WO2023074988A1 - 자성비드를 이용한 액상 면역반응 분석방법 - Google Patents

자성비드를 이용한 액상 면역반응 분석방법 Download PDF

Info

Publication number
WO2023074988A1
WO2023074988A1 PCT/KR2021/016852 KR2021016852W WO2023074988A1 WO 2023074988 A1 WO2023074988 A1 WO 2023074988A1 KR 2021016852 W KR2021016852 W KR 2021016852W WO 2023074988 A1 WO2023074988 A1 WO 2023074988A1
Authority
WO
WIPO (PCT)
Prior art keywords
washing
cup
magnetic beads
magnetic
chamber
Prior art date
Application number
PCT/KR2021/016852
Other languages
English (en)
French (fr)
Inventor
김형훈
조주현
오영진
정지운
강경준
Original Assignee
바디텍메드(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바디텍메드(주) filed Critical 바디텍메드(주)
Priority to US18/554,157 priority Critical patent/US20240183846A1/en
Priority to EP21962611.6A priority patent/EP4332578A1/en
Publication of WO2023074988A1 publication Critical patent/WO2023074988A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00564Handling or washing solid phase elements, e.g. beads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00564Handling or washing solid phase elements, e.g. beads
    • G01N2035/00574Means for distributing beads

Definitions

  • the present invention relates to a liquid-phase immune response analysis method using automated beads, and particularly to an immune response analysis method with improved reproducibility.
  • EIA Enzyme Immuno Assay
  • an object of the present invention is to increase signal reproducibility in a liquid phase immune response analysis method in which non-specific biological samples are removed using magnetic beads.
  • One aspect of the present invention for achieving the above object is an immune response analysis method using magnetic beads, comprising the steps of dispersing magnetic beads in a detection chamber, collecting the magnetic beads and releasing them from the detection chamber, and then detecting the detection and performing an optical inspection on the chamber.
  • the method further comprises attaching reagents to the magnetic beads and injecting a biological sample into a reaction chamber in which the magnetic beads are stored so as to bind an analyte in the biological sample and the reagent through an antigen-antibody reaction.
  • the method may further include introducing a washing cup in which a magnetic beam is located into the reaction chamber to collect magnetic beads in the reaction chamber on a surface of the washing cup.
  • the step of washing the non-specific biological sample attached to the surface of the washing cup with the washing liquid in the washing chamber by repeating the raising and lowering of the washing cup in the washing chamber while the magnetic beam is located inside the washing chamber include
  • the dispersing of the magnetic beads in the detection chamber includes moving the washing cup in which the non-specific biological sample is washed to the detection chamber together with the magnetic beam, and separating the magnetic beam from the washing cup. set up a process
  • the step of separating the magnetic beads from the detection chamber includes a process of attaching the magnetic beads dispersed in the detection chamber to the surface of the washing cup by locating the magnetic beam inside the washing cup; and moving the washing cup to which the beads are attached from the detection chamber together with the magnetic beam.
  • another aspect of the present invention is an immune response analysis method using magnetic beads, wherein a biological sample is injected into a reaction chamber in which magnetic beads to which reagents are attached are stored, and the analyte in the biological sample and the magnetic beads are converted into antigen-antibody antibodies.
  • the coefficient of variation (CV) is reduced by minimizing the loss of the magnetic bead complex, thereby improving reproducibility.
  • the magnetic bead immune complex can be removed to reduce the background signal increased by the magnetic beads. Therefore, since the coefficient of variation due to the bias signal is reduced, reproducibility is improved. In addition, by maximizing the amount of light absorbed and scattered by the magnetic beads, the signal value emitted after the final reaction may be increased.
  • FIG. 1 is a block diagram of a liquid-phase immune response assay device according to an embodiment of the present invention.
  • FIGS. 2a and 2b are diagrams illustrating the process of a sandwich immune reaction using magnetic beads.
  • 3a and 3b are diagrams illustrating the process of competitive immune response using magnetic beads.
  • FIG. 4 is a diagram showing the structure of a cuvette according to an embodiment of the present invention.
  • FIG. 5 is a configuration diagram of a dispensing cup according to an embodiment of the present invention.
  • FIG. 6 is a configuration diagram of a washing cup according to an embodiment of the present invention.
  • FIG. 7 is a view illustrating a state of a cuvette equipped with a dispensing cup and a washing cup according to an embodiment of the present invention.
  • FIG 8 and 9 are views in which the housing is omitted in the liquid phase immunoreaction assay device according to an embodiment of the present invention.
  • FIG. 10 is a configuration diagram of a holder of a liquid phase immunoreaction assay device according to an embodiment of the present invention.
  • FIG. 11 is a view explaining a state in which the cuvette shown in FIG. 7 is mounted on the holder shown in FIG. 10 .
  • FIG. 12 is a view explaining the lower part of the holder shown in FIG. 10;
  • FIG. 13 is a block diagram of a remover module of the liquid phase immune response assay device according to an embodiment of the present invention.
  • FIG. 14 is a view in which the rear frame is omitted from the liquid phase immunoreaction assay device shown in FIG. 8 .
  • 15 and 16 are configuration diagrams of a dispenser module according to an embodiment of the present invention.
  • FIG. 17 is a conceptual diagram of a dispenser module according to another embodiment of the present invention.
  • FIG. 18 is a detailed view of part A shown in FIG. 17;
  • FIG. 19 is a partial cross-sectional view of a dispenser module according to another embodiment of the present invention.
  • FIG. 20 is a diagram explaining a positional relationship between a washing cup and a magnetic beam in the dispenser module shown in FIG. 19 .
  • Fig. 21 is a diagram explaining the relationship between the distance from the permanent magnet located at the end of the magnetic beam and the magnetic flux density.
  • FIG. 22 is a diagram for explaining the positional relationship between a cleaning cup and a magnetic beam in a reaction chamber, a cleaning chamber, and a detection chamber according to an embodiment of the present invention.
  • FIG. 23 is an overall flowchart of a liquid phase immune response analysis method according to an embodiment of the present invention.
  • 24 is a flowchart of a sample dispensing process according to an embodiment of the present invention.
  • 25 is a flow chart of a cleaning process according to an embodiment of the present invention.
  • 26 is a flowchart of an optical inspection process according to an embodiment of the present invention.
  • FIG. 27A illustrates measured values of reproducibility and bias according to a conventional optical inspection process
  • FIG. 27B explains measured values of reproducibility and bias according to an embodiment of the present invention.
  • liquid-phase immune response assay device 1 is a block diagram of a liquid-phase immune response assay device 1 according to an embodiment of the present invention. As shown, the liquid-phase immunoreaction analyzer 1 is provided with a display unit 110 and an inlet and outlet 120 in a housing 100 .
  • FIGS. 3a and 3b are diagrams illustrating the process of sandwich immune reaction using magnetic beads in an enzyme-linked immunosorbent assay (ELISA), and FIGS. 3a and 3b show the process of competitive immune reaction using magnetic beads. It is an explanatory drawing.
  • ELISA enzyme-linked immunosorbent assay
  • Sandwich immunoassay refers to an immune response in which a capture antibody and a detector antibody are sandwiched together. An enzyme is chemically bound to the detector antibody to induce a quantitative reaction with a substrate. At this time, the capture antibody is chemically or physically bonded to the magnetic beads and the detector antibody uses a conjugate bonded to an enzyme. Sandwich reactions using these magnetic beads can be largely divided into two types, which are divided into a 1-step assay or a 2-step assay depending on how many steps of washing are performed.
  • FIG. 3(a) illustrates an indirect competitive reaction performed in 1 step
  • FIG. 3(b) illustrates a direct competitive reaction performed in 2 steps.
  • a fluorescence signal is used to detect the reaction product.
  • an enzyme-substrate reaction such as Alkaline phosphatase (ALP) and methylumbelliferyl phosphate (4-MUP) is used.
  • ALP a type of enzyme, is a representative enzyme that causes a dephosphorylation reaction.
  • 4-MUP reacts with ALP, and dephosphorylation proceeds irreversibly by enzymatic hydrolysis. , and this fluorescence signal intensity is detected and used to determine the concentration of the analyte in the sample.
  • colorimetric methods are used to detect the reaction product.
  • Color change analysis detects a change in visible color in which the reaction product absorbs light at a specific visible ray wavelength, detects the absorbance of the signal of the reaction product, and uses it to determine the concentration of the analyte in the sample.
  • representative enzymes and substrates include peroxidase and its substrates TMB (3,3',5,5' tetramethylbenzidine), DAB (3,3',4,4'diaminobenzidine) and 4CN (4-chloro).
  • ABTS 2,2'-azinodi[3-ethyl-benzthiazoline]sulfonate
  • OPD o-phenylenediamine
  • chemiluminescent is used to detect reaction products.
  • Chemiluminescence is light emitted as excited electrons generated by a chemical reaction return to a ground state. It does not require a light source, and the relative light quantity per hour is measured in RLU (relative light unit), which is used to determine the concentration of the analyte in the sample.
  • RLU relative light unit
  • enzymes and substrates include, for example, peroxidase and its substrates, such as luminol, polyphenols (including, for example, pyrogallol, perperrogalline, gallic acid, and umbelliferon) and acridine esters or luciferin. (when used, it is referred to as bioluminescence), but is not limited thereto.
  • enzymes and substrates examples include, but are not limited to, ALP and AMPPD (3-(2'-spiroadamantyl)-4-methoxy-4-(3′′-phosphoryloxy)-phenyl-1,2-dioxetane). It is not.
  • the device according to this embodiment removes unreacted materials through physical washing using magnets, and then separates and concentrates only the products of specific reactions in the form of magnetic beads using permanent magnets, and enzymatically attached to the reaction products. It is a device optimized for selectively binding a detector and finally reacting an enzyme with a substrate to detect the signal of the reaction product.
  • the above reaction used in the device according to this embodiment is carried out in a liquid state in a cuvette mounted in the device.
  • An apparatus according to an embodiment of the present invention is optimized for carrying out an optimized reaction step in consideration of the characteristics of various parameters performed in the reaction for carrying out the above reaction in a cuvette and detecting a reaction product.
  • FIG. 4 is a diagram showing the structure of a cuvette 10 according to an embodiment of the present invention.
  • 5 is a configuration diagram of a dispensing cup 20 according to an embodiment of the present invention
  • FIG. 6 is a configuration diagram of a washing cup 30 according to an embodiment of the present invention.
  • the cuvette 10 used in the automated liquid-phase immunoreaction assay device 1 according to the present embodiment is used for a reaction for detecting an analyte contained in a sample, and a reaction between the sample and the reagent is performed in the cuvette. , a reaction product is produced, and the reaction product is washed.
  • the cuvette 10 may have an elongated shape extending in the front-rear direction.
  • the cuvette 10 may include one or more fitting holes and a plurality of chambers. Such chambers may also be referred to as wells.
  • the fitting hole is a place where the washing cup 30 and the dispensing cup 20 are inserted and waited until the inspection starts or during the inspection process, and the washing cup fitting hole 21 and the dispensing cup fitting hole 31 are provided, respectively. .
  • the chamber may include a sample filling chamber 12, buffer and dilution chambers 13a, 13b, 13c and 13d, a reaction chamber 14, a washing chamber 15, and a detection chamber 16 in order.
  • the chamber may be sealed by a predetermined sealing film (not shown) to prevent denaturation or contamination of reagents.
  • the sample filling chamber 12 is provided to be filled with various samples, for example, a biological sample to be analyzed, and as mentioned above, is located in front or rear of the washing cup fitting hole 21 and the dispensing cup fitting hole 31. can be formed
  • Buffer (or also referred to as buffer) and dilution chambers 13a, 13b, 13c, and 13d are filled with magnetic bead (MB) buffer, detection buffer, and sample dilution buffer required for the reaction (13a, 13b, 13c),
  • MB magnetic bead
  • detection buffer detection buffer
  • sample dilution buffer required for the reaction (13a, 13b, 13c)
  • the sample filling chamber 12 or the rear of the washing cup fitting hole 21 and the dispensing cup fitting hole 31 are provided in the above order.
  • the reaction chamber 14 is provided to perform a reaction between a sample and a reagent, and is formed behind the chamber for buffer and dilution.
  • the washing chamber 15 may include a plurality of chambers in which the reaction product may be washed after the reaction in the reaction chamber, and includes three 15a, 15b, and 15c in one embodiment of the present invention.
  • the detection chamber 16 is a place where a reaction product generated by a reaction between a sample and a reagent is detected, and is provided to detect the presence of an analyte in the reaction product after washing in the washing chamber 15 .
  • the detection chamber 16 is formed at the rear of the washing chamber 15 and may be configured to have light transmission in order to detect a fluorescence signal.
  • the cuvette 10 may further include a barcode or QR code (not shown), which is used in conjunction with a chip to be described below inserted into the automated liquid phase immunoassay device 1 in the present invention.
  • Barcodes in the present invention include, but are not limited to, UPC-A, UPC-E, EAN, Code 3 of 9, Interleaved 2 of 5, Code 128, UCC/EAN-128, Codabar, PostNet, Pharmacode, or PDF-417 or 1D barcodes or 2D barcodes, but are not limited thereto.
  • the barcode or QR code encodes the type of analyte according to the type of sample.
  • FIG 7 illustrates the state of the cuvette 10 to which the dispensing cup 20 and the washing cup 30 are mounted according to an embodiment of the present invention.
  • the dispensing cup 20 is a disposable microtip (e.g., a disposable microtip (e.g., , micropipette tips with a capacity of 2-1000 ⁇ l).
  • the dispensing cup 20 has a tubular shape, and its diameter gradually decreases toward its end, and its end may have a pointed shape.
  • the dispensing cup 20 as described above can be used with equipment that does not include a separate reagent supply device and a means for cleaning contamination, thereby simplifying the operation of the equipment.
  • the plurality of cuvettes used in the device according to the present embodiment are configured such that dispensing cups 20 and washing cups 30 can be mounted on each cuvette, so that tips used in other cuvettes can be used separately. so that contamination can be prevented.
  • a device for cleaning them must be provided to prevent contamination, so the configuration of a separate device increases the volume and requires a separate process to clean it.
  • the inspection cost increases.
  • the dispensing cup 20 is inserted into and seated in the dispensing cup fitting hole 21 of the cuvette 10, and when the test process starts, it is fastened to the collecting arm 556 to be described later, and the sample between the chambers together with the pump unit 506 Or it serves to inhale or exhale for dispensing or dispensing of reagents.
  • the dispensing cup 20 used in the first cuvette is temporarily fitted into the hole 21 Since it can be stored in a cuvette, only one tip can be used in one cuvette until the test is completed without replacing the tip in the middle, it is convenient and has the advantage of reducing the reaction time. This is described in more detail in the operation of the device according to an embodiment of the present invention.
  • the washing cup 30 is a member having a tubular shape with a predetermined height and width and a closed lower end, and an input hole having a predetermined depth and inner diameter is formed in the upper part.
  • the washing cup 30 is made of a non-magnetic material to transmit magnetism, and may be made of a flexible material so that it can be easily fixed to and separated from the washing arm.
  • the washing cup 30 is also inserted and seated in the washing cup fitting hole 21 of the cuvette 10, and when the inspection process starts, it is fastened to the strobe arm 554 to perform washing as will be described later.
  • the washing cup 30 used in the first cuvette can be stored in the fitting hole 31 to carry out the reaction in the second or third cuvette. Therefore, only one tip can be used for one cuvette, which has the advantage of being convenient and reducing the reaction time. This is described in more detail in the operation of the device according to an embodiment of the present invention.
  • Three cuvettes according to this embodiment are used, and are optimized to perform three types of analysis.
  • three different analytes from the same biological sample such as FT4 (free thyroxine), TSH (thyroid stimulating hormone) and T3 (triiodothyronine) for thyroid diagnosis, and hCG (chorionic gonadotropin) for malformation tests; E3 (Estriol) and AFP (Alpha Feto Protein).
  • the liquid immunoassay device 1 includes a housing 100, a frame 200, a cuvette module 300, an optical reading module 400, and a dispenser module 500.
  • the housing 100 constitutes the entire exterior of the automated liquid-phase immunoassay device 1, and also serves to block the inflow of foreign substances into the housing 100.
