WO2020199815A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2020199815A1
WO2020199815A1 PCT/CN2020/077315 CN2020077315W WO2020199815A1 WO 2020199815 A1 WO2020199815 A1 WO 2020199815A1 CN 2020077315 W CN2020077315 W CN 2020077315W WO 2020199815 A1 WO2020199815 A1 WO 2020199815A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary carrier
csi
control information
information
terminal
Prior art date
Application number
PCT/CN2020/077315
Other languages
English (en)
French (fr)
Inventor
李新县
肖洁华
唐浩
王轶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20783849.1A priority Critical patent/EP3923504A4/en
Publication of WO2020199815A1 publication Critical patent/WO2020199815A1/zh
Priority to US17/464,673 priority patent/US20210399866A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • carrier aggregation (CA) technology can provide terminals with more transmission bandwidth through multiple carriers (for example, a primary carrier and a secondary carrier), so as to obtain a higher transmission rate.
  • the CA technology supports the activation and deactivation operations of the secondary carrier.
  • the secondary carrier can be activated through a media access control (MAC) control element (CE).
  • MAC media access control
  • CE media access control
  • the embodiments of the present application provide a communication method and device.
  • embodiments of the present application provide a communication method, which can be executed by a terminal, and includes: receiving first control information from a network device, the first control information being used to trigger a channel state corresponding to a first secondary carrier Information (channel state information, CSI) is reported, where the first secondary carrier is in a deactivated state.
  • CSI channel state information
  • the first control information report the CSI report corresponding to the first secondary carrier.
  • the aforementioned CSI report may be an aperiodic CSI report or a semi-persistent CSI report, and the aforementioned CSI report is an aperiodic CSI report or a semi-persistent CSI report.
  • the number of the aforementioned first secondary carrier may be one or more.
  • the aforementioned first control information is downlink control information (downlink control information, DCI), and the DCI is carried by a physical downlink control channel (physical downlink control channel, PDCCH).
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the above reported CSI report corresponding to the first secondary carrier is carried by a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the physical layer signaling can be used to trigger the CSI reporting of the secondary carrier to be activated. Since the processing of the physical layer signaling is faster, the CSI reporting of the secondary carrier is also faster, so that the network device can learn the secondary carrier faster The activation status of the secondary carrier reduces the time required for the secondary carrier activation process.
  • the foregoing first control information is used to trigger a CSI report corresponding to a bandwidth part (BWP) of the foregoing first secondary carrier, and the BWP is the first activated BWP.
  • the CSI report corresponding to the BWP of the first secondary carrier is performed according to the first control information.
  • the physical layer signaling can be used to trigger the BWP corresponding CSI report of the secondary carrier to be activated. Since the processing of the physical layer signaling is faster, the CSI report corresponding to the BWP of the secondary carrier is also faster, so that the network equipment can be more The activation status of the secondary carrier can be learned quickly, thereby reducing the time required for the secondary carrier activation procedure.
  • the foregoing first control information may also be used to trigger activation of the foregoing first secondary carrier.
  • the terminal activates the first secondary carrier according to the first control information.
  • the above-mentioned first control information can not only be used to trigger the terminal to report the CSI corresponding to the first secondary carrier to be activated, but also can be used to trigger activation of the first secondary carrier, thereby not only reducing the secondary carrier activation process
  • the required time can further reduce signaling overhead.
  • second control information may also be received, where the second control information is used to trigger activation of the first secondary carrier.
  • the second control information is carried by the MAC CE.
  • the terminal activates the first secondary carrier according to the second control information.
  • send feedback information corresponding to the second control information may be acknowledgement (acknowledgement, ACK) information.
  • embodiments of the present application provide another communication method, which may be executed by a terminal, and includes: receiving first configuration information from a network device, where the first configuration information includes first time information and second time information. Perform a CSI operation corresponding to the second secondary carrier according to the first time information or the second time information.
  • the CSI operation includes one or more of the following: aperiodic CSI report, aperiodic CSI measurement, semi-persistent CSI report, or semi-persistent CSI measurement.
  • the above-mentioned first configuration information is carried by higher layer signaling.
  • the activation state of the second secondary carrier it is determined to use the first time information or the second time information to perform the CSI operation corresponding to the second secondary carrier.
  • a CSI operation corresponding to the second secondary carrier is performed according to the first time information.
  • a CSI operation corresponding to the second secondary carrier is performed according to the second time information.
  • embodiments of the present application provide another communication method, which may be executed by a network device, and includes: sending first control information to a terminal, where the first control information includes CSI request information corresponding to the first secondary carrier, The CSI request information is used to trigger the terminal to perform CSI reporting corresponding to the first secondary carrier.
  • the CSI reporting may be aperiodic CSI reporting or semi-persistent CSI reporting, and the first secondary carrier is in a deactivated state.
  • the number of the aforementioned first secondary carrier may be one or more.
  • the aforementioned first control information is DCI, and the DCI is carried by the PDCCH.
  • the above CSI report is carried by PUSCH.
  • the physical layer signaling can be used to trigger the CSI reporting of the secondary carrier to be activated. Since the processing of the physical layer signaling is faster, the CSI reporting of the secondary carrier is also faster, so that the network device can learn the secondary carrier faster The activation status of the secondary carrier reduces the time required for the secondary carrier activation process.
  • the foregoing CSI request information corresponding to the first secondary carrier includes CSI request information corresponding to the BWP of the first secondary carrier, and the BWP is the first activated BWP.
  • the physical layer signaling can be used to trigger the BWP corresponding CSI report of the secondary carrier to be activated. Since the processing of the physical layer signaling is faster, the CSI report corresponding to the BWP of the secondary carrier is also faster, so that the network equipment can be more The activation status of the secondary carrier can be learned quickly, thereby reducing the time required for the secondary carrier activation procedure.
  • the first control information includes trigger activation information corresponding to the first secondary carrier, and the trigger activation information is used to trigger the activation of the first secondary carrier.
  • the above-mentioned first control information can not only be used to trigger the CSI report corresponding to the first secondary carrier to be activated, but also can be used to trigger the activation of the first secondary carrier, thereby not only reducing the need for the secondary carrier activation process Time can further reduce signaling overhead.
  • second control information may also be sent to the terminal, the second control information includes trigger activation information corresponding to the first secondary carrier, and the trigger activation information is used Trigger activation of the above-mentioned first secondary carrier.
  • the second control information is carried by the MAC CE.
  • receive a CSI report corresponding to the first secondary carrier from the terminal after sending the second control information to the terminal, receive a CSI report corresponding to the first secondary carrier from the terminal.
  • the feedback information may be ACK information.
  • an embodiment of the present application provides another communication method, which may be executed by a network device, and includes: sending first configuration information to a terminal, where the first configuration information includes first time information and second time information .
  • the CSI report corresponding to the second secondary carrier from the terminal is received according to the first time information or the second time information, where the CSI report is an aperiodic CSI report or a semi-persistent CSI report.
  • the above-mentioned first configuration information is carried by higher layer signaling.
  • the activation state of the second secondary carrier it is determined to use the first time information or the second time information to receive data from the terminal and the second secondary carrier.
  • the corresponding CSI report when the second secondary carrier is in an activated state, receive a CSI report corresponding to the second secondary carrier from the terminal according to the first time information.
  • an embodiment of the present application provides a device that can implement the method in the first aspect, any possible implementation manner of the first aspect, the second aspect, or any possible implementation manner of the second aspect.
  • the device includes corresponding units or components for performing the above methods.
  • the units included in the apparatus can be implemented in software and/or hardware.
  • the communication device may be, for example, a terminal, or a chip, chip system, or processor that can support the terminal to implement the foregoing method.
  • an embodiment of the present application provides a device that can implement the foregoing third aspect, any possible implementation manner of the third aspect, the fourth aspect, or any possible implementation manner of the fourth aspect.
  • the device includes corresponding units or components for performing the above methods.
  • the units included in the apparatus can be implemented in software and/or hardware.
  • the communication device may be, for example, a network device (such as a base station), or a chip, a chip system, or a processor that can support the network device to implement the foregoing method.
  • the present application provides a device including: a processor coupled with a memory, the memory is used to store a program or instruction, and when the program or instruction is executed by the processor, the device.
  • the present application provides a device, including a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, and when the program or instruction is executed by the processor, the device.
  • this application provides a storage medium on which a computer program or instruction is stored.
  • the computer executes the first aspect, any possible implementation manner of the first aspect, and the first aspect.
  • the present application provides a storage medium on which a computer program or instruction is stored.
  • the computer executes any of the foregoing third aspect and any possible implementation manner of the third aspect, and the first The fourth aspect, or the method described in any possible implementation manner of the fourth aspect.
  • an embodiment of the present application provides a communication system, including: the devices described in the fifth and sixth aspects.
  • FIG. 1 is a schematic diagram of a communication system applied by an embodiment provided by this application;
  • Figure 2 shows a schematic diagram of an example architecture of a communication system
  • FIG. 3 shows a schematic diagram of interaction of a communication method provided by an embodiment of the present application
  • FIG. 4A shows a schematic diagram of a MACCE provided by an embodiment of the present application
  • FIG. 4B shows another schematic diagram of MAC CE provided by an embodiment of the present application.
  • FIG. 5 shows an interactive schematic diagram of another communication method provided by an embodiment of the present application.
  • Fig. 6 shows a schematic diagram of interaction of another communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 1 shows a schematic diagram of a communication system structure.
  • the communication system includes one or more network devices (for clarity, the figure shows the network device 10 and the network device 20), and one or more terminal devices that communicate with the one or more network devices.
  • the terminal device 11 and the terminal device 12 shown in FIG. 1 communicate with the network device 10, and the terminal device 21 and the terminal device 22 shown in FIG. 1 communicate with the network device 20.
  • network devices and terminal devices may also be referred to as communication devices.
  • the technology described in the embodiments of the present invention can be used in various communication systems, such as 2G, 3G, 4G, 4.5G, 5G communication systems, systems where multiple communication systems are integrated, or future evolution networks.
  • LTE long term evolution
  • NR new radio
  • WiFi wireless fidelity
  • 3GPP 3rd generation partnership project
  • FIG 2 shows a schematic diagram of an example of a possible architecture of a communication system.
  • the network equipment in the radio access network is a centralized unit (CU) and a distributed unit (CU).
  • unit, DU A base station with a separate architecture (such as gNodeB or gNB).
  • the RAN can be connected to a core network (for example, it can be an LTE core network, or a 5G core network, etc.).
  • CU and DU can be understood as the division of base stations from the perspective of logical functions.
  • CU and DU can be physically separated or deployed together. Multiple DUs can share one CU.
  • One DU can also be connected to multiple CUs (not shown in the figure).
  • the CU and DU can be connected through an interface, for example, an F1 interface.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • the functions of the packet data convergence protocol (PDCP) layer and the radio resource control (RRC) layer are set in the CU, while the radio link control (RLC) and media access control
  • the functions of the (media access control, MAC) layer and the physical layer are set in the DU.
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • RLC radio link control
  • the functions of the (media access control, MAC) layer and the physical layer are set in the DU.
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • RLC radio link control
  • MAC media access control
  • the division of CU and DU processing functions according to this protocol layer is only an example, and it can also be divided in other ways.
  • CU or DU can be divided into functions with more protocol layers.
  • the CU or DU can also be divided into part
  • the functions of the CU or DU can also be divided according to business types or other system requirements. For example, it is divided by time delay, and functions whose processing time needs to meet the delay requirement are set in DU, and functions that do not need to meet the delay requirement are set in CU.
  • the network architecture shown in FIG. 2 can be applied to a 5G communication system, and it can also share one or more components or resources with an LTE system.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally or separately.
  • CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio frequency functions, or the radio frequency functions can be set remotely.
  • the function of the CU can be realized by one entity, or the control plane (CP) and the user plane (UP) can be further separated, that is, the control plane (CU-CP) and the user plane (CU-UP) of the CU can be composed of different functions It is realized by an entity, and the CU-CP and CU-UP can be coupled with the DU to jointly complete the function of the base station.
  • the network device can be any device with a wireless transceiver function. Including but not limited to: evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional NodeB), base station in NR (gNodeB or gNB) or transmission receiving point/transmission reception point (TRP), 3GPP Subsequent evolution of base stations, access nodes in the WiFi system, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc. Multiple base stations can support networks of the same technology mentioned above, or networks of different technologies mentioned above.
  • the base station can contain one or more co-site or non-co-site TRPs.
  • the network device may also be a wireless controller, CU, and/or DU in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the following description takes the network device as a base station as an example.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment, and it can also communicate with the terminal equipment through the relay station.
  • a terminal device can communicate with multiple base stations of different technologies.
  • a terminal device can communicate with a base station that supports an LTE network, can also communicate with a base station that supports a 5G network, and can also support communication with a base station of an LTE network and a base station of a 5G network. Double connection.
  • a terminal is a device with a wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, etc.) And satellite class).
  • the terminal may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control (industrial control) Wireless terminals in control), vehicle-mounted terminal equipment, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety (transportation safety) ), wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, and so on.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • Wireless terminals in control vehicle-mounted terminal equipment, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety (transportation safety) ), wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, and so on.
  • the embodiment of this application does not limit the application scenario.
  • Terminals can sometimes be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile Equipment, UE terminal equipment, terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal can also be fixed or mobile.
  • CA carrier aggregation
  • PCC primary component carrier
  • SCC secondary component carrier
  • CA provides an activation and deactivation mechanism for the secondary carrier to activate the secondary carrier when the terminal needs a larger transmission bandwidth, and deactivate the secondary carrier when the terminal does not need a large transmission bandwidth to save power .
  • the network device can learn whether the secondary carrier of the terminal has been activated through the reported information of the terminal. For example, the terminal reports a channel state information (channel state information, CSI) report of the secondary carrier to the network device, and the network device can learn that the above-mentioned secondary carrier of the terminal has been activated through the CSI report.
  • channel state information channel state information
  • the mechanism for activating the secondary carrier can be implemented by a media access control control element (MAC CE).
  • MAC CE media access control control element
  • the CSI operation of the secondary carrier to be activated is triggered by using physical layer signaling, so that the secondary carrier is activated more quickly, thereby reducing the activation time of the secondary carrier, and thereby meeting the delay requirements of the service.
  • the CSI in this application can be understood as information that characterizes the channel state.
  • CSI may include one or more of the following: channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI), channel state information reference signal (channel state information reference signal, CSI-RS) resource indicator (CSI-RS resource indicator, CRI), channel state information interference measurement (channel state information interference measurement, CSI-IM) resource indicator, synchronization signal block resource indicator (synchronization signal) block resource indicator (SSBRI), layer indicator (layer indicator, LI), reference signal received power (reference signal received power, RSRP), received signal strength indicator (received signal strength indicator, RSSI), reference signal received quality (reference signal received quality, RSRQ), signal tonoise ratio (SNR), or signal to interference plus noise ratio (SINR).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • RI channel state information reference signal
  • CSI-RS resource indicator CRI
  • channel state information interference measurement channel state information interference measurement
  • the CSI-RS in this application is a reference signal used for CSI measurement.
  • the network device sends a CSI-RS, and the terminal can obtain CSI by measuring the CSI-RS.
  • the CSI can be understood as the CSI between the network device and the terminal.
  • the aperiodic CSI measurement in this application can be understood as one or more CSI measurements triggered by signaling.
  • the terminal may receive downlink control information (DCI) used to trigger aperiodic CSI measurement, and perform one or more measurements on the CSI-RS.
  • DCI downlink control information
  • the CSI-RS may be periodic, aperiodic or semi-continuous Sexual.
  • the aperiodic CSI report in this application can be understood as one or more CSI reports triggered by signaling.
  • the terminal may receive the DCI used to trigger the reporting of aperiodic CSI, and report the measurement result (for example, the measurement result obtained by periodic measurement through aperiodic CSI measurement or semi-persistent CSI measurement) one or more times (for example, report to the network) equipment).
  • the measurement result reported by aperiodic CSI may also be referred to as aperiodic CSI report.
  • the DCI used to trigger the aperiodic CSI measurement and the DCI used to trigger the aperiodic CSI report may be the same DCI or different DCIs.
  • the semi-persistent CSI measurement in this application can be understood as at least one CSI measurement triggered by signaling in a period of time.
  • the terminal may receive DCI for triggering semi-persistent CSI measurement, and measure the CSI-RS at least once in a period of time.
  • the CSI-RS may be periodic or semi-persistent.
  • the semi-persistent CSI report in this application may be understood as at least one CSI report within a period of time triggered by signaling.
  • the terminal may receive DCI used to trigger semi-persistent CSI reporting, and report measurement results (for example, measurement results obtained through semi-persistent CSI measurement or periodic measurement) at least once (for example, to a network device) within a period of time.
  • the measurement result reported by the semi-persistent CSI may also be called a semi-persistent CSI report.
  • FIG. 3 is a schematic diagram of interaction of a communication method provided by an embodiment of this application. As shown in FIG. 3, the method of this embodiment may include a 300 part and a 310 part.
  • the network device sends the first control information, and the terminal receives the first control information.
  • the first control information includes CSI request information corresponding to the first secondary carrier, where the first secondary carrier is in a deactivated state.
  • the first control information is used to trigger the terminal to perform CSI reporting corresponding to the first secondary carrier.
  • the corresponding CSI report may be aperiodic CSI report or semi-continuous CSI report.
  • the first control information is uplink or downlink DCI, and the DCI is carried by a physical downlink control channel (PDCCH).
  • the DCI in this application can also be understood as a kind of physical layer signaling.
  • the terminal receives the aforementioned first control information on a primary carrier and/or an activated secondary carrier, and the activated secondary carrier is different from the first secondary carrier.
  • Part 310 The terminal reports a CSI report corresponding to the first secondary carrier according to the first control information, and the network device receives the CSI report, where the CSI report is an aperiodic CSI report or a semi-persistent CSI report. It can be understood that the CSI report in this application may also be referred to as an effective CSI report.
  • the terminal reporting the CSI report corresponding to the first secondary carrier can also be understood as the terminal reporting the CSI corresponding to the first secondary carrier, and the CSI report may be an aperiodic CSI report or a semi-continuous CSI report.
  • the CSI report corresponding to the first secondary carrier reported by the terminal may be carried by a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the CSI corresponding to the first secondary carrier can be understood as the CSI on the first secondary carrier.
  • the terminal may obtain the CSI on the first secondary carrier (also referred to as the CSI corresponding to the first secondary carrier) by measuring the CSI-RS on the first secondary carrier. Reporting the CSI corresponding to the first secondary carrier or reporting the CSI report corresponding to the first secondary carrier can be understood as reporting the CSI on the first secondary carrier.
  • the number of the above-mentioned first secondary carrier may be one or multiple, and the singular number is taken as an example for description in this application.
  • the physical layer signaling can be used to trigger the CSI reporting of the secondary carrier to be activated. Since the processing of the physical layer signaling is faster, the CSI reporting of the secondary carrier is also faster, so that the network device can learn the secondary carrier faster The activation status of the secondary carrier reduces the time required for the secondary carrier activation process.
