WO2020199247A1 - 封框胶固化装置及其固化方法 - Google Patents

封框胶固化装置及其固化方法 Download PDF

Info

Publication number
WO2020199247A1
WO2020199247A1 PCT/CN2019/082843 CN2019082843W WO2020199247A1 WO 2020199247 A1 WO2020199247 A1 WO 2020199247A1 CN 2019082843 W CN2019082843 W CN 2019082843W WO 2020199247 A1 WO2020199247 A1 WO 2020199247A1
Authority
WO
WIPO (PCT)
Prior art keywords
microns
light source
ultraviolet
irradiation intensity
liquid crystal
Prior art date
Application number
PCT/CN2019/082843
Other languages
English (en)
French (fr)
Inventor
白柏
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2020199247A1 publication Critical patent/WO2020199247A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the invention relates to a liquid crystal display (Liquid Crystal Display, LCD) manufacturing technology, in particular to a frame sealing glue curing device and a curing method thereof.
  • LCD Liquid Crystal Display
  • TFT-LCD is made by injecting liquid crystal into a cell after TFT substrate and color film (CF) substrate are formed.
  • a sealant is generally used to seal the TFT-LCD.
  • the ultraviolet (UV) curing method of the frame sealant is to face the UV light source and uniformly irradiate the liquid crystal panel after the box, and use a UV mask to protect some areas ( Masking) to avoid UV exposure. Hollow out the coating area of the frame sealant so that the frame sealant is irradiated by UV light.
  • the advantage of this process is that the amount of UV radiation received by the illuminated part is more uniform.
  • the coating area of the sealant overlaps the metal traces, and the sealant part is blocked by the metal traces on the TFT substrate, resulting in different curing rates.
  • the metal trace does not transmit light (including UV light)
  • the UV curing conversion rate of the sealant in the area shielded by the metal trace is low, while the curing rate of the unshielded part is higher.
  • the UV curing rate of the area not blocked by the metal trace is high, and the curing rate of the blocked area is low. Therefore, although the light source on the surface of the machine is evenly illuminated, the curing rate of different sealant areas is different. If you want to increase the curing rate of the shielded part by extending the overall UV irradiation time, it may cause the liquid crystal at the edge of the UV mask to be contaminated, resulting in serious afterimages, reducing process efficiency, machine life, and increasing energy consumption.
  • the degree of shielding of the frame sealant by the metal wire at different positions on the LCD panel is completely different, the differences are very different.
  • the ratio of the area covered by the metal trace, the width of the metal trace, and other factors all affect the UV of the frame sealant. There is a correlation in the curing rate.
  • the metal traces do not transmit light (including UV light)
  • the UV curing conversion rate of the frame sealant in the area covered by the metal traces is lower, while the curing rate of the unshielded part is higher.
  • the UV curing rate of the area not blocked by the metal trace is high, and the curing rate of the blocked area is low. Therefore, although the light source on the surface of the machine is evenly illuminated, the curing rate of different sealant areas is different. If you want to increase the curing rate of the shielded part by extending the overall UV irradiation time, it may cause the liquid crystal at the edge of the UV mask to be contaminated, resulting in serious afterimages, reducing process efficiency, machine life, and increasing energy consumption.
  • the degree of shielding of the frame sealant by the metal wire at different positions on the LCD panel is completely different, the differences are very different.
  • the ratio of the area covered by the metal trace, the width of the metal trace, and other factors all affect the UV of the frame sealant. There is a correlation in the curing rate.
  • the purpose of the present invention is to provide a frame sealant curing device and a curing method, which can achieve a more uniform UV curing rate of the frame sealant under the condition of different metal wiring shielding, and reduce liquid crystal pollution, residual image, and energy consumption. In turn, the curing yield, process efficiency and machine life can be improved.
  • the present invention provides a frame sealant curing device, which includes a platform, an ultraviolet light point light source and a three-dimensional movable part.
  • the platform carrying cloth is provided with a liquid crystal panel with metal wiring.
  • An ultraviolet point light source is arranged on the platform.
  • the ultraviolet point light source has an adjustable spot diameter and an irradiated intensity, moves corresponding to the metal traces and irradiates the ultraviolet light to cure the frame sealant of the liquid crystal panel.
  • the three-dimensional movable part is arranged on the platform and fixedly connected with the ultraviolet light point source.
  • the three-dimensional movable component drives the ultraviolet light point-shaped light source to move in the left-right direction (X-axis), up-down direction (Y-axis), and front-rear direction (Z-axis).
  • X-axis left-right direction
  • Y-axis up-down direction
  • Z-axis front-rear direction
  • the irradiation intensity ranges from 50 to 200 lux, and the number of the ultraviolet point light sources is multiple.