  • the housing 100 may include various input units for manipulation and a display unit 110 for output.
  • the housing 100 is provided with an inlet and outlet 120 into which the cuvette 10 is inserted. When the cuvette 10 enters the inside of the housing 100 through the inlet/outlet 120, foreign substances are blocked from entering the chamber included in the cuvette 10 through the housing 100, so more accurate sample inspection is performed. can do.
  • the frame 200 may be provided in the housing 100 to fix the cuvette module 300 , the optical reading module 400 , the dispenser module 500 , and the like.
  • the frame 200 includes a lower frame 210 , a first side frame 220 , a second side frame 230 , and a rear frame 240 .
  • the lower frame 210 is disposed below the automated liquid phase immunoassay device 1.
  • the lower frame 210 may have a plate-shaped structure having a predetermined area.
  • the rear frame 240 is located at the rear of the device and may be provided so that a predetermined control device or the like can be fixed.
  • the first side frame 220 and the second side frame 230 are disposed on the left and right sides of the lower frame 210, respectively, and may be configured to stand at a predetermined height.
  • the first side frame 220 and the second side frame 230 may each have guide spaces 222 and 232 guiding displacement of the holder 310 in the forward and backward directions.
  • the cuvette module 300 is provided in the housing 100 and is a device that accommodates the cuvette 10 and moves the stored cuvette 10 forward and backward.
  • the cuvette module 300 includes a holder 310 , a holder driving unit 320 , a holder guide unit 330 , and a remover module 340 .
  • the holder driver 320 may adjust the position of the holder.
  • the holder driver 320 may be configured as a member that applies force in the front and rear directions with respect to the holder 310 .
  • the holder driver 320 may include a movable body 322 to which the holder 310 is fixed, a driving motor, and a transmission member that transmits power of the driving motor to the movable body 322 .
  • a servo motor, a step motor, a DC motor, or the like may be used as the driving motor.
  • the holder guide part 330 is provided to guide displacement of the holder 310 in the forward and backward directions.
  • the holder guide part 330 may include a predetermined guide rail extending in the front and rear direction, and a predetermined guide part connected to the guide rail to move forward and backward along the guide rail and connected to the movable body 322. there is.
  • FIG. 10 is a configuration diagram of a holder 310 according to an embodiment of the present invention
  • FIG. 11 is a view explaining a form in which the cuvette 10 is mounted on the holder 310 shown in FIG. 10
  • FIG. 12 is a view explaining the lower part of the holder 310 shown in FIG. 10 .
  • the holder 310 is a member on which the cuvette 10 can be seated.
  • the holder 310 may be disposed on the lower frame 210 and disposed behind the inlet/outlet 120 of the housing 100 . Therefore, the cuvette 10 can be pushed into the holder 310 through the inlet/outlet 120 .
  • the holder 310 may have a slot-shaped mounting channel 312 so that one or more of the cuvettes 10 may be inserted and mounted therein.
  • the mounting channel 312 may have a configuration that extends long in the front-rear direction and opens forward.
  • An inspection hole 314 is formed at the rear end of the mounting channel 312 .
  • the inspection hole 314 is a portion configured to pass through in the vertical direction. Accordingly, when the cuvette 10 is accommodated and mounted in the mounting channel 312 of the holder 310, the lower part of the rear portion of the holder 310 is exposed downward through the inspection hole 314. Specifically, the lower portion of the detection chamber 16 disposed at the rear of the cuvette 10 may be exposed downward through the inspection hole 314 .
  • a plurality of mounting channels 312 are formed in the holder 310, and the cuvette 10 is inserted into each mounting channel 312, and the plurality of cuvettes 10 can be inspected.
  • a plurality of mounting channels 312 in one holder 310 may have a disposition in which they are arranged side by side with each other.
  • a lower portion of the holder 310 includes a hot plate 316 and a hot plate power supply 318 . This is to automatically control the cuvette and the reactants contained in the cuvette to be maintained at a constant temperature during the reaction, which ensures the precision and accuracy of the test according to the characteristics of the biological sample that reacts sensitively to temperature. .
  • the hot plate 316 heats the holder 310 to heat the cuvette 10, the cuvette, and the samples and reactants included therein to a constant temperature and maintain them at a specific temperature by convection.
  • the temperature is automatically controlled by the built-in program.
  • a temperature sensor is employed for automatic control, and in one embodiment of the present invention, a temperature sensor is used inside the holder, the hot plate, and the device.
  • the temperature sensor of the device is used for temperature control inside the device because the temperature inside the device affects the optical system.
  • the temperature sensor of the hot plate controls the temperature of the hot plate, and the temperature sensor of the holder measures the temperature of the holder to control the hot plate in a feedback method.
  • FIG. 13 is a block diagram of a remover module 340 according to an embodiment of the present invention.
  • the remover module 340 is used for dispensing/mixing reagents in other cuvettes during the immune reaction time (incubation) after the use of the dispensing cup 20 and the washing cup 30 during the immune test, or when the reaction in each cuvette After the end, it is a member for removing the tip.
  • the remover module 340 includes a predetermined driving device 342 that can be fixed to the second side frame 230 and a predetermined remover plate 350 that can be displaced by the driving device 342. It can be.
  • the driving device 342 and the remover plate 350 may be connected by a predetermined shaft 344 .
  • a remover plate 350 has a plate body 352, and a remover line having three remover holes 354a, 354b, and 355 arranged in a row is formed in the plate body 352.
  • the number of remover lines corresponding to the number of mounting channels 312 formed in the holder 310 is formed.
  • the two remover holes 354a and 354b of the remover line are formed in such a way that they are connected to each other, and are located between the holder 310 and the dispenser module 500 to form a punching arm 552 and a strobe arm to be described later, respectively. (554) passes.
  • the extraction rock 556 passes through one remover hole 355 formed by the remover line alone.
  • Each of the remover holes 354a, 354b, and 355 may have a recessed portion 356 recessed to one side. Therefore, in a state where the dispensing cup 20 fastened to the collecting arm 556 and the washing cup 30 fastened to the strobe arm 554 are located in the corresponding remover holes 354a, 354b, and 355, the collecting arm ( 556) is displaced horizontally to the left so that the remover plate 350 is located in the recessed portion 356, and at this time, a part of the top of the dispensing cup 20 is located below the recessed portion of the plate, When the collecting arm or the strobe arm moves upward, force is applied to a part of the upper end of the dispensing cup 20 attached to the collecting arm 556 or the washing cup 30 attached to the strobe arm 554, It can be removed from each cancer.
  • the remover hole 355 is wider than the area of the top of the dispensing cup 20 or the washing cup 30, so that the collection arm equipped with the dispensing cup 20 or the strobe arm equipped with the washing cup 30 passes through the remover hole. make it possible It is preferable that the recessed portion 356 is larger than the radius of the collecting rock or strobe arm so that the collecting rock or strobe arm can be seated in the recessed portion.
  • the depression 356 is preferably formed smaller than the area of the top of the dispensing cup 20 or the washing cup 30 so that the upper end of the dispensing cup 20 or the washing cup 30 can be caught on the protruding part, but the dispensing cup As long as the 20 or the washing cup 30 can be separated from the collecting rock or the strobe arm, the shape is largely irrelevant.
  • the reaction occurring in the cuvette 10 used in the device according to the present embodiment requires at least two incubation processes from start to detection.
  • the remover module 340 is provided in the device according to the present embodiment, as will be described below, only one dispensing cup 20 and one washing cup 30 are used in one cuvette, while other devices are removed during the incubation time. There is an advantage in that the reaction can be prepared in another cuvette mounted in the channel 312.
  • the first channel The used dispensing cup 20 and the washing cup 30 are temporarily stored in the corresponding positions 21 and 32 of the first cuvette, and after the first incubation time elapses, the temporarily stored dispensing cup 20 and The washing cup 30 can be reused. That is, if there is no remover module 340, the dispensing cup 20 or the washing cup 30 once used in the first mounting channel cannot be reused, and after the first incubation period after discarding, it is newly installed and the next process is performed.
  • the inspection process can be performed with only one dispensing cup 20 and one washing cup 30 for each cuvette.
  • the immune response analyzer 1 may include a standard block 360 .
  • the standard block 360 is fixed to the holder 310 and integrally displaced together with the holder 310, and may be located at the rear of the holder 310.
  • the standard block 360 may be located behind at least one inspection hole 314 among the inspection holes 314 .
  • the standard block 360 has a predetermined optical hole 362 penetrating in the vertical direction, and a predetermined optical means capable of being optically detected or captured may be provided in the optical hole 362 .
  • the standard block 360 comprises optical means.
  • the optical means included in the standard block 360 mounts a fluorescence measurement standard having a predetermined fluorescence value.
  • a fluorescence measurement standard having a predetermined fluorescence value.
  • the standard material for measuring fluorescence a material having appropriate excitation and emission wavelengths according to the type of fluorescence detected in the reaction product may be used.
  • the optical means included in the standard block 360 mounts a standard material for measuring absorbance of visible color.
  • Absorbance measurement standard materials may be appropriately selected according to the visible color absorbance region detected in the reaction product, and in one embodiment of the present invention, glass (glass), plastic (plastic plate), gel (gel), appropriate liquid solution and the like are used, but are not limited thereto.
  • the standard fluorescence or absorbance loaded on the standard block 360 is first scanned, and the signal value of the reaction product is measured and displayed as a ratio. This is to eliminate the deviation between instruments, and the ratio with the measured value is calculated using a standard material, and the ratio is compared with the data stored in the master calibration graph to accurately calculate the concentration of the analyte in the sample.
  • a device may not include the standard block 360 or may not use the standard block 360 even if it is included.
  • the standard block may not be included, or even if the standard block is included, it may not be used.
  • it includes a light detector such as PMT and Avalanche photodiode, and also includes a shutter implemented in hardware or software as a means for measuring the amount of light for a predetermined period of time in order to measure the relative amount of light. Through this, it is possible to correct the deviation by comparing the deviation of the detection signal between devices.
  • FIG. 14 is a view in which the rear frame is omitted from the liquid phase immunoreaction analyzer 1 shown in FIG. 8 .
  • the holder driver 320 When the holder driver 320 operates, the holder 310 may be displaced in the forward and backward directions. At this time, when the holder 310 moves backward by a certain distance, the standard block 360 fixed to the holder 310 is located on the optical reader 410. Thus, the fluorescence signal of standard block 360 can be captured by optical reader 410 .
  • the rear lower part of the holder 310 is positioned on the optical reading module 400 . Therefore, when the holder 310 is moved all the way backward while the cuvette 10 is mounted in the mounting channel 312 of the holder 310, the lower part of the detection chamber 16 disposed at the rear of the cuvette 10 may be exposed to the optical reading module 400 through the inspection hole 314 .
  • the holder 310 Since the holder 310 is guided by the holder guide 330, the displacement of the holder 310 can be performed stably without fluctuation.
  • the holder driving unit 320 of the pulley-belt type is provided, vibration and foreign matter due to friction generated during movement can be prevented, so that a more accurate inspection can be performed compared to the gear type.
  • the optical reading module 400 performs optical analysis to measure a signal of a reaction product in the cuvette 10 .
  • the optical reading module 400 includes an optical reader 410, a reader driving unit 420, and a reader guide unit 430.
  • Optical analysis by the optical reading module 400 includes measuring a fluorescence signal, visible color, or chemiluminescence of a reaction product, and the definition of each signal may be referred to the above-mentioned.
  • the optical reader 410 has a disposition located under the holder 310 when the holder 310 is moved to the rear end. Accordingly, when the holder 310 moves backward while the cuvette 10 is housed in the holder 310, the detection chamber 16 of the cuvette 10 is located on the optical reader 410. Accordingly, the optical reader 410 may measure the fluorescence value of the reaction product in the detection chamber 16 .
  • the optical reader 410 reads a signal of a reaction product of the detection chamber 16 of the cuvette 10 to qualitatively and/or quantitatively analyze a specific target analyte included in the sample.
  • the optical reader 410 detects the fluorescence signal.
  • the light of a specific wavelength is irradiated according to the type of fluorescent material used to detect the analyte, and the emitted light is read.
  • a light source 610 that can sufficiently excite a fluorescent material for measurement of the fluorescent signal whose output can be adjusted, that is, a predetermined light emitting device may be provided.
  • a light emitting element include a Xenon lamp, a UV laser, or a Light Emitting Diode (LED).
  • the standard block 360 is irradiated with light before measuring the fluorescence value, and the gain is automatically adjusted through the amount of fluorescence captured so that the output of the light emitting device can be adjusted to a certain value. , it is possible to calculate the exact concentration.
  • the optical reader 410 may have two or more light sources, and each light source may generate light having a different wavelength. In addition, fluorescence of different wavelengths may be respectively measured. Therefore, the application range for the diagnostic test method can be widened and the sensitivity can be improved.
  • the optical reader 410 may have a barcode scanner function, and thus, when a predetermined barcode is provided in the cuvette 10, a predetermined signal or information exchange may be performed through the corresponding barcode.
  • the optical reader 410 of the optical reading module includes absorbance measurement of the visible color of the reaction product.
  • absorbance may be measured by irradiating light to the reaction product according to the type of material used to detect the analyte.
  • the optical reader 410 includes a light source capable of emitting an absorption wavelength range suitable for measuring the absorbance of the visible color, the output of which can be adjusted. Examples of such a light emitting device may include, but are not limited to, lamps, LEDs, lasers, and the like that include an absorption wavelength band such as a white light source.
  • optical reader 410 includes measurement of the chemiluminescent signal of the reaction product. According to an embodiment of the present invention, it is configured to detect light emitted according to the type of chemiluminescent material used to detect the analyte, and since the luminous intensity of light is measured for each time period, a lens for collecting light and It consists of a photodetector.
  • the reader driver 420 is provided inside the housing 100 and moves the optical reader 410 so that the optical reader 410 is positioned in one of the plurality of cuvettes 10. It is possible to perform sample inspection of the corresponding cuvette 10 by doing so. That is, the reader driver 420 may move the position of the optical reader 410 according to the inspection hole 314 of the holder 310 .
  • the reader driving unit 420 includes a predetermined driving motor 422 for moving the optical reader 410 left and right, a driven pulley 424, and a predetermined predetermined distance connecting the driven pulley 424 and the optical reader 410. It may be configured including a bracket. Accordingly, the optical reader 410 may move according to the operation of the driving motor.
  • the reader guide part 430 is provided to guide displacement of the optical reader 410 in the left and right directions.
  • the reader guide unit 430 may include a predetermined guide rail and a predetermined guide unit guided along the guide rail and fixed to the optical reader. Accordingly, left-right movement of the optical reader can be accurately guided in one direction.
  • the optical reading module 400 detects the fluorescence signal captured by the standard block 360 as standard fluorescence.
  • the holder 310 is moved all the way to the rear while the cuvette 10 is mounted in the mounting channel 312 of the holder 310, the lower part of the detection chamber 16 disposed at the rear of the cuvette 10 is exposed to the optical reader 410 through the inspection hole 314 and optical measurement may be performed.
  • the optical reading module 400 may have a predetermined algorithm enabling calculation of the concentration of an analyte in a sample by comparing the ratio with data stored in a master calibration graph, and a predetermined repeat measurement algorithm.
  • the fluorescence value of the standard fluorescence loaded in the standard block 360 is compared with the fluorescence value of the sample, accurate measurement can be performed. That is, according to the general prior art, there is a difference in fluorescence value depending on the equipment, and in order to reduce this difference, it is necessary to go through a calibration process to reduce the difference between the devices in most QC steps. However, despite these procedures, it is difficult to completely eliminate these differences due to changes in equipment or reagents. However, in the present invention, the above problem can be solved by using the standard fluorescence loaded in the standard block 360 as a reference.
  • the dispenser module 500 is a module provided for dispensing, dispensing, and cleaning samples, reagents, and/or reactants. As shown, the dispenser module 500 includes a drive unit 502 , a dispenser unit 504 , and a pump unit 506 .
  • the driving unit 502 serves to horizontally move the dispenser unit 504 left and right. Therefore, the dispenser unit 504 is horizontally moved by the driving unit 502, and the dispenser unit 504 is placed under the driving unit in parallel to any one of the plurality of cuvettes 10 10 ) to be located in a specific chamber on the
  • the driving unit 502 may include a fixed body 510 and left and right horizontal driving units 520 .