  • the network device receives the CSI report according to the first control information.
  • the first control information may include first uplink resource indication information, and the first uplink resource indication information indicates a resource used for reporting the CSI report.
  • the terminal reports the CSI report corresponding to the first secondary carrier on the resource, and the network device receives the CSI report corresponding to the first secondary carrier from the terminal on the resource.
  • the resources in this application can be understood as physical resources.
  • the physical resources may include one or more of time domain resources, frequency domain resources, code domain resources, or space domain resources.
  • the time domain resource included in the physical resource may include at least one frame, at least one sub-frame, at least one slot, at least one mini-slot, or at least one Time domain symbols, etc.
  • the frequency domain resources included in the physical resources may include at least one carrier, at least one CC, at least one bandwidth part (BWP), at least one resource block group (RBG), and at least One physical resource-block group (PRG), at least one resource block (resource block, RB), or at least one sub-carrier (SC), etc.
  • the airspace resources included in the physical resources may include at least one beam, at least one port, at least one antenna port, or at least one layer/space layer, etc.
  • the code domain resources included in the physical resources may include at least one orthogonal cover code (OCC), or at least one non-orthogonal multiple access (NOMA), etc.
  • OCC orthogonal cover code
  • NOMA non-orthogonal multiple access
  • the aforementioned physical resources may be physical resources of the baseband, and the physical resources of the baseband may be used by the baseband chip.
  • the aforementioned physical resources may also be physical resources of the air interface.
  • the aforementioned physical resources may also be intermediate frequency or radio frequency physical resources.
  • the terminal obtains the CSI corresponding to the first secondary carrier.
  • the terminal may obtain the CSI corresponding to the first secondary carrier by measuring the CSI-RS on the first secondary carrier.
  • the foregoing measurement of CSI-RS may also be referred to as CSI measurement, and the CSI measurement may be aperiodic CSI measurement, semi-persistent CSI measurement, or periodic CSI measurement.
  • the terminal performs CSI measurement corresponding to the first secondary carrier according to the first control information.
  • the first control information may also be used to trigger the terminal to perform CSI measurement corresponding to the first secondary carrier.
  • the first control information may include first CSI-RS resource indication information, and the first CSI-RS resource indication information indicates resources used by the CSI-RS on the first secondary carrier.
  • the terminal measures the CSI-RS on the resource to obtain the CSI corresponding to the first secondary carrier, and the CSI-RS may be periodic, aperiodic or semi-persistent.
  • the terminal performs CSI measurement corresponding to the first secondary carrier according to high-layer signaling (for example, RRC signaling).
  • the high-level signaling may include first CSI-RS resource configuration information, and the first CSI-RS resource configuration information is used to configure resources used by the CSI-RS on the first secondary carrier.
  • the terminal measures the CSI-RS on the resource to obtain the CSI corresponding to the first secondary carrier.
  • the terminal performs CSI measurement corresponding to the first secondary carrier according to high-layer signaling (for example, RRC signaling) and DCI
  • the DCI may be the above-mentioned first control information, It may also be uplink or downlink control information different from the above-mentioned first control information.
  • the high-level signaling may include first CSI-RS resource set configuration information, and the first CSI-RS resource set configuration information is used to configure candidate resources used by CSI-RS on the first secondary carrier.
  • the DCI indicates one or more of the above-mentioned candidate resources, and the terminal measures CSI-RS on the one or more resources to obtain the CSI corresponding to the first secondary carrier.
  • the first control information may also be used to trigger activation of the first secondary carrier.
  • the communication method provided in the embodiment of the present application illustrated in FIG. 3 may further include a part 330: the terminal activates the first secondary carrier.
  • the terminal determines that the first secondary carrier is in a deactivated state, and then the terminal activates the first secondary carrier.
  • the network device receives the CSI report corresponding to the first secondary carrier, it determines that the first secondary carrier of the terminal is in an activated state.
  • the first control information can be used not only to trigger the terminal to report the CSI corresponding to the first secondary carrier to be activated, but also to trigger the activation of the first secondary carrier, thereby not only reducing secondary carriers
  • the time required for the activation process can also reduce signaling overhead.
  • the first control information includes CSI request information corresponding to the first secondary carrier, and it can also be understood that the first control information includes The CSI request information corresponding to the BWP of the first secondary carrier, and the first control information is used to trigger the terminal to report the CSI corresponding to the BWP of the first secondary carrier, which can also be understood as the first
  • the CSI request information corresponding to the BWP of the first secondary carrier included in the control information is used to trigger the terminal to perform CSI reporting corresponding to the BWP of the first secondary carrier.
  • the BWP is the first activated BWP.
  • the first activated BWP may also be referred to as the first default BWP, the first activated BWP of the first secondary carrier, or the first default BWP of the first secondary carrier, which may be configured through higher layer signaling (such as RRC signaling), and the terminal
  • the first activated BWP will be activated (it can also be understood that the first activated BWP will be activated first).
  • the terminal can monitor the control channel on the BWP, or perform data transmission with the network device on the BWP.
  • the CSI corresponding to the BWP of the first secondary carrier may be understood as the CSI on the BWP of the first secondary carrier.
  • the terminal can obtain the CSI on the BWP of the first secondary carrier by measuring the CSI-RS on the BWP of the first secondary carrier (also can be referred to as the CSI corresponding to the BWP of the first secondary carrier). CSI). Reporting the CSI corresponding to the BWP of the first secondary carrier or reporting the CSI report corresponding to the BWP of the first secondary carrier can be understood as reporting the CSI on the BWP of the first secondary carrier.
  • the terminal reports the CSI report corresponding to the BWP of the first secondary carrier according to the first control information, and the network device receives the CSI report.
  • the terminal reporting the CSI report corresponding to the BWP of the first secondary carrier can also be understood as the terminal reporting the CSI corresponding to the BWP of the first secondary carrier.
  • the CSI report corresponding to the BWP of the first secondary carrier reported by the terminal may be carried by the PUSCH.
  • the network device receives the CSI report corresponding to the BWP of the first secondary carrier according to the first control information.
  • the first control information may include second uplink resource indication information, and the second uplink resource indication information indicates the resource used for reporting the aforementioned CSI report.
  • the terminal reports the CSI report corresponding to the BWP of the first secondary carrier on the resource, and the network device receives the communication between the terminal and the first secondary carrier on the resource.
  • the terminal obtains the CSI corresponding to the BWP of the first secondary carrier.
  • the terminal may obtain the CSI corresponding to the BWP of the first secondary carrier by measuring the CSI-RS on the BWP of the first secondary carrier.
  • the terminal performs CSI measurement corresponding to the BWP of the first secondary carrier according to the first control information.
  • the first control information may also be used to trigger the terminal to perform CSI measurement corresponding to the BWP of the first secondary carrier.
  • the first control information may include second CSI-RS resource indication information, and the second CSI-RS resource indication information indicates resources used by CSI-RS on the BWP of the first secondary carrier.
  • the terminal measures the CSI-RS on the resource, and obtains the CSI corresponding to the BWP of the first secondary carrier.
  • the CSI-RS may be periodic, aperiodic or semi-persistent.
  • the terminal performs CSI measurement corresponding to the BWP of the first secondary carrier according to high-level signaling (for example, RRC signaling).
  • the high-level signaling may include second CSI-RS resource configuration information, and the second CSI-RS resource configuration information is used to configure resources used by CSI-RS on the BWP of the first secondary carrier .
  • the terminal measures the CSI-RS on the resource, and obtains the CSI corresponding to the BWP of the first secondary carrier.
  • the terminal performs CSI measurement corresponding to the BWP of the first secondary carrier according to high-layer signaling (such as RRC signaling) and DCI
  • the DCI may be the foregoing first control information, or may be uplink or downlink control information different from the foregoing first control information.
  • the high-layer signaling may include second CSI-RS resource set configuration information, and the second CSI-RS resource set configuration information is used to configure candidate resources used by CSI-RS on the BWP of the first secondary carrier.
  • the DCI indicates one or more of the foregoing candidate resources, and the terminal measures CSI-RS on the one or more resources to obtain the CSI corresponding to the BWP of the first secondary carrier.
  • the terminal determines that the first secondary carrier is in In the deactivated state, and it is determined that the BWP is the first activated BWP, the terminal activates the first secondary carrier. Further optionally, the terminal may also activate the first activated BWP on the first secondary carrier.
  • the network device determines that the first secondary carrier of the terminal is in an activated state when receiving the CSI report corresponding to the BWP of the first secondary carrier. Further optionally, the network device may also determine that the first activated BWP of the terminal is in an activated state.
  • the first control information can be used not only to trigger the terminal to report the CSI corresponding to the BWP of the first secondary carrier to be activated, but also to trigger activation of the first secondary carrier, thereby not only
  • the time required for the secondary carrier activation process can be reduced, and the signaling overhead can also be reduced.
  • the CSI reporting may be semi-persistent CSI reporting or aperiodic CSI reporting.
  • This application does not limit the execution sequence of the 320 part and the 330 part in FIG. 3. You can execute part 330 first, and then execute part 320. You can also execute part 320 first, and then execute part 330. Part 330 and part 320 can also be executed simultaneously.
  • the first control information further includes uplink shared channel (uplink shared channel, UL-SCH) indication information, and the UL-SCH indication information indicates whether the PUSCH
  • uplink shared channel uplink shared channel, UL-SCH
  • the UL-SCH indication information indicates whether the PUSCH The UL-SCH is carried, where the PUSCH is a PUSCH that carries a CSI report corresponding to the first secondary carrier, or the PUSCH is a PUSCH that carries a CSI report corresponding to the BWP of the first secondary carrier.
  • the terminal reports the CSI report corresponding to the first secondary carrier according to the first control information, wherein the The first control information further includes first uplink resource indication information.
  • the first uplink resource indication information indicates a resource used for reporting the CSI report, and the resource is included in the PUSCH.
  • the terminal reports the CSI report on the resource, and the network device receives the CSI report on the resource.
  • the CSI report may also be a CSI report corresponding to the BWP of the first secondary carrier, and the BWP is the first activated BWP.
  • the terminal reports the CSI report corresponding to the first secondary carrier according to higher layer signaling (for example, RRC signaling) ,
  • the high-level signaling may include reported resource configuration information
  • the reported resource configuration information configures the resources used for reporting the CSI report, and the resources are included in the aforementioned PUSCH.
  • the terminal reports the CSI report on the resource, and the network device receives the CSI report on the resource.
  • the CSI report may also be a CSI report corresponding to the BWP of the first secondary carrier, and the BWP is the first activated BWP.
  • the network device sends second control information, and the terminal receives the second control information.
  • the second control information includes trigger activation information corresponding to the first secondary carrier.
  • the second control information is used to trigger activation of the first secondary carrier, and it may also be understood that the activation information corresponding to the first secondary carrier included in the second control information is used to trigger activation of the first secondary carrier.
  • the terminal activates the first secondary carrier according to the second control information.
  • the carrier carrying the first control information and the carrier carrying the second control information may be the same or different.
  • the carrier carrying the first control information is the primary carrier, and the carrier carrying the second control information is also the primary carrier.
  • the carrier that carries the first control information is an activated secondary carrier, and the carrier that carries the second control information is also the activated secondary carrier.
  • the carrier carrying the first control information is the primary carrier, and the carrier carrying the second control information is the secondary carrier in the activated state.
  • the carrier that carries the first control information is an activated secondary carrier, and the carrier that carries the second control information is the primary carrier.
  • the second control information is carried by the MAC CE.
  • the second control information may be carried by the MAC CE format illustrated in FIG. 4A.
  • the MAC CE format illustrated in FIG. 4A includes 8 bits: R, C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , and C 7 .
  • a bit C i of 1 indicates that the secondary carrier i is activated, and a bit of C i of 0 indicates that the secondary carrier i is deactivated; or, the bit Ci of 0 indicates that the secondary carrier i is activated, and the bit C i of 1 indicates that the secondary carrier i is deactivated.
  • the first secondary carrier is For the secondary carrier 1
  • the trigger activation information corresponding to the first secondary carrier can be understood as bit C 1 .
  • the first secondary carrier is secondary carrier 1 and secondary carrier 2
  • the trigger activation information corresponding to the first secondary carrier can be understood as bit C 1 and bit C 2 .
  • the second control information may be carried by the MAC CE format illustrated in FIG. 4B.
  • the bit R is a reserved bit
  • a bit C i of 1 indicates that the secondary carrier i is activated
  • a bit of C i of 0 indicates that the secondary carrier i is deactivated
  • the bit Ci of 0 indicates that the secondary carrier i is activated
  • the bit C i of 1 indicates that the secondary carrier i is deactivated.
  • the first secondary carrier is For the secondary carrier 1
  • the trigger activation information corresponding to the first secondary carrier can be understood as bit C 1 .
  • the first secondary carrier is secondary carrier 1 and secondary carrier 2
  • the trigger activation information corresponding to the first secondary carrier can be understood as bit C 1 and bit C 2 .
  • FIG. 3 does not limit the execution sequence of the 300 part and the 340 part.
  • Part 300 and part 340 can also be executed simultaneously.
  • part 300 is executed first and then part 340 is executed, after receiving the first control information and before receiving the second control information, the terminal performs communication with the first control information according to the first control information.
  • CSI measurement corresponding to the first secondary carrier After receiving the second control information, the terminal reports the CSI corresponding to the first secondary carrier, which can also be understood as reporting the above-mentioned CSI measurement result corresponding to the first secondary carrier to the network device .
  • the network device receives a CSI report corresponding to the first secondary carrier from the terminal, and the CSI report includes the above and the first secondary carrier.
  • CSI measurement result corresponding to the carrier after sending the second control information to the terminal, the network device receives a CSI report corresponding to the first secondary carrier from the terminal, and the CSI report includes the above and the first secondary carrier.
  • the foregoing CSI measurement corresponding to the first secondary carrier may also be the CSI measurement corresponding to the BWP of the first secondary carrier, and the foregoing CSI report corresponding to the first secondary carrier may also be related to the The CSI report corresponding to the BWP of the first secondary carrier.
  • the CSI report corresponding to the first secondary carrier may also be the CSI report corresponding to the BWP of the first secondary carrier.
  • the CSI measurement result may also be the CSI measurement result corresponding to the BWP of the first secondary carrier, where the BWP is the first activated BWP.
  • the network device executes part 300 and part 340 simultaneously, that is, sends the first control information and the second control information at the same time.
  • the terminal will first obtain the first control information Then obtain the second control information. After obtaining the first control information and before obtaining the second control information, the terminal performs CSI measurement corresponding to the first secondary carrier according to the first control information.
  • the terminal After obtaining the second control information, the terminal reports the CSI corresponding to the first secondary carrier, which can also be understood as reporting the above-mentioned CSI measurement result corresponding to the first secondary carrier to the network device .
  • the foregoing CSI measurement corresponding to the first secondary carrier may also be the CSI measurement corresponding to the BWP of the first secondary carrier, and the foregoing CSI report corresponding to the first secondary carrier may also be related to the The CSI report corresponding to the BWP of the first secondary carrier.
  • the above CSI measurement result corresponding to the first secondary carrier may also be the CSI measurement result corresponding to the BWP of the first secondary carrier, where the BWP is the first active BWP.
  • part 340 executes part 330 (activating the first control information) after receiving the second control information and before receiving the first control information.
  • Secondary carrier the terminal performs part 330 (activating the first secondary carrier) after receiving the second control information and after receiving the first control information.
  • the terminal executes part 330 (activating the first secondary carrier) after receiving the second control information and when receiving the first control information.
  • the communication method provided by the embodiment of the present application shown in FIG. 3 may further include part 350: before receiving the first control information, the terminal sends Feedback information corresponding to the second control information. Before sending the first control information, the network device receives the feedback information corresponding to the second control information.
  • the feedback information is acknowledgement (acknowledgement, ACK) information, and the ACK information can be understood as information that the terminal feeds back to the network device after correctly receiving the second control information, so as to notify the network The second control information of the device is correctly received.
  • the terminal does not blindly check or receive the first control information before sending the feedback information. It can also be understood that the terminal will blindly check or receive the control information only after sending the feedback information. , Thereby reducing the power consumption of the terminal.
  • the embodiment of the present application illustrated in FIG. 3 does not limit the parts 300 and 330, as well as the parts 350 and 330. Order of execution.
  • the terminal may also send feedback information corresponding to the foregoing first control information, and the network device receives the feedback information.
  • the feedback information is acknowledgement (acknowledgement, ACK) information.
  • the feedback information is negative acknowledgement (NACK) information.
  • the foregoing implementation manners can allow the network device to learn the status of the terminal receiving the first control information more quickly, so that the network device can learn the activation status of the aforementioned secondary carrier faster, thereby reducing the time required for the secondary carrier activation process.
  • FIG. 5 is a schematic diagram of interaction of another communication method provided by an embodiment of this application. As shown in FIG. 5, the method of this embodiment may include a 500 part and a 510 part.
  • Part 500 The network device sends the first configuration information, and the terminal receives the first configuration information.
  • the first configuration information includes first time information and second time information.
  • the first configuration information is carried by higher layer signaling (for example, RRC signaling).
  • Part 510 The terminal performs a CSI operation corresponding to the second secondary carrier according to the first time information or the second time information. Alternatively, the terminal performs a CSI operation corresponding to the BWP of the second secondary carrier according to the first time information or the second time information.
  • the CSI operation includes one or more of the following: aperiodic CSI report, aperiodic CSI measurement, semi-persistent CSI report, semi-persistent CSI measurement, or periodic measurement.
  • the communication method provided by the embodiment of the application shown in FIG. 5 may further include part 520: the network device receives the communication from the terminal with the first time information according to the first time information or the second time information.
  • CSI report corresponding to the second secondary carrier receives a CSI report corresponding to the BWP of the second secondary carrier from the terminal according to the first time information or the second time information, where the BWP is the first activated BWP.
  • the CSI report is an aperiodic CSI report or a semi-persistent CSI report.
  • the terminal determines to use the first time information or the second time information to perform the CSI operation corresponding to the second secondary carrier according to the activation state of the second secondary carrier (It can also be understood as performing a CSI operation corresponding to the BWP of the second secondary carrier).
  • the BWP is a BWP configured by higher layer signaling (such as RRC signaling).
  • the second secondary carrier When the second secondary carrier is in the deactivated state, perform the CSI operation corresponding to the second secondary carrier according to the second time information (it can also be understood as performing the BWP corresponding to the second secondary carrier CSI operation, this BWP is the first activated BWP).
  • the first time information indicates that when the second secondary carrier is in an active state, the communication with the The time domain resource of the CSI measurement corresponding to the second secondary carrier (which can also be understood as the CSI measurement corresponding to the BWP of the second secondary carrier), and the second time information indicates when the second secondary carrier is deactivated In the state, performing CSI measurement corresponding to the second secondary carrier (also can be understood as performing CSI measurement corresponding to the BWP of the second secondary carrier, where the BWP is the first activated BWP) time domain resources.