  • the irradiation intensity when the metal trace has a line width of 10 microns, the irradiation intensity can be adjusted to 80 lux, and when the metal trace has a line width of 20 microns, the irradiation intensity can be adjusted to It is adjusted to 100 lux. When the width of the metal trace is 50 microns, the irradiation intensity can be adjusted to 150 lux.
  • the percentage of the aperture ratio of the liquid crystal panel when the distance between any two adjacent metal traces is 30 microns, the percentage of the aperture ratio of the liquid crystal panel is 75, and when the distance between any two adjacent metal traces When it is 20 microns, the percentage of the aperture ratio of the liquid crystal panel is 30, and when the distance between any two adjacent metal traces is 21 microns, the percentage of the aperture ratio of the liquid crystal panel is 75.
  • the spot diameter of the ultraviolet point light source is larger than the width of the frame sealant, and the spot diameter of the ultraviolet point light source ranges from 50-5000 microns.
  • the spot diameter when the width of the frame sealant is 1000 microns, the spot diameter can be adjusted to 1200 microns, and when the width of the frame sealant is 500 microns, the spot diameter can be adjusted to Adjust to 800 microns.
  • the invention also provides a frame sealing glue curing device, which includes a platform, an ultraviolet point light source and a three-dimensional movable part.
  • the platform carrying cloth is provided with a liquid crystal panel with metal wiring.
  • An ultraviolet point light source is arranged on the platform.
  • the ultraviolet point light source has an adjustable spot diameter and an irradiated intensity, moves corresponding to the metal traces and irradiates the ultraviolet light to cure the frame sealant of the liquid crystal panel.
  • the three-dimensional movable part is arranged on the platform and fixedly connected with the ultraviolet light point source.
  • the three-dimensional movable component drives the ultraviolet light point-shaped light source to move in the left-right direction (X-axis), up-down direction (Y-axis), and front-rear direction (Z-axis).
  • the greater the line width of the metal trace, the stronger the irradiation intensity of the ultraviolet point light source, and the irradiation intensity ranges from 50 to 200 lux.
  • the number of the ultraviolet light point light sources is multiple.
  • the irradiation intensity when the metal trace has a line width of 10 microns, the irradiation intensity can be adjusted to 80 lux, and when the metal trace has a line width of 20 microns, the irradiation intensity can be adjusted to Adjusted to 100 lux.
  • the width of the metal trace is 50 microns, the illumination intensity can be adjusted to 150 lux.
  • the distance between any two adjacent metal traces is 30 microns, the liquid crystal panel The percentage of the aperture ratio is 75.
  • the percentage of the aperture ratio of the liquid crystal panel is 30.
  • the distance between any two adjacent metal traces is 21 microns
  • the aperture ratio of the liquid crystal panel is 75%.
  • the irradiation intensity of the ultraviolet light point light source is adjusted by current or power.
  • the spot diameter of the ultraviolet point light source is larger than the width of the frame sealant, and the spot diameter of the ultraviolet point light source ranges from 50-5000 microns.
  • the diameter of the light spot is adjusted by the movement of the three-dimensional movable part.
  • the diameter of the spot when the pixel electrode layer is formed, when the width of the sealant is 1000 microns, the diameter of the spot can be adjusted to 1200 microns, and when the width of the sealant is At 500 microns, the spot diameter can be adjusted to 800 microns.
  • the present invention also provides a method for curing frame sealant, which includes the following steps:
  • the spot diameter of the light spot light source is larger than the width of the frame sealing glue, and the spot diameter of the ultraviolet light spot light source ranges from 50-5000 microns.
  • the irradiation intensity when the metal trace has a line width of 10 microns, the irradiation intensity can be adjusted to 80 lux, and when the metal trace has a line width of 20 microns, the irradiation intensity can be adjusted to Adjusted to 100 lux.
  • the width of the metal trace is 50 microns, the illumination intensity can be adjusted to 150 lux.
  • the distance between any two adjacent metal traces is 30 microns, the liquid crystal panel The percentage of the aperture ratio is 75.
  • the percentage of the aperture ratio of the liquid crystal panel is 30.
  • the distance between any two adjacent metal traces is 21 microns
  • the aperture ratio of the liquid crystal panel is 75%.
  • the present invention also has the following effects.
  • at least one or more UV point light sources are used to track and illuminate the sealing frame, adjusting and changing the irradiation intensity and the diameter of the light spot, so that the frame sealing glue is obtained More sufficient UV curing effect (improved yield).
  • Fig. 1 is a schematic diagram of a liquid crystal panel of the present invention and its cross-section;
  • FIG. 2 is a schematic diagram of the curing device of the frame sealing glue of the present invention.
  • 3A is a cross-sectional view of the first embodiment of the liquid crystal panel of the present invention.
  • 3B is a cross-sectional view of the second embodiment of the liquid crystal panel of the present invention.
  • 3C is a cross-sectional view of the third embodiment of the liquid crystal panel of the present invention.
