WO2019157628A1 - 信息传输方法、通信装置及存储介质 - Google Patents

信息传输方法、通信装置及存储介质 Download PDF

Info

Publication number
WO2019157628A1
WO2019157628A1 PCT/CN2018/076643 CN2018076643W WO2019157628A1 WO 2019157628 A1 WO2019157628 A1 WO 2019157628A1 CN 2018076643 W CN2018076643 W CN 2018076643W WO 2019157628 A1 WO2019157628 A1 WO 2019157628A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
size
riv
unit
Prior art date
Application number
PCT/CN2018/076643
Other languages
English (en)
French (fr)
Inventor
苏立焱
李超君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18905966.0A priority Critical patent/EP3749044A4/en
Priority to PCT/CN2018/076643 priority patent/WO2019157628A1/zh
Priority to CN201880086557.8A priority patent/CN111602457B/zh
Publication of WO2019157628A1 publication Critical patent/WO2019157628A1/zh
Priority to US16/990,119 priority patent/US20200374913A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0033Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to an information transmission method, a communication device, and a storage medium.
  • LTE long term evolution
  • data transmitted between a network device and a terminal device is divided into data packets in units of transport blocks (TBs) at the physical layer.
  • the transmission of TB is based on the scheduling of network devices. That is, the network device sends control information to the terminal device through the downlink control channel to indicate the scheduling information of the scheduled TB through the control information.
  • the scheduling information includes resource allocation information of the scheduled TB (ie, used time domain resources and frequency domain resources), a modulation and coding scheme (MCS) index, and the like.
  • MCS modulation and coding scheme
  • the network device may allocate the frequency domain resource used when transmitting the downlink TB by using the allocation mode of the downlink resource allocation type 0 or the downlink resource allocation type 2, and allocate the allocation mode of the uplink resource allocation type 0.
  • the frequency domain resource used when transmitting the upstream TB may carry a bitmap in the resource allocation information to indicate a resource block group (resource block group) allocated to the scheduled TB. RBG).
  • RBG resource block group
  • the network device may indicate that it is scheduled by carrying a resource indicator value (RIV) in the resource allocation information.
  • RUV resource indicator value
  • Ultra-reliable and low latency communications (URLLC) services are an important service in fifth-generation (5G) communication systems, requiring very high reliability and very short delays in transmission. .
  • 5G communication system requires the resource allocation information in the control information to be compressed.
  • the existing method of compressing resource allocation information can compress the number of bits occupied by the resource allocation information in the control information to a certain extent, but the number of bits occupied by the resource allocation information is still large, resulting in reliability of the control information. low.
  • the embodiment of the present invention provides an information transmission method, a communication device, and a storage medium, which are used to solve the technical problem that the number of bits occupied by the resource allocation information is large, and the reliability of the control information is low.
  • an embodiment of the present application provides an information transmission method.
  • the first communication device in the method may be a terminal device or a chip in the terminal device.
  • the second communication device in the method of the embodiment of the present application may be a network device, or may be a chip in the network device.
  • the method is described by taking the first communication device as the terminal device and the second communication device as the network device. The method includes:
  • a first resource indicator value RIV where the first RIV is used to indicate a first frequency domain resource used by the network device to perform data transmission with the terminal device, and the frequency domain resource unit of the first frequency domain resource
  • the quantity of the frequency domain is a first frequency domain resource
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used when the network device performs data transmission with the terminal device, where the first frequency domain resource size belongs to a frequency. a set of domain resource sizes, the frequency domain resource size set being configured by high layer signaling;
  • the terminal device determines the first frequency domain resource according to the first RIV and the frequency domain resource size set.
  • the network device can use the high layer signaling to configure the terminal device with a frequency domain resource size set including a part of the frequency domain resource size supported by the system bandwidth, so that the network device can allocate data to be transmitted.
  • the frequency domain resource corresponding to the frequency domain resource size in the frequency domain resource size set, and the RIV corresponding to the frequency domain resource is used to indicate the frequency domain resource. Since the number of bits occupied by the RIV is positively correlated with the scheme in which the network device can allocate the frequency domain resources to be transmitted (ie, when the number of bits occupied by the RIV increases or decreases, the network device can allocate frequency domain resources for the data to be transmitted. The scheme is also increased or decreased. Therefore, by reducing the frequency domain resource that the network device can allocate for the data to be transmitted, the number of bits occupied by the resource allocation information in the control information can be further compressed to further improve the control information. Reliability.
  • the second RIV is used to indicate the second frequency domain resource, the number of the frequency domain resource unit of the second frequency domain resource is the second frequency domain resource size, and the second frequency domain resource size Belong to the frequency domain resource size set;
  • the second frequency domain resource size is less than or equal to the first frequency domain resource size.
  • the information transmission method provided by the possible design facilitates the network device to calculate the RIV for indicating the frequency domain resource, and improves the efficiency of the network device to generate the control information.
  • the terminal device is also convenient to quickly determine the first frequency domain resource indicated by the first RIV, which reduces the time for the terminal device to process the control information, thereby reducing the delay of data transmission and thereby reducing the delay of data transmission.
  • the number of the first frequency domain resource unit of the second frequency domain resource is greater than the first The number of the first frequency domain resource unit of the frequency domain resource;
  • the number of the first M frequency domain resource units of the second frequency domain resource is equal to the number of the first M frequency domain resource units of the first frequency domain resource, and the M+1th of the second frequency domain resources
  • the number of the frequency domain resource unit is greater than the number of the M+1th frequency domain resource unit in the first frequency domain resource, and the M is a positive integer.
  • the information transmission method provided by the possible design facilitates the network device to calculate the RIV for indicating the frequency domain resource, and improves the efficiency of the network device to generate the control information.
  • the terminal device is also convenient to quickly determine the first frequency domain resource indicated by the first RIV, which reduces the time for the terminal device to process the control information, thereby reducing the delay of data transmission and thereby reducing the delay of data transmission.
  • an embodiment of the present application provides an information transmission method.
  • the first communication device in the method may be a terminal device or a chip in the terminal device.
  • the second communication device in the method of the embodiment of the present application may be a network device, or may be a chip in the network device.
  • the method is described by taking the first communication device as the terminal device and the second communication device as the network device. The method includes:
  • a first resource indicator value RIV where the first RIV is used to indicate a first frequency domain resource used by the network device to perform data transmission with the terminal device, and the frequency domain resource unit of the first frequency domain resource
  • the quantity of the frequency domain is a first frequency domain resource
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used when the network device performs data transmission with the terminal device, where the first frequency domain resource size belongs to a frequency.
  • the first frequency domain resource size corresponds to the first frequency domain resource pattern set, where the first frequency domain resource size is greater than or equal to a predefined size and is smaller than a frequency domain resource size corresponding to the system bandwidth.
  • the first frequency domain resource pattern set includes: all frequency domain resource patterns supported by the first frequency domain resource size, and each frequency domain resource pattern included in the frequency domain resource pattern is the system bandwidth Frequency domain resource unit included;
  • the terminal device determines the first frequency domain resource according to the first RIV and the frequency domain resource size set.
  • the network device can use the high layer signaling to configure the terminal device with a frequency domain resource size set including a part of the frequency domain resource size supported by the system bandwidth, where each frequency domain resource size can correspond to a frequency domain resource pattern or a part of the frequency domain resource pattern, so that the network device can allocate, to the data to be transmitted, a frequency domain resource pattern in a part of the frequency domain resource pattern corresponding to a frequency domain resource size in the frequency domain resource size set, And using the RIV corresponding to the frequency domain resource to indicate the frequency domain resource.
  • the network device Since the number of bits occupied by the RIV is positively correlated with the scheme in which the network device can allocate the frequency domain resources to be transmitted (ie, when the number of bits occupied by the RIV increases or decreases, the network device can allocate frequency domain resources for the data to be transmitted.
  • the scheme is also increased or decreased. Therefore, by reducing the frequency domain resource that the network device can allocate for the data to be transmitted, the number of bits occupied by the resource allocation information in the control information can be further compressed to further improve the control information. Reliability.
  • the system bandwidth does not belong to each of the The frequency domain resource unit of the frequency domain resource pattern is discontinuous; and/or, when the first frequency domain resource size is smaller than a predefined size, the frequency domain resource unit of each frequency domain resource pattern included in the true subset is discontinuous .
  • the information transmission method provided by the possible design because the selection of the best multiple RBGs in the system bandwidth (also referred to as frequency selection), and the uniform selection of RBG (also referred to as frequency diversity) transmission in the system bandwidth
  • the difference in performance is small. That is to say, the transmission of data by means of frequency diversity does not significantly cause a drop in transmission performance. Therefore, by configuring the true subset corresponding to each frequency domain resource size in the frequency domain resource size set in the foregoing manner, even if the network device cannot know the channel quality between the network device and the terminal device, the network device can still allocate the terminal device to ensure transmission.
  • the performance of the frequency domain resources ensures the performance of data transmission.
  • the predefined size is equal to one-half of the number of frequency domain resource units included in the system bandwidth.
  • the frequency domain resource size in the frequency domain resource size set that is greater than or equal to one-half of the number of frequency domain resource units included in the system bandwidth corresponds to a true subset, so that the network device cannot know the network device and the terminal device.
  • the channel quality can also allocate frequency domain resources for the terminal equipment to ensure transmission performance, ensuring the performance of data transmission.
  • the true subset when the first frequency domain resource size is greater than the predefined size, the true subset includes only one frequency domain resource pattern.
  • the scheme that the network device can allocate the frequency domain resources for the data to be transmitted can be further reduced. Since the number of bits occupied by the RIV is positively correlated with the scheme in which the network device can allocate the frequency domain resources to be transmitted (ie, when the number of bits occupied by the RIV increases or decreases, the network device can allocate frequency domain resources for the data to be transmitted. The scheme is also increased or decreased. Therefore, by reducing the frequency domain resource that the network device can allocate for the data to be transmitted, the number of bits occupied by the resource allocation information in the control information can be further compressed to further improve the control information. Reliability.
  • an embodiment of the present application provides an information transmission method.
  • the first communication device in the method may be a terminal device or a chip in the terminal device.
  • the second communication device in the method of the embodiment of the present application may be a network device, or may be a chip in the network device.
  • the method is described by taking the first communication device as the terminal device and the second communication device as the network device. The method includes:
  • the network device generates a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used by the network device and the terminal device to perform data transmission, and the frequency domain resource unit of the first frequency domain resource
  • the quantity of the frequency domain is a first frequency domain resource
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used when the network device performs data transmission with the terminal device, where the first frequency domain resource size belongs to a frequency.
  • a set of domain resource sizes, the frequency domain resource size set being configured by high layer signaling;
  • the network device sends a first resource indication value RIV to the terminal device.
  • the second RIV is used to indicate the second frequency domain resource, the number of the frequency domain resource unit of the second frequency domain resource is the second frequency domain resource size, and the second frequency domain resource size Belong to the frequency domain resource size set;
  • the second frequency domain resource size is less than or equal to the first frequency domain resource size.
  • the number of the first frequency domain resource unit of the second frequency domain resource is greater than the first The number of the first frequency domain resource unit of the frequency domain resource;
  • the number of the first M frequency domain resource units of the second frequency domain resource is equal to the number of the first M frequency domain resource units of the first frequency domain resource, and the M+1th of the second frequency domain resources
  • the number of the frequency domain resource unit is greater than the number of the M+1th frequency domain resource unit in the first frequency domain resource, and the M is a positive integer.
  • an embodiment of the present application provides an information transmission method.
  • the first communication device in the method may be a terminal device or a chip in the terminal device.
  • the second communication device in the method of the embodiment of the present application may be a network device, or may be a chip in the network device.
  • the method is described by taking the first communication device as the terminal device and the second communication device as the network device. The method includes:
  • the network device generates a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used by the network device and the terminal device to perform data transmission, and the frequency domain resource unit of the first frequency domain resource
  • the quantity of the frequency domain is a first frequency domain resource
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used when the network device performs data transmission with the terminal device, where the first frequency domain resource size belongs to a frequency.
  • the first frequency domain resource size corresponds to the first frequency domain resource pattern set, where the first frequency domain resource size is greater than or equal to a predefined size and is smaller than a frequency domain resource size corresponding to the system bandwidth.
  • the first frequency domain resource pattern set includes: all frequency domain resource patterns supported by the first frequency domain resource size, and each frequency domain resource pattern included in the frequency domain resource pattern is the system bandwidth Frequency domain resource unit included;
  • the network device sends a first resource indication value RIV to the terminal device.
  • the system bandwidth does not belong to each of the The frequency domain resource elements of the frequency domain resource pattern are discontinuous; and/or,
  • the frequency domain resource unit of each frequency domain resource pattern included in the true subset is discontinuous.
  • the predefined size is equal to one-half of the number of frequency domain resource units included in the system bandwidth.
  • the true subset when the first frequency domain resource size is greater than the predefined size, the true subset includes only one frequency domain resource pattern.
  • the embodiment of the present application provides a communication device, which may be a terminal device or a chip applied to the terminal device, where the communication device includes:
  • a receiving module configured to receive a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used for data transmission, where the number of frequency domain resource units of the first frequency domain resource is a frequency domain resource size, where the frequency domain resource unit is a scheduling unit of a frequency domain resource used for data transmission, the first frequency domain resource size belongs to a frequency domain resource size set, and the frequency domain resource size set is set by High-level signaling configuration;
  • a processing module configured to determine the first frequency domain resource according to the first RIV, and the frequency domain resource size set.
  • the second RIV is used to indicate the second frequency domain resource, the number of the frequency domain resource unit of the second frequency domain resource is the second frequency domain resource size, and the second frequency domain resource size Belong to the frequency domain resource size set;
  • the second frequency domain resource size is less than or equal to the first frequency domain resource size.
  • the number of the first frequency domain resource unit of the second frequency domain resource is greater than the first The number of the first frequency domain resource unit of the frequency domain resource;
  • the number of the first M frequency domain resource units of the second frequency domain resource is equal to the number of the first M frequency domain resource units of the first frequency domain resource, and the M+1th of the second frequency domain resources
  • the number of the frequency domain resource unit is greater than the number of the M+1th frequency domain resource unit in the first frequency domain resource, and the M is a positive integer.
  • the embodiment of the present application provides a communication device, which may be a terminal device or a chip applied to the terminal device, where the communication device includes:
  • a receiving module configured to receive a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used for data transmission, where the number of frequency domain resource units of the first frequency domain resource is a frequency domain resource size, where the frequency domain resource unit is a scheduling unit of frequency domain resources used for data transmission, the first frequency domain resource size belongs to a frequency domain resource size set, and the first frequency domain resource is used.
  • RIV resource indicator value
  • the first frequency domain resource size corresponds to a true subset of the first frequency domain resource pattern set, and the first frequency domain resource pattern set includes All the frequency domain resource patterns supported by the first frequency domain resource size, and the frequency domain resource units included in each of the frequency domain resource patterns are frequency domain resource units included in the system bandwidth;
  • a processing module configured to determine the first frequency domain resource according to the first RIV, and the frequency domain resource size set.
  • the system bandwidth does not belong to each of the The frequency domain resource elements of the frequency domain resource pattern are discontinuous; and/or,
  • the frequency domain resource unit of each frequency domain resource pattern included in the true subset is discontinuous.
  • the predefined size is equal to one-half of the number of frequency domain resource units included in the system bandwidth.
  • the true subset when the first frequency domain resource size is greater than the predefined size, the true subset includes only one frequency domain resource pattern.
  • the embodiment of the present application provides a communication device, which may be a network device or a chip applied to a network device, where the communication device includes:
  • a processing module configured to generate a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used for data transmission, where the number of frequency domain resource units of the first frequency domain resource is a frequency domain resource size, where the frequency domain resource unit is a scheduling unit of a frequency domain resource used for data transmission, the first frequency domain resource size belongs to a frequency domain resource size set, and the frequency domain resource size set is set by High-level signaling configuration;
  • the sending module is configured to send the first resource indication value RIV.
  • the second RIV is used to indicate the second frequency domain resource, the number of the frequency domain resource unit of the second frequency domain resource is the second frequency domain resource size, and the second frequency domain resource size Belong to the frequency domain resource size set;
  • the second frequency domain resource size is less than or equal to the first frequency domain resource size.
  • the number of the first frequency domain resource unit of the second frequency domain resource is greater than the first The number of the first frequency domain resource unit of the frequency domain resource;
  • the number of the first M frequency domain resource units of the second frequency domain resource is equal to the number of the first M frequency domain resource units of the first frequency domain resource, and the M+1th of the second frequency domain resources
  • the number of the frequency domain resource unit is greater than the number of the M+1th frequency domain resource unit in the first frequency domain resource, and the M is a positive integer.
  • the embodiment of the present application provides a communication device, which may be a network device or a chip applied to a network device, where the communication device includes:
  • a processing module configured to generate a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used for data transmission, where the number of frequency domain resource units of the first frequency domain resource is a frequency domain resource size, where the frequency domain resource unit is a scheduling unit of frequency domain resources used for data transmission, the first frequency domain resource size belongs to a frequency domain resource size set, and the first frequency domain resource is used.
  • the first frequency domain resource size corresponds to a true subset of the first frequency domain resource pattern set, and the first frequency domain resource pattern set includes All the frequency domain resource patterns supported by the first frequency domain resource size, and the frequency domain resource units included in each of the frequency domain resource patterns are frequency domain resource units included in the system bandwidth;
  • the sending module is configured to send the first resource indication value RIV.
  • the system bandwidth does not belong to each of the The frequency domain resource elements of the frequency domain resource pattern are discontinuous; and/or,
  • the frequency domain resource unit of each frequency domain resource pattern included in the true subset is discontinuous.
  • the predefined size is equal to one-half of the number of frequency domain resource units included in the system bandwidth.
  • the true subset when the first frequency domain resource size is greater than the predefined size, the true subset includes only one frequency domain resource pattern.
  • the embodiment of the present application provides a communication apparatus, where the communication apparatus includes: a processor, a memory, and a receiver; the receiver is coupled to the processor, and the processor controls reception by the receiver action;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the communication device to perform the information transmission method provided by the first aspect or the possible designs of the first aspect .
  • an embodiment of the present application provides a communication apparatus, where the communication apparatus includes: a processor, a memory, and a receiver; the receiver is coupled to the processor, and the processor controls reception by the receiver action;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the communication device to perform the information transmission method provided by the second aspect or the possible design of the second aspect .
  • an embodiment of the present application provides a communication apparatus, where the communication apparatus includes: a processor, a memory, and a transmitter; the transmitter is coupled to the processor, and the processor controls the transmitter Sending action;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the communication device to perform an information transmission method provided by each possible design of the third aspect or the third aspect .
  • the embodiment of the present application provides a communication apparatus, where the communication apparatus includes: a processor, a memory, and a transmitter; the transmitter is coupled to the processor, and the processor controls the transmitter Sending action;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the communication device to perform an information transmission method provided by each possible design of the fourth aspect or the fourth aspect .
  • the embodiments of the present application provide a communication apparatus, including a unit, a module, or a circuit for performing the method provided by the above first aspect or the possible design of the first aspect.
  • the communication device may be a terminal device or a module applied to the terminal device, for example, may be a chip applied to the terminal device.
  • the embodiments of the present application provide a communication apparatus, including a unit, a module, or a circuit for performing the method provided by the second aspect or the possible design of the second aspect.
  • the communication device may be a terminal device or a module applied to the terminal device, for example, may be a chip applied to the terminal device.
  • an embodiment of the present application provides a communication apparatus, including a unit, a module, or a circuit for performing the method provided by the foregoing third aspect or the possible design of the third aspect.
  • the communication device may be a network device or a module applied to the network device, for example, may be a chip applied to the network device.
  • the embodiments of the present application provide a communication apparatus, including a unit, a module, or a circuit for performing the method provided by the foregoing fourth aspect or the possible design of the fourth aspect.
  • the communication device may be a network device or a module applied to the network device, for example, may be a chip applied to the network device.
  • embodiments of the present application provide a computer program product comprising instructions that, when run on a computer, cause the computer to perform the method of the first aspect or the various possible designs of the first aspect.
  • the embodiments of the present application provide a computer program product comprising instructions, which when executed on a computer, cause the computer to perform the methods of the second aspect or the various possible designs of the second aspect.
  • the embodiments of the present application provide a computer program product comprising instructions that, when run on a computer, cause the computer to perform the methods of the various possible designs of the third aspect or the third aspect above.
  • an embodiment of the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the methods of the various possible designs of the fourth aspect or the fourth aspect above.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform the first aspect or the first aspect described above
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions, when executed on a computer, causing the computer to perform the second aspect or the second aspect described above
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions, when executed on a computer, causing the computer to perform the third aspect or the third aspect described above.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform the fourth aspect or the fourth aspect described above
  • the network device may use the high layer signaling to configure, for the terminal device, a frequency domain resource size set including a part of the frequency domain resource size supported by the system bandwidth, so that the network device
  • the frequency domain resource corresponding to one frequency domain resource size in the frequency domain resource size set may be allocated to the data to be transmitted, and the frequency domain resource is indicated by using the RIV corresponding to the frequency domain resource. Since the number of bits occupied by the RIV is positively correlated with the scheme in which the network device can allocate the frequency domain resources to be transmitted (ie, when the number of bits occupied by the RIV increases or decreases, the network device can allocate frequency domain resources for the data to be transmitted. The scheme is also increased or decreased. Therefore, by reducing the frequency domain resource that the network device can allocate for the data to be transmitted, the number of bits occupied by the resource allocation information in the control information can be further compressed to further improve the control information. Reliability.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied;
  • 2A is a schematic diagram of a conventional sTTI
  • 2B is a schematic diagram 1 of an existing frequency domain resource allocation
  • 2C is a schematic diagram 2 of an existing frequency domain resource allocation
  • 2D is a schematic diagram 3 of an existing frequency domain resource allocation
  • 2E is a schematic diagram 4 of an existing frequency domain resource allocation
  • FIG. 3 is a signaling flowchart of an information transmission method according to an embodiment of the present application.
  • FIG. 4A is a schematic diagram 1 of frequency domain resource distribution according to an embodiment of the present application.
  • FIG. 4B is a schematic diagram 2 of frequency domain resource distribution according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram 3 of frequency domain resource distribution according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another communication apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a mobile communication system according to an embodiment of the present application.
  • the mobile communication system may include a core network device 110, a radio access network device 120, and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the radio access network device 120 in a wireless manner, and the radio access network device 120 is connected to the core network device 110 by wireless or wired.
  • the core network device 110 and the radio access network device 120 may be independent physical devices, or may integrate the functions of the core network device 110 and the logical functions of the wireless access network device 120 on the same physical device.
  • the terminal device can be fixed or mobile.
  • FIG. 1 is only a schematic diagram.
  • the mobile communication system may further include other network devices, for example, a wireless relay device and a wireless backhaul device, and the like, which is not shown in FIG.
  • the number of the core network device 110, the radio access network device 120, and the terminal device included in the mobile communication system is not limited in this embodiment of the present application.
  • the radio access network device 120 is an access device that the terminal device accesses to the mobile communication system by using a wireless device, and may be a base station NodeB, an evolved base station eNodeB, a 5G mobile communication system, or a new radio (NR) communication.
  • the specific technology and the specific device configuration adopted by the radio access network device 120 are not limited in the embodiment of the present application.
  • the base station in the system, the base station in the future mobile communication system, and the access node in the WiFi system are not limited.
  • the radio access network device 120 is referred to as a network device. Unless otherwise specified, in the embodiment of the present application, the network device refers to the radio access network device 120.
  • the terms 5G and NR may be equivalent.
  • the terminal device may also be referred to as a terminal terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and the like.
  • the terminal device can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, industrial control (industrial control) Wireless terminal, wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, wireless in transport safety A terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the radio access network device 120 and the terminal device can be deployed on land, including indoors or outdoors, handheld or on-board; or can be deployed on the surface of the water; and can also be deployed on aircraft, balloons, and satellites in the air.
  • the application scenarios of the radio access network device 120 and the terminal device are not limited in this embodiment.
  • the radio access network device 120 and the terminal device can communicate through a licensed spectrum, or can communicate through an unlicensed spectrum, or can simultaneously communicate through an authorized spectrum and an unlicensed spectrum.
  • the radio access network device 120 and the terminal device can communicate through a spectrum of 6 gigahertz (GHz) or less, or can communicate through a spectrum of 6 GHz or higher, and can simultaneously use a spectrum below 6 GHz and a spectrum above 6 GHz. Communicate.
  • GHz gigahertz
  • the spectrum resources used between the radio access network device 120 and the terminal device are not limited in this embodiment of the present application.
  • data transmitted between the network device and the terminal device is divided into data packets in units of TB at the physical layer.
  • the transmission of the TB is based on the scheduling of the network device.
  • the network device sends control information to the terminal device by using the downlink control channel, to indicate, by using the control information, a hybrid automatic repeat request (HARQ) process number corresponding to the scheduled TB, and scheduling information of the scheduled TB.
  • the scheduling information includes resource allocation information of the scheduled TB (ie, used time domain resources and frequency domain resources), an MCS index, and the like.
  • the downlink control channel may be, for example, a physical downlink control channel (PDCCH) or a short physical downlink control channel (sPDCCH).
  • the control information mentioned above may be, for example, downlink control information (DCI).
  • a scheduling unit of a time domain resource may be referred to as a time unit or a transmission duration (Transmission Duration).
  • the time unit can include N symbols, where N is a positive integer.
  • the present application does not limit the length of time of the time unit, that is, the value of N is not limited.
  • a time unit can be a subframe with a duration of 1 millisecond (millisecond, ms). That is, when the network device schedules the TB, at least one subframe is allocated to the TB.
  • one subframe may include two slots, one subframe is composed of 12 or 14 symbols, and one slot may include 6 or 7 time domain symbols.
  • TTI transmission time interval
  • the embodiment of the present application does not limit the length of time of one symbol.
  • the length of one symbol can vary for different subcarrier spacing.
  • the symbols include an up symbol and a down symbol.
  • the uplink symbol may be, for example, a single carrier-frequency division multiple access (SC-FDMA) symbol or an orthogonal frequency division multiplexing (OFDM) symbol
  • the downlink symbol may be, for example, OFDM. symbol.
  • SC-FDMA single carrier-frequency division multiple access
  • OFDM orthogonal frequency division multiplexing
  • a shorter scheduling unit is introduced in the LTE communication system.
  • a time unit can be a time slot, or a mini-slot, or 2 or 3 time domain symbols, and the like. That is, when the network device schedules the TB, the TB may allocate a time domain resource smaller than one subframe for the TB.
  • the scheduling unit of the time domain resource shorter than 1 ms is called a short transmission time interval (sTTI) or a short transmission duration (STD).
  • sTTI short transmission time interval
  • STD short transmission duration
  • the subsequent application documents are described by taking sTTI as an example.
  • 2A is a schematic diagram of a conventional sTTI. As shown in FIG. 2A, taking sTTI as 2 or 3 time domain symbols as an example, one subframe can be divided into 6 sTTIs of length 2 symbols or 3 symbols.
  • the length of the subframe, the length of the slot, and the length of the sTTI in the future communication system may be consistent with the LTE communication system, and may also be different from the LTE communication system.
  • one subframe may be 1 ms, including 1, 2, 4, 8, 16 or 32 time slots
  • one time slot may be composed of 12 or 14 symbols
  • one sTTI may include 2, 3 or 7 symbols.
  • the network device may allocate the frequency domain resource used when transmitting the downlink TB by using the allocation mode of the downlink resource allocation type 0 or the downlink resource allocation type 2. specifically,