  • the terminal receives information used to trigger CSI reporting corresponding to the second secondary carrier (also understood as CSI reporting corresponding to the BWP of the second secondary carrier) in time slot n, and
  • the information may be, for example, the first control information as illustrated in FIG. 3.
  • the first time information indicates that when the second secondary carrier is in an activated state, the time domain resource for performing CSI measurement corresponding to the second secondary carrier is time slot n+X1.
  • the second time information indicates that when the second secondary carrier is in a deactivated state, the time domain resource for performing CSI measurement corresponding to the second secondary carrier is time slot n+X2.
  • X1 and X2 are non-negative integers, and X1 and X2 may or may not be equal.
  • X1 is smaller than X2, which is considering that the deactivated secondary carrier needs more time to receive the CSI-RS.
  • the first time information and the second time information may be as shown in Table 1, where aperiodicTriggeringOffset is the first time information, indicating the aforementioned X1, and the value of X1 is 0 to 6.
  • AperiodicTriggeringOffsetforactivation is the second time information, indicating the aforementioned X2, and the value of X2 is an integer from 4 to 16. It is understandable that the values and names of the first time information and the second time information in this example are only illustrative, and the embodiment of the present application may also support the comparison of the first time information and the second time information. Other values and other names.
  • the second secondary carrier in the deactivated state can also be divided into the first type of deactivated secondary carrier and the second type of deactivated secondary carrier.
  • the first type of deactivated secondary carrier may also be referred to as a known (known) secondary carrier or a known cell
  • the second type of deactivated secondary carrier may also be referred to as an unknown (unknown) secondary carrier or unknown ( unknown) community.
  • the time required to activate the second type of deactivated secondary carrier is longer than the time required to activate the first type of deactivated secondary carrier.
  • the second time information indicates to perform CSI measurement corresponding to the first type of deactivated secondary carrier (it can also be understood as performing a BWP corresponding to the first type of deactivated secondary carrier).
  • the BWP is the first activated BWP).
  • the time domain resource is time slot n+X21, and the second time information indicates to perform CSI measurement corresponding to the second type of deactivated secondary carrier (it is also understandable In order to perform CSI measurement corresponding to the BWP of the second type of deactivated secondary carrier, the time domain resource of the BWP is the first activated BWP) is the time slot n+X22, where X21 is less than X22.
  • the CSI measurement is aperiodic CSI-RS measurement, semi-persistent CSI measurement, or periodic CSI-RS measurement.
  • the first time information indicates that when the second secondary carrier is in an active state
  • the communication with the second secondary carrier Corresponding to the time domain resource of the CSI report (which can also be understood as the CSI report corresponding to the BWP of the second secondary carrier)
  • the second time information indicates that when the second secondary carrier is in the deactivated state
  • the CSI report corresponding to the second secondary carrier (which can also be understood as the CSI report corresponding to the BWP of the second secondary carrier, which is the first activated BWP) time domain resource.
  • the terminal receives information used to trigger CSI reporting corresponding to the second secondary carrier (also understood as CSI reporting corresponding to the BWP of the second secondary carrier) in time slot n, and
  • the information may be, for example, the first control information as illustrated in FIG. 3.
  • the first time information indicates that when the second secondary carrier is in an activated state, the time domain resource for CSI reporting corresponding to the second secondary carrier is time slot n+Y1.
  • the second time information indicates that when the second secondary carrier is in a deactivated state, the time domain resource for CSI reporting corresponding to the second secondary carrier is time slot n+Y2.
  • Y1 and Y2 are non-negative integers, and Y1 and Y2 may or may not be equal.
  • Y1 is smaller than Y2, which is considering that the deactivated secondary carrier needs more time for CSI reporting.
  • the first time information and the second time information may be as shown in Table 2, where CSI-ReportConfig may be understood as the above-mentioned first configuration information, used to configure the parameters reported by CSI; reportSlotOffsetList is the The first time information indicates the aforementioned Y1, and the value of Y1 is one or more integers from 0 to 32; reportSlotOffsetListforactivation is the second time information, indicating the aforementioned Y2, and the value of Y2 is 10. One or more integers from to 42.
  • the first time information is configured with K1 (K1 is less than or equal to maxNrofUL-Allocations1 in Table 2) candidate values of Y1 (which may be indicated as ⁇ Y1 1 ,..., Y1 K1 ⁇ ), and
  • the second time information is configured with K2 (K2 is less than or equal to maxNrofUL-Allocations2 in Table 2) candidate values of Y2 (which can be illustrated as ⁇ Y2 1 ,..., Y2 K2 ⁇ ).
  • the maximum value in ⁇ Y1 1 ,...,Y1 K1 ⁇ is smaller than the maximum value in ⁇ Y2 1 ,...,Y2 K2 ⁇ , which is because the deactivated secondary carrier needs more Time for CSI reporting.
  • the same number of bits can be used in the indication field of the DCI to simplify the design of the downlink control information.
  • the values and names of the first time information and the second time information in this example are only illustrative, and the embodiment of the present application may also support the comparison of the first time information and the second time information. Other values and other names.
  • CSI-ReportConfig only one CSI-ReportConfig is configured as an example in Table 2.
  • the embodiment of the present application may also be applicable to a situation where multiple CSI-ReportConfigs are configured.
  • two CSI-ReportConfig (represented as CSI-ReportConfig1 and CSI-ReportConfig2) are configured, the first time information contained in CSI-ReportConfig1 is reportSlotOffsetList1, and the second time information contained in CSI-ReportConfig1 is reportSlotOffsetList1foractivation, CSI-ReportConfig2
  • the first time information contained in CSI-ReportConfig2 is reportSlotOffsetList2
  • the second time information contained in CSI-ReportConfig2 is reportSlotOffsetList2foractivation.
  • reportSlotOffsetList1 is configured with K11 candidate values of Y1 (which can be illustrated as ⁇ Y1 1 ,...,Y1 K11 ⁇ )
  • reportSlotOffsetList2 is configured with K12 candidate values of Y1 (which can be illustrated as ⁇ Y1' 1 ,..., Y1' K12 ⁇ )
  • reportSlotOffsetList1foractivation is configured with K21 candidate values of Y2 (can be indicated as ⁇ Y2 1 ,...,Y2 K21 ⁇ )
  • reportSlotOffsetList2foractivation is configured with K22 candidate values of Y2 (can be indicated as ⁇ Y2' 1 ,...,Y2' K22 ⁇ ).
  • the terminal receives information used to trigger CSI reporting corresponding to the second secondary carrier (also understood as CSI reporting corresponding to the BWP of the second secondary carrier) in time slot n, and
  • the information may be, for example, the first control information as illustrated in FIG. 3.
  • the first time information indicates that when the second secondary carrier is in an activated state, the time domain resource for CSI reporting corresponding to the second secondary carrier is time slot n+Y1.
  • the second time information indicates that when the second secondary carrier is in a deactivated state, the time domain resource for CSI reporting corresponding to the second secondary carrier is time slot n+Y2.
  • Y1 and Y2 are non-negative integers, and Y1 and Y2 may or may not be equal.
  • Y1 is smaller than Y2, which is considering that the deactivated secondary carrier needs more time for CSI reporting.
  • the first time information and the second time information may be as shown in Table 3, where k2 is the first time information, indicating the aforementioned Y1, and the value of Y1 is 0 to 32 K2' is the second time information, indicating the aforementioned Y2, and the value of Y2 is an integer from 10 to 42. It is understandable that the values and names of the first time information and the second time information in this example are only illustrative, and the embodiment of the present application may also support the comparison of the first time information and the second time information. Other values and other names.
  • the CSI report is semi-continuous CSI report or aperiodic CSI report.
  • the method illustrated in FIG. 5 may be implemented in combination with the method illustrated in FIG. 3, and the second secondary carrier illustrated in FIG. 5 and the first secondary carrier illustrated in FIG. 3 may be the same secondary carrier.
  • FIG. 6 is a schematic diagram of interaction of another communication method provided by an embodiment of this application. As shown in FIG. 6, the method of this embodiment may include a 600 part and a 610 part.
  • Part 600 The network device sends second configuration information, and the terminal receives the second configuration information.
  • the second configuration information includes first time information or second time information.
  • the second configuration information is carried by higher layer signaling (for example, RRC signaling).
  • Part 610 The terminal performs a CSI operation corresponding to the second secondary carrier according to the first time information or the second time information. Alternatively, the terminal performs a CSI operation corresponding to the BWP of the second secondary carrier according to the first time information or the second time information, where the BWP is the first activated BWP.
  • the CSI operation includes one or more of the following: aperiodic CSI report, aperiodic CSI measurement, periodic measurement, semi-persistent CSI report, or semi-persistent CSI measurement.
  • the communication method provided by the embodiment of the present application shown in FIG. 6 may further include part 620: the network device receives the communication from the terminal with the first time information according to the first time information or the second time information.
  • CSI report corresponding to the second secondary carrier receives a CSI report corresponding to the BWP of the second secondary carrier from the terminal according to the first time information or the second time information, and the second secondary carrier is in a deactivated state ,
  • the BWP is the first activated BWP.
  • the CSI report is an aperiodic CSI report or a semi-persistent CSI report.
  • the network device determines that the sent second configuration information includes the first time information or the second time information according to the activation state of the second secondary carrier .
  • the network device determines that the second configuration information includes the first time information.
  • the network device determines that the second configuration information includes the second time information.
  • the network device can perform reasonable time information configuration of the CSI operation according to the activation state of the secondary carrier, thereby reducing the implementation complexity of the terminal.
  • the method illustrated in FIG. 6 may be implemented in combination with the method illustrated in FIG. 3, and the second secondary carrier illustrated in FIG. 6 and the first secondary carrier illustrated in FIG. 3 may be the same secondary carrier.
  • the corresponding relationships shown in the above tables can be configured or pre-defined.
  • the value of the information in each table is only an example and can be configured to other values, which is not limited in this application.
  • it is not necessarily required to configure all the correspondences indicated in the tables.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters indicated in the titles in the above tables may also adopt other names that the communication device can understand, and the values or expression modes of the parameters may also be other values or expression modes that the communication device understands.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the pre-definition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-fired.
  • the description of the relationship between a and b (which can also be understood as a functional relationship) involved in this application does not force a and b to accurately meet the relationship.
  • the value a'and the value b exactly satisfy the above relationship
  • the value a obtained by de-floating, rounding, or rounding the value a' can also be understood as a and b satisfying the above relationship.
  • a and b satisfying the relationship may also refer to a relationship in which a and b satisfy the relationship after equivalent modification, which is not limited in the embodiment of the present application.
  • the embodiment of the present application does not limit the specific implementation manner of satisfying the relationship between a and b.
  • the mapping manner may be implemented through a formula, or the mapping manner may be implemented in the form of a table, or the mapping manner may also be implemented through It can be implemented in other ways, which is not limited in the embodiment of the present application.
  • the methods implemented by the communication device in the foregoing method embodiments may also be implemented by components (for example, integrated circuits, chips, etc.) that can be used for communication devices.
  • the embodiment of the present application also provides a corresponding communication device (also referred to as a communication device).
  • the communication device includes a module for executing each part of the foregoing embodiment.
  • the module can be software, hardware, or a combination of software and hardware.
  • FIG. 7 shows a schematic structural diagram of a communication device.
  • the communication device 700 may be the network device 10 or 20 in FIG. 1, or may be the terminal 11, 12, 21, or 22 in FIG.
  • the communication device can be used to implement the method corresponding to the terminal or network device described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • the communication device 700 may include one or more processors 701, and the processor 701 may also be referred to as a processing unit, which may implement certain control functions.
  • the processor 701 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, baseband chips, DUs or CUs, etc.), execute software programs, and process data in the software programs.
  • the processor 701 may also store instructions and/or data 703, and the instructions and/or data 703 may be executed by the processor, so that the communication device 700 executes the foregoing method embodiments.
  • the method described in corresponds to the communication device.
  • the processor 701 may include a transceiver unit for implementing receiving and sending functions.
  • the transceiver unit may be a transceiver circuit or an interface.
  • the circuits or interfaces used to implement the receiving and sending functions can be separate or integrated.
  • the communication device 700 may include a circuit, and the circuit may implement the sending or receiving or communication function in the foregoing method embodiment.
  • the communication device 700 in the embodiment of the present application may be used to execute the method described in FIG. 3, FIG. 5, or FIG. 6 in the embodiment of the present application.
  • the communication device 700 may include one or more memories 702, on which instructions 704 may be stored, and the instructions may be executed on the processor, so that the communication device 700 executes the foregoing method implementation.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and memory can be provided separately or integrated together.
  • the various correspondence relationships described in the foregoing method embodiments may be stored in a memory or in a processor.
  • the communication device 700 may further include a transceiver 705 and/or an antenna 706.
  • the processor 701 may be called a processing unit, and controls a communication device (terminal or network device).
  • the transceiver 705 may be called a transceiver unit, a transceiver, a transceiver circuit or a transceiver, etc., and is used to implement the transceiver function of the communication device.
  • a communication device 700 may include a processor 701 and a transceiver 705.
  • the transceiver 705 receives first control information, where the first control information is used to trigger CSI reporting corresponding to the first secondary carrier, where the first secondary carrier is in a deactivated state.
  • the processor 701 controls the transceiver 705 to report the CSI report corresponding to the first secondary carrier according to the first control information.
  • the aforementioned CSI report may be an aperiodic CSI report or a semi-persistent CSI report, and the aforementioned CSI report is an aperiodic CSI report or a semi-persistent CSI report.
  • the number of the aforementioned first secondary carrier may be one or more.
  • the aforementioned first control information is DCI, and the DCI is carried by the PDCCH.
  • the CSI report corresponding to the first secondary carrier reported above is carried by the PUSCH.
  • the communication device provided by the embodiment of the present application can use physical layer signaling to trigger the CSI reporting of the secondary carrier to be activated. Since the processing of the physical layer signaling is faster, the CSI reporting of the secondary carrier is also faster, so that network equipment can be faster Knowing the activation status of the secondary carrier, thereby reducing the time required for the secondary carrier activation procedure.
  • the foregoing first control information is used to trigger a CSI report corresponding to the BWP of the foregoing first secondary carrier, and the BWP is the first activated BWP.
  • the processor 701 controls the transceiver 705 to report the CSI corresponding to the BWP of the first secondary carrier according to the first control information.
  • the physical layer signaling can be used to trigger the BWP corresponding CSI report of the secondary carrier to be activated. Since the processing of the physical layer signaling is faster, the BWP corresponding CSI report of the secondary carrier is also faster, so that the network equipment can be more quickly The activation status of the secondary carrier can be learned quickly, thereby reducing the time required for the secondary carrier activation procedure.
  • the foregoing first control information may also be used to trigger activation of the foregoing first secondary carrier.
  • the processor 701 controls the communication device 700 to activate the first secondary carrier according to the first control information.
  • the above-mentioned first control information can not only be used to trigger the terminal to report the CSI corresponding to the first secondary carrier to be activated, but also can be used to trigger activation of the first secondary carrier, thereby not only reducing the secondary carrier activation process
  • the required time can further reduce signaling overhead.
  • the transceiver 705 may also receive second control information, where the second control information is used to trigger the activation of the foregoing first secondary carrier.
  • the second control information is carried by the MAC CE.
  • the processor 701 controls the communication device 700 to activate the first secondary carrier according to the second control information.
  • the processor 701 controls the transceiver 705 according to the first control information to perform CSI reporting corresponding to the first secondary carrier.
  • the transceiver 705 sends feedback information corresponding to the second control information, and the feedback information may be acknowledgement (acknowledgement, ACK) information.
  • a communication device 700 may include a processor 701 and a transceiver 705.
  • the transceiver 705 receives first configuration information, where the first configuration information includes first time information and second time information.
  • the processor 701 controls the transceiver 705 or the communication device 700 to perform a CSI operation corresponding to the second secondary carrier according to the first time information or the second time information.
  • the CSI operation includes one or more of the following: aperiodic CSI report, aperiodic CSI measurement, semi-persistent CSI report, or semi-persistent CSI measurement.
  • the foregoing first configuration information is carried by higher layer signaling (for example, RRC signaling).
  • the processor 701 determines to use the first time information or the second time information to control the transceiver 705 or the communication device 700 according to the activation state of the second secondary carrier. CSI operation corresponding to the second secondary carrier.
  • the processor 701 controls the transceiver 705 or the communication device 700 to perform a CSI operation corresponding to the second secondary carrier according to the first time information.
  • the processor 701 controls the transceiver 705 or the communication device 700 to perform a CSI operation corresponding to the second secondary carrier according to the second time information.
  • a communication device 700 may include a transceiver 705.
  • the transceiver 705 sends first control information to the terminal.
  • the first control information includes CSI request information corresponding to the first secondary carrier.
  • the CSI request information is used to trigger the terminal to report the CSI corresponding to the first secondary carrier.
  • the CSI reporting may be aperiodic CSI reporting or semi-persistent CSI reporting, and the above-mentioned first secondary carrier is in a deactivated state.
  • the transceiver 705 receives a CSI report corresponding to the first secondary carrier from the terminal, and the CSI report is an aperiodic CSI report or a semi-persistent CSI report.
  • the number of the aforementioned first secondary carrier may be one or more.
  • the aforementioned first control information is DCI, and the DCI is carried by the PDCCH.
  • the above CSI report is carried by PUSCH.
  • the physical layer signaling can be used to trigger the CSI reporting of the secondary carrier to be activated. Since the processing of the physical layer signaling is faster, the CSI reporting of the secondary carrier is also faster, so that the network device can learn about the secondary carrier more quickly. The activation state of the carrier, thereby reducing the time required for the auxiliary carrier activation procedure.
  • the foregoing CSI request information corresponding to the first secondary carrier includes CSI request information corresponding to the BWP of the first secondary carrier, and the BWP is the first activated BWP.
  • the transceiver 705 receives the CSI report corresponding to the BWP of the first secondary carrier from the terminal.
  • the physical layer signaling can be used to trigger the BWP corresponding CSI report of the secondary carrier to be activated. Since the processing of the physical layer signaling is faster, the CSI report corresponding to the BWP of the secondary carrier is also faster, so that the network equipment can be more The activation status of the secondary carrier can be learned quickly, thereby reducing the time required for the secondary carrier activation procedure.
  • the first control information includes trigger activation information corresponding to the first secondary carrier, and the trigger activation information is used to trigger the activation of the first secondary carrier.
  • the above-mentioned first control information can not only be used to trigger the CSI report corresponding to the first secondary carrier to be activated, but also can be used to trigger the activation of the first secondary carrier, thereby not only reducing the need for the secondary carrier activation process Time can further reduce signaling overhead.
  • the transceiver 705 may also send second control information to the aforementioned terminal.
  • the second control information includes trigger activation information corresponding to the aforementioned first secondary carrier, and the trigger activation information is used for Trigger activation of the above-mentioned first secondary carrier.
  • the second control information is carried by the MAC CE.
  • the transceiver 705 receives a CSI report corresponding to the first secondary carrier from the terminal.
  • the transceiver 705 receives the information corresponding to the second control information from the terminal.
