WO2020197196A1 - 면역 검사 장치 및 면역 검사 방법 - Google Patents

면역 검사 장치 및 면역 검사 방법 Download PDF

Info

Publication number
WO2020197196A1
WO2020197196A1 PCT/KR2020/003907 KR2020003907W WO2020197196A1 WO 2020197196 A1 WO2020197196 A1 WO 2020197196A1 KR 2020003907 W KR2020003907 W KR 2020003907W WO 2020197196 A1 WO2020197196 A1 WO 2020197196A1
Authority
WO
WIPO (PCT)
Prior art keywords
well
tip
solution
disposed
cartridge
Prior art date
Application number
PCT/KR2020/003907
Other languages
English (en)
French (fr)
Inventor
조영준
오재훈
박문규
이정욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20778112.1A priority Critical patent/EP3929583A4/en
Priority to US17/598,644 priority patent/US20220163548A1/en
Publication of WO2020197196A1 publication Critical patent/WO2020197196A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50853Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates with covers or lids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/523Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for multisample carriers, e.g. used for microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/54Supports specially adapted for pipettes and burettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/028Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having reaction cells in the form of microtitration plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices
    • G01N35/1072Multiple transfer devices with provision for selective pipetting of individual channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1081Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane
    • G01N35/1083Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane with one horizontal degree of freedom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0275Interchangeable or disposable dispensing tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0418Plate elements with several rows of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0418Plate elements with several rows of samples
    • G01N2035/0422Plate elements with several rows of samples carried on a linear conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0429Sample carriers adapted for special purposes
    • G01N2035/0436Sample carriers adapted for special purposes with pre-packaged reagents, i.e. test-packs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function