  • Fig. 4 is a flow block diagram of the curing method of the frame sealant of the present invention.
  • the present invention provides a frame sealant curing device, including a platform (not labeled), an ultraviolet light point light source 3 and a three-dimensional movable part 4.
  • the platform of this embodiment includes, but is not limited to, a horizontal substrate platform composed of multiple wheels.
  • the liquid crystal panel 1 shown in FIG. 1 includes a TFT substrate 11, a color filter substrate 12, and a frame sealant 13 sandwiched between the TFT substrate 11 and the color filter substrate 12.
  • the frame sealant 13 is generally coated on The 4 peripheral edges of the LCD panel 1.
  • Metal wires 2 are arranged between the TFT substrate 11 and the frame sealant 13.
  • the frame sealing glue curing device of the present invention also includes other necessary basic structures, such as a housing, a bracket, a power supply, a substrate platform, and a mechanical arm. The basic structure is the prior art, and will not be repeated here.
  • the platform bears the liquid crystal panel 1 provided with metal wiring 2.
  • the ultraviolet point light source 3 is arranged on the platform.
  • the ultraviolet point light source 3 has an adjustable spot diameter and irradiation intensity, and moves corresponding to the metal trace 2 and irradiates the ultraviolet light 31 to cure the frame sealant 13 of the liquid crystal panel 1.
  • the three-dimensional movable component 4 is arranged on the platform and fixedly connected to the ultraviolet light point light source 3.
  • the three-dimensional movable component 4 drives the ultraviolet light point light source 3 to move in the left-right direction (X-axis), up-and-down direction (Y-axis), and front-rear direction (Z-axis).
  • the ultraviolet light point light source 3 in FIG. 2 is represented by a single light source, that is, a single UV light source is installed in the housing 32; however, in other different embodiments, the number of ultraviolet light point light sources 3 may be multiple, that is, the housing 32 Install multiple UV light sources and change them as needed.
  • the irradiation intensity of the ultraviolet light point light source 3 is adjusted by the magnitude of current or duty.
  • the spot diameter of the ultraviolet point light source 3 is larger than the width of the frame sealing glue 13.
  • the spot diameter of the ultraviolet light 31 can be adjusted to 1200 micrometers (um).
  • the spot diameter can be adjusted to 800 microns (um).
  • the platform also includes a robotic arm (the figure omitted) that fixes the ultraviolet light point light source 3, and the robotic arm is installed on the three-dimensional movable part 4 to meet different sizes or requirements of the liquid crystal panel 1, which can be accurate and The ultraviolet point light source 3 is moved quickly.
  • the liquid crystal panel when the line width of the metal trace 2 is 10 micrometers (um), the distance between any two adjacent metal traces 2 is 30 micrometers (um), the liquid crystal panel When the percentage of aperture ratio of 1 is 75, the irradiation intensity can be adjusted to 80 lux (mW/cm2). As shown in FIG. 3B, when the line width of the metal traces 2 is 20 micrometers (um), the distance between any two adjacent metal traces is 20 micrometers (um), the aperture ratio of the liquid crystal panel 1 When the percentage is 30, the irradiation intensity can be adjusted to 100 lux (mW/cm2). As shown in FIG.
  • the irradiation intensity can be adjusted to 150 Lux (mW/cm2).
  • the present invention also provides a method for curing frame sealant, including the following steps: S10, providing a liquid crystal panel 1 with metal traces 2; S20, providing a movement corresponding to the metal traces 2 And irradiate the ultraviolet light 31 with the ultraviolet light point light source 3 to cure the frame sealant 13 of the liquid crystal panel 1; and S30, drive the ultraviolet light point light source 3 in the left-right direction (X axis), up and down direction
  • the movement of the (Y axis) and the front and rear directions (Z axis) adjusts the spot diameter and the irradiation intensity of the ultraviolet point light source 3 according to different line widths or spacings of the metal traces 2.
  • the irradiation intensity range is between 50-200 Lux (mW/cm2).
  • the spot diameter of the ultraviolet light point light source 3 is larger than the width of the frame sealant 13, and the range of the light spot diameter of the ultraviolet light point light source 3 is between 50-5000 micrometers (um).
  • the present invention adopts at least one or more UV point light sources 3 to move and track and illuminate the sealing frame 13 according to the different shielding conditions of the metal wiring 2, adjust and change the irradiation intensity and the diameter of the light spot, so that the frame sealing glue 13 is obtained Fuller UV curing effect, and reduce liquid crystal pollution, residual image, energy consumption, thereby improving curing yield, process efficiency and machine life. Furthermore, in the curing method of the frame sealant of the present invention, the UV mask is no longer used, which can effectively improve the process efficiency and cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种封框胶固化装置及其固化方法,其中封框胶固化装置包括平台、紫外光点状光源及三维活动部件。平台承載布设有金属走线的液晶面板。紫外光点状光源设置在所述平台上。所述紫外光点状光源具有可调整的光斑直径和照射强度,对应所述金属走线移动并照射紫外光,以固化所述封框胶。三维活动部件连接所述紫外光点状光源并驱动所述紫外光点状光源朝左右方向(X轴)、上下方向(Y轴)和前后方向(Z轴)的运动。