  • the feedback information can be ACK information.
  • a communication device 700 may include a processor 701 and a transceiver 705.
  • the transceiver 705 sends first configuration information to the terminal, where the first configuration information includes first time information and second time information.
  • the processor 701 controls the transceiver 705 to receive the CSI report corresponding to the second secondary carrier from the terminal according to the first time information or the second time information, and the CSI report is an aperiodic CSI report or a semi-persistent CSI report.
  • the above-mentioned first configuration information is carried by higher layer signaling.
  • the processor 701 determines to use the aforementioned first time information or the aforementioned second time information to control the transceiver 705 to receive the communication from the aforementioned terminal according to the activation state of the aforementioned second secondary carrier.
  • CSI report corresponding to the second secondary carrier when the second secondary carrier is in an active state, the processor 701 controls the transceiver 705 according to the first time information to receive a CSI report corresponding to the second secondary carrier from the terminal.
  • the processor 701 controls the transceiver 705 according to the second time information to receive the CSI report corresponding to the second secondary carrier from the terminal.
  • the processor and transceiver described in this application can be implemented in integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit board ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), and P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device is described by taking a network device or a terminal as an example, the scope of the communication device described in this application is not limited to this, and the structure of the communication device may not be limited by FIG. 7.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the device may be:
  • the IC collection may also include storage components for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • FIG. 8 provides a schematic structural diagram of a terminal.
  • the terminal can be applied to the system shown in Figure 1.
  • FIG. 8 only shows the main components of the terminal.
  • the terminal 800 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal out in the form of electromagnetic waves through the antenna. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and performs processing on the data. deal with.
  • FIG. 8 only shows a memory and a processor. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal and execute software. Programs, which process the data of software programs.
  • the processor in FIG. 8 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as buses.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with the transceiver function may be regarded as the transceiver unit 811 of the terminal 800, and the processor with the processing function may be regarded as the processing unit 812 of the terminal 800.
  • the terminal 800 includes a transceiver unit 811 and a processing unit 812.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiving unit 811 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 811 can be regarded as the sending unit, that is, the transceiving unit 811 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the foregoing receiving unit and sending unit may be an integrated unit or multiple independent units.
  • the above-mentioned receiving unit and sending unit may be in one geographic location, or may be scattered in multiple geographic locations.
  • the communication device may be a terminal (for example, the terminal in the system shown in FIG. 1) or a component of the terminal (for example, an integrated circuit, a chip, etc.).
  • the communication device may also be a network device (for example, the communication device is a base station device that can be applied to the system of FIG. 1), or a component of the network device (for example, an integrated circuit, a chip, etc.).
  • the communication device may also be another communication module, which is used to implement the operation corresponding to the communication device or node in the method embodiment of the present application.
  • the communication device 900 may include: a processing module 902 (processing unit).
  • the communication device 900 may further include a transceiving module 901 (transceiving unit) and/or a storage module 903 (storing unit).
  • one or more modules as shown in Figure 9 may be implemented by one or more processors, or by one or more processors and memories; or by one or more processors It can be implemented with a transceiver; or implemented by one or more processors, memories, and transceivers, which is not limited in the embodiment of the present application.
  • the processor, memory, and transceiver can be set separately or integrated.
  • the communication device has the function of implementing the terminal described in the embodiment of this application.
  • the communication device includes the module or unit or means corresponding to the terminal to execute the steps described in the embodiment of this application.
  • the function or unit or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the communication device has the function of implementing the network equipment described in the embodiments of the present application.
  • the communication device includes the modules or units or means corresponding to the steps involved in the network equipment described in the embodiments of the present application. ), the function or unit or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the function or unit or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • each module in the communication device 900 in the embodiment of the present application may be used to execute the method described in FIG. 3, FIG. 5, or FIG. 6 in the embodiment of the present application.
  • a communication device 900 may include a transceiver module 901 and a processing module 902.
  • the transceiver module 901 receives first control information, where the first control information is used to trigger CSI reporting corresponding to the first secondary carrier, where the first secondary carrier is in a deactivated state.
  • the processing module 902 controls the transceiver module 901 to report the CSI report corresponding to the above-mentioned first secondary carrier according to the first control information.
  • the aforementioned CSI report may be an aperiodic CSI report or a semi-persistent CSI report, and the aforementioned CSI report is an aperiodic CSI report or a semi-persistent CSI report.
  • the number of the aforementioned first secondary carrier may be one or more.
  • the aforementioned first control information is DCI, and the DCI is carried by the PDCCH.
  • the CSI report corresponding to the first secondary carrier reported above is carried by the PUSCH.
  • the communication device provided by the embodiment of the present application can use physical layer signaling to trigger the CSI reporting of the secondary carrier to be activated. Since the processing of the physical layer signaling is faster, the CSI reporting of the secondary carrier is also faster, so that network equipment can be faster Knowing the activation status of the secondary carrier, thereby reducing the time required for the secondary carrier activation procedure.
  • the foregoing first control information is used to trigger a CSI report corresponding to the BWP of the foregoing first secondary carrier, and the BWP is the first activated BWP.
  • the processing module 902 controls the transceiver module 901 to report the CSI corresponding to the BWP of the first secondary carrier according to the first control information.
  • the physical layer signaling can be used to trigger the BWP corresponding CSI report of the secondary carrier to be activated. Since the processing of the physical layer signaling is faster, the CSI report corresponding to the BWP of the secondary carrier is also faster, so that the network equipment can be more The activation status of the secondary carrier can be learned quickly, thereby reducing the time required for the secondary carrier activation procedure.
  • the foregoing first control information may also be used to trigger activation of the foregoing first secondary carrier.
  • the processing module 902 controls the communication device 900 to activate the first secondary carrier according to the first control information.
  • the above-mentioned first control information can not only be used to trigger the terminal to report the CSI corresponding to the first secondary carrier to be activated, but also can be used to trigger activation of the first secondary carrier, thereby not only reducing the secondary carrier activation process The required time can further reduce signaling overhead.
  • the transceiver module 901 may also receive second control information, where the second control information is used to trigger activation of the foregoing first secondary carrier.
  • the second control information is carried by the MAC CE.
  • the processing module 902 controls the communication device 900 to activate the first secondary carrier according to the second control information.
  • the processing module 902 controls the transceiver module 901 according to the first control information to perform CSI reporting corresponding to the first secondary carrier.
  • the transceiver module 901 sends feedback information corresponding to the second control information, and the feedback information may be acknowledgement (ACK) information.
  • ACK acknowledgement
  • a communication device 900 may include a transceiver module 901 and a processing module 902.
  • the transceiver module 901 receives first configuration information, where the first configuration information includes first time information and second time information.
  • the processing module 902 controls the transceiver module 901 or the communication device 900 to perform the CSI operation corresponding to the second secondary carrier according to the foregoing first time information or the foregoing second time information.
  • the CSI operation includes one or more of the following: aperiodic CSI report, aperiodic CSI measurement, semi-persistent CSI report, or semi-persistent CSI measurement.
  • the foregoing first configuration information is carried by higher layer signaling (for example, RRC signaling).
  • the processing module 902 determines to use the aforementioned first time information or the aforementioned second time information to control the transceiver module 901 or the communication device 900 according to the activation state of the aforementioned second secondary carrier. CSI operation corresponding to the second secondary carrier.
  • the processing module 902 controls the transceiver module 901 or the communication device 900 to perform a CSI operation corresponding to the second secondary carrier according to the first time information.
  • the processing module 902 controls the transceiver module 901 or the communication device 900 to perform a CSI operation corresponding to the second secondary carrier according to the second time information.
  • a communication device 900 may include a transceiver module 901.
  • the transceiver module 901 sends first control information to the terminal.
  • the first control information includes CSI request information corresponding to the first secondary carrier.
  • the CSI request information is used to trigger the terminal to report the CSI corresponding to the first secondary carrier.
  • the CSI reporting may be aperiodic CSI reporting or semi-persistent CSI reporting, and the above-mentioned first secondary carrier is in a deactivated state.