  • the fixed body 510 may have a predetermined area and may extend long in the left and right directions.
  • the fixed body 510 may include a front body 512 extending in the left and right directions, and a side body 514 provided on one side of the front body 512 to which the pump unit 506 is fixed.
  • the left and right driving unit 520 is disposed on the fixed body 510 and is a driving means for horizontally moving the dispenser unit 504 to be described later.
  • the left and right driver 520 may include a predetermined driving motor that generates power and a predetermined moving bracket capable of being displaced left and right by the driving motor.
  • a predetermined guide means 530 capable of guiding displacement of the movable bracket may be provided.
  • a predetermined driven pulley member for transmitting power may be included.
  • the dispenser unit 504 may include a left and right moving body 540, a vertical moving body 542, a vertical driving unit 544, and an arm unit 550.
  • the left and right moving body 540 is connected to the left and right driving unit 520 .
  • the left and right driving unit 520 includes a predetermined movable bracket, and the left and right movable body 540 is connected to the movable bracket to horizontally displace left and right.
  • the vertical movement body 542 is disposed in front of the left and right movement body 540 .
  • the vertically moving body may be vertically displaced by the vertical driving unit 544 .
  • the vertical driving unit 544 is disposed on the left and right moving body 540 and is a driving means for moving the vertical moving body 542 in the vertical direction.
  • the vertical driving unit 544 may also include a predetermined driving motor that generates power and a predetermined moving bracket capable of being displaced left and right by the driving motor.
  • a predetermined guide means 546 capable of guiding displacement of the moving bracket in the vertical direction may be provided.
  • a predetermined driven pulley member for transmitting power may be included.
  • the arm unit 550 is a member capable of moving up and down by the up and down drive unit 544 and left and right by the drive unit 502 at the same time.
  • the arm unit 550 is connected to the vertical moving body 542 and includes a punching arm 552, a collecting arm 556, and a strobe arm 554 extending downward from positions spaced apart from each other in the horizontal direction. can be configured. Accordingly, the arm unit 550 may constitute an integral module in which the punching arm 552, the collecting arm 556, and the strobe arm 554 are integrally configured.
  • the punching arm 552 has a punching tip 553 at its lower end, and is a member that pierces and opens the sealing cover of the cuvette 10, and pierces the sealing portion covering the corresponding chamber of the cuvette 10.
  • the strobe arm 554 is penetrated in the vertical direction and has upper and lower hollows 555 .
  • the strobe arm 554 has an outer diameter that can be put into and inserted into the input hole of the washing cup 30 .
  • the collecting arm 556 is provided at the bottom so that the dispensing cup 20 can be fixed.
  • the collection rock 556 may have an outer diameter that can be put into and inserted into the dispensing cup 20 .
  • the punching arm 552, the strobe arm 554, and the collecting arm 556 are arranged in a row in the front-rear direction.
  • the cleaning unit 560 includes a driving motor 562 and a magnetic beam 564 .
  • the driving motor 562 is fixed to the vertically moving body 542 and is connected to the magnetic beam 564 to displace the magnetic beam 564 in the vertical direction.
  • it is not necessarily limited to the driving motor 562, and it is sufficient if a predetermined driving device capable of vertically displacing the magnetic beam 564 is provided.
  • the magnetic beam 564 has a bar shape extending in the vertical direction and is disposed in the upper and lower hollows 555 of the strobe arm 554 .
  • the magnetic beam 564 has magnetism and can be displaced in the vertical direction by the drive motor 562, enabling Mag-eXtraction to separate unreacted substances using magnetism.
  • the pump unit 506 is fixed to the side body 514 of the drive unit 502.
  • the pump unit 506 is connected to the collecting arm 556 of the dispenser unit 504 through a predetermined pipe (not shown), and the cuvette 10 is moved while the dispensing cup 20 is connected to the collecting arm 556.
  • a suction or discharge force When inserted into the chamber of the chamber, it serves to provide a suction or discharge force.
  • the pump unit 506 is provided with a motor 570 capable of controlling minute rotational steps, and is configured to accurately control the amount of samples, reagents, or reaction products when suctioned or discharged from the dispensing cup 20. can
  • FIG. 17 is a conceptual diagram of a dispenser module according to another embodiment of the present invention.
  • the dispenser module includes a moving body 541, a moving body driving unit 543, and a controller 600.
  • the controller 600 may control the moving body driver 543 to move the moving body 541 to a desired position.
  • a punching arm 552, a strobe arm 554, and a collecting arm 556 are fixed to the moving body 541. Accordingly, the punching arm, the strobe arm, and the collecting arm move integrally by the movement of the moving body.
  • a punching tip 553 is provided below the punching arm 552 .
  • the strobe arm and the collecting arm fixed together to the moving body 541 and moving integrally should not interfere with the lower cuvette. That is, the length (B) from the lower part of the moving body to the lower part of the punching arm 552 should be longer than the lengths (A) of the strobe arm and the collecting arm.
  • An appropriate length can be set so that the strobe arm and the collection arm do not touch the cuvette even when the punching arm is maximally lowered to break the seal of the cuvette.
  • the punching arm 552 should not interfere with the lower cuvette. Therefore, the length (B) from the lower part of the moving body to the lower part of the punching arm 552 is the length from the end of the washing cup 30 mounted on the strobe arm or the end of the dispensing cup 20 mounted on the collecting arm ( C) should be shorter than That is, the height of the washing cup 30 and the dispensing cup 20 should be greater than the sum of the length of the punching arm and the depth of each chamber in the cuvette.
  • Each tip can be set to an appropriate length considering the mounting position with each arm and the smooth operating distance in each chamber.
  • the collecting arm 556 may be mounted by fixing the dispensing cup 20 to the lower portion.
  • the inside of the collection rock is provided with a collection hollow 557 penetrating vertically.
  • the hollow of the harvested rock is connected to the pump unit 506 through a pipe 507.
  • the pump unit 506 may provide a suction force and a discharge force to the dispensing cup 20 through the pipe and the hollow of the collecting rock.
  • the strobe arm 554 may be mounted by fixing the washing cup 30 to the lower portion.
  • the inside of the strobe arm is provided with upper and lower hollows 555 penetrating vertically.
  • a magnetic beam 564 capable of moving up and down is positioned in the hollow of the strobe arm.
  • a driving motor 562 is provided to move the magnetic beam up and down. It is preferable to fix the driving motor 562 to the moving body so that the magnetic beam can move relative to the strobe arm fixed to the moving body.
  • the drive motor and the magnetic beam can be connected using a linear actuator using a ball screw, etc., a reducer using gear coupling, a rack and pinion, or the like.
  • FIG. 18 is a detailed view of part "A" shown in FIG. 17;
  • a magnetic beam 564 is disposed in the upper and lower hollows 555 of the strobe arm 554.
  • the magnetic beam 564 may include a permanent magnet 565 at a lower end opposite to a portion connected to the drive motor 562 .
  • the permanent magnet 565 preferably has the same cross-sectional area as that of the attached magnetic beam. If the magnetic beam has a cylindrical shape, a cylindrical permanent magnet having the same diameter can be used.
  • a permanent magnet may be disposed inside the washing cup 30, 30 inserted into the strobe arm 554.
  • the permanent magnet 565 may be smaller than the chamber size of the cuvette, and the shape of the permanent magnet 565 may be selected and used in various shapes such as round, square, and oval depending on the purpose.
  • FIG. 19 is a partial cross-sectional view of a dispenser module according to another embodiment of the present invention.
  • a driving motor 562 and a strobe arm 554 are installed in the moving body 541 .
  • the driving force of the driving motor 562 is transmitted to the magnetic beam 564 via the motion conversion member 2504 , the connecting member 2501 , and the socket member 2505 .
  • the driving force of the driving motor 562 appears as a rotational motion of the shaft 2502.
  • the rotational motion of the shaft 2502 is converted into linear motion by the motion converting member 2504.
  • the motion conversion member 2504 is screwed to the shaft 2502 and fixed to the connecting member 2501 so as not to rotate. Therefore, when the shaft 2502 rotates, the motion conversion member 2504 and the connecting member 2501 rise or fall according to the rotation direction of the shaft 2502 .
  • the motion converting member may be implemented in a cam, crank, or the like method, but a screw coupling method is advantageous because the configuration is simple and compact.
  • a socket member 2505 is fixed to the connection member 2501 .
  • the socket member 2505 includes a mounting portion 2506, a cap 2507, and a spring 2508.
  • the mounting portion 2506 has a hole 2509 formed downward.
  • a spring 2508 is mounted in the hole 2509, and a cap 2507 is installed so as to press the spring 2508 upward while sliding in the hole 2509.
  • the magnetic beam 564 is fixed to the socket member 2505 by being screwed under the cap 2507.
  • the motion conversion member 2504 rises or descends according to the direction of rotation. Since the motion conversion member 2504 is fixed to the linking member 2501, the linking member 2501 also rises or falls as the motion conversion member 2504 rises or falls. Since the socket member 2505 is fixed to the connecting member 2501, as the connecting member 2501 rises or falls, the socket member 2505 also rises or falls. As the socket member 2505 rises or falls, the magnetic beam 564 mounted on the socket member 2505 also rises or falls. Since the driving motor 562 and the strobe arm 554 are installed in the moving body 541, the magnetic beam 564 rises or falls in the hollow 555 formed inside the strobe arm 554.
  • a permanent magnet (not shown) is attached to an end of the magnetic beam 564, and a washing cup 30 is connected to an end of the strobe arm 554. Therefore, when the shaft 2502 of the driving motor 562 rotates, the permanent magnet rises or falls inside the washing cup 30 according to the rotation direction of the shaft 2502 .
  • the permanent magnet attached to the end of the magnetic beam 564 is in close contact with the washing cup 30.
  • the permanent magnet can be brought into close contact with the washing cup 30 only by the rotation of the driving motor 562, but if the control of the driving motor 562 is not precise and the magnetic beam 564 descends excessively, the washing cup 30 Since it is separated from the strobe arm 554, there is a risk of ruining the entire analysis process.
  • the spring 2508 is located on the socket member 2505 for mounting the magnetic beam 564, but may be located elsewhere on the path through which the driving force of the driving motor 562 is transmitted to the magnetic beam 564.
  • a polymer having elasticity may be used instead of the spring 2508 .
  • FIG. 20 is a diagram explaining the positional relationship between the washing cup 30 and the permanent magnet attached to the end of the magnetic beam 564 in the dispenser module shown in FIG. 19 .
  • 20 (a) shows a state in which the permanent magnet is in close contact with the washing cup 30 by the spring 2508 without gap, and FIG. It shows that there is a gap between the permanent magnet and the cleaning cup 30 when the beam 564 is lowered.
  • Fig. 21 is a diagram explaining the relationship between the distance from the permanent magnet and the magnetic flux density.
  • the magnetic flux density is inversely proportional to the square of the distance.
  • FIG. 20 (a) when the permanent magnet is in close contact with the washing cup 30 without a gap, the magnetic flux density at the lower end of the washing cup 30 is constant and has a large value compared to FIG. Beads are also attached to the lower end of the washing cup 30 in a constant and large amount in proportion to the magnetic flux density.
  • the present invention it is possible to minimize the loss of the collected magnetic bead complex along with the washing solution in the driving to move to the next step after collecting the magnetic beads. Therefore, the reproducibility of the immune response is increased, and the coefficient of variation (CV) is reduced.
  • FIG. 22 is a view explaining the positional relationship between the washing cup 30 and the magnetic beam 564 in the immune response analysis process according to an embodiment of the present invention.
  • the magnetic beads or magnetic bead immunity in the reaction chamber 14 composite
  • the washing chamber 15 in the washing chamber 14, in a state in which the magnetic beam 564 is lowered to the end of the hollow part of the washing cup 30, the magnetic beads (or magnetic bead immunity) in the reaction chamber 14 composite) is collected and moved to the washing chamber (15).
  • the magnetic beam 564 is maintained in a descended state to the end of the hollow part of the washing cup 30.
  • the washing cup 30 is raised and lowered n times repeatedly to wash the non-specific biological sample with the washing liquid.
  • the magnetic beam 564 is raised from the end of the hollow part of the washing cup 30 to detect the magnetic beads attached to the surface of the washing cup 30. Disperse into the substrate in the chamber 16.
  • the enzyme of the magnetic immune complex reacts with the substrate in the detection chamber 16 .
  • the magnetic beam 564 is lowered to the end of the hollow portion of the washing cup 30 to collect the magnetic beads on the surface of the washing cup 30 again. After the cleaning cup 30 is moved out of the detection chamber 16 while the magnetic beads are collected, an optical inspection is performed on the detection chamber 16 .
  • the washing cup 30 when the washing cup 30 is moved out of the detection chamber 16 in a state in which the magnetic beads are collected again in the detection chamber 16, the time for optical inspection increases, but the magnetic bead immune complex and substrate The bias signal by the reaction of is reduced.
  • FIG. 23 is an overall flowchart of a liquid phase immune response analysis method according to an embodiment of the present invention.
  • the cuvette 10 is accommodated in the mounting channel 312 of the holder 310 of the immunoreaction analyzer 1 (S2302).
  • the dispensing cup 20 and the washing cup 30 are mounted in the dispensing cup fitting hole 21 and the washing cup fitting hole 31 formed in the cuvette (S2304).
  • the dispensing cup 20 and the washing cup 30 may be placed before or after the cuvette 10 is accommodated in the mounting channel 312 .
  • the holder 310 moves backward by the start command of the device (S2306).
  • the dispenser module 500 operates to punch open the sealing film (not shown) of the cuvette 10 (S2308).
  • a punching arm 552 is used. Describing such a punching process, first, the punching arm 552 is positioned on the cuvette 10 by the drive unit, and then the punching arm 552 is moved up and down by the up and down drive unit 544 to move the cuvette ( The sealing film of 10) is punched.
  • the cuvette module 300 is operated to move the cuvette 10 forward or backward, so that punching of the plurality of chambers provided in the cuvette 10 can be performed.
  • the cuvette module 300 and the dispenser module 500 operate so that the sampling arm 556 is positioned on the dispensing cup 20 fixed to the cuvette 10 . Subsequently, the collection arm 556 descends, and the dispensing cup 20 is inserted and fixed to the lower portion of the collection arm 556 (S2310). Thereafter, distribution and dispensing of samples and/or reagents are performed using the dispensing cup 20 (S2312).
  • the moving body 541 to which the collecting arm 556 is fixed is moved to insert the dispensing cup 20 into the sample solution.
  • a pump unit 506 connected to the hollow of the sampling rock is operated to apply a suction force to the dispensing cup 20 to collect a sample from the sample chamber.
  • the moving body driver 543 is driven to move the collection rock fixed to the moving body to the reaction chamber.
  • the sample in the dispensing cup 20 attached to the collection rock is also moved to the reaction chamber. That is, the collected sample may be moved to the reaction chamber.
  • the pump unit 506 is operated to apply a discharging force to the dispensing cup 20 to discharge the sample into the reaction chamber, thereby completing dispensing.
  • the pump unit 506 operates so that distribution and dispensing by the dispensing cup 20 are performed.
  • the operation of the pump unit 506 allows mixing of samples and/or reagents during dispensing and dispensing, and allows desired reactions to occur in the reaction chamber 14 of the cuvette.
  • the reaction process occurring in the cuvette 10 includes a plurality of steps and requires at least two incubation times per cuvette (S2314).
  • the incubation may be performed by applying power to the hot plate 316 of the holder 310 on which the sample is mounted so as to maintain the sample dispensed in the reaction chamber at a constant temperature.
  • the dispensing cup 20 used in the first cuvette is removed by the remover plate 350 and the dispensing cup fitting hole 21 of the first cuvette ) After the completion of the first incubation time, the first cuvette is reused for the next reaction step.
  • the sample undergoes a washing process (S2316). After cleaning, the sample containing the magnetic beads from which impurities are removed is moved to a detection chamber and is used for analysis through an optical inspection process (S2318).
  • 24 is a flowchart of a sample dispensing process according to an embodiment of the present invention.
  • the seals of the cuvette 10 are punched open using the punching arm 552, respectively. Subsequently, the dispensing cup 20 is inserted and fixed to the collecting arm 556 . Subsequently, a predetermined volume of washing liquid is collected from the first washing chamber 15a and dispensed into the MB buffer chamber 13a (S2402).