  • the downlink resource allocation type 0 when the network device allocates the frequency domain resource by using the allocation mode of the downlink resource allocation type 0, the scheduling unit of the frequency domain resource may be the RBG.
  • the number of RBs included in each RBG is P (ie, the RBG granularity is P).
  • the correspondence between the value of the above P and the time unit length and the system bandwidth of the communication system can be as shown in Table 1 below. It can be understood that the system bandwidth mentioned here is the maximum frequency width that can be used when the network device and the terminal device in the communication system perform data transmission.
  • the scheduling unit (that is, the time unit) of the time domain resource is a TTI
  • the number of RBs included in the system bandwidth cannot be divisible by P the number of RBs included in the last RBG may be less than P.
  • the scheduling unit (that is, the time unit) of the time domain resource is the sTTI
  • the number of RBs included in the last RBG may be greater than P to save resources in the control information. The number of bits occupied by the allocation information.
  • the network device may indicate the frequency domain resource allocated for the scheduled TB by carrying a bitmap in the control information. That is, the resource allocation information includes a bitmap. Among them, one bit corresponds to one RBG. That is, the number of bits occupied by the bitmap is the same as the number of RBGs included in the system bandwidth.
  • the bit corresponding to the RBG has a value of 1.
  • the terminal device can learn the frequency domain resource allocated by the network device for the scheduled TB based on the bitmap in the control information sent by the network device.
  • FIG. 2B is a schematic diagram 1 of an existing frequency domain resource allocation.
  • the scheduling unit of the time domain resource is 1 ms TTI, and the RBG granularity P is equal to 2. That is, the system bandwidth includes 13 RBGs, each of the first 12 RBGs includes 2 RBs, and the 13th RBG includes 1 RB.
  • the number of bits occupied by the bitmap is 13 bits. Assuming that the frequency domain resources allocated by the network device to the scheduled TB are the first RBG, the fourth RBG, the fifth RBG, the sixth RBG, the eighth RBG, and the thirteenth RBG, the above bitmap may be 1001110100001. .
  • FIG. 2C is a schematic diagram 2 of an existing frequency domain resource allocation.
  • the scheduling unit of the time domain resource is sTTI
  • the RBG granularity P is equal to 6. That is, the system bandwidth includes 4 RBGs, each of the first 3 RBGs includes 6 RBs, and the 4th RBG includes 7 RBs.
  • the number of bits occupied by the bitmap is 4 bits. Assuming that the frequency domain resources allocated by the network device to the scheduled TB are the first RBG and the third RBG, the above bitmap may be 1010.
  • the downlink resource allocation type 2 When the network device allocates the frequency domain resource by using the allocation mode of the downlink resource allocation type 2, the frequency domain resource allocated by the network device to the scheduled TB is a continuous RB. Therefore, when the network device allocates the frequency domain resource by using the allocation mode of the downlink resource allocation type 2, the allocated frequency domain resource may be determined by the frequency domain resource size and the starting position of the frequency domain resource.
  • the frequency domain resource size mentioned here is the number of RBs.
  • the scheduling unit of the time domain resource as the 1 ms TTI as an example, assuming that the number of RBs corresponding to the system bandwidth is N, the scheme of the frequency domain resources that the network device can allocate for the scheduled TB is as shown in Table 2 below:
  • FIG. 2D is a schematic diagram 3 of an existing frequency domain resource allocation.
  • each square represents an RB
  • a square filled with diagonal lines indicates that a combination of the size of the frequency domain resource and the starting position of the frequency domain resource is feasible. That is, the network device may allocate the starting location of the frequency domain resource and the frequency domain resource indicated by the frequency domain resource size to the scheduled TB.
  • a square that is not filled with a slash indicates that the combination of the size of the frequency domain resource and the starting position of the frequency domain resource is not feasible, that is, the RB corresponding to the system bandwidth cannot be caused by the network device because the starting position is backward.
  • the scheduled TB is allocated a starting location of the frequency domain resource and a frequency domain resource indicated by the frequency domain resource size.
  • the network device may indicate the frequency domain resources allocated for the scheduled TB by carrying the RIV in the control information. That is, the resource allocation information includes the RIV.
  • the network device can be a scheme of the frequency domain resources that can be allocated by the scheduled TB. So, can be occupied in the control information
  • the bits indicate the RIV.
  • the foregoing RIV may be calculated according to a frequency domain resource size allocated by the network device for the scheduled TB, a starting position of the frequency domain resource, and a predefined rule.
  • the terminal device may reversely derive the frequency domain resource size and the starting position of the frequency domain resource based on the RIV, and further determine the frequency domain resource used by the scheduled TB.
  • FIG. 2E is a schematic diagram 4 of an existing frequency domain resource allocation. As shown in FIG. 2E, the N1 is 6 and the scheduling unit of the time domain resource is 1 ms TTI.
  • the network device can calculate the RIV by using the following two formulas, specifically:
  • the N is the number of RBs included in the system bandwidth
  • the x is the frequency domain resource size allocated by the network device to the scheduled TB
  • the y is the starting position of the frequency domain resource allocated by the network device to the scheduled TB.
  • a square filled with numbers indicates that a combination of the size of the frequency domain resource and the starting position of the frequency domain resource is feasible.
  • the number in the square is the RIV of the frequency domain resource corresponding to the combination, and the RIV occupies in the control information.
  • the bits indicate the RIV.
  • the terminal device may divide the quotient and the remainder obtained by dividing the RIV and the N to determine the frequency domain resource size and the starting position of the frequency domain resource allocated by the network device to the scheduled TB. The prior art does not repeat this.
  • the network device allocates the frequency domain resource to the scheduled TB and calculates the RIV of the frequency domain resource. For example, when the scheduling unit of the time domain resource is 1 ms TTI, the network device is scheduled. The TB allocates frequency domain resources and calculates the RIV of the frequency domain resources, and will not be described again.
  • the network device can allocate the frequency domain resource used when transmitting the uplink data by using the allocation mode of the uplink resource allocation type 0.
  • the principle of the uplink resource allocation type 0 and the downlink resource allocation type 2 are basically the same, and therefore will not be further described herein.
  • the 5G communication system can support different services, such as enhanced mobile broadband (eMBB) services, massive machine type communication (MTC) services, URLLC services, and multimedia broadcast multicast services. , MBMS) business and positioning business.
  • eMBB enhanced mobile broadband
  • MTC massive machine type communication
  • URLLC ultra-reliable and low-latency communications
  • MBMS multimedia broadcast multicast services
  • the URLLC service is an important service in the 5G communication system, and requires very high reliability and very short delay in transmission. For example, the transmission delay is required to be within 1 ms, and the probability of success (ie, reliability) is 99.999%; or the transmission delay is required to be within 10 ms, and the probability of success (ie, reliability) is 99.99%. If the 5G communication system continues to use the reliability of the control channel in the LTE communication system, the reliability requirements of the URLLC service cannot be met.
  • the reliability of the control channel of the 5G communication system is enhanced by compressing the control information in the standard. That is, some information (eg, resource allocation information) in the control information is compressed to reduce the load size of the control information. In this way, in the same time-frequency resource, more redundant information can be transmitted when the compressed DCI is transmitted than when the DCI is not compressed. Since the redundant information can serve as a checksum, the reliability of the control channel can be improved by transmitting more redundant information to meet the reliability requirements of the URLLC service.
  • the reliability of the control channel of the 5G communication system is enhanced by compressing the control information in the standard, the manner of compressing the number of bits occupied by the resource allocation information in the control information is not currently constrained.
  • the URLLC service is low-latency service data, and the time domain resource for transmitting the URLLC service data can be scheduled by using the scheduling unit sTTI. Therefore, in the current standard, when the network device adopts the allocation mode of the downlink resource allocation type 0, and allocates the frequency domain resource used when transmitting the scheduled TB (that is, the URLLC service data), the resource allocation information can be reduced by increasing the RBG granularity. The number of bits occupied. For example, the correspondence between the value of the RBG granularity P and the time unit length and the system bandwidth of the communication system can be as shown in Table 3 below.
  • the original LTE communication system may be allocated as the terminal device.
  • Continuous RBs are assigned to consecutive RBGs. Allocating consecutive RBGs can reduce the number of schemes for assignable frequency domain resources. Since the number of bits occupied by the RIV in the control information is positively correlated with the number of schemes of the assignable frequency domain resources (ie, when the number of bits occupied by the RIV increases or decreases, the frequency domain resource scheme that the network device can allocate for the data to be transmitted is also This is followed by an increase or decrease. Therefore, in this way, the number of bits occupied by the resource allocation information can be reduced.
  • the network device uses the allocation mode of the downlink resource allocation type 2, and allocates the frequency domain resource used when transmitting the scheduled TB (that is, the URLLC service data), and the system bandwidth of the communication system, the value of the RBG granularity P, and the RIV.
  • the correspondence of the number of occupied bits can be as shown in Table 4 below:
  • the number of bits occupied by the resource allocation information in the control information can be compressed to some extent, but the resource allocation information still occupies a large number of bits, resulting in low reliability of the control information.
  • the frequency domain resource size allocated by the network device to the scheduled TB is proportional to the size of the TB and inversely proportional to the channel quality of the terminal device. Since the MAC layer divides the TB size of the physical layer partition when the URLLLC service data is transmitted, for example, the TB size is about 256 bits. Therefore, the size of the network device to allocate frequency domain resources to the scheduled TB depends on the channel quality.
  • the embodiment of the present application provides an information transmission method, where the second communication device configures, by using the high layer signaling, a frequency domain resource size set including a part of the frequency domain resource size supported by the system bandwidth, so that the first communication device configures
  • the second communication device may allocate the frequency domain resource corresponding to the frequency domain resource size of the frequency domain resource size set to the first communication device, and indicate the frequency domain resource by using the RIV corresponding to the frequency domain resource. Since the number of bits occupied by the RIV is positively correlated with the scheme that the second communication device can allocate the allocated frequency domain resources of the TB (ie, when the number of bits occupied by the RIV increases or decreases, the network device can allocate the data to be transmitted.
  • the frequency domain resource scheme is also increased or decreased. Therefore, by reducing the scheme that the second communication device can allocate frequency domain resources to the scheduled TB, the number of bits occupied by the resource allocation information in the control information can be further compressed. To improve the reliability of the control information further.
  • the first communication device in the method of the embodiment of the present application may be a terminal device, or may be a chip in the terminal device.
  • the second communication device in the method of the embodiment of the present application may be a network device, or may be a chip in the network device.
  • the following application documents all take the first communication device as the terminal device and the second communication device as the network device as an example.
  • the technical solutions of the present application are described in detail through some embodiments. The following embodiments may be combined with each other, and the same or similar concepts or processes may not be described in some embodiments.
  • FIG. 3 is a signaling flowchart of an information transmission method according to an embodiment of the present application. As shown in FIG. 3, the method may include:
  • the network device generates a first RIV.
  • the network device sends the first RIV to the terminal device.
  • the terminal device receives the first RIV.
  • the terminal device determines the first frequency domain resource according to the first RIV and the frequency domain resource size set.
  • the method provided by the embodiment of the present application may be applicable to a scenario in which a downlink resource allocation type 0 or a downlink resource allocation type 2 is used, and a scenario in which a frequency domain resource used for transmitting downlink data is allocated is also applicable to an uplink resource allocation type.
  • Allocating the frequency domain resources used when transmitting the uplink data can achieve the purpose of improving the reliability of the control information. Therefore, the resource allocation types are not distinguished in the following application documents, and the uplink data and the downlink data are not distinguished.
  • the MAC layer divides the URLLLC service data into TBs. If there is no special description, in the embodiment of the present application, the URLLLC service data and the TB are not specifically distinguished, and the data to be transmitted is referred to.
  • the first mode the network device configures a frequency domain resource size set for the terminal device by using the high layer signaling, where the frequency domain resource size set includes a part of the frequency domain resource size supported by the system bandwidth.
  • the high layer signaling referred to herein may be, for example, radio resource control (RRC) signaling, medium access control (MAC) control element (CE) signaling, or the like.
  • Each frequency domain resource size in the frequency domain resource size set includes a different number of frequency domain resource units.
  • the frequency domain resource unit mentioned herein is a scheduling unit of the frequency domain resource used when the network device and the terminal device perform data transmission, and may be specifically determined according to the configuration of the communication system. The embodiment of the present application is described by taking a frequency domain resource unit as an RBG as an example.
  • the network device may use the frequency domain resource size that matches the current channel quality in the frequency domain resource size set according to the current channel quality, and waits for Transmitting data frequency domain resources corresponding to the frequency domain resource size. That is, for the frequency domain resource size that belongs to the frequency domain resource size set, the network device may allocate the frequency domain resource corresponding to the frequency domain resource size to the terminal device. For a frequency domain resource that does not belong to the frequency domain resource size set, the network device cannot allocate the frequency domain resource corresponding to the frequency domain resource size to the terminal device.
  • the system bandwidth is assumed to be 20 MHz, and the scheduling unit of the time domain resource is sTTI, and the RBG granularity P is equal to 12 at this time. . That is, the system bandwidth includes 8 RBGs, each of the first 7 RBGs includes 12 RBs, and the 8th RBG includes 16 RBs.
  • the set of frequency domain resource sizes configured by the network device for the terminal device through the high layer signaling is ⁇ 2, 4, 6, 8 ⁇ .
  • the network device in the LTE communication system may allocate frequency domain resources of any frequency domain resource size of 1 to 8 RBGs for the data to be transmitted, and in this example, the network device may only allocate the frequency domain resource size set for the data to be transmitted.
  • Frequency domain resources of any frequency domain resource size for example, 2 RBG size frequency domain resources, or 4 RBG size frequency domain resources, or 6 RBG size frequency domain resources, or 8 RBG size frequencies Domain resource.
  • the network device cannot allocate frequency domain resources corresponding to the frequency domain resource size of 1 or 3 or 5 or 7 to the data to be transmitted.
  • the frequency domain resource solution that the network device can allocate for the data to be transmitted has A total of 127 species. Therefore, the network device can use 7 bits to indicate the RIV of the first frequency domain resource in the resource allocation information. Continuing with reference to Table 3, one bit can be saved compared to the number of bits occupied by the bitmap indicating the frequency domain resource in the existing resource allocation information.
  • the network device configures the frequency domain resource size for the terminal device through the high layer signaling, it is ⁇ 1, 8 ⁇ .
  • the network device in the LTE communication system may allocate different frequency domain resources of any one of the frequency domain resource sizes of the data to be transmitted between the network device and the terminal device.
  • the network device may only be a network device.
  • the frequency domain resource of any frequency domain resource size in the frequency domain resource size set is allocated to the data to be transmitted between the terminal device, for example, one RBG size frequency domain resource or eight RBG size frequency domain resources.
  • the network device cannot allocate frequency domain resources corresponding to any one of the frequency domain resource sizes 2 to 7 for the data to be transmitted between the network device and the terminal device.
  • the frequency domain resource solution that the network device can allocate data to be transmitted between the network device and the terminal device is There are 9 kinds in total. Therefore, 4 bits can be used in the resource allocation information to indicate the RIV of the first frequency domain resource. Continuing with reference to Table 3, 4 bits can be saved compared to the number of bits occupied by the bitmap indicating the frequency domain resource in the existing resource allocation information.
  • the network device allocates the first frequency domain resource corresponding to the first frequency domain resource size in the frequency domain resource size set to the to-be-transmitted data.
  • the first frequency domain resource size is the number of RBGs of the first frequency domain resource.
  • the network device can generate a first RIV for indicating the first frequency domain resource.
  • the network device may calculate the first RIV of the first frequency domain resource according to the following principles, specifically:
  • the RIV of the frequency domain resource corresponding to the frequency domain resource size is allocated from 0, and the RIV is continuous. For example, if the frequency domain resource allocation scheme corresponding to all the frequency domain resource sizes in the frequency domain resource size set is 128 in total, the RIV value is 0 to 127.
  • the second RIV is used to indicate the second frequency domain resource, the quantity of the frequency domain resource unit of the second frequency domain resource is the second frequency domain resource size, and the second frequency domain resource size belongs to the frequency domain resource size set.
  • the second RIV is smaller than the first RIV, the second frequency domain resource size is less than or equal to the first frequency domain resource size. That is to say, in the frequency domain resource size set, the RIV of the frequency domain resource with a small frequency domain resource size is smaller than the RIV of the frequency domain resource with a large frequency domain resource size.
  • the RIV of the frequency domain resources of 2 RBG sizes is less than the RIV of the frequency domain resources of 4 RBG sizes.
  • the number of the first frequency domain resource unit of the second frequency domain resource is greater than the number of the first frequency domain resource unit of the first frequency domain resource.
  • the number of the first M frequency domain resource units of the second frequency domain resource is equal to the number of the first M frequency domain resource units of the first frequency domain resource, and the M+1 frequency domain resource of the second frequency domain resource.
  • the number of the unit is greater than the number of the M+1th frequency domain resource unit in the first frequency domain resource, and M is a positive integer. That is to say, in the case where the frequency domain resources have the same size, the larger the bitmap value corresponding to the frequency domain resource, the larger the RIV of the frequency domain resource.
  • the system bandwidth includes 8 RBGs and the frequency domain resource size is 2 RBGs.
  • the RBG numbers included in the frequency domain resource A are RBG0 and RBG1, that is, the bitmap corresponding to the frequency domain resource A is 11000000.
  • the RBG number of the frequency domain resource B is RBG3 and RBG4, that is, the bitmap corresponding to the frequency domain resource B is 00110000. Since 11000000>00110000, the RIV of the frequency domain resource A is greater than the RIV of the frequency domain resource B.
  • the frequency domain resource size set configured by the network device for the terminal device through the high layer signaling is ⁇ a 1 , a 2 , . . . , a n ⁇ as an example, where a 1 ⁇ a 2 ⁇ ... ⁇ a n .
  • the first frequency domain resource size is a i RBGs
  • the first frequency domain resources include RBG numbers #M 1 , #M 2 , . . . , And
  • a i to a frequency domain resource RIV RBG size must be greater than a corresponding set of frequency domain resource is smaller than the size of a i RIV large frequency domain resource corresponding RBG size of the frequency domain resource. Since the network device can allocate the first frequency domain resource for the data to be transmitted Then, the correspondence between the frequency domain resource scheme and the RIV can be as shown in Table 5 below:
  • the first RIV of the first frequency domain resource can be expressed by the following formula (3):
  • j is a positive integer
  • i represents the sorting position of the first frequency domain resource size in the frequency domain resource size set
  • N represents the number of RBGs included in the system bandwidth
  • a j represents the frequency domain in which the sorting position in the frequency domain resource size set is j
  • the size of the resource Taking the frequency domain resource size set as ⁇ 2, 4, 6, 8 ⁇ as an example, when a j is 4, j is equal to 2, that is, 4 is a frequency domain resource size with a sorting position of 2 in the frequency domain resource size set.
  • the RIV of the first frequency domain resource should be larger than the scheme in which all the bitmap values are smaller than him.
  • the numbers of the RBGs included in the first frequency domain resource are #M 1 , #M 2 , ..., , Therefore, the value of X in the above formula (3) may be further determined based on the number of the RBG included in the first frequency domain resource, specifically:
  • the number of the first RBG included in the frequency domain resource is greater than the number of the first RBG of the first frequency domain resource (ie, #M 1 )
  • the program has a total of Kind. That is, the first RBG number is greater than #M 1 Kind.
  • the first RBG in the scheme of all the frequency domain resources that can be allocated corresponding to the first frequency domain resource size is the frequency domain resource of #M 2 .
  • the scheme of the first RBG included in the frequency domain resource is equal to the number of the first RBG of the first frequency domain resource (ie, the first scheme of all the frequency domain resources that can be allocated in the first frequency domain resource size.
  • RBG is also #M 1
  • the number of the second RBG is greater than the number of the second RBG of the first frequency domain resource (ie #M 2 ) Kind. That is, the number of the first RBG is equal to #M 1 , but the number of the second RBG is greater than #M 2 Kind.
  • the first RBG in the scheme of all the frequency domain resources that can be allocated corresponding to the first frequency domain resource size is #M 1
  • the second RBG is the frequency domain resource of #M 3 .
  • the number of the first j-1 included in the frequency domain resource is equal to the former j of the first frequency domain resource. - 1 RBG number, but the number of the jth RBG is greater than the number of the jth RBG of the first frequency domain resource Kind.
  • j is a positive integer
  • i represents the sorting position of the first frequency domain resource size in the frequency domain resource size set
  • N represents the number of RBGs included in the system bandwidth
  • a i represents the first frequency domain resource size
  • M j represents the first The number of the RBG whose position is j is sorted in a frequency domain resource.
  • the first RIV of the first frequency domain resource can be expressed by the following formula (5):
  • the RIV of the frequency domain resource corresponding to each frequency domain resource size in the frequency domain resource size set may be consecutive, so that the maximum value of the RIV corresponding to the frequency domain resource size set occupies the least number of bits. Further, the number of bits occupied by the resource allocation information including the RIV in the control information can be reduced, and the reliability of the control information is further improved.
  • the RIV can be calculated in the foregoing manner, and the frequency domain resource size corresponding to the frequency domain resource RIV can be made.
  • the value ranges from 0 to 127. That is to say, the maximum value of the RIV corresponding to the frequency domain resource size set is 127. Therefore, the resource allocation information may represent the RIV of the frequency domain resource corresponding to any of the frequency domain resource sizes in the frequency domain resource size set by 7 bits. If the RIV is not calculated in the above manner, the maximum value of the RIV corresponding to the frequency domain resource size set may be greater than 127 (for example, the RIV values are 0 to 10, 12 to 128). In this scenario, the resource allocation information may require more than 7 bits of RIV representing the frequency domain resource corresponding to any frequency domain resource size in the frequency domain resource size set, resulting in additional overhead of control information and reduced reliability of control information. .
  • the first RIV may be carried in the control information and sent to the terminal device.
  • the terminal device may determine the first frequency domain resource according to the first RIV and the frequency domain resource size set. Then, the terminal device can use the first frequency domain resource to perform transmission of data to be transmitted with the network device.
  • the embodiment does not limit the manner in which the terminal device determines the first frequency domain resource according to the first RIV and the frequency domain resource size set. Continuing with Table 5 and Equation (5) above, the terminal device can determine the first frequency domain resource step by step, for example:
  • the terminal device may search for the first frequency domain resource size corresponding to the first RIV in the correspondence relationship shown in Table 5, and obtain the first frequency domain resource size a i .
  • RIV 1 can be expressed by the following formula (6):
  • the terminal device calculates M j by RIV 1 , the first frequency domain resource size a i , and the following formula (7).
  • the formula (7) is as follows:
  • the terminal device may first take the value of j as 1, and then substitute RIV 1 and the first frequency domain resource size a i into the formula to determine the number of the first RBG in the first frequency domain resource. Then, the terminal device can increase the value of j by 1, that is, j is equal to 2. Then, the RIV 2 and the first frequency domain resource size a i are substituted into a formula to determine the number of the second RBG in the first frequency domain resource. This loops until j is equal to a i +1, ending the flow. Alternatively, the process is terminated until the number of the ai RBGs in the first frequency domain resource is determined.
  • the terminal device can quickly determine the first frequency domain resource indicated by the first RIV according to the first RIV sent by the network device and the frequency domain resource size set, and reduce the time for the terminal device to process the control information. This reduces the delay in data transmission.
  • the network device may calculate the first RIV of the first frequency domain resource according to the following principles, specifically:
  • the RIV of the frequency domain resource corresponding to the frequency domain resource size is allocated from 0, and the RIV is continuous. For example, if the frequency domain resource allocation scheme corresponding to all the frequency domain resource sizes in the frequency domain resource size set is 128 in total, the RIV value is 0 to 127.
  • the second RIV is used to indicate the second frequency domain resource, the quantity of the frequency domain resource unit of the second frequency domain resource is the second frequency domain resource size, and the second frequency domain resource size belongs to the frequency domain resource size set.
  • the second RIV is smaller than the first RIV, the second frequency domain resource size is less than or equal to the first frequency domain resource size. That is to say, in the frequency domain resource size set, the RIV of the frequency domain resource with a small frequency domain resource size is smaller than the RIV of the frequency domain resource with a large frequency domain resource size.
  • the RIV of the frequency domain resources of 2 RBG sizes is less than the RIV of the frequency domain resources of 4 RBG sizes.
  • the number of the first frequency domain resource unit of the second frequency domain resource is smaller than the number of the first frequency domain resource unit of the first frequency domain resource.
  • the number of the first M frequency domain resource units of the second frequency domain resource is equal to the number of the first M frequency domain resource units of the first frequency domain resource, and the M+1 frequency domain resource of the second frequency domain resource.
  • the number of the unit is smaller than the number of the M+1th frequency domain resource unit in the first frequency domain resource, and M is a positive integer. That is to say, in the case that the frequency domain resources have the same size, the larger the bitmap value corresponding to the frequency domain resource, the smaller the RIV of the frequency domain resource.
  • the RIV of the first frequency domain resource should be smaller than the scheme in which all the bitmap values are smaller than him.
  • the system bandwidth includes 8 RBGs and the frequency domain resource size is 2 RBGs.
  • the RBG numbers included in the frequency domain resource A are RBG0 and RBG1, that is, the bitmap corresponding to the frequency domain resource A is 11000000.
  • the RBG number of the frequency domain resource B is RBG3 and RBG4, that is, the bitmap corresponding to the frequency domain resource B is 00110000. Since 11000000>00110000, the RIV of the frequency domain resource A is smaller than the RIV of the frequency domain resource B.
  • the network device may further determine the value of X in the foregoing formula (3) based on the number of the RBG included in the first frequency domain resource, specifically:
  • the number of the first RBG included in the frequency domain resource is greater than the number of the first RBG of the first frequency domain resource (ie, #M 1 )
  • the program has a total of Kind. That is, the first RBG number is greater than #M 1 Kind.
  • the first RBG in the scheme of all the frequency domain resources that can be allocated corresponding to the first frequency domain resource size is the frequency domain resource of #M 2 .
  • the scheme of the first RBG included in the frequency domain resource is equal to the number of the first RBG of the first frequency domain resource (ie, the first scheme of all the frequency domain resources that can be allocated in the first frequency domain resource size.
  • RBG is also #M 1
  • the number of the second RBG is greater than the number of the second RBG of the first frequency domain resource (ie #M 2 ) Kind. That is, the number of the first RBG is equal to #M 1 , but the number of the second RBG is greater than #M 2 Kind.
  • the first RBG in the scheme of all the frequency domain resources that can be allocated corresponding to the first frequency domain resource size is #M 1
  • the second RBG is the frequency domain resource of #M 3 .
  • the number of the first j-1 included in the frequency domain resource is equal to the former j of the first frequency domain resource. - 1 RBG number, but the number of the jth RBG is greater than the number of the jth RBG of the first frequency domain resource Kind.
  • the frequency domain resources of the RIV smaller than the first frequency domain resource are shared.
  • these frequency domain resources take up from to The RIV, so the X in the above formula (3) can be expressed by the following formula (8):
  • j is a positive integer
  • i represents the sorting position of the first frequency domain resource size in the frequency domain resource size set
  • N represents the number of RBGs included in the system bandwidth
  • a i represents the first frequency domain resource size
  • M j represents the first The number of the RBG whose position is j is sorted in a frequency domain resource.
  • the first RIV of the first frequency domain resource can be expressed by the following formula (9):
  • the RIV of the frequency domain resource corresponding to each frequency domain resource size in the frequency domain resource size set may be consecutive, so that the maximum value of the RIV corresponding to the frequency domain resource size set occupies the least number of bits. Further, the number of bits occupied by the resource allocation information including the RIV in the control information can be reduced, and the reliability of the control information is further improved.
  • the RIV can be calculated in the foregoing manner, and the frequency domain resource size corresponding to the frequency domain resource RIV can be made.
  • the value ranges from 0 to 127. That is to say, the maximum value of the RIV corresponding to the frequency domain resource size set is 127. Therefore, the resource allocation information may represent the RIV of the frequency domain resource corresponding to any of the frequency domain resource sizes in the frequency domain resource size set by 7 bits. If the RIV is not calculated in the above manner, the maximum value of the RIV corresponding to the frequency domain resource size set may be greater than 127 (for example, the RIV values are 0 to 10, 12 to 128). In this scenario, the resource allocation information may require more than 7 bits of RIV representing the frequency domain resource corresponding to any frequency domain resource size in the frequency domain resource size set, resulting in additional overhead of control information and reduced reliability of control information. .
  • the first RIV may be carried in the control information and sent to the terminal device.
  • the terminal device may determine the first frequency domain resource according to the first RIV and the frequency domain resource size set. Then, the terminal device can use the first frequency domain resource to perform transmission of data to be transmitted with the network device.
  • the embodiment does not limit the manner in which the terminal device determines the first frequency domain resource according to the first RIV and the frequency domain resource size set. Continuing with Table 5 and Equation (9) above, the terminal device can determine the first frequency domain resource step by step, for example:
  • the terminal device may search for the first frequency domain resource size corresponding to the first RIV in the correspondence relationship shown in Table 5, and obtain the first frequency domain resource size a i .
  • RIV 1 can be expressed by the following formula (10):
  • the terminal device calculates M j by RIV 1 , the first frequency domain resource size a i , and the following formula (11). Among them, the formula (11) is as follows:
  • the terminal device may first take the value of j as 1, and then substitute RIV 1 and the first frequency domain resource size a i into the formula to determine the number of the first RBG in the first frequency domain resource. Then, the terminal device can increase the value of j by 1, that is, j is equal to 2. Then, the RIV 2 and the first frequency domain resource size a i are substituted into a formula to determine the number of the second RBG in the first frequency domain resource. This loops until j is equal to a i +1, ending the flow. Alternatively, the process is terminated until the number of the ai RBGs in the first frequency domain resource is determined.
  • the terminal device can quickly determine the first frequency domain resource indicated by the first RIV according to the first RIV sent by the network device and the frequency domain resource size set, and reduce the time for the terminal device to process the control information. This reduces the delay in data transmission.
  • the terminal device may determine the first frequency domain resource allocated by the network device, and then may use the first frequency domain resource to wait with the network device. Transmission of transmitted data. For example, the data to be transmitted sent to the network device on the first frequency domain resource, or the data to be transmitted sent by the network device on the first frequency domain resource.