  • the transceiver module 901 receives a CSI report corresponding to the first secondary carrier from the terminal, and the CSI report is an aperiodic CSI report or a semi-persistent CSI report.
  • the number of the aforementioned first secondary carrier may be one or more.
  • the aforementioned first control information is DCI, and the DCI is carried by the PDCCH.
  • the above CSI report is carried by PUSCH.
  • the physical layer signaling can be used to trigger the CSI reporting of the secondary carrier to be activated. Since the processing of the physical layer signaling is faster, the CSI reporting of the secondary carrier is also faster, so that the network device can learn about the secondary carrier more quickly. The activation state of the carrier, thereby reducing the time required for the auxiliary carrier activation procedure.
  • the foregoing CSI request information corresponding to the first secondary carrier includes CSI request information corresponding to the BWP of the first secondary carrier, and the BWP is the first activated BWP.
  • the transceiver module 901 receives the CSI report corresponding to the BWP of the first secondary carrier from the terminal.
  • the physical layer signaling can be used to trigger the BWP corresponding CSI report of the secondary carrier to be activated. Since the processing of the physical layer signaling is faster, the CSI report corresponding to the BWP of the secondary carrier is also faster, so that the network equipment can be more The activation status of the secondary carrier can be learned quickly, thereby reducing the time required for the secondary carrier activation procedure.
  • the foregoing first control information includes trigger activation information corresponding to the foregoing first secondary carrier, and the trigger activation information is used to trigger activation of the foregoing first secondary carrier.
  • the above-mentioned first control information can not only be used to trigger the CSI report corresponding to the first secondary carrier to be activated, but also can be used to trigger the activation of the first secondary carrier, thereby not only reducing the need for the secondary carrier activation process Time can further reduce signaling overhead.
  • the transceiver module 901 can also send second control information to the aforementioned terminal.
  • the second control information includes trigger activation information corresponding to the aforementioned first secondary carrier, and the trigger activation information is used for Trigger activation of the above-mentioned first secondary carrier.
  • the second control information is carried by the MAC CE.
  • the transceiver module 901 receives a CSI report corresponding to the first secondary carrier from the terminal.
  • the transceiver module 901 receives from the terminal corresponding to the second control information.
  • the feedback information can be ACK information.
  • a communication device 900 may include a transceiver module 901 and a processing module 902.
  • the transceiver module 901 sends first configuration information to the terminal, where the first configuration information includes first time information and second time information.
  • the processing module 902 controls the transceiver module 901 to receive the CSI report corresponding to the second secondary carrier from the terminal according to the first time information or the second time information.
  • the CSI report is an aperiodic CSI report or a semi-persistent CSI report.
  • the above-mentioned first configuration information is carried by higher layer signaling.
  • the processing module 902 determines to use the above-mentioned first time information or the above-mentioned second time information to control the transceiver module 901 to receive the communication from the above-mentioned terminal according to the activation state of the above-mentioned second secondary carrier.
  • CSI report corresponding to the second secondary carrier when the second secondary carrier is in an active state, the processing module 902 controls the transceiver module 901 according to the first time information to receive the CSI report corresponding to the second secondary carrier from the terminal.
  • the processing module 902 controls the transceiver module 901 according to the second time information to receive the CSI report corresponding to the second secondary carrier from the terminal.
  • the technology described in this application can be implemented in various ways. For example, these technologies can be implemented in hardware, software, or a combination of hardware.
  • the processing unit used to execute these technologies at a communication device can be implemented on one or more general-purpose processors, digital signal processors (DSP), digital Signal processing device (DSPD), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware component, or the above In any combination.
  • DSP digital signal processors
  • DSPD digital Signal processing device
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, instructions executed by a processor, or a combination of the two.
  • the memory can be RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, register, hard disk, removable disk, CD-ROM or any other storage medium in the art.
  • the memory can be connected to the processor, so that the processor can read information from the memory and can write information to the memory.
  • the memory can also be integrated into the processor.
  • the processor and the memory can be arranged in the ASIC, and the ASIC can be arranged in the terminal.
  • the processor and the memory may also be arranged in different components in the terminal.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data package.
  • the center transmits to another website, computer, server, or data packet center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data packet storage device such as a server or a data packet center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • SSD solid state disk

Abstract

本申请提供一种通信方法及装置。该方法包括:终端接收第一控制信息,所述第一控制信息用于触发与第一辅载波对应的信道状态信息(channel state information,CSI)操作,其中,所述第一辅载波处于去激活状态,所述CSI操作包括下述的一种或多种:非周期CSI上报、非周期CSI测量、半持续CSI上报、或半持续CSI测量。该终端根据所述第一控制信息进行与所述第一辅载波对应的所述CSI操作。通过本申请提供的方法,能够使用物理层信令触发待激活辅载波的CSI操作,使得辅载波的激活更加快速,从而减少了辅载波的激活时间,进而满足业务的时延需求。

Description

通信方法及装置
本申请要求于2019年3月29日提交中国专利局、申请号为201910248237.4、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信的方法及装置。
背景技术
在无线通信网络中,载波聚合(carrier aggregation,CA)技术可通过多个载波(例如主载波和辅载波)为终端提供更多的传输带宽,从而获得更高的传输速率。CA技术中支持对辅载波的激活和去激活操作,例如可通过媒体接入控制(media access control,MAC)控制元素(control element,CE)激活辅载波。然而,由于MAC CE的处理时间较长,导致激活辅载波需要较长的时间,无法快速的满足大带宽业务的需求。因此,如何能够更快地激活辅载波,成为亟需解决的问题。
发明内容
本申请实施例提供一种通信方法及装置。
第一方面,本申请实施例提供一种通信方法,该方法可以由终端执行,包括:接收来自网络设备的第一控制信息,该第一控制信息用于触发与第一辅载波对应的信道状态信息(channel state information,CSI)上报,其中,该第一辅载波处于去激活状态。根据该第一控制信息,上报与上述第一辅载波对应的CSI报告。上述CSI上报可以是非周期CSI上报或半持续CSI上报,上述CSI报告为非周期CSI报告或半持续CSI报告。上述第一辅载波的数量可以是一个或多个。可选地,上述第一控制信息为下行控制信息(downlink control information,DCI),该DCI由物理下行控制信道(physical downlink control channel,PDCCH)承载。可选地,上述上报的与第一辅载波对应的CSI报告由物理上行共享信道(physical uplink shared channel,PUSCH)承载。
通过上述方法,能够使用物理层信令触发待激活辅载波的CSI上报,由于物理层信令的处理更加快速,该辅载波的CSI上报也更加快速,使得网络设备能够更快的获知该辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
可选地,上述第一控制信息用于触发与上述第一辅载波的带宽部分(bandwidth part,BWP)对应的CSI上报,该BWP为第一激活BWP。根据上述第一控制信息进行与上述第一辅载波的上述BWP对应的CSI上报。通过该实施方式,能够使用物理层信令触发待激活辅载波的BWP对应CSI上报,由于物理层信令的处理更加快速,该辅载波的BWP对应的CSI上报也更加快速,使得网络设备能够更快的获知该辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
结合第一方面,在第一方面的某些实施方式中,上述第一控制信息还可以用于触发激 活上述第一辅载波。可选地,终端根据该第一控制信息激活该第一辅载波。通过该实施方式,上述第一控制信息不仅可以用来触发终端进行与待激活的第一辅载波对应的CSI上报,还可以用来触发激活该第一辅载波,从而不仅能够减少辅载波激活流程所需时间,还可以进一步降低信令开销。
结合第一方面,在第一方面的某些实施方式中,还可以接收第二控制信息,该第二控制信息用于触发激活上述第一辅载波。可选地,该第二控制信息由MAC CE承载。可选地,终端根据该第二控制信息激活该第一辅载波。可选地,在接收该第二控制信息之后,根据上述第一控制信息进行与上述第一辅载波对应的CSI上报。可选地,在接收上述第一控制信息之前,发送与该第二控制信息对应的反馈信息,该反馈信息可以是肯定应答(acknowledgement,ACK)信息。
第二方面,本申请实施例提供另一种通信方法,该方法可以由终端执行,包括:接收来自网络设备的第一配置信息,该第一配置信息包括第一时间信息和第二时间信息。根据上述第一时间信息或上述第二时间信息进行与第二辅载波对应的CSI操作。该CSI操作包括下述的一种或多种:非周期CSI上报、非周期CSI测量、半持续CSI上报、或半持续CSI测量。可选地,上述第一配置信息由高层信令承载。
结合第二方面,在第二方面的某些实施方式中,根据上述第二辅载波的激活状态,确定使用上述第一时间信息或上述第二时间信息进行与第二辅载波对应的CSI操作。可选地,当上述第二辅载波处于激活状态时,根据上述第一时间信息进行与上述第二辅载波对应的CSI操作。可选地,当上述第二辅载波处于去激活状态时,根据上述第二时间信息进行与上述第二辅载波对应的CSI操作。
通过上述方法,能够依据辅载波的激活状态进行合理的CSI操作的时间信息配置,能够满足不同辅载波类型对CSI操作的时间需求,进而提高了在载波聚合下CSI操作的效率。
第三方面,本申请实施例提供另一种通信方法,该方法可以由网络设备执行,包括:向终端发送第一控制信息,该第一控制信息包括与第一辅载波对应的CSI请求信息,该CSI请求信息用于触发上述终端进行与上述第一辅载波对应的CSI上报,该CSI上报可以是非周期CSI上报或半持续CSI上报,上述第一辅载波处于去激活状态。接收来自上述终端的与上述第一辅载波对应的CSI报告,该CSI报告为非周期CSI报告或半持续CSI报告。上述第一辅载波的数量可以是一个或多个。可选地,上述第一控制信息为DCI,该DCI由PDCCH承载。可选地,上述CSI报告由PUSCH承载。
通过上述方法,能够使用物理层信令触发待激活辅载波的CSI上报,由于物理层信令的处理更加快速,该辅载波的CSI上报也更加快速,使得网络设备能够更快的获知该辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
可选地,上述与第一辅载波对应的CSI请求信息包括与该第一辅载波的BWP对应的CSI请求信息,该BWP为第一激活BWP。接收来自上述终端的与上述第一辅载波的上述BWP对应的CSI报告。通过该实施方式,能够使用物理层信令触发待激活辅载波的BWP对应CSI上报,由于物理层信令的处理更加快速,该辅载波的BWP对应的CSI上报也更加快速,使得网络设备能够更快的获知该辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
结合第三方面,在第三方面的某些实施方式中,上述第一控制信息包括与上述第一辅 载波对应的触发激活信息,该触发激活信息用于触发激活上述第一辅载波。通过该实施方式,上述第一控制信息不仅可以用来触发与待激活的第一辅载波对应的CSI上报,还可以用来触发激活该第一辅载波,从而不仅能够减少辅载波激活流程所需时间,还可以进一步降低信令开销。
结合第三方面,在第三方面的某些实施方式中,还可以向上述终端发送第二控制信息,该第二控制信息包括与上述第一辅载波对应的触发激活信息,该触发激活信息用于触发激活上述第一辅载波。可选地,该第二控制信息由MAC CE承载。可选地,在向上述终端发送该第二控制信息之后,接收来自该终端的与该第一辅载波对应的CSI报告。可选地,在向上述终端发送上述第一控制信息之前,以及在向该终端发送上述第二控制信息之后,接收来自该终端的与该第二控制信息对应的反馈信息,该反馈信息可以是ACK信息。
第四方面,本申请实施例提供另一种通信方法,该方法可以由网络设备执行,包括:包括:向终端发送第一配置信息,该第一配置信息包括第一时间信息和第二时间信息。根据上述第一时间信息或上述第二时间信息接收来自上述终端的与第二辅载波对应的CSI报告,该CSI报告为非周期CSI报告或半持续CSI报告。可选地,上述第一配置信息由高层信令承载。
结合第四方面,在第四方面的某些实施方式中,根据上述第二辅载波的激活状态,确定使用上述第一时间信息或上述第二时间信息接收来自上述终端的与该第二辅载波对应的CSI报告。可选地,当上述第二辅载波处于激活状态时,根据上述第一时间信息接收来自上述终端的与该第二辅载波对应的CSI报告。可选地,当上述第二辅载波处于去激活状态时,根据上述第二时间信息接收来自上述终端的与该第二辅载波对应的CSI报告。
通过上述方法,能够依据辅载波的激活状态进行合理的CSI操作的时间信息配置,能够满足不同辅载波类型对CSI操作的时间需求,进而提高了在载波聚合下CSI操作的效率。
第五方面,本申请实施例提供一种装置,可以实现上述第一方面、第一方面任一种可能的实施方式、第二方面、或第二方面任一种可能的实施方式中的方法。所述装置包括用于执行上述方法的相应的单元或部件。所述装置包括的单元可以通过软件和/或硬件方式实现。所述通信装置,例如可以为终端、或者为可支持终端实现上述方法的芯片、芯片系统、或处理器等。
第六方面,本申请实施例提供一种装置,可以实现上述第三方面、第三方面任一种可能的实施方式、第四方面、或第四方面任一种可能的实施方式中的方法。所述装置包括用于执行上述方法的相应的单元或部件。所述装置包括的单元可以通过软件和/或硬件方式实现。所述通信装置,例如可以为网络设备(如基站)、或者为可支持网络设备实现上述方法的芯片、芯片系统、或处理器等。
第七方面,本申请提供一种装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得装置实现上述第一方面、第一方面任一种可能的实施方式、第二方面、或第二方面任一种可能的实施方式中所述的方法。
第八方面,本申请提供一种装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得装置实现上述第三方面、第三方面任一种可能的实施方式、第四方面、或第四方面任一种可能的实 施方式中所述的方法。
第九方面,本申请提供一种存储介质,其上存储有计算机程序或指令,所述计算机程序或指令被执行时使得计算机执行上述第一方面、第一方面任一种可能的实施方式、第二方面、或第二方面任一种可能的实施方式中所述的方法。
第十方面,本申请提供一种存储介质,其上存储有计算机程序或指令,所述计算机程序或指令被执行时使得计算机执行上述第三方面、第三方面任一种可能的实施方式、第四方面、或第四方面任一种可能的实施方式中所述的方法。
第十一方面,本申请实施例提供一种通信系统,包括:上述第五方面和第六方面所述的装置。
附图说明
图1为本申请提供的实施例应用的通信系统的示意图;
图2示出了通信系统的一种架构举例示意图;
图3示出了本申请实施例提供的一种通信方法的交互示意图;
图4A示出了本申请实施例提供的一种MACCE示意图;
图4B示出了本申请实施例提供的另一种MAC CE示意图;
图5示出了本申请实施例提供的另一种通信方法的交互示意图;
图6示出了本申请实施例提供的另一种通信方法的交互示意图;
图7为本申请实施例提供的一种通信装置的结构示意图;
图8为本申请实施例提供的一种终端的结构示意图;
图9为本申请实施例提供的一种通信设备示意图。
具体实施方式
本申请实施例提供的通信方法及装置可以应用于通信系统中。如图1示出了一种通信系统结构示意图。该通信系统中包括一个或多个网络设备(清楚起见,图中示出网络设备10和网络设备20),以及与该一个或多个网络设备通信的一个或多个终端设备。图1中所示终端设备11和终端设备12与网络设备10通信,所示终端设备21和终端设备22与网络设备20通信。可以理解的是,网络设备和终端设备也可以被称为通信设备。
本发明实施例描述的技术可用于各种通信系统,例如2G,3G,4G,4.5G,5G通信系统,多种通信系统融合的系统,或者未来演进网络。例如长期演进(long term evolution,LTE)系统,新空口(new radio,NR)系统,无线保真(wireless-fidelity,WiFi)系统,以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统等,以及其他此类通信系统。
图2示出了通信系统的一种可能的架构举例示意图,如图2所示无线接入网(radio access network,RAN)中的网络设备是集中单元(centralized unit,CU)和分布单元(distributed unit,DU)分离架构的基站(如gNodeB或gNB)。RAN可以与核心网相连(例如可以是LTE的核心网,也可以是5G的核心网等)。CU和DU可以理解为是对基站从逻辑功能角度的划分。CU和DU在物理上可以是分离的也可以部署在一起。多个DU可以共用一个CU。一个DU也可以连接多个CU(图中未示出)。CU和DU之间可以通 过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及无线资源控制(radio resource control,RRC)层的功能设置在CU,而无线链路控制(radio link control,RLC),媒体接入控制(media access control,MAC)层,物理(physical)层等的功能设置在DU。可以理解对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。图2所示的网络架构可以应用于5G通信系统,其也可以与LTE系统共享一个或多个部件或资源。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