  • a predetermined dilution solution is collected from the dilution buffer chamber 13c, dispensed into the sample chamber 12 (S2404), and a mixing process (three times) is performed.
  • a diluted sample of a predetermined volume is collected and dispensed into the reaction chamber 14 (S2406).
  • a predetermined volume of the solution is collected and dispensed to the reaction chamber 14 (S2408) and mixed (three times).
  • a first incubation process is performed at a specific temperature for a predetermined time (S2410).
  • a predetermined volume of solution in the MB chamber 13a is collected and dispensed to the reaction chamber 14 (S2412), mixed, and then, using the remover module 340
  • the dispensing cup 20 is removed (S2414) and placed in the dispensing cup fitting hole 21 of the cuvette where the reaction is performed.
  • a second incubation process is performed at a specific temperature for a predetermined time (S2416).
  • a washing process is performed after the second incubation time (S2418).
  • the cleaning cup 30 is inserted into the strobe arm 554, and a magnetic beam 564 is introduced into the strobe arm 554 for a predetermined time into the reaction chamber 14, and then the first After being put into the cleaning chamber 15a, cleaning is performed by moving the magnetic beam 564 up and down several times.
  • the magnetic beam 564 is put into the strobe arm 554 and then into the second cleaning chamber 15b, and then cleaning is performed by moving the magnetic beam 564 up and down several times.
  • the magnetic beam 564 is again put into the strobe arm 554 and then put into the detection chamber 16, and then the washing cup 30 is removed.
  • results derived from optical measurement can be output to a display or printer.
  • 25 is a flow chart of a cleaning process according to an embodiment of the present invention.
  • the washing cup 30 into which the magnetic beam 564 is inserted is put into a sample solution containing magnetic beads to collect the magnetic beads in the sample solution on the surface of the washing cup 30 (S2504 to S2510).
  • the washing cup 30 on which the magnetic beads are collected on the surface is moved to the washing solution with the magnetic beam inserted therein and put into the washing solution (S2512).
  • the washing cup 30 is raised and lowered n times (S2514).
  • the optical measurement may be performed by moving to the detection chamber (S2516).
  • the step of collecting magnetic beads in the sample solution can be classified as follows. First, the washing cup 30 is fixed to the lower part of the strobe arm 554 having a hollow vertically penetrating therein (S2504). Then, the moving body 541 to which the strobe arm is fixed is lowered, and the cleaning cup 30 is put into the sample solution containing the magnetic beads (S2506). Next, the driving motor 562 fixed to the moving body is driven to insert the magnetic beam 564 located in the hollow of the strobe arm into the lower cleaning cup 30 (S2508).
  • the moving body driver 543 integrally moves the moving body to which the strobe arm is fixed and the magnetic beam 564, so that the washing cup into which the magnetic beam 564 is inserted in the sample solution containing the magnetic beads ( 30) can be moved (S2510).
  • the dispensing cup 20 is removed from the collection rock 556 by the remover plate 350 (S2502). Then, the washing cup 30 is inserted into the strobe arm 554. (S2504) The washing cup 30 is introduced into the reaction chamber 14 (S2506), and then a magnetic beam 564 is introduced into the washing cup 30 so that the magnetic beads in the reaction chamber 14 are removed from the washing cup (S2508). At this time, the reactant combined with the magnetic beads is collected together. In order to more efficiently collect the magnetic beads, the washing cup 30 and the magnetic beam 564 are placed in the sample solution. (S2510).
  • the washing cup 30 is moved to the washing chamber 15 (S2512).
  • the washing cup 30 is moved up and down together with the magnetic beam 564. is driven n times to wash the non-specific biological sample attached to the surface of the washing cup 30 with the washing solution (S2514).
  • the magnetic beam 564 descends to the end of the hollow part of the washing cup 30 during the washing process.
  • the washing cup 30 is raised and lowered for a predetermined number of times of washing After the washing of the sample is finished, the reaction product is moved to the detection chamber 16 (S2516).
  • This embodiment does not repeat dispersion and collection of magnetic beads, removes non-specific biological samples through repeated up and down driving in the collected state, and prevents loss and omission of magnetic beads that may occur in the process of repeating dispersion and collection. Decrease. Accordingly, the reproducibility of measurement results may be increased and a coefficient of variation (CV) may be reduced. In addition, the simplification of the cleaning process reduces the measurement time, increases the throughput per hour, and improves the performance and competitiveness of the equipment.
  • 26 is a flowchart of an optical inspection process according to an embodiment of the present invention.
  • the magnetic beam 564 is raised from the washing cup 30 to disperse the magnetic bead immune complex into the detection chamber 16 (S2602).
  • the magnetic bead immuno-complex is dispersed into the detection chamber 16 in a state in which the enzyme is bound through an immune reaction with the detection antibody. Enzymes proportional to the amount of magnetic bead immune complexes generated by the binding of the target material react with the substrate in the detection chamber 16 to generate a mineral material that can be quantitatively measured as an optical signal.
  • the magnetic beam 564 is lowered to the end of the hollow part of the washing cup 30 to collect the magnetic beads on the surface of the washing cup 30 again (S2604).
  • the washing cup 30 is raised while maintaining the magnetic beam 564 at the end of the hollow part (S2606).
  • an optical signal is detected by performing an optical inspection on the substrate in the detection chamber 16 (S2608).
  • the optical examination is performed with the magnetic bead immune complex removed. Accordingly, a bias signal or a background signal increased by the magnetic beads is reduced, and absorption and scattering of light signals by the magnetic beads are reduced.
  • the magnetic bead immune complex is removed and the enzyme reaction is stopped, reproducibility is improved. Through this, the present embodiment can enhance the immune response analysis performance.
  • FIG. 27A illustrates the reproducibility and bias value of the optical inspection in a state where the magnetic beads are kept in the detection chamber 16
  • FIG. 27B illustrates the optical inspection in a state where the magnetic beads are removed from the detection chamber 16 according to the present embodiment.
  • the bias value is calculated as ((target signal magnitude - bias signal magnitude)/(target signal magnitude))X100.
  • the coefficient of variation CV is 14.4% and the bias value is - It is 43.9%.
  • the coefficient of variation CV decreases to 4.2%, increasing reproducibility.
  • the bias value is 5.7%, the Signal to Noise Ratio (SNR) increases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

본 발명은 자성비드를 이용한 면역반응 분석방법에 관한 것이다. 본 발명의 면역반응 분석방법은 검출 챔버에 자성비드를 분산시키는 단계와, 상기 자성비드를 포집하여 상기 검출 챔버로부터 이탈시킨 후에 상기 검출 챔버에 대해 광학 검사를 수행하는 단계를 포함한다. 본 발명에 의하면 자성비드에 의한 변동계수가 감소되므로 재현성이 향상된다.

Description

자성비드를 이용한 액상 면역반응 분석방법
본 발명은 자동비드를 이용한 액상 면역반응 분석방법에 관한 것으로서, 특히 재현성이 향상된 면역반응 분석방법에 관한 것이다.
의학과 생명공학 분야 및 각종 관련 기술의 발전과 더불어, 소변 및 혈액 등과 같은 소정의 생물학적 시료에서 혈구, 유전자, 단백질, 항원, 병원균 등과 같은 다양한 분자 지표를 검출하는 검사가 널리 시행되고 있다. 검사 과정은 일반적으로 시료를 채취한 후, 채취된 시료를 목적하는 지표에 적합한 소정의 시약과 반응시킨 후, 일어나는 변화를 분석 및 관찰함으로써 이루어진다. 이를 통해 시료에 포함된 다양한 분자 지표에 대한 정성 및/또는 정량 분석이 가능하고, 이를 근거로 질환의 진단, 진행 상태, 또는 예후 등에 관한 정보를 얻을 수 있다.
이러한 검사 과정에서 널리 사용되는 기술 중 하나가 항원/항체 간의 특이적 결합에 기반한 EIA(Enzyme Immuno Assay)로도 불리는 면역반응 기술이다. 여기에는 분석물의 검출을 위해 사용되는 기질의 종류에 따라서, 발색 반응을 흡광도로 측정하는 색변화측정 방법(chromogenic 또는 colorimetric), 화학발광법 및 형광을 이용한 방법 등이 있다. 또한 분석 방식에 따라 효소결합 면역흡착 분석법(Enzyme Linked Immunosorbent Assay)라고도 불리는 샌드위치 방식의 면역반응 또는 경쟁적 방식의 면역반응이 포함된다.
이런 분석에서는 사용되는 방식과 상관없이 높은 특이성의 고감도의 검출을 위해서는 비특이적 생체시료의 제거가 바람직하다. 즉, 검사 과정에서 시약과 시료의 반응 후, 반응 결과물의 정확한 검출을 위해서는 반응 결과물의 정제 또는 분리(purification)가 필요하다. 하지만, 많은 경우, 반응 결과의 검출을 위해서는 나이트로셀룰로스와 같은 막의 사용을 필요로 하거나, 2차원의 평판 플레이트가 사용된다. 그러나 이러한 막 또는 플레이트의 사용은 반응 면적의 제한은 물론, 비특이적 생체시료의 제거를 어렵게 한다.
비특이적 생체시료를 효과적으로 제거하기 위하여 자성비드를 이용하는 방식이 제안되고 있다. 자성비드를 이용하는 방식은 분석 과정에서 자성비드의 분산과 포집을 반복 수행하여 비특이적 생체시료를 제거한다. 하지만 자성비드는 분석 과정에서 유실되거나 신호 검출에 장애로 작용하여 측정값의 재현성(reproducibility)을 떨어뜨리는 중요한 문제를 야기한다.
따라서 본 발명은 자성비드를 이용하여 비특이적 생체시료를 제거하는 액상 면역반응 분석방법에서 신호 재현성을 높이는 것을 목적으로 한다.
전술한 목적을 달성하기 위한 본 발명의 일 측면은 자성비드를 이용한 면역반응 분석방법에 있어서, 검출 챔버에 자성비드를 분산시키는 단계와, 상기 자성비드를 포집하여 상기 검출 챔버로부터 이탈시킨 후에 상기 검출 챔버에 대해 광학 검사를 수행하는 단계를 포함한다.
바람직하게는, 상기 자성비드에 시약이 부착되고, 상기 자성비드가 저장되어 있는 반응 챔버에 생체시료를 주입하여 상기 생체시료 내의 분석물과 상기 시약을 항원항체 반응으로 결합시키는 단계를 더 포함한다. 또한, 자성빔이 내부에 위치한 세척컵을 상기 반응 챔버에 투입하여 상기 반응 챔버 내의 자성비드를 상기 세척컵의 표면에 포집하는 단계를 더 포함한다.
바람직하게는, 상기 자성빔이 내부에 위치한 상태에서 상기 세척컵의 상승과 하강을 세척 챔버에서 반복하여 상기 세척컵의 표면에 부착된 비특이적인 생체시료를 상기 세척 챔버 내의 세척액으로 세척하는 단계를 더 포함한다.
바람직하게는, 상기 검출 챔버에 자성비드를 분산시키는 단계는 상기 비특이적인 생체시료가 세척된 세척컵을 상기 자성빔과 함께 상기 검출 챔버로 이동시키는 과정과, 상기 세척컵으로부터 상기 자성빔을 이탈시키는 과정을 구비한다.
바람직하게는, 상기 자성비드를 상기 검출 챔버로부터 이탈시키는 단계는 상기 세척컵의 내부에 상기 자성빔을 위치시켜 상기 검출 챔버에 분산된 자성비드를 상기 세척컵의 표면에 부착시키는 과정과, 상기 자성비드가 부착된 세척컵을 상기 자성빔과 함께 상기 검출 챔버로부터 이동시키는 과정을 구비한다.
또한, 본 발명의 다른 측면은 자성비드를 이용한 면역반응 분석방법에 있어서, 시약이 부착된 자성비드가 저장되어 있는 반응 챔버에 생체시료를 주입하여 상기 생체시료 내의 분석물과 상기 자성비드를 항원항체 반응으로 결합시키는 단계와, 상기 반응 챔버에 세척컵을 이동시키는 단계와, 상기 세척컵의 중공부에 자성빔을 하강시켜 상기 세척컵의 말단에 자성빔을 위치시키는 단계와, 상기 반응 챔버 내의 자성비드를 포집하여 상기 세척컵의 표면에 상기 자성비드를 부착시키는 단계와, 상기 자성비드가 부착된 세척컵을 세척 챔버로 이동시키는 단계와, 상기 세척컵의 표면에 부착된 비특이적인 생체시료를 상기 세척 챔버에서 물리적으로 세척하는 단계와, 상기 비특이적인 생체시료가 세척된 세척컵을 검출 챔버로 이동시키는 단계와, 상기 세척컵의 중공부에 위치한 자성빔을 상승시켜 상기 세척컵의 표면에 부착된 자성비드를 상기 검출 챔버에 분산시키는 단계와, 상기 세척컵의 중공부에 자성빔을 하강시켜 상기 검출 챔버에 분산된 자성비드를 상기 세척컵의 표면에 부착시키는 단계와, 상기 자성비드가 부착된 세척컵을 상기 자성빔과 함께 상기 검출 챔버로부터 이동시킨 후에 상기 검출 챔버에 대해 광학 검사를 수행하는 단계를 포함한다.
상기한 바와 같은 본 발명에 의하면, 자성비드의 포집과 분산을 반복 수행하기 위한 자동 세척 및 분석장치를 이용한 면역반응 분석과정에서 효과적인 자성비드 면역 복합체의 포집 및 분산이 가능하다.
또한, 본 발명에 의하면 자성비드 복합체의 유실을 최소화하여 변동계수(Coefficient of Variation: CV)가 감소되므로 재현성이 향상된다.
또한, 본 발명에 의하면 효소와 기질의 반응이 미리 설정된 시간 동안 진행된 후에 자성비드 면역 복합체를 제거하여 자성비드에 의해 증가되는 바이어스 신호(background signal)를 감소시킬 수 있다. 따라서 바이어스 신호에 의한 변동계수가 감소되므로 재현성이 향상된다. 또한 자성비드에 의해 흡수 및 산란되는 광량을 최대화시켜 최종적으로 반응 후 발광되는 신호값을 증가시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 액상 면역반응 분석장치의 구성도이다.
도 2a와 도 2b는 자성비드를 이용한 샌드위치 면역반응의 과정을 설명하는 도면이다.
도 3a와 도 3b는 자성비드를 이용한 경쟁적 면역반응의 과정을 설명하는 도면이다.
도 4는 본 발명의 일 실시예에 따른 큐베트의 구조를 나타낸 도면이다.
도 5는 본 발명의 일 실시예에 따른 분주컵의 구성도이다.
도 6은 본 발명의 일 실시예에 따른 세척컵의 구성도이다.
도 7은 본 발명의 일 실시예에 따른 분주컵과 세척컵이 장착된 큐베트의 상태를 설명하는 도면이다.
도 8과 도 9는 본 발명의 일 실시예에 따른 액상 면역반응 분석장치에서 하우징을 생략한 도면이다.
도 10은 본 발명의 일 실시예에 따른 액상 면역반응 분석장치의 홀더의 구성도이다.
도 11은 도 10에 도시된 홀더에 도 7에 도시된 큐베트가 탑재된 상태를 설명하는 도면이다.
도 12는 도 10에 도시된 홀더의 하부를 설명하는 도면이다.
도 13은 본 발명의 일 실시예에 따른 액상 면역반응 분석장치의 리무버 모듈의 구성도이다.
도 14는 도 8에 도시된 액상 면역반응 분석장치에서 후방 프레임을 생략한 도면이다.
도 15와 도 16은 본 발명의 일 실시예에 따른 디스펜서 모듈의 구성도이다.
도 17은 본 발명의 다른 실시예에 따른 디스펜서 모듈의 개념도이다.
도 18은 도 17에 도시된 A 부분의 상세도이다.
도 19는 본 발명의 또 다른 실시예에 따른 디스펜서 모듈의 부분 단면도이다.
도 20은 도 19에 도시된 디스펜서 모듈에서의 세척컵과 자성빔 사이의 위치관계를 설명하는 도면이다.