  • the network device may use the high layer signaling to configure a frequency domain resource size set including a part of the frequency domain resource size supported by the system bandwidth, so that the network device can allocate the frequency domain resource size to the data to be transmitted.
  • FIG. 4A is a schematic diagram 1 of a frequency domain resource distribution according to an embodiment of the present application.
  • FIG. 4A is a schematic diagram 1 of a frequency domain resource distribution according to an embodiment of the present application.
  • FIG. 4B is a schematic diagram 2 of frequency domain resource distribution according to an embodiment of the present application.
  • the frequency domain resource allocated by the network device to the terminal device may be as shown in FIG. 4A, and the frequency domain resource allocated by the network device to the terminal device may be used as shown in FIG. 4A.
  • the frequency domain resource allocated by the network device to the terminal device may be as shown in FIG. 4B. It can be seen from the two graphs that the larger the RBG granularity P is, the less flexible the scheduling is, and the lower the frequency resource utilization.
  • the second mode the network device configures a frequency domain resource size set for the terminal device by using the high layer signaling, where the frequency domain resource size set may include all frequency domain resource sizes supported by the system bandwidth, or part of the frequency domain resource size.
  • the frequency domain resource unit mentioned herein is a scheduling unit of the frequency domain resource used when the network device and the terminal device perform data transmission, and may be specifically determined according to the configuration of the communication system. The embodiment of the present application is described by taking a frequency domain resource unit as an RBG as an example.
  • RBG radio resource block diagram
  • the frequency domain resource size in the frequency domain resource size set when the frequency domain resource size in the frequency domain resource size set is greater than or equal to the predefined size and smaller than the frequency domain resource size corresponding to the system bandwidth, the frequency domain resource size corresponds to the frequency domain resource size.
  • the true subset of the collection of domain resource patterns when the frequency domain resource size in the frequency domain resource size set is smaller than the predefined size, the frequency domain resource size corresponds to the frequency domain resource pattern set of the frequency domain resource size, or the true subset, which is not limited.
  • the frequency domain resource pattern set corresponding to the frequency domain resource size mentioned above includes: all frequency domain resource patterns supported by the frequency domain resource size.
  • the RBG included in each frequency domain resource pattern is the RBG included in the system bandwidth.
  • a frequency domain resource pattern corresponds to a frequency domain resource allocation scheme.
  • the network device when the network device uses the frequency domain resource size that is greater than or equal to the predefined size and smaller than the system bandwidth, and allocates frequency domain resources for the data to be transmitted, the network device can only allocate the true subset.
  • a frequency domain resource corresponding to a certain frequency domain pattern cannot allocate a frequency domain resource corresponding to a frequency domain pattern other than the true subset for the data to be transmitted.
  • the network device may allocate any frequency domain pattern corresponding to the frequency domain resource size in the frequency domain resource size set.
  • the above-mentioned predefined size may be specifically determined according to the configuration of the communication system.
  • the above predefined size may be equal to one-half of the number of frequency domain resource units included in the system bandwidth.
  • the predefined size may be the non-integer, or the non-integer is rounded up or rounded down.
  • the predefined size may be 3.5, or 4 (the value obtained by rounding up 3.5), or 3 (rounding down 3.5) The value obtained).
  • the network device allocates the frequency domain resource by using the allocation mode of the downlink resource allocation type 0.
  • the RBG granularity is 12. That is, the system bandwidth includes 8 RBGs, each of the first 7 RBGs includes 12 RBs, and the 8th RBG includes 16 RBs.
  • the predefined size is one-half of the number of frequency domain resource units included in the system bandwidth, that is, the predefined size is four.
  • the set of frequency domain resource sizes configured by the network device for the terminal device through the high layer signaling is ⁇ 4, 5, 6, 7, 8 ⁇ .
  • the network device may allocate any frequency domain resource pattern corresponding to any frequency domain resource size in the frequency domain resource size set to the data to be transmitted.
  • the network device can only allocate the frequency domain resource size corresponding to any of the frequency domain resource size sets for the data to be transmitted.
  • the frequency domain resource pattern in the true subset because each of the frequency domain resource sizes in the set is greater than or equal to the predefined size, the network device can only allocate the frequency domain resource size corresponding to any of the frequency domain resource size sets for the data to be transmitted.
  • FIG. 5 is a schematic diagram 3 of a frequency domain resource distribution according to an embodiment of the present application.
  • the true subset of the frequency domain resource pattern set of the frequency domain resource size 4 includes two frequency domain resource patterns, which are the frequency domain resource pattern 1 and the frequency domain resource pattern 2, and the frequency of the remaining frequency domain resource sizes.
  • the true subset of the domain resource pattern set includes only one frequency domain resource pattern. That is to say, in this example, there are a total of six frequency domain resources that the network device can allocate for the data to be transmitted.
  • FIG. 5 is only an example, and the true subset of the frequency domain resource pattern set corresponding to the frequency domain resource size involved in the embodiment of the present application is not limited thereto.
  • the first frequency domain resource size is greater than or equal to the predefined size
  • the frequency domain resource unit in the system bandwidth that does not belong to each frequency domain resource pattern is discontinuous in each frequency domain resource pattern included in the true subset;
  • the first frequency domain resource size is smaller than a predefined size
  • the frequency domain resource unit of each frequency domain resource pattern included in the true subset is discontinuous.
  • the true subset may be limited to include only one frequency domain resource pattern. At this time, the RBGs in the frequency domain resource pattern included in the true subset can be evenly distributed in the system bandwidth.
  • the difference in transmission performance of uniformly selecting RBGs (which may also be referred to as frequency diversity) in the system bandwidth is small. That is to say, the transmission of data by means of frequency diversity does not significantly cause a drop in transmission performance. Therefore, by configuring the frequency domain resource size set in the above manner, even if the network device cannot know the channel quality between the network device and the terminal device, the network device can still allocate the frequency domain resource capable of ensuring the transmission performance to the terminal device, thereby ensuring data transmission. Performance.
  • the frequency domain resource scheme that the network device can allocate for the data to be transmitted is further reduced. Therefore, the network device can use less bits in the resource allocation information to indicate the RIV of the scheduled frequency domain resource without loss (or slight loss) of transmission performance and flexibility of frequency domain resource size, and can be further compressed. The number of bits occupied by the resource allocation information in the control information is increased to further improve the reliability of the control information.
  • the network device may allocate, by using the foregoing manner, the first frequency domain resource corresponding to the first frequency domain resource size in the frequency domain resource size set. If the first frequency domain resource size is greater than or equal to the predefined size and is smaller than the frequency domain resource size corresponding to the system bandwidth, the frequency domain resource pattern of the first frequency domain resource is one of the true subsets corresponding to the first frequency domain resource size. Frequency domain pattern.
  • the first frequency domain resource size is the number of RBGs of the first frequency domain resource. In this way, the network device can generate a first RIV for indicating the first frequency domain resource. For the manner in which the network device calculates the first RIV of the first frequency domain resource, refer to the manner of calculating the RIV in the foregoing first manner. This will not be repeated.
  • the network device uses the allocation mode of the downlink resource allocation type 0 to allocate the frequency. Domain resource, where the RBG granularity is 12. That is, the system bandwidth includes 8 RBGs, each of the first 7 RBGs includes 12 RBs, and the 8th RBG includes 16 RBs. Assume that the predefined size is 3.
  • the set of frequency domain resource sizes configured by the network device for the terminal device through the high layer signaling is ⁇ 1, 2, 4, 5, 6, 7, 8 ⁇ .
  • the network device may allocate any frequency domain resource pattern corresponding to any frequency domain resource size in the frequency domain resource size set to the data to be transmitted.
  • the frequency domain resource is allocated by using any of the frequency domain resource sizes 4, 5, 6, 7, and 8, the network device may allocate a frequency domain resource pattern in the true subset corresponding to the frequency domain resource size to the data to be transmitted.
  • the correspondence between the frequency domain resource scheme and the RIV in the frequency domain resource size set may be as shown in Table 6 below:
  • the set of frequency domain resource sizes configured by the network device for the terminal device through the high layer signaling is ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ .
  • the network device may allocate any frequency domain resource pattern corresponding to any frequency domain resource size in the frequency domain resource size set to the data to be transmitted.
  • the network device may allocate, to the data to be transmitted, a frequency domain resource pattern in the true subset corresponding to the frequency domain resource size.
  • the correspondence between the frequency domain resource scheme and the RIV in the frequency domain resource size set may be as shown in Table 7 below:
  • the RIV of the frequency domain resource corresponding to each frequency domain resource size in the frequency domain resource size set may be consecutive, so that the maximum value of the RIV corresponding to the frequency domain resource size set occupies the least number of bits. Further, the number of bits occupied by the resource allocation information including the RIV in the control information can be reduced, and the reliability of the control information is further improved.
  • the first RIV may be carried in the control information and sent to the terminal device.
  • the terminal device may determine the first frequency domain resource according to the first RIV and the frequency domain resource size set. Then, the terminal device can use the first frequency domain resource to perform transmission of data to be transmitted with the network device.
  • the embodiment does not limit the manner in which the terminal device determines the first frequency domain resource according to the first RIV and the frequency domain resource size set. For example, the terminal device may calculate an RIV corresponding to each assignable frequency domain resource according to the frequency domain resource size set. Then, the terminal device can use the first RIV to compare with the RIV corresponding to each of the assignable frequency domain resources, and use the frequency domain resource corresponding to the same RIV as the first RIV as the first frequency domain resource.
  • the network device may use the high layer signaling to configure the terminal device with a frequency domain resource size set including a part of the frequency domain resource size supported by the system bandwidth, where each frequency domain resource size may correspond to all the frequency domain resources. a pattern or a part of the frequency domain resource pattern, so that the network device can allocate, to the data to be transmitted, a frequency domain resource pattern in a part of the frequency domain resource pattern corresponding to a frequency domain resource size in the frequency domain resource size set, and use the frequency domain
  • the RIV corresponding to the resource indicates the frequency domain resource.
  • the network device Since the number of bits occupied by the RIV is positively correlated with the scheme in which the network device can allocate the frequency domain resources to be transmitted (ie, when the number of bits occupied by the RIV increases or decreases, the network device can allocate frequency domain resources for the data to be transmitted.
  • the scheme is also increased or decreased. Therefore, by reducing the frequency domain resource that the network device can allocate for the data to be transmitted, the number of bits occupied by the resource allocation information in the control information can be further compressed to further improve the control information. Reliability.
  • the network device can also indicate the frequency domain resource allocated for the data to be transmitted by using the existing bitmap.
  • the resource allocation information can be compressed by reducing the number of bits occupied by the bitmap.
  • the network device indicates, by using a bitmap, whether the first N-1 RBGs included in the system bandwidth are used to transmit data to be transmitted, and the number of scheduled RBGs indicated by the bitmap implicitly indicates the last included in the system bandwidth. Whether an RBG is used to transmit data to be transmitted.
  • the frequency domain resource size set for the terminal device configured by the network device through the high layer signaling is ⁇ 2, 4, 6, 8 ⁇ , and the number of RBGs included in the system bandwidth is 8 as an example, and the bitmap can occupy 7 in the control information. Bit indicating whether the first 7 RBGs included in the system bandwidth are used to transmit data to be transmitted. For example, the bitmap is 1100110. After receiving the control information, the terminal device can obtain, by using a bitmap, that four RBGs in the first seven RBGs are used to transmit data to be transmitted. That is, the number of RBGs used to transmit data to be transmitted is an even number.
  • the frequency domain resource size set by the network device configured by the network device for the terminal device includes an even number of frequency domain resource sizes. Therefore, the terminal device can determine that the last RBG included in the system bandwidth is not used to transmit the data to be transmitted.
  • the bitmap carried in the control information received by the terminal device is 1100100, it can be obtained through the bitmap that three RBGs in the first seven RBGs are used to transmit data to be transmitted. That is, the number of RBGs for transmitting data to be transmitted is an odd number.
  • the frequency domain resource size set by the network device configured by the network device for the terminal device includes an even number of frequency domain resource sizes. Therefore, the terminal device can determine that the last RBG included in the system bandwidth is used to transmit data to be transmitted.
  • the number of bits occupied by the bitmap indicating the frequency domain resource in the resource allocation information can be saved by one bit compared to the number of bits occupied by the bitmap indicating the frequency domain resource in the existing resource allocation information, thereby saving one bit.
  • the reliability of the control information can be further improved.
  • the information transmission method provided by the embodiment of the present application is described and described in the example of the foregoing application. However, those skilled in the art can understand that the information transmission method provided by the embodiment of the present application can be used to improve the reliability of the control information, as long as the TB size of the MAC layer is changed to the physical layer. This will not be repeated here.
  • the network device may use the high layer signaling to configure, for the terminal device, a frequency domain resource size set including a part of the frequency domain resource size supported by the system bandwidth, so that the network device can allocate data to be transmitted.
  • the frequency domain resource corresponding to the frequency domain resource size in the frequency domain resource size set, and the RIV corresponding to the frequency domain resource is used to indicate the frequency domain resource. Since the number of bits occupied by the RIV is positively correlated with the scheme in which the network device can allocate the frequency domain resources to be transmitted (ie, when the number of bits occupied by the RIV increases or decreases, the network device can allocate frequency domain resources for the data to be transmitted. The scheme is also increased or decreased. Therefore, by reducing the frequency domain resource that the network device can allocate for the data to be transmitted, the number of bits occupied by the resource allocation information in the control information can be further compressed to further improve the control information. Reliability.
  • FIG. 6 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication device implements some or all of the functions of the terminal device described above by software, hardware, or a combination of both.
  • the communication device may be a terminal device or a chip applied to the terminal device. As shown in FIG. 6, the communication device may include: a receiving module 11 and a processing module 12. among them,
  • the receiving module 11 is configured to receive a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used for data transmission, where the number of frequency domain resource units of the first frequency domain resource is a frequency domain resource size, where the frequency domain resource unit is a scheduling unit of a frequency domain resource used for data transmission, where the first frequency domain resource size belongs to a frequency domain resource size set, and the frequency domain resource size set Configured by higher layer signaling;
  • the processing module 12 is configured to determine the first frequency domain resource according to the first RIV and the frequency domain resource size set.
  • the second RIV is used to indicate the second frequency domain resource, where the number of the frequency domain resource units of the second frequency domain resource is the second frequency domain resource size, and the second frequency domain The resource size belongs to the frequency domain resource size set; when the second RIV is smaller than the first RIV, the second frequency domain resource size is less than or equal to the first frequency domain resource size.
  • a number of the first frequency domain resource unit of the second frequency domain resource is greater than the The number of the first frequency domain resource unit of the first frequency domain resource; or the number of the first M frequency domain resource units of the second frequency domain resource is equal to the first M frequency domain resources of the first frequency domain resource
  • the number of the unit, and the number of the M+1th frequency domain resource unit in the second frequency domain resource is greater than the number of the M+1th frequency domain resource unit in the first frequency domain resource, where the M is A positive integer.
  • the communication device provided by the embodiment of the present application may perform the action of the terminal device shown in the first mode in the foregoing method, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of another communication apparatus according to an embodiment of the present application.
  • the communication device implements some or all of the functions of the terminal device described above by software, hardware, or a combination of both.
  • the communication device may be a terminal device or a chip applied to the terminal device. As shown in FIG. 7, the communication device may include: a receiving module 21 and a processing module 22. among them,
  • the receiving module 21 is configured to receive a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used when performing data transmission, where the number of frequency domain resource units of the first frequency domain resource is a first frequency domain resource size, where the frequency domain resource unit is a scheduling unit of a frequency domain resource used for data transmission, where the first frequency domain resource size belongs to a frequency domain resource size set, and the first frequency domain is
  • the resource size is greater than or equal to the predefined size and is smaller than the frequency domain resource size corresponding to the system bandwidth
  • the first frequency domain resource size corresponds to a true subset of the first frequency domain resource pattern set
  • the first frequency domain resource pattern set Included: all frequency domain resource patterns supported by the first frequency domain resource size, and the frequency domain resource units included in each of the frequency domain resource patterns are frequency domain resource units included in the system bandwidth; for example, the pre- The defined size is equal to one-half of the number of frequency domain resource units included in the system bandwidth.
  • the processing module 22 is configured to determine the first frequency domain resource according to the first RIV and the frequency domain resource size set.
  • the system bandwidth does not belong to each The frequency domain resource unit of the frequency domain resource pattern is discontinuous; and/or, when the first frequency domain resource size is smaller than a predefined size, the frequency domain resource unit of each frequency domain resource pattern included in the true subset Discontinuous.
  • the true subset when the first frequency domain resource size is greater than the predefined size, the true subset includes only one frequency domain resource pattern.
  • the communication device provided by the embodiment of the present application may perform the action of the terminal device shown in the second mode in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • the communication device may implement some or all of the functions of the network device described above by software, hardware, or a combination of both.
  • the communication device may be a network device or a chip applied to the network device.
  • the communication device may include a processing module 31 and a transmitting module 32. among them,
  • the processing module 31 is configured to generate a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used when performing data transmission, where the number of frequency domain resource units of the first frequency domain resource is a frequency domain resource size, where the frequency domain resource unit is a scheduling unit of a frequency domain resource used for data transmission, where the first frequency domain resource size belongs to a frequency domain resource size set, and the frequency domain resource size set Configured by higher layer signaling;
  • the sending module 32 is configured to send the first resource indication value RIV.
  • the second RIV is used to indicate the second frequency domain resource, where the number of the frequency domain resource units of the second frequency domain resource is the second frequency domain resource size, and the second frequency domain The resource size belongs to the frequency domain resource size set; when the second RIV is smaller than the first RIV, the second frequency domain resource size is less than or equal to the first frequency domain resource size.
  • a number of the first frequency domain resource unit of the second frequency domain resource is greater than the The number of the first frequency domain resource unit of the first frequency domain resource; or the number of the first M frequency domain resource units of the second frequency domain resource is equal to the first M frequency domain resources of the first frequency domain resource
  • the number of the unit, and the number of the M+1th frequency domain resource unit in the second frequency domain resource is greater than the number of the M+1th frequency domain resource unit in the first frequency domain resource, where the M is A positive integer.
  • the communication device provided by the embodiment of the present application may perform the action of the network device shown in the first mode in the foregoing method, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • the communication device may implement some or all of the functions of the network device described above by software, hardware, or a combination of both.
  • the communication device may be a network device or a chip applied to the network device.
  • the communication device may include a processing module 41 and a transmitting module 42. among them,
  • the processing module 41 is configured to generate a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used when performing data transmission, where the number of frequency domain resource units of the first frequency domain resource is a first frequency domain resource size, where the frequency domain resource unit is a scheduling unit of a frequency domain resource used for data transmission, where the first frequency domain resource size belongs to a frequency domain resource size set, and the first frequency domain is
  • the resource size is greater than or equal to the predefined size and is smaller than the frequency domain resource size corresponding to the system bandwidth
  • the first frequency domain resource size corresponds to a true subset of the first frequency domain resource pattern set
  • the first frequency domain resource pattern set Included: all frequency domain resource patterns supported by the first frequency domain resource size, and the frequency domain resource units included in each of the frequency domain resource patterns are frequency domain resource units included in the system bandwidth; for example, the pre- The defined size is equal to one-half of the number of frequency domain resource units included in the system bandwidth.
  • the sending module 42 is configured to send the first resource indication value RIV.
  • the system bandwidth does not belong to each The frequency domain resource unit of the frequency domain resource pattern is discontinuous; and/or, when the first frequency domain resource size is smaller than a predefined size, the frequency domain resource unit of each frequency domain resource pattern included in the true subset Discontinuous.
  • the true subset when the first frequency domain resource size is greater than the predefined size, the true subset includes only one frequency domain resource pattern.
  • the communication device provided by the embodiment of the present application may perform the action of the network device shown in the second mode in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the above implementation module may be a transmitter when the actual implementation is implemented, and may be a receiver when the receiving module is actually implemented.
  • the processing module can be implemented in software in the form of processing component calls; it can also be implemented in hardware.
  • the processing module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above processing module.
  • all or part of these modules can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASICs), or one or more microprocessors (digital) Signal processor, DSP), or one or more field programmable gate arrays (FPGAs).
  • ASICs application specific integrated circuits
  • DSP digital signal processor
  • FPGAs field programmable gate arrays
  • the processing component can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program code.
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 10 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • the communication device may include a processor 51 (for example, a CPU), a memory 52, and a receiver 53.
  • the receiver 53 is coupled to the processor 51, and the processor 51 controls the receiving action of the receiver 53.
  • the memory 52 may include a high-speed random access memory (RAM), and may also include a non-volatile memory (NVM), such as at least one disk memory, in which various instructions may be stored. , for performing various processing functions and implementing the method steps of the present application.
  • the communication device involved in the present application may further include: a transmitter 54, a power source 55, a communication bus 56, and a communication port 57.
  • the receiver 53 and the transmitter 54 may be integrated in the transceiver of the communication device or may be an independent transceiver antenna on the communication device.
  • Communication bus 56 is used to implement a communication connection between the components.
  • the communication port 57 is used to implement connection communication between the communication device and other peripheral devices.
  • the memory 52 is used to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 51 of the communication device to perform processing of the terminal device in the foregoing method embodiment.
  • the receiver 53 performs the receiving operation of the terminal device in the foregoing method embodiment, so that the transmitter 54 performs the sending operation of the terminal device in the foregoing method embodiment.
  • the receiver 53 is configured to receive a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used for data transmission, where the frequency domain resource unit of the first frequency domain resource
  • the quantity is a first frequency domain resource size
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used for data transmission
  • the first frequency domain resource size belongs to a frequency domain resource size set
  • the frequency domain resource is The size set is configured by the high layer signaling
  • the processor 51 is configured to determine the first frequency domain resource according to the first RIV and the frequency domain resource size set.
  • the second RIV is used to indicate the second frequency domain resource, and the number of the frequency domain resource units of the second frequency domain resource is the second frequency domain resource size
  • the second frequency domain resource size belongs to the frequency domain resource size set; when the second RIV is smaller than the first RIV, the second frequency domain resource size is less than or equal to the first frequency domain resource size.
  • the number of the first frequency domain resource unit of the second frequency domain resource is greater than the first frequency domain resource.
  • the number of the first M frequency domain resource units of the second frequency domain resource is equal to the number of the first M frequency domain resource units of the first frequency domain resource, and The number of the M+1th frequency domain resource unit in the second frequency domain resource is greater than the number of the M+1th frequency domain resource unit in the first frequency domain resource, where the M is a positive integer.
  • the receiver 53 is configured to receive a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used for data transmission, where the frequency domain resource unit of the first frequency domain resource
  • the quantity is a first frequency domain resource size
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used for data transmission
  • the first frequency domain resource size belongs to a frequency domain resource size set, where the first When the frequency domain resource size is greater than or equal to the predefined size and is smaller than the frequency domain resource size corresponding to the system bandwidth, the first frequency domain resource size corresponds to the true subset of the first frequency domain resource pattern set, and the first frequency domain resource
  • the set of patterns includes: all the frequency domain resource patterns supported by the first frequency domain resource size, and the frequency domain resource units included in each of the frequency domain resource patterns are frequency domain resource units included in the system bandwidth; And determining, according to the first RIV, and the frequency domain resource size set, the first frequency domain resource.
  • the predefined size is equal to one-half of the number of frequency
  • each frequency domain resource pattern included in the true subset is in the system bandwidth.
  • a frequency domain resource unit that does not belong to each of the frequency domain resource patterns is discontinuous; and/or, when the first frequency domain resource size is smaller than a predefined size, each of the frequency domain resource patterns included in the true subset The frequency domain resource unit is not continuous.
  • the true subset includes only one frequency domain resource pattern.
  • the communication device provided by the embodiment of the present application may perform the action of the terminal device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • the communication device may include a processor 61 (for example, a CPU), a memory 62, and a transmitter 64.
  • the transmitter 64 is coupled to the processor 61, and the processor 61 controls the transmitting action of the transmitter 64.
  • the memory 62 may A high speed RAM memory is also included, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the method steps of the present application.
  • the communication device involved in the present application may further include: a receiver 63, a power source 65, a communication bus 66, and a communication port 67.
  • the receiver 63 and the transmitter 64 may be integrated in the transceiver of the communication device or may be an independent transceiver antenna on the communication device.
  • Communication bus 66 is used to implement a communication connection between components.
  • the communication port 67 is used to implement connection communication between the communication device and other peripheral devices.
  • the above-mentioned memory 62 is used to store computer executable program code, and the program code includes instructions; when the processor 61 executes the instruction, the instruction causes the processor 61 of the communication device to perform the processing action of the network device in the above method embodiment,
  • the receiver 63 is configured to perform the receiving action of the network device in the foregoing method embodiment, so that the transmitter 64 performs the sending action of the network device in the foregoing method embodiment.
  • the processor 61 is configured to generate a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used for data transmission, and the frequency domain resource unit of the first frequency domain resource
  • the quantity is a first frequency domain resource size
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used for data transmission
  • the first frequency domain resource size belongs to a frequency domain resource size set
  • the frequency domain resource is The size set is configured by higher layer signaling
  • the sender 64 is configured to send the first resource indication value RIV.
  • the second RIV is used to indicate the second frequency domain resource, and the number of the frequency domain resource units of the second frequency domain resource is the second frequency domain resource size
  • the second frequency domain resource size belongs to the frequency domain resource size set; when the second RIV is smaller than the first RIV, the second frequency domain resource size is less than or equal to the first frequency domain resource size.
  • the number of the first frequency domain resource unit of the second frequency domain resource is greater than the first frequency domain resource.
  • the number of the first M frequency domain resource units of the second frequency domain resource is equal to the number of the first M frequency domain resource units of the first frequency domain resource, and The number of the M+1th frequency domain resource unit in the second frequency domain resource is greater than the number of the M+1th frequency domain resource unit in the first frequency domain resource, where the M is a positive integer.
  • the processor 61 is configured to generate a first resource indicator value RIV, where the first RIV is used to indicate a first frequency domain resource used for data transmission, and the frequency domain resource unit of the first frequency domain resource
  • the quantity is a first frequency domain resource size
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used for data transmission
  • the first frequency domain resource size belongs to a frequency domain resource size set, where the first When the frequency domain resource size is greater than or equal to the predefined size and is smaller than the frequency domain resource size corresponding to the system bandwidth, the first frequency domain resource size corresponds to the true subset of the first frequency domain resource pattern set, and the first frequency domain resource
  • the set of patterns includes: all frequency domain resource patterns supported by the first frequency domain resource size, and the frequency domain resource units included in each of the frequency domain resource patterns are frequency domain resource units included in the system bandwidth; and the transmitter 64 For transmitting the first resource indication value RIV.
  • the predefined size is equal to one-half of the number of frequency domain resource units included in the system bandwidth.
  • each frequency domain resource pattern included in the true subset is in the system bandwidth.
  • a frequency domain resource unit that does not belong to each of the frequency domain resource patterns is discontinuous; and/or, when the first frequency domain resource size is smaller than a predefined size, each of the frequency domain resource patterns included in the true subset The frequency domain resource unit is not continuous.
  • the true subset includes only one frequency domain resource pattern.
  • the communication device provided by the embodiment of the present application may perform the action of the network device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg Coax, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).
  • plural refers to two or more.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character “/” in this article generally indicates that the contextual object is an “or” relationship; in the formula, the character “/” indicates that the contextual object is a "divide” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息传输方法、通信装置及存储介质,网络设备利用高层信令为终端设备配置一个包括系统带宽所支持的部分频域资源大小的频域资源大小集合,以使得网络设备可以为终端设备分配该频域资源大小集合中一个频域资源大小对应的频域资源,并使用该频域资源对应的RIV指示该频域资源。由于RIV所占用的比特数与网络设备可以为终端设备可分配的频域资源的方案正相关(即当RIV所占比特数增加或减少时,网络设备可以为待传输数据分配的频域资源方案也随之增加或减少),因此,通过缩减网络设备可以为终端设备可分配的频域资源的方案,可以进一步压缩控制信息中的资源分配信息占用的比特数,以提高进一步提高控制信息的可靠性。