Definitions

  • the present invention relates to an immunological test apparatus and an immunological test method.
  • the inspection process is generally performed by taking a sample, reacting the collected sample with a predetermined reagent suitable for a target index, and analyzing and observing the change that occurs.
  • One of the techniques widely used in this test process is an immunoassay based on specific binding between antigens/antibodies.
  • the immunoassay methods include radioimmunoassay (RIA), which detects signals using radioisotopes, according to the detection principle and method, and enzyme-linked immunosorbent assay (ELISA), which uses signal amplification by enzymes.
  • Assay, or EIA enzyme immunoassay
  • fluorescence antibody method FA: fluorescence antibody technique
  • CLIA chemiluminescence immunoassay
  • Various classifications are possible depending on the method of use of the substance or the type of substrate.
  • the conventional immunological test apparatus for implementing such an immunological test method has a disadvantage in that it is inefficient in testing various samples as cartridges having the same reaction method are disposed on one stage.
  • the conventional immunoassay device has a disadvantage in that it takes a long time to measure the state of the final reaction solution.
  • Patent Document 1 JP 3721889 B2 (2005.09.22)
  • Embodiments of the present invention have been proposed to solve the above problems, and to provide an immunological test apparatus and an immunological test method capable of performing various reaction methods on one stage.
  • An immunological test apparatus may include a stage capable of accommodating a plurality of cartridges having a plurality of wells with an upper opening, and wrapping around a well disposed at the outermost side of the cartridge; A solution delivery unit including a plurality of tips capable of moving relative to the stage, disposed to correspond to the position of the cartridge, and capable of sucking a solution stored in the well or discharging a solution sucked from the well; And a sensing means disposed on one side of the stage to move along a direction in which a plurality of the cartridges are arranged, and for measuring an inner state of the well disposed at the outermost side. It may include a measuring unit including a shielding plate that shields the open upper portion of the well disposed in the well to block light entry into the well.
  • a first hole is provided on one side of a stage capable of wrapping a circumference of a well disposed at the outermost side of the cartridge to measure a state of a solution
  • the The sensing means is provided on one side of the main body of the measuring unit, and when the sensing means is disposed on the side of the well disposed at the outermost to measure the state of the solution, the sensing means is introduced into the well through the first hole. Light entering can be blocked.
  • a second hole is provided in the upper part of the well, the end of the tip is disposed at the outermost side, and the second hole is at the outermost side.
  • the immunological test apparatus includes a plurality of second holes formed in the sensing means and the shielding plate so that the internal state of the solution stored in the plurality of wells disposed at the outermost side can be simultaneously measured. Can be provided.
  • a solution injection into a well disposed at the outermost side from the tip and a state measurement of the solution by the sensing means may be simultaneously performed.
  • the luminous body of the solution emits light
  • the sensing means may measure the emitted light.
  • the light emission time of the luminous body is within 10 seconds, and the measurement of the solution state by the sensing means may be performed within 10 seconds.
  • the solution delivery unit of the immunological test apparatus includes a magnetic force applying unit disposed at one side of the tip to apply a magnetic force toward the tip, and the solution stored in the tip is disposed at the outermost side.
  • the magnetic force applying unit When sprayed into the well, the magnetic force applying unit approaches the tip, so that the magnetic particles can be retained inside the tip.
  • the immunological test apparatus further includes a measurement unit driving unit capable of driving the measurement unit in at least one direction, and the measurement unit reciprocates along wells disposed at the outermost sides of the plurality of cartridges. can do.
  • An immunological test method includes the steps of: moving a cartridge and placing a tip storing a solution including a magnetic particle conjugate on an outermost well of a well; Moving the measurement unit in one direction and disposed on the side of the well disposed at the outermost side, and the shielding plate covering an upper portion of the well disposed at the outermost side; Lowering the tip into the well disposed at the outermost side; Spraying the solution stored in the tip toward the inside of the well; It may include the step of measuring the state of the solution by the sensing means simultaneously with the injection.
  • the step of moving the measuring unit of the immunological test method according to an embodiment of the present invention in one direction and being disposed on the side of the outermost well may be performed on one side of the stage capable of wrapping the perimeter of the outermost well. It may include blocking light entering the well through the provided first hole.
  • light entering the well through the hole at the top of the well disposed at the outermost side Blocking may be included.
  • the immunological test apparatus and the immunological test method according to embodiments of the present invention may perform various reaction methods on one stage.
  • the time for measuring the state of the final reaction solution can be shortened.
  • reaction and inspection of a sample and a reagent can occur as one small device.
  • FIG. 1 is a perspective view schematically showing the configuration of an immune test apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of the solution delivery unit of FIG. 1.
  • FIG. 3 is a diagram schematically showing a cross-section of the magnetic force applying unit of FIG. 1.
  • FIG. 4 is a diagram schematically showing an operating path of the measuring unit of FIG. 1;
  • FIG. 5 is a view showing the front, side and top surfaces of the measurement unit of FIG. 1.
  • FIG. 6 is a diagram showing another embodiment of the measurement unit of FIG. 5.
  • FIG. 7 is a block diagram of various driving units connected to the control unit of FIG. 1.
  • FIG. 8 is a flow chart showing a process in which a state measurement of a solution occurs by the measurement unit of FIG.
  • FIG. 9 is a diagram schematically illustrating a plurality of cartridges of FIG. 1 and reagents stored in each well of the cartridge.
  • FIG. 10 is a flow chart showing a process of a first step reaction using the first cartridge of FIG. 9.
  • FIG. 11 is a flowchart showing a process of a first step dilution reaction using the second cartridge of FIG. 9.
  • FIG. 12 is a flow chart showing a process of a second step reaction using the third cartridge of FIG. 9.
  • FIG. 13 is a flowchart showing a process of a second step dilution reaction using the fourth cartridge of FIG. 9.
  • FIG. 1 is a perspective view schematically showing the configuration of an immunological test apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic side view of the solution delivery unit of FIG. 1
  • FIG. 3 is a magnetic force applying unit of FIG. It is a diagram schematically showing a cross section
  • FIG. 4 is a view schematically showing an operation path of the measurement unit of FIG. 1
  • FIG. 5 is a view showing the front, side and top surfaces of the measurement unit of FIG. 1
  • FIG. 7 is It is a block diagram of various driving units connected to the control unit of.
  • the immunity test apparatus 10 includes a stage 100 capable of accommodating a cartridge C and a solution stored in the cartridge C.
  • Solution delivery unit 200 including a plurality of tips 210 capable of inhaling or discharging a solution sucked from the cartridge, measurement unit 300 measuring the state of the solution stored in the cartridge C, and stage 100 And the solution transfer unit 200 relative to each other, and at least some of the plurality of tips 210 simultaneously inhale the same contents from the plurality of cartridges or simultaneously discharge the same contents into the plurality of cartridges.
  • It may include a control unit 400 for controlling the delivery unit.
  • the content refers to a solution in the tip 210 or a solution in the well W in each step as the solution transfer unit 200 and the stage 100 move relative to each other and perform each step for reaction. Can be indicated.
  • the cartridge C stores reagents for detection and/or analysis of an analyte contained in a sample.
  • sample refers to an analyte compound or composition including an analyte, and a sample that can be used in the present invention may be a liquid or a liquid-like fluid material.
  • the sample is a biological sample, and may be a biological component such as whole blood, plasma, serum, urine, saliva, manure, and cell extract.
  • the left and right directions are described as the Y-axis direction and the up-down direction is described as the Z-axis direction
  • the X-axis direction is described as a direction perpendicular to the Y-axis and Z-axis directions.
  • a direction setting is only an example, and a direction indicated by each axis direction may be set differently according to an embodiment.
  • the stage 100 includes a cartridge receiving unit 110 capable of accommodating a plurality of cartridges C having a plurality of wells W, and a Y-axis guide unit capable of guiding the movement of the cartridge accommodating unit 110 ( 120) may be included.
  • the cartridge accommodating part 110 is formed in a planar shape extending in the X-axis and Y-axis directions, and may include a plurality of grooves capable of accommodating the well W of the cartridge.
  • the grooves formed in the cartridge receiving portion 110 may be arranged in an M X N matrix.
  • M and N are arbitrary natural numbers, the M row is parallel to the Y axis and the N column is parallel to the X axis.
  • the cartridge accommodating portion 110 may include 152 grooves.
  • the number of M rows and N columns is exemplary, and the number is not limited.
  • One cartridge (C) may be accommodated in one row (M) of the cartridge receiving portion (110).
  • M the cartridge receiving portion
  • eight cartridges may be disposed in the cartridge receiving portion 100 having eight rows M1 to M8.
  • Each cartridge (C) may store reagents having a different reaction method. Accordingly, various immunological tests may be performed on one stage 100, and a detailed description thereof will be described later.
  • the cartridge receiving portion 110 may reciprocate in the Y-axis direction. As the cartridge accommodating portion 110 in which the cartridge C is disposed moves in the Y-axis direction, and the solution delivery unit 200 to be described later moves in the Z-axis, the solution stored in the well W of the cartridge is transferred to a plurality of tips. The solution 210 sucked or sucked from the well W may be discharged into the well W.
  • a Y-axis driving unit (not shown) capable of moving the cartridge receiving unit 110 in the Y-axis direction may be provided.
  • a heating block capable of controlling a temperature to cultivate a solution (a mixture of a sample and a reagent) stored in the well W may be included under the cartridge receiving part 110.
  • the heating block may be formed to surround the lower end of each well W, and temperature control for culturing a solution in the well is possible.
  • the Y-axis guide part 120 may guide the cartridge receiving part 110 to reciprocate in the Y-axis direction.
  • the Y-axis guide unit 120 may surround the outside of the heating block and block external light from entering the cartridge C.
  • the solution delivery unit 200 is disposed in front of the plurality of tips 210 and the tips 210, a punching part (not shown) capable of perforating the film of the well W, and is disposed behind the tip 210 (210) It may include a magnetic force applying unit 230 capable of fixing the magnetic particles sucked inside.
  • the front may be a direction in which the first well in the Y-axis direction is disposed.
  • the solution delivery unit 200 includes a driving unit 240 capable of independently applying pressure to each of the plurality of tips 210 and a Z-axis driving unit capable of moving the plurality of tips 210 and the punching unit in the Z direction. 250 and a magnet driving unit 260 capable of moving the magnetic force applying unit 230 in the Y direction.
  • the plurality of tips 210 may suck a solution stored in the well W or discharge a solution sucked from the well W.
  • the plurality of tips 210 may be eight (first tip 211 to eighth tip 218), each of which is disposed in the first row M1 to the eighth row M8.
  • the solution stored in each well (W) of the cartridges may be sucked or the solution sucked from the well (W) may be discharged.
  • the plurality of tips 210 are disposed in the same row and may move along the same row. For example, eight tips 211 to 218 move in the same row (N1 to N19), and will be moved after being introduced into each well W of the cartridge C disposed in the same row (N1 to N19). I can. In this way, by moving the plurality of tips 210 in the same row (N1 to N19), and adjusting the column arrangement of the wells W of each cartridge (C), a plurality of reaction methods can be simultaneously executed. Detailed description will be given later.
  • each of the plurality of tips 210 may independently suck or discharge the solution by the driving unit 240, and a detailed description thereof will be described later.
  • the plurality of tips 210 may be separated from the solution delivery unit 200, and may be mounted on the solution delivery unit 200 after a punching unit punches each well W of the cartridge C.
  • the punching part is a configuration capable of punching the well W of the cartridge C to make a hole, and may have a pointed end shape.
  • the number of punching units may be a number corresponding to the number of cartridges C. For example, corresponding to the cartridges C disposed in the first to eighth rows M1 to M8, there may be eight punching units (not shown).
  • the punching portion When the tip 210 is separated from the solution delivery unit 200, the punching portion is provided with a length that allows only the punching portion (not shown) to reach the film of the well W and puncture the film, and the tip 210 When mounted on the solution delivery unit 200, the punching portion (not shown) may be provided with a length that cannot reach the well W. That is, the length of the tip 210 may be provided to be longer than the length of the punching portion (not shown).
  • the plurality of tips 210 and the punching unit may move in the vertical direction (Z direction).
  • the movement of the plurality of tips 210 and the punching unit (not shown) in the Z direction may be dependent on each other, but is not limited thereto, and the plurality of tips 210 and the punching unit (not shown)
  • the movement in the Z direction may be independent.
  • the magnetic force applying unit 230 may be disposed behind the plurality of tips 210 (a direction away from the first well of the cartridge in the Y-axis), and may move toward the tips to fix the magnetic particles inside the tip 210.
  • the magnetic force applying unit 230 includes a magnet 232 that is movable from one side of the tip 210 to or away from the tip 210 and a magnet moving unit 234 that moves the magnet 232 in one direction. can do.
  • the magnet 232 may have a shape corresponding to the periphery of the tip 210 (a shape that is aligned with each other). For example, when the tip 210 is viewed from above, when the tip 210 is circular, the magnet 232 may have a concave shape that can be fitted thereto (see FIG. 3 ).
  • the magnetic force applied to the magnetic particles inside the tip 210 can be constantly adjusted.
  • the magnet 232 when viewed from the top of the tip 210, the magnet 232 may wrap more than half of the circumference of the tip 210.
  • the length of the magnet 232 when viewed from the side of the tip 210 may be more than half the length of the tip 210.
  • the length of the magnet 232 may be 80% or more of the length of the tip 210.
  • the magnet 232 may be integrally formed.
  • the magnets 232 may be formed in a plurality along the X-axis direction to move toward or away from the plurality of tips 210 independently of each other.
  • eight tips 211 to 218 are provided, eight magnets 232a to 232h corresponding thereto may be provided.
  • eight magnet moving parts 234a to 234h capable of independently driving each of the magnets 232a to 232h may be provided.
  • the magnetic force applying unit 230 may be an electromagnet whose magnetic force varies in magnitude instead of a permanent magnet.
  • the magnetic particles may be fixed inside the tip 210 by changing only the magnitude of the magnetic force without a moving device that faces or moves the tip 210.
  • a process in which magnetic particles are maintained in the tip 210 by the magnetic force application unit 230 is as follows.
  • a fixed body solution containing magnetic particles is introduced into the tip 210 by the suction pressure of the driving unit 240.
  • the cleaning solution stored in the well W of the cartridge C is introduced into the tip 210.
  • the air pressure of the driving unit 230 is adjusted to generate a flow inside the tip.
  • the magnetic force applying unit 230 is moved in a direction toward the tip 210 to fix the magnetic particles inside the tip 210.
  • the magnetic particles may be fixed inside the tip. In this way, since the magnetic particles are maintained inside the tip 210, the accuracy of the reaction can be improved.
  • the driving unit 240 may independently apply pressure inside the plurality of tips 210.
  • the driving unit 240 may be a pump to which pneumatic pressure is provided.
  • the driving unit 240 not only can provide pressure for each tip 210 to suck and discharge the solution by using pneumatic pressure, but also can cause mixing of the solution (flow of the solution) inside the tip 210. Pressure can be provided.
  • the driving unit 240 may adjust the pressure inside the tip 210 by sucking air inside the tip 210 or discharging air toward the inside of the tip 210. Due to the change in the pressure inside the tip 210, the solution inside the tip 210 flows in the vertical direction, and accordingly, the solution may be mixed inside the tip 210.
  • the driving unit 240 may independently apply pressure to each tip 210. Specifically, when each tip 210 is introduced into an empty well of the cartridge C, the driving unit 240 may not provide pressure to the tip 210 introduced into the empty well. For example, when the first tip 211 is introduced into the well W16 disposed in the sixth row N6 of the first cartridge C1, the driving unit 240 may suck the conjugate solution stored in the well W16. At the same time, when the third tip 213 is introduced into the well W36 disposed in the sixth row N6 of the third cartridge C3, no solution is stored in the well W36. , Pressure may not be provided to the third tip 213. This is an illustration of only two tips 211 and 213 of the eight tips 211 to 218, and the remaining tips 212, 214 to 218 may also operate on the same principle.
  • the measurement unit 300 is movable along one side of the stage 100 (for example, in the X-axis direction), and the solution is sprayed from the tip 210 to any one well W of the cartridge 100. You can measure the condition.
  • a measurement unit driving unit (not shown) capable of moving the measurement unit 300 in the X-axis direction may be provided.
  • the measuring unit 300 shields the open upper part of the outermost well W, a sensing means 310 capable of measuring the inner state of the well W disposed on the outermost side of each cartridge C Thus, a shielding plate 320 capable of blocking light entry into the well W may be included.
  • the measuring unit 300 is movable along one side of the stage 100 and may measure the state of the well W disposed at the outermost side of each cartridge C.
  • the measurement unit 300 may be an optical reading module that optically analyzes a reaction result between a sample and a reagent.
  • the measurement unit 300 After the measurement unit 300 is disposed on the side of the outermost well (W), when the solution is sprayed from the tip 210 to the outermost well (W), the measurement can be completed in a short time. I can. For example, measurement of the state of the solution by the measurement unit 300 may be performed within 10 seconds.
  • the measurement unit 300 of the present invention may be of a flash type, and a dark room may be required as a measurement place to measure light emitted from a luminous body of a solution.
  • the periphery of the well W disposed at the outermost part of each cartridge C is surrounded by a block (or heating block), and the sensing means 310 and shielding as follows Plate 320 can be used.
  • the sensing means 310 can measure the internal state of the solution in the well W disposed at the outermost part (for example, the sensing means 310 may be any known measuring means such as a camera), and a sensing means ( The appearance of 310) may function to block light from being introduced into the well W disposed at the outermost side.
  • a first hole H1 may be provided on one side of the stage 100 capable of wrapping a circumference of the well W disposed at the outermost part of the cartridge C, and the first hole H1 Light entering from the first hole H1 may be blocked by introducing the sensing means 310 to the sensor 310.
  • the shape and size of the sensing means 310 may be provided to correspond to the first hole H1.
  • the shape of the sensing means 310 may also have a rectangular shape.
  • the shielding plate 320 may function to block light from being introduced into the upper wells W disposed at the outermost side.
  • the shielding plate 320 may extend from an upper edge of the main body 330 of the measurement unit, and may block an upper portion of the well W disposed at the outermost side.
  • the shielding plate 320 may be provided with a second hole H2 through which the end of the tip 210 is introduced into the well W disposed at the outermost side.
  • the second hole H2 is formed smaller than the upper hole of the well W disposed at the outermost side, and when the tip 210 is introduced into the well W disposed at the outermost side, the second hole H2 is formed. Light entering the well through the well may be blocked.
  • the measurement unit 300 moves in the X direction and is placed in the outermost well W, and then the convex shape protrudes in the Y direction. It can be moved by the length of.
  • the control unit 400 may control various driving units for the invention to operate.
  • the control unit 400 includes a Y-axis driving unit (not shown) capable of moving the cartridge accommodating unit 110 in the Y-axis direction, and a driving unit capable of independently applying pressure to each of the plurality of tips 210 (240), a Z-axis driving unit 250 capable of moving a plurality of tips 210 and a punching unit (not shown) in the Z direction, and a magnet driving unit capable of moving the magnetic force applying unit 230 in the Y direction ( 260), a measurement unit driving unit (not shown) capable of moving the measurement unit 300 in the X-axis direction and the Y-axis direction may be controlled.
  • controller 400 may control at least one other tip to wait on the empty well while at least one of the plurality of tips sucks a solution stored in the well or discharges a solution sucked from the well.
  • FIG. 6 is a diagram showing another embodiment of the measurement unit of FIG. 5.
  • a plurality of second holes H2 formed in the sensing means 310 and the shielding plate 320 are provided so that the inner state of the solution in a plurality of wells disposed at the outermost sides can be measured at the same time. Can be.
  • the distance between the plurality of sensing means 310 and the plurality of second holes H2 may be the same as the distance between the plurality of tips 210.
  • the solution injection into the well W disposed at the outermost side from the tip 210 and the state measurement of the solution by the sensing means 310 may occur at the same time.
  • FIG. 8 is a flow chart showing a process in which a state measurement of a solution occurs by the measurement unit of FIG.
  • a tip 210 storing a solution including a light emitter, a magnetic particle, and a pre-trigger is located above the well W disposed at the outermost side (S1).
  • the measurement unit 300 moves in the X-axis direction and is disposed on the side of the first outermost well W119 (S2). At this time, light entering from the side toward the outermost well W119 is blocked, and the shielding plate 320 covers the upper portion of the outermost well W119.
  • the tip 210 descends into the well W119 disposed at the outermost side (S3). At this time, light entering from the top toward the outermost well W119 is blocked (S3).
  • the light-emitting body of the solution stored in the tip 210 is sprayed toward the outermost well W119 (S4).
  • the magnetic force applying unit 230 approaches the tip 210 so that the magnetic particles may be maintained inside the tip 210.
  • the state of the solution sprayed by one tip 211 may be completed (S5).
  • the measurement unit 300 moves along the X-axis and repeats the above-described process to measure the state of the solution in the remaining wells W219 to W819 disposed at the outermost side.
  • FIG. 9 is a diagram schematically showing a plurality of cartridges of FIG. 1 and reagents stored in each well of the cartridge
  • FIG. 10 is a flow chart showing a process of a first step reaction using the first cartridge of FIG. 9
  • FIG. 11 is 9 is a flow chart showing the first step dilution reaction process using the second cartridge
  • FIG. 12 is a flow chart showing the second step reaction process using the third cartridge of FIG. 9,
  • FIG. 13 is a fourth cartridge of FIG. It is a flow chart showing the process of the used second step dilution reaction.
  • each cartridge C disposed in each row M1 to M8 of the cartridge receiving unit 110 may store reagents having different reaction methods. Accordingly, a cartridge C having a plurality of reaction methods may be disposed on one stage 100 to perform various immunity tests.