도 21은 자성빔의 말단에 위치하는 영구자석으로부터의 거리와 자속밀도 사이의 관계를 설명하는 도면이다.
도 22는 본 발명의 일 실시예에 따른 반응 챔버, 세척 챔버, 검출 챔버에서의 세척컵과 자성빔의 위치관계를 설명하는 도면이다.
도 23은 본 발명의 일 실시예에 따른 액상 면역반응 분석방법의 전체적인 흐름도이다.
도 24는 본 발명의 일 실시예에 따른 시료 분주 과정의 흐름도이다.
도 25는 본 발명의 일 실시예에 따른 세척 과정의 흐름도이다.
도 26은 본 발명의 일 실시예에 따른 광학 검사 과정의 흐름도이다.
도 27a는 종래의 광학 검사 과정에 따른 재현성과 바이어스의 측정값을 설명하고, 도 27b는 본 발명의 일 실시예에 따른 재현성과 바이어스의 측정값을 설명한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 실시예들은 본 발명을 설명하기 위한 예시적인 것이며, 본 발명의 범위를 제한하려는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 액상 면역반응 분석장치(1)의 구성도이다. 도시된 바와 같이, 액상 면역반응 분석장치(1)는 하우징(100)에 디스플레이부(110)와 인입출구(120)가 구비된다.
도 2a와 도 2b는 효소 면역 측정법(Enzyme-Linked Immunosorbent Assay : ELISA) 중에서 자성비드를 이용한 샌드위치 면역반응의 과정을 설명하는 도면이고, 도 3a와 도 3b는 자성비드를 이용한 경쟁적 면역반응의 과정을 설명하는 도면이다.
샌드위치 면역반응(Sandwich immunoassay)이란 캡쳐 항체와 디텍터 항체를 샌드위치 결합하는 형태의 면역반응을 말하는데, 디텍터 항체에 효소를 화학적으로 결합시켜 기질과의 정량적 반응을 유도한다. 이때, 캡쳐 항체는 자성비드에 화학적 또는 물리적으로 결합되어 있으며 디텍터 항체는 효소와 결합되어 있는 컨쥬게이트를 이용한다. 이러한 자성비드를 이용한 샌드위치 반응은 크게 2 가지 형태로 나눌 수 있는데, 세척을 몇 단계로 하느냐에 따라 1 스텝(1 step assay) 또는 2 스텝 반응(2 step assay)로 나누어 진다. 도 2(a)에 도시된 바와 같이, 시료와 캡쳐 항체를 먼저 반응시키고, 세척한 후에 디텍터 항체를 반응시키는 방법을 2 스텝 반응이라 하며, 도 2(b)에 도시된 바와 같이, 구분 없이 캡쳐 항체와 디텍터 항체를 동시에 반응시키는 방법을 1 스텝 반응이라 한다.
샌드위치 면역반응과 함께 소량의 단백질 분자를 검출하는데 많이 이용되는 경쟁반응(Competition assay) 또한 2 가지 방법으로 나누어 진다. 자성비드에 경쟁 단백질 또는 항체를 컨쥬게이션 하느냐에 따라 간접적 경쟁반응 또는 직접적 경쟁반응으로 나누어 지며, 면역반응의 단계 구분에 따라 1 스텝, 2 스텝 반응으로 나누어 진다. 도 3(a)는 1 스텝으로 수행되는 간접 경쟁반응을 설명하고, 도 3(b)는 2 스텝으로 수행되는 직접 경쟁반응을 설명한다.
본 발명에 따른 일 실시예에서는 반응 결과물의 검출에 형광 신호가 사용된다. 이 경우, 예를 들면 ALP(Alkaline phosphatase)와 4-MUP(Methylumbelliferyl phosphate)와 같은 효소-기질 반응을 이용한다. 효소의 한 종류인 ALP는 탈인산화 반응을 일으키는 대표적인 효소이다. 4-MUP는 ALP 함께 반응하여, 효소 가수분해에 의해 탈인산화가 비가역적으로 진행되며, 결과적으로 발생되는 4-MU(4-Methylumbelliferone)는 360 nm 파장에 여기되어 450 nm 파장을 방출하는 형광 특성을 가지게 되고, 이러한 형광 신호 세기를 검출하여, 이를 시료 중의 분석물의 농도를 결정하는데 사용한다.
본 발명에 따른 다른 실시예에서는 반응 결과물의 검출에 색변화(colorimetric methods)가 사용된다. 색변화 분석은 반응 결과물이 특정 가시광선 파장에서 광을 흡수하는 가시색(visible color)의 변화를 검출하는 것으로, 반응 결과물의 신호를 흡광도를 검출하여, 이를 시료 중의 분석물의 농도를 결정하는데 사용한다. 예를 들면 대표적인 효소 및 기질의 예는 퍼옥시다제와 이의 기질인 TMB(3,3',5,5' tetramethylbenzidine), DAB(3,3',4,4'diaminobenzidine) 및 4CN(4-chloro-1-naphthol), ABTS(2,2'-azinodi[3-ethyl-benzthiazoline]sulfonate, 및 OPD(o-phenylenediamine)을 들 수 있으나, 이로 제한하는 것은 아니다. 예를 들면 TMB를 기질로 사용하는 경우 파란색이 생성되며, 이는 650nm 파장의 광으로 검출될 수 있고, ABTS는 청녹색이 생성되며 이는 405 내지 410nm의 광으로 검출될 수 있다. 또 다른 효소 기질의 예로는 ALP 와 이의 기질인 BCIP/NBT(5-bromo-4-chloro-3-indolylphosphate/nitroblue tetrazolium) 및 p-NPP(p-nitro-phenylphosphate)를 들 수 있으나, 이로 제한하는 것은 아니다. 이는 짙은 노란색을 생성하며, 이는 405 내지 410nm 파장의 광으로 검출될 수 있다.
다른 실시예에서, 반응 결과물의 검출에 화학발광(chemiluminescent)이 사용된다. 화학 발광은 화학반응에 의해 생성된 여기 전자가 기저 상태로 되돌아가면서 방출되는 광이다. 광원이 필요없으며, 시간당 상대적 광량 RLU(relative light unit)으로 측정하여, 이를 시료 중의 분석물의 농도를 결정하는데 사용한다. 예를 들면 효소 및 기질의 예는 퍼옥시다제 및 이의 기질로 루미놀, 폴리페놀(예를 들면 파이로갤롤, 퍼퍼로갤린, 갤릭산, 및 엄벨리페론 등을 포함) 및 아크리딘에스테르 또는 루시페린(이를 사용하는 경우, bioluminescence 라고 칭함)을 들 수 있으나, 이로 제한하는 것은 아니다. 또 따른 효소 및 기질의 예는 ALP 와 AMPPD(3-(2'-spiroadamantyl)-4-methoxy-4-(3″-phosphoryloxy)-phenyl-1,2-dioxetane)를 들 수 있으나, 이로 제한하는 것은 아니다.
이러한 분석에서는 특히 높은 특이성의 고감도의 검출이 필요하고, 이를 위해 비특이적 또는 미반응물의 제거가 요구된다. 즉, 검사 과정에서 시약과 시료의 반응 후, 반응 결과물의 정확한 검출을 위해서는 반응 결과물의 정제 또는 분리(purification)가 필요하며, 본 발명에 따른 장치는 이러한 미반응물의 효과적 제거에 최적화된 장치이다.
구체적으로, 본 실시예에 따른 장치는 미반응물을 자성을 이용한 물리적 세척을 통해 제거한 후 특이적 반응의 결과물 만을 영구자석을 이용하여 자성비드 형태로 분리하여 농축시키고, 이 반응 결과물에 효소가 부착된 감지제(detector)를 선택적으로 결합시키고, 최종적으로 효소와 기질을 반응시켜 이로부터 나오는 반응 결과물의 신호를 검출하는데 최적화된 장치이다.
본 실시예에 따른 장치에 사용되는 상기와 같은 반응은 장치에 장착된 큐베트내에서 액체 상태에서 수행된다. 본 발명의 일 실시예에 따른 장치는 큐베트에서의 상기와 같은 반응의 수행 및 반응 결과물의 검출을 위해 반응에 수행되는 여러 가지 파라미터의 특성을 고려하여 최적화된 반응 단계의 수행에 최적화된 것이다.
도 4는 본 발명의 일 실시예에 따른 큐베트(10)의 구조를 나타낸 도면이다. 도 5는 본 발명의 일 실시예에 따른 분주컵(20)의 구성도이고, 도 6은 본 발명의 일 실시예에 따른 세척컵(30)의 구성도이다.
본 실시예에 따른 자동화된 액상 면역반응 분석장치(1)에 사용되는 큐베트(10)는 시료 중에 포함된 분석물의 검출을 위한 반응에 사용되는 것으로, 큐베트에서 시료와 시약의 반응이 수행되고, 반응 결과물이 생성되고, 상기 반응 결과물이 세척된다.
큐베트(10)는 전후 방향으로 연장된 길다란 형상을 가질 수 있다. 또한, 큐베트(10)는 하나 이상의 끼움 홀과, 복수 개의 챔버를 포함할 수 있다. 이러한 챔버는 또한 웰로 언급될 수 있다.
끼움 홀은 검사가 시작될 때까지, 또는 검사 과정 중에 세척컵(30)과 분주컵(20)이 끼워져 대기하는 곳으로서, 세척컵 끼움 홀(21) 및 분주컵 끼움 홀(31)이 각각 마련된다.
상기 챔버는 시료 충진 챔버(12), 완충액 및 희석용 챔버(13a, 13b, 13c 및 13d), 반응 챔버(14), 세척 챔버(15), 및 검출 챔버(16)를 순서대로 포함하여 구성될 수 있다. 상기 챔버는 시약의 변성 또는 오염 등을 막기위해 소정의 밀봉막(미도시)에 의해서 밀봉되어 있을 수 있다.
시료 충진 챔버(12)는 각종 시료, 예를 들면 분석대상이 되는 생물학적 시료가 충진되도록 마련되며, 앞서 언급한 바와 같이 세척컵 끼움 홀(21) 및 분주컵 끼움 홀(31)의 전방 또는 후방에 형성될 수 있다.
완충액(또는 버퍼라고도 칭함) 및 희석 챔버(13a, 13b, 13c 및 13d)는 반응에 필요한 자성비드(magnetic bead : MB) 버퍼, 검출버퍼, 시료 희석 버퍼가 충진(13a, 13b, 13c) 되고, 시료를 희석(13d) 할 수 있도록 시료 충진 챔버(12) 또는 의 세척컵 끼움 홀(21) 및 분주컵 끼움 홀(31)의 후방에 위의 순서대로 마련된다.
반응 챔버(14)는 시료와 시약 간의 반응이 수행되도록 마련되며, 완충액 및 희석용 챔버의 후방에 형성된다.
세척 챔버(15)는 반응 챔버에서의 반응 후에, 반응 결과물의 세척이 이루어질 수 있는 챔버로 복수개를 포함할 수 있으며, 본 발명의 일 실시예에서는 세 개(15a, 15b 및 15c)를 포함한다.
검출 챔버(16)는 시료와 시약이 반응하여 생성된 반응 결과물의 검출이 수행되는 곳으로, 세척 챔버(15)에서의 세척 후의 반응 결과물에서 분석물의 존재를 검출할 수 있도록 마련된다. 검출 챔버(16)는 세척 챔버(15)의 후방에 형성되며, 형광 신호의 검출을 위해 광 투과성을 갖게 구성될 수 있다.
본 실시예에서 큐베트(10)는 바코드 또는 QR 코드(미도시)를 추가로 포함할 수 있으며, 이는 본 발명에 자동화된 액상 면역분석장치(1)에 삽입되는 후술하는 칩과 연동되어 사용된다. 본 발명에서 바코드는 UPC-A, UPC-E, EAN, Code 3 of 9, Interleaved 2 of 5, Code 128, UCC/EAN-128, Codabar, PostNet, Pharmacode, or PDF-417를 포함하나 이로 제한하는 것은 아니며, 또는 1D 바코드 또는 2D 바코드를 포함하나 이로 제한하는 것은 아니다. 바코드 또는 QR 코드는 시료의 종류에 따른 분석물의 종류 등을 부호화 한 것이다.
도 7은 본 발명의 일 실시예에 따른 분주컵(20)과 세척컵(30)이 장착된 큐베트(10)의 상태를 설명한다.
분주컵(20)은 시료 및/또는 상술한 챔버간, 즉 하나의 챔버에서 다른 챔버로 시약의 분배 또는 분주를 위해 후술하는 채취암(556)과 체결되어 사용되는, 일회용 마이크로팁(예를 들면, 2-1000μl 용량의 마이크로파이펫 팁)을 포함하여 구성될 수 있다. 분주컵(20)은 관 형상을 가지고, 그 끝단으로 갈수록 그 직경이 점점 작아져 그 끝단부는 뾰족한 형상을 가질 수 있다. 위와 같은 분주컵(20)은 별도의 시약 공급 장치 및 오염을 세척하는 수단을 구비하지 않는 장비와 사용될 수 있어 장비의 작동이 간소화된다.
본 실시예에 따른 장치에 사용되는 복수개의 큐베트는 각각의 큐베트 별로 분주컵(20) 및 세척컵(30)을 각각 장착할 수 있도록 구성되어 있어, 다른 큐베트에 사용되는 팁과 구분되어 사용될 수 있어, 오염을 방지할 수 있다. 기존의 금속재질의 주사바늘을 사용하는 자동화 장비의 경우, 오염을 방지하기 위하여, 이를 세척하기 위한 장치를 구비하여야 하기 때문에, 별도의 장치 구성으로 부피가 커지고, 이를 세척하기 위한 별도의 과정이 필요하며, 검사 비용이 증가하는 문제점이 있다.
분주컵(20)은 큐베트(10)의 분주컵 끼움 홀(21)에 끼워져 안착되어 있다가 검사 과정이 시작되면 후술하는 채취암(556)에 체결되어 펌프 유닛(506)과 더불어 챔버 간의 시료 또는 시약의 분배 또는 분주를 위해 흡입 또는 배출하는 역할을 한다. 또한 검사 과정 중에, 제1 큐베트에서 반응이 일어나는 동안에, 제2 또는 제3 큐베트에서의 반응을 수행하기 위해, 제1 큐베트에서 사용하는 분주컵(20)을 임시로 끼움 홀(21)에 보관할 수 있어, 중간에 팁을 교체하지 않고, 검사가 종료될 때까지 하나의 큐베트에는 한 개의 팁만을 사용할 수 있어, 간편하면서도, 반응 시간을 줄일 수 있는 장점이 있다. 이는 본 발명의 일 실시예에 따른 장치의 작동 과정에서 보다 상세히 설명된다.
세척컵(30)은 소정의 높이와 폭을 갖고 관 형상을 갖되 하단이 밀폐되어 있는 부재로서, 상부에 소정의 깊이와 내경을 갖는 투입 홀이 형성되어 있다. 세척컵(30)은 자성을 전달할 수 있도록 비 자성 재질로 구성되며, 세척암에 대해 고정하는 것 및 세척암으로부터 분리시키는 것이 용이하도록 유연한 재질로 구성될 수 있다. 세척컵(30) 또한, 큐베트(10)의 세척컵 끼움 홀(21)에 끼워져 안착되어 있다가 검사 과정이 시작되면 스트로암(554)에 체결되어 후술하는 바와 같이 세척을 수행하게 된다. 또한 검사 과정 중에, 제1 큐베트에서 반응이 일어나는 동안에, 제2 또는 제3 큐베트에서의 반응을 수행하기 위해, 제1 큐베트에서 사용하는 세척컵(30)을 끼움 홀(31)에 보관할 수 있어, 하나의 큐베트에는 한 개의 팁만을 사용할 수 있어, 간편하면서도, 반응 시간을 줄일 수 있는 장점이 있다. 이는 본 발명의 일 실시예에 따른 장치의 작동 과정에서 보다 상세히 설명된다.
본 실시예에 따른 큐베트는 3 개가 사용되며, 세 종류의 분석을 수행하기에 최적화된 것이다. 예를 들면 동일한 생물학적 시료에서 세 가지 종류의 다른 분석물 예를 들면 갑상선 진단을 위한 FT4(Free thyroxine), TSH(Thyroid stimulating hormone) 및 T3(triiodothyronine), 그리고 기형아 검사를 위한 hCG(chorionic gonadotropin), E3(Estriol) 및 AFP(Alpha Feto Protein)를 들 수 있다.