Description

信息传输方法、通信装置及存储介质 技术领域
本申请实施例涉及通信技术,尤其涉及一种信息传输方法、通信装置及存储介质。
背景技术
长期演进(long term evolution,LTE)通信系统中,网络设备与终端设备之间传输的数据在物理层被划分成以传输块(transport block,TB)为单位的数据包。TB的传输基于网络设备的调度。即,网络设备通过下行控制信道向终端设备发送控制信息,以通过控制信息指示被调度的TB的调度信息。其中,该调度信息包括被调度的TB的资源分配信息(即所使用的时域资源和频域资源)、调制编码方式(modulation and coding scheme,MCS)索引等。
现有的LTE通信系统中,网络设备可以采用下行资源分配类型0或下行资源分配类型2的分配方式,分配传输下行TB时所使用的频域资源,采用上行资源分配类型0的分配方式,分配传输上行TB时所使用的频域资源。当网络设备采用下行资源分配类型0的分配方式分配频域资源时,网络设备可以在资源分配信息中携带位图(bitmap),来指示为被调度的TB分配的资源块组(resource block group,RBG)。当网络设备采用下行资源分配类型2或上行资源分配类型0的分配方式分配频域资源时,网络设备可以通过在资源分配信息中携带资源指示值(resource indicator value,RIV)来指示为被调度的TB分配的一段连续的资源块(resource block,RB)。
超可靠低延迟通信(ultra-reliable and low latency communications,URLLC)业务为第五代(fifth generation,5G)通信系统中的一个重要的业务,传输时要求非常高的可靠性和非常短的时延。为使控制信息的可靠性满足URLLC业务对可靠性的要求,5G通信系统要求将控制信息中的资源分配信息进行压缩。然而,现有的压缩资源分配信息的方式,虽然可以在一定程度上压缩控制信息中的资源分配信息占用的比特数,但是资源分配信息占用的比特数仍然较多,导致控制信息的可靠性较低。
发明内容
本申请实施例提供一种信息传输方法、通信装置及存储介质,用于解决因资源分配信息占用的比特数较多,导致控制信息的可靠性较低的技术问题。
第一方面,本申请实施例提供一种信息传输方法。该方法中的第一通信装置可以为终端设备,也可以为终端设备中的芯片。本申请实施例的方法中的第二通信装置可以为网络设备,也可以为网络设备中的芯片。下述以第一通信装置为终端设备、第二通信装置为网络设备为例对该方法进行描述,该方法包括:包括:
终端设备接收第一资源指示值RIV,所述第一RIV用于指示网络设备与所述终端设备进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为所述网络设备与所述终端设备进行数据传输时所使用 的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,所述频域资源大小集合由高层信令配置;
所述终端设备根据所述第一RIV,以及,所述频域资源大小集合,确定所述第一频域资源。
通过第一方面提供的信息传输方法,网络设备可以利用高层信令为终端设备配置一个包括系统带宽所支持的部分频域资源大小的频域资源大小集合,以使得网络设备可以为待传输数据分配该频域资源大小集合中一个频域资源大小对应的频域资源,并使用该频域资源对应的RIV指示该频域资源。由于RIV所占用的比特数与网络设备可以为待传输数据可分配的频域资源的方案正相关(即当RIV所占比特数增加或减少时,网络设备可以为待传输数据分配的频域资源方案也随之增加或减少),因此,通过缩减网络设备可以为待传输数据可分配的频域资源的方案,可以进一步压缩控制信息中的资源分配信息占用的比特数,以提高进一步提高控制信息的可靠性。
在一种可能的设计中,第二RIV用于指示第二频域资源,所述第二频域资源的频域资源单元的数量为第二频域资源大小,所述第二频域资源大小属于所述频域资源大小集合;
当第二RIV小于所述第一RIV时,所述第二频域资源大小小于或等于所述第一频域资源大小。
通过该可能的设计提供的信息传输方法,便于网络设备计算用于指示频域资源的RIV,提高了网络设备生成控制信息的效率。相应地,也便于终端设备快速确定第一RIV所指示的第一频域资源,降低了终端设备处理控制信息的时间,进而降低了数据传输的时延进而降低了数据传输的时延。
在一种可能的设计中,在所述第二频域资源大小等于所述第一频域资源大小时,所述第二频域资源的第一个频域资源单元的编号大于所述第一频域资源的第一个频域资源单元的编号;或者,
所述第二频域资源的前M个频域资源单元的编号等于所述第一频域资源的前M个频域资源单元的编号,且所述第二频域资源中第M+1个频域资源单元的编号,大于所述第一频域资源中第M+1个频域资源单元的编号,所述M为正整数。
通过该可能的设计提供的信息传输方法,便于网络设备计算用于指示频域资源的RIV,提高了网络设备生成控制信息的效率。相应地,也便于终端设备快速确定第一RIV所指示的第一频域资源,降低了终端设备处理控制信息的时间,进而降低了数据传输的时延进而降低了数据传输的时延。
第二方面,本申请实施例提供一种信息传输方法。该方法中的第一通信装置可以为终端设备,也可以为终端设备中的芯片。本申请实施例的方法中的第二通信装置可以为网络设备,也可以为网络设备中的芯片。下述以第一通信装置为终端设备、第二通信装置为网络设备为例对该方法进行描述,该方法包括:包括:
终端设备接收第一资源指示值RIV,所述第一RIV用于指示网络设备与所述终端设备进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为所述网络设备与所述终端设备进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,在所述第一频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小时,所述第一频域 资源大小对应第一频域资源图样集合的真子集,所述第一频域资源图样集合包括:所述第一频域资源大小支持的所有频域资源图样,每个所述频域资源图样包括的频域资源单元均为所述系统带宽包括的频域资源单元;
所述终端设备根据所述第一RIV,以及,所述频域资源大小集合,确定所述第一频域资源。
通过第二方面提供的信息传输方法,网络设备可以利用高层信令为终端设备配置一个包括系统带宽所支持的部分频域资源大小的频域资源大小集合,其中,每个频域资源大小可以对应所有的频域资源图样或者部分频域资源图样,以使得网络设备可以为待传输数据分配该频域资源大小集合中一个频域资源大小对应的部分频域资源图样中的一个频域资源图样,并使用该频域资源对应的RIV指示该频域资源。由于RIV所占用的比特数与网络设备可以为待传输数据可分配的频域资源的方案正相关(即当RIV所占比特数增加或减少时,网络设备可以为待传输数据分配的频域资源方案也随之增加或减少),因此,通过缩减网络设备可以为待传输数据可分配的频域资源的方案,可以进一步压缩控制信息中的资源分配信息占用的比特数,以提高进一步提高控制信息的可靠性。
在一种可能的设计中,当所述第一频域资源大小大于或等于预定义大小时,所述真子集包括的每个频域资源图样中,所述系统带宽中不属于每个所述频域资源图样的频域资源单元不连续;和/或,当所述第一频域资源大小小于预定义大小时,所述真子集包括的每个频域资源图样的频域资源单元不连续。
通过该可能的设计提供的信息传输方法,由于选择系统带宽中最好的多个RBG(也可以称为频率选择),与,在系统带宽中均匀选取RBG(也可以称为频率分集)的传输性能的差距较小。也就是说,采用频率分集的方式传输数据不会明显造成传输性能的下降。因此,通过上述方式配置频域资源大小集合中各个频域资源大小对应的真子集,即便网络设备无法获知网络设备与终端设备之间的信道质量,网络设备也仍然可以为终端设备分配能够保证传输性能的频域资源,确保了数据传输的性能。
在一种可能的设计中,所述预定义大小等于所述系统带宽包括的频域资源单元的数量的二分之一。
通过该可能的设计提供的信息传输方法,由于频域资源大小越大,采用频率分集的方式传输数据与使用最好的RBG传输数据,传输性能差距越小。因此,将频域资源大小集合中大于或等于系统带宽包括的频域资源单元的数量的二分之一的频域资源大小对应一个真子集,使得网络设备在无法获知网络设备与终端设备之间的信道质量,也可以为终端设备分配能够保证传输性能的频域资源,确保了数据传输的性能。
在一种可能的设计中,在所述第一频域资源大小大于所述预定义大小时,所述真子集只包括一个频域资源图样。
通过该可能的设计提供的信息传输方法,可以进一步缩减网络设备为待传输数据可分配的频域资源的方案。由于RIV所占用的比特数与网络设备可以为待传输数据可分配的频域资源的方案正相关(即当RIV所占比特数增加或减少时,网络设备可以为待传输数据分配的频域资源方案也随之增加或减少),因此,通过缩减网络设备可以为待传输数据可分配的频域资源的方案,可以进一步压缩控制信息中的资源分配信息占用的比特数,以提高进一步提高控制信息的可靠性。
第三方面,本申请实施例提供一种信息传输方法。该方法中的第一通信装置可以为终端设备,也可以为终端设备中的芯片。本申请实施例的方法中的第二通信装置可以为网络设备,也可以为网络设备中的芯片。下述以第一通信装置为终端设备、第二通信装置为网络设备为例对该方法进行描述,该方法包括:包括:
网络设备生成第一资源指示值RIV,所述第一RIV用于指示所述网络设备与终端设备进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为所述网络设备与所述终端设备进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,所述频域资源大小集合由高层信令配置;
所述网络设备向所述终端设备发送第一资源指示值RIV。
在一种可能的设计中,第二RIV用于指示第二频域资源,所述第二频域资源的频域资源单元的数量为第二频域资源大小,所述第二频域资源大小属于所述频域资源大小集合;
当第二RIV小于所述第一RIV时,所述第二频域资源大小小于或等于所述第一频域资源大小。
在一种可能的设计中,在所述第二频域资源大小等于所述第一频域资源大小时,所述第二频域资源的第一个频域资源单元的编号大于所述第一频域资源的第一个频域资源单元的编号;或者,
所述第二频域资源的前M个频域资源单元的编号等于所述第一频域资源的前M个频域资源单元的编号,且所述第二频域资源中第M+1个频域资源单元的编号,大于所述第一频域资源中第M+1个频域资源单元的编号,所述M为正整数。
上述第三方面和第三方面的各可能的设计所提供的信息传输方法,其有益效果可以参见上述第一方面和第一方面的各可能的设计所带来的有益效果,在此不加赘述。
第四方面,本申请实施例提供一种信息传输方法。该方法中的第一通信装置可以为终端设备,也可以为终端设备中的芯片。本申请实施例的方法中的第二通信装置可以为网络设备,也可以为网络设备中的芯片。下述以第一通信装置为终端设备、第二通信装置为网络设备为例对该方法进行描述,该方法包括:包括:
网络设备生成第一资源指示值RIV,所述第一RIV用于指示所述网络设备与终端设备进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为所述网络设备与所述终端设备进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,在所述第一频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小时,所述第一频域资源大小对应第一频域资源图样集合的真子集,所述第一频域资源图样集合包括:所述第一频域资源大小支持的所有频域资源图样,每个所述频域资源图样包括的频域资源单元均为所述系统带宽包括的频域资源单元;
所述网络设备向所述终端设备发送第一资源指示值RIV。
在一种可能的设计中,当所述第一频域资源大小大于或等于预定义大小时,所述真子集包括的每个频域资源图样中,所述系统带宽中不属于每个所述频域资源图样的频域资源单元不连续;和/或,
当所述第一频域资源大小小于预定义大小时,所述真子集包括的每个频域资源图样的 频域资源单元不连续。
在一种可能的设计中,所述预定义大小等于所述系统带宽包括的频域资源单元的数量的二分之一。
在一种可能的设计中,在所述第一频域资源大小大于所述预定义大小时,所述真子集只包括一个频域资源图样。
上述第四方面和第四方面的各可能的设计所提供的信息传输方法,其有益效果可以参见上述第二方面和第二方面的各可能的设计所带来的有益效果,在此不加赘述。
第五方面,本申请实施例提供一种通信装置,该通信装置可以为终端设备,也可以为应用于终端设备的芯片,该通信装置包括:
接收模块,用于接收第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,所述频域资源大小集合由高层信令配置;
处理模块,用于根据所述第一RIV,以及,所述频域资源大小集合,确定所述第一频域资源。
在一种可能的设计中,第二RIV用于指示第二频域资源,所述第二频域资源的频域资源单元的数量为第二频域资源大小,所述第二频域资源大小属于所述频域资源大小集合;
当第二RIV小于所述第一RIV时,所述第二频域资源大小小于或等于所述第一频域资源大小。
在一种可能的设计中,在所述第二频域资源大小等于所述第一频域资源大小时,所述第二频域资源的第一个频域资源单元的编号大于所述第一频域资源的第一个频域资源单元的编号;或者,
所述第二频域资源的前M个频域资源单元的编号等于所述第一频域资源的前M个频域资源单元的编号,且所述第二频域资源中第M+1个频域资源单元的编号,大于所述第一频域资源中第M+1个频域资源单元的编号,所述M为正整数。
上述第五方面和第五方面的各可能的设计所提供的通信装置,其有益效果可以参见上述第一方面和第一方面的各可能的设计所带来的有益效果,在此不加赘述。
第六方面,本申请实施例提供一种通信装置,该通信装置可以为终端设备,也可以为应用于终端设备的芯片,该通信装置包括:
接收模块,用于接收第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,在所述第一频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小时,所述第一频域资源大小对应第一频域资源图样集合的真子集,所述第一频域资源图样集合包括:所述第一频域资源大小支持的所有频域资源图样,每个所述频域资源图样包括的频域资源单元均为所述系统带宽包括的频域资源单元;
处理模块,用于根据所述第一RIV,以及,所述频域资源大小集合,确定所述第一频域资源。
在一种可能的设计中,当所述第一频域资源大小大于或等于预定义大小时,所述真子 集包括的每个频域资源图样中,所述系统带宽中不属于每个所述频域资源图样的频域资源单元不连续;和/或,
当所述第一频域资源大小小于预定义大小时,所述真子集包括的每个频域资源图样的频域资源单元不连续。
在一种可能的设计中,所述预定义大小等于所述系统带宽包括的频域资源单元的数量的二分之一。
在一种可能的设计中,在所述第一频域资源大小大于所述预定义大小时,所述真子集只包括一个频域资源图样。
上述第六方面和第六方面的各可能的设计所提供的通信装置,其有益效果可以参见上述第二方面和第二方面的各可能的设计所带来的有益效果,在此不加赘述。
第七方面,本申请实施例提供一种通信装置,该通信装置可以为网络设备,也可以为应用于网络设备的芯片,该通信装置包括:
处理模块,用于生成第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,所述频域资源大小集合由高层信令配置;
发送模块,用于发送第一资源指示值RIV。
在一种可能的设计中,第二RIV用于指示第二频域资源,所述第二频域资源的频域资源单元的数量为第二频域资源大小,所述第二频域资源大小属于所述频域资源大小集合;
当第二RIV小于所述第一RIV时,所述第二频域资源大小小于或等于所述第一频域资源大小。
在一种可能的设计中,在所述第二频域资源大小等于所述第一频域资源大小时,所述第二频域资源的第一个频域资源单元的编号大于所述第一频域资源的第一个频域资源单元的编号;或者,
所述第二频域资源的前M个频域资源单元的编号等于所述第一频域资源的前M个频域资源单元的编号,且所述第二频域资源中第M+1个频域资源单元的编号,大于所述第一频域资源中第M+1个频域资源单元的编号,所述M为正整数。
上述第七方面和第七方面的各可能的设计所提供的通信装置,其有益效果可以参见上述第一方面和第一方面的各可能的设计所带来的有益效果,在此不加赘述。
第八方面,本申请实施例提供一种通信装置,该通信装置可以为网络设备,也可以为应用于网络设备的芯片,该通信装置包括:
处理模块,用于生成第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,在所述第一频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小时,所述第一频域资源大小对应第一频域资源图样集合的真子集,所述第一频域资源图样集合包括:所述第一频域资源大小支持的所有频域资源图样,每个所述频域资源图样包括的频域资源单元均为所述系统带宽包括的频域资源单元;
发送模块,用于发送第一资源指示值RIV。
在一种可能的设计中,当所述第一频域资源大小大于或等于预定义大小时,所述真子集包括的每个频域资源图样中,所述系统带宽中不属于每个所述频域资源图样的频域资源单元不连续;和/或,
当所述第一频域资源大小小于预定义大小时,所述真子集包括的每个频域资源图样的频域资源单元不连续。
在一种可能的设计中,所述预定义大小等于所述系统带宽包括的频域资源单元的数量的二分之一。
在一种可能的设计中,在所述第一频域资源大小大于所述预定义大小时,所述真子集只包括一个频域资源图样。
上述第八方面和第八方面的各可能的设计所提供的通信装置,其有益效果可以参见上述第二方面和第二方面的各可能的设计所带来的有益效果,在此不加赘述。
第九方面,本申请实施例提供一种通信装置,所述通信装置包括:处理器、存储器、接收器;所述接收器耦合至所述处理器,所述处理器控制所述接收器的接收动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述通信装置执行如第一方面或第一方面的各可能的设计所提供的信息传输方法。
第十方面,本申请实施例提供一种通信装置,所述通信装置包括:处理器、存储器、接收器;所述接收器耦合至所述处理器,所述处理器控制所述接收器的接收动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述通信装置执行如第二方面或第二方面的各可能的设计所提供的信息传输方法。
第十一方面,本申请实施例提供一种通信装置,所述通信装置包括:处理器、存储器、发送器;所述发送器均耦合至所述处理器,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述通信装置执行如第三方面或第三方面的各可能的设计所提供的信息传输方法。
第十二方面,本申请实施例提供一种通信装置,所述通信装置包括:处理器、存储器、发送器;所述发送器均耦合至所述处理器,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述通信装置执行如第四方面或第四方面的各可能的设计所提供的信息传输方法。
第十三方面,本申请实施例提供一种通信装置,包括用于执行以上第一方面或第一方面各可能的设计所提供的方法的单元、模块或电路。该通信装置可以为终端设备,也可以为应用于终端设备的一个模块,例如,可以为应用于终端设备的芯片。
第十四方面,本申请实施例提供一种通信装置,包括用于执行以上第二方面或第二方面各可能的设计所提供的方法的单元、模块或电路。该通信装置可以为终端设备,也可以为应用于终端设备的一个模块,例如,可以为应用于终端设备的芯片。
第十五方面,本申请实施例提供一种通信装置,包括用于执行以上第三方面或第三方面各可能的设计所提供的方法的单元、模块或电路。该通信装置可以为网络设备,也可以 为应用于网络设备的一个模块,例如,可以为应用于网络设备的芯片。
第十六方面,本申请实施例提供一种通信装置,包括用于执行以上第四方面或第四方面各可能的设计所提供的方法的单元、模块或电路。该通信装置可以为网络设备,也可以为应用于网络设备的一个模块,例如,可以为应用于网络设备的芯片。
第十七方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的各种可能的设计中的方法。
第十八方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的各种可能的设计中的方法。
第十九方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的各种可能的设计中的方法。
第二十方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的各种可能的设计中的方法。
第二十一方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的各种可能的设计中的方法。
第二十二方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的各种可能的设计中的方法。
第二十三方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的各种可能的设计中的方法。
第二十四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的各种可能的设计中的方法。
本申请实施例提供的信息传输方法、通信装置及存储介质,网络设备可以利用高层信令为终端设备配置一个包括系统带宽所支持的部分频域资源大小的频域资源大小集合,以使得网络设备可以为待传输数据分配该频域资源大小集合中一个频域资源大小对应的频域资源,并使用该频域资源对应的RIV指示该频域资源。由于RIV所占用的比特数与网络设备可以为待传输数据可分配的频域资源的方案正相关(即当RIV所占比特数增加或减少时,网络设备可以为待传输数据分配的频域资源方案也随之增加或减少),因此,通过缩减网络设备可以为待传输数据可分配的频域资源的方案,可以进一步压缩控制信息中的资源分配信息占用的比特数,以提高进一步提高控制信息的可靠性。
附图说明
图1为本申请实施例应用的移动通信系统的架构示意图;
图2A为现有的sTTI的示意图;
图2B为现有的频域资源分配示意图一;
图2C为现有的频域资源分配示意图二;
图2D为现有的频域资源分配示意图三;
图2E为现有的频域资源分配示意图四;
图3为本申请实施例提供的一种信息传输方法的信令流程图;
图4A为本申请实施例提供的一种频域资源分布示意图一;
图4B为本申请实施例提供的一种频域资源分布示意图二;
图5为本申请实施例提供的一种频域资源分布示意图三;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的另一种通信装置的结构示意图;
图8为本申请实施例提供的又一种通信装置的结构示意图;
图9为本申请实施例提供的又一种通信装置的结构示意图;
图10为本申请实施例提供的又一种通信装置的结构示意图;
图11为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
图1为本申请实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统可以包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备120相连,无线接入网设备120通过无线或有线方式与核心网设备110连接。核心网设备110与无线接入网设备120可以是独立的不同的物理设备,也可以是将核心网设备110的功能与无线接入网设备120的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备110的功能和部分的无线接入网设备120的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该移动通信系统中还可以包括其它网络设备,例如还可以包括无线中继设备和无线回传设备等,在图1中未画出。本申请实施例对该移动通信系统中包括的核心网设备110、无线接入网设备120和终端设备的数量不做限定。
无线接入网设备120是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、5G移动通信系统或新一代无线(new radio,NR)通信系统中的基站、未来移动通信系统中的基站、WiFi系统中的接入节点等,本申请实施例对无线接入网设备120所采用的具体技术和具体设备形态不做限定。在本申请实施例中,无线接入网设备120简称网络设备,如果无特殊说明,在本申请实施例中,网络设备均指无线接入网设备120。另外,在本申请实施例中,术语5G和NR可以等同。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
无线接入网设备120和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请实施例对无线接入网设备120和终端设备的应用场景不做限定。
无线接入网设备120和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备120和终端设备之间可以通过6吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请实施例对无线接入网设备120和终端设备之间所使用的频谱资源不做限定。
以图1所示的移动通信系统的架构为例,在现有的LTE通信系统中,网络设备与终端设备之间传输的数据在物理层被划分成以TB为单位的数据包。其中,TB的传输基于网络设备的调度。
具体地,网络设备通过下行控制信道向终端设备发送控制信息,以通过控制信息指示被调度的TB对应的混合自动重传请求(hybrid automatic repeat request,HARQ)进程号和被调度的TB的调度信息。其中,该调度信息包括被调度的TB的资源分配信息(即所使用的时域资源和频域资源)、MCS索引等。上述所说的下行控制信道例如可以为物理下行控制信道(physical downlink control channel,PDCCH)、或者、短物理下行控制信道(short physical downlink control channel,sPDCCH)。上述所说的控制信息例如可以为下行控制信息(downlink control information,DCI)。
在LTE通信系统中,时域资源的调度单位可以称为为一个时间单元也可以称为一个传输期间(Transmission Duration)。该时间单元可以包括N个符号(symbol),其中,N为正整数。本申请不限定时间单元的时间长度,即不限定N的取值。例如:一个时间单元可以是一个时长为1毫秒(millisecond,ms)的子帧。即,网络设备在调度TB时,至少要为该TB分配一个子帧。其中,一个子帧可以包括两个时隙,一个子帧由12或14个符号组成,一个时隙可以包括6个或7个时域符号(symbol)。需要说明的是,由于传输时间间隔(transmission time interval,TTI)与子帧的物理意义基本一致,如果无特殊说明,在本申请实施例中,子帧与TTI可以等同。
可以理解,本申请实施例对一个符号的时间长度不做限制。例如,针对不同的子载波间隔,一个符号的长度可以有所不同。不失一般性,符号包括上行符号和下行符号。其中,上行符号例如可以为单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)符号或正交频分多址(orthogonal frequency division multiplexing,OFDM)符号,下行符号例如可以为OFDM符号。需要说明的是,若后续技术引入新的上行多址方式或下行多址方式,仍然可以称为符号。本申请对于上行多址方式和下行多址方式不做限制。
为满足低时延业务数据的传输需求,LTE通信系统中引入了更短的调度单位。例如,一个时间单元可以为一个时隙、或者、一个迷你时隙(mini-slot)、或者、2个或3个时域符号等。即,网络设备在调度TB时,可以为该TB分配小于一个子帧的时域资源。在本申请实施例中,短于1ms的时域资源的调度单位称为短传输时间间隔(short transmission time interval,sTTI)或者短传输期间(short transmission duration,STD)。后续申请文件以sTTI为例进行说明。图2A为现有的sTTI的示意图。如图2A所示,以sTTI包括2个或3个时域符号为例,一个子帧可以被分为6个长度为2个符号或3个符号的sTTI。
可以理解,未来通信系统中子帧长度、时隙的长度、sTTI的长度可以与LTE通信系统保持一致,也可以与LTE通信系统不同。例如,未来5G通信系统中一个子帧可以为1ms, 包括1、2、4、8、16或32个时隙,一个时隙可以由12或14个符号组成,一个sTTI可以包括2、3或7个符号。
现有的LTE通信系统中,网络设备可以采用下行资源分配类型0或下行资源分配类型2的分配方式,分配传输下行TB时所使用的频域资源。具体地,
下行资源分配类型0:当网络设备采用下行资源分配类型0的分配方式分配频域资源时,频域资源的调度单位可以为RBG。每个RBG包括的RB的数量为P(即RBG粒度为P)。上述P的取值与时间单元长度、通信系统的系统带宽的对应关系可以如下述表1所示。可以理解,这里所说的系统带宽为通信系统中的网络设备与终端设备在进行数据传输时可以使用的最大频率宽度。
表1
Figure PCTCN2018076643-appb-000001