  • a reagent for performing a first reaction For example, four cartridges (C1 to C4) arranged in rows M1 to M4 of the cartridge accommodating portion 110 are disposed, and a reagent for performing a first reaction, a second cartridge ( A reagent for performing the second reaction may be stored in C2), a reagent for performing a third reaction in the third cartridge C3, and a reagent for performing the fourth reaction may be stored in the fourth cartridge C4,
  • a plurality of reaction methods (first to fourth reaction methods) may be implemented as a single procedure by the relative movement of the solution delivery unit 200 and the cartridge receiving unit 110.
  • the first reaction is a first step assay
  • the second reaction is a first step dilution assay
  • the third reaction is a second step assay
  • the fourth reaction is described using a second step dilution assay as an example.
  • the first to fourth reactions are not limited thereto, and may include all known reaction methods for immunological tests.
  • the first cartridge (C1) is a container containing a reagent for performing the first step reaction
  • the second cartridge (C2) is a container containing a reagent for performing the first step dilution reaction
  • the third cartridge (C3) is A container containing a reagent for performing the second step reaction
  • the fourth cartridge C4 is a container containing a reagent for performing the second step dilution reaction.
  • each cartridge (C1 to C4) may include an additional empty well (W) in addition to the empty well (W) for injecting a sample.
  • each cartridge (C1 to C4) may optionally include a punch rinser solution (Piercer Rincer) and a punch cleaner solution (Piercer Cleaner) so as to remove foreign substances and the like from the punching portion (not shown).
  • the arrangement of the empty wells W of each cartridge (C1 to C4) and the wells W containing each reagent includes a first step reaction, a first step dilution reaction, a second step reaction, and a second step dilution reaction. It may be arranged so that it can be performed simultaneously on the cartridge receiving part 110.
  • the well W11 of the first row N1 is an empty well into which a sample is injected
  • the well W12 of the second row N2 is a punch rinser solution.
  • a punch cleaner solution is stored in the well W13 of the third row N3
  • the conjugate solution is stored in the well W16 of the sixth row N6, and the seventh row
  • the fixture solution is stored in the well W17 of N7)
  • the pre-trigger solution is stored in the well W117 of the 17th row N17
  • the well W119 of the 19th row N19 stores the trigger solution as a well for metering.
  • Each of the wells W14, W15, W18, in the fourth row (N4), the fifth row (N5), the eighth row (N8), the thirteenth row (N13) to the sixteenth row (N16), and the 18th row (N18) W113, W114, W115, W116, W118) may be empty wells.
  • the well W21 of the first row N1 is an empty well into which the sample is injected, and the well W22 of the second row N2 stores a punch rinser solution.
  • a punch cleaner solution is stored in the well W23 of the third row N3, the diluent is stored in the well W25 of the fifth row N5, and the well ( The conjugate solution is stored in W26), the fixative solution is stored in the well W27 of the seventh row N7, and the wells W29, W210, W211, and the ninth row N9 to 12th row N12
  • the washing solution is stored in W212
  • the pretrigger solution is stored in the well W217 of the 17th row N17
  • the trigger solution is stored as the well W219 of the 19th row N19 as a photometric well
  • a well W31 in the first row N1 is an empty well into which a sample is injected, and a punch rinser solution is stored in the well W32 in the second row N2.
  • a punch cleaner solution is stored in the well W33 of the third row N3, the fixture solution is stored in the well W37 of the seventh row N7, and The conjugate solution is stored in the well W38, and the cleaning solution is stored in the wells W39, W310, W311, W312, W313, W314, W315, W316 in the ninth row N9 to the sixteenth row N16.
  • the pre-trigger solution is stored in the well W318 of the 18th row (N17), the well W319 of the 19th row (N19) is a well for photometry, and the trigger solution is stored, and the fourth row N4 to the sixth
  • Each of the wells W34, W35, W36, and W317 in the row N6 and the seventeenth row N17 may be an empty well.
  • the well W41 of the first row N1 is an empty well into which a sample is injected, and a punch rinser solution is stored in the well W42 of the second row N2.
  • a punch cleaner solution is stored in the well W43 of the third row N3, the dilution is stored in the well W45 of the fifth row N5, and the well (
  • the fixture solution is stored in W47, the conjugate solution is stored in the well W48 of the eighth row N8, and the wells W49, W410, W411, and the ninth row N9 to the sixteenth row N16
  • the washing liquid is stored in W412, W413, W414, W415, W416, the pretrigger solution is stored in the well W418 of the 18th row (N18), and the well W419 of the 19th row N19 is for photometry.
  • a trigger solution is stored as a well, and each of the wells W44, W46, and W417 of the fourth row N4, the sixth row N6, and the seventeenth row N17 may be empty wells.
  • the first to fourth cartridges C1 to C4 are disposed in the cartridge receiving unit 110, and a first step reaction and a first step dilution are performed by the relative movement of the stage with the plurality of tips 210 disposed in the same row.
  • the reaction, the second step reaction, and the second step dilution reaction may be performed simultaneously on the cartridge receiving unit 110.
  • only four cartridges C1 to C4 are shown, but by combining a plurality of them, more cartridges may be disposed in the stage receiving unit 110.
  • the cartridge film Prior to starting each reaction, the cartridge film may be removed or perforated.
  • the punch unit (not shown) is each cartridge covering the cartridge
  • a plurality of tips 210 are each mounted.
  • the first step reaction using the first cartridge C1 is as follows (see FIG. 10).
  • the first tip 211 which moves relative to the stage 100 on the first row M1, sucks a sample (sample) (step S11), and is sequentially injected into the empty wells (W15, W14) (step S12). (At this time, the dilution is simultaneously performed after inhaling the dilution by the second tip 212 and the fourth tip 214 in the second cartridge C2 and the fourth cartridge C4 respectively), the sample is placed in the well W16. After mixing with the stored conjugate solution, the mixed solution is sucked back into the first tip 211 (step S13).
  • the mixed solution in the first tip 211 is discharged to a well W17 containing a fixed solution containing magnetic particles, followed by mixing and culturing (step S14).
  • the lower part of the well W17 is surrounded by a heating block, so that the culture process may be performed at about 37 degrees.
  • the first tip 211 sucks and discharges the washing liquid stored in the wells W19 to W112 to remove impurities other than the combination body (luminescent body-magnetic particle-biomarker combination) combined with magnetic particles from the mixed solution. It goes through the washing process (step S15). Specifically, in the cleaning process, the cleaning liquid stored in the well W19 is sucked into the first tip 211, and a magnetic force applying unit 230 is attached around the first tip 211 to remove magnetic particles from the first tip 211. After fixing the inside, the driving unit 240 is driven to discharge only impurities from the mixed solution of the first tip 211 into the well W19 together with the cleaning solution.
  • impurities may be removed while only the combination of magnetic particles remains inside the first tip 211 by the cleaning process.
  • This washing process may be repeated using the washing liquid stored in the plurality of wells W19 to W112.
  • the first tip 211 inhales the pre-trigger stored in the well 117 (step S16), and then moves to the top of the well W119 disposed at the outermost side of the cartridge, and the first tip
  • the luminous body is measured by the measurement unit 300 moved to the side of the well W119 (step S17). Accordingly, the first step reaction by the first tip 211 may be completed.
  • the first tip 211 is placed in the empty well W18 to wait (in the empty well).
  • the drive unit 240 is not operated after input) (step S18)
  • steps S18 to S111 described above in order to complete the second step reaction and the second step dilution reaction occurring in the third tip 213 and the fourth tip 214, the first tip 211 is dependently on the empty well. This is the waiting step.
  • the first step dilution reaction using the second cartridge C2 is as follows (see FIG. 11).
  • the second tip 212 which moves relative to the stage 100 on the second row M2, sucks a sample (sample) (step S21), and sucks the diluted solution stored in the well W25, and then the empty well W24.
  • the sample is diluted in step S22. Thereafter, the diluted sample is mixed with the conjugate solution stored in the well W26 and then sucked back into the first tip 211 (step S23).
  • the diluted sample in the second tip 212 is discharged into a well W27 containing a fixed body solution containing magnetic particles, followed by mixing and culturing (step S24).
  • the lower part of the well W27 is surrounded by a heating block, so that the cultivation process may be performed at about 37°C.
  • the second tip 212 sucks and discharges the cleaning liquid stored in the wells W29 to W212, and undergoes a cleaning process of removing impurities other than the magnetic particle assembly from the mixed solution (step S25).
  • the second tip 212 inhales the pre-trigger stored in the well W217 (step S26), and then moves to the well W219 disposed at the outermost side of the cartridge, and the second tip (
  • the solution in 211) is triggered onto the well W219, the luminous body is measured by the measurement unit 300 moved to the side of the well W219 (step S27). Accordingly, the first step dilution reaction by the second tip 211 may be completed.
  • the second tip 212 is placed in the empty well W218 to wait (in the empty well).
  • the drive unit 240 is not operated after input) (step S28)
  • step S28 after waiting in the empty well (W213), empty well (W214), empty well (W215), empty well (W216) (step S29), empty After waiting in the well 218 (step S210), it may wait in the empty well (S218) (step S211).
  • steps S28 to S211 described above in order to complete the second step reaction and the second step dilution reaction occurring in the third tip 213 and the fourth tip 214, the second tip 212 is dependently waiting in the empty well. This is the step.
  • the second step reaction using the third cartridge C4 is as follows (see Fig. 12).
  • the sample in the third tip 213 is discharged to a well W37 containing a fixed body solution containing magnetic particles, followed by mixing and culturing (step S34).
  • the lower part of the well W37 is surrounded by a heating block, so that the culture process may be performed at about 37 degrees.
  • the third tip 213 sucks and discharges the cleaning liquid stored in the wells W39 to W312, and undergoes a cleaning process of removing impurities other than the magnetic particle assembly from the mixed solution (step S35).
  • step S36 After the third tip 213 is put into the empty well W317 (step S36), it waits on the well W319 (step S37) (the third cartridge C3 is in the empty well W317). While the first cartridge (C1) and the second cartridge (C2) inhale the pre-trigger, while waiting on the well (W319), the solution of the first cartridge (C1) and the second cartridge (C2) Trigger occurs).
  • step S38 the mixed solution of the third tip 213 is mixed with the conjugate solution stored in the well W38 and then undergoes a culture process.
  • the third tip 213 sucks and discharges the cleaning liquid stored in the wells W313 to W316, and undergoes a cleaning process of removing impurities other than the magnetic particle assembly from the mixed solution (step S39).
  • the third tip 213 inhales the pre-trigger stored in the well W318 (step S310), and then moves to the well W319 disposed at the outermost side of the cartridge, and the third tip ( When the mixed solution in 213) is triggered onto the well W319, the light emitter is measured by the measurement unit 300 moved to the side of the well W319 (step S311).
  • the second step dilution reaction using the fourth cartridge C4 is as follows (see Fig. 13).
  • the fourth tip 214 which moves relative to the stage 100 on the fourth row M4, sucks a sample (sample) (step S41), and sucks the diluted solution stored in the well W45, and then the empty well W44.
  • the sample is diluted in step S42.
  • the fourth tip 214 is put into the empty well W46 and waits (step S43).
  • the sample in the fourth tip 214 is discharged into a well W47 containing a fixed body solution including magnetic particles, followed by mixing and culturing (step S44).
  • the lower part of the well W47 is surrounded by a heating block, so that the culture process may be performed at about 37 degrees.
  • the fourth tip 214 sucks and discharges the cleaning liquid stored in the wells W49 to W412, and undergoes a cleaning process of removing impurities other than the magnetic particle assembly from the mixed solution (step S45).
  • the fourth tip 214 is put into the empty well W417 (step S46) and waits on the well W419 (step S47) (the fourth cartridge C4 is in the empty well W417).
  • the solution of the first cartridge (C1) and the second cartridge (C2) Trigger occurs).
  • step S48 the mixed solution of the fourth tip 214 is mixed with the conjugate solution stored in the well W418 and then undergoes a culture process.
  • the fourth tip 214 sucks and discharges the cleaning liquid stored in the wells W413 to W416, and undergoes a cleaning process of removing impurities other than the magnetic particle assembly from the mixed solution (step S49).
  • the fourth tip 214 sucks the pre-trigger stored in the well W418 (step S410), and then moves to the well W419 disposed at the outermost side of the cartridge, and the fourth tip (
  • the mixed solution in the 214 is triggered onto the well W419, the light emitter is measured by the measurement unit 300 moved to the side of the well W419 (step S411).
  • the first tip 211 to the fourth tip 214 move at the same time, so that the wells disposed in the same row N may be moved. That is, the above-described steps S11, S12, S31, and S41 occur simultaneously, step S12, step S22, step S32, and step S42 occur simultaneously, step S13, step S23, step S33, and step S43 occur simultaneously, and S14 Step, step S24, step S34, step S44 occur simultaneously, step S15, step S25, step S35, step S45 occur simultaneously, step S16, step S26, step S36, step S46 occur simultaneously, step S17, step S27, S37 step S47 step occurs simultaneously, S18 step, S28 step, S38 step, S48 step occur simultaneously, S19 step, S29 step, S39 step, S49 step occur simultaneously, S110 step, S210 step, S310 step, S410 step It occurs at the same time, and steps S111, S211, S311, and S411 occur simultaneously.
  • the first cartridge (C1) is disposed in the first row (M1) of the cartridge receiving unit 110
  • the second cartridge (C2) is disposed in the second row (M2) of the cartridge receiving unit 110
  • the third The cartridge (C3) is arranged in the third row (M3) of the cartridge receiving unit 110
  • the fourth cartridge (C4) is an example that is disposed in the fourth row (M4) of the cartridge receiving unit 110, but a plurality of cartridges
  • Each of (C1 to C4) may be disposed in any one of a plurality of rows (M1 to M8) of the cartridge receiving portion 110, and the order of the arrangement is not limited.
  • a method in which at least two or more of the above-described first step reaction, first step dilution reaction, second step reaction, and second step dilution reaction occur on one stage may be understood as follows.
  • the step of performing the first step reaction includes the step of sucking the sample by the first tip (step S11); A step of sequentially waiting for the first tip to the empty wells W15 and W14 (step S12); The first tip sucks the conjugate solution stored in the well W16 (step S13); Mixing and culturing after discharging the mixed solution in the first tip into a well (W17) containing a fixed body solution containing magnetic particles (step S14); A washing step in which the first tip sucks and discharges the washing liquid stored in the wells W19 to W112 to remove impurities other than the conjugate bonded to the magnetic particles (step S15); The first tip sucks a pre-trigger stored in the well W117 (step S16); The first tip is moved to the top of the well (W119) disposed at the outermost of the cartridge, spraying the solution in the first tip onto the well (W119), and measuring the sprayed solution (step S17); Waiting for the first tip in the empty well W118 (step
  • the first step dilution reaction is a step in which the second tip sucks the sample (step S21); After the second tip sucks the diluted solution stored in the well W25, diluting the sample in the empty well W24 (step S22); Mixing the diluted sample in the second tip with the conjugate solution stored in the well W26 and then suctioning it through the second tip (step S23); Discharging the diluted sample in the second tip into a well (W27) containing a fixed body solution containing magnetic particles, mixing and culturing (step S24); A washing step in which the second tip sucks and discharges the washing liquid stored in the wells W29 to W212 to remove impurities other than the magnetic particle assembly from the mixed solution (step S25); The second tip inhaling a pre-trigger stored in the well W217 (step S26); The second tip moves to the well W219 disposed at the outermost side of the cartridge, sprays the solution in the second tip onto the well W219, and measures the s
  • the second step reaction is a step in which the third tip sucks the sample (step S31); A step in which the third tip is sequentially waiting in the empty wells W35 and W34 (step S32); Waiting for the third tip to wait in the empty well W36 (step S33); A step of mixing and culturing after the sample in the third tip is discharged into a well (W37) containing a fixed body solution containing magnetic particles (step S34); A washing step in which the third tip sucks and discharges the washing liquid stored in the wells W39 to W312 to remove impurities other than the magnetic particle assembly from the mixed solution (step S35); Waiting for the third tip to wait in the empty well W317 (step S36); A step (S37) of the third tip waiting on the well (W319); A step of incubating after mixing the mixed solution of the third tip with the conjugate solution stored in the well (W38) (step S38); A washing step in which the third tip sucks and discharges the washing liquid stored in the
  • At least two of the plurality of tips sucking different samples, respectively; At least one tip (eg, a first tip) of the plurality of tips sucked in the sample sucks the conjugate solution, and at least one other tip (eg, a third tip) waits in an empty well; A plurality of tips (for example, the first tip and the third tip) in which the sample is sucked discharging the contents stored in the tip into a well containing a fixative solution, mixing and incubating; A washing step of removing impurities other than the magnetic particle assembly by suctioning and discharging the cleaning liquid in the plurality of tips (eg, the first tip and the third tip) that sucked the sample; At least one tip (e.g., the first tip) inhaling the conjugate solution aspirates a pre-trigger, and at least one other tip (e.g., the third tip) waits in the empty well.
  • At least one tip e.g., the first tip inhaling the pretrigger sprays the contents contained in the tip onto the well, and the sprayed solution is measured by a measuring unit, and at least one other tip (e.g. , The third tip) waiting on the well; At least one tip (e.g., the first tip) in which the contents contained in the tip are sprayed onto the well waits in the empty well, and at least one other tip (e.g., the third tip) sucks the conjugate solution.
  • At least one tip e.g., the first tip inhaling the pretrigger sprays the contents contained in the tip onto the well, and the sprayed solution is measured by a measuring unit, and at least one other tip (e.g. , The third tip) waiting on the well; At least one tip (e.g., the first tip) in which the contents contained in the tip are sprayed onto the well waits in the empty well, and at least one other tip (e.g., the third tip) suck
  • Step to do At least one tip (for example, a first tip) in which the contents contained in the tip are sprayed onto the well waits in the empty well, and at least one other tip (for example, a third tip) sucks the cleaning solution and A washing step of discharging to remove impurities other than the magnetic particle assembly; At least one tip (eg, the first tip) in which the contents contained in the tip are sprayed onto the well waits in the empty well, and at least one other tip (eg, the third tip) sucks the pretrigger.
  • At least one tip for example, a first tip
  • at least one other tip for example, a third tip
  • Step to do At least one tip (for example, a first tip) in which the contents contained in the tip are sprayed onto the well waits on the well, and at least one other tip (for example, a third tip) is the contents included in the tip.
  • the sprayed solution onto the well and the sprayed solution may include a step of measuring by a measuring unit.
  • At least one of the plurality of tips may include a step of inhaling a diluent before inhaling the conjugate solution or the fixative solution, and then diluting the sample in the empty well.
  • At least one of the plurality of tips sucks a solution stored in the well or discharges a solution sucked from the well so that a plurality of reaction methods can be performed simultaneously in one stage
  • At least one other tip may include waiting on the empty well.
  • the plurality of reaction methods may include two or more of a first step reaction, a first step dilution reaction, a second step reaction, and a second step dilution reaction.
  • the plurality of reaction methods include a first step reaction and a second step reaction, and a second step reaction is performed while the tip for performing the first step reaction inhales the conjugate solution.
  • the tip for performing the first step reaction may include waiting on the empty well while the tip for performing the first step reaction is waiting on the empty well, and the tip for performing the second step reaction inhales the conjugate solution.
  • the tip for performing the second step reaction while the tip for performing the first step reaction inhales the pretrigger solution is placed on the empty well and performs the second step reaction.
  • the tip for performing the first step reaction may include a step of waiting on the empty well while the tip for inhaling the pretrigger solution.
  • the tip for performing the second step reaction is placed on the empty well, and the second step While the solution stored in the tip for performing the reaction is measured by the measuring unit, the tip for performing the first step reaction may include a step of waiting on the empty well.
  • At least one of the first step reaction and the second step reaction further includes a step of diluting the sample, and a tip for performing the first step reaction or a second step reaction While the tip to perform sucks the diluent, the other tip may include waiting on the empty well.
  • the plurality of reaction methods include a first step reaction and a first step dilution reaction, and a tip for performing the first step dilution reaction performs a first step reaction while inhaling the diluent.
  • a tip to perform may include waiting on an empty well.
  • the plurality of reaction methods include a second step reaction and a second step dilution reaction, and the tip for performing the second step dilution reaction performs the second step reaction while inhaling the diluent.
  • a tip to perform may include waiting on an empty well.
  • a change in pressure inside the tip waiting on the empty well may not occur.
  • the immunological test apparatus can perform various reaction methods on one stage.
  • each of the plurality of cartridges (C) contains a plurality of reagents, but at least two or more empty wells (the first cartridge (C1) and the second cartridge (C2) are seven empty wells (excluding empty wells for storing samples)) ,
  • the third cartridge and the fourth cartridge C3 and C4 are arranged to include four empty wells, so that a plurality of reaction methods can be performed simultaneously on the stage.
  • the plurality of cartridges (C) is arranged so that the arrangement of the rows of the wells in which the conjugate solution and the pretrigger solution are stored is different at least one, and the arrangement of the rows of the wells in which the fixation solution is stored is equally provided, thereby providing a plurality of reaction methods Can be performed simultaneously on phase.
  • the driving unit 240 independently applies pressure to each tip 210, a plurality of reaction methods can be smoothly performed on one stage 100.
  • the magnet applying portion 230 is provided on the side of the tip 210, the magnetic particles are maintained or fixed inside the tip, thereby increasing the accuracy of the reaction test.
  • the magnetic force applied to the magnetic particles inside the tip 210 can be constantly adjusted.
  • reaction and measurement of a sample can occur in one stage, so that the inspection time can be shortened.
  • the luminous body may be measured by the measurement unit 300 provided so that the well disposed at the outermost side may constitute a dark room.
  • the immunological test apparatus and the immunological test method according to the embodiments of the present invention have been described as specific embodiments, but this is only an example, and the present invention is not limited thereto, and the widest scope according to the basic idea disclosed herein It should be interpreted as having.
  • a person skilled in the art may combine and replace the disclosed embodiments to implement a pattern of a shape not indicated, but this also does not depart from the scope of the present invention.
  • those skilled in the art can easily change or modify the disclosed embodiments based on the present specification, and it is clear that such changes or modifications also belong to the scope of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