도 8 및 도 9는 본 발명의 일 실시예에 따른 액상 면역반응 분석장치(1)를 하우징(100)을 생략하고 다른 방향에서 바라본 구성도이다. 도시된 바와 같이, 액상 면역분석장치(1)는 하우징(100), 프레임(200), 큐베트 모듈(300), 광학 판독 모듈(400), 및 디스펜서 모듈(500)을 포함한다.
하우징(100)은 자동화된 액상 면역분석장치(1)의 전체 외장을 이루는 것으로서, 그 내부로 이물질의 유입을 차단하는 역할을 함께 수행한다. 하우징(100)에는 조작을 위한 각종 입력부, 및 출력을 위한 디스플레이부(110)가 구비될 수 있다. 또한, 하우징(100)에는 큐베트(10)가 삽입되는 인입출구(120)가 구비된다. 인입출구(120)를 통해 큐베트(10)가 하우징(100)의 내부로 들어가면 하우징(100)을 통해 큐베트(10)에 포함된 챔버에 이물질이 유입되는 것이 차단되므로 보다 정확한 시료 검사를 수행할 수 있다.
프레임(200)은 하우징(100) 내에 마련되어 큐베트 모듈(300), 광학 판독 모듈(400), 디스펜서 모듈(500) 등이 고정되도록 할 수 있다. 프레임(200)은 하부 프레임(210), 제1 사이드 프레임(220), 제2 사이드 프레임(230), 및 후방 프레임(240)을 포함한다.
하부 프레임(210)은 자동화된 액상 면역분석장치(1)의 아래 부분에 배치된다. 하부 프레임(210)은 소정의 면적을 갖는 플레이트 형태의 구조를 가질 수 있다. 후방 프레임(240)은 장치의 후방에 위치하며 소정의 제어 장치 등이 고정될 수 있도록 마련될 수 있다.
제1 사이드 프레임(220)과 제2 사이드 프레임(230)은 상기 하부 프레임(210)의 좌, 우에 각각 배치되며, 소정의 높이를 갖고 세워지게 구성될 수 있다. 아울러, 제1 사이드 프레임(220)과 제2 사이드 프레임(230)은 각각 홀더(310)의 전후 방향 변위를 안내하는 가이드 공간(222, 232)을 가질 수 있다.
큐베트 모듈(300)은 하우징(100) 내에 구비되며, 큐베트(10)가 수납되고 수납된 큐베트(10)를 전후 방향으로 이동시키는 장치이다. 큐베트 모듈(300)은 홀더(310), 홀더 구동부(320), 홀더 안내부(330), 및 리무버 모듈(340)을 포함한다.
홀더 구동부(320)는 홀더의 위치를 조정할 수 있다. 본 실시예에서는 홀더 구동부(320)를 홀더(310)에 대해서 전후 방향의 힘을 가하는 부재로 구성할 수 있다. 홀더 구동부(320)는, 홀더(310)가 고정되는 이동식 바디(322), 구동 모터, 및 상기 구동 모터의 동력을 이동식 바디(322)에 전달하는 소정의 전달 부재를 포함할 수 있다. 구동 모터로는 서보 모터, 스텝 모터, DC 모터 등을 사용할 수 있다.
홀더 안내부(330)는 홀더(310)의 전후 방향 변위를 안내하도록 구비된다. 홀더 안내부(330)는 전후 방향으로 연장되는 소정의 안내 레일, 및 상기 안내 레일에 연결되어 안내 레일을 따라서 전후로 이동 가능하며 상기 이동식 바디(322)에 연결되는 소정의 가이드부를 포함하여 구성될 수 있다.
도 10은 본 발명의 일 실시예에 따른 홀더(310)의 구성도이고, 도 11은 도 10에 도시된 홀더(310)에 큐베트(10)가 탑재된 형태를 설명하는 도면이며, 도 12는 도 10에 도시된 홀더(310)의 하부를 설명하는 도면이다.
홀더(310)는 큐베트(10)가 안착될 수 있는 부재이다. 예컨대, 홀더(310)는 상기 하부 프레임(210) 상에 배치되되 하우징(100)의 인입출구(120)의 후방에 배치될 수 있다. 따라서 인입출구(120)를 통해 큐베트(10)를 홀더(310)에 끼워 밀어 넣을 수 있다. 홀더(310)는 하나 이상의 상기 큐베트(10)가 각각 삽입되어 장착될 수 있도록, 슬롯 형태의 장착 채널(312)을 가질 수 있다. 상기 장착 채널(312)은 전후 방향으로 길게 연장되며 전방으로 개방된 구성을 가질 수 있다.
장착 채널(312)의 후방 단부에는 검사 홀(314)이 형성된다. 검사 홀(314)은 상하 방향으로 관통되게 구성된 부분이다. 따라서, 홀더(310)의 장착 채널(312) 내에 큐베트(10)가 수납되어 장착되면 홀더(310)의 후방 일 부분의 하부는 상기 검사 홀(314)을 통해 아래 방향으로 노출된다. 구체적으로, 큐베트(10)의 후방에 배치된 검출 챔버(16)의 하부가 상기 검사 홀(314)을 통해 아래 방향으로 노출될 수 있다.
또한, 장착 채널(312)은 상기 홀더(310)에 복수 개 형성되어, 상기 각각의 장착 채널(312)에 큐베트(10)가 삽입되고 복수 개의 큐베트(10)에 대한 검사가 이루어질 수 있다. 이때, 하나의 홀더(310)에 복수 개의 상기 장착 채널(312)이 서로 측방향으로 나란하게 배열되는 배치를 가질 수 있다.
홀더(310)의 하부는 열판(316) 및 열판 전원부(318)를 구비한다. 이는 반응이 진행되는 동안 큐베트 및 큐베트에 포함된 반응물을 일정한 온도로 유지되도록 자동으로 제어하기 위함이며, 이는 온도에 민감하게 반응하는 생체시료의 특성에 따라, 검사의 정밀성 및 정확성을 보장한다.
열판(316)은 홀더(310)를 가열하여 대류에 의해 큐베트(10)와 큐베트 및 이 내부에 포함된 시료 및 반응물을 일정한 온도로 가온 및 특정 온도로 유지하는 기능을 한다. 온도는 내장된 프로그램에 의해 자동으로 제어 된다. 자동 제어를 위해 온도 센서가 채용되며, 본 발명의 일 실시예에서는 홀더, 열판, 및 장치 내부에 온도 센서가 사용된다. 장치의 온도 센서는 장치 내부의 온도는 광학계에 영향을 미치기 때문에, 장치 내부의 온도 제어에 사용된다. 열판의 온도 센서는 열판의 온도 제어, 홀더의 온도 센서는 홀더의 온도를 측정하여 열판을 피드백 방식으로 제어한다.
도 13은 본 발명의 일 실시예에 따른 리무버 모듈(340)의 구성도이다.
리무버 모듈(340)은 면역 검사 중 분주컵(20)과 세척컵(30)의 사용 후, 면역 반응시간(인큐베이션) 동안 다른 큐베트에서 시약을 분주/믹싱하기 위해, 또는 각 큐베트에서 반응이 종료된 후, 상기 팁을 제거하기 위한 부재이다.
리무버 모듈(340)은, 제2 사이드 프레임(230)에 고정될 수 있는 소정의 구동 장치(342), 및 구동 장치(342)에 의해서 변위될 수 있는 소정의 리무버 플레이트(350)를 포함하여 구성될 수 있다. 구동 장치(342)와 리무버 플레이트(350)는 소정의 샤프트(344)에 의해서 연결될 수 있다.
리무버 플레이트(350)는 도 8에 도시된 바와 같이 홀더(310)와 디스펜서 모듈(500)의 사이에 오도록 위치되어 있다. 도 13을 참조하면, 리무버 플레이트(350)는 플레이트 바디(352)를 갖고, 상기 플레이트 바디(352)에는 3개의 리무버 홀(354a, 354b, 및 355)이 일렬로 형성된 리무버 라인이 형성되어 있다. 리무버 라인은 홀더(310)에 형성된 장착 채널(312)의 수에 상응하는 개수가 형성된다. 리무버 라인의 두 개의 리무버 홀(354a, 354b)은 서로 연결되어 있는 방식으로 형성되어 있고, 홀더(310)와 디스펜서 모듈(500)의 사이에 오도록 위치되어 각각 후술하는 펀칭암(552) 및 스트로암(554)이 통과한다. 리무버 라인의 단독으로 형성되어 있는 한 개의 리무버 홀(355)은 채취암(556)이 통과한다.
리무버 홀(354a, 354b, 355)의 각각에는 일 측으로 함몰된 함몰부(356)를 가질 수 있다. 따라서, 채취암(556)에 채결된 분주컵(20), 스트로암(554)에 채결된 세척컵(30)이 상기 상응하는 리무버 홀(354a, 354b, 355)내에 위치한 상태에서 상기 채취암(556)이 상기 함몰부(356)에 위치하도록 리무버 플레이트(350)가 좌측 수평방향으로 변위하고, 이때 상기 분주컵(20)의 상단의 일부는 상기 플레이트의 상기 함몰부 아래에 위치하게 되고, 상기 채취암 또는 상기 스트로암이 상방향으로 이동하면, 상기 채취암(556)에 채결된 분주컵(20) 또는 상기 스트로암(554)에 채결된 세척컵(30)의 상단 일부에 힘이 가해져, 각각의 암으로부터 제거될 수 있다.
리무버 홀(355)은 분주컵(20) 또는 세척컵(30)의 상단의 면적보다 넓어서, 분주컵(20)을 장착한 채취암 또는 세척컵(30)을 장착한 스트로암이 리무버 홀을 통과할 수 있도록 한다. 함몰부(356)는 채취암 또는 스트로암의 반경보다 커서 채취암 또는 스트로암이 함몰부에 안착될 수 있는 것이 바람직하다. 함몰부(356)는 분주컵(20) 또는 세척컵(30)의 상단이 돌출된 부분에 걸릴 수 있도록 분주컵(20) 또는 세척컵(30) 상단의 면적 보다 작게 형성하는 것이 바람직하나 분주컵(20) 또는 세척컵(30)을 채취암 또는 스트로암과 분리할 수 있으면 형상은 크게 무관하다.
본 실시예에 따른 장치에 사용되는 큐베트(10)에서 일어나는 반응은 시작부터 검출할 때까지 최소 2 회 이상의 인큐베이션 과정을 필요로 한다. 본 실시예에 따른 장치에 리무버 모듈(340)이 구비됨으로써 다음에 설명하는 바와 같이, 하나의 큐베트에서는 한 개씩의 분주컵(20) 및 세척컵(30)만 사용하면서도, 인큐베이션 시간 동안 다른 장차 채널(312)에 장착된 다른 큐베트에서의 반응 준비를 할 수 있는 장점이 있다.
구체적으로, 제1 장착 채널(312)에 장착된 큐베트에서 면역 반응이 일어나도록 하는 제1 인큐베이션 시간 동안에, 제2 장착 채널에 구비된 큐베트에 시약을 분주/혼합하기 위해, 제1 채널에 사용되었던 분주컵(20) 및 세척컵(30)을 제1 큐베트의 상응하는 위치(21 및 32)에 임시로 보관하고, 상기 제1 인큐베이션 시간 경과 후에 상기 임시 보관 중인 분주컵(20) 및 세척컵(30)을 재사용할 수 있다. 즉, 리무버 모듈(340)이 없을 경우, 제1 장착 채널에서 일단 사용된 분주컵(20) 또는 세척컵(30)은 재사용하지 못하고, 버린 후 제1 인큐베이션의 경과 후에, 새롭게 장착하여 다음 과정을 수행하여야 하므로, 장착 채널에 구비된 큐베트 한 개당, 최소 2 개씩의 분주컵(20) 및 세척컵(30)이 필요하게 된다. 그러나, 본 발명은, 리무버 모듈(340)이 구비됨으로써, 각 큐베트 당 한 개씩의 분주컵(20)과 세척컵(30)만으로도 검사 과정을 수행할 수 있는 장점이 있다.
도 10에 도시된 바와 같이, 면역반응 분석장치(1)는 표준 블록(360)을 포함할 수 있다. 표준 블록(360)은 홀더(310)에 고정되어 홀더(310)와 함께 일체로 변위하며, 홀더(310)의 후방에 위치할 수 있다. 바람직하게는, 표준 블록(360)은 상기 검사 홀(314) 중 적어도 하나의 검사 홀(314)의 후방에 위치할 수 있다.
표준 블록(360)은 상하 방향으로 관통된 소정의 광학 홀(362)을 가지며, 상기 광학 홀(362)에는 광학적으로 검출되거나, 또는 포착될 수 있는 소정의 광학 수단이 구비될 수 있다.
본 실시예에서 표준 블록(360)은 광학 수단을 포함한다. 본 발명의 일 실시예에서 표준 블록(360)에 포함된 광학 수단은 소정의 형광 값을 갖는 형광 측정 표준 물질을 탑재한다. 형광 측정 표준 물질은 반응 결과물에 검출되는 형광의 종류의 맞추어 적절한 여기 및 방출 파장을 갖는 물질이 사용될 수 있다.
본 발명의 다른 실시예에서 표준 블록(360)에 포함된 광학 수단은 가시색(visible color)의 흡광도 측정 표준 물질을 탑재한다. 흡광도 측정 표준 물질은 반응 결과물에 검출되는 가시색의 흡광도 영역에 맞추어 적절한 것이 선택될 수 있으며 본 발명의 일 실시예에서는 유리(glass plate), 플라스틱(plastic plate), 겔(gel), 적절한 액상 용액 등이 사용되나, 이로 제한되는 것은 아니다.
이는 광학 분석에서 반응 종료 후에 반응 결과물의 형광 또는 흡광도 값을 측정할 때, 표준 블록(360)에 탑재된 표준 형광 또는 흡광도를 먼저 스캔하고 반응 결과물의 신호값을 측정하여 이를 비율로 표시한다. 이는 기기간의 편차를 없애기 위한 것으로 표준 물질을 이용하여 측정값과의 비율을 계산하고, 이 비율은 마스터 칼리브레이션 그래프로 내장되어 있는 데이터와 대조하여 시료 중의 분석물의 농도를 정확하게 계산한다.
형광 또는 흡광도 신호를 측정하는 경우, 장비간의 형광 값의 절대치는 상이한 것이 일반적이다. 따라서 형광 절대값으로 농도를 계산할 경우, 장비에 의한 오차가 발생할 수 있는 문제점이 있다. 따라서 본 발명의 일 실시예와 같이 표준 블록의 표준 물질을 이용하여 측정값 과의 비를 이용하는 경우 장비간 측정값의 오차를 줄이고 정확도 및 재현성이 향상된다.
본 발명의 또 다른 실시예에 따른 장치는 표준 블록(360)을 포함하지 않을 수 있거나, 또는 표준 블록(360)을 포함하더라도, 이를 사용하지 않을 수 있다. 예를 들면, 반응 결과물에서 검출되는 신호가 화학발광인 경우에는 표준 블록을 포함하지 않거나, 표준 블록을 포함해도, 이는 사용되지 않을 수 있다. 이 경우, PMT, Avalanche photodiode 와 같은 광 디텍더를 포함하며, 또한 상대적 광량을 측정하기 위해, 정해진 일정시간 동안의 빛의 양을 측정하기 위한 수단으로 하드웨어 또는 소프트웨어 적으로 구현된 셔터를 구비할 수 있으며, 이를 통해 장치간 검출 신호의 편차를 비교하여 이를 보정할 수 있다.
도 14는 도 8에 도시된 액상 면역반응 분석장치(1)에서 후방 프레임을 생략한 도면이다.
홀더 구동부(320)가 작동하면 홀더(310)가 전후 방향으로 변위할 수 있다. 이때, 홀더(310)가 후방으로 일정 거리만큼 이동하면 홀더(310)에 고정된 표준 블록(360)은 광학 판독기(410) 상에 위치하게 된다. 따라서, 표준 블록(360)의 형광 신호를 광학 판독기(410)가 포착할 수 있다.