Description

封框胶固化装置及其固化方法 技术领域
本发明涉及液晶显示器(Liquid Crystal Display,LCD)制造技术,尤指一种封框胶固化装置及其固化方法。
背景技术
TFT-LCD采用TFT基板与彩膜(CF)基板成盒后注入液晶制成。为了防止液晶受到外界环境的污染,一般会采用封框胶(sealant)对TFT-LCD进行封合。现有的TFT-LCD制程中,封框胶的紫外光(UV)固化方式是将成盒后的液晶面板面向紫外光源并进行均匀照射,利用紫外线遮光掩膜(UV mask)对部分区域进行保护(遮蔽),避免受到UV照射。对封框胶涂布区域进行镂空,使封框胶被UV光照射到。这样制程的好处是照光部分受到的UV辐射量较为均匀。但是,在实际的液晶面板中,封框胶涂布区域与金属走线存在重叠,封框胶部分被TFT基板之上的金属走线遮挡,导致固化率不相同。
具体而言,由于金属走线不透光(包括UV光),所以金属走线遮挡区域的封框胶UV固化转化率较低,而未被遮挡的部分固化率较高。未被金属走线遮挡区域的UV固化率高,被遮挡区域的固化率低。因此虽然机台面上的光源均匀照射,但是不同框胶区域的固化率却不同。如果想通过延长整体UV照射时间来提高遮挡部分的固化率,则可能导致UV mask边缘处液晶受到污染,导致严重的残像,也会降低制程效率、机台寿命,以及提高能耗等负面效应。
再者,由于封框胶在液晶面板上不同位置被金属线遮挡的程度完全不一样,差异千差万别,例如,金属走线遮挡的面积比例、金属走线线宽等因素都对封框胶的UV固化率存在相关性。
技术问题
由于金属走线不透光(包括UV光),所以金属走线遮挡区域的封框胶UV固化转化率较低,而未被遮挡的部分固化率较高。未被金属走线遮挡区域的UV固化率高,被遮挡区域的固化率低。因此虽然机台面上的光源均匀照射,但是不同框胶区域的固化率却不同。如果想通过延长整体UV照射时间来提高遮挡部分的固化率,则可能导致UV mask边缘处液晶受到污染,导致严重的残像,也会降低制程效率、机台寿命,以及提高能耗等负面效应。
再者,由于封框胶在液晶面板上不同位置被金属线遮挡的程度完全不一样,差异千差万别,例如,金属走线遮挡的面积比例、金属走线线宽等因素都对封框胶的UV固化率存在相关性。
技术解决方案
本发明的目的在于提供一种封框胶固化装置及其固化方法,达到在不同金属走线遮挡情况下,能够实现更均匀的封框胶紫外线固化率,并减少液晶污染、残像、能源损耗,进而提升固化良率、制程效率和机台寿命。
为达成本发明的前述目的,本发明提供一种封框胶固化装置,包括平台、紫外光点状光源及三维活动部件。平台承載布设有金属走线的液晶面板。紫外光点状光源设置在所述平台上。所述紫外光点状光源具有可调整的光斑直径和照射强度,对应所述金属走线移动并照射紫外光,以固化所述液晶面板的所述封框胶。三维活动部件设置在所述平台上并固定连接所述紫外光点状光源。所述三维活动部件驱动所述紫外光点状光源朝左右方向(X轴)、上下方向(Y轴)和前后方向(Z轴)的运动,其中所述金属走线的线宽越大,所述紫外光点状光源的所述照射强度越强。
在本发明的一实施例中,所述照射强度范围介于50-200勒克斯,所述紫外光点状光源的数量为多个。
在本发明的一实施例中,当所述金属走线线宽为10微米时,所述照射强度可调整为80勒克斯,当所述金属走线线宽为20微米时,所述照射强度可调整为100勒克斯,当所述金属走线线宽为50微米时,所述照射强度可调整为150勒克斯。
在本发明的一实施例中,当任二相邻所述金属走线的间距为30微米时,所述液晶面板的开口率的百分比为75,当任二相邻所述金属走线的间距为20微米时,所述液晶面板的开口率的百分比30,当任二相邻所述金属走线的间距为21微米时,所述液晶面板的开口率的百分比75。
在本发明的一实施例中,所述紫外光点状光源的所述光斑直径大于所述封框胶的宽度,所述紫外光点状光源的所述光斑直径范围介于50-5000微米。
在本发明的一实施例中,当所述封框胶的宽度为1000微米时,所述光斑直径可调整为1200微米,当所述封框胶的宽度为500微米时,所述光斑直径可调整为800微米。