본 발명은 면역 검사 장치 및 면역 검사 방법에 관한 것이다. 본 발명의 일 측면에 따르면, 복수 개의 웰을 갖는 카트리지를 수용하는 스테이지의 일 측에 배치되어 복수 개의 상기 카트리지가 배열되어 있는 방향을 따라 이동되고, 최외곽에 배치된 웰의 내부 상태를 측정할 수 있는 감지 수단을 구비하며, 이동에 따라 상기 최외곽에 배치된 웰의 개방된 상부를 차폐하여 상기 웰의 내부로의 빛 진입을 차단할 수 있는 차폐판을 포함하는 측정 유닛을 포함하는 면역 검사 장치가 제공될 수 있다.

Description

면역 검사 장치 및 면역 검사 방법
관련출원과의 상호인용
본 출원은 2019년 3월 28일자 한국특허출원 제10-2019-0036150호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 면역 검사 장치 및 면역 검사 방법에 관한 것이다.
의학과 생명공학 분야의 기술이 발전함에 따라 혈액, 소변 등과 같은 생물학적 시료에서 혈구, 유전자, 단백질, 항원, 병원균 등과 같은 다양한 분자 지표를 검출하는 검사가 시행되고 있다. 검사 과정은 일반적으로 시료를 채취한 후, 채취된 시료를 목적하는 지표에 적합한 소정의 시약과 반응시킨 후 일어나는 변화를 분석 및 관찰함으로써 이루어진다.
이러한 검사과정에서 널리 사용되는 기술 중 하나가 항원/항체 간의 특이적 결합에 기반한 면역 검사 방법(immunoassay)이 있다.
면역 검사 방법은 그 검출 원리 및 방법에 따라 방사성동위원소를 사용하여 신호를 검출하는 방사면역분석시험법(RIA: radioimmunoassay), 효소에 의한 신호증폭을 사용하는 효소면역측정법 (ELISA: enzyme-linked immunosorbent assay, 혹은 EIA: enzyme immunoassay), 형광을 이용하여 검출하는 형광항체법(FA: fluorescence antibody technique), 화학발광을 사용하는 화학발광면역측정법(CLIA: chemiluminescence immunoassay) 등으로 나눌 수 있으며, 그 밖에도 표지물질의 사용 방법이나 기질의 종류에 따라 다양한 분류가 가능하다.
이러한 면역 검사 방법을 시행하기 위한 종래의 면역 검사 장치는 하나의 스테이지 상에서 동일한 반응 방법을 갖는 카트리지가 배치됨에 따라 다양한 시료를 검사하는데 비효율적이라는 단점이 있다.
또한, 종래의 면역 분석 장치는 최종 반응 용액의 상태를 측정하기 위한 시간이 오래 걸린다는 단점이 있다.
또한, 종래의 면역 분석 장치는 자성 입자가 팁 외부로 배출되어 부정확한 면역 검사가 시행될 우려가 있다.
[선행기술문헌]
[특허문헌]
특허문헌 1 : JP 3721889 B2 (2005.09.22)
본 발명의 실시예들은 상기와 같은 문제를 해결하기 위해 제안된 것으로서, 하나의 스테이지 상에서 다양한 반응 방법을 수행할 수 있는 면역 검사 장치 및 면역 검사 방법을 제공하고자 한다.
또한, 최종 반응 용액의 상태를 측정하기 위한 시간을 단축할 수 있는 면역 검사 장치 및 면역 검사 방법을 제공하고자 한다.
또한, 반응 방법을 시행하는 과정에서 자성 입자가 팁 내에서 유지되어 보다 정밀한 반응 검사를 시행할 수 있는 있는 면역 검사 장치 및 면역 검사 방법을 제공하고자 한다.
또한, 하나의 소형 장치로서 시료와 시약의 반응 및 검사가 일어날 수 있는 면역 검사 장치 및 면역 검사 방법을 제공하고자 한다.
본 발명의 일 실시예에 따른 면역 검사 장치는 상방이 개구된 복수 개의 웰을 갖는 복수 개의 카트리지를 수용할 수 있고, 상기 카트리지의 최외곽에 배치된 웰의 둘레를 감쌀 수 있는 스테이지; 상기 스테이지와 상대 이동 가능하며, 상기 카트리지의 위치에 대응되도록 배치되고 상기 웰에 저장된 용액을 흡입하거나 상기 웰로부터 흡입한 용액을 토출할 수 있는 복수 개의 팁을 포함하는 용액 전달 유닛; 및 상기 스테이지의 일 측에 배치되어 복수 개의 상기 카트리지가 배열되어 있는 방향을 따라 이동되고, 상기 최외곽에 배치된 웰의 내부 상태를 측정할 수 있는 감지 수단을 구비하며, 이동에 따라 상기 최외곽에 배치된 웰의 개방된 상부를 차폐하여 상기 웰의 내부로의 빛 진입을 차단할 수 있는 차폐판을 포함하는 측정 유닛을 포함할 수 있다.
본 발명의 일 실시예에 따른 면역 검사 장치는, 상기 카트리지의 최외곽에 배치된 웰의 둘레를 감쌀 수 있는 스테이지의 일 측면에는, 용액의 상태를 측정할 수 있도록 제1 홀이 제공되고, 상기 감지 수단은 상기 측정 유닛의 본체 일 측면에 제공되고, 상기 감지 수단이 상기 용액의 상태를 측정하기 위해 최외곽에 배치된 상기 웰의 측면에 배치되는 경우, 상기 제1 홀을 통해 웰의 내부로 진입되는 빛은 차단될 수 있다.
본 발명의 일 실시예에 따른 면역 검사 장치의 상기 차폐판에는, 상기 팁의 단부가 최외각에 배치된 상기 웰의 상부에 도입되기 위한 제2 홀이 제공되고, 상기 제2 홀은 최외각에 배치된 상기 웰의 상부 구멍보다 작게 형성되고, 상기 팁이 최외각에 배치된 상기 웰에 도입되는 경우, 상기 제2 홀을 통해 웰의 내부로 진입되는 빛은 차단될 수 있다.
본 발명의 일 실시예에 따른 면역 검사 장치는 최외각에 배치된 복수 개의 상기 웰에 저장된 용액의 내부 상태를 동시에 측정할 수 있도록, 상기 감지 수단 및 상기 차폐판에 형성되는 제2 홀은 복수 개 제공될 수 있다.
본 발명의 일 실시예에 따른 면역 검사 장치는 상기 팁으로부터 최외각에 배치된 웰 내부로의 용액 분사와 상기 감지 수단의 용액의 상태 측정이 동시에 수행될 수 있다.
본 발명의 일 실시예에 따른 면역 검사 장치는 상기 팁에 저장된 용액이 최외각에 배치된 상기 웰 내부로 분사됨에 따라 용액의 발광체가 발광하고, 상기 감지 수단은 상기 발광하는 빛을 측정할 수 있다.
본 발명의 일 실시예에 따른 면역 검사 장치는 상기 발광체의 발광 시간은 10초 이내이고, 감지 수단에 의한 용액 상태의 측정은 10초 이내에 수행 될 수 있다.
본 발명의 일 실시예에 따른 면역 검사 장치의 상기 용액 전달 유닛은, 상기 팁의 일측에 배치되어 상기 팁을 향해 자력을 가할 수 있는 자력 인가부를 포함하고, 상기 팁에 저장된 용액이 최외각에 배치된 상기 웰 내부로 분사될 때, 상기 자력 인가부는 상기 팁에 접근함으로써, 자성 입자는 팁 내부에 유지될 수 있다.
본 발명의 일 실시예에 따른 면역 검사 장치는 상기 측정 유닛을 적어도 일 방향으로 구동시킬 수 있는 측정 유닛 구동부를 더 포함하고, 상기 측정 유닛은 복수 개의 카트리지의 최외각에 배치된 웰을 따라 왕복 운동할 수 있다.
본 발명의 일 실시예에 따른 면역 검사 방법은 카트리지를 이동하며 자성 입자 결합체를 포함하는 용액을 저장한 팁이 최외각에 배치된 웰의 상부에 위치하는 단계; 측정 유닛이 일 방향으로 이동하여 최외각에 배치된 웰 측면에 배치되고, 차폐판은 최외각에 배치된 상기 웰의 상부를 덮는 단계; 상기 팁이 최외각에 배치된 상기 웰 내부로 하강하는 단계; 상기 팁에 저장된 용액이 웰 내부를 향해 분사되는 단계; 상기 분사와 동시에 감지 수단에 의한 상기 용액의 상태를 측정하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따른 면역 검사 방법의 측정 유닛이 일 방향으로 이동하여 최외각에 배치된 웰 측면에 배치되는 단계는, 최외곽에 배치된 웰의 둘레를 감쌀 수 있는 스테이지의 일 측면에 제공된 제1 홀을 통해 상기 웰의 내부로 진입되는 빛을 차단하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따른 면역 검사 방법의 상기 팁이 최외각에 배치된 상기 웰 내부로 하강하는 단계는, 최외곽에 배치된 웰의 상부의 구멍을 통해 상기 웰의 내부로 진입되는 빛을 차단하는 단계를 포함할 수 있다.
본 발명의 실시예들에 따른 면역 검사 장치 및 면역 검사 방법은 하나의 스테이지 상에서 다양한 반응 방법을 수행할 수 있다.
또한, 최종 반응 용액의 상태를 측정하기 위한 시간을 단축할 수 있다.
또한, 반응 방법을 시행하는 과정에서 자성 입자가 팁 내에서 유지되어 보다 정밀한 면역 검사가 시행될 수 있다.
또한, 하나의 소형 장치로서 시료와 시약의 반응 및 검사가 일어날 수 있다.
도 1은 본 발명의 일 실시예에 따른 면역 검사 장치의 구성을 개략적으로 보여주는 사시도이다.
도 2는 도 1의 용액 전달 유닛의 측면을 개략적으로 나타내는 도면이다.
도 3는 도 1의 자력 인가부의 단면을 개략적으로 나타내는 도면이다.
도 4는 도 1의 측정 유닛의 작동 경로를 개략적으로 나타내는 도면이다.
도 5는 도 1의 측정 유닛의 정면, 측면 및 상면을 나타내는 도면이다.
도 6은 도 5의 측정 유닛의 다른 실시예를 나타내는 도면이다.
도 7은 도 1의 제어부와 연계되는 각종 구동부의 블록도이다.
도 8은 도 1의 측정 유닛에 의한 용액의 상태 측정이 일어나는 과정을 보여주는 순서도이다.
도 9는 도 1의 복수 개의 카트리지 및 카트리지의 각 웰에 저장된 시약을 개략적으로 나타내는 도면이다.
도 10은 도 9의 제1 카트리지를 이용한 제1 스텝 반응의 과정을 보여주는 순서도이다.
도 11은 도 9의 제2 카트리지를 이용한 제1 스텝 희석 반응 의 과정을 보여주는 순서도이다.
도 12는 도 9의 제3 카트리지를 이용한 제2 스텝 반응의 과정을 보여주는 순서도이다.
도 13은 도 9의 제4 카트리지를 이용한 제2 스텝 희석 반응의 과정을 보여주는 순서도이다.
이하에서는 본 발명의 구체적인 실시예들에 대하여 도면을 참조하여 상세히 설명한다.
아울러 본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
도 1은 본 발명의 일 실시예에 따른 면역 검사 장치의 구성을 개략적으로 보여주는 사시도이고, 도 2는 도 1의 용액 전달 유닛의 측면을 개략적으로 나타내는 도면이며, 도 3는 도 1의 자력 인가부의 단면을 개략적으로 나타내는 도면이고, 도 4는 도 1의 측정 유닛의 작동 경로를 개략적으로 나타내는 도면이고, 도 5는 도 1의 측정 유닛의 정면, 측면 및 상면을 나타내는 도면이며, 도 7은 도 1의 제어부와 연계되는 각종 구동부의 블록도이다.
도 1 내지 도 5 및 도 7을 참조하면, 본 발명의 일 실시예에 따른 면역 검사 장치(10)는 카트리지(C)를 수용할 수 있는 스테이지(100)와, 카트리지(C)에 저장된 용액을 흡입하거나 카트리지로부터 흡입한 용액을 토출할 수 있는 복수 개의 팁(210)을 포함하는 용액 전달 유닛(200), 카트리지(C)에 저장된 용액의 상태를 측정하는 측정 유닛(300), 스테이지(100)와 용액 전달 유닛(200)을 상대 이동시키고, 복수 개의 상기 팁(210)들 중 적어도 일부가 복수 개의 상기 카트리지로부터 동일한 내용물을 동시에 흡입하거나 복수 개의 상기 카트리지에 동일한 내용물을 동시에 토출할 수 있도록 상기 용액 전달 유닛을 제어하는 제어부(400)를 포함할 수 있다. 여기서, 내용물이란 용액 전달 유닛(200)과 스테이지(100)가 상대적 이동을하며 반응을 위한 각 단계를 수행함에 따라 각 단계에서의 팁(210) 내부에 있는 용액 또는 웰(W)에 있는 용액을 나타낼 수 있다.
본 발명의 실시예에 따른 카트리지(C)는 시료 중에 포함된 분석물의 검출 및/또는 분석을 위한 시약들을 저장하고 있다. 본 실시에서 사용되는 용어인 "시료"는 분석물을 포함하는 분석대상 화합물 또는 조성물을 가리키며, 본 발명에서 사용될 수 있는 시료는 액체상 또는 액체와 유사한 유동성 있는 물질일 수 있다. 본 발명의 실시예에서 시료는 생물학적 시료로, 전혈, 혈장, 혈청, 뇨, 타액, 분뇨 및 세포 추출물과 같은 생체 유래 성분일 수 있다.
본 실시예에서는 도 2를 기준으로 좌우 방향을 Y축 방향, 상하 방향을 Z축 방향으로 설명하며, X축 방향은 Y축 방향 및 Z축 방향에 수직인 방향으로 설명한다. 또한, 이와 같은 방향 설정은 일 예에 불과하며, 실시예에 따라 각 축 방향이 지시하는 방향은 다르게 설정될 수 있다.
스테이지(100)는 복수 개의 웰(W)을 갖는 복수 개의 카트리지(C)를 수용할 수 있는 카트리지 수용부(110)와, 카트리지 수용부(110)의 이동을 가이드할 수 있는 Y축 가이드부(120)를 포함할 수 있다.
카트리지 수용부(110)는 X축 및 Y축 방향으로 연장되는 평면 형상으로 형성되고, 카트리지의 웰(W)을 수용할 수 있는 복수 개의 홈을 포함할 수 있다.
카트리지 수용부(110)에 형성된 홈은 M X N 행렬로 배치될 수 있다. 여기서, M 과 N은 임의의 자연수이며, M행은 Y축과 평행하고 N열은 X축과 평행하다. 예를 들어, 본 발명의 실시예와 같이 8 X 19 행렬로 배치되는 경우, 카트리지 수용부(110)는 152개의 홈을 포함할 수 있다. 다만, M행과 N열의 개수는 예시적인 것으로, 그 개수는 제한되지 않는다.
카트리지 수용부(110)의 하나의 행(M)에는 하나의 카트리지(C)가 수용될 수 있다. 예를 들어, 본 발명의 실시예와 같이 8개의 행(M1 ~ M8)을 갖는 카트리지 수용부(100)에는 8개의 카트리지가 배치될 수 있다.
각각의 카트리지(C)는 서로 다른 반응 방법을 갖는 시약이 저장되어 있을 수 있다. 이에 따라, 하나의 스테이지(100) 상에서 다양한 면역 검사를 시행될 수 있으며, 이에 대한 자세한 설명은 후술한다.
카트리지 수용부(110)는 Y축 방향으로 왕복 운동할 수 있다. 카트리지(C)가 배치된 카트리지 수용부(110)가 Y축 방향으로 이동하고, 후술하는 용액 전달 유닛(200)이 Z축으로 이동함에 따라, 카트리지의 웰(W)에 저장된 용액을 복수 개의 팁(210)이 흡입하거나 웰(W)로부터 흡입한 용액을 웰(W)에 토출 할 수 있다.
또한, 카트리지 수용부(110)를 Y축 방향으로 이동시킬 수 있는 Y축 구동부(도면 미도시)를 구비할 수 있다.
카트리지 수용부(110)의 하부에는 웰(W)에 저장된 용액(시료와 시약의 혼합물)을 배양하도록 온도 조절이 가능한 히팅 블록(도면 미도시)를 포함할 수 있다. 여기서, 히팅 블록은 각각의 웰(W) 하단부를 둘러싸도록 형성될 수 있으며, 웰에서 용액의 배양을 위한 온도 조절이 가능하다.
Y축 가이드부(120)는 카트리지 수용부(110)가 Y축 방향으로 왕복운동하도록 가이드할 수 있다. 또한, Y축 가이드부(120)는 히팅 블록 외부를 둘러 싸고, 외부의 빛이 카트리지(C)에 진입하는 것을 차단할 수 있다.
용액 전달 유닛(200)은 복수 개의 팁(210), 팁(210) 전방에 배치되어 웰(W)의 필름을 천공할 수 있는 펀칭부(도면 미도시), 팁(210) 후방에 배치되어 팁(210) 내부에 흡입된 자성 입자를 고정할 수 있는 자력 인가부(230)를 포함할 수 있다. 여기서, 전방이란 Y축 방향의 첫번째 웰이 배치된 방향일 수 있다.
또한, 용액 전달 유닛(200)은 복수 개의 팁(210)의 각각에 독립적으로 압력을 가할 수 있는 구동부(240)와, 복수 개의 팁(210)과 펀칭부를 Z방향으로 이동시킬 수 있는 Z축 구동부(250)와, 자력 인가부(230)를 Y방향으로 이동시킬 수 있는 자석 구동부(260)를 포함할 수 있다.
복수 개의 팁(210)은 웰(W)에 저장된 용액을 흡입하거나 웰(W)로부터 흡입한 용액을 토출할 수 있다. 예를 들어, 복수 개의 팁(210)은 8개(제1 팁(211) 내지 제8 팁(218)) 일 수 있으며, 이들은 각각 제1 행(M1) 내지 제8 행(M8)에 배치된 카트리지들의 각 웰(W)에 저장된 용액을 흡입하거나, 웰(W)로부터 흡입한 용액을 토출 할 수 있다.