需要说明的是,在时域资源的调度单位(即时间单元)为TTI时,若系统带宽所包括的RB的数量不能被P整除,则最后一个RBG所包括的RB的数量可以小于P。在时域资源的调度单位(即时间单元)为sTTI时,若系统带宽所包括的RB的数量不能被P整除,则最后一个RBG所包括的RB的数量可以大于P,以节省控制信息中资源分配信息所占的比特数。
在该场景下,网络设备可以通过在控制信息中携带bitmap,来指示为被调度的TB分配的频域资源。即,资源分配信息包括bitmap。其中,一个比特对应一个RBG。即bitmap所占用的比特数与系统带宽所包括的RBG的数量相同。当某一个RBG分配给了被调度的TB,则该RBG对应的比特位的取值为1。当某一个RBG未分配给被调度的TB,则该RBG对应的比特位的取值为0。因此,终端设备基于网络设备发送的控制信息中bitmap,可以获知网络设备为被调度的TB分配的频域资源。
图2B为现有的频域资源分配示意图一。如图2B所示,以系统带宽为5MHz、时域资源的调度单位为1ms TTI为例,此时RBG粒度P等于2。也就是说,系统带宽包括13个RBG,前12个RBG中的每个RBG包括2个RB,第13个RBG包括1个RB。bitmap所占用的比特数为13个比特。假定网络设备为被调度的TB分配的频域资源为第1个RBG、第4个RBG、第5个RBG、第6个RBG、第8个RBG、第13个RBG,则上述bitmap可以为1001110100001。
图2C为现有的频域资源分配示意图二。如图2C所示,以系统带宽为5MHz、时域资源的调度单位为sTTI为例,此时RBG粒度P等于6。也就是说,系统带宽包括4个RBG,前3个RBG中的每个RBG包括6个RB,第4个RBG包括7个RB。bitmap所占用的比特数为4个比特。假定网络设备为被调度的TB分配的频域资源为第1个RBG和第3个RBG,则上述bitmap可以为1010。
下行资源分配类型2:当网络设备采用下行资源分配类型2的分配方式分配频域资源时,网络设备为被调度的TB分配的频域资源为一段连续的RB。因此,当网络设备用下行资源分配类型2的分配方式分配频域资源时,所分配的频域资源可以通过频域资源大小和频域资源的起始位置确定。其中,这里所说的频域资源大小为RB的数量。
以时域资源的调度单位为1ms TTI为例,假定系统带宽所对应的RB的数量为N,则网络设备可以为被调度的TB分配的频域资源的方案如下述表2所示:
表2
频域资源大小 频域资源的起始位置 可分配的频域资源的方案
1个RB RB#0~RB#N-1中的任一个 N
2个RB RB#0~RB#N-2中的任一个 N-1
…… …… ……
k个RB RB#0~RB#N-k中的任一个 N-k+1
…… …… ……
N个RB RB#0 1
图2D为现有的频域资源分配示意图三。如图2D所示,每个方格表示一个RB,填充有斜线的方格表示该频域资源大小和该频域资源的起始位置的组合是可行的。即,网络设备可以为被调度的TB分配该频域资源的起始位置和该频域资源大小所指示的频域资源。未填充有斜线的方格表示该频域资源大小和该频域资源的起始位置的组合是不可行的,即,因起始位置靠后,导致网络设备无法在系统带宽所对应的RB内,为被调度的TB分配该频域资源的起始位置和该频域资源大小所指示的频域资源。
在该场景下,网络设备可以通过在控制信息中携带RIV来指示为被调度的TB分配的频域资源。即,资源分配信息包括RIV。结合图2D和表2可知,网络设备可以为被调度的TB可分配的频域资源的方案一共有
Figure PCTCN2018076643-appb-000002
种,因此,可以在控制信息中占用
Figure PCTCN2018076643-appb-000003
个比特指示RIV。
上述RIV可以根据网络设备为被调度的TB分配的频域资源大小、频域资源的起始位置,以及预定义的规则计算得到的。这样,终端设备在接收到携带有该RIV的控制信息后,可以基于该RIV反推出频域资源大小和频域资源的起始位置,进而可以确定被调度的TB所使用的频域资源。
图2E为现有的频域资源分配示意图四。如图2E所示,以N为6、时域资源的调度单位为1ms TTI为例,网络设备可以采用下述两个公式计算RIV,具体地:
RIV=N(x-1)+y           (1)
RIV=N(N-x-1)+(N-1-y)            (2)
其中,上述N为系统带宽所包括的RB的数量,上述x为网络设备为被调度的TB分配的频域资源大小,上述y为网络设备为被调度的TB分配的频域资源的起始位置。当
Figure PCTCN2018076643-appb-000004
时,使用公式(1)计算为被调度的TB分配的频域资源的RIV,否则,使用公式(2)计算为被调度的TB分配的频域资源的RIV。
在该示例下,填充有数字的方格表示该频域资源大小和该频域资源的起始位置的组合 是可行的。其中,该方格中的数字即为该组合所对应的频域资源的RIV,该RIV在控制信息中占用
Figure PCTCN2018076643-appb-000005
个比特指示RIV。相应地,终端设备在接收上述RIV后,可以将该RIV与N相除得到的商和余数确定网络设备为被调度的TB分配的频域资源大小和频域资源的起始位置,具体可以参见现有技术,对此不加赘述。
时域资源的调度单位为sTTI时,网络设备为被调度的TB分配频域资源以及计算频域资源的RIV的方式,可以参见上述时域资源的调度单位为1ms TTI时,网络设备为被调度的TB分配频域资源以及计算频域资源的RIV的方式,对此不再赘述。相应地,现有的LTE通信系统中,网络设备可以采用上行资源分配类型0的分配方式,分配传输上行数据时所使用的频域资源。鉴于上行资源分配类型0与下行资源分配类型2的原理基本相同,因此,在此不再加以赘述。
为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,可以支持多种业务的5G通信系统应运而生。5G通信系统可以支持不同的业务,例如,增强的移动宽带(enhanced Mobile Broadband,eMBB)业务、海量机器类型通信(massive machine type communication,MTC)业务、URLLC业务、多媒体广播多播(multimedia broadcast multicast service,MBMS)业务和定位业务等。
URLLC业务为5G通信系统中的一个重要的业务,传输时要求非常高的可靠性和非常短的时延。例如,传输时延要求在1ms以内、且成功概率(即可靠性)达到99.999%;或者,传输时延要求在10ms以内、且成功概率(即可靠性)达到99.99%。若5G通信系统继续沿用LTE通信系统中的控制信道的可靠性,则无法满足URLLC业务对可靠性的要求。
目前,标准中已经采纳通过压缩控制信息来增强5G通信系统的控制信道的可靠性。即,将控制信息中的一些信息(例如资源分配信息)进行压缩,以降低控制信息的负载大小。这样,在相同时频资源中,相比于传输未经过压缩的DCI,传输压缩后的DCI时可以传输更多的冗余信息。由于冗余信息可以起到校验的作用,所以通过传输更多冗余信息,可以提高控制信道的可靠性,以满足URLLC业务对可靠性的要求。虽然标准中已采纳通过压缩控制信息来增强5G通信系统的控制信道的可靠性,但是目前并未约束对控制信息中的资源分配信息占用的比特数进行压缩的方式。
URLLC业务为低时延业务数据,可以使用调度单位sTTI调度传输URLLC业务数据的时域资源。因此,目前标准中提出在网络设备采用下行资源分配类型0的分配方式,分配传输被调度的TB(即URLLC业务数据)时所使用的频域资源时,可以通过提高RBG粒度来降低资源分配信息占用的比特数。例如,RBG粒度P的取值与时间单元长度、通信系统的系统带宽的对应关系可以如下述表3所示。
表3
Figure PCTCN2018076643-appb-000006
Figure PCTCN2018076643-appb-000007
在网络设备采用下行资源分配类型2或上行资源分配类型0的分配方式,分配传输被调度的TB(即URLLC业务数据)时所使用的频域资源时,可以将原先LTE通信系统为终端设备分配连续的RB,改为分配连续的RBG。分配连续的RBG可以会减少可分配的频域资源的方案的数量。由于RIV在控制信息中占用的比特数与可分配的频域资源的方案的数量正相关(即当RIV所占比特数增加或减少时,网络设备可以为待传输数据分配的频域资源方案也随之增加或减少),因此,通过这种方式,可以降低资源分配信息占用的比特数。
以网络设备采用下行资源分配类型2的分配方式,分配传输被调度的TB(即URLLC业务数据)时所使用的频域资源为例,通信系统的系统带宽、RBG粒度P的取值、与RIV占用的比特数的对应关系可以如下述表4所示:
表4
Figure PCTCN2018076643-appb-000008
通过上述方式,可以在一定程度上压缩控制信息中的资源分配信息占用的比特数,但是资源分配信息仍然占用较多的比特数,导致控制信息的可靠性较低。
网络设备为被调度的TB分配的频域资源大小与TB的大小成正比,与终端设备的信道质量成反比。由于在传输URLLLC业务数据时,MAC层为物理层划分的TB大小变化较小,例如TB大小约为256比特。所以,网络设备为被调度的TB分配频域资源的大小取决于信道质量。因此,本申请实施例提供了一种信息传输方法,第二通信装置利用高层信令为第一通信装置配置一个包括系统带宽所支持的部分频域资源大小的频域资源大小集合,以使得第二通信装置可以为第一通信装置分配该频域资源大小集合中一个频域资源大小对应的频域资源,并使用该频域资源对应的RIV指示该频域资源。由于RIV所占用的比特数与第二通信装置可以为被调度的TB可分配的频域资源的方案正相关(即当RIV所占比特数增加或减少时,网络设备可以为待传输数据分配的频域资源方案也随之增加或减少),因此,通过缩减第二通信装置可以为被调度的TB可分配的频域资源的方案,可以进一步压缩控制信息中的资源分配信息占用的比特数,以提高进一步提高控制信息的可靠性。
需要说明的是,本申请实施例的方法中的第一通信装置可以为终端设备,也可以为终端设备中的芯片。本申请实施例的方法中的第二通信装置可以为网络设备,也可以为网络设备中的芯片。下述申请文件均以第一通信装置为终端设备、第二通信装置为网络设备为例,通过一些实施例对本申请的技术方案进行详细说明。下面这几个实施例可以相互结合, 对于相同或相似的概念或过程可能在某些实施例不再赘述。
图3为本申请实施例提供的一种信息传输方法的信令流程图。如图3所示,该方法可以包括:
S101、网络设备生成第一RIV。
S102、网络设备向终端设备发送第一RIV。
S103、终端设备接收该第一RIV。
S104、终端设备根据第一RIV,以及,频域资源大小集合,确定第一频域资源。
本申请实施例提供的方法,可以适用于采用下行资源分配类型0或下行资源分配类型2的分配方式,分配传输下行数据时所使用的频域资源的场景,也适用于采用上行资源分配类型0分配传输上行数据时所使用的频域资源,均可以达到提高控制信息可靠性的目的。因此,下述申请文件中不再区分资源分配类型,也不区分上行数据和下行数据。另外,在本申请实施例中,在传输URLLLC业务数据时,MAC层会将URLLLC业务数据划分成TB。如果无特殊说明,在本申请实施例中,不专门区分URLLLC业务数据和TB,均以待传输数据代指。
下面基于不同的实现方式,对本申请实施例提供的方法进行介绍。
第一种方式:网络设备通过高层信令为终端设备配置频域资源大小集合,该频域资源大小集合包括系统带宽所支持的部分频域资源大小。这里所说的高层信令例如可以是无线资源控制(radio resource control,RRC)信令、媒体访问控制(medium access control,MAC)控制元素(control element,CE)信令等。
频域资源大小集合中的每个频域资源大小包括的频域资源单元的数量不同。其中,这里所说的频域资源单元为网络设备与终端设备进行数据传输时所使用的频域资源的调度单位,具体可以根据通信系统的配置确定。本申请实施例以频域资源单元为RBG为例进行说明。
在本实施例中,当网络设备与终端设备之间需要传输待传输数据时,网络设备可以根据当前信道质量,在频域资源大小集合中与当前信道质量匹配的频域资源大小,并为待传输数据该频域资源大小对应的频域资源。也就是说,对于属于频域资源大小集合的频域资源大小,网络设备可以为终端设备分配该频域资源大小对应的频域资源。对于不属于频域资源大小集合的频域资源大小,网络设备不能为终端设备分配该频域资源大小对应的频域资源。
以表3所示的RBG粒度P的取值与时间单元长度、通信系统的系统带宽的对应关系为例,假定系统带宽为20MHz、时域资源的调度单位为sTTI,此时RBG粒度P等于12。也就是说,系统带宽包括8个RBG,前7个RBG中的每个RBG包括12个RB,第8个RBG包括16个RB。
假如网络设备通过高层信令为终端设备配置的频域资源大小集合为{2,4,6,8}。LTE通信系统中网络设备可以为待传输数据分配1至8个RBG中任一频域资源大小的频域资源,而在本示例中,网络设备仅可以为待传输数据分配频域资源大小集合中的任一频域资源大小的频域资源,例如,2个RBG大小的频域资源、或4个RBG大小的频域资源、或6个RBG大小的频域资源、或8个RBG大小的频域资源。网络设备不能为待传输数据分配频域资源大小为1或3或5或7对应的频域资源。
在该场景下,网络设备能够为待传输数据分配的频域资源方案有
Figure PCTCN2018076643-appb-000009
共计127种。因此,网络设备可以在资源分配信息中使用7比特指示第一频域资源的RIV。继续参照表3,相比于现有的资源分配信息中指示频域资源的bitmap所占用的比特数相比,可以节约1个比特。
再假如,网络设备通过高层信令为终端设备配置的频域资源大小集合为{1,8}。与LTE通信系统中网络设备可以为网络设备与终端设备之间待传输的数据分配1至8个RBG中任一频域资源大小的频域资源不同,本示例中,网络设备仅可以为网络设备与终端设备之间待传输的数据分配频域资源大小集合中的任一频域资源大小的频域资源,例如,1个RBG大小的频域资源、或8个RBG大小的频域资源。网络设备不能为网络设备与终端设备之间待传输的数据分配频域资源大小为2至7任一对应的频域资源。
在该场景下,网络设备能够为网络设备与终端设备之间待传输的数据分配的频域资源方案有
Figure PCTCN2018076643-appb-000010
共计9种。因此,可以在资源分配信息中使用4比特指示第一频域资源的RIV。继续参照表3,相比于现有的资源分配信息中指示频域资源的bitmap所占用的比特数相比,可以节约4个比特。
在本实施例中,网络设备为该待传输数据分配了频域资源大小集合中的第一频域资源大小对应的第一频域资源。其中,第一频域资源大小为第一频域资源的RBG的数量。这样,网络设备可以生成用于指示该第一频域资源的第一RIV。在本申请实施例中,网络设备可以遵循如下原则,计算第一频域资源的第一RIV,具体地:
在频域资源大小集合中,频域资源大小对应的频域资源的RIV从0开始分配,且RIV连续。例如,频域资源大小集合中所有频域资源大小对应的频域资源分配方案一共有128中,则RIV的取值为0至127。
其中,第二RIV用于指示第二频域资源,第二频域资源的频域资源单元的数量为第二频域资源大小,第二频域资源大小属于频域资源大小集合。当第二RIV小于第一RIV时,第二频域资源大小小于或等于第一频域资源大小。也就是说,在频域资源大小集合中,频域资源大小小的频域资源的RIV小于频域资源大小大的频域资源的RIV。例如,2个RBG大小的频域资源的RIV,小于4个RBG大小的频域资源的RIV。
进一步地,在第二频域资源大小等于第一频域资源大小时,第二频域资源的第一个频域资源单元的编号大于第一频域资源的第一个频域资源单元的编号;或者,第二频域资源的前M个频域资源单元的编号等于第一频域资源的前M个频域资源单元的编号,且第二频域资源中第M+1个频域资源单元的编号,大于第一频域资源中第M+1个频域资源单元的编号,M为正整数。也就是说,在频域资源大小相同的情况下,频域资源对应的bitmap数值越大,频域资源的RIV越大。以系统带宽包括8个RBG、频域资源大小为2个RBG为例,假定频域资源A包括的RBG编号为RBG0和RBG1,即频域资源A对应的bitmap是11000000。频域资源B包括的RBG编号为RBG3和RBG4,即频域资源B对应的bitmap是00110000。由于11000000>00110000,所以频域资源A的RIV大于频域资源B的RIV。
以网络设备通过高层信令为终端设备配置的频域资源大小集合为{a 1,a 2,…,a n}为例,其中,a 1<a 2<…<a n。假定第一频域资源大小为a i个RBG,第一频域资源包括的RBG的编号分别为#M 1、#M 2、…、、
Figure PCTCN2018076643-appb-000011
Figure PCTCN2018076643-appb-000012
参照前述计算RIV的原则,a i个RBG大小对应的频域资源的RIV需要大于频域资源大小集合中小于a i个RBG大小的频域资源大对应的频域资源的RIV。由于网络设备可以为待传输 数据分配的第一频域资源的方案一共有
Figure PCTCN2018076643-appb-000013
种,则频域资源方案与RIV的对应关系可以如下述表5所示:
表5
Figure PCTCN2018076643-appb-000014
通过上述表5可以得出:若第一频域资源大小为a i个RBG,则第一频域资源的第一RIV可以用如下公式(3)表示:
Figure PCTCN2018076643-appb-000015
其中,
Figure PCTCN2018076643-appb-000016
j为正整数,i表示第一频域资源大小在频域资源大小集合中的排序位置,N表示系统带宽包括的RBG的数量,a j表示频域资源大小集合中排序位置为j的频域资源大小。以频域资源大小集合为{2,4,6,8}为例,当a j为4时,j等于2,即4为频域资源大小集合中排序位置为2的频域资源大小。
参照前述计算RIV的原则,在频域资源大小相同的情况下,频域资源对应的bitmap数值越大,频域资源的RIV越大。即,第一频域资源的RIV应该大于所有bitmap数值比他小的方案。第一频域资源包括的RBG的编号分别为#M 1、#M 2、…、、
Figure PCTCN2018076643-appb-000017
因此,可以进一步基于第一频域资源包括的RBG的编号确定上述公式(3)中的X的取值,具体地:
在第一频域资源大小对应的可分配的所有频域资源的方案中,频域资源中所包括的第一个RBG的编号大于第一频域资源的第一个RBG的编号(即#M 1)的方案一共有
Figure PCTCN2018076643-appb-000018
种。即,第一个RBG的编号大于#M 1的方案一共有
Figure PCTCN2018076643-appb-000019
种。例如,第一频域资源大小对应的可分配的所有频域资源的方案中第一个RBG为#M 2的频域资源。
在第一频域资源大小对应的可分配的所有频域资源的方案中,频域资源中所包括的第一个RBG的编号等于第一频域资源的第一个RBG的编号(即第一个RBG也是#M 1),但第二个RBG的编号大于第一频域资源的第二个RBG的编号(即#M 2)的方案一共有
Figure PCTCN2018076643-appb-000020
种。即,第一个RBG的编号等于#M 1、但第二RBG的编号大于#M 2的方案一共有
Figure PCTCN2018076643-appb-000021
种。例如,第一频域资源大小对应的可分配的所有频域资源的方案中第一个RBG为#M 1、第二个RBG为#M 3的频域资源。
根据上述描述可知得出,在第一频域资源大小对应的可分配的所有频域资源的方案中,频域资源中所包括的前j-1个的编号等于第一频域资源的前j-1个RBG的编号,但第j个RBG的编号大于第一频域资源的第j个RBG的编号的方案一共有
Figure PCTCN2018076643-appb-000022
种。
因此,在频域资源大小相同的情况下,RIV小于第一频域资源的RIV的频域资源一共 有
Figure PCTCN2018076643-appb-000023
种,这些频域资源占用了从
Figure PCTCN2018076643-appb-000024
Figure PCTCN2018076643-appb-000025
的RIV,所以上述公式(3)中的X可以用如下公式(4)表示:
Figure PCTCN2018076643-appb-000026
其中,j为正整数,i表示第一频域资源大小在频域资源大小集合中的排序位置,N表示系统带宽包括的RBG的数量,a i表示第一频域资源大小,M j表示第一频域资源中排序位置为j的RBG的编号。
结合公式(3)和公式(4),第一频域资源的第一RIV可以用如下公式(5)表示:
Figure PCTCN2018076643-appb-000027
通过上述计算RIV的方式,可以使频域资源大小集合中的每个频域资源大小对应的频域资源的RIV连续,从而使得频域资源大小集合对应的RIV的最大值占用的比特数最少,进而可以减少控制信息中包括该RIV的资源分配信息占用的比特数,进一步提高了控制信息的可靠性。
例如,若频域资源大小集合中所有的频域资源大小一共对应128种可分配的频域资源的方案,则采用上述方式计算RIV,可以使频域资源大小集合对应的频域资源的RIV的取值从0~127。也就是说,频域资源大小集合对应的RIV的最大值为127。因此,资源分配信息可以用7比特表示频域资源大小集合中任一频域资源大小对应的频域资源的RIV。若不采用上述方式计算RIV,则频域资源大小集合对应的RIV的最大值可能会大于127(例如RIV取值为0~10、12~128)。在该场景下,资源分配信息可能需要多于7比特表示频域资源大小集合中任一频域资源大小对应的频域资源的RIV,导致了控制信息的额外开销,降低了控制信息的可靠性。
网络设备在通过上述方式计算出第一频域资源的第一RIV之后,可以将该第一RIV携带在控制信息中发送给终端设备。相应地,终端设备在接收到该第一RIV之后,可以根据第一RIV,以及,频域资源大小集合,确定第一频域资源。然后,终端设备可以使用该第一频域资源,与网络设备进行待传输数据的传输。
其中,本实施例不限定上述终端设备根据第一RIV,以及,频域资源大小集合,确定第一频域资源的方式。继续以上述表5和公式(5)为例,终端设备例如可以通过以下步骤逐步确定第一频域资源,具体地:
1、终端设备可以在表5所示的对应关系中,查找第一RIV对应的第一频域资源大小,得到第一频域资源大小a i
2、终端设备将第一RIV与表5中“分配a i个RBG大小的频域资源的所有方案”对应的RIV中最小的RIV取值
Figure PCTCN2018076643-appb-000028
相减,得到RIV 1,以通过RIV 1进一步确定第一频域资源中包含哪些RBG。其中,RIV 1可以用如下公式(6)表示:
Figure PCTCN2018076643-appb-000029
3、终端设备通过RIV 1、第一频域资源大小a i,以及,下述公式(7)计算M j。其中,公式(7)如下所示:
Figure PCTCN2018076643-appb-000030
其中,j为正整数,M j为满足上述公式(7)的最小非负整数值。在j大于或等于1时,
Figure PCTCN2018076643-appb-000031
具体实现时,终端设备可以先将j的取值为1,然后将RIV 1、第一频域资源大小a i代入公式,确定第一频域资源中的第一个RBG的编号。然后,终端设备可以将j的取值加1,即将j等于2。然后将RIV 2、第一频域资源大小a i代入公式,确定第一频域资源中的第二个RBG的编号。以此循环,直至j等于a i+1时,结束流程。或者,直到确定第一频域资源中的第a i个RBG的编号后,结束流程。
通过上述方式,使得终端设备可以根据网络设备发送的第一RIV,以及,频域资源大小集合,快速确定出第一RIV所指示的第一频域资源,降低了终端设备处理控制信息的时间,进而降低了数据传输的时延。
可选的,在另一实施例中,网络设备可以遵循如下原则,计算第一频域资源的第一RIV,具体地:
在频域资源大小集合中,频域资源大小对应的频域资源的RIV从0开始分配,且RIV连续。例如,频域资源大小集合中所有频域资源大小对应的频域资源分配方案一共有128中,则RIV的取值为0至127。
其中,第二RIV用于指示第二频域资源,第二频域资源的频域资源单元的数量为第二频域资源大小,第二频域资源大小属于频域资源大小集合。当第二RIV小于第一RIV时,第二频域资源大小小于或等于第一频域资源大小。也就是说,在频域资源大小集合中,频域资源大小小的频域资源的RIV小于频域资源大小大的频域资源的RIV。例如,2个RBG大小的频域资源的RIV,小于4个RBG大小的频域资源的RIV。
进一步地,在第二频域资源大小等于第一频域资源大小时,第二频域资源的第一个频域资源单元的编号小于第一频域资源的第一个频域资源单元的编号;或者,第二频域资源的前M个频域资源单元的编号等于第一频域资源的前M个频域资源单元的编号,且第二频域资源中第M+1个频域资源单元的编号,小于第一频域资源中第M+1个频域资源单元的编号,M为正整数。也就是说,在频域资源大小相同的情况下,频域资源对应的bitmap数值越大,频域资源的RIV越小。即,第一频域资源的RIV应该小于所有bitmap数值比他小的方案。以系统带宽包括8个RBG、频域资源大小为2个RBG为例,假定频域资源A包括的RBG编号为RBG0和RBG1,即频域资源A对应的bitmap是11000000。频域资源B包括的RBG编号为RBG3和RBG4,即频域资源B对应的bitmap是00110000。由于11000000>00110000,所以频域资源A的RIV小于频域资源B的RIV。
参照上述示例,则在该场景下,网络设备可以进一步基于第一频域资源包括的RBG的编号确定上述公式(3)中的X的取值,具体地:
在第一频域资源大小对应的可分配的所有频域资源的方案中,频域资源中所包括的第一个RBG的编号大于第一频域资源的第一个RBG的编号(即#M 1)的方案一共有
Figure PCTCN2018076643-appb-000032
种。即,第一个RBG的编号大于#M 1的方案一共有
Figure PCTCN2018076643-appb-000033
种。例如,第一频域资源大小对应的可分配的所有频域资源的方案中第一个RBG为#M 2的频域资源。
在第一频域资源大小对应的可分配的所有频域资源的方案中,频域资源中所包括的第一个RBG的编号等于第一频域资源的第一个RBG的编号(即第一个RBG也是#M 1),但第二个RBG的编号大于第一频域资源的第二个RBG的编号(即#M 2)的方案一共有
Figure PCTCN2018076643-appb-000034
种。即,第一个RBG的编号等于#M 1、但第二RBG的编号大于#M 2 的方案一共有
Figure PCTCN2018076643-appb-000035
种。例如,第一频域资源大小对应的可分配的所有频域资源的方案中第一个RBG为#M 1、第二个RBG为#M 3的频域资源。
根据上述描述可知得出,在第一频域资源大小对应的可分配的所有频域资源的方案中,频域资源中所包括的前j-1个的编号等于第一频域资源的前j-1个RBG的编号,但第j个RBG的编号大于第一频域资源的第j个RBG的编号的方案一共有
Figure PCTCN2018076643-appb-000036
种。
因此,在频域资源大小相同的情况下,RIV小于第一频域资源的RIV的频域资源一共有
Figure PCTCN2018076643-appb-000037
种,这些频域资源占用了从
Figure PCTCN2018076643-appb-000038
Figure PCTCN2018076643-appb-000039
的RIV,所以上述公式(3)中的X可以用如下公式(8)表示:
Figure PCTCN2018076643-appb-000040
其中,j为正整数,i表示第一频域资源大小在频域资源大小集合中的排序位置,N表示系统带宽包括的RBG的数量,a i表示第一频域资源大小,M j表示第一频域资源中排序位置为j的RBG的编号。
结合公式(3)和公式(8),第一频域资源的第一RIV可以用如下公式(9)表示:
Figure PCTCN2018076643-appb-000041
通过上述计算RIV的方式,可以使频域资源大小集合中的每个频域资源大小对应的频域资源的RIV连续,从而使得频域资源大小集合对应的RIV的最大值占用的比特数最少,进而可以减少控制信息中包括该RIV的资源分配信息占用的比特数,进一步提高了控制信息的可靠性。
例如,若频域资源大小集合中所有的频域资源大小一共对应128种可分配的频域资源的方案,则采用上述方式计算RIV,可以使频域资源大小集合对应的频域资源的RIV的取值从0~127。也就是说,频域资源大小集合对应的RIV的最大值为127。因此,资源分配信息可以用7比特表示频域资源大小集合中任一频域资源大小对应的频域资源的RIV。若不采用上述方式计算RIV,则频域资源大小集合对应的RIV的最大值可能会大于127(例如RIV取值为0~10、12~128)。在该场景下,资源分配信息可能需要多于7比特表示频域资源大小集合中任一频域资源大小对应的频域资源的RIV,导致了控制信息的额外开销,降低了控制信息的可靠性。
网络设备在通过上述方式计算出第一频域资源的第一RIV之后,可以将该第一RIV携带在控制信息中发送给终端设备。相应地,终端设备在接收到该第一RIV之后,可以根据第一RIV,以及,频域资源大小集合,确定第一频域资源。然后,终端设备可以使用该第一频域资源,与网络设备进行待传输数据的传输。
其中,本实施例不限定上述终端设备根据第一RIV,以及,频域资源大小集合,确定第一频域资源的方式。继续以上述表5和公式(9)为例,终端设备例如可以通过以下步骤逐步确定第一频域资源,具体地:
1、终端设备可以在表5所示的对应关系中,查找第一RIV对应的第一频域资源大小,得到第一频域资源大小a i
2、终端设备将第一RIV与表5中“分配a i个RBG大小的频域资源的所有方案”对应的RIV中最小的RIV取值
Figure PCTCN2018076643-appb-000042
相减,得到RIV 1,以通过RIV 1进一步确定第一频域 资源中包含哪些RBG。其中,RIV 1可以用如下公式(10)表示:
Figure PCTCN2018076643-appb-000043
3、终端设备通过RIV 1、第一频域资源大小a i,以及,下述公式(11)计算M j。其中,公式(11)如下所示:
Figure PCTCN2018076643-appb-000044
其中,j为正整数,M j为满足上述公式(11)的最小非负整数值。在j大于或等于1时,
Figure PCTCN2018076643-appb-000045
具体实现时,终端设备可以先将j的取值为1,然后将RIV 1、第一频域资源大小a i代入公式,确定第一频域资源中的第一个RBG的编号。然后,终端设备可以将j的取值加1,即将j等于2。然后将RIV 2、第一频域资源大小a i代入公式,确定第一频域资源中的第二个RBG的编号。以此循环,直至j等于a i+1时,结束流程。或者,直到确定第一频域资源中的第a i个RBG的编号后,结束流程。
通过上述方式,使得终端设备可以根据网络设备发送的第一RIV,以及,频域资源大小集合,快速确定出第一RIV所指示的第一频域资源,降低了终端设备处理控制信息的时间,进而降低了数据传输的时延。
终端设备在通过上述方式得到组成第一频域资源的所有的RBG的编号之后,终端设备可以确定网络设备分配的第一频域资源,进而可以使用该第一频域资源,与网络设备进行待传输数据的传输。例如,在第一频域资源上向网络设备发送的待传输数据,或者,接收网络设备在第一频域资源上发送的待传输数据。
本实施例中,网络设备可以利用高层信令为终端设备配置一个包括系统带宽所支持的部分频域资源大小的频域资源大小集合,以使得网络设备可以为待传输数据分配该频域资源大小集合中一个频域资源大小对应的频域资源,并使用该频域资源对应的RIV指示该频域资源。由于RIV所占用的比特数与网络设备可以为待传输数据可分配的频域资源的方案正相关(即当RIV所占比特数增加或减少时,网络设备可以为待传输数据分配的频域资源方案也随之增加或减少),因此,通过缩减网络设备可以为待传输数据可分配的频域资源的方案,可以进一步压缩控制信息中的资源分配信息占用的比特数,以提高进一步提高控制信息的可靠性。
可以理解,上述实施例中,a和a等同、i和i等同,本申请实施例对此不进行区分。
另外,对应于下行资源分配类型0,虽然表3所示的现有技术中,可以进一步通过提高RBG粒度的方式,来降低资源分配信息占用的比特数。但是,RBG粒度P越大,调度的灵活性越差。若数据传输时实际所需使用的RBG的数量不是RBG粒度的倍数,会导致一部分RBG被浪费,频率资源利用率较低。而通过本申请实施例提供的方法,可以在保持RBG粒度不变的情况下,实现降低资源分配信息占用的比特数,保留了调度的灵活性,提高了频率资源利用率。图4A为本申请实施例提供的一种频域资源分布示意图一。图4B为本申请实施例提供的一种频域资源分布示意图二。如图4A所示,以为终端设备分配2个RBG大小的频域资源为例,在采用本申请实施例提供的方法时,网络设备为终端设备分配的频域资源可以如图4A所示,而在通过增大RBG粒度的方式,为终端设备分配频域 资源时,网络设备为终端设备分配的频域资源可以如图4B所示。通过两个图可以看出,RBG粒度P越大,调度的灵活性越差,频率资源利用率较低。
第二种方式:网络设备通过高层信令为终端设备配置频域资源大小集合,该频域资源大小集合可以包括系统带宽所支持的全部频域资源大小、或者是部分频域资源大小。其中,这里所说的频域资源单元为网络设备与终端设备进行数据传输时所使用的频域资源的调度单位,具体可以根据通信系统的配置确定。本申请实施例以频域资源单元为RBG为例进行说明。另外,关于高层信令的描述可以参见前述示例,在此不再赘述。
在本实施例中,当频域资源大小集合中的频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小时,该频域资源大小对应该频域资源大小的频域资源图样集合的真子集。可选的,当频域资源大小集合中的频域资源大小小于预定义大小时,频域资源大小对应该频域资源大小的频域资源图样集合,或者,真子集,对此不进行限定。上述所说的频域资源大小对应的频域资源图样集合包括:该频域资源大小支持的所有频域资源图样。每个频域资源图样包括的RBG均为系统带宽包括的RBG。其中,一个频域资源图样对应一种频域资源的分配方案。
也就是说,在本实施例中,当网络设备使用大于或等于预定义大小、且小于系统带宽对应的频域资源大小,为待传输数据分配频域资源时,网络设备只能分配真子集中的某一频域图样对应的频域资源,不能为待传输数据分配真子集之外的频域图样对应的频域资源。而在前述的第一种方式中,网络设备可以分配频域资源大小集合中的频域资源大小对应的任一频域图样。
其中,上述所说的预定义大小具体可以根据通信系统的配置确定。例如,上述预定义大小可以等于系统带宽包括的频域资源单元的数量的二分之一。当系统带宽包括的频域资源单元的数量的二分之一为非整数时,上述预定义大小可以为该非整数,或者为该非整数向上取整或向下取整得到的取值。例如,系统带宽包括的频域资源单元的数量为7,则预定义大小可以为3.5,也可以为4(将3.5向上取整得到的取值),也可以为3(将3.5向下取整得到的取值)。
以表3所示的RBG粒度P的取值与时间单元长度、通信系统的系统带宽的对应关系为例,假定系统带宽为20MHz、网络设备采用下行资源分配类型0的分配方式分配频域资源,此时RBG粒度为12。也就是说,系统带宽包括8个RBG,前7个RBG中的每个RBG包括12个RB,第8个RBG包括16个RB。假设预定义大小为系统带宽包括的频域资源单元的数量的二分之一,即预定义大小为4。
假如网络设备通过高层信令为终端设备配置的频域资源大小集合为{4,5,6,7,8}。在使用上述第一种方式分配频域资源时,网络设备可以为待传输数据分配频域资源大小集合中任一频域资源大小对应的任一频域资源图样。而在本示例中,由于集合中的每个频域资源大小均大于或等于预定义大小,因此,网络设备仅可以为待传输数据分配频域资源大小集合中的任一频域资源大小对应的真子集中的频域资源图样。
图5为本申请实施例提供的一种频域资源分布示意图三。如图5所示,假定频域资源大小4的频域资源图样集合的真子集包括两个频域资源图样,分别为频域资源图样1和频域资源图样2,其余频域资源大小的频域资源图样集合的真子集只包括一个频域资源图样。也就是说,在本示例中,网络设备可以为待传输数据分配的频域资源一共有6种。
可以理解,图5仅为一种示例,本申请实施例中所涉及的频域资源大小对应的频域资源图样集合的真子集并不以此为限。例如,可以限定当第一频域资源大小大于或等于预定义大小时,真子集包括的每个频域资源图样中,系统带宽中不属于每个频域资源图样的频域资源单元不连续;和/或,当第一频域资源大小小于预定义大小时,真子集包括的每个频域资源图样的频域资源单元不连续。在一种实现方式中,在第一频域资源大小大于预定义大小时,可以限定真子集只包括一个频域资源图样。此时,该真子集所包括的频域资源图样中的RBG在系统带宽中可以均匀分布。
由于选择系统带宽中最好的多个RBG(也可以称为频率选择),与,在系统带宽中均匀选取RBG(也可以称为频率分集)的传输性能的差距较小。也就是说,采用频率分集的方式传输数据不会明显造成传输性能的下降。因此,通过上述方式配置频域资源大小集合,即便网络设备无法获知网络设备与终端设备之间的信道质量,网络设备也仍然可以为终端设备分配能够保证传输性能的频域资源,确保了数据传输的性能。
由于本实施例中频域资源大小集合中,存在一些频域资源大小对应频域资源图样集合的真子集,也就是说,网络设备能够为待传输数据分配的频域资源方案进一步减少。因此,网络设备可以在不损失(或轻微损失)传输性能和频域资源大小灵活性的前提下,在资源分配信息中使用更少的比特来指示所调度的频域资源的RIV,可以进一步压缩控制信息中的资源分配信息占用的比特数,以提高进一步提高控制信息的可靠性。
在本实施例中,网络设备可以采用上述方式为待传输数据分配了频域资源大小集合中的第一频域资源大小对应的第一频域资源。若第一频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小,则第一频域资源的频域资源图样为第一频域资源大小对应的真子集中的某一频域图样。其中,第一频域资源大小为第一频域资源的RBG的数量。这样,网络设备可以生成用于指示该第一频域资源的第一RIV。其中,网络设备计算第一频域资源的第一RIV的方式可以参见前述的第一种方式中计算RIV的方式。对此不再加以赘述。
示例性,以表3所示的RBG粒度P的取值与时间单元长度、通信系统的系统带宽的对应关系为例,假定系统带宽为20MHz、网络设备采用下行资源分配类型0的分配方式分配频域资源,此时RBG粒度为12。也就是说,系统带宽包括8个RBG,前7个RBG中的每个RBG包括12个RB,第8个RBG包括16个RB。假设预定义大小为3。
假如网络设备通过高层信令为终端设备配置的频域资源大小集合为{1,2,4,5,6,7,8}。在使用频域资源大小1或2分配频域资源时,网络设备可以为待传输数据分配频域资源大小集合中任一频域资源大小对应的任一频域资源图样。在使用频域资源大小4、5、6、7、8中任一分配频域资源时,网络设备可以为待传输数据分配该频域资源大小对应的真子集中的一个频域资源图样。
在该场景下,当网络设备采用第一种方式计算频域资源的RIV时,该频域资源大小集合中的频域资源方案与RIV的对应关系可以如下述表6所示:
表6
RIV 频域资源方案
0~7 分配1个RBG大小的频域资源的所有方案
8~35 分配2个RBG大小的频域资源的所有方案
36 分配4个RBG大小的频域资源图样1对应的频域资源
37 分配4个RBG大小的频域资源图样2对应的频域资源
38 分配5个RBG大小的频域资源图样对应的频域资源
39 分配6个RBG大小的频域资源图样对应的频域资源
40 分配7个RBG大小的频域资源图样对应的频域资源
41 分配8个RBG大小的频域资源图样对应的频域资源
假如网络设备通过高层信令为终端设备配置的频域资源大小集合为{1,2,3,4,5,6,7,8}。在使用频域资源大小1或2分配频域资源时,网络设备可以为待传输数据分配频域资源大小集合中任一频域资源大小对应的任一频域资源图样。在使用频域资源大小3、4、5、6、7、8中任一分配频域资源时,网络设备可以为待传输数据分配该频域资源大小对应的真子集中的一个频域资源图样。
在该场景下,当网络设备采用第一种方式计算频域资源的RIV时,该频域资源大小集合中的频域资源方案与RIV的对应关系可以如下述表7所示:
表7
RIV 频域资源方案
0~7 分配1个RBG大小的频域资源的所有方案
8~35 分配2个RBG大小的频域资源的所有方案
36 分配3个RBG大小的频域资源图样1对应的频域资源
37 分配3个RBG大小的频域资源图样2对应的频域资源
38 分配4个RBG大小的频域资源图样1对应的频域资源
39 分配4个RBG大小的频域资源图样2对应的频域资源
40 分配5个RBG大小的频域资源图样对应的频域资源
41 分配6个RBG大小的频域资源图样对应的频域资源
42 分配7个RBG大小的频域资源图样对应的频域资源
43 分配8个RBG大小的频域资源图样对应的频域资源
通过上述计算RIV的方式,可以使频域资源大小集合中的每个频域资源大小对应的频域资源的RIV连续,从而使得频域资源大小集合对应的RIV的最大值占用的比特数最少,进而可以减少控制信息中包括该RIV的资源分配信息占用的比特数,进一步提高了控制信息的可靠性。
网络设备在通过上述方式计算出第一频域资源的第一RIV之后,可以将该第一RIV携带在控制信息中发送给终端设备。相应地,终端设备在接收到该第一RIV之后,可以根据第一RIV,以及,频域资源大小集合,确定第一频域资源。然后,终端设备可以使用该第一频域资源,与网络设备进行待传输数据的传输。其中,本实施例不限定上述终端设备根据第一RIV,以及,频域资源大小集合,确定第一频域资源的方式。例如,终端设备可以根据频域资源大小集合,计算出每个可分配的频域资源对应的RIV。然后,终端设备可以使用第一RIV与每个可分配的频域资源对应的RIV进行比较,将与第一RIV相同的RIV对应的频域资源作为第一频域资源。
本实施例中,网络设备可以利用高层信令为终端设备配置一个包括系统带宽所支持的部分频域资源大小的频域资源大小集合,其中,每个频域资源大小可以对应所有的频域资源图样或者部分频域资源图样,以使得网络设备可以为待传输数据分配该频域资源大小集合中一个频域资源大小对应的部分频域资源图样中的一个频域资源图样,并使用该频域资源对应的RIV指示该频域资源。由于RIV所占用的比特数与网络设备可以为待传输数据可分配的频域资源的方案正相关(即当RIV所占比特数增加或减少时,网络设备可以为待传输数据分配的频域资源方案也随之增加或减少),因此,通过缩减网络设备可以为待传输数据可分配的频域资源的方案,可以进一步压缩控制信息中的资源分配信息占用的比特数,以提高进一步提高控制信息的可靠性。
需要说明的是,在前述所述的两个方式中,若网络设备通过高层信令为终端设备配置的频域资源大小集合包括的频域资源大小均为奇数,例如{1,3,5,7…},或者、频域资源大小集合包括的频域资源大小均为偶数,例如{2,4,6,8,…}。则网络设备也可以沿用现有的bitmap的方式,指示为待传输数据分配的频域资源。
在该场景下,可以通过缩减bitmap所占用的比特数的方式,来实现资源分配信息的压缩。例如,网络设备通过bitmap显示的指示系统带宽所包括的前N-1个RBG是否用于传输待传输数据,通过bitmap所指示的被调度的RBG的数量,隐式的指示系统带宽所包括的最后一个RBG是否用于传输待传输数据。
以网络设备通过高层信令为终端设备配置的频域资源大小集合为{2,4,6,8}、系统带宽包括的RBG的数量为8为例,则bitmap可以在控制信息中占用7个比特,指示系统带宽包括的前7个RBG是否用于传输待传输数据。例如,bitmap为1100110。终端设备在接收到该控制信息后,通过bitmap可以得出前7个RBG中有4个RBG用于传输待传输数据。即用于传输待传输数据的RBG的数量为偶数。由于网络设备通过高层信令为终端设备配置的频域资源大小集合包括的频域资源大小均为偶数,因此,终端设备可以确定系统带宽所包括的最后一个RBG不用于传输待传输数据。
若终端设备接收到的控制信息中所携带的bitmap为1100100,通过bitmap可以得出前7个RBG中有3个RBG用于传输待传输数据。即用于传输待传输数据的RBG的数量为奇数。由于网络设备通过高层信令为终端设备配置的频域资源大小集合包括的频域资源大小均为偶数,因此,终端设备可以确定系统带宽所包括的最后一个RBG用于传输待传输数据。
通过上述方式,使得资源分配信息中指示频域资源的bitmap所占用的比特数,相比于现有的资源分配信息中指示频域资源的bitmap所占用的比特数,可以节约1个比特,从而可以进一步提高控制信息的可靠性。
可以理解,虽然上述申请实施例均以传输URLLC业务数据的场景为例,对本申请实施例提供的信息传输方法进行了说明和介绍。但是本领域技术人员可以理解的是,只要是涉及MAC层为物理层划分的TB大小变化较小的场景,均可以采用本申请实施例提供的信息传输方法,来提高控制信息的可靠性,对此不再赘述。
本申请实施例提供的信息传输方法,网络设备可以利用高层信令为终端设备配置一个包括系统带宽所支持的部分频域资源大小的频域资源大小集合,以使得网络设备可以为待传输数据分配该频域资源大小集合中一个频域资源大小对应的频域资源,并使用该频域资源对应的RIV指示该频域资源。由于RIV所占用的比特数与网络设备可以为待传输数据可 分配的频域资源的方案正相关(即当RIV所占比特数增加或减少时,网络设备可以为待传输数据分配的频域资源方案也随之增加或减少),因此,通过缩减网络设备可以为待传输数据可分配的频域资源的方案,可以进一步压缩控制信息中的资源分配信息占用的比特数,以提高进一步提高控制信息的可靠性。
图6为本申请实施例提供的一种通信装置的结构示意图。该通信装置通过软件、硬件或者两者的结合实现上述终端设备的部分或者全部功能。该通信装置可以为终端设备,也可以为应用于终端设备的芯片。如图6所示,该通信装置可以包括:接收模块11和处理模块12。其中,
接收模块11,用于接收第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,所述频域资源大小集合由高层信令配置;
处理模块12,用于根据所述第一RIV,以及,所述频域资源大小集合,确定所述第一频域资源。
可选的,在一些实施例中,第二RIV用于指示第二频域资源,所述第二频域资源的频域资源单元的数量为第二频域资源大小,所述第二频域资源大小属于所述频域资源大小集合;当第二RIV小于所述第一RIV时,所述第二频域资源大小小于或等于所述第一频域资源大小。
可选的,在一些实施例中,在所述第二频域资源大小等于所述第一频域资源大小时,所述第二频域资源的第一个频域资源单元的编号大于所述第一频域资源的第一个频域资源单元的编号;或者,所述第二频域资源的前M个频域资源单元的编号等于所述第一频域资源的前M个频域资源单元的编号,且所述第二频域资源中第M+1个频域资源单元的编号,大于所述第一频域资源中第M+1个频域资源单元的编号,所述M为正整数。
本申请实施例提供的通信装置,可以执行上述方法实施例中的第一种方式所示的终端设备的动作,其实现原理和技术效果类似,在此不再赘述。
图7为本申请实施例提供的另一种通信装置的结构示意图。该通信装置通过软件、硬件或者两者的结合实现上述终端设备的部分或者全部功能。该通信装置可以为终端设备,也可以为应用于终端设备的芯片。如图7所示,该通信装置可以包括:接收模块21和处理模块22。其中,
接收模块21,用于接收第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,在所述第一频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小时,所述第一频域资源大小对应第一频域资源图样集合的真子集,所述第一频域资源图样集合包括:所述第一频域资源大小支持的所有频域资源图样,每个所述频域资源图样包括的频域资源单元均为所述系统带宽包括的频域资源单元;例如,所述预定义大小等于所述系统带宽包括的频域资源单元的数量的二分之一。
处理模块22,用于根据所述第一RIV,以及,所述频域资源大小集合,确定所述第一频域资源。
可选的,在一些实施例中,当所述第一频域资源大小大于或等于预定义大小时,所述真子集包括的每个频域资源图样中,所述系统带宽中不属于每个所述频域资源图样的频域资源单元不连续;和/或,当所述第一频域资源大小小于预定义大小时,所述真子集包括的每个频域资源图样的频域资源单元不连续。
可选的,在一些实施例中,在所述第一频域资源大小大于所述预定义大小时,所述真子集只包括一个频域资源图样。
本申请实施例提供的通信装置,可以执行上述方法实施例中的第二种方式所示的终端设备的动作,其实现原理和技术效果类似,在此不再赘述。
图8为本申请实施例提供的又一种通信装置的结构示意图。该通信装置可以通过软件、硬件或者两者的结合实现上述网络设备的部分或者全部功能。该通信装置可以为网络设备,也可以为应用于网络设备的芯片。如图8所示,该通信装置可以包括:处理模块31和发送模块32。其中,
处理模块31,用于生成第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,所述频域资源大小集合由高层信令配置;
发送模块32,用于发送第一资源指示值RIV。
可选的,在一些实施例中,第二RIV用于指示第二频域资源,所述第二频域资源的频域资源单元的数量为第二频域资源大小,所述第二频域资源大小属于所述频域资源大小集合;当第二RIV小于所述第一RIV时,所述第二频域资源大小小于或等于所述第一频域资源大小。
可选的,在一些实施例中,在所述第二频域资源大小等于所述第一频域资源大小时,所述第二频域资源的第一个频域资源单元的编号大于所述第一频域资源的第一个频域资源单元的编号;或者,所述第二频域资源的前M个频域资源单元的编号等于所述第一频域资源的前M个频域资源单元的编号,且所述第二频域资源中第M+1个频域资源单元的编号,大于所述第一频域资源中第M+1个频域资源单元的编号,所述M为正整数。
本申请实施例提供的通信装置,可以执行上述方法实施例中的第一种方式所示的网络设备的动作,其实现原理和技术效果类似,在此不再赘述。
图9为本申请实施例提供的又一种通信装置的结构示意图。该通信装置可以通过软件、硬件或者两者的结合实现上述网络设备的部分或者全部功能。该通信装置可以为网络设备,也可以为应用于网络设备的芯片。如图9所示,该通信装置可以包括:处理模块41和发送模块42。其中,
处理模块41,用于生成第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,在所述第一频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小时,所述第一频域资源大小对应第一频域资源图样集合的真子集,所述第一频域资源图样集合包括:所述第一频域资源大小支持的所有频域资源图样,每个所述频域资源图样包括的频域资源单元均为所述系统带宽包括的频域资源单元;例如,所 述预定义大小等于所述系统带宽包括的频域资源单元的数量的二分之一。
发送模块42,用于发送第一资源指示值RIV。
可选的,在一些实施例中,当所述第一频域资源大小大于或等于预定义大小时,所述真子集包括的每个频域资源图样中,所述系统带宽中不属于每个所述频域资源图样的频域资源单元不连续;和/或,当所述第一频域资源大小小于预定义大小时,所述真子集包括的每个频域资源图样的频域资源单元不连续。
可选的,在一些实施例中,在所述第一频域资源大小大于所述预定义大小时,所述真子集只包括一个频域资源图样。
本申请实施例提供的通信装置,可以执行上述方法实施例中的第二种方式所示的网络设备的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上发送模块实际实现时可以为发送器,接收模块实际实现时可以为接收器。而处理模块可以以软件通过处理元件调用的形式实现;也可以以硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上处理模块的功能。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图10为本申请实施例提供的又一种通信装置的结构示意图。如图10所示,该通信装置可以包括:处理器51(例如CPU)、存储器52、接收器53;接收器53耦合至处理器51,处理器51控制接收器53的接收动作。存储器52可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少一个磁盘存储器,存储器52中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的通信装置还可以包括:发送器54、电源55、通信总线56以及通信端口57。接收器53和发送器54可以集成在通信装置的收发信机中,也可以为通信装置上独立的收发天线。通信总线56用于实现元件之间的通信连接。上述通信端口57用于实现通信装置与其他外设之间进行连接通信。
在本申请实施例中,上述存储器52用于存储计算机可执行程序代码,程序代码包括指令;当处理器51执行指令时,指令使通信装置的处理器51执行上述方法实施例中终端设备的处理动作,使接收器53执行上述方法实施例中终端设备的接收动作,使发送器54执行上述方法实施例中终端设备的发送动作。具体地,
例如,接收器53,用于接收第一资源指示值RIV,所述第一RIV用于指示进行数据传 输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,所述频域资源大小集合由高层信令配置;处理器51,用于根据所述第一RIV,以及,所述频域资源大小集合,确定所述第一频域资源。
在该实现方式下,在一种可能的设计中,第二RIV用于指示第二频域资源,所述第二频域资源的频域资源单元的数量为第二频域资源大小,所述第二频域资源大小属于所述频域资源大小集合;当第二RIV小于所述第一RIV时,所述第二频域资源大小小于或等于所述第一频域资源大小。可选的,在所述第二频域资源大小等于所述第一频域资源大小时,所述第二频域资源的第一个频域资源单元的编号大于所述第一频域资源的第一个频域资源单元的编号;或者,所述第二频域资源的前M个频域资源单元的编号等于所述第一频域资源的前M个频域资源单元的编号,且所述第二频域资源中第M+1个频域资源单元的编号,大于所述第一频域资源中第M+1个频域资源单元的编号,所述M为正整数。
例如,接收器53,用于接收第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,在所述第一频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小时,所述第一频域资源大小对应第一频域资源图样集合的真子集,所述第一频域资源图样集合包括:所述第一频域资源大小支持的所有频域资源图样,每个所述频域资源图样包括的频域资源单元均为所述系统带宽包括的频域资源单元;处理器51,用于根据所述第一RIV,以及,所述频域资源大小集合,确定所述第一频域资源。例如,所述预定义大小等于所述系统带宽包括的频域资源单元的数量的二分之一。
在该实现方式下,在一种可能的设计中,当所述第一频域资源大小大于或等于预定义大小时,所述真子集包括的每个频域资源图样中,所述系统带宽中不属于每个所述频域资源图样的频域资源单元不连续;和/或,当所述第一频域资源大小小于预定义大小时,所述真子集包括的每个频域资源图样的频域资源单元不连续。可选的,在所述第一频域资源大小大于所述预定义大小时,所述真子集只包括一个频域资源图样。
本申请实施例提供的通信装置,可以执行上述方法实施例中的终端设备的动作,其实现原理和技术效果类似,在此不再赘述。
图11为本申请实施例提供的又一种通信装置的结构示意图。如图11所示,该通信装置可以包括:处理器61(例如CPU)、存储器62、发送器64;发送器64耦合至处理器61,处理器61控制发送器64的发送动作;存储器62可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器62中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的通信装置还可以包括:接收器63、电源65、通信总线66以及通信端口67。接收器63和发送器64可以集成在通信装置的收发信机中,也可以为通信装置上独立的收发天线。通信总线66用于实现元件之间的通信连接。上述通信端口67用于实现通信装置与其他外设之间进行连接通信。
在本申请中,上述存储器62用于存储计算机可执行程序代码,程序代码包括指令;当处理器61执行指令时,指令使通信装置的处理器61执行上述方法实施例中网络设备的 处理动作,使接收器63执行上述方法实施例中网络设备的接收动作,使发送器64执行上述方法实施例中网络设备的发送动作。具体地,
例如,处理器61,用于生成第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,所述频域资源大小集合由高层信令配置;发送器64,用于发送第一资源指示值RIV。
在该实现方式下,在一种可能的设计中,第二RIV用于指示第二频域资源,所述第二频域资源的频域资源单元的数量为第二频域资源大小,所述第二频域资源大小属于所述频域资源大小集合;当第二RIV小于所述第一RIV时,所述第二频域资源大小小于或等于所述第一频域资源大小。可选的,在所述第二频域资源大小等于所述第一频域资源大小时,所述第二频域资源的第一个频域资源单元的编号大于所述第一频域资源的第一个频域资源单元的编号;或者,所述第二频域资源的前M个频域资源单元的编号等于所述第一频域资源的前M个频域资源单元的编号,且所述第二频域资源中第M+1个频域资源单元的编号,大于所述第一频域资源中第M+1个频域资源单元的编号,所述M为正整数。
例如,处理器61,用于生成第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,在所述第一频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小时,所述第一频域资源大小对应第一频域资源图样集合的真子集,所述第一频域资源图样集合包括:所述第一频域资源大小支持的所有频域资源图样,每个所述频域资源图样包括的频域资源单元均为所述系统带宽包括的频域资源单元;发送器64,用于发送第一资源指示值RIV。例如,所述预定义大小等于所述系统带宽包括的频域资源单元的数量的二分之一。
在该实现方式下,在一种可能的设计中,当所述第一频域资源大小大于或等于预定义大小时,所述真子集包括的每个频域资源图样中,所述系统带宽中不属于每个所述频域资源图样的频域资源单元不连续;和/或,当所述第一频域资源大小小于预定义大小时,所述真子集包括的每个频域资源图样的频域资源单元不连续。可选的,在所述第一频域资源大小大于所述预定义大小时,所述真子集只包括一个频域资源图样。
本申请实施例提供的通信装置,可以执行上述方法实施例中的网络设备的动作,其实现原理和技术效果类似,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行 传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (30)