홀더(310)가 후방으로 끝까지 이동하면, 홀더(310)의 후방 하부는 광학 판독 모듈(400)상에 위치한다. 따라서, 홀더(310)의 장착 채널(312)에 큐베트(10)가 장착된 상태로 홀더(310)가 후방으로 끝까지 이동하면 큐베트(10)의 후방에 배치된 검출 챔버(16)의 하부가 상기 검사 홀(314)을 통해서 광학 판독 모듈(400)에 노출될 수 있다.
홀더(310)의 변위는 홀더 안내부(330)에 의해서 안내되므로 요동 없이 안정적으로 이루어질 수 있다. 특히, 풀리-벨트 타입의 홀더 구동부(320)가 마련됨에 따라서, 이동시 발생되는 마찰에 따른 진동 및 이물질을 방지할 수 있으므로, 기어 타입에 비해서 보다 정확한 검사가 이루어질 수 있다.
광학 판독 모듈(400)은 큐베트(10) 내의 반응 결과물의 신호를 측정하기 위해 광학 분석을 수행한다. 광학 판독 모듈(400)은 광학 판독기(410), 판독기 구동부(420), 및 판독기 안내부(430)를 포함한다. 광학 판독 모듈(400)에 의한 광학 분석은 반응 결과물의 형광 신호, 가시색 또는 화학발광의 측정을 포함하며, 상기 각 신호에 대한 정의를 앞서 언급한 바를 참조할 수 있다.
광학 판독기(410)는 홀더(310)가 후단으로 이동하였을 때, 홀더(310)의 아래에 위치하는 배치를 갖는다. 따라서, 큐베트(10)가 홀더(310) 내에 수납된 상태로 홀더(310)가 후방으로 이동하면 큐베트(10)의 검출 챔버(16)가 광학 판독기(410) 상에 위치하게 된다. 따라서 검출 챔버(16) 내의 반응 결과물에 대한 형광값에 대한 측정이 광학 판독기(410)에 의해 이루어질 수 있다.
광학 판독기(410)는 큐베트(10)의 검출 챔버(16)의 반응 결과물의 신호를 판독하여 시료 중에 포함된 특정 대상 분석물을 정성 및/또는 정량적으로 분석할 수 있도록 한다.
본 실시예에서 광학 판독기(410)는 형광 신호를 검출한다. 본 발명의 일 실시예에 따른 분석물의 검출에 사용된 형광 물질의 종류에 맞춰 특정 파장의 빛을 조사하고 방출된 빛을 판독할 수 있도록 구성된다.
광학 판독기(410) 내에는 출력이 조절될 수 있는 상기 형광 신호의 측정을 위해 형광 물질을 충분히 여기 시킬 수 있는 광원(610), 즉 소정의 발광 소자가 구비될 수 있다. 이러한 발광 소자의 예로는 Xenon 램프, UV 레이저 또는 LED(Light Emitting Diode)를 포함한다.
특히 앞서 언급한 바와 같이 형광값의 측정 전에 표준 블록(360)에 광을 조사하여, 포착되는 형광의 광량을 통해 게인(gain)을 자동으로 조절하여 발광 소자의 출력이 일정 값이 되도록 조절할 수 있어, 정확한 농도의 계산이 가능하다.
광학 판독기(410)는 2 가지 이상의 광원을 가질 수 있고, 각각의 광원은 서로 상이한 파장을 갖는 광을 생성할 수 있다. 아울러, 서로 상이한 파장의 형광을 각기 측정할 수 있다. 따라서 진단 시험 방법에 대한 응용 범위가 넓어지며 보다 감도가 우수해질 수 있다.
광학 판독기(410)는 바코드 스캐너 기능을 가질 수 있으며, 따라서 큐베트(10)에 소정의 바코드가 마련된 경우 해당 바코드를 통해 소정의 신호, 정보 교환 등을 수행하도록 할 수 있다.
본 발명의 또 다른 실시예에서, 광학 판독 모듈의 광학 판독기(410)는 반응 결과물의 가시색의 흡광도 측정을 포함한다. 본 발명의 일 실시예에 따른 분석물의 검출에 사용된 물질의 종류에 맞춰 반응 결과물에 빛을 조사해서 흡광도를 측정할 수 있다. 한편, 광학 판독기(410) 내에는 출력이 조절될 수 있는, 상기 가시색의 흡광도 측정에 적절한 흡광 파장 영역대를 방출할 수 있는 광원을 포함한다. 이러한 발광 소자의 예로는 백색광원과 같은 흡광 파장대를 포함하는 램프, LED, 레이저 등을 포함할 수 있으나, 이로 제한하는 것은 아니다.
본 발명의 또 다른 실시예에서, 광학 판독기(410)는 반응 결과물의 화학발광 신호 측정을 포함한다. 본 발명의 일 실시예에 따른 분석물의 검출에 사용된 화학발광 물질의 종류에 맞추어 방출되는 빛을 검출할 수 있도록 구성되며, 빛의 발광 세기를 시간대별로 측정하기 때문에, 빛의 포집을 위한 렌즈와 광검출기로 구성되어 있다.
판독기 구동부(420)는, 하우징(100)의 내부에 구비되며, 광학 판독기(410)를 이동시켜서 복수의 큐베트(10) 중 어느 하나의 큐베트(10)에 상기 광학 판독기(410)가 위치하도록 하여 해당 큐베트(10)의 시료 검사를 수행하도록 할 수 있다. 즉, 판독기 구동부(420)는 광학 판독기(410)의 위치를 홀더(310)의 검사 홀(314)에 맞추어 이동할 수 있다.
판독기 구동부(420)는 광학 판독기(410)를 좌우로 이동시킬 수 있도록 하는 소정의 구동 모터(422), 피동 풀리(424), 및 피동 풀리(424)와 광학 판독기(410)를 연결하는 소정의 브라켓을 포함하여 구성될 수 있다. 따라서, 구동 모터의 작동에 따라서 광학 판독기(410)가 이동할 수 있다.
판독기 안내부(430)는 광학 판독기(410)의 좌우 방향 변위를 안내하도록 구비된다. 판독기 안내부(430)는 소정의 안내 레일과, 안내 레일을 따라서 안내되며 광학 판독기에 고정되는 소정의 가이드부를 포함하여 구성될 수 있다. 따라서, 광학 판독기의 좌우 방향 이동이 일 방향으로 정확하게 안내될 수 있다.
앞서 설명한 바와 같이, 이때, 홀더(310)가 후방으로 일정 거리만큼 이동하면 홀더(310)의 후방 하부의 표준 블록(360)은 광학 판독 모듈(400)의 광학 판독기(410)상에 위치한다. 따라서, 먼저 광학 판독 모듈(400)은 표준 블록(360)에서 포착된 형광 신호를 표준 형광으로 감지하게 된다.
이어서, 홀더(310)의 장착 채널(312)에 큐베트(10)가 장착된 상태로 홀더(310)가 후방으로 끝까지 이동하면 큐베트(10)의 후방에 배치된 검출 챔버(16)의 하부가 상기 검사 홀(314)을 통해서 광학 판독기(410)에 노출되어 광학 측정이 이루어질 수 있다.
이때, 앞에서와 같이 표준 블록(360)에 의해서 포착된 형광 신호와 검출 챔버(16)에서 포착되는 형광 신호의 비율로 표시된다. 광학 판독 모듈(400)은 상기와 같은 비율을 마스터 캘리브레이션 그래프로 내장된 데이터와 대조하여 시료 중 분석물의 농도 계산을 가능하게 하는 소정의 알고리즘, 및 소정의 반복 측정 알고리즘을 가질 수 있다.
상기와 같이, 표준 블록(360)에 탑재된 표준 형광의 형광값과, 시료의 형광값을 비교하는 형태로 측정이 이루어짐에 따라서, 정확한 측정이 이루어질 수 있다. 즉, 일반적인 종래 기술에 의하면 장비에 따라서 형광값의 차이가 존재하며, 이러한 차이를 줄이기 위해 대부분 QC 단계에서 기기간의 차이를 줄이는 캘리브레이션 과정을 거칠 필요가 있었다. 그러나 이러한 과정에도 불구하고 기기 또는 시약의 변화로 인해서, 이러한 차이를 완전히 해소하기는 어렵다. 그러나, 본 발명에서는 표준 블록(360)에 탑재된 표준 형광이 레퍼런스로 작용함으로써, 위와 같은 문제가 해결될 수 있다.
도 15와 도 16은 본 발명의 일 실시예에 따른 디스펜서 모듈(500)을 분리하여 다른 방향에서 바라본 구성도이다. 디스펜서 모듈(500)은 시료, 시약 및/또는 반응 물질을 분배, 분주하고 세척하기 위해 구비되는 모듈이다. 도시된 바와 같이, 디스펜서 모듈(500)은 구동 유닛(502), 디스펜서 유닛(504), 및 펌프 유닛(506)을 포함한다.
구동 유닛(502)은 디스펜서 유닛(504)을 좌우 수평으로 이동시키는 역할을 한다. 따라서, 디스펜서 유닛(504)은 구동 유닛(502)에 의해서 수평 이동되어, 디스펜서 유닛(504)을 구동 유닛의 아래에 병렬로 나란하게 위치한 복수개의 큐베트(10) 중 어느 하나의 큐베트(10) 상의 특정 챔버에 위치할 수 있게 된다. 구동 유닛(502)은, 고정 바디(510), 및 좌우 수평 구동부(520)를 포함하여 구성될 수 있다.
고정 바디(510)는 소정의 면적을 갖고 좌우 방향으로 길게 연장될 수 있다. 고정 바디(510)는 좌우 방향으로 연장된 프론트 바디(512)와, 프론트 바디(512)의 일 측에 마련되어 펌프 유닛(506)이 고정되는 사이드 바디(514)를 포함할 수 있다.
좌우 구동부(520)는 고정 바디(510)에 배치되며, 후술하는 디스펜서 유닛(504)을 좌우 수평으로 이동시키는 구동 수단이다. 좌우 구동부(520)는 동력을 발생시키는 소정의 구동 모터와, 상기 구동 모터에 의해서 좌우로 변위 할 수 있는 소정의 이동 브라켓을 포함할 수 있다. 또한, 상기 이동 브라켓의 변위를 안내할 수 있는 소정의 안내 수단(530)을 구비할 수 있다. 그 외에, 동력을 전달하는 소정의 피동 풀리 부재를 포함할 수 있다.
디스펜서 유닛(504)은 도시된 바와 같이, 좌우 이동 바디(540), 상하 이동 바디(542), 상하 구동부(544), 암 유닛(550)을 포함하여 구성될 수 있다.
좌우 이동 바디(540)는 좌우 구동부(520)에 연결된다. 앞서 설명한 바와 같이, 좌우 구동부(520)가 소정의 이동 브라켓을 포함하며, 상기 좌우 이동 바디(540)가 상기 이동 브라켓에 연결되어 좌우 수평으로 변위 할 수 있다.
상하 이동 바디(542)는 좌우 이동 바디(540)의 전방에 배치된다. 상하 이동 바디는 상하 구동부(544)에 의해서 상하로 변위 할 수 있다.
상하 구동부(544)는 좌우 이동 바디(540)에 배치되며, 상하 이동 바디(542)를 상하 방향으로 이동시키는 구동 수단이다. 상하 구동부(544) 또한, 동력을 발생시키는 소정의 구동 모터와, 상기 구동 모터에 의해서 좌우로 변위 할 수 있는 소정의 이동 브라켓을 포함할 수 있다. 또한, 상기 이동 브라켓의 상하 방향 변위를 안내할 수 있는 소정의 안내 수단(546)을 구비할 수 있다. 그 외에, 동력을 전달하는 소정의 피동 풀리 부재를 포함할 수 있다.
암 유닛(550)은 상하 구동부(544)에 의해서 상하 이동할 수 있으며, 동시에 구동 유닛(502)에 의해서 좌우 이동할 수 있는 부재이다. 암 유닛(550)은 상하 이동 바디(542)에 연결되며 서로 수평방향으로 각각 이격된 위치에서 아래 방향으로 연장되는 펀칭암(552), 채취암(556), 및 스트로암(554)을 포함하여 구성될 수 있다. 따라서, 암 유닛(550)은 펀칭암(552), 채취암(556), 및 스트로암(554)이 일체로 구성되는 일체형 모듈을 구성할 수 있다. 펀칭암(552)은 하단에 펀칭 팁(553)이 구비되며, 큐베트(10)의 밀봉 커버를 뚫어 개방시키는 부재로, 큐베트(10)의 해당 챔버를 덮고 있는 밀봉 부위를 뚫는다. 스트로암(554)은 상하 방향으로 관통되어 상하 중공(555)을 갖는다. 스트로암(554)은 상기 세척컵(30)의 투입 홀 내에 투입되어 끼워질 수 있는 외경을 갖는다. 채취암(556)은 하단에 분주컵(20)이 고정될 수 있도록 마련된다. 채취암(556)은 상기 분주컵(20) 내에 투입되어 끼워질 수 있는 외경을 가질 수 있다. 바람직하게는, 펀칭암(552), 스트로암(554), 채취암(556)은 전후 방향으로 일렬로 배치된다.
세척 유닛(560)은 구동 모터(562)와 자성빔(564)을 포함하여 구성된다.
구동 모터(562)는 상하 이동 바디(542)에 고정되며, 자성빔(564)에 연결되어, 자성빔(564)을 상하 방향으로 변위 시킬 수 있다. 한편, 반드시 구동 모터(562)에 한정하는 것이 아니며, 자성빔(564)을 상하 변위 시킬 수 있는 소정의 구동 장치가 마련되면 충분하다.
자성빔(564)은 상하 방향으로 연장된 바 형태로 구성되며, 상기 스트로암(554)의 상하 중공(555) 내에 배치된다. 자성빔(564)은 자성을 가지며, 구동 모터(562)에 의해서 상하 방향으로 변위 할 수 있어, 자성을 이용한 미반응 물질을 분리하는 맥-익스트랙션(Mag-eXtraction)을 가능하게 한다.
펌프 유닛(506)은 구동 유닛(502)의 사이드 바디(514)에 고정된다. 펌프 유닛(506)은 소정의 배관(미도시)을 통해서 디스펜서 유닛(504)의 채취암(556)에 연결되어, 분주컵(20)이 채취암(556)에 연결된 상태로 큐베트(10)의 챔버에 삽입되면 흡입력 또는 배출력을 제공하는 역할을 한다. 구체적으로, 큐베트 모듈(300)에 의해서 큐베트(10)가 특정 지점에 위치하고, 구동 유닛(502)에 의해서 큐베트(10)의 챔버 상에 분주컵(20)이 위치한 상태에서 분주컵(20)이 챔버 내로 투입되면 분주컵(20)에 대해서 흡입력, 또는 배출력을 제공할 수 있다. 바람직하게는, 펌프 유닛(506)은 회전식 미소 단계 제어가 가능한 모터(570)를 구비하여, 분주컵(20)에 대해서 시료, 시약 또는 반응 결과물의 흡입 또는 배출시 그 양을 정확하게 조절하도록 구성될 수 있다.
도 17은 본 발명의 다른 실시예에 따른 디스펜서 모듈의 개념도이다.
디스펜서 모듈은 이동 바디(541), 이동 바디 구동부(543), 제어부(600)를 포함한다. 제어부(600)는 이동 바디 구동부(543)를 제어하여 이동 바디(541)를 원하는 위치로 이동시킬 수 있다.
이동 바디(541)에는 펀칭암(552), 스트로암(554), 채취암(556)이 고정되어 있다. 따라서 이동 바디의 이동에 의해 펀칭암, 스트로암, 채취암이 일체로 이동하게 된다.
펀칭암(552)의 하부에는 펀칭 팁(553)이 구비되어 있다. 펀칭암이 하부의 큐베트의 밀봉을 뚫을 때, 펀칭암과 이동 바디(541)에 함께 고정되어 일체로 이동하는 스트로암과 채취암이 하부의 큐베트와 간섭하지 않아야 한다. 즉, 이동 바디 하부로부터 펀칭암(552)의 하부까지의 길이(B)는 스트로암과 채취암의 길이(A)보다 길어야 한다. 펀칭암이 큐베트의 밀봉을 뚫기 위해 최대로 하강하여도 스트로암과 채취암이 큐베트에 닿지 않도록 적당한 길이를 설정할 수 있다.