CU的功能可以由一个实体来实现,也可以进一步将控制面(CP)和用户面(UP)分离,即CU的控制面(CU-CP)和用户面(CU-UP)可以由不同的功能实体来实现,所述CU-CP和CU-UP可以与DU相耦合,共同完成基站的功能。
可以理解的是,本申请中提供的实施例也适用于CU和DU不分离的架构。
本申请中,网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),NR中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、CU,和/或,DU。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同技术的多个基站进行通信,例如,终端设备可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
终端是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端设备等等。本申请的实施例 对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端也可以是固定的或者移动的。
在无线通信网络中,例如长期演进(long term evolution,LTE)或新空口(new radio,NR)中,为满足更大峰值速率的需求,需要提供更大的传输带宽。由于大带宽连续频谱的稀缺,载波聚合(carrier aggregation,CA)成为提供更大传输带宽的一种解决方案。CA是将两个或更多个成员载波(component carrier,CC)聚合在一起以支持更大的传输带宽。CC一般可分为主成员载波(primary component carrier,PCC)和辅成员载波(secondary component carrier,SCC)。其中,PCC也可以被称为主载波或主小区(primary cell,Pcell)中,SCC也可以被称为辅载波或辅小区(secondary cell,Scell)。
考虑终端的功耗,CA中提供辅载波的激活和去激活机制,以在终端需要更大传输带宽时激活辅载波,而在终端不需要大传输带宽时去激活辅载波起到节省电量的作用。网络设备可以通过终端的上报信息获知终端的辅载波是否已完成激活。例如,终端向网络设备上报辅载波的信道状态信息(channel state information,CSI)报告,网络设备通过该CSI报告可以获知终端的上述辅载波已经完成激活。
激活辅载波的机制可以通过媒体接入控制的控制单元(media access control control element,MAC CE)实现。然而,由于MAC CE的处理时间较长,导致激活辅载波需要较长的时间,无法快速的满足大带宽业务的需求。因此,如何能够更快地激活辅载波,成为亟需解决的问题。
本申请实施例提供的方法中,通过使用物理层信令触发待激活辅载波的CSI操作,使得辅载波的激活更加快速,从而减少了辅载波的激活时间,进而满足业务的时延需求。
下面以具体实施例结合附图对本申请的技术方案进行详细说明。下述实施例和实施方式可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。应理解,本申请中所解释的功能可以通过独立硬件电路、使用结合处理器/微处理器或通用计算机而运行的软件、使用专用集成电路,和/或使用一个或多个数字信号处理器来实现。当本申请描述为方法时,其还可以在计算机处理器和被耦合到处理器的存储器中实现。
为易于理解本申请实施例,首先对本申请所涉及的一些概念或者术语作简要说明。
本申请中的CSI可以理解为表征信道状态的信息。CSI可以包括下述中的一种或多种:信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indicator,RI)、信道状态信息参考信号(channel state information reference signal,CSI-RS)资源指示(CSI-RS resource indicator,CRI)、信道状态信息干扰测量(channel state information interference measurement,CSI-IM)资源指示、同步信号块资源指示(synchronization signal block resource indicator,SSBRI)、层指示(layer indicator,LI)、参考信号接收功率(reference signal received power,RSRP)、接收信号强度指示(received signal strength indicator,RSSI)、参考信号接收质量(reference signal received quality,RSRQ)、信噪比(signal tonoise ratio,SNR)、或信号干扰噪声比(signal to interference plus noise ratio,SINR)。
本申请中的CSI-RS是一种用于CSI测量的参考信号。网络设备发送CSI-RS,终端通过测量该CSI-RS可以获得CSI,该CSI可以理解为上述网络设备与上述终端之间的CSI。
本申请中的非周期CSI测量可理解为通过信令触发的一次或多次CSI测量。例如,终端可以接收用于触发非周期CSI测量的下行控制信息(downlink control information,DCI),对CSI-RS进行一次或多次测量,该CSI-RS可以是周期性、非周期性或半持续性的。
本申请中的非周期CSI上报可理解为通过信令触发的一次或多次CSI上报。例如,终端可以接收用于触发非周期CSI上报的DCI,对测量结果(例如通过非周期CSI测量或半持续CSI测量获周期性测量获得的测量结果)进行一次或多次上报(例如上报给网络设备)。非周期CSI上报的测量结果也可称为非周期CSI报告。
可以理解,用于触发非周期CSI测量的DCI和用于触发非周期CSI上报的DCI可以是同一个DCI,也可以是不同的DCI。
本申请中的半持续CSI测量可理解为通过信令触发的在一段时间内的至少一次CSI测量。例如,终端可以接收用于触发半持续CSI测量的DCI,在一段时间内对CSI-RS进行至少一次测量,该CSI-RS可以是周期性、或半持续性的。
本申请中的半持续CSI上报可理解为通过信令触发的在一段时间内的至少一次CSI上报。例如,终端可以接收用于触发半持续CSI上报的DCI,在一段时间内对测量结果(例如通过半持续CSI测量或周期性测量获得的测量结果)进行至少一次上报(例如上报给网络设备)。半持续CSI上报的测量结果也可称为半持续CSI报告。
图3为本申请实施例提供的一种通信方法的交互示意图。如图3所示,该实施例的方法可以包括300部分和310部分。
300部分:网络设备发送第一控制信息,终端接收该第一控制信息。该第一控制信息包括与第一辅载波对应的CSI请求信息,其中,所述第一辅载波处于去激活状态。该第一控制信息用于触发终端进行与所述第一辅载波对应的CSI上报,也可以理解为该第一控制信息中包含的上述CSI请求信息用于触发终端进行与所述第一辅载波对应的CSI上报。所述CSI上报可以是非周期CSI上报,也可以是半持续CSI上报。可选地,所述第一控制信息为上行或下行DCI,该DCI由物理下行控制信道(physical downlink control channel,PDCCH)承载。本申请中的DCI也可理解为一种物理层信令。可选地,所述终端在主载波和/或激活的辅载波上接收上述第一控制信息,所述激活的辅载波与所述第一辅载波不同。
310部分:终端根据所述第一控制信息,上报与所述第一辅载波对应的CSI报告,网络设备接收该CSI报告,其中该CSI报告为非周期CSI报告或半持续CSI报告。可以理解,本申请中的CSI报告也可以被称为有效CSI报告。终端上报与所述第一辅载波对应的CSI报告,也可理解为所述终端进行与所述第一辅载波对应的CSI上报,该CSI上报可以是非周期CSI上报或半持续CSI上报。所述终端上报的与所述第一辅载波对应的CSI报告可以由物理上行共享信道(physical uplink shared channel,PUSCH)承载。
本申请中,与第一辅载波对应的CSI,可以理解为所述第一辅载波上的CSI。终端可以通过对第一辅载波上的CSI-RS进行测量,获得所述第一辅载波上的CSI(也可称为与 所述第一辅载波对应的CSI)。进行与第一辅载波对应的CSI上报,或者,上报与第一辅载波对应的CSI报告,可以理解为上报所述第一辅载波上的CSI。
上述第一辅载波的数量可以是一个,也可以是多个,本申请为方便描述以单数为例进行说明。
通过上述方法,能够使用物理层信令触发待激活辅载波的CSI上报,由于物理层信令的处理更加快速,该辅载波的CSI上报也更加快速,使得网络设备能够更快的获知该辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
在上述310部分中,可选地,所述网络设备根据所述第一控制信息接收所述CSI报告。所述第一控制信息可以包含第一上行资源指示信息,该第一上行资源指示信息指示上报所述CSI报告使用的资源。所述终端在该资源上上报与所述第一辅载波对应的所述CSI报告,所述网络设备在该资源上接收来自所述终端的与所述第一辅载波对应的所述CSI报告。
本申请中的资源可以理解为物理资源。所述物理资源可以包含时域资源,频域资源,码域资源,或,空域资源中的一种或多种。例如,所述物理资源所包含的时域资源可以包含至少一个帧、至少一个子帧(sub-frame)、至少一个时隙(slot)、至少一个微时隙(mini-slot)、或者至少一个时域符号等。例如,所述物理资源所包含的频域资源可以包含至少一个载波(carrier)、至少一个CC、至少一个带宽部分(bandwidth part,BWP)、至少一个资源块组(resource block group,RBG)、至少一个物理资源块组(physical resource-block group,PRG)、至少一个资源块(resource block,RB)、或至少一个子载波(sub-carrier,SC)等。例如,所述物理资源所包含的空域资源可以包含至少一个波束、至少一个端口、至少一个天线端口、或者至少一个层/空间层等。例如,所述物理资源所包含的码域资源可以包含至少一个正交覆盖码(orthogonal cover code,OCC)、或者至少一个非正交多址码(non-orthogonal multiple access,NOMA)等。可以理解的是,上述物理资源可以是基带的物理资源,该基带的物理资源可以被基带芯片使用。上述物理资源也可以是空中接口的物理资源。上述物理资源还可以是中频或射频的物理资源。
在图3示意的本申请实施例提供的通信方法中,可选地,还可以包括320部分:所述终端获得与所述第一辅载波对应的CSI。所述终端可通过对所述第一辅载波上的CSI-RS进行测量,获得与所述第一辅载波对应的CSI。上述对CSI-RS进行测量也可以称为CSI测量,该CSI测量可以是非周期CSI测量或半持续CSI测量或周期性CSI测量。
在上述320部分一种可能的实施方式中,所述终端根据所述第一控制信息进行与所述第一辅载波对应的CSI测量。该第一控制信息还可用于触发所述终端进行与所述第一辅载波对应的CSI测量。可选地,所述第一控制信息可以包含第一CSI-RS资源指示信息,该第一CSI-RS资源指示信息指示CSI-RS在所述第一辅载波上使用的资源。所述终端在该资源上对CSI-RS进行测量,获得与所述第一辅载波对应的CSI,该CSI-RS可以是周期性、非周期性或半持续性的。
在上述320部分另一种可能的实施方式中,所述终端根据高层信令(例如RRC信令)进行与所述第一辅载波对应的CSI测量。可选地,所述高层信令可以包含第一CSI-RS资源配置信息,该第一CSI-RS资源配置信息用于配置CSI-RS在所述第一辅载波上使用的资源。所述终端在该资源上对CSI-RS进行测量,获得与所述第一辅载波对应的CSI。
上述320部分另一种可能的实施方式中,所述终端根据高层信令(例如RRC信令) 和DCI进行与所述第一辅载波对应的CSI测量,该DCI可以是上述第一控制信息,也可以是与上述第一控制信息不同的上行或下行控制信息。所述高层信令可以包含第一CSI-RS资源集合配置信息,该第一CSI-RS资源集合配置信息用于配置CSI-RS在所述第一辅载波上使用的候选资源。所述DCI指示上述候选资源中的一个或多个资源,所述终端在该一个或多个资源上对CSI-RS进行测量,获得与所述第一辅载波对应的CSI。
在上述第一控制信息的一种可选的实施方式中,该第一控制信息还可以用于触发激活所述第一辅载波。可选地,在图3示意的本申请实施例提供的通信方法中还可以包括330部分:所述终端激活所述第一辅载波。在330部分一种可能的实施方式中,所述终端确定所述第一辅载波处于去激活状态,则所述终端激活所述第一辅载波。可选地,在310部分中,所述网络设备在收到与所述第一辅载波对应的所述CSI报告时,确定所述终端的所述第一辅载波处于激活状态。在该实施方式中,所述第一控制信息不仅可以用来触发终端进行与待激活的第一辅载波对应的CSI上报,还可以用来触发激活该第一辅载波,从而不仅能够减少辅载波激活流程所需时间,还可以降低信令开销。
在图3示意的本申请实施例提供的一种可能的实施方式中,所述第一控制信息包括与所述第一辅载波对应的CSI请求信息,也可以理解为所述第一控制信息包括与所述第一辅载波的BWP对应的CSI请求信息,该第一控制信息用于触发所述终端进行与所述第一辅载波的所述BWP对应的CSI上报,也可以理解为该第一控制信息中包含的与所述第一辅载波的所述BWP对应的CSI请求信息用于触发所述终端进行与所述第一辅载波的所述BWP对应的CSI上报。所述BWP为第一激活BWP。所述第一激活BWP也可以称为第一默认BWP、第一辅载波的第一激活BWP、或第一辅载波的第一默认BWP,可以通过高层信令(例如RRC信令)配置,终端在激活第一辅载波的时候,会激活所述第一激活BWP(也可以理解为会首先激活所述第一激活BWP)。终端可以在该BWP监听控制信道,也可以在该BWP上与网络设备进行数据传输。
本申请中,与第一辅载波的BWP对应的CSI,可以理解为所述第一辅载波的所述BWP上的CSI。终端可以通过对第一辅载波的BWP上的CSI-RS进行测量,获得所述第一辅载波的所述BWP上的CSI(也可称为与所述第一辅载波的所述BWP对应的CSI)。进行与第一辅载波的BWP对应的CSI上报,或者,上报与第一辅载波的BWP对应的CSI报告,可以理解为上报所述第一辅载波的所述BWP上的CSI。
结合上述实施方式,在上述310部分中,可选地,所述终端根据所述第一控制信息上报与所述第一辅载波的所述BWP对应的所述CSI报告,所述网络设备接收该CSI报告。终端上报与所述第一辅载波的所述BWP对应的所述CSI报告,也可理解为所述终端进行与所述第一辅载波的所述BWP对应的CSI上报。所述终端上报的与所述第一辅载波的BWP对应的CSI报告可以由PUSCH承载。
结合上述实施方式,在上述310部分中,可选地,所述网络设备根据所述第一控制信息接收与所述第一辅载波的所述BWP对应的所述CSI报告。所述第一控制信息可以包含第二上行资源指示信息,该第二上行资源指示信息指示上报上述CSI报告使用的资源。所述终端在该资源上上报与所述第一辅载波的所述BWP对应的所述CSI报告,所述网络设备在该资源上接收来自所述终端的与所述第一辅载波的所述BWP对应的所述CSI报告。
结合上述实施方式,在上述320部分中,可选地,所述终端获得与所述第一辅载波 的所述BWP对应的CSI。所述终端可通过对所述第一辅载波的所述BWP上的CSI-RS进行测量,获得与所述第一辅载波的所述BWP对应的CSI。
结合上述实施方式,在上述320部分的一种可选的实现方法中,所述终端根据所述第一控制信息进行与所述第一辅载波的所述BWP对应的CSI测量。该第一控制信息还可用于触发所述终端进行与所述第一辅载波的所述BWP对应的CSI测量。可选地,所述第一控制信息可以包含第二CSI-RS资源指示信息,该第二CSI-RS资源指示信息指示CSI-RS在所述第一辅载波的所述BWP上使用的资源。所述终端在该资源上对CSI-RS进行测量,获得与所述第一辅载波的所述BWP对应的CSI。所述CSI-RS可以是周期性、非周期性或半持续性的。
结合上述实施方式,在上述320部分的另一种可选的实现方法中,所述终端根据高层信令(例如RRC信令)进行与所述第一辅载波的所述BWP对应的CSI测量。可选地,所述高层信令可以包含第二CSI-RS资源配置信息,该第二CSI-RS资源配置信息用于配置CSI-RS在所述第一辅载波的所述BWP上使用的资源。所述终端在该资源上对CSI-RS进行测量,获得与所述第一辅载波的所述BWP对应的CSI。
结合上述实施方式,在上述320部分另一种可能的实施方式中,所述终端根据高层信令(例如RRC信令)和DCI进行与所述第一辅载波的所述BWP对应的CSI测量,该DCI可以是上述第一控制信息,也可以是与上述第一控制信息不同的上行或下行控制信息。所述高层信令可以包含第二CSI-RS资源集合配置信息,该第二CSI-RS资源集合配置信息用于配置CSI-RS在所述第一辅载波的所述BWP上使用的候选资源。所述DCI指示上述候选资源中的一个或多个资源,所述终端在该一个或多个资源上对CSI-RS进行测量,获得与所述第一辅载波的所述BWP对应的CSI。
结合上述实施方式,在所述第一控制信息还可以用于触发激活所述第一辅载波的实施方法中,可选地,在上述330部分中,所述终端确定所述第一辅载波处于去激活状态,并且确定所述BWP为第一激活BWP,则所述终端激活所述第一辅载波。进一步可选地,所述终端还可以激活第一辅载波上的第一激活BWP。可选地,在310部分中,所述网络设备在收到与所述第一辅载波的所述BWP对应的所述CSI报告时,确定所述终端的所述第一辅载波处于激活状态。进一步可选地,所述网络设备还可以确定所述终端的所述第一激活BWP处于激活状态。在该可选的方法中,所述第一控制信息不仅可以用来触发终端进行与待激活的第一辅载波的BWP对应的CSI上报,还可以用来触发激活该第一辅载波,从而不仅能够减少辅载波激活流程所需时间,还可以降低信令开销,所述CSI上报可以是半持续CSI上报,或非周期性CSI上报。
本申请并不限制图3中320部分和330部分的执行顺序。可以先执行330部分,再执行320部分。也可以先执行320部分,再执行330部分。还可以330部分与320部分同时执行。
在上述第一控制信息的另一种可选的实施方式中,所述第一控制信息还包括上行共享信道(uplink shared channel,UL-SCH)指示信息,所述UL-SCH指示信息指示PUSCH是否承载UL-SCH,其中,所述PUSCH是承载与所述第一辅载波对应的CSI报告的PUSCH,或者,所述PUSCH是承载与所述第一辅载波的BWP对应的CSI报告的PUSCH。
当所述UL-SCH指示信息指示上述PUSCH承载UL-SCH,在上述310部分中,所述 终端根据所述第一控制信息上报与所述第一辅载波对应的所述CSI报告,其中所述第一控制信息还包括第一上行资源指示信息,该第一上行资源指示信息指示上报所述CSI报告使用的资源,该资源包含在上述PUSCH中。所述终端在该资源上上报所述CSI报告,所述网络设备在该资源上接收所述CSI报告。可以理解,该CSI报告也可以是与所述第一辅载波的BWP对应的CSI报告,所述BWP为第一激活BWP。
当所述UL-SCH指示信息指示上述PUSCH没有承载UL-SCH,在上述310部分中,所述终端根据高层信令(例如RRC信令)上报与所述第一辅载波对应的所述CSI报告,其中所述高层信令可以包含上报资源配置信息,该上报资源配置信息配置上报所述CSI报告使用的资源,该资源包含在上述PUSCH中。所述终端在该资源上上报所述CSI报告,所述网络设备在该资源上接收所述CSI报告。可以理解,该CSI报告也可以是与所述第一辅载波的BWP对应的CSI报告,所述BWP为第一激活BWP。
在图3示意的本申请实施例提供的通信方法中,可选地,还可以包括340部分:网络设备发送第二控制信息,终端接收所述第二控制信息。该第二控制信息包括与所述第一辅载波对应的触发激活信息。该第二控制信息用于触发激活所述第一辅载波,也可以理解为该第二控制信息包含的与所述第一辅载波对应的触发激活信息用于触发激活所述第一辅载波。在上述330部分中,可选地,所述终端根据所述第二控制信息激活所述第一辅载波。
可以理解,承载所述第一控制信息的载波和承载所述第二控制信息的载波可以相同,也可以不同。例如,承载所述第一控制信息的载波为主载波,承载所述第二控制信息的载波也为该主载波。或者,承载所述第一控制信息的载波为处于激活状态的辅载波,承载所述第二控制信息的载波也为该处于激活状态的辅载波。或者,承载所述第一控制信息的载波为主载波,承载所述第二控制信息的载波为处于激活状态的辅载波。或者,承载所述第一控制信息的载波为处于激活状态的辅载波,承载所述第二控制信息的载波为主载波。
在上述第二控制信息的一种可能的实施方式中,所述第二控制信息由MAC CE承载。
例如,所述第二控制信息可以由图4A示意的MAC CE格式承载。图4A示意的MAC CE格式中包含8个比特:R,C 1,C 2,C 3,C 4,C 5,C 6,和C 7。其中比特R为预留比特,比特C i(i=1,2,…,7)指示激活或去激活辅载波i。例如,比特C i为1指示激活辅载波i,比特C i为0指示去激活辅载波i;或者,比特C i为0指示激活辅载波i,比特C i为1指示去激活辅载波i。上述与所述第一辅载波对应的触发激活信息可以理解为与所述第一辅载波对应的比特C i(i=1,2,…,7),例如,若所述第一辅载波为辅载波1,与所述第一辅载波对应的触发激活信息可以理解为比特C 1。再例如,若所述第一辅载波为辅载波1和辅载波2,与所述第一辅载波对应的触发激活信息可以理解为比特C 1和比特C 2
再例如,所述第二控制信息可以由图4B示意的MAC CE格式承载。图4B示意的MAC CE格式中包含32个比特:R,C i(i=1,2,…,31)。其中比特R为预留比特,比特C i(i=1,2,…,31)指示激活或去激活辅载波i。例如,比特C i为1指示激活辅载波i,比特C i为0指示去激活辅载波i;或者,比特C i为0指示激活辅载波i,比特C i为1指示去激活辅载波i。上述与所述第一辅载波对应的触发激活信息可以理解为与所述第一辅载波对应的比特C i(i=1,2,…,31),例如,若所述第一辅载波为辅载波1,与所述第一辅载波对应的触发激活信息可以理解为比特C 1。再例如,若所述第一辅载波为辅载波1和辅载波2,与所述第一辅载波对应的触发激活信息可以理解为比特C 1和比特C 2
可以理解,图3示意的本申请实施例中并不限定300部分和340部分的执行顺序。例如,可以先执行300部分,再执行340部分。也可以先执行340部分,再执行300部分。还可以300部分和340部分同时执行。
在先执行300部分再执行340部分的一种可能的实施方式中,所述终端在接收所述第一控制信息之后在接收所述第二控制信息之前,根据所述第一控制信息进行与所述第一辅载波对应的CSI测量。所述终端在接收所述第二控制信息之后,进行与所述第一辅载波对应的CSI上报,也可以理解为将上述与所述第一辅载波对应的CSI测量结果上报给所述网络设备。对应地,所述网络设备在向所述终端发送所述第二控制信息之后,接收来自所述终端的与所述第一辅载波对应的CSI报告,该CSI报告包括上述与所述第一辅载波对应的CSI测量结果。可以理解,上述与所述第一辅载波对应的CSI测量也可以是与所述第一辅载波的BWP对应的CSI测量,上述与所述第一辅载波对应的CSI上报也可以是与所述第一辅载波的BWP对应的CSI上报,上述与所述第一辅载波对应的CSI报告也可以是与所述第一辅载波的BWP对应的CSI报告,上述与所述第一辅载波对应的CSI测量结果也可以是与所述第一辅载波的BWP对应的CSI测量结果,其中所述BWP为第一激活BWP。
在300部分和340部分同时执行的一种可能的实施方式中,所述网络设备同时执行300部分和340部分,即同时发送所述第一控制信息和所述第二控制信息。在所述第一控制信息由PDCCH承载、所述第二控制信息由MAC CE承载的情况下,由于处理MAC CE的时间一般长于处理PDCCH的时间,所述终端将先获得所述第一控制信息再获得所述第二控制信息。所述终端在获得所述第一控制信息之后、在获得所述第二控制信息之前,根据所述第一控制信息进行与所述第一辅载波对应的CSI测量。所述终端在获得所述第二控制信息之后,进行与所述第一辅载波对应的CSI上报,也可以理解为将上述与所述第一辅载波对应的CSI测量结果上报给所述网络设备。可以理解,上述与所述第一辅载波对应的CSI测量也可以是与所述第一辅载波的BWP对应的CSI测量,上述与所述第一辅载波对应的CSI上报也可以是与所述第一辅载波的BWP对应的CSI上报,上述与所述第一辅载波对应的CSI测量结果也可以是与所述第一辅载波的BWP对应的CSI测量结果,其中所述BWP为第一激活BWP。
在先执行340部分再执行300部分的一种可能的实施方式中,所述终端在接收所述第二控制信息之后、在接收所述第一控制信息之前,执行330部分(激活所述第一辅载波)。或者,所述终端在接收所述第二控制信息之后、并在接收所述第一控制信息之后,执行330部分(激活所述第一辅载波)。或者,所述终端在接收所述第二控制信息之后、并在接收所述第一控制信息时执行330部分(激活所述第一辅载波)。
在先执行340部分再执行300部分的另一种可能的实施方式中,图3示意的本申请实施例提供的通信方法还可以包括350部分:所述终端在接收上述第一控制信息之前,发送与所述第二控制信息对应的反馈信息。所述网络设备在发送上述第一控制信息之前,接收与所述第二控制信息对应的所述反馈信息。可选地,该反馈信息为肯定应答(acknowledgement,ACK)信息,该ACK信息可以理解为所述终端在正确接收所述第二控制信息后向所述网络设备反馈的信息,以通知所述网络设备所述第二控制信息被正确地接收。可选地,所述终端在发送上述反馈信息之前不盲检或不接收所述第一控制信息,也可以理解为所述终端只有在发送上述反馈信息后才会盲检或接收所述控制信息,从而降低 终端的功耗。
可以理解,在所述第二控制信息用于触发激活所述第一辅载波的实施方式中,图3示意的本申请实施例中并不限定300部分和330部分、以及350部分和330部分的执行顺序。
在图3示意的本申请实施例提供的通信方法中,可选地,终端还可以发送与上述第一控制信息对应的反馈信息,网络设备接收该反馈信息。在一种可能的实施方式中,终端成功接收所述第一控制信息,则该反馈信息为肯定应答(acknowledgement,ACK)信息。在另一种可能的实施方式中,终端未成功接收所述第一控制信息,则该反馈信息为否定应答(negative acknowledgement,NACK)信息。上述实施方式能够让网络设备更快的获知终端接收上述第一控制信息的状态,从而能够使得网络设备能够更快的获知前述辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
图5为本申请实施例提供的另一种通信方法的交互示意图。如图5所示,该实施例的方法可以包括500部分和510部分。
