 2019-03-29 2019-03-29 通信的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/485,152 Continuation US20220015098A1 (en) 2019-03-29 2021-09-24 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020199814A1 true WO2020199814A1 (zh) 2020-10-08

Family

ID=72664653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077314 WO2020199814A1 (zh) 2019-03-29 2020-02-29 通信的方法及装置

Country Status (4)

Country Link
US (1) US20220015098A1 (zh)
EP (1) EP3923654A4 (zh)
CN (1) CN111757479B (zh)
WO (1) WO2020199814A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106105311A (zh) * 2015-02-28 2016-11-09 华为技术有限公司 一种数据传输的方法、装置和用户设备及系统
CN108282297A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种资源指示方法、装置及系统
CN108365915A (zh) * 2017-01-26 2018-08-03 北京三星通信技术研究有限公司 信道状态信息传输的方法及用户设备
CN108633087A (zh) * 2017-03-22 2018-10-09 华为技术有限公司 数据传输方法、接入网设备及终端设备
CN108631920A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种数据传输方法及装置
CN108811112A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 数据传输方法、设备和系统
CN108988995A (zh) * 2017-06-02 2018-12-11 华为技术有限公司 一种数据传输的方法和装置
EP3541033A1 (en) * 2016-11-11 2019-09-18 NTT DoCoMo, Inc. Wireless communication system and reference signal transmission method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44564E1 (en) * 2006-10-02 2013-10-29 Lg Electronics Inc. Method for transmitting control signal using efficient multiplexing
CN101414902B (zh) * 2007-10-16 2010-05-12 大唐移动通信设备有限公司 长期演进时分双工系统的传输方法及装置
CN103427964A (zh) * 2012-05-25 2013-12-04 中兴通讯股份有限公司 一种数据传输方法、设备及系统
JP5992638B2 (ja) * 2013-01-16 2016-09-14 エヌイーシー(チャイナ)カンパニー, リミテッドNEC(China)Co.,Ltd. Tddシステムでttiバンドリングを実行する方法と装置
US9306725B2 (en) * 2013-03-13 2016-04-05 Samsung Electronics Co., Ltd. Channel state information for adaptively configured TDD communication systems
WO2015139321A1 (zh) * 2014-03-21 2015-09-24 华为技术有限公司 传输数据信息的方法、基站和用户设备
US9935742B2 (en) * 2014-10-20 2018-04-03 Apple Inc. Adaptive HARQ for half duplex operation for battery and antenna constrained devices
US10893509B2 (en) * 2015-02-11 2021-01-12 Qualcomm Incorporated Multiple tri-state HARQ processes
WO2017150451A1 (ja) * 2016-02-29 2017-09-08 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN106255213B (zh) * 2016-07-29 2019-10-11 宇龙计算机通信科技(深圳)有限公司 一种配置时域调度单元的方法及基站
CN107889251B (zh) * 2016-09-30 2020-04-14 华为技术有限公司 一种时域资源单元集合结构的确定方法、网络设备及终端
CN108631960B (zh) * 2017-03-24 2021-08-20 华为技术有限公司 一种数据传输方法和相关设备
US11197286B2 (en) * 2017-08-08 2021-12-07 Huawei Technologies Co., Ltd. Downlink control information monitoring method, terminal, and base station
CN109379781B (zh) * 2017-08-11 2022-08-19 华为技术有限公司 一种信息发送方法及设备
CN109391422B (zh) * 2017-08-11 2020-11-17 华为技术有限公司 一种反馈码本确定的方法及终端设备、网络设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106105311A (zh) * 2015-02-28 2016-11-09 华为技术有限公司 一种数据传输的方法、装置和用户设备及系统
EP3541033A1 (en) * 2016-11-11 2019-09-18 NTT DoCoMo, Inc. Wireless communication system and reference signal transmission method
CN108282297A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种资源指示方法、装置及系统
CN108365915A (zh) * 2017-01-26 2018-08-03 北京三星通信技术研究有限公司 信道状态信息传输的方法及用户设备
CN108633087A (zh) * 2017-03-22 2018-10-09 华为技术有限公司 数据传输方法、接入网设备及终端设备
CN108631920A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种数据传输方法及装置
CN108811112A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 数据传输方法、设备和系统
CN108988995A (zh) * 2017-06-02 2018-12-11 华为技术有限公司 一种数据传输的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOTOROLA MOBILITY: "Flexible Frame Structure and Control Signalling for NR", 3GPP TSG RAN WG1 #87; R1-1612744, 5 November 2019 (2019-11-05), XP051190869 *
See also references of EP3923654A4

Also Published As

Publication number Publication date
US20220015098A1 (en) 2022-01-13
CN111757479B (zh) 2022-10-11
CN111757479A (zh) 2020-10-09
EP3923654A1 (en) 2021-12-15
EP3923654A4 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
WO2018202163A1 (zh) 一种资源指示方法及装置
CN108512632B (zh) 数据处理方法及装置
WO2020155691A1 (zh) 用于无线通信的方法及装置
WO2019192287A1 (zh) 资源配置方法及装置
WO2019029686A1 (zh) 数据传输方法、设备和通信系统
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2021142802A1 (zh) 一种上行控制信息的传输方法及装置
WO2021031294A1 (zh) 传输模式确定方法及装置
WO2020019871A1 (zh) 数据发送的方法及装置
CN110536421B (zh) 通信方法和装置
WO2021244299A1 (zh) 通信方法及通信设备
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2020199815A1 (zh) 通信方法及装置
WO2020199814A1 (zh) 通信的方法及装置
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
WO2020192360A1 (zh) 通信方法及装置
WO2021203948A1 (zh) 物理下行控制信道的监听方法和装置
WO2017205999A1 (zh) 一种数据传输的方法、设备和系统
WO2020134450A1 (zh) 信息传输方法及装置
WO2019157628A1 (zh) 信息传输方法、通信装置及存储介质
WO2023116403A1 (zh) 一种缓存状态报告发送方法及通信装置
WO2021032167A1 (zh) 传输块大小确定方法及装置
WO2024067617A1 (zh) 资源配置的方法及装置
US20230362928A1 (en) Pucch transmission method and apparatus
WO2022218244A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020784408

Country of ref document: EP

Effective date: 20210910

NENP Non-entry into the national phase

Ref country code: DE