복수 개의 팁(210)은 동일한 열에 배치되고, 동일한 열을 따라 이동할 수 있다. 예를 들어, 8개의 팁(211 내지 218)은 동일한 열(N1 내지 N19)을 이동하며, 동일한 열(N1 내지 N19)에 배치된 카트리지(C)의 각 웰(W)에 도입된 후 이동될 수 있다. 이와 같이, 복수 개의 팁(210)이 동일한 열(N1 내지 N19)을 이동하고, 각 카트리지(C)의 웰(W)의 열 배열을 조절하여, 복수 개의 반응 방법이 동시에 실행될 수 있으며, 이에 대한 자세한 설명은 후술한다.
또한, 복수 개의 팁(210) 각각은 구동부(240)에 의해 독립적으로 용액을 흡입하거나 배출할 수 있으며, 이에 대한 자세한 설명을 후술한다. 복수 개의 팁(210)은 용액 전달 유닛(200)으로 부터 분리될 수 있으며, 펀칭부가 카트리지(C)의 각 웰(W)을 펀칭한 후 용액 전달 유닛(200)에 장착될 수 있다.
펀칭부(도면 미도시)는 카트리지(C)의 웰(W)을 천공하여 구멍을 낼 수 있는 구성으로, 단부가 뾰족한 형상일 수 있다. 또한, 펀칭부(도면 미도시)는 카트리지(C)의 개수에 대응되는 개수일 수 있다. 예를 들어, 제1 내지 제8 행(M1 내지 M8)에 배치되는 카트리지(C)에 대응하여, 펀칭부(도면 미도시)는 8개 일 수 있다.
펀칭부는 팁(210)이 용액 전달 유닛(200)에서 분리된 경우, 펀칭부(도면 미도시)만이 웰(W)의 필름에 도달하여 필름을 천공할 수 있는 길이로 제공되고, 팁(210)이 용액 전달 유닛(200)에 장착된 경우, 펀칭부(도면 미도시)는 웰(W)에 도달할 수 없는 길이로 제공될 수 있다. 즉, 팁(210)의 길이는 펀칭부(도면 미도시)의 길이보다 긴 길이로 제공될 수 있다.
또한, 복수 개의 팁(210)과 펀칭부(도면 미도시)는 상하 방향(Z방향)으로 이동 할 수 있다. 이 때, 복수 개의 팁(210)과 펀칭부(도면 미도시)의 Z방향 이동은 서로 종속되어 움직일 수 있다, 다만, 이에 한정되는 것은 아니며 복수 개의 팁(210)과 펀칭부(도면 미도시)의 Z방향 이동은 독립적일 수 있다.
자력 인가부(230)는 복수 개의 팁(210) 후방(Y축에서 카트리지의 첫번째 웰과 멀어지는 방향)에 배치되고, 팁을 향하여 이동하여 팁(210) 내부의 자성 입자를 고정할 수 있다.
자력 인가부(230)는 팁(210)의 일 측면에서 팁(210)을 향하거나 멀어지는 방향으로 이동가능한 자석(232)과 자석(232)을 일 방향으로 이동시키는 자석 이동부(234)를 포함할 수 있다.
자석(232)은 팁(210)의 둘레에 대응되는 형상(상호 맞춤 되는 형상)일 수 있다. 예를 들어, 팁(210)을 상부에서 바라 보았을 때, 팁(210)이 원 형인 경우 자석(232)은 이에 맞춰질 수 있는 오목한 형상일 수 있다(도 3 참조).
자석(232)과 팁(210)이 상호 맞춤되는 형상을 가짐으로써, 팁(210) 내부의 자성 입자에 가해지는 자력을 일정하게 조절할 수 있다.
또한, 팁(210)의 상부에서 보았을 때 자석(232)은 팁(210) 둘레의 절반이상을 감쌀 수 있다.
또한, 팁(210)의 측면에서 보았을 때 자석(232)의 길이(Z축 방향)는 팁(210) 길이의 절반 이상일 수 있다. 예를 들어, 자석(232)의 길이는 팁(210) 길이의 80% 이상 일 수 있다. 이와 같은 자석(232) 길이를 가짐으로써, 팁(210) 내부의 넓은 면적에서 자성 입자를 고정시킬 수 있다.
자석(232)은 일체로 형성될 수 있다. 또한, 자석(232)은 X축 방향을 따라복수 개로 형성되어 서로 독립적으로 복수 개의 상기 팁(210)을 향해 이동하거나 멀어질 수 있다. 예를 들어, 8개의 팁(211 내지 218)이 제공되는 경우, 이에 대응되는 8개 자석(232a 내지 232h)이 제공 될 수 있다. 이 경우, 각각의 자석(232a 내지 232h)을 독립적으로 구동 시킬 수 있는 8개의 자석 이동부(234a 내지 234h)가 제공 될 수 있다.
또한, 자력 인가부(230)는 영구자석 대신 자력의 크기가 변하는 전자석일 수 있다. 이 경우, 팁(210)을 향하거나 이동하는 이동장치 없이 자력의 크기만을 변화시켜 자성 입자를 팁(210) 내부에 고정할 수 있다.
자력 인가부(230)에 의해 자성 입자가 팁(210) 내부에서 유지되는 과정을 살펴보면 다음과 같다.
먼저, 자성 입자가 포함된 고정체 용액이 구동부(240)의 흡입 압력에 의해 팁(210) 내부에 도입된다. 그 후, 카트리지(C)의 웰(W)에 저장된 세척액이 팁(210) 내부로 도입된다. 그 후, 구동부(230)의 공압을 조절해서 팁 내부에 유동을 발생시킨다. 그 후, 자력 인가부(230)를 팁(210)을 향하는 방향으로 이동시켜 자성 입자를 팁(210) 내부에 고정시킨다. 그 후, 분순물이 포함된 용액을 웰(W)에 배출함으로써, 자성 입자는 팁 내부에 고정될 수 있다. 이와 같이, 자성 입자가 팁(210) 내부에 유지됨으로써 반응의 정밀도를 높일 수 있다.
구동부(240)는 복수 개의 팁(210) 내부에 독립적으로 압력을 가할 수 있다. 예를 들어, 구동부(240)는 공압이 제공되는 펌프일 수 있다.
구동부(240)는 공압을 이용하여 각각의 팁(210)이 용액을 흡입, 토출할 수 있는 압력을 제공할 수 있을 뿐만 아니라, 팁(210) 내부에서 용액의 혼합(용액의 유동)을 일으킬 수 있는 압력을 제공할 수 있다. 예를 들어, 구동부(240)는 팁(210) 내부의 공기를 흡입하거나 팁(210) 내부를 향해 공기를 토출함으로써 팁(210) 내부의 압력을 조절할 수 있다. 이러한 팁(210) 내부 압력의 변화에 의해 팁(210) 내부의 용액이 상하 방향으로 유동하게 되고, 그에 따라 팁(210) 내부에서 용액의 혼합이 일어날 수 있다.
구동부(240)는 각각의 팁(210)에 독립적으로 압력을 가할 수 있다. 구체적으로, 각각의 팁(210)이 카트리지(C)의 빈 웰에 도입될 때, 구동부(240)는 빈 웰에 도입된 팁(210)에 압력을 제공하지 않을 수 있다. 예를 들어, 제1 팁(211)이 제1 카트리지(C1)의 6열(N6)에 배치된 웰(W16)에 도입된 경우 구동부(240)는 웰(W16)에 저장된 접합체 용액을 흡입할 수 있는 압력을 제공하는 동시에, 제3 팁(213)이 제3 카트리지(C3)의 6열(N6)에 배치된 웰(W36)에 도입된 경우 웰(W36)에는 아무런 용액이 저장되지 않았으므로, 제3 팁(213)에 압력을 제공하지 않을 수 있다. 이는 8개의 팁(211내지 218) 중 2개의 팁(211, 213)만을 예시한 것으로서, 나머지 팁(212, 214 내지 218)도 이와 같은 원리로 작동할 수 있다.
측정 유닛(300)은 스테이지(100)의 일 측(예를 들어, X축 방향)을 따라 이동가능하고, 팁(210)으로부터 카트리지(100)의 어느 하나의 웰(W)에 분사되는 용액의 상태를 측정할 수 있다. 또한, 측정 유닛(300)을 X축 방향으로 이동시킬 수 있는 측정 유닛 구동부(도면 미도시)가 제공될 수 있다.
측정 유닛(300)은 각 카트리지(C)의 최외곽에 배치된 웰(W)의 내부 상태를 측정할 수 있는 감지 수단(310), 최외곽에 배치된 웰(W)의 개방된 상부를 차폐하여 웰(W)의 내부로의 빛 진입을 차단할 수 있는 차폐판(320)을 포함할 수 있다.
측정 유닛(300)은 스테이지(100)의 일 측면을 따라 이동가능하고, 각 카트리지(C)의 최외곽에 배치된 웰(W)의 상태를 측정할 수 있다. 또한, 측정 유닛(300)은 시료와 시약과의 반응 결과물을 광학 분석하는 광학 판독 모듈일 수 있다.
측정 유닛(300)은 최외각에 배치된 웰(W)의 측면에 배치된 후, 팁(210)으로부터 최외각에 배치된 웰(W)로 용액이 분사될 때, 빠른 시간에 측정을 완료할 수 있다. 예를 들어, 측정 유닛(300)에 의한 용액의 상태 측정은 10초 이내에 수행될 수 있다.
또한, 본 발명의 측정 유닛(300)은 플래쉬 타입일 수 있으며, 용액의 발광체에서 발하는 광을 측정하기 위해 측정 장소는 암실이 요구 될 수 있다.
본 실시예에서 이러한 암실의 조건을 위해, 각 카트리지(C)의 최외곽에 배치된 웰(W)의 둘레는 블록(또는 히팅 블록)이 둘러 쌈과 함께, 아래와 같은 감지 수단(310)과 차폐판(320)이 이용될 수 있다.
감지 수단(310)은 최외각에 배치된 웰(W)의 용액 내부 상태를 측정할 수 있고(예를 들어, 감지 수단(310)은 카메라 등 모든 공지된 측정 수단일 수 있음), 감지 수단(310)의 외형은 최외각에 배치된 웰(W) 내부로 빛이 도입되는 것을 차단할 수 있도록 기능할 수 있다.
예를 들어, 카트리지(C)의 최외곽에 배치된 웰(W)의 둘레를 감쌀 수 있는 스테이지(100)의 일 측면에는 제1 홀(H1)이 구비될 수 있으며, 제1 홀(H1)에 감지 수단(310)이 도입됨으로써 제1 홀(H1)로부터 진입하는 빛이 차단될 수 있다.
여기서, 감지 수단(310)의 형상 및 크기는 제1 홀(H1)과 대응되도록 제공될 수 있다. 예를 들어, 제1 홀(H1)이 직사각형 형상인 경우, 감지 수단(310)의 형상도 직사각형 형상 일 수 있다.
차폐판(320)은 최외각에 배치된 웰(W) 상부로 빛이 도입되는 것을 차단할 수 있도록 기능할 수 있다. 또한, 차폐판(320)은 측정 유닛의 본체(330)의 상부 모서리로부터 연장되고, 최외각에 배치된 웰(W)의 상부를 차단할 수 있다. 다만, 차폐판(320)에는 팁(210)의 단부가 최외각에 배치된 웰(W)에 도입되기 위한 제2 홀(H2)이 구비될 수 있다.
제2 홀(H2)은 최외각에 배치된 웰(W)의 상부 구멍보다 작게 형성되고, 팁(210)이 최외각에 배치된 웰(W)에 도입되는 경우, 제2 홀(H2)을 통해 웰의 내부로 진입되는 빛은 차단될 수 있다.
또한, 감지 수단(310)이 Y방향으로 튀어나온 볼록 형상인 경우, 측정 유닛(300)이 X방향으로 이동하여 최외각에 배치된 웰(W)에 배치된 후, Y방향으로 튀어나온 볼록 형상의 길이만큼 이동될 수 있다.
제어부(400)는 발명이 작동하기 위한 각종 구동부를 제어할 수 있다. 예를 들어, 제어부(400)는 카트리지 수용부(110)를 Y축 방향으로 이동시킬 수 있는 Y축 구동부(도면 미도시), 복수 개의 팁(210)의 각각에 독립적으로 압력을 가할 수 있는 구동부(240), 복수 개의 팁(210)과 펀칭부(도면 미도시)를 Z방향으로 이동시킬 수 있는 Z축 구동부(250), 자력 인가부(230)를 Y방향으로 이동시킬 수 있는 자석 구동부(260), 측정 유닛(300)을 X축 방향 및 Y축 방향으로 이동시킬 수 있는 측정 유닛 구동부(도면 미도시)를 제어할 수 있다.
또한, 제어부(400)는 복수 개의 팁 중 적어도 하나의 팁이 웰에 저장된 용액을 흡입하거나 웰로부터 흡입한 용액을 토출하는 동안 적어도 하나의 다른 팁은 빈 웰 상에 대기하도록 제어할 수 있다.
도 6은 도 5의 측정 유닛의 다른 실시예를 나타내는 도면이다.
도 6을 참조하면, 최외각에 배치된 복수 개의 웰의 용액의 내부 상태를 동시에 측정할 수 있도록, 감지 수단(310)과 차폐판(320)에 형성되는 제2 홀(H2)은 복수 개 제공 될 수 있다. 여기서, 복수 개의 감지 수단(310)과 복수 개의 제2 홀(H2) 사이의 간격은 복수 개의 팁(210) 사이의 간격과 동일할 수 있다.
이 경우, 팁(210)으로부터 최외각에 배치된 웰(W) 내부로의 용액 분사와 감지 수단(310)의 용액의 상태 측정이 동시에 일어날 수 있다.
도 8은 도 1의 측정 유닛에 의한 용액의 상태 측정이 일어나는 과정을 보여주는 순서도이다.
도 8을 참조하여, 측정 유닛(300)에 의해 각 카트리지(C)의 최외곽에 배치된 웰(W)의 내부 상태를 측정하는 과정을 살펴보면 다음과 같다.
먼저, 카트리지를 이동하며 발광체, 자성 입자, 프리트리거를 포함하는 용액을 저장한 팁(210)이 최외각에 배치된 웰(W) 상부에 위치한다(S1).
그 후, 측정 유닛(300)이 X축 방향으로 이동하여 첫번째 최외각에 배치된 웰(W119) 측면에 배치된다(S2). 이 때, 최외각에 배치된 웰(W119)을 향해 측면으로부터 진입되는 빛이 차단되고, 차폐판(320)은 최외각에 배치된 웰(W119)의 상부를 덮는다.
그 후, 팁(210)이 최외각에 배치된 웰(W119) 내부로 하강한다(S3). 이 때, 최외각에 배치된 웰(W119)을 향해 상부로부터 진입되는 빛이 차단된다(S3).
그 후, 팁(210)에 저장된 용액 중 발광체가 최외각에 배치된 웰(W119)을 향해 분사된다(S4). 이 때, 자력인가부(230)가 팁(210)에 접근하여 자성 입자는 팁(210) 내부에 유지될 수 있다.
그 후, 또는 분사와 동시에 감지 수단(310)에 의한 발광체를 감지하여, 하나의 팁(211)이 분사하는 용액의 상태 측정이 완료 될 수 있다(S5).
측정 유닛(300)은 X축으로 이동하며 상술한 과정을 반복하여, 최외각에 배치된 나머지 웰(W219 내지 W819)의 용액의 상태를 측정할 수 있다.
도 9는 도 1의 복수 개의 카트리지 및 카트리지의 각 웰에 저장된 시약을 개략적으로 나타내는 도면이고, 도 10은 도 9의 제1 카트리지를 이용한 제1 스텝 반응의 과정을 보여주는 순서도이며, 도 11은 도 9의 제2 카트리지를 이용한 제1 스텝 희석 반응 과정을 보여주는 순서도이고, 도 12는 도 9의 제3 카트리지를 이용한 제2 스텝 반응의 과정을 보여주는 순서도이며, 도 13은 도 9의 제4 카트리지를 이용한 제2 스텝 희석 반응의 과정을 보여주는 순서도이다.
도 9 내지 도 13을 참조하면, 카트리지 수용부(110)의 각 행(M1 내지 M8)에 배치되는 각각의 카트리지(C)는 서로 다른 반응 방법을 갖는 시약이 저장되어 있을 수 있다. 그에 따라, 하나의 스테이지(100) 상에서 복수 개의 반응 방법을 갖는 카트리지(C)가 배치되어 다양한 면역 검사가 시행될 수 있다.
예를 들어, 카트리지 수용부(110)의 M1 내지 M4 행에 배치되는 4개의 카트리지(C1 내지 C4)가 배치되고, 제1 카트리지(C1)에는 제1 반응을 시행하기 위한 시약, 제2 카트리지(C2)에는 제2 반응을 시행하기 위한 시약, 제3 카트리지(C3)에는 제3 반응을 시행하기 위한 시약, 제4 카트리지(C4)에는 제4 반응을 시행하기 위한 시약이 저장되어 있을 수 있으며, 용액 전달 유닛(200)과 카트리지 수용부(110)의 상대적 이동에 의해 한 번의 절차로서 복수 개의 반응 방법(제1 내지 제4 반응 방법)이 시행 될 수 있다.
본 실시예에서 제1 반응은 제1 스텝 반응(1 step assay), 제2 반응은 제1 스텝 희석 반응(1 step dilution assay), 제3 반응은 제2 스텝 반응(2 step assay), 제4 반응은 제2 스텝 희석 반응(2step dilution assay)을 예로 들어 설명한다. 다만, 제1 반응 내지 제4 반응은 이에 한정되는 것이 아니며, 면역 검사를 위한 공지된 모든 반응 방법을 포함할 수 있다.
제1 카트리지(C1)는 제1 스텝 반응을 시행하기 위한 시약이 담긴 용기이고, 제2 카트리지(C2)는 제1 스텝 희석 반응을 시행하기 위한 시약이 담긴 용기이고, 제3 카트리지(C3)는 제2 스텝 반응을 시행하기 위한 시약이 담긴 용기이고, 제4 카트리지(C4)는 제2 스텝 희석 반응을 시행하기 위한 시약이 담긴 용기이다.