本发明还提供一种封框胶固化装置,包括平台、紫外光点状光源及三维活动部件。平台承載布设有金属走线的液晶面板。紫外光点状光源设置在所述平台上。所述紫外光点状光源具有可调整的光斑直径和照射强度,对应所述金属走线移动并照射紫外光,以固化所述液晶面板的所述封框胶。三维活动部件设置在所述平台上并固定连接所述紫外光点状光源。所述三维活动部件驱动所述紫外光点状光源朝左右方向(X轴)、上下方向(Y轴)和前后方向(Z轴)的运动。
在本发明的一实施例中,所述金属走线的线宽越大,所述紫外光点状光源的所述照射强度越强,所述照射强度范围介于50-200勒克斯。
在本发明的一实施例中,所述紫外光点状光源的数量为多个。
在本发明的一实施例中,当所述金属走线线宽为10微米时,所述照射强度可调整为80勒克斯,当所述金属走线线宽为20微米时,所述照射强度可调整为100勒克斯,当所述金属走线线宽为50微米时,所述照射强度可调整为150勒克斯,当任二相邻所述金属走线的间距为30微米时,所述液晶面板的开口率的百分比为75,当任二相邻所述金属走线的间距为20微米时,所述液晶面板的开口率的百分比30,当任二相邻所述金属走线的间距为21微米时,所述液晶面板的开口率的百分比75。
在本发明的一实施例中,所述紫外光点状光源的所述照射强度通过电流或功率的大小进行调整。
在本发明的一实施例中,所述紫外光点状光源的所述光斑直径大于所述封框胶的宽度,所述紫外光点状光源的所述光斑直径范围介于50-5000微米。
在本发明的一实施例中,在制备所述透明导电层时,所述光斑直径大小通过所述三维活动部件的运动进行调整。
在本发明的一实施例中,在形成所述像素电极层时,当所述封框胶的宽度为1000微米时,所述光斑直径可调整为1200微米,当所述封框胶的宽度为500微米时,所述光斑直径可调整为800微米。
再者,本发明另提供一种封框胶固化方法,包括以下步骤:
S10、提供布设有金属走线的液晶面板;
S20、提供对应所述金属走线移动的紫外光点状光源并照射紫外光,以固化所述液晶面板的所述封框胶;及
S30、驱动所述紫外光点状光源朝左右方向(X轴)、上下方向(Y轴)和前后方向(Z轴)的运动,根据不同的所述金属走线的线宽或间距,调整所述紫外光点状光源的光斑直径和照射强度。
在本发明的一实施例中,所述金属走线的线宽越大,所述紫外光点状光源的所述照射强度越强,所述照射强度范围介于50-200勒克斯,所述紫外光点状光源的所述光斑直径大于所述封框胶的宽度,所述紫外光点状光源的所述光斑直径范围介于50-5000微米。
在本发明的一实施例中,当所述金属走线线宽为10微米时,所述照射强度可调整为80勒克斯,当所述金属走线线宽为20微米时,所述照射强度可调整为100勒克斯,当所述金属走线线宽为50微米时,所述照射强度可调整为150勒克斯,当任二相邻所述金属走线的间距为30微米时,所述液晶面板的开口率的百分比为75,当任二相邻所述金属走线的间距为20微米时,所述液晶面板的开口率的百分比30,当任二相邻所述金属走线的间距为21微米时,所述液晶面板的开口率的百分比75。
有益效果
本发明还具有如下功效,根据不同的金属走线遮挡情况,采用至少一或多个UV点状光源移动追踪并照射封胶框的方式,调整改变照射强度和光斑直径大小,使封框胶得到更充分的紫外光固化效果(良率提升)。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明液晶面板及其横截面示意图;
图2是本发明封框胶固化装置的示意图;
图3A是本发明液晶面板的第一实施例横截面图;
图3B是本发明液晶面板的第二实施例横截面图;
图3C是本发明液晶面板的第三实施例横截面图;及
图4是本发明封框胶固化方法的流程方块图。
本发明的最佳实施方式
在具体实施方式中提及“实施例”意指结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的不同位置出现的相同用语并非必然被限制为相同的实施方式,而应当理解为与其它实施例互为独立的或备选的实施方式。在本发明提供的实施例所公开的技术方案启示下,本领域的普通技术人员应理解本发明所描述的实施例可具有其他符合本发明构思的技术方案结合或变化。