500部分:网络设备发送第一配置信息,终端接收所述第一配置信息。所述第一配置信息包括第一时间信息和第二时间信息。可选地,所述第一配置信息由高层信令(例如RRC信令)承载。
510部分:所述终端根据所述第一时间信息或所述第二时间信息进行与第二辅载波对应的CSI操作。或者,所述终端根据所述第一时间信息或所述第二时间信息进行与第二辅载波的BWP对应的CSI操作。所述CSI操作包括下述的一种或多种:非周期CSI上报、非周期CSI测量、半持续CSI上报、半持续CSI测量、或周期性测量。
可选地,图5示意的本申请实施例提供的通信方法还可以包括520部分:所述网络设备根据所述第一时间信息或所述第二时间信息接收来自所述终端的与所述第二辅载波对应的CSI报告。或者,所述网络设备根据所述第一时间信息或所述第二时间信息接收来自所述终端的与所述第二辅载波的BWP对应的CSI报告,所述BWP为第一激活BWP。所述CSI报告为非周期CSI报告或半持续CSI报告。
在510部分一种可能的实施方式中,所述终端根据所述第二辅载波的激活状态,确定使用所述第一时间信息或所述第二时间信息进行与第二辅载波对应的CSI操作(也可理解为进行与第二辅载波的BWP对应的CSI操作)。当所述第二辅载波处于激活状态时,根据所述第一时间信息进行与所述第二辅载波对应的所述CSI操作(也可理解为进行与所述第二辅载波的BWP对应的CSI操作,该BWP为高层信令(例如RRC信令)配置的BWP)。当所述第二辅载波处于去激活状态时,根据所述第二时间信息进行与所述第二辅载波对应的所述CSI操作(也可理解为进行与所述第二辅载波的BWP对应的CSI操作,该BWP为第一激活BWP)。
在所述CSI操作为非周期CSI测量或半持续CSI测量或周期性测量的一种可能的实施方式中,所述第一时间信息指示当所述第二辅载波处于激活状态时进行与所述第二辅载波对应的CSI测量(也可理解为进行与所述第二辅载波的BWP对应的CSI测量)的时域资源,所述第二时间信息指示当所述第二辅载波处于去激活状态时进行与所述第二辅载波对应的CSI测量(也可理解为进行与所述第二辅载波的BWP对应的CSI测量,该BWP为第一激活BWP)的时域资源。
示例性地,所述终端在时隙n接收到用于触发与所述第二辅载波对应的CSI上报(也 可理解为与所述第二辅载波的BWP对应的CSI上报)的信息,该信息例如可以是如图3中示意的第一控制信息。所述第一时间信息指示当所述第二辅载波处于激活状态时,进行与所述第二辅载波对应的CSI测量的时域资源为时隙n+X1。所述第二时间信息指示当所述第二辅载波处于去激活状态时,进行与所述第二辅载波对应的CSI测量的时域资源为时隙n+X2。其中,X1和X2为非负整数,X1与X2可以相等也可以不相等。在一种可选的方式中,X1小于X2,这是考虑到去激活的辅载波需要更多的时间来接收CSI-RS。可选地,所述第一时间信息和所述第二时间信息可如表1所示,其中aperiodicTriggeringOffset为所述第一时间信息,指示了上述的X1,该X1的取值是0至6中的一个整数;aperiodicTriggeringOffsetforactivation为所述第二时间信息,指示了上述的X2,该X2的取值是4至16中的一个整数。可以理解,本示例中所述第一时间信息和所述第二时间信息的取值和名称仅起示意作用,本申请实施例也可支持所述第一时间信息和所述第二时间信息的其他取值和其他名称。
表1
Figure PCTCN2020077315-appb-000001
通过上述实施方式,能够依据辅载波的激活状态进行合理的CSI测量的时间信息配置,能够满足不同辅载波类型对CSI测量的时间需求,进而提高了在CA场景下CSI测量的效率。
对于上述处于去激活状态的第二辅载波,还可以分为第一类去激活辅载波和第二类去激活辅载波。所述第一类去激活辅载波也可以称为已知(known)辅载波或已知(known)小区,所述第二类去激活辅载波也可以称为未知(unknown)辅载波或未知(unknown)小区。激活所述第二类去激活辅载波所需的时间长于激活所述第一类去激活辅载波所需的时间。在一种可选的实施方式中,所述第二时间信息指示进行与所述第一类去激活辅载波对应的CSI测量(也可理解为进行与所述第一类去激活辅载波的BWP对应的CSI测量,该BWP为第一激活BWP)的时域资源为时隙n+X21,所述第二时间信息指示进行与所述第二类去激活辅载波对应的CSI测量(也可理解为进行与所述第二类去激活辅载波的BWP对应的CSI测量,该BWP为第一激活BWP)的时域资源为时隙n+X22,其中X21小于X22。通过该实施方式,能够满足不同类型去激活载波对CSI测量的时间需求。所述CSI测量为非周期性CSI-RS测量、半持续CSI测量、或周期CSI-RS测量。
在所述CSI操作为非周期CSI上报或半持续CSI上报的一种可能的实施方式中,所述第一时间信息指示当所述第二辅载波处于激活状态时进行与所述第二辅载波对应的CSI上报(也可理解为进行与所述第二辅载波的BWP对应的CSI上报)的时域资源,所述第二时间信息指示当所述第二辅载波处于去激活状态时进行与所述第二辅载波对应的CSI上报(也可理解为进行与所述第二辅载波的BWP对应的CSI上报,该BWP为第一激活BWP)的时域资源。
示例性地,所述终端在时隙n接收到用于触发与所述第二辅载波对应的CSI上报(也可理解为与所述第二辅载波的BWP对应的CSI上报)的信息,该信息例如可以是如图3 中示意的第一控制信息。所述第一时间信息指示当所述第二辅载波处于激活状态时,进行与所述第二辅载波对应的CSI上报的时域资源为时隙n+Y1。所述第二时间信息指示当所述第二辅载波处于去激活状态时,进行与所述第二辅载波对应的CSI上报的时域资源为时隙n+Y2。其中,Y1和Y2为非负整数,Y1与Y2可以相等也可以不相等。在一种可选的方式中,Y1小于Y2,这是考虑到去激活的辅载波需要更多的时间进行CSI上报。可选地,所述第一时间信息和所述第二时间信息可如表2所示,其中,CSI-ReportConfig可理解为上述第一配置信息,用于配置CSI上报的参数;reportSlotOffsetList为所述第一时间信息,指示了上述的Y1,该Y1的取值是0至32中的一个或多个整数;reportSlotOffsetListforactivation为所述第二时间信息,指示了上述的Y2,该Y2的取值是10至42中的一个或多个整数。可选地,所述第一时间信息配置了K1(K1小于或等于表2中的maxNrofUL-Allocations1)个上述Y1的候选取值(可示意为{Y1 1,…,Y1 K1}),所述第二时间信息配置了K2(K2小于或等于表2中的maxNrofUL-Allocations2)个上述Y2的候选取值(可示意为{Y2 1,…,Y2 K2})。在一种可能的实现方式中,{Y1 1,…,Y1 K1}中的最大值小于{Y2 1,…,Y2 K2}中的最大值,这是考虑到去激活的辅载波需要更多的时间进行CSI上报。可选地,K1=K2,或者,表2中maxNrofUL-Allocations1=maxNrofUL-Allocations2,这样能够在使用DCI指示上述{Y1 1,…,Y1 K1}中的一个取值作为Y1或指示上述{Y2 1,…,Y2 K2}中的一个取值作为Y2时,可以在DCI的指示域中采用相同的比特数,简化对下行控制信息的设计。可以理解,本示例中所述第一时间信息和所述第二时间信息的取值和名称仅起示意作用,本申请实施例也可支持所述第一时间信息和所述第二时间信息的其他取值和其他名称。
表2
Figure PCTCN2020077315-appb-000002
可以理解,表2中仅以配置了一个CSI-ReportConfig为例。本申请实施例也可适用于配置多个CSI-ReportConfig的情况。例如配置有两个CSI-ReportConfig(分别表示为CSI-ReportConfig1和CSI-ReportConfig2),CSI-ReportConfig1中包含的第一时间信息为reportSlotOffsetList1,CSI-ReportConfig1中包含的第二时间信息为reportSlotOffsetList1foractivation,CSI-ReportConfig2中包含的第一时间信息为reportSlotOffsetList2,CSI-ReportConfig2中包含的第二时间信息为reportSlotOffsetList2foractivation。其中,reportSlotOffsetList1配置了K11个上述Y1的候选取值(可示意为{Y1 1,…,Y1 K11}),reportSlotOffsetList2配置了K12个上述Y1的候选取值(可示意为{Y1’ 1,…,Y1’ K12}),reportSlotOffsetList1foractivation配置了K21个上述Y2的候选取值(可示意为{Y2 1,…,Y2 K21}),reportSlotOffsetList2foractivation配置了K22个上述Y2的候选取值(可示意为{Y2’ 1,…,Y2’ K22})。
在使用DCI指示上述{Y1 1,…,Y1 K11}和{Y1’ 1,…,Y1’ K12}中的取值作为Y1时,通过DCI的指示可以获得{Y1 1,…,Y1 K11}中的Y1 i(i=1,…,或K11)和{Y1’ 1,…,Y1’ K12}中的Y1’ j(j=1,…,或K12),i与j可以相等也可以不相等,可以取Y1 i和Y1’ j中的较大值作为Y1,也可以 取Y1 i和Y1’ j中的较小值作为Y1,还可以将Y1 i和Y1’ j都作为Y1(即获得多个Y1)。
在使用DCI指示上述{Y2 1,…,Y2 K21}和{Y2’ 1,…,Y2’ K22}中的取值作为Y2时,通过DCI的指示可以获得{Y2 1,…,Y2 K21}中的Y2 i’(i’=1,…,或K21)和{Y2’ 1,…,Y2’ K22}中的Y2’ j’(j’=1,…,或K22),i’与j’可以相等也可以不相等,可以取Y2 i’和Y2’ j’中的较大值作为Y2,也可以取Y2 i’和Y2’ j’中的较小值作为Y2,还可以将Y2 i’和Y2’ j’都作为Y2(即获得多个Y2)。
示例性地,所述终端在时隙n接收到用于触发与所述第二辅载波对应的CSI上报(也可理解为与所述第二辅载波的BWP对应的CSI上报)的信息,该信息例如可以是如图3中示意的第一控制信息。所述第一时间信息指示当所述第二辅载波处于激活状态时,进行与所述第二辅载波对应的CSI上报的时域资源为时隙n+Y1。所述第二时间信息指示当所述第二辅载波处于去激活状态时,进行与所述第二辅载波对应的CSI上报的时域资源为时隙n+Y2。其中,Y1和Y2为非负整数,Y1与Y2可以相等也可以不相等。在一种可选的方式中,Y1小于Y2,这是考虑到去激活的辅载波需要更多的时间进行CSI上报。可选地,所述第一时间信息和所述第二时间信息可如表3所示,其中k2为所述第一时间信息,指示了上述的Y1,该Y1的取值是0至32中的一个整数;k2’为所述第二时间信息,指示了上述的Y2,该Y2的取值是10至42中的一个整数。可以理解,本示例中所述第一时间信息和所述第二时间信息的取值和名称仅起示意作用,本申请实施例也可支持所述第一时间信息和所述第二时间信息的其他取值和其他名称。
表3
Figure PCTCN2020077315-appb-000003
通过上述实施方式,能够依据辅载波的激活状态进行合理的CSI上报的时间信息配置,能够满足不同辅载波类型对CSI上报的时间需求,进而提高了在CA场景下CSI上报的效率。所述CSI上报为半持续CSI上报或非周期CSI上报。
可以理解,图5示意的方法可以与图3示意的方法结合实施,图5中示意的第二辅载波与图3中示意的第一辅载波可以是相同的辅载波。
图6为本申请实施例提供的另一种通信方法的交互示意图。如图6所示,该实施例的方法可以包括600部分和610部分。
600部分:网络设备发送第二配置信息,终端接收所述第二配置信息。所述第二配置信息包括第一时间信息或第二时间信息。可选地,所述第二配置信息由高层信令(例如RRC信令)承载。
610部分:所述终端根据所述第一时间信息或所述第二时间信息进行与第二辅载波对应的CSI操作。或者,所述终端根据所述第一时间信息或所述第二时间信息进行与第二辅载波的BWP对应的CSI操作,所述BWP为第一激活BWP。所述CSI操作包括下述的一种或多种:非周期CSI上报、非周期CSI测量、周期性测量、半持续CSI上报、或半持续CSI测量。
可选地,图6示意的本申请实施例提供的通信方法还可以包括620部分:所述网络设备根据所述第一时间信息或所述第二时间信息接收来自所述终端的与所述第二辅载波对 应的CSI报告。或者,所述网络设备根据所述第一时间信息或所述第二时间信息接收来自所述终端的与所述第二辅载波的BWP对应的CSI报告,所述第二辅载波处于去激活状态,所述BWP为第一激活BWP。所述CSI报告为非周期CSI报告或半持续CSI报告。
在600部分一种可能的实施方式中,所述网络设备根据所述第二辅载波的激活状态,确定发送的所述第二配置信息中包含所述第一时间信息或所述第二时间信息。当所述第二辅载波处于激活状态时,所述网络设备确定该第二配置信息中包含所述第一时间信息。当所述第二辅载波处于去激活状态时,所述网络设备确定该第二配置信息中包含所述第二时间信息。
关于所述第一时间信息和所述第二时间信息的描述可参考图5中的描述,此处不再赘述。
通过上述实施方式,网路设备可以依据辅载波的激活状态进行合理的CSI操作的时间信息配置,降低终端的实现复杂度。
可以理解,图6示意的方法可以与图3示意的方法结合实施,图6中示意的第二辅载波与图3中示意的第一辅载波可以是相同的辅载波。
上述各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,上述表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信设备可理解的其他名称,其参数的取值或表示方式也可以通信设备可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本申请中涉及的a与b满足关系(也可以理解为函数关系)的描述并不强制要求a与b精确地满足所述关系。例如,若数值a’与数值b精确地满足所述关系,对数值a’进行去浮点、取整、或四舍五入的操作后获得的数值a,也可以理解为a与b满足所述关系。可以理解的是,a与b满足关系也可以指a与b满足所述关系做等价变形后的关系,本申请实施例对此不做限定。另外可以理解的是,本申请实施例并不限定a与b满足关系的具体实现方式,例如该映射方式可以通过公式实现,或者该映射方式可以通过表格的形式实现,或者该映射方式也可以通过其他的方式实现,本申请实施例对此不做限定。
可以理解的是,上述各个方法实施例中由通信设备实现的方法,也可以由可用于通信设备的部件(例如,集成电路,芯片等等)实现。
相应于上述方法实施例给出的通信方法,本申请实施例还提供了相应的通信装置(也可以称为通信设备),所述通信装置包括用于执行上述实施例中每个部分相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
图7给出了一种通信装置的结构示意图。所述通信装置700可以是图1中的网络设备10或20,也可以是图1中的终端11、12、21或22。通信装置可用于实现上述方法实施例中描述的对应于终端或网络设备的方法,具体可以参见上述方法实施例中 的说明。
所述通信装置700可以包括一个或多个处理器701,所述处理器701也可以称为处理单元,可以实现一定的控制功能。所述处理器701可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器701也可以存有指令和/或数据703,所述指令和/或数据703可以被所述处理器运行,使得所述通信装置700执行上述方法实施例中描述的对应于通信设备的方法。
在另一种可选的设计中,处理器701中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口。用于实现接收和发送功能的电路或接口可以是分开的,也可以集成在一起。
在又一种可能的设计中,通信装置700可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。可选的,本申请实施例中的通信装置700可以用于执行本申请实施例中图3、图5、或图6描述的方法。
可选的,所述通信装置700中可以包括一个或多个存储器702,其上可以存有指令704,所述指令可在所述处理器上被运行,使得所述通信装置700执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的各种对应关系可以存储在存储器中,或者存储在处理器中。
所述通信装置700还可以包括收发器705和/或天线706。所述处理器701可以称为处理单元,对通信装置(终端或者网络设备)进行控制。所述收发器705可以称为收发单元、收发机、收发电路或者收发器等,用于实现通信装置的收发功能。
在一种可能的设计中,一种通信装置700(例如,集成电路、无线设备、电路模块,网络设备,终端等)可包括处理器701和收发器705。收发器705接收第一控制信息,该第一控制信息用于触发与第一辅载波对应的CSI上报,其中,该第一辅载波处于去激活状态。处理器701根据该第一控制信息,控制收发器705上报与上述第一辅载波对应的CSI报告。上述CSI上报可以是非周期CSI上报或半持续CSI上报,上述CSI报告为非周期CSI报告或半持续CSI报告。上述第一辅载波的数量可以是一个或多个。可选地,上述第一控制信息为DCI,该DCI由PDCCH承载。可选地,上述上报的与第一辅载波对应的CSI报告由PUSCH承载。
本申请实施例提供的通信装置,能够使用物理层信令触发待激活辅载波的CSI上报,由于物理层信令的处理更加快速,该辅载波的CSI上报也更加快速,使得网络设备能够更快的获知该辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
可选地,上述第一控制信息用于触发与上述第一辅载波的BWP对应的CSI上报,该BWP为第一激活BWP。处理器701根据上述第一控制信息,控制收发器705进行与上述第一辅载波的上述BWP对应的CSI上报。通过该实施方式,能够使用物理层信令触发待激活辅载波的BWP对应CSI上报,由于物理层信令的处理更加快速,该辅载波的BWP 对应的CSI上报也更加快速,使得网络设备能够更快的获知该辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
在上述通信装置700某些可能的实施方式中,上述第一控制信息还可以用于触发激活上述第一辅载波。可选地,处理器701根据该第一控制信息,控制通信装置700激活该第一辅载波。通过该实施方式,上述第一控制信息不仅可以用来触发终端进行与待激活的第一辅载波对应的CSI上报,还可以用来触发激活该第一辅载波,从而不仅能够减少辅载波激活流程所需时间,还可以进一步降低信令开销。
在上述通信装置700某些可能的实施方式中,收发器705还可以接收第二控制信息,该第二控制信息用于触发激活上述第一辅载波。可选地,该第二控制信息由MAC CE承载。可选地,处理器701根据该第二控制信息,控制通信装置700激活该第一辅载波。可选地,在收发器705接收该第二控制信息之后,处理器701根据上述第一控制信息控制收发器705进行与上述第一辅载波对应的CSI上报。可选地,在收发器705接收上述第一控制信息之前,收发器705发送与该第二控制信息对应的反馈信息,该反馈信息可以是肯定应答(acknowledgement,ACK)信息。
在另一种可能的设计中,一种通信装置700(例如,集成电路、无线设备、电路模块,网络设备,终端等)可包括处理器701和收发器705。收发器705接收第一配置信息,该第一配置信息包括第一时间信息和第二时间信息。处理器701根据上述第一时间信息或上述第二时间信息,控制收发器705或通信装置700进行与第二辅载波对应的CSI操作。该CSI操作包括下述的一种或多种:非周期CSI上报、非周期CSI测量、半持续CSI上报、或半持续CSI测量。可选地,上述第一配置信息由高层信令(例如RRC信令)承载。
在上述通信装置700某些可能的实施方式中,处理器701根据上述第二辅载波的激活状态,确定使用上述第一时间信息或上述第二时间信息控制收发器705或通信装置700进行与第二辅载波对应的CSI操作。可选地,当上述第二辅载波处于激活状态时,处理器701根据上述第一时间信息控制收发器705或通信装置700进行与上述第二辅载波对应的CSI操作。可选地,当上述第二辅载波处于去激活状态时,处理器701根据上述第二时间信息控制收发器705或通信装置700进行与上述第二辅载波对应的CSI操作。
通过上述实施方式,能够依据辅载波的激活状态进行合理的CSI操作的时间信息配置,能够满足不同辅载波类型对CSI操作的时间需求,进而提高了在载波聚合下CSI操作的效率。
在另一种可能的设计中,一种通信装置700(例如,集成电路、无线设备、电路模块,网络设备,终端等)可包括收发器705。收发器705向终端发送第一控制信息,该第一控制信息包括与第一辅载波对应的CSI请求信息,该CSI请求信息用于触发上述终端进行与上述第一辅载波对应的CSI上报,该CSI上报可以是非周期CSI上报或半持续CSI上报,上述第一辅载波处于去激活状态。收发器705接收来自上述终端的与上述第一辅载波对应的CSI报告,该CSI报告为非周期CSI报告或半持续CSI报告。上述第一辅载波的数量可以是一个或多个。可选地,上述第一控制信息为DCI,该DCI由PDCCH承载。可选地,上述CSI报告由PUSCH承载。
通过上述实施方式,能够使用物理层信令触发待激活辅载波的CSI上报,由于物理层 信令的处理更加快速,该辅载波的CSI上报也更加快速,使得网络设备能够更快的获知该辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
可选地,上述与第一辅载波对应的CSI请求信息包括与该第一辅载波的BWP对应的CSI请求信息,该BWP为第一激活BWP。收发器705接收来自上述终端的与上述第一辅载波的上述BWP对应的CSI报告。通过该实施方式,能够使用物理层信令触发待激活辅载波的BWP对应CSI上报,由于物理层信令的处理更加快速,该辅载波的BWP对应的CSI上报也更加快速,使得网络设备能够更快的获知该辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
在上述通信装置700某些可能的实施方式中,上述第一控制信息包括与上述第一辅载波对应的触发激活信息,该触发激活信息用于触发激活上述第一辅载波。通过该实施方式,上述第一控制信息不仅可以用来触发与待激活的第一辅载波对应的CSI上报,还可以用来触发激活该第一辅载波,从而不仅能够减少辅载波激活流程所需时间,还可以进一步降低信令开销。
在上述通信装置700某些可能的实施方式中,收发器705还可以向上述终端发送第二控制信息,该第二控制信息包括与上述第一辅载波对应的触发激活信息,该触发激活信息用于触发激活上述第一辅载波。可选地,该第二控制信息由MAC CE承载。可选地,在收发器705向上述终端发送该第二控制信息之后,收发器705接收来自该终端的与该第一辅载波对应的CSI报告。可选地,在收发器705向上述终端发送上述第一控制信息之前,以及在收发器705向该终端发送上述第二控制信息之后,收发器705接收来自该终端的与该第二控制信息对应的反馈信息,该反馈信息可以是ACK信息。
在另一种可能的设计中,一种通信装置700(例如,集成电路、无线设备、电路模块,网络设备,终端等)可包括处理器701和收发器705。收发器705向终端发送第一配置信息,该第一配置信息包括第一时间信息和第二时间信息。处理器701根据上述第一时间信息或上述第二时间信息控制收发器705接收来自上述终端的与第二辅载波对应的CSI报告,该CSI报告为非周期CSI报告或半持续CSI报告。可选地,上述第一配置信息由高层信令承载。
在上述通信装置700某些可能的实施方式中,处理器701根据上述第二辅载波的激活状态,确定使用上述第一时间信息或上述第二时间信息控制收发器705接收来自上述终端的与该第二辅载波对应的CSI报告。可选地,当上述第二辅载波处于激活状态时,处理器701根据上述第一时间信息控制收发器705接收来自上述终端的与该第二辅载波对应的CSI报告。可选地,当上述第二辅载波处于去激活状态时,处理器701根据上述第二时间信息控制收发器705接收来自上述终端的与该第二辅载波对应的CSI报告。
通过上述实施方式,能够依据辅载波的激活状态进行合理的CSI操作的时间信息配置,能够满足不同辅载波类型对CSI操作的时间需求,进而提高了在载波聚合下CSI操作的效率。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体 (complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
虽然在以上的实施例描述中,通信装置以网络设备或者终端为例来描述,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图7的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述设备可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
图8提供了一种终端的结构示意图。该终端可适用于图1所示出的系统中。为了便于说明,图8仅示出了终端的主要部件。如图8所示,终端800包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当用户设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图8仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图8中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。 对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端800的收发单元811,将具有处理功能的处理器视为终端800的处理单元812。如图8所示,终端800包括收发单元811和处理单元812。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元811中用于实现接收功能的器件视为接收单元,将收发单元811中用于实现发送功能的器件视为发送单元,即收发单元811包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
如图9所示,本申请又一实施例提供了一种通信装置900。该通信装置可以是终端(例如图1所示系统中的终端),也可以是终端的部件(例如,集成电路,芯片等等)。该通信装置还可以是网络设备(例如,该通信装置是可以应用到图1系统的基站设备),也可以是网络设备的部件(例如,集成电路,芯片等等)。该通信装置也可以是其他通信模块,用于实现本申请方法实施例中对应于通信设备或节点的操作。该通信装置900可以包括:处理模块902(处理单元)。该通信装置900还可以包括收发模块901(收发单元)和/或存储模块903(存储单元)。
在一种可能的设计中,如图9中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述通信装置具备实现本申请实施例描述的终端的功能,比如,所述通信装置包括所述终端执行本申请实施例描述的终端涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。详细可进一步参考前述对应方法实施例中的相应描述。