제1 카트리지(C1) 내지 제4 카트리지(C4)의 각 웰(W)에는 시료를 희석할 수 있는 희석액, 발광체를 포함하는 접합체 용액, 자성 입자(Magnetic particle)를 포함하는 고정체 용액, 세척액, 측광을 위해 발광체를 흡수할 수 있는 프리트리거(Pre-Trigger) 용액이 저장되어 있을 수 있다. 또한 각 카트리지(C1 내지 C4)에는 시료를 주입하기 위한 빈 웰(W) 이외에, 추가적인 빈 웰(W)을 포함 할 수 있다. 또한, 각 카트리지(C1 내지 C4)에는 펀칭부(도면 미도시)의 이물질 등을 제거할 수 있도록 펀치 린서 용액(Piercer Rincer)과 펀치 클리너 용액(Piercer Cleaner)을 선택적으로 포함할 수 있다.
또한, 각 카트리지(C1 내지 C4)의 빈 웰(W) 및 각각의 시약이 담긴 웰(W)의 배치는 제1 스텝 반응, 제1 스텝 희석 반응, 제2 스텝 반응, 제2 스텝 희석 반응이 카트리지 수용부(110) 상에서 동시에 수행될 수 있도록 배열될 수 있다.
예를 들어, 제1 카트리지(C1)에서 제1 열(N1)의 웰(W11)은 시료가 주입되는 빈 웰이고, 제2 열(N2)의 웰(W12)에는 펀치 린서 용액(Piercer Rincer)이 저장되어 있고, 제3 열(N3)의 웰(W13)에는 펀치 클리너 용액(Piercer Cleaner)이 저장되고, 제6 열(N6)의 웰(W16)에는 접합체 용액이 저장되고, 제7 열(N7)의 웰(W17)에는 고정체 용액이 저장되고, 제9 열(N9) 내지 제12 열(N12)의 웰(W(19), W(110), W(111), W(112))에는 세척액이 저장되고, 제17 열(N17)의 웰(W117)에는 프리트리거 용액이 저장되고, 제19 열(N19)의 웰(W119)은 측광을 위한 웰로서 트리거 용액이 저장되고, 제4 열(N4), 제5 열(N5), 제8 열(N8), 제13 열(N13) 내지 제16 열(N16) 및 제18 열(N18)의 각 웰(W14, W15, W18, W113, W114, W115, W116, W118)은 빈 웰 일 수 있다.
제2 카트리지(C2)에서 제1 열(N1)의 웰(W21)은 시료가 주입되는 빈 웰이고, 제2 열(N2)의 웰(W22)에는 펀치 린서 용액(Piercer Rincer)이 저장되어 있고, 제3 열(N3)의 웰(W23)에는 펀치 클리너 용액(Piercer Cleaner)이 저장되고, 제5 열의(N5)의 웰(W25)에는 희석액이 저장되고, 제6 열(N6)의 웰(W26)에는 접합체 용액이 저장되고, 제7 열(N7)의 웰(W27)에는 고정체 용액이 저장되고, 제9 열(N9) 내지 제12 열(N12)의 웰(W29, W210, W211, W212)에는 세척액이 저장되고, 제17 열(N17)의 웰(W217)에는 프리트리거 용액이 저장되고, 제19 열(N19)의 웰(W219)은 측광을 위한 웰로서 트리거 용액이 저장되고, 제4 열(N4), 제8 열(N8), 제13 열(N13) 내지 제16 열(N16) 및 제18 열(N18)의 각 웰(W24, W28, W213, W214, W215, W216, W218)은 빈 웰 일 수 있다.
제3 카트리지(C3)에서 제1 열(N1)의 웰(W31)은 시료가 주입되는 빈 웰이고, 제2 열(N2)의 웰(W32)에는 펀치 린서 용액(Piercer Rincer)이 저장되어 있고, 제3 열(N3)의 웰(W33)에는 펀치 클리너 용액(Piercer Cleaner)이 저장되고, 제7 열(N7)의 웰(W37)에는 고정체 용액이 저장되고, 제8 열(N8)의 웰(W38)에는 접합체 용액이 저장되고, 제9 열(N9) 내지 제16 열(N16)의 웰(W39, W310, W311, W312, W313, W314, W315, W316)에는 세척액이 저장되고, 제18 열(N17)의 웰(W318)에는 프리트리거 용액이 저장되고, 제19 열(N19)의 웰(W319)은 측광을 위한 웰로서 트리거 용액이 저장되고, 제4 열(N4) 내지 제6 열(N6), 제17 열(N17)의 각 웰(W34, W35, W36, W317)은 빈 웰 일 수 있다.
제4 카트리지(C4)는 제1 열(N1)의 웰(W41)은 시료가 주입되는 빈 웰이고, 제2 열(N2)의 웰(W42)에는 펀치 린서 용액(Piercer Rincer)이 저장되어 있고, 제3 열(N3)의 웰(W43)에는 펀치 클리너 용액(Piercer Cleaner)이 저장되고, 제5 열의(N5)의 웰(W45)에는 희석액이 저장되고, 제7 열(N7)의 웰(W47)에는 고정체 용액이 저장되고, 제8 열(N8)의 웰(W48)에는 접합체 용액이 저장되고, 제9 열(N9) 내지 제16 열(N16)의 웰(W49, W410, W411, W412, W413, W414, W415, W416)에는 세척액이 저장되고, 제18 열(N18)의 웰(W418)에는 프리트리거 용액이 저장되고, 제19 열(N19)의 웰(W419)은 측광을 위한 웰로서 트리거 용액이 저장되고, 제4 열(N4), 제6 열(N6), 제17 열(N17)의 각 웰(W44, W46, W417)은 빈 웰 일 수 있다.
상술한 제1 내지 제4 카트리지(C1 내지 C4)가 카트리지 수용부(110)에 배치되고, 동일한 열에 배치된 복수 개의 팁(210)과 스테이지의 상대 이동에 의해 제1 스텝 반응, 제1 스텝 희석 반응, 제2 스텝 반응, 제2 스텝 희석 반응이 카트리지 수용부(110) 상에서 동시에 수행될 수 있다. 다만, 본 실시예에서 4개의 카트리지(C1 내지 C4)만을 도시하나 이들을 복수 개 조합하여 보다 많은 카트리지를 스테이지 수용부(110)에 배치할 수 있다.
각 반응을 시작하기 앞서 카트리지 필름을 제거 또는 천공 과정을 수행할 수 있다. 예를 들어, 복수개의 카트리지(C1 내지 C4)가 카트리지 수용부(110) 제1 행 내지 제4 행(M1 내지 M4)에 배치된 후, 펀치부(도면 미도시)는 카트리지를 덮고 있는 각 카트리지(C1 내지 C4)의 필름을 천공 한 후, 복수 개의 팁(210)이 각각 장착된다. 이러한 과정을 거치면, 각 카트리지에서 반응을 수행할 수 있는 준비가 완료된 것이며, 각 카트리지(C1 내지 C4)에서 하술하는 4개의 반응이 동시에 시작될 수 있다.
제1 카트리지(C1)를 이용한 제1 스텝 반응은 다음과 같다(도 10 참조).
제1 행(M1) 상에서 스테이지(100)를 상대 이동하는 제1 팁(211)은 시료(샘플)를 흡입 후(S11 단계), 빈 웰(W15, W14)에 순차적으로 투입된 후(S12 단계)(이 때, 제2 카트리지(C2) 및 제4 카트리지(C4)에서 제2 팁(212) 및 제4 팁(214) 각각에 의해 희석액 흡입 후 희석이 동시에 수행), 시료는 웰(W16)에 저장된 접합체 용액과 혼합 된 후 혼합액은 다시 제1 팁(211)으로 흡입된다(S13 단계).
그 후, 제1 팁(211)에 있는 혼합액을 자성 입자(Magnetic particle)를 포함하는 고정체 용액이 있는 웰(W17)에 토출 후 혼합 및 배양과정을 거친다(S14 단계). 여기서, 웰(W17) 하단부는 히팅 블록으로 둘러 싸여 배양과정은 약 37도에서 실행될 수 있다.
그 후, 제1 팁(211)이 웰(W19 내지 W112)에 저장된 세척액을 흡입 및 토출하여, 혼합 용액에서 자성 입자와 결합된 결합체(발광체-자성 입자-바이오 마커 결합체) 이외의 불순물을 제거하는 세척과정을 거친다(S15 단계). 구체적으로, 세척과정은 웰(W19)에 저장된 세척액을 제1 팁(211) 내부로 흡입하고, 제1 팁(211) 주위에 자력 인가부(230)를 붙여 자성 입자를 제1 팁(211) 내부에 고정시킨 후, 구동부(240)을 구동하여 제1 팁(211)의 혼합액 중 불순물만을 세척액과 함께 웰(W19)에 토출한다. 즉, 세척과정에 의해 제1 팁(211) 내부에는 자성입자와 결합된 결합체만 남고 불순물이 제거될 수 있다. 이러한, 세척과정을 복수 개의 웰(W19 내지 W112)에 저장된 세척액을 사용하여 반복할 수 있다. 그 후, 제1 팁(211)은 웰(117)에 저장된 프리트리거(Pre-trigger)를 흡입 후(S16 단계), 카트리지의 최외각에 배치된 웰(W119) 상부로 이동하여, 제1 팁(211)에 있는 용액을 웰(W119) 상으로 트리거(Trigger)하면, 웰(W119) 측면으로 이동된 측정 유닛(300)에 의해 발광체가 측정된다(S17 단계). 이에 의해 제1 팁(211)에 의한 제1 스텝 반응은 완료될 수 있다.
그 후, 제3 팁(213)과 제4 팁(214)의 제2 스텝 반응과 제2 스텝 희석 반응을 완료하기 위해, 제1 팁(211)은 빈 웰(W18)에 대기(빈 웰에 투입 후 구동부(240) 미 작동) 한 후(S18 단계), 순차적으로 빈 웰(W113), 빈 웰(W114), 빈 웰(W115), 빈 웰(W116)에서 대기 후(S19 단계), 빈 웰(118)에 대기 후(S110 단계), 빈 웰(S119)에 대기할 수 있다(S111 단계).
상술한 S18 단계 내지 S111단계는 제3 팁(213) 및 제4 팁(214)에서 일어나는 제2 스텝 반응과 제2 스텝 희석 반응을 완료하기 위해, 제1 팁(211)이 종속적으로 빈 웰에 대기하는 단계이다.
제2 카트리지(C2)를 이용한 제1 스텝 희석 반응은 다음과 같다(도 11참조).
제2 행(M2) 상에서 스테이지(100)를 상대 이동하는 제2 팁(212)은 시료(샘플)를 흡입 후(S21 단계), 웰(W25)에 저장된 희석액을 흡입 후, 빈 웰(W24)에서 시료의 희석이 수행된다(S22 단계). 그 후, 희석된 시료는 웰(W26)에 저장된 접합체 용액과 혼합 된 후 다시 제1 팁(211)으로 흡입된다(S23 단계).
그 후, 제2 팁(212)에 있는 희석된 시료를 자성 입자(Magnetic particle)를 포함하는 고정체 용액이 있는 웰(W27)에 토출 후 혼합 및 배양과정을 거친다(S24 단계). 마찬가지로, 웰(W27) 하단부는 히팅 블록으로 둘러 싸여 배양과정은 약 37도에서 실행될 수 있다.
그 후, 제2 팁(212)이 웰(W29 내지 W212)에 저장된 세척액을 흡입 및 토출하여, 혼합 용액에서 자성 입자 결합체 이외의 불순물을 제거하는 세척과정을 거친다(S25 단계).
그 후, 제2 팁(212)은 웰(W217)에 저장된 프리트리거(Pre-trigger)를 흡입 후(S26 단계), 카트리지의 최외각에 배치된 웰(W219)로 이동하여, 제2 팁(211)에 있는 용액을 웰(W219) 상으로 트리거(Trigger)하면, 웰(W219) 측면으로 이동된 측정 유닛(300)에 의해 발광체가 측정된다(S27 단계). 이에 의해 제2 팁(211)에 의한 제1 스텝 희석 반응은 완료될 수 있다.
그 후, 제3 팁(213)과 제4 팁(214)의 제2 스텝 반응과 제2 스텝 희석 반응을 완료하기 위해, 제2 팁(212)은 빈 웰(W218)에 대기(빈 웰에 투입 후 구동부(240) 미 작동) 한 후(S28 단계), 순차적으로 빈 웰(W213), 빈 웰(W214), 빈 웰(W215), 빈 웰(W216)에서 대기 후(S29 단계), 빈 웰(218)에 대기 후(S210 단계), 빈 웰(S218)에 대기할 수 있다(S211 단계).
상술한 S28 내지 S211단계는 제3 팁(213) 및 제4 팁(214)에서 일어나는 제2 스텝 반응과 제2 스텝 희석 반응을 완료하기 위해, 제2 팁(212)이 종속적으로 빈 웰에 대기하는 단계이다.
제3 카트리지(C4)를 이용한 제2 스텝 반응은 다음과 같다(도 12 참조).
제3 행(M3) 상에서 스테이지(100)를 상대 이동하는 제3 팁(213)은 시료(샘플)를 흡입 후(S31 단계), 빈 웰(W35, W34)에 순차적으로 투입되고(S32 단계), 다시 빈 웰(W36)에 투입된다(S33 단계). (제3 카트리지(C3)가 빈 웰(W35, W34)에 있는 동안 제2 카트리지(C2) 및 제4 카트리지(C4)에서 희석액 흡입 후 희석이 동시에 수행되고, 제3 카트리지(C3)가 빈 웰(W36)에 있는 동안 제1 카트리지(C1) 및 제2 카트리지(C2)는 접합체 용액과 혼합 된다).
그 후, 제3 팁(213)에 있는 시료는 자성 입자(Magnetic particle)를 포함하는 고정체 용액이 있는 웰(W37)에 토출된 후 혼합 및 배양과정을 거친다(S34 단계). 여기서, 웰(W37) 하단부는 히팅 블록으로 둘러 싸여 배양과정은 약 37도에서 실행될 수 있다.
그 후, 제3 팁(213)이 웰(W39 내지 W312)에 저장된 세척액을 흡입 및 토출하여, 혼합 용액에서 자성 입자 결합체 이외의 불순물을 제거하는 세척과정을 거친다(S35 단계).
그 후, 제3 팁(213)은 빈 웰(W317)에 투입된 후(S36 단계), 웰(W319) 상에 대기한다(S37 단계) (제3 카트리지(C3)가 빈 웰(W317)에 있는 동안 제1 카트리지(C1) 및 제2 카트리지(C2)는 프리트리거(Pre-trigger)를 흡입하고, 웰(W319) 상에 대기하는 동안 제1 카트리지(C1) 및 제2 카트리지(C2)의 용액 트리거(Trigger)가 일어난다).
그 후, 제3 팁(213)의 혼합액은 웰(W38)에 저장된 접합체 용액과 혼합 후 배양과정을 거친다(S38 단계).
그 후, 제3 팁(213)이 웰(W313 내지 W316)에 저장된 세척액을 흡입 및 토출하여, 혼합 용액에서 자성 입자 결합체 이외의 불순물을 제거하는 세척과정을 거친다(S39 단계)
그 후, 제3 팁(213)은 웰(W318)에 저장된 프리트리거(Pre-trigger)를 흡입 후(S310 단계), 카트리지의 최외각에 배치된 웰(W319)로 이동하여, 제3 팁(213)에 있는 혼합액을 웰(W319) 상으로 트리거(Trigger)하면, 웰(W319) 측면으로 이동된 측정 유닛(300)에 의해 발광체가 측정된다(S311 단계).
제4 카트리지(C4)를 이용한 제2 스텝 희석 반응은 다음과 같다(도 13 참조).
제4 행(M4) 상에서 스테이지(100)를 상대 이동하는 제4 팁(214)은 시료(샘플)를 흡입 후(S41 단계), 웰(W45)에 저장된 희석액을 흡입 후, 빈 웰(W44)에서 시료의 희석이 수행된다(S42 단계).
그 후, 제4 팁(214)은 빈 웰(W46)에 투입되어 대기한다(S43 단계).
그 후, 제4 팁(214)에 있는 시료는 자성 입자(Magnetic particle)를 포함하는 고정체 용액이 있는 웰(W47)에 토출된 후 혼합 및 배양과정을 거친다(S44 단계). 여기서, 웰(W47) 하단부는 히팅 블록으로 둘러 싸여 배양과정은 약 37도에서 실행될 수 있다.
그 후, 제4 팁(214)이 웰(W49 내지 W412)에 저장된 세척액을 흡입 및 토출하여, 혼합 용액에서 자성 입자 결합체 이외의 불순물을 제거하는 세척과정을 거친다(S45 단계).
그 후, 제4 팁(214)은 빈 웰(W417)에 투입된 후(S46 단계), 웰(W419) 상에 대기한다(S47 단계) (제4 카트리지(C4)가 빈 웰(W417)에 있는 동안 제1 카트리지(C1) 및 제2 카트리지(C2)는 프리트리거(Pre-trigger)를 흡입하고, 웰(W419) 상에 대기하는 동안 제1 카트리지(C1) 및 제2 카트리지(C2)의 용액 트리거(Trigger)가 일어난다).
그 후, 제4 팁(214)의 혼합액은 웰(W418)에 저장된 저장된 접합체 용액과 혼합 후 배양과정을 거친다(S48 단계).
그 후, 제4 팁(214)이 웰(W413 내지 W416)에 저장된 세척액을 흡입 및 토출하여, 혼합 용액에서 자성 입자 결합체 이외의 불순물을 제거하는 세척과정을 거친다(S49 단계)