请参照图1及图2所示,本发明提供一种封框胶固化装置,包括平台(未标示)、紫外光点状光源3及三维活动部件4。本实施例的所述平台包含但不限于以多各轮滚构成的水平基板平台。如图1所示的液晶面板1包括TFT基板11、彩膜基板12和夹设于所述TFT基板11和彩膜基板12之间的封框胶13,封框胶13一般而言涂布于液晶面板1的4周边缘。所述TFT基板11和所述封框胶13之间布设有金属走线2。此外,本发明封框胶固化装置还包括其他必要的基本结构,例如外壳、支架、电源、基板平台、机械手臂等。所述基本结构为现有技术,在此不再赘述。
平台承載布设有金属走线2的液晶面板1。紫外光点状光源3设置在所述平台上。所述紫外光点状光源3具有可调整的光斑直径和照射强度,对应所述金属走线2移动并照射紫外光31,以固化所述液晶面板1的所述封框胶13。三维活动部件4设置在所述平台上并固定连接所述紫外光点状光源3。所述三维活动部件4驱动所述紫外光点状光源3朝左右方向(X轴)、上下方向(Y轴)和前后方向(Z轴)的运动。
图2中的紫外光点状光源3以单一光源表示,即外壳32内安装单一UV光源;然而在其他不同的实施例中,紫外光点状光源3的数量可为多个,即外壳32内安装多个UV光源,视需要而改变。所述紫外光点状光源3的所述照射强度通过电流或功率(duty)的大小进行调整。所述紫外光点状光源3的所述光斑直径大于所述封框胶13的宽度。
具体而言,当所述封框胶的宽度为1000微米(um)时,所述光斑直径可调整为1200微米(um)。当所述封框胶的宽度为500微米(um)时,所述光斑直径可调整为800微米(um),通过调整适当的紫外光31光斑直径,让封框胶13固化率良率提升,使固化更完全。所述紫外光点状光源3的所述光斑直径范围介于50-5000微米(um)。
此外,所述光斑直径大小通过所述三维活动部件4的运动进行调整,以完成紫外光31照射封框胶13的作业。所述平台还包括固定所述紫外光点状光源3的机械手臂(图略),所述机械手臂安装在所述三维活动部件4上,以针对不同的液晶面板1尺寸或需求,能够精准且快速的移动所述紫外光点状光源3。
请一并参照图3A、图3B及图3C所示,所述金属走线2的线宽越大,所述紫外光点状光源3的所述照射强度越强,使照射时间短、能源损耗降低,且提升制程效率和机台使用寿命。一般而言,所述照射强度范围介于50-200勒克斯(mW/cm2)。
具体而言,如图3A所示,当所述金属走线2的线宽为10微米(um)、任二相邻所述金属走线2的间距为30微米(um)、所述液晶面板1的开口率的百分比为75时,所述照射强度可调整为80勒克斯(mW/cm2)。如图3B所示,当所述金属走线2的线宽为20微米(um)、任二相邻所述金属走线的间距为20微米(um)、所述液晶面板1的开口率的百分比30时,所述照射强度可调整为100勒克斯(mW/cm2)。如图3C所示,当所述金属走线线宽为50微米(um)、任二相邻所述金属走线的间距为21微米(um)、所述液晶面板1的开口率的百分比75时,所述照射强度可调整为150勒克斯(mW/cm2)。
请一并参照图4所示,本发明另提供一种封框胶固化方法,包括以下步骤:S10、提供布设有金属走线2的液晶面板1;S20、提供对应所述金属走线2移动的紫外光点状光源3并照射紫外光31,以固化所述液晶面板1的所述封框胶13;及S30、驱动所述紫外光点状光源3朝左右方向(X轴)、上下方向(Y轴)和前后方向(Z轴)的运动,根据不同的所述金属走线2的线宽或间距,调整所述紫外光点状光源3的光斑直径和照射强度。
所述金属走线2的线宽越大,所述紫外光点状光源3的所述照射强度越强。所述照射强度范围介于50-200勒克斯(mW/cm2)之间。所述紫外光点状光源3的所述光斑直径大于所述封框胶13的宽度,且所述紫外光点状光源3的所述光斑直径范围介于50-5000微米(um)之间。
因此本发明根据不同的金属走线2遮挡情况,采用至少一或多个UV点状光源3移动追踪并照射封胶框13的方式,调整改变照射强度和光斑直径大小,使封框胶13得到更充分的紫外光固化效果,并减少液晶污染、残像、能源损耗,进而提升固化良率、制程效率和机台寿命。再者,在本发明的封框胶固化方法中,不再使用紫外遮光掩膜(UV mask),能够有效提升制程效率和成本。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (17)