或者所述通信装置具备实现本申请实施例描述的网络设备的功能,比如,所述通信装置包括所述网络设备执行本申请实施例描述的网络设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。详细可进一步参考前述对应方法实施例中的相应描述。
可选的,本申请实施例中的通信装置900中各个模块可以用于执行本申请实施例中图3、图5、或图6描述的方法。
在一种可能的设计中,一种通信装置900可包括收发模块901和处理模块902。收发模块901接收第一控制信息,该第一控制信息用于触发与第一辅载波对应的CSI上报,其中,该第一辅载波处于去激活状态。处理模块902根据该第一控制信息,控制收发模块901上报与上述第一辅载波对应的CSI报告。上述CSI上报可以是非周期CSI上报或半持续CSI上报,上述CSI报告为非周期CSI报告或半持续CSI报告。上述第一辅载波的数量 可以是一个或多个。可选地,上述第一控制信息为DCI,该DCI由PDCCH承载。可选地,上述上报的与第一辅载波对应的CSI报告由PUSCH承载。
本申请实施例提供的通信装置,能够使用物理层信令触发待激活辅载波的CSI上报,由于物理层信令的处理更加快速,该辅载波的CSI上报也更加快速,使得网络设备能够更快的获知该辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
可选地,上述第一控制信息用于触发与上述第一辅载波的BWP对应的CSI上报,该BWP为第一激活BWP。处理模块902根据上述第一控制信息,控制收发模块901进行与上述第一辅载波的上述BWP对应的CSI上报。通过该实施方式,能够使用物理层信令触发待激活辅载波的BWP对应CSI上报,由于物理层信令的处理更加快速,该辅载波的BWP对应的CSI上报也更加快速,使得网络设备能够更快的获知该辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
在上述通信装置900某些可能的实施方式中,上述第一控制信息还可以用于触发激活上述第一辅载波。可选地,处理模块902根据该第一控制信息,控制通信装置900激活该第一辅载波。通过该实施方式,上述第一控制信息不仅可以用来触发终端进行与待激活的第一辅载波对应的CSI上报,还可以用来触发激活该第一辅载波,从而不仅能够减少辅载波激活流程所需时间,还可以进一步降低信令开销。
在上述通信装置900某些可能的实施方式中,收发模块901还可以接收第二控制信息,该第二控制信息用于触发激活上述第一辅载波。可选地,该第二控制信息由MAC CE承载。可选地,处理模块902根据该第二控制信息,控制通信装置900激活该第一辅载波。可选地,在收发模块901接收该第二控制信息之后,处理模块902根据上述第一控制信息控制收发模块901进行与上述第一辅载波对应的CSI上报。可选地,在收发模块901接收上述第一控制信息之前,收发模块901发送与该第二控制信息对应的反馈信息,该反馈信息可以是肯定应答(acknowledgement,ACK)信息。
在另一种可能的设计中,一种通信装置900可包括收发模块901和处理模块902。收发模块901接收第一配置信息,该第一配置信息包括第一时间信息和第二时间信息。处理模块902根据上述第一时间信息或上述第二时间信息,控制收发模块901或通信装置900进行与第二辅载波对应的CSI操作。该CSI操作包括下述的一种或多种:非周期CSI上报、非周期CSI测量、半持续CSI上报、或半持续CSI测量。可选地,上述第一配置信息由高层信令(例如RRC信令)承载。
在上述通信装置900某些可能的实施方式中,处理模块902根据上述第二辅载波的激活状态,确定使用上述第一时间信息或上述第二时间信息控制收发模块901或通信装置900进行与第二辅载波对应的CSI操作。可选地,当上述第二辅载波处于激活状态时,处理模块902根据上述第一时间信息控制收发模块901或通信装置900进行与上述第二辅载波对应的CSI操作。可选地,当上述第二辅载波处于去激活状态时,处理模块902根据上述第二时间信息控制收发模块901或通信装置900进行与上述第二辅载波对应的CSI操作。
通过上述实施方式,能够依据辅载波的激活状态进行合理的CSI操作的时间信息配置,能够满足不同辅载波类型对CSI操作的时间需求,进而提高了在载波聚合下CSI操作的效率。
在另一种可能的设计中,一种通信装置900可包括收发模块901。收发模块901向终端发送第一控制信息,该第一控制信息包括与第一辅载波对应的CSI请求信息,该CSI请求信息用于触发上述终端进行与上述第一辅载波对应的CSI上报,该CSI上报可以是非周期CSI上报或半持续CSI上报,上述第一辅载波处于去激活状态。收发模块901接收来自上述终端的与上述第一辅载波对应的CSI报告,该CSI报告为非周期CSI报告或半持续CSI报告。上述第一辅载波的数量可以是一个或多个。可选地,上述第一控制信息为DCI,该DCI由PDCCH承载。可选地,上述CSI报告由PUSCH承载。
通过上述实施方式,能够使用物理层信令触发待激活辅载波的CSI上报,由于物理层信令的处理更加快速,该辅载波的CSI上报也更加快速,使得网络设备能够更快的获知该辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
可选地,上述与第一辅载波对应的CSI请求信息包括与该第一辅载波的BWP对应的CSI请求信息,该BWP为第一激活BWP。收发模块901接收来自上述终端的与上述第一辅载波的上述BWP对应的CSI报告。通过该实施方式,能够使用物理层信令触发待激活辅载波的BWP对应CSI上报,由于物理层信令的处理更加快速,该辅载波的BWP对应的CSI上报也更加快速,使得网络设备能够更快的获知该辅载波的激活状态,从而减少了辅载波激活流程所需的时间。
在上述通信装置900某些可能的实施方式中,上述第一控制信息包括与上述第一辅载波对应的触发激活信息,该触发激活信息用于触发激活上述第一辅载波。通过该实施方式,上述第一控制信息不仅可以用来触发与待激活的第一辅载波对应的CSI上报,还可以用来触发激活该第一辅载波,从而不仅能够减少辅载波激活流程所需时间,还可以进一步降低信令开销。
在上述通信装置900某些可能的实施方式中,收发模块901还可以向上述终端发送第二控制信息,该第二控制信息包括与上述第一辅载波对应的触发激活信息,该触发激活信息用于触发激活上述第一辅载波。可选地,该第二控制信息由MAC CE承载。可选地,在收发模块901向上述终端发送该第二控制信息之后,收发模块901接收来自该终端的与该第一辅载波对应的CSI报告。可选地,在收发模块901向上述终端发送上述第一控制信息之前,以及在收发模块901向该终端发送上述第二控制信息之后,收发模块901接收来自该终端的与该第二控制信息对应的反馈信息,该反馈信息可以是ACK信息。
在另一种可能的设计中,一种通信装置900可包括收发模块901和处理模块902。收发模块901向终端发送第一配置信息,该第一配置信息包括第一时间信息和第二时间信息。处理模块902根据上述第一时间信息或上述第二时间信息控制收发模块901接收来自上述终端的与第二辅载波对应的CSI报告,该CSI报告为非周期CSI报告或半持续CSI报告。可选地,上述第一配置信息由高层信令承载。
在上述通信装置900某些可能的实施方式中,处理模块902根据上述第二辅载波的激活状态,确定使用上述第一时间信息或上述第二时间信息控制收发模块901接收来自上述终端的与该第二辅载波对应的CSI报告。可选地,当上述第二辅载波处于激活状态时,处理模块902根据上述第一时间信息控制收发模块901接收来自上述终端的与该第二辅载波对应的CSI报告。可选地,当上述第二辅载波处于去激活状态时,处理模块902根据上述第二时间信息控制收发模块901接收来自上述终端的与该第二辅载波对应的CSI 报告。
通过上述实施方式,能够依据辅载波的激活状态进行合理的CSI操作的时间信息配置,能够满足不同辅载波类型对CSI操作的时间需求,进而提高了在载波聚合下CSI操作的效率。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请所描述的技术可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、数字信号处理器(DSP)、数字信号处理器件(DSPD)、专用集成电路(ASIC)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的指令、或者这两者的结合。存储器可以是RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介。例如,存储器可以与处理器连接,以使得处理器可以从存储器中读取信息,并可以向存储器存写信息。可选地,存储器还可以集成到处理器中。处理器和存储器可以设置于ASIC中,ASIC可以设置于终端中。可选地,处理器和存储器也可以设置于终端中的不同的部件中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算 机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据包中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据包中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据包中心等数据包存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。上面的组合也应当包括在计算机可读介质的保护范围之内。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    接收第一控制信息,所述第一控制信息用于触发与第一辅载波对应的信道状态信息(CSI)操作,其中,所述第一辅载波处于去激活状态,所述CSI操作包括下述的一种或多种:非周期CSI上报、非周期CSI测量、半持续CSI上报、或半持续CSI测量;
    根据所述第一控制信息进行与所述第一辅载波对应的所述CSI操作。
  2. 根据权利要求1所述的方法,其特征在于,所述第一控制信息还用于触发激活所述第一辅载波。
  3. 根据权利要求1所述的方法,其特征在于,所述第一控制信息用于触发与所述第一辅载波的带宽部分(BWP)对应的所述CSI操作,所述BWP为第一激活BWP;
    所述根据所述第一控制信息进行与所述第一辅载波对应的所述CSI操作,包括:
    根据所述第一控制信息进行与所述第一辅载波的所述BWP对应的所述CSI操作。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二控制信息,所述第二控制信息用于触发激活所述第一辅载波。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一控制信息进行与所述第一辅载波对应的CSI操作,包括:
    在接收所述第二控制信息之后,根据所述第一控制信息进行与所述第一辅载波对应的所述CSI操作。
  6. 根据权利要求4或5所述的方法,其特征在于,在接收第二控制信息之后,所述方法还包括:
    在接收所述第一控制信息之前,发送与所述第二控制信息对应的反馈信息。
  7. 一种通信方法,其特征在于,包括:
    接收第一配置信息,所述第一配置信息包括第一时间信息和第二时间信息;
    根据所述第一时间信息或所述第二时间信息进行与第二辅载波对应的信道状态信息(CSI)操作,所述CSI操作包括下述的一种或多种:非周期CSI上报、非周期CSI测量、半持续CSI上报、或半持续CSI测量;
    其中,当所述第二辅载波处于激活状态时,根据所述第一时间信息进行与所述第二辅载波对应的所述CSI操作;
    当所述第二辅载波处于去激活状态时,根据所述第二时间信息进行与所述第二辅载波对应的所述CSI操作。
  8. 一种通信方法,其特征在于,包括:
    向终端发送第一控制信息,所述第一控制信息包括与第一辅载波对应的信道状态信息(CSI)请求信息,其中,所述第一辅载波处于去激活状态;
    根据所述第一控制信息接收来自所述终端的与所述第一辅载波对应的CSI报告,所述CSI报告为非周期CSI报告或半持续CSI报告。
  9. 根据权利要求8所述的方法,其特征在于,所述第一控制信息包括与所述第一辅载波对应的触发激活信息。
  10. 根据权利要求8所述的方法,其特征在于,所述第一控制信息包括与所述第一辅 载波的带宽部分(BWP)对应的CSI请求信息,所述BWP为第一激活BWP;
    所述根据所述第一控制信息接收来自所述终端的与所述第一辅载波对应的CSI报告,包括:
    根据所述第一控制信息接收来自所述终端的与所述第一辅载波的所述BWP对应的所述CSI报告。
  11. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第二控制信息,所述第二控制信息包括与所述第一辅载波对应的触发激活信息。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述第一控制信息接收来自所述终端的与所述第一辅载波对应的CSI报告,包括:
    在向所述终端发送所述第二控制信息之后,根据所述第一控制信息接收来自所述终端的与所述第一辅载波对应的所述CSI报告。
  13. 根据权利要求11或12所述的方法,其特征在于,在向所述终端发送第二控制信息之后,所述方法还包括:
    在向所述终端发送所述第一控制信息之前,接收来自所述终端的与所述第二控制信息对应的反馈信息。
  14. 一种通信方法,其特征在于,包括:
    向终端发送第一配置信息,所述第一配置信息包括第一时间信息和第二时间信息;
    根据所述第一时间信息或所述第二时间信息接收来自所述终端的与第二辅载波对应的信道状态信息(CSI)报告,所述CSI报告为非周期CSI报告或半持续CSI报告;
    其中,当所述第二辅载波处于激活状态时,根据所述第一时间信息接收来自所述终端的与所述第二辅载波对应的所述CSI报告;
    当所述第二辅载波处于去激活状态时,根据所述第二时间信息接收来自所述终端的与所述第二辅载波对应的所述CSI报告。
  15. 一种通信装置,其特征在于,所述装置用于执行如权利要求1至7中任一项所述的方法。
  16. 一种通信装置,其特征在于,所述装置用于执行如权利要求8至14中任一项所述的方法。
  17. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至7中任一项所述的方法。
  18. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求8至14中任一项所述的方法。
  19. 一种计算机可读介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至7中任一项所述的方法。
  20. 一种计算机可读介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求8至14中任一项所述的方法。
  21. 一种通信系统,包括:如权利要求17中所述的装置,和/或,权利要求18中所 述的装置。
  22. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现权利要求1至7中任一项所述的方法或者实现权利要求8至14中任一项所述的方法。
  23. 一种芯片,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述芯片执行如权利要求1至7中任一项所述的方法或者如权利要求8至14中任一项所述的方法。
PCT/CN2020/077315 2019-03-29 2020-02-29 通信方法及装置 WO2020199815A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20783849.1A EP3923504A4 (en) 2019-03-29 2020-02-29 COMMUNICATION METHOD AND APPARATUS
US17/464,673 US20210399866A1 (en) 2019-03-29 2021-09-01 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910248237.4 2019-03-29
CN201910248237.4A CN111756497B (zh) 2019-03-29 2019-03-29 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/464,673 Continuation US20210399866A1 (en) 2019-03-29 2021-09-01 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020199815A1 true WO2020199815A1 (zh) 2020-10-08

Family

ID=72664445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077315 WO2020199815A1 (zh) 2019-03-29 2020-02-29 通信方法及装置

Country Status (4)

Country Link
US (1) US20210399866A1 (zh)
EP (1) EP3923504A4 (zh)
CN (1) CN111756497B (zh)
WO (1) WO2020199815A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11533098B2 (en) * 2020-12-08 2022-12-20 Qualcomm Incorporated Semi-persistent channel state information reporting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624494A (zh) * 2011-01-27 2012-08-01 中兴通讯股份有限公司 一种信道状态指示测量方法及系统
US20150215929A1 (en) * 2014-01-30 2015-07-30 Qualcomm Incorporated Cell on-off procedure for dual connectivity
US20150334603A1 (en) * 2012-09-28 2015-11-19 Ntt Docomo, Inc. Mobile station and radio base station
CN107431592A (zh) * 2015-03-09 2017-12-01 株式会社Kt 用于发送信道状态信息的方法及其设备
CN108064083A (zh) * 2016-11-07 2018-05-22 深圳市金立通信设备有限公司 Csi上报方法、装置以及设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238747A (zh) * 2010-04-30 2011-11-09 夏普株式会社 上行物理控制信息传输方法,基站和用户设备
US9673945B2 (en) * 2011-02-18 2017-06-06 Qualcomm Incorporated Implicitly linking aperiodic channel state information (A-CSI) reports to CSI-reference signal (CSI-RS) resources
CN104469945B (zh) * 2013-09-12 2019-01-25 索尼公司 Nct scc的激活控制装置和方法、管理方法、以及基站装置
CN107211296B (zh) * 2015-01-20 2020-11-03 Lg电子株式会社 用于在无线通信系统中激活/停用小区的方法及其装置
CN107113056B (zh) * 2015-04-10 2020-02-21 华为技术有限公司 确定csi报告的应用时间的方法、装置和设备
US9949161B2 (en) * 2015-07-31 2018-04-17 Qualcomm Incorporated Techniques and apparatuses for virtual radio link monitoring during carrier aggregation and cross-carrier scheduling
TWI622309B (zh) * 2015-08-06 2018-04-21 財團法人資訊工業策進會 用於無線通訊之方法及裝置
CN108574992A (zh) * 2017-03-13 2018-09-25 中兴通讯股份有限公司 一种周期性csi上报的方法及装置
BR112019019876A2 (pt) * 2017-03-24 2020-04-22 Ericsson Telefon Ab L M nós de rede de rádio, dispositivo sem fio e métodos realizados nos mesmos para manipular comunicação em uma rede de comunicação sem fio
US10601483B2 (en) * 2017-09-29 2020-03-24 Apple Inc. Channel state information (CSI) reporting for bandwidth parts
US11133912B2 (en) * 2017-10-02 2021-09-28 Qualcomm Incorporated Bandwidth part activation, deactivation, and switching in wireless communications
US10638507B2 (en) * 2017-11-16 2020-04-28 Sharp Kabushiki Kaisha User equipments, base stations and methods
CN110190941B (zh) * 2018-01-12 2022-05-10 华为技术有限公司 一种用于终端设备能力传输的方法、装置及系统
CN114557051B (zh) * 2019-03-28 2024-03-15 皇家飞利浦有限公司 省电活动bwp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624494A (zh) * 2011-01-27 2012-08-01 中兴通讯股份有限公司 一种信道状态指示测量方法及系统
US20150334603A1 (en) * 2012-09-28 2015-11-19 Ntt Docomo, Inc. Mobile station and radio base station
US20150215929A1 (en) * 2014-01-30 2015-07-30 Qualcomm Incorporated Cell on-off procedure for dual connectivity
CN107431592A (zh) * 2015-03-09 2017-12-01 株式会社Kt 用于发送信道状态信息的方法及其设备
CN108064083A (zh) * 2016-11-07 2018-05-22 深圳市金立通信设备有限公司 Csi上报方法、装置以及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3923504A4

Also Published As

Publication number Publication date
CN111756497A (zh) 2020-10-09
EP3923504A1 (en) 2021-12-15
US20210399866A1 (en) 2021-12-23
CN111756497B (zh) 2023-06-23
EP3923504A4 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
US11540278B2 (en) Carrier switching method, apparatus, and system for multi-carrier communication
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
WO2020134944A1 (zh) 干扰测量的方法和通信装置
WO2018171601A1 (zh) 传输信号的方法和装置
WO2020233717A1 (zh) 一种上行harq传输方法及通信装置
WO2021218559A1 (zh) 通信方法、装置及系统
WO2020238992A1 (zh) 一种通信方法及装置
US20190386784A1 (en) Data processing method and apparatus
WO2021204094A1 (zh) 一种通信方法、装置及系统
US20230309118A1 (en) Sidelink carrier management method and apparatus, and system
WO2018202168A1 (zh) 信息传输方法及装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2020199815A1 (zh) 通信方法及装置
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2020192360A1 (zh) 通信方法及装置
WO2020192719A1 (zh) 更新波束的方法与通信装置
TW201813357A (zh) 用戶設備及虛擬載波的操作方法
WO2020199814A1 (zh) 通信的方法及装置
US20230362928A1 (en) Pucch transmission method and apparatus
WO2021032167A1 (zh) 传输块大小确定方法及装置
WO2022267934A1 (zh) 一种参考信号的发送与配置方法及装置
US20240063990A1 (en) Communication method, apparatus, and system
US20240097755A1 (en) Uplink data sending method, uplink data receiving method, and communication apparatus
WO2024022486A1 (zh) 通信方法及装置、存储介质、网络设备、终端设备
WO2024007878A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020783849

Country of ref document: EP

Effective date: 20210910

NENP Non-entry into the national phase

Ref country code: DE