그 후, 제4 팁(214)은 웰(W418)에 저장된 프리트리거(Pre-trigger)를 흡입 후(S410 단계), 카트리지의 최외각에 배치된 웰(W419)로 이동하여, 제4 팁(214)에 있는 혼합액을 웰(W419) 상으로 트리거(Trigger)하면, 웰(W419) 측면으로 이동된 측정 유닛(300)에 의해 발광체가 측정된다(S411 단계).
설명의 편의를 위해 제1 스텝 반응, 제1 스텝 희석 반응, 제2 스텝 반응, 제2 스텝 희석 반응이 각 카트리지에서 일어나는 과정을 각각 설명했지만, 이들의 반응은 동시에 이동하되 구동부(240)에 의해 독립적으로 압력이 조절되는 팁(210)에 의해 카트리지 수용부(110)에서 동시에 일어난다.
구체적으로, 제1 팁(211) 내지 제4 팁(214)가 동시에 이동하여, 동일한 열(N)에 배치된 웰 상을 이동할 수 있다. 즉, 상술한 S11 단계, S12 단계, S31 단계, S41 단계가 동시에 일어나고, S12 단계, S22 단계, S32 단계, S42 단계가 동시에 일어나며, S13 단계, S23 단계, S33 단계, S43 단계가 동시에 일어나고, S14 단계, S24 단계, S34 단계, S44 단계가 동시에 일어나며, S15 단계, S25 단계, S35 단계, S45 단계가 동시에 일어나고, S16 단계, S26 단계, S36 단계, S46 단계가 동시에 일어나며, S17 단계, S27 단계, S37 단계 S47 단계가 동시에 일어나고, S18 단계, S28 단계, S38 단계, S48 단계가 동시에 일어나며, S19 단계, S29 단계, S39 단계, S49 단계가 동시에 일어나고, S110 단계, S210 단계, S310 단계, S410 단계가 동시에 일어나며, S111 단계, S211 단계, S311 단계, S411 단계가 동시에 일어난다.
또한, 제1 카트리지(C1)는 카트리지 수용부(110)의 1행(M1)에 배치되고, 제2 카트리지(C2)는 카트리지 수용부(110)의 2행(M2)에 배치되며, 제3 카트리지(C3)는 카트리지 수용부(110)의 3행(M3)에 배치되고, 제4 카트리지(C4)는 카트리지 수용부(110)의 4행(M4)에 배치되는 것을 예시하나, 복수 개의 카트리지(C1 내지 C4) 각각은 카트리지 수용부(110)의 복수의 행(M1 내지 M8) 중 어느하나에 배치 될 수 있으며, 배치의 순서는 제한되는 것이 아니다.
상술한 제1 스텝 반응, 제1 스텝 희석 반응, 제2 스텝 반응, 제2 스텝 희석 반응 중 적어도 2개 이상이 하나의 스테이지 상에서 일어나는 방법은 다음과 같이 이해될 수 있다.
제1 스텝 반응을 수행하는 단계는 제1 팁이 시료를 흡입 하는 단계(S11 단계); 제1 팁이 빈 웰(W15, W14)에 순차적으로 대기하는 단계(S12 단계); 제1 팁이 웰(W16)에 저장된 접합체 용액을 흡입하는 단계(S13 단계); 제1 팁에 있는 혼합액을 자성 입자를 포함하는 고정체 용액이 있는 웰(W17)에 토출 후 혼합 및 배양하는 단계(S14 단계); 제1 팁이 웰(W19 내지 W112)에 저장된 세척액을 흡입 및 토출하여, 자성 입자와 결합된 결합체 이외의 불순물을 제거하는 세척 단계(S15 단계); 제1 팁이 웰(W117)에 저장된 프리트리거(Pre-trigger)를 흡입하는 단계(S16 단계); 제1 팁이 카트리지의 최외각에 배치된 웰(W119) 상부로 이동하여, 제1 팁에 있는 용액을 웰(W119) 상으로 분사하고, 분사되는 용액을 측정하는 단계(S17 단계); 제1 팁이 빈 웰(W118)에 대기하는 단계(S18 단계); 제1 팁이 빈 웰(W113), 빈 웰(W114), 빈 웰(W115), 빈 웰(W116)에 대기하는 단계(S19 단계); 제1 팁이 빈 웰(118)에 대기하는 단계(S110 단계); 제1 팁이 빈 웰(S119)에 대기하는 단계(S111 단계)를 포함하고,
제1 스텝 희석 반응은 제2 팁이 시료를 흡입 하는 단계(S21 단계); 제2 팁이 웰(W25)에 저장된 희석액을 흡입 후, 빈 웰(W24)에서 시료를 희석하는 단계(S22 단계); 제2 팁에 있는 희석된 시료를 웰(W26)에 저장된 접합체 용액과 혼합 후 제2 팁으로 흡입하는 단계(S23 단계); 제2 팁에 있는 희석된 시료를 자성 입자를 포함하는 고정체 용액이 있는 웰(W27)에 토출 후 혼합 및 배양하는 단계(S24 단계); 제2 팁이 웰(W29 내지 W212)에 저장된 세척액을 흡입 및 토출하여, 혼합 용액에서 자성 입자 결합체 이외의 불순물을 제거하는 세척 단계 (S25 단계); 제2 팁이 웰(W217)에 저장된 프리트리거(Pre-trigger)를 흡입하는 단계 (S26 단계); 제2 팁이 카트리지의 최외각에 배치된 웰(W219)로 이동하여, 제2 팁에 있는 용액을 웰(W219) 상으로 분사하고, 분사되는 용액을 측정하는 단계(S27 단계; 제2 팁이 빈 웰(W218)에 대기하는 단계(S28 단계); 제2 팁이 빈 웰(W213), 빈 웰(W214), 빈 웰(W215), 빈 웰(W216)에 대기하는 단계(S19 단계); 제2 팁이 빈 웰(W218) 에 대기하는 단계(S210 단계); 제2 팁이 빈 웰(S218)에 대기하는 단계(S211 단계)를 포함하고,
제2 스텝 반응은 제3 팁이 시료를 흡입하는 단계(S31 단계); 제3 팁이 빈 웰(W35, W34)에 순차적으로 대기하는 단계(S32 단계); 제3 팁이 빈 웰(W36)에 대기하는 단계(S33 단계); 제3 팁에 있는 시료가 자성 입자를 포함하는 고정체 용액이 있는 웰(W37)에 토출된 후 혼합 및 배양되는 단계(S34 단계); 제3 팁이 웰(W39 내지 W312)에 저장된 세척액을 흡입 및 토출하여, 혼합 용액에서 자성 입자 결합체 이외의 불순물을 제거하는 세척 단계(S35 단계); 제3 팁이 빈 웰(W317)에 대기하는 단계(S36 단계); 제3 팁이 웰(W319) 상에 대기하는 단계(S37 단계); 제3 팁의 혼합액이 웰(W38)에 저장된 저장된 접합체 용액과 혼합 후 배양되는 단계(S38 단계); 제3 팁이 웰(W313 내지 W316)에 저장된 세척액을 흡입 및 토출하여, 혼합 액에서 자성 입자 결합체 이외의 불순물을 제거하는 세척 단계(S39 단계); 제3 팁이 웰(W318)에 저장된 프리트리거(Pre-trigger)를 흡입하는 단계(S310 단계); 제3 팁이 카트리지의 최외각에 배치된 웰(W319)로 이동하여 혼합액을 웰(W319) 상으로 분사하고, 분사되는 용액을 측정하는 단계(S311 단계)를 포함하고, 제2 스텝 희석 반응은 제4 팁이 시료를 흡입 하는 단계(S41 단계); 제4 팁이 웰(W45)에 저장된 희석액을 흡입 후, 빈 웰(W44)에서 시료를 희석하는 단계(S42 단계); 제4 팁이 빈 웰(W46)에 대기하는 단계(S43 단계); 제4 팁에 있는 희석된 시료를 자성 입자를 포함하는 고정체 용액이 있는 웰(W47)에 토출된 후 혼합 및 배양하는 단계(S44 단계); 제4 팁이 웰(W49 내지 W412)에 저장된 세척액을 흡입 및 토출하여, 혼합 용액에서 자성 입자 결합체 이외의 불순물을 제거하는 세척 단계(S45 단계); 제4 팁이 빈 웰(W417)에 대기하는 단계(S46 단계); 제4 팁이 웰(W419) 상에 대기하는 단계(S47 단계); 제4 팁의 혼합액을 웰(W48)에 저장된 저장된 접합체 용액과 혼합 후 배양하는 단계(S48 단계); 제4 팁이 웰(W413 내지 W416)에 저장된 세척액을 흡입 및 토출하여, 혼합 용액에서 자성 입자 결합체 이외의 불순물을 제거하는 세척 단계(S49 단계); 제4 팁이 웰(W418)에 저장된 프리트리거(Pre-trigger)를 흡입 하는 단계(S410 단계); 제4 팁이 카트리지의 최외각에 배치된 웰(W419)로 이동하여, 혼합액을 웰(W419) 상으로 분사하고, 분사되는 용액을 측정하는 단계(S411 단계)를 포함하고, 제1 스텝 반응과 제1 스텝 희석 반응과 제2 스텝 반응과 제2 스텝 희석 반응 중 적어도 2개의 반응이 하나의 스테이지 상에서 동시에 일어날 수 있다.또한, 본 발명의 일 실시예에 따르면, 복수 개의 팁들 중 적어도 2개의 팁(예를 들어, 제1 팁 및 제3 팁)이 각각 서로 다른 시료를 흡입하는 단계; 시료를 흡입한 복수 개의 팁들 중 적어도 하나의 팁(예를 들어, 제1 팁)은 접합체 용액을 흡입하고, 적어도 하나의 다른 팁(예를 들어, 제3 팁)은 빈 웰에 대기하는 단계; 시료를 흡입한 복수 개의 팁(예를 들어, 제1 팁 및 제3 팁)은 팁에 저장하고 있는 내용물을 고정체 용액이 있는 웰에 토출 후 혼합 및 배양하는 단계; 시료를 흡입한 복수 개의 팁(예를 들어, 제1 팁 및 제3 팁)은 세척액을 흡입 및 토출하여 자성 입자 결합체 이외의 불순물을 제거하는 세척 단계; 접합체 용액을 흡입한 적어도 하나의 팁(예를 들어, 제1 팁)은 프리트리거(Pre-trigger)를 흡입하고, 적어도 하나의 다른 팁(예를 들어, 제3 팁)은 빈 웰에 대기하는 단계; 프리트리거를 흡입한 적어도 하나의 팁(예를 들어, 제1 팁)은 팁에 포함된 내용물을 웰 상으로 분사하고 분사되는 용액은 측정 유닛에 의해 측정되고, 적어도 하나의 다른 팁(예를 들어, 제3 팁)은 웰 상에서 대기하는 단계; 팁에 포함된 내용물을 웰 상으로 분사한 적어도 하나의 팁(예를 들어, 제1 팁)은 빈 웰에 대기하고, 적어도 하나의 다른 팁(예를 들어, 제3 팁)은 접합체 용액을 흡입하는 단계; 팁에 포함된 내용물을 웰 상으로 분사한 적어도 하나의 팁(예를 들어, 제1 팁)은 빈 웰에 대기하고, 적어도 하나의 다른 팁(예를 들어, 제3 팁)은 세척액을 흡입 및 토출하여 자성 입자 결합체 이외의 불순물을 제거하는 세척 단계; 팁에 포함된 내용물을 웰 상으로 분사한 적어도 하나의 팁(예를 들어, 제1 팁)은 빈 웰에서 대기하고, 적어도 하나의 다른 팁(예를 들어, 제3 팁)은 프리트리거를 흡입하는 단계; 팁에 포함된 내용물을 웰 상으로 분사한 적어도 하나의 팁(예를 들어, 제1 팁)은 웰 상에서 대기하고, 적어도 하나의 다른 팁(예를 들어, 제3 팁)은 팁에 포함된 내용물을 웰 상으로 분사하고 분사되는 용액은 측정 유닛에 의해 측정되는 단계를 포함할 수 있다.
또한, 복수 개의 팁들 중 적어도 하나(예를 들어, 제2 팁 및 제4 팁)는 접합체 용액 또는 고정체 용액을 흡입하기 전에 희석액을 흡입 후 빈 웰에서 시료를 희석하는 단계를 포함할 수 있다.
또한, 본 발명의 일 측면에 따르며, 복수 개의 반응 방법이 하나의 스테이지에서 동시에 수행될 수 있도록, 복수 개의 팁들 중 적어도 하나의 팁이 웰에 저장된 용액을 흡입하거나 웰로부터 흡입한 용액을 토출하는 동안 적어도 하나의 다른 팁이 빈 웰 상에 대기하는 단계를 포함할 수 있다.
또한, 본 발명의 일 측면에 따르며, 복수 개의 반응 방법은, 제1 스텝 반응, 제1 스텝 희석 반응, 제2 스텝 반응, 제2 스텝 희석 반응 중 2개 이상의 반응을 포함할 수 있다.
또한, 본 발명의 일 측면에 따르며, 복수 개의 반응 방법은, 제1 스텝 반응과 제2 스텝 반응을 포함하고, 제1 스텝 반응을 수행하기 위한 팁이 접합체 용액을 흡입하는 동안 제2 스텝 반응을 수행하기 위한 팁은 빈 웰 상에 대기하고, 제2 스텝 반응을 수행하기 위한 팁이 접합체 용액을 흡입하는 동안 제1 스텝 반응을 수행하기 위한 팁은 빈 웰 상에 대기하는 단계를 포함할 수 있다.
또한, 본 발명의 일 측면에 따르며, 제1 스텝 반응을 수행하기 위한 팁이 프리트리거 용액을 흡입하는 동안 제2 스텝 반응을 수행하기 위한 팁은 빈 웰 상에 대기하고, 제2 스텝 반응을 수행하기 위한 팁이 프리트리거 용액을 흡입하는 동안 제1 스텝 반응을 수행하기 위한 팁은 빈 웰 상에 대기하는 단계를 포함할 수 있다.
또한, 본 발명의 일 측면에 따르며, 제1 스텝 반응을 수행하기 위한 팁에 저장된 용액이 측정 유닛에 의해 측정되는 동안 제2 스텝 반응을 수행하기 위한 팁은 빈 웰 상에 대기하고, 제2 스텝 반응을 수행하기 위한 팁에 저장된 용액이 측정 유닛에 의해 측정되는 동안 제1 스텝 반응을 수행하기 위한 팁은 빈 웰 상에 대기하는 단계를 포함할 수 있다.
또한, 본 발명의 일 측면에 따르며, 제1 스텝 반응과 제2 스텝 반응 중 적어도 하나의 반응은 시료를 희석하는 단계를 추가적으로 포함하고, 제1 스텝 반응을 수행하기 위한 팁 또는 제2 스텝 반응을 수행하기 위한 팁이 희석액을 흡입하는 동안 다른 하나의 팁은 빈 웰 상에 대기하는 단계를 포함할 수 있다.
또한, 본 발명의 일 측면에 따르며, 복수 개의 반응 방법은 제1 스텝 반응과 제1 스텝 희석 반응을 포함하고, 제1 스텝 희석 반응을 수행하기 위한 팁이 희석액을 흡입하는 동안 제1 스텝 반응을 수행하기 위한 팁은 빈 웰 상에 대기하는 단계를 포함할 수 있다.
또한, 본 발명의 일 측면에 따르며, 복수 개의 반응 방법은 제2 스텝 반응과 제2 스텝 희석 반응을 포함하고, 제2 스텝 희석 반응을 수행하기 위한 팁이 희석액을 흡입하는 동안 제2 스텝 반응을 수행하기 위한 팁은 빈 웰 상에 대기하는 단계를 포함할 수 있다.
또한, 본 발명의 일 측면에 따르며, 빈 웰 상에 대기하는 팁 내부의 압력 변화가 일어나지 않을 수 있다.
이하에서는 본 발명의 실시예에 따른 면역 검사 장치 및 면역 검사 방법의 작용 및 효과에 대해 설명하겠다.
본 발명의 실시예에 따른 면역 검사 장치는 하나의 스테이지 상에서 다양한 반응 방법을 수행할 수 있다
또한, 복수 개의 카트리지(C) 각각은 복수 개의 시약을 포함하되 적어도 2개 이상의 빈 웰(제1 카트리지(C1)및 제2 카트리지(C2)는 7개의 빈 웰(시료 저장하기 위한 빈 웰 제외), 제3 카트리지 및 제4 카트리지(C3, C4)는 4개의 빈 웰)을 포함하도록 배치됨으로써, 복수 개의 반응 방법이 스테이지 상에서 동시에 수행될 수 있다.
또한, 복수 개의 카트리지(C)는, 접합체 용액과 프리트리거 용액이 저장된 웰의 열의 배치가 적어도 하나가 다르고, 고정체 용액이 저장된 웰의 열의 배치가 동일하게 제공되도록 배열됨으로써 복수 개의 반응 방법이 스테이지 상에서 동시에 수행될 수 있다.
또한, 구동부(240)가 각각의 팁(210)에 독립적으로 압력을 가함으로써, 복수 개의 반응 방법이 하나의 스테이지(100) 상에서 원활하게 수행될 수 있다.
또한, 자석인가부(230)가 팁(210) 측면에 제공됨으로써 자성 입자는 팁 내부에 유지되거나 고정되어, 반응 검사의 정밀도를 높일 수 있다.
또한, 자석(232)과 팁(210)과 상호 맞춤되는 형상을 가짐으로써, 팁(210) 내부의 자성 입자에 가해지는 자력을 일정하게 조절할 수 있다.
또한, 이동되는 측정 유닛(300)을 구비함으로써 시료의 반응과 측정이 하나의 스테이지에서 일어날 수 있어, 검사 시간을 단축할 수 있다.
또한, 최외각에 배치된 웰이 암실을 구성할 수 있도록 제공된 측정 유닛(300)에 의해 발광체를 측정할 수 있다.
또한, 소형의 장치로서 플레쉬 타입 측정의 정밀한 측정 장치를 제공할 수 있다.
이상 본 발명의 실시예에 따른 면역 검사 장치 및 면역 검사 방법을 구체적인 실시 형태로서 설명하였으나, 이는 예시에 불과한 것으로서, 본 발명은 이에 한정되지 않는 것이며, 본 명세서에 개시된 기초 사상에 따르는 최광의 범위를 갖는 것으로 해석되어야 한다. 당업자는 개시된 실시형태들을 조합, 치환하여 적시되지 않은 형상의 패턴을 실시할 수 있으나, 이 역시 본 발명의 범위를 벗어나지 않는 것이다. 이외에도 당업자는 본 명세서에 기초하여 개시된 실시형태를 용이하게 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 권리범위에 속함은 명백하다.