  1. 一种封框胶固化装置,包括:
    平台,所述平台承載布设有金属走线的液晶面板;
    紫外光点状光源,设置在所述平台上,所述紫外光点状光源具有可调整的光斑直径和照射强度,对应所述金属走线移动并照射紫外光,以固化所述液晶面板的所述封框胶;及
    三维活动部件,设置在所述平台上并固定连接所述紫外光点状光源,所述三维活动部件驱动所述紫外光点状光源朝左右方向(X轴)、上下方向(Y轴)和前后方向(Z轴)的运动;
    其中所述金属走线的线宽越大,所述紫外光点状光源的所述照射强度越强。
  2. 如权利要求1所述的封框胶固化装置,其中所述照射强度范围介于50-200勒克斯,所述紫外光点状光源的数量为多个。
  3. 如权利要求1所述的封框胶固化装置,其中当所述金属走线线宽为10微米时,所述照射强度可调整为80勒克斯,当所述金属走线线宽为20微米时,所述照射强度可调整为100勒克斯,当所述金属走线线宽为50微米时,所述照射强度可调整为150勒克斯。
  4. 如权利要求1所述的封框胶固化装置,其中当任二相邻所述金属走线的间距为30微米时,所述液晶面板的开口率的百分比为75,当任二相邻所述金属走线的间距为20微米时,所述液晶面板的开口率的百分比30,当任二相邻所述金属走线的间距为21微米时,所述液晶面板的开口率的百分比75。
  5. 如权利要求1所述的封框胶固化装置,其中所述紫外光点状光源的所述光斑直径大于所述封框胶的宽度,所述紫外光点状光源的所述光斑直径范围介于50-5000微米。
  6. 如权利要求1所述的封框胶固化装置,其中当所述封框胶的宽度为1000微米时,所述光斑直径可调整为1200微米,当所述封框胶的宽度为500微米时,所述光斑直径可调整为800微米。
  7. 一种封框胶固化装置,包括:
    平台,所述平台承載布设有金属走线的液晶面板;
    紫外光点状光源,设置在所述平台上,所述紫外光点状光源具有可调整的光斑直径和照射强度,对应所述金属走线移动并照射紫外光,以固化所述液晶面板的所述封框胶;及
    三维活动部件,设置在所述平台上并固定连接所述紫外光点状光源,所述三维活动部件驱动所述紫外光点状光源朝左右方向(X轴)、上下方向(Y轴)和前后方向(Z轴)的运动。
  8. 如权利要求7所述的封框胶固化装置,其中所述金属走线的线宽越大,所述紫外光点状光源的所述照射强度越强,所述照射强度范围介于50-200勒克斯。
  9. 如权利要求7所述的封框胶固化装置,其中所述紫外光点状光源的数量为多个。
  10. 如权利要求7所述的封框胶固化装置,其中当所述金属走线线宽为10微米时,所述照射强度可调整为80勒克斯,当所述金属走线线宽为20微米时,所述照射强度可调整为100勒克斯,当所述金属走线线宽为50微米时,所述照射强度可调整为150勒克斯,当任二相邻所述金属走线的间距为30微米时,所述液晶面板的开口率的百分比为75,当任二相邻所述金属走线的间距为20微米时,所述液晶面板的开口率的百分比30,当任二相邻所述金属走线的间距为21微米时,所述液晶面板的开口率的百分比75。
  11. 如权利要求7所述的封框胶固化装置,其中所述紫外光点状光源的所述照射强度通过电流或功率的大小进行调整。
  12. 如权利要求7所述的封框胶固化装置,其中所述紫外光点状光源的所述光斑直径大于所述封框胶的宽度,所述紫外光点状光源的所述光斑直径范围介于50-5000微米。
  13. 如权利要求7所述的封框胶固化装置,其中所述光斑直径大小通过所述三维活动部件的运动进行调整。
  14. 如权利要求7所述的封框胶固化装置,其中当所述封框胶的宽度为1000微米(um)时,所述光斑直径可调整为1200微米(um),当所述封框胶的宽度为500微米(um)时,所述光斑直径可调整为800微米(um)。
  15. 一种封框胶固化方法,包括以下步骤:
    S10、提供布设有金属走线的液晶面板;
    S20、提供对应所述金属走线移动的紫外光点状光源并照射紫外光,以固化所述液晶面板的所述封框胶;及
    S30、驱动所述紫外光点状光源朝左右方向(X轴)、上下方向(Y轴)和前后方向(Z轴)的运动,根据不同的所述金属走线的线宽或间距,调整所述紫外光点状光源的光斑直径和照射强度。
  16. 如权利要求15所述的封框胶固化方法,其中所述金属走线的线宽越大,所述紫外光点状光源的所述照射强度越强,所述照射强度范围介于50-200勒克斯,所述紫外光点状光源的所述光斑直径大于所述封框胶的宽度,所述紫外光点状光源的所述光斑直径范围介于50-5000微米。
  17. 如权利要求15所述的封框胶固化方法,其中当所述金属走线线宽为10微米时,所述照射强度可调整为80勒克斯,当所述金属走线线宽为20微米时,所述照射强度可调整为100勒克斯,当所述金属走线线宽为50微米时,所述照射强度可调整为150勒克斯,当任二相邻所述金属走线的间距为30微米时,所述液晶面板的开口率的百分比为75,当任二相邻所述金属走线的间距为20微米时,所述液晶面板的开口率的百分比30,当任二相邻所述金属走线的间距为21微米时,所述液晶面板的开口率的百分比75。
PCT/CN2019/082843 2019-04-04 2019-04-16 封框胶固化装置及其固化方法 WO2020199247A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910269146.9 2019-04-04
CN201910269146.9A CN109856866B (zh) 2019-04-04 2019-04-04 封框胶固化装置及其固化方法