  1. 一种信息传输方法,其特征在于,包括:
    第一通信装置接收第一资源指示值RIV,所述第一RIV用于指示第二通信装置与所述第一通信装置进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为所述第二通信装置与所述第一通信装置进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,所述频域资源大小集合由高层信令配置;
    所述第一通信装置根据所述第一RIV,以及,所述频域资源大小集合,确定所述第一频域资源。
  2. 根据权利要求1所述的方法,其特征在于,第二RIV用于指示第二频域资源,所述第二频域资源的频域资源单元的数量为第二频域资源大小,所述第二频域资源大小属于所述频域资源大小集合;
    当第二RIV小于所述第一RIV时,所述第二频域资源大小小于或等于所述第一频域资源大小。
  3. 根据权利要求2所述的方法,其特征在于,在所述第二频域资源大小等于所述第一频域资源大小时,所述第二频域资源的第一个频域资源单元的编号大于所述第一频域资源的第一个频域资源单元的编号;或者,
    所述第二频域资源的前M个频域资源单元的编号等于所述第一频域资源的前M个频域资源单元的编号,且所述第二频域资源中第M+1个频域资源单元的编号,大于所述第一频域资源中第M+1个频域资源单元的编号,所述M为正整数。
  4. 一种信息传输方法,其特征在于,包括:
    第一通信装置接收第一资源指示值RIV,所述第一RIV用于指示第二通信装置与所述第一通信装置进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为所述第二通信装置与所述第一通信装置进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,在所述第一频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小时,所述第一频域资源大小对应第一频域资源图样集合的真子集,所述第一频域资源图样集合包括:所述第一频域资源大小支持的所有频域资源图样,每个所述频域资源图样包括的频域资源单元均为所述系统带宽包括的频域资源单元;
    所述第一通信装置根据所述第一RIV,以及,所述频域资源大小集合,确定所述第一频域资源。
  5. 根据权利要求4所述的方法,其特征在于,当所述第一频域资源大小大于或等于预定义大小时,所述真子集包括的每个频域资源图样中,所述系统带宽中不属于每个所述频域资源图样的频域资源单元不连续;和/或,
    当所述第一频域资源大小小于预定义大小时,所述真子集包括的每个频域资源图样的频域资源单元不连续。
  6. 根据权利要求4或5所述的方法,其特征在于,所述预定义大小等于所述系统带宽包括的频域资源单元的数量的二分之一。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,在所述第一频域资源大小大于 所述预定义大小时,所述真子集只包括一个频域资源图样。
  8. 一种信息传输方法,其特征在于,包括:
    第二通信装置生成第一资源指示值RIV,所述第一RIV用于指示所述第二通信装置与第一通信装置进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为所述第二通信装置与所述第一通信装置进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,所述频域资源大小集合由高层信令配置;
    所述第二通信装置向所述第一通信装置发送第一资源指示值RIV。
  9. 根据权利要求8所述的方法,其特征在于,第二RIV用于指示第二频域资源,所述第二频域资源的频域资源单元的数量为第二频域资源大小,所述第二频域资源大小属于所述频域资源大小集合;
    当第二RIV小于所述第一RIV时,所述第二频域资源大小小于或等于所述第一频域资源大小。
  10. 根据权利要求9所述的方法,其特征在于,在所述第二频域资源大小等于所述第一频域资源大小时,所述第二频域资源的第一个频域资源单元的编号大于所述第一频域资源的第一个频域资源单元的编号;或者,
    所述第二频域资源的前M个频域资源单元的编号等于所述第一频域资源的前M个频域资源单元的编号,且所述第二频域资源中第M+1个频域资源单元的编号,大于所述第一频域资源中第M+1个频域资源单元的编号,所述M为正整数。
  11. 一种信息传输方法,其特征在于,包括:
    第二通信装置生成第一资源指示值RIV,所述第一RIV用于指示所述第二通信装置与第一通信装置进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为所述第二通信装置与所述第一通信装置进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,在所述第一频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小时,所述第一频域资源大小对应第一频域资源图样集合的真子集,所述第一频域资源图样集合包括:所述第一频域资源大小支持的所有频域资源图样,每个所述频域资源图样包括的频域资源单元均为所述系统带宽包括的频域资源单元;
    所述第二通信装置向所述第一通信装置发送第一资源指示值RIV。
  12. 根据权利要求11所述的方法,其特征在于,当所述第一频域资源大小大于或等于预定义大小时,所述真子集包括的每个频域资源图样中,所述系统带宽中不属于每个所述频域资源图样的频域资源单元不连续;和/或,
    当所述第一频域资源大小小于预定义大小时,所述真子集包括的每个频域资源图样的频域资源单元不连续。
  13. 根据权利要求11或12所述的方法,其特征在于,所述预定义大小等于所述系统带宽包括的频域资源单元的数量的二分之一。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,在所述第一频域资源大小大于所述预定义大小时,所述真子集只包括一个频域资源图样。
  15. 一种通信装置,其特征在于,包括:
    接收器,用于接收第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,所述频域资源大小集合由高层信令配置;
    处理器,用于根据所述第一RIV,以及,所述频域资源大小集合,确定所述第一频域资源。
  16. 根据权利要求15所述的装置,其特征在于,第二RIV用于指示第二频域资源,所述第二频域资源的频域资源单元的数量为第二频域资源大小,所述第二频域资源大小属于所述频域资源大小集合;
    当第二RIV小于所述第一RIV时,所述第二频域资源大小小于或等于所述第一频域资源大小。
  17. 根据权利要求16所述的装置,其特征在于,在所述第二频域资源大小等于所述第一频域资源大小时,所述第二频域资源的第一个频域资源单元的编号大于所述第一频域资源的第一个频域资源单元的编号;或者,
    所述第二频域资源的前M个频域资源单元的编号等于所述第一频域资源的前M个频域资源单元的编号,且所述第二频域资源中第M+1个频域资源单元的编号,大于所述第一频域资源中第M+1个频域资源单元的编号,所述M为正整数。
  18. 一种通信装置,其特征在于,包括:
    接收器,用于接收第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,在所述第一频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小时,所述第一频域资源大小对应第一频域资源图样集合的真子集,所述第一频域资源图样集合包括:所述第一频域资源大小支持的所有频域资源图样,每个所述频域资源图样包括的频域资源单元均为所述系统带宽包括的频域资源单元;
    处理器,用于根据所述第一RIV,以及,所述频域资源大小集合,确定所述第一频域资源。
  19. 根据权利要求18所述的装置,其特征在于,当所述第一频域资源大小大于或等于预定义大小时,所述真子集包括的每个频域资源图样中,所述系统带宽中不属于每个所述频域资源图样的频域资源单元不连续;和/或,
    当所述第一频域资源大小小于预定义大小时,所述真子集包括的每个频域资源图样的频域资源单元不连续。
  20. 根据权利要求18或19所述的装置,其特征在于,所述预定义大小等于所述系统带宽包括的频域资源单元的数量的二分之一。
  21. 根据权利要求18-20任一项所述的装置,其特征在于,在所述第一频域资源大小大于所述预定义大小时,所述真子集只包括一个频域资源图样。
  22. 一种通信装置,其特征在于,包括:
    处理器,用于生成第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述 频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,所述频域资源大小集合由高层信令配置;
    发送器,用于发送第一资源指示值RIV。
  23. 根据权利要求22所述的装置,其特征在于,第二RIV用于指示第二频域资源,所述第二频域资源的频域资源单元的数量为第二频域资源大小,所述第二频域资源大小属于所述频域资源大小集合;
    当第二RIV小于所述第一RIV时,所述第二频域资源大小小于或等于所述第一频域资源大小。
  24. 根据权利要求23所述的装置,其特征在于,在所述第二频域资源大小等于所述第一频域资源大小时,所述第二频域资源的第一个频域资源单元的编号大于所述第一频域资源的第一个频域资源单元的编号;或者,
    所述第二频域资源的前M个频域资源单元的编号等于所述第一频域资源的前M个频域资源单元的编号,且所述第二频域资源中第M+1个频域资源单元的编号,大于所述第一频域资源中第M+1个频域资源单元的编号,所述M为正整数。
  25. 一种通信装置,其特征在于,包括:
    处理器,用于生成第一资源指示值RIV,所述第一RIV用于指示进行数据传输时所使用的第一频域资源,所述第一频域资源的频域资源单元的数量为第一频域资源大小,所述频域资源单元为进行数据传输时所使用的频域资源的调度单位,所述第一频域资源大小属于频域资源大小集合,在所述第一频域资源大小大于或等于预定义大小、且小于系统带宽对应的频域资源大小时,所述第一频域资源大小对应第一频域资源图样集合的真子集,所述第一频域资源图样集合包括:所述第一频域资源大小支持的所有频域资源图样,每个所述频域资源图样包括的频域资源单元均为所述系统带宽包括的频域资源单元;
    发送器,用于发送第一资源指示值RIV。
  26. 根据权利要求25所述的装置,其特征在于,当所述第一频域资源大小大于或等于预定义大小时,所述真子集包括的每个频域资源图样中,所述系统带宽中不属于每个所述频域资源图样的频域资源单元不连续;和/或,
    当所述第一频域资源大小小于预定义大小时,所述真子集包括的每个频域资源图样的频域资源单元不连续。
  27. 根据权利要求24或25所述的装置,其特征在于,所述预定义大小等于所述系统带宽包括的频域资源单元的数量的二分之一。
  28. 根据权利要求24-26任一项所述的装置,其特征在于,在所述第一频域资源大小大于所述预定义大小时,所述真子集只包括一个频域资源图样。
  29. 一种计算机可读存储介质,其特征在于,用于存储计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行权利要求1至7任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,用于存储计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行权利要求8至14任一项所述的方法。
PCT/CN2018/076643 2018-02-13 2018-02-13 信息传输方法、通信装置及存储介质 WO2019157628A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18905966.0A EP3749044A4 (en) 2018-02-13 2018-02-13 INFORMATION TRANSMISSION PROCESS, COMMUNICATION DEVICE AND INFORMATION SUPPORT
PCT/CN2018/076643 WO2019157628A1 (zh) 2018-02-13 2018-02-13 信息传输方法、通信装置及存储介质
CN201880086557.8A CN111602457B (zh) 2018-02-13 2018-02-13 信息传输方法、通信装置及存储介质
US16/990,119 US20200374913A1 (en) 2018-02-13 2020-08-11 Information transmission method, communications apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076643 WO2019157628A1 (zh) 2018-02-13 2018-02-13 信息传输方法、通信装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/990,119 Continuation US20200374913A1 (en) 2018-02-13 2020-08-11 Information transmission method, communications apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2019157628A1 true WO2019157628A1 (zh) 2019-08-22