Claims (12)

  1. 상방이 개구된 복수 개의 웰을 갖는 복수 개의 카트리지를 수용할 수 있고, 상기 카트리지의 최외곽에 배치된 웰의 둘레를 감쌀 수 있는 스테이지;
    상기 스테이지와 상대 이동 가능하며, 상기 카트리지의 위치에 대응되도록 배치되고 상기 웰에 저장된 용액을 흡입하거나 상기 웰로부터 흡입한 용액을 토출할 수 있는 복수 개의 팁을 포함하는 용액 전달 유닛; 및
    상기 스테이지의 일 측에 배치되어 복수 개의 상기 카트리지가 배열되어 있는 방향을 따라 이동되고, 상기 최외곽에 배치된 웰의 내부 상태를 측정할 수 있는 감지 수단을 구비하며, 이동에 따라 상기 최외곽에 배치된 웰의 개방된 상부를 차폐하여 상기 웰의 내부로의 빛 진입을 차단할 수 있는 차폐판을 포함하는 측정 유닛을 포함하는 면역 검사 장치.
  2. 제1 항에 있어서,
    상기 카트리지의 최외곽에 배치된 웰의 둘레를 감쌀 수 있는 스테이지의 일 측면에는, 용액의 상태를 측정할 수 있도록 제1 홀이 제공되고,
    상기 감지 수단은 상기 측정 유닛의 본체 일 측면에 제공되고,
    상기 감지 수단이 상기 용액의 상태를 측정하기 위해 최외곽에 배치된 상기 웰의 측면에 배치되는 경우, 상기 제1 홀을 통해 웰의 내부로 진입되는 빛은 차단되는 면역 검사 장치.
  3. 제1 항에 있어서,
    상기 차폐판에는,
    상기 팁의 단부가 최외각에 배치된 상기 웰의 상부에 도입되기 위한 제2 홀이 제공되고,
    상기 제2 홀은 최외각에 배치된 상기 웰의 상부 구멍보다 작게 형성되고,
    상기 팁이 최외각에 배치된 상기 웰에 도입되는 경우, 상기 제2 홀을 통해 웰의 내부로 진입되는 빛은 차단되는 면역 검사 장치.
  4. 제1 항에 있어서,
    최외각에 배치된 복수 개의 상기 웰에 저장된 용액의 내부 상태를 동시에 측정할 수 있도록, 상기 감지 수단 및 상기 차폐판에 형성되는 제2 홀은 복수 개 제공되는 면역 검사 장치.
  5. 제1 항에 있어서,
    상기 팁으로부터 최외각에 배치된 웰 내부로의 용액 분사와 상기 감지 수단의 용액의 상태 측정이 동시에 수행되는 면역 검사 장치.
  6. 제5 항에 있어서,
    상기 팁에 저장된 용액이 최외각에 배치된 상기 웰 내부로 분사됨에 따라 용액의 발광체가 발광하고,
    상기 감지 수단은 상기 발광하는 빛을 측정하는 면역 검사 장치.
  7. 제6 항에 있어서,
    상기 발광체의 발광 시간은 10초 이내이고,
    감지 수단에 의한 용액 상태의 측정은 10초 이내에 수행되는 면역 검사 장치.
  8. 제1 항에 있어서,
    상기 용액 전달 유닛은,
    상기 팁의 일측에 배치되어 상기 팁을 향해 자력을 가할 수 있는 자력 인가부를 포함하고,
    상기 팁에 저장된 용액이 최외각에 배치된 상기 웰 내부로 분사될 때, 상기 자력 인가부는 상기 팁에 접근함으로써, 자성 입자는 팁 내부에 유지되는 면역 검사 장치.
  9. 제1 항에 있어서,
    상기 측정 유닛을 적어도 일 방향으로 구동시킬 수 있는 측정 유닛 구동부를 더 포함하고,
    상기 측정 유닛은 복수 개의 카트리지의 최외각에 배치된 웰을 따라 왕복운동할 수 있는 면역 검사 장치.
  10. 카트리지를 이동하며 자성 입자 결합체를 포함하는 용액을 저장한 팁이 최외각에 배치된 웰의 상부에 위치하는 단계;
    측정 유닛이 일 방향으로 이동하여 최외각에 배치된 웰 측면에 배치되고, 차폐판은 최외각에 배치된 상기 웰의 상부를 덮는 단계;
    상기 팁이 최외각에 배치된 상기 웰 내부로 하강하는 단계;
    상기 팁에 저장된 용액이 웰 내부를 향해 분사되는 단계;
    상기 분사와 동시에 감지 수단에 의한 상기 용액의 상태를 측정하는 단계를 포함하는 면역 검사 방법.
  11. 제10 항에 있어서,
    측정 유닛이 일 방향으로 이동하여 최외각에 배치된 웰 측면에 배치되는 단계는, 최외곽에 배치된 웰의 둘레를 감쌀 수 있는 스테이지의 일 측면에 제공된 제1 홀을 통해 상기 웰의 내부로 진입되는 빛을 차단하는 단계를 포함하는 면역 검사 방법.
  12. 제10 항에 있어서,
    상기 팁이 최외각에 배치된 상기 웰 내부로 하강하는 단계는, 최외곽에 배치된 웰의 상부의 구멍을 통해 상기 웰의 내부로 진입되는 빛을 차단하는 단계를 포함하는 면역 검사 방법.
PCT/KR2020/003907 2019-03-28 2020-03-20 면역 검사 장치 및 면역 검사 방법 WO2020197196A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20778112.1A EP3929583A4 (en) 2019-03-28 2020-03-20 IMMUNOLOGICAL ASSAY DEVICE AND IMMUNOLOGICAL ASSAY METHOD
US17/598,644 US20220163548A1 (en) 2019-03-28 2020-03-20 Immunoassay device and immunoassay method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190036150A KR102102988B1 (ko) 2019-03-28 2019-03-28 면역 검사 장치 및 면역 검사 방법
KR10-2019-0036150 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020197196A1 true WO2020197196A1 (ko) 2020-10-01

Family

ID=70473185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003907 WO2020197196A1 (ko) 2019-03-28 2020-03-20 면역 검사 장치 및 면역 검사 방법

Country Status (5)

Country Link
US (1) US20220163548A1 (ko)
EP (1) EP3929583A4 (ko)
KR (1) KR102102988B1 (ko)
TW (1) TWI778343B (ko)
WO (1) WO2020197196A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961341A (ja) * 1995-08-25 1997-03-07 Iatron Lab Inc マイクロプレート遮光手段及び発光測定装置
JPH10197449A (ja) * 1997-01-07 1998-07-31 Hamamatsu Photonics Kk 光測定装置
JP3721889B2 (ja) 1999-10-12 2005-11-30 松下電器産業株式会社 分注装置
KR20050113604A (ko) * 2003-02-26 2005-12-02 하마마츠 포토닉스 가부시키가이샤 면역 크로마토 그래피 시험편의 측정 장치
KR20110106892A (ko) * 2008-12-25 2011-09-29 유니바사루 바이오 리사치 가부시키가이샤 검체의 전처리 방법, 및 생체 관련 물질의 측정 방법
KR20150026003A (ko) * 2013-08-30 2015-03-11 (주)마이크로디지탈 다중 모드 자동 광학 측정기

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401465A (en) * 1992-05-05 1995-03-28 Chiron Corporation Luminometer with reduced sample crosstalk
MY158884A (en) * 2009-05-01 2016-11-30 Xtralis Technologies Ltd Particle detectors
JP5393610B2 (ja) * 2010-07-28 2014-01-22 株式会社日立ハイテクノロジーズ 核酸分析装置
US9810704B2 (en) * 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
US9903830B2 (en) * 2011-12-29 2018-02-27 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip based on sensed physical characteristic(s) of the sample containing the analyte

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961341A (ja) * 1995-08-25 1997-03-07 Iatron Lab Inc マイクロプレート遮光手段及び発光測定装置
JPH10197449A (ja) * 1997-01-07 1998-07-31 Hamamatsu Photonics Kk 光測定装置
JP3721889B2 (ja) 1999-10-12 2005-11-30 松下電器産業株式会社 分注装置
KR20050113604A (ko) * 2003-02-26 2005-12-02 하마마츠 포토닉스 가부시키가이샤 면역 크로마토 그래피 시험편의 측정 장치
KR20110106892A (ko) * 2008-12-25 2011-09-29 유니바사루 바이오 리사치 가부시키가이샤 검체의 전처리 방법, 및 생체 관련 물질의 측정 방법
KR20150026003A (ko) * 2013-08-30 2015-03-11 (주)마이크로디지탈 다중 모드 자동 광학 측정기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3929583A4

Also Published As

Publication number Publication date
KR102102988B1 (ko) 2020-04-22
EP3929583A1 (en) 2021-12-29
TWI778343B (zh) 2022-09-21
TW202043723A (zh) 2020-12-01
EP3929583A4 (en) 2022-04-13
US20220163548A1 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
WO2018143680A1 (ko) 자동화된 액상 면역반응 분석 장치
WO2015030368A1 (ko) 다중 모드 자동 광학 측정기
WO2014181980A1 (ko) 프로존 효과를 회피할 수 있는 면역크로마토그래피 스트립 및 이를 포함하는 키트
WO2020027470A1 (ko) 자동화된 액상 면역반응 분석 장치 및 그 방법
WO2020197193A1 (ko) 면역 검사 장치 및 면역 검사 방법
WO2016088992A1 (en) Test apparatus and control method thereof
WO2015030485A1 (ko) 입자의 이동에 의해 분석물질을 검출하는 장치 및 방법
WO2013041006A1 (zh) 生化分析仪
WO2014169574A1 (zh) 一种样本试剂分注装置、免疫分析仪及其方法
WO2016182382A1 (ko) 일체화된 반응 및 검출 수단을 구비한 시험 장치에 사용되는 스테이션
WO2021177548A1 (ko) 타액의 다중 바이오마커 측정을 위한 전자동 측면유동면역분석 키트 및 측정기기
WO2020197196A1 (ko) 면역 검사 장치 및 면역 검사 방법
WO2020197182A1 (ko) 면역 검사 방법 및 면역 검사 장치
WO2022250490A1 (ko) 미소입자 분리장치 및 이를 이용한 미소입자 분리방법
WO2018084337A1 (ko) 당화혈색소 비율의 측정 방법
WO2016159488A1 (ko) 비색법을 이용한 종이 ph 센서 및 이의 제조방법
WO2017171153A1 (ko) 편광판 검사 방법 및 편광판 검사 장치
WO2015005504A1 (ko) 혈당측정용 바이오칩 및 그를 포함하는 스마트폰용 혈당측정기
WO2021020910A1 (ko) 다중 바이오마커 동시 분석 기기 및 다중 바이오마커 동시 분석 방법
WO2018066904A1 (ko) 기판처리장치 및 이를 이용한 기판처리방법
WO2017204512A1 (ko) 피씨알모듈
WO2020235964A1 (ko) 면역 분석 진단 장치
WO2024029737A1 (ko) 자동 혈액 점도 측정 장치
WO2023074988A1 (ko) 자성비드를 이용한 액상 면역반응 분석방법
WO2024117638A1 (ko) 체외 진단 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020778112

Country of ref document: EP

Effective date: 20210923