Publications (1)

Publication Number Publication Date
WO2020199247A1 true WO2020199247A1 (zh) 2020-10-08

Family

ID=66903220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082843 WO2020199247A1 (zh) 2019-04-04 2019-04-16 封框胶固化装置及其固化方法

Country Status (2)

Country Link
CN (1) CN109856866B (zh)
WO (1) WO2020199247A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158197A (zh) * 2020-01-02 2020-05-15 Tcl华星光电技术有限公司 液晶显示面板及其制备方法
CN113695204B (zh) * 2020-05-21 2022-10-18 长鑫存储技术有限公司 膜层固化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1437050A (zh) * 2002-02-07 2003-08-20 Lg.菲利浦Lcd株式会社 紫外线照射装置和利用该装置制造液晶显示器的方法
KR20050004351A (ko) * 2003-07-02 2005-01-12 삼성전자주식회사 Lcd기판의 노광 장치
CN101211070A (zh) * 2006-12-25 2008-07-02 上海广电Nec液晶显示器有限公司 液晶显示屏制造工艺中硬化封框胶的方法及装置
CN101976004A (zh) * 2010-09-03 2011-02-16 深圳市华星光电技术有限公司 液晶面板的紫外线固化装置以及固化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202351590U (zh) * 2011-12-02 2012-07-25 京东方科技集团股份有限公司 光配向装置
CN103412445B (zh) * 2013-07-24 2015-09-30 京东方科技集团股份有限公司 一种封框胶固化装置
CN105607351B (zh) * 2016-01-04 2019-03-12 京东方科技集团股份有限公司 一种紫外线固化装置、封框胶固化系统及封框胶固化方法
KR102122005B1 (ko) * 2017-09-05 2020-06-11 (주)엘이티 Lcd 패널 실링 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1437050A (zh) * 2002-02-07 2003-08-20 Lg.菲利浦Lcd株式会社 紫外线照射装置和利用该装置制造液晶显示器的方法
KR20050004351A (ko) * 2003-07-02 2005-01-12 삼성전자주식회사 Lcd기판의 노광 장치
CN101211070A (zh) * 2006-12-25 2008-07-02 上海广电Nec液晶显示器有限公司 液晶显示屏制造工艺中硬化封框胶的方法及装置
CN101976004A (zh) * 2010-09-03 2011-02-16 深圳市华星光电技术有限公司 液晶面板的紫外线固化装置以及固化方法

Also Published As

Publication number Publication date
CN109856866B (zh) 2020-10-13
CN109856866A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
WO2017173672A1 (zh) 液晶显示面板及其成盒方法
US9488871B2 (en) Method for manufacturing display panel
WO2020199247A1 (zh) 封框胶固化装置及其固化方法
CN103091897B (zh) 一种液晶显示装置
US20200044186A1 (en) Oled display panel and manufacturing method for the same
US8928842B2 (en) Curing device and method for curing frame of liquid crystal panel
JP2010186068A (ja) 電気光学装置、電気光学装置の製造方法および電子機器
CN109581757B (zh) 紫外光固化设备及框胶固化方法
CN104965388A (zh) 用于光配向的光罩及光配向方法
CN104267518A (zh) 液晶显示面板及其制造方法
CN105629679B (zh) 边缘曝光机及边缘曝光区域打码方法
TWI386730B (zh) 液晶配向製程
KR102179033B1 (ko) 광 배향용 광마스크 및 광 배향 방법
WO2015018155A1 (zh) 制备显示装置的方法
KR102127879B1 (ko) 디스플레이 패널용 사이드 실링 장치
CN109917591A (zh) 液晶显示面板的制作方法
JP2005043700A (ja) ディスプレイパネルの貼り合わせ装置
CN104238272B (zh) 曝光系统与曝光方法
CN105607349B (zh) Pi液涂布方法
CN216296997U (zh) 一种紫外固化设备
US8570471B2 (en) OCB liquid crystal panel and manufacturing method thereof, and OCB liquid crystal display
CN112958416A (zh) 一种紫外固化设备
JPH01210932A (ja) 液晶表示装置の配向処理方法
WO2021109208A1 (zh) 液晶配向装置
KR20090084954A (ko) 밀봉재 경화 방법 및 밀봉재 경화 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923230

Country of ref document: EP

Kind code of ref document: A1