Family

ID=67619741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076643 WO2019157628A1 (zh) 2018-02-13 2018-02-13 信息传输方法、通信装置及存储介质

Country Status (4)

Country Link
US (1) US20200374913A1 (zh)
EP (1) EP3749044A4 (zh)
CN (1) CN111602457B (zh)
WO (1) WO2019157628A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021242931A1 (en) * 2020-05-28 2021-12-02 Qualcomm Incorporated Frequency domain allocation techniques

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102845121A (zh) * 2010-04-13 2012-12-26 Lg电子株式会社 用于接收下行链路信号的方法和装置
WO2016070417A1 (en) * 2014-11-07 2016-05-12 Panasonic Intellectual Property Corporation Of America Improved resource allocation for transmissions on unlicensed carriers
CN106332286A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 频谱资源分配方法及装置
CN106561066A (zh) * 2015-10-02 2017-04-12 上海朗帛通信技术有限公司 无线通信中的一种降低网络延迟的方法和装置
CN107027183A (zh) * 2016-02-02 2017-08-08 电信科学技术研究院 一种资源分配、数据传输方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100921467B1 (ko) * 2008-06-19 2009-10-13 엘지전자 주식회사 셀룰라 다중반송파 시스템에서 조밀도를 조절하는 자원할당시그널링 방식
KR101565417B1 (ko) * 2008-08-08 2015-11-03 엘지전자 주식회사 다중 주파수 대역 시스템에서의 자원 할당하는 방법 및 장치
JP5501381B2 (ja) * 2010-01-08 2014-05-21 パナソニック株式会社 無線送信装置、無線受信装置及び帯域割当方法
KR101857658B1 (ko) * 2010-09-15 2018-05-14 엘지전자 주식회사 무선 통신 시스템에서의 제어 정보의 전송 방법 및 장치
CN103327615B (zh) * 2012-03-20 2016-04-20 华为技术有限公司 资源分配指示方法、资源分配方法及设备
EP3255928B1 (en) * 2015-02-27 2020-11-04 Huawei Technologies Co., Ltd. Random access method and user equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102845121A (zh) * 2010-04-13 2012-12-26 Lg电子株式会社 用于接收下行链路信号的方法和装置
WO2016070417A1 (en) * 2014-11-07 2016-05-12 Panasonic Intellectual Property Corporation Of America Improved resource allocation for transmissions on unlicensed carriers
CN106332286A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 频谱资源分配方法及装置
CN106561066A (zh) * 2015-10-02 2017-04-12 上海朗帛通信技术有限公司 无线通信中的一种降低网络延迟的方法和装置
CN107027183A (zh) * 2016-02-02 2017-08-08 电信科学技术研究院 一种资源分配、数据传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3749044A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021242931A1 (en) * 2020-05-28 2021-12-02 Qualcomm Incorporated Frequency domain allocation techniques
CN115398850A (zh) * 2020-05-28 2022-11-25 高通股份有限公司 频域分配技术
US11902946B2 (en) 2020-05-28 2024-02-13 Qualcomm Incorporated Frequency domain allocation techniques
CN115398850B (zh) * 2020-05-28 2024-04-12 高通股份有限公司 频域分配技术

Also Published As

Publication number Publication date
EP3749044A4 (en) 2021-01-27
US20200374913A1 (en) 2020-11-26
CN111602457B (zh) 2022-08-09
EP3749044A1 (en) 2020-12-09
CN111602457A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
CN110035550B (zh) 上行控制信息传输方法和通信装置
US11363499B2 (en) Resource configuration method, apparatus, and system
WO2018228500A1 (zh) 一种调度信息传输方法及装置
CN110113808A (zh) 用于功率控制的系统和方法
WO2021218920A1 (zh) 通信方法和装置
WO2019037610A1 (zh) 数据传输方法、网络设备及终端设备
CN112088570B (zh) 一种信息传输方法、设备及存储介质
CN110475292A (zh) 一种通信方法及装置
US11258571B2 (en) Downlink control information transmission method, apparatus, and system
WO2020143689A1 (zh) 一种参考信号传输方法及装置
WO2017166389A1 (zh) 一种资源分配指示的方法、设备及系统
WO2019157628A1 (zh) 信息传输方法、通信装置及存储介质
WO2019191998A1 (zh) 数据传输方法、通信装置、存储介质及程序产品
WO2021219059A1 (zh) 通信方法和装置
WO2017205999A1 (zh) 一种数据传输的方法、设备和系统
CN112996114B (zh) 资源调度方法、装置、设备及存储介质
WO2023030396A1 (zh) 数据传输方法及通信装置
CN111757479B (zh) 通信的方法及装置
WO2023116403A1 (zh) 一种缓存状态报告发送方法及通信装置
WO2023130889A1 (zh) 一种通信方法及装置
WO2024067690A1 (zh) 一种通信方法及装置
WO2024067184A1 (zh) 一种通信方法及装置
WO2024067186A1 (zh) 一种通信方法及装置
WO2020156356A1 (zh) 资源配置方法、装置、系统、存储介质及电子装置
WO2021031041A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018905966

Country of ref document: EP

Effective date: 20200831