세척컵(30)을 장착한 스트로암(554) 또는 분주컵(20)을 장착한 채취암(556)이 큐베트와 작업하는 경우 펀칭암(552)이 하부의 큐베트와 간섭하지 않아야 한다. 따라서 이동 바디 하부로부터 펀칭암(552)의 하부까지의 길이(B)는 스트로암에 장착된 세척컵(30)의 끝부분 또는 채취암에 장착된 분주컵(20)의 끝부분까지의 길이(C)보다 짧아야 한다. 즉, 세척컵(30) 및 분주컵(20)의 높이는 펀칭암의 길이와 큐베트 내의 각 챔버의 깊이를 더한 것보다 커야 한다. 각 팁은 각 암과의 장착위치 및 각 챔버에서의 원활한 동작 거리를 감안하여 적당한 길이로 설정할 수 있다.
채취암(556)은 하부에 분주컵(20)을 고정하여 장착할 수 있다. 채취암의 내부에는 상하로 관통된 채취 중공(557)을 구비한다. 채취암의 중공은 배관(507)을 통해서 펌프 유닛(506)에 연결된다. 펌프 유닛(506)은 배관 및 채취암의 중공을 통해서 분주컵(20)에 흡입력 및 배출력을 제공할 수 있다.
스트로암(554)은 하부에 세척컵(30)을 고정하여 장착할 수 있다. 스트로암의 내부에는 상하로 관통된 상하 중공(555)을 구비한다. 스트로암의 중공에는 상하로 이동 가능한 자성빔(564)이 위치한다. 자성빔을 상하로 이동시키기 위하여 구동 모터(562)를 구비한다. 이동 바디에 고정된 스트로암에 대하여 자성빔이 상대적인 운동을 할 수 있도록, 구동 모터(562)를 이동 바디에 고정하는 것이 바람직하다.
구동 모터와 자성빔의 연결은 볼스크류 등을 이용한 리니어 액츄에이터, 기어 결합을 이용한 감속기, 래크와 피니언 등을 사용하여 연결할 수 있다.
도 18은 도 17에 도시된 "A" 부분의 상세도이다.
스트로암(554)의 상하 중공(555)안에 자성빔(564)이 배치된다. 자성빔(564)은 구동 모터(562)와 연결되는 부분의 반대쪽 단부인 하부에 영구자석(565)을 구비할 수 있다. 영구자석(565)은 부착되는 자성빔과 동일한 형상의 단면적을 가지는 것이 바람직하다. 자성빔이 실린더 형상이면 동일한 지름을 가진 원통형 영구자석을 사용할 수 있다. 자성빔(564)이 구동 모터(562)에 의해서 하강하면 스트로암(554)에 끼워진 세척컵(30)(30) 내부에 영구자석이 배치되도록 할 수 있다.
영구자석(565)은 큐베트의 챔버 사이즈 보다 작을 수 있으며, 영구자석(565)의 모양은 원형, 사각형, 타원형 등 여러가지 모양을 목적에 따라 선택하여 사용할 수 있다.
도 19는 본 발명의 또 다른 실시예에 따른 디스펜서 모듈의 부분 단면도이다. 도 19에 도시된 바와 같이, 이동 바디(541)에 구동모터(562)와 스트로암(554)이 설치된다. 구동모터(562)의 구동력은 운동 변환 부재(2504), 연결 부재(2501), 소켓 부재(2505)를 경유하여 자성빔(564)으로 전달된다.
구동모터(562)의 구동력은 샤프트(2502)의 회전 운동으로 나타난다. 샤프트(2502)의 회전 운동은 운동 변환 부재(2504)에 의해 직선 운동으로 변환된다. 운동 변환 부재(2504)는 샤프트(2502)에 나사 결합되어 있고, 연결 부재(2501)에 회전할 수 없도록 고정되어 있다. 따라서 샤프트(2502)가 회전하면 운동 변환 부재(2504)와 연결 부재(2501)는 샤프트(2502)의 회전 방향에 따라 상승 또는 하강한다. 운동 변환 부재는 캠, 크랭크 등의 방식으로 구현될 수도 있으나, 나사 결합 방식이 구성이 간단하고 콤팩트해서 유리하다.
연결 부재(2501)에는 소켓 부재(2505)가 고정된다. 소켓 부재(2505)는 장착부(2506)와 캡(2507)과 스프링(2508)을 구비한다. 장착부(2506)는 하방으로 형성된 구멍(2509)을 갖는다. 구멍(2509)에는 스프링(2508)이 장착되고, 캡(2507)은 구멍(2509)에서 슬라이딩 하면서 상방이 스프링(2508)을 압착하도록 설치된다. 자성빔(564)은 캡(2507)의 하방에 나사 결합되므로써 소켓 부재(2505)에 고정된다.
구동모터(562)에 전원이 인가되어 샤프트(2502)가 회전하면 회전 방향에 따라 운동 변환 부재(2504)는 상승 또는 하강하게 된다. 운동 변환 부재(2504)는 연결 부재(2501)에 고정되어 있으므로, 운동 변환 부재(2504)의 상승 또는 하강에 따라 연결 부재(2501)도 상승 또는 하강한다. 소켓 부재(2505)는 연결 부재(2501)에 고정되어 있으므로, 연결 부재(2501)의 상승 또는 하강에 따라 소켓 부재(2505)도 상승 또는 하강하게 된다. 소켓 부재(2505)의 상승 또는 하강에 따라 소켓 부재(2505)에 장착된 자성빔(564)도 상승 또는 하강하게 된다. 이동 바디(541)에 구동모터(562)와 스트로암(554)이 설치되어 있으므로, 자성빔(564)은 스트로암(554)의 내부에 형성된 중공(555)에서 상승 또는 하강한다. 자성빔(564)의 말단에는 영구자석(도시되지 않음)이 부착되어 있고, 스트로암(554)의 말단에는 세척컵(30)이 연결되어 있다. 따라서 구동모터(562)의 샤프트(2502)가 회전하면 샤프트(2502)의 회전 방향에 따라 영구자석은 세척컵(30)의 내부에서 상승 또는 하강한다.
스프링(2508)은 캡(2507)을 경유하여 세척컵(30)의 방향으로 자성빔(564)을 푸쉬하므로 자성빔(564)의 말단에 부착된 영구자석은 세척컵(30)에 밀착된다. 구동모터(562)의 회전만으로 영구자석을 세척컵(30)에 밀착시킬 수 있으나, 구동모터(562)에 대한 제어가 정밀하지 않아 자성빔(564)이 과도하게 하강하게 되면 세척컵(30)이 스트로암(554)로부터 이탈하게 되므로 그 동안의 분석 과정을 모두 망치게 될 위험이 있다.
본 실시예에서 스프링(2508)은 자성빔(564)을 장착하는 소켓 부재(2505)에 위치하지만, 구동모터(562)의 구동력이 자성빔(564)으로 전달되는 경로의 다른 곳에 위치할 수 있다. 또한, 스프링(2508) 대신에 탄성을 갖는 폴리머가 사용될 수 있다.
도 20은 도 19에 도시된 디스펜서 모듈에서의 세척컵(30)과 자성빔(564)의 말단에 부착된 영구자석 사이의 위치관계를 설명하는 도면이다. 도 20(a)는 스프링(2508)에 의해 영구자석이 세척컵(30)에 간격(gap) 없이 밀착된 상태를 도시하고, 도 20(b)는 탄성체 없이 구동모터(562)의 회전만으로 자성빔(564)을 하강시킬 때 영구자석과 세척컵(30) 사이에 간격이 있음을 도시한다.
도 21은 영구자석으로부터의 거리와 자속밀도 사이의 관계를 설명하는 도면이다. 자속밀도는 거리의 제곱에 반비례한다. 도 20(a)에 도시된 바와 같이 세척컵(30)에 영구자석이 간격 없이 밀착하게 되면 도 20(b)에 비해 세척컵(30)의 하단부에서 자속밀도가 일정하면서도 큰 값을 가지므로 자성비드도 자속밀도에 비례하여 일정하면서 많은 양이 세척컵(30)의 하단부에 부착된다.
본 발명에 의하면 자성비드 포집 후 다음 단계로 이동하기 위한 구동에서 포집된 자성비드 복합체가 세척용액과 함께 유실되는 것을 최소화할 수 있다. 따라서 면역 반응의 재현성(reproducibility)이 높아지고, 변동계수(Coefficient of variation : CV)가 감소된다.
도 22는 본 발명의 일 실시예에 따른 면역반응 분석 과정에서 세척컵(30)과 자성빔(564)의 위치관계를 설명하는 도면이다. 도 22(a)에 도시된 바와 같이, 반응 챔버(14)에서는 세척컵(30)의 중공부의 말단까지 자성빔(564)이 하강된 상태에서 반응 챔버(14) 내의 자성비드(또는 자성비드 면역 복합체)를 포집하여 세척 챔버(15)로 이동한다. 세척 챔버(15)에서는 도 22(b)에 도시된 바와 같이, 세척컵(30)의 중공부의 말단까지 자성빔(564)이 하강된 상태를 유지한다. 자성비드가 세척컵(30)의 표면에 부착한 상태에서 세척컵(30)의 상승과 하강을 n회 반복하여 비특이적 생체시료가 세척액에 의해 세척된다. 검출 챔버(16)에서는 도 22(c)에 도시된 바와 같이, 자성빔(564)을 세척컵(30)의 중공부의 말단으로부터 상승시켜 세척컵(30)의 표면에 부착되어 있던 자성비드를 검출 챔버(16)의 기질 속으로 분산시킨다. 자성 면역 복합체의 효소는 검출 챔버(16)의 기질과 반응한다. 자성비드가 분산된 후에 미리 설정된 시간이 경과하면 자성빔(564)를 세척컵(30)의 중공부의 말단까지 하강시켜 자성비드를 세척컵(30)의 표면에 다시 포집한다. 자성비드를 포집한 상태에서 세척컵(30)을 검출 챔버(16)의 외부로 이동시킨 후에 검출 챔버(16)에 대해 광학 검사가 수행된다.
본 실시예에서와 같이 검출 챔버(16)에서 자성비드를 다시 포집한 상태로 세척컵(30)을 검출 챔버(16)의 외부로 이동시키면 광학 검사를 위한 시간은 증가하지만 자성비드 면역 복합체와 기질의 반응에 의한 바이어스 신호가 감소하게 된다.
도 23은 본 발명의 일 실시예에 따른 액상 면역반응 분석방법의 전체적인 흐름도이다.
먼저, 면역반응 분석장치(1)의 홀더(310)의 장착 채널(312) 내에 큐베트(10)를 수납시킨다(S2302). 이때 분주컵(20) 및 세척컵(30)을 상기 큐베트에 형성된 분주컵 끼움 홀(21) 및 세척컵 끼움 홀(31)에 장착한다(S2304). 분주컵(20) 및 세척컵(30)을 큐베트(10)를 장착 채널(312)에 수납하기 전 또는 후에 할 수 있다. 이어 장치의 시작 명령에 의해 홀더(310)가 후방으로 이동한다(S2306).
이어서, 디스펜서 모듈(500)이 작동하여 큐베트(10)의 밀봉막(미도시)을 펀칭하여 오픈시킨다(S2308). 펀칭 과정에서는 펀칭암(552)이 사용된다. 이러한 펀칭 과정을 설명하면, 먼저 구동 유닛에 의해서 펀칭암(552)이 큐베트(10) 상에 위치하게 되며, 이어서, 상하 구동부(544)에 의해서 펀칭암(552)이 상하 이동하여 큐베트(10)의 밀봉막을 펀칭하게 된다. 이 과정에서 큐베트 모듈(300)이 작동하여 큐베트(10)가 전방, 또는 후방으로 이동함으로써 큐베트(10)에 마련된 복수의 챔버에 대한 펀칭이 이루어질 수 있다.
펀칭이 완료되면 큐베트(10)에 고정된 분주컵(20) 상에 채취암(556)이 위치하도록 큐베트 모듈(300) 및 디스펜서 모듈(500)이 작동한다. 이어서, 채취암(556)이 하강하여 채취암(556)의 하부에 분주컵(20)을 끼워 고정한다(S2310). 이후, 분주컵(20)을 이용하여 시료 및/또는 시약의 분배, 분주가 이루어진다(S2312).
분주 과정을 자세히 설명하면 다음과 같다. 먼저 채취암(556)이 고정된 이동 바디(541)를 이동시켜 분주컵(20)을 시료 용액에 투입한다. 그리고 채취암의 중공에 연결된 펌프 유닛(506)을 작동시켜 분주컵(20)에 흡입력을 인가하여 시료 챔버로부터 시료를 채취한다. 다음으로 이동 바디 구동부(543)를 구동시켜 이동 바디에 고정된 채취암을 반응 챔버로 이동시킨다. 이때, 채취암에 부착된 분주컵(20) 안의 시료도 반응 챔버로 이동된다. 즉, 채취된 시료를 반응 챔버로 이동시킬 수 있다. 그 다음에, 펌프 유닛(506)을 작동시켜 분주컵(20)에 배출력을 인가하여 반응 챔버에 시료를 배출하여 분주를 마친다.
이 과정에서는 앞서 펀칭 과정과 같이, 큐베트 모듈(300)에 의한 큐베트(10)의 전방, 또는 후방 이동과 상하 구동부(544)에 의한 분주컵(20)의 상방, 및 하방 이동이 이루어질 수 있다. 동시에, 펌프 유닛(506)이 작동하여 분주컵(20)에 의한 분배, 분주가 이루어지도록 한다. 아울러, 펌프 유닛(506)에 의한 작동으로 분배, 분주 과정에서 시료 및/또는 시약의 혼합이 이루어지고, 큐베트의 반응 챔버(14)에서 목적하는 반응이 일어날 수 있게 한다.
이와 같이 큐베트(10)에서 일어나는 반응 과정은 복수의 단계를 포함하며, 큐베트 한 개당 최소 2 회의 인큐베이션 시간을 필요로 한다(S2314). 인큐베이션은 반응 챔버에 분주된 시료를 일정한 온도로 유지하도록, 시료가 장착되어 있는 홀더(310)의 열판(316)에 전원을 인가하여 수행할 수 있다.
따라서 제1 인큐베이션 시간 동안에, 제2 큐베트의 반응을 시작하기 위해, 제1 큐베트에 사용된 분주컵(20)은 리무버 플레이트(350에 의해 제거되어 제1 큐베트의 분주컵 끼움 홀(21)에 위치하게 된다. 제1 인큐베이션 시간 완료 후, 제1 큐베트의 다음 단계의 반응을 위해 재사용된다.
인큐베이션이 완료된 시료는 세척 공정을 거친다(S2316). 세척이 끝나 불순물이 제거된 자성비드를 포함하는 시료는 검출 챔버로 이동하여 광학 검사 과정을 거쳐서 분석에 사용된다(S2318).
도 24는 본 발명의 일 실시예에 따른 시료 분주 과정의 흐름도이다.
먼저, 바코드를 인식한 후, 펀칭암(552)으로 큐베트(10)의 밀봉을 각각 펀칭하여 개방시킨다. 이어서, 채취암(556)에 분주컵(20)이 끼워져 고정된다. 이어서, 제1 세척 챔버(15a)에서 소정 부피의 세척액을 채취하고, MB 버퍼 챔버(13a)에 분주한다(S2402).
이어서, 희석버퍼 챔버(13c)에서 소정의 희석액을 채취하고, 시료 챔버(12)에 분주하여(S2404), 믹싱 과정(3회)을 수행한다. 이어서, 희석된 소정 부피의 시료를 채취하여, 반응 챔버(14)에 분주한다(S2406). 이어서, 검출 버퍼가 충진된 챔버(13b)를 믹싱한 후 소정 부피의 용액을 채취하여 반응 챔버(14)에 분주하고(S2408) 믹싱(3회)한다. 이어서, 특정 온도에서 소정의 시간 동안 제1 인큐베이션 과정을 거친다(S2410). 이어서, MB 버퍼 챔버(13a)를 믹싱한 후, MB 챔버(13a) 내의 소정 부피의 용액을 채취하여 반응 챔버(14)에 분주하고(S2412) 믹싱하고, 이어서, 리무버 모듈(340)을 이용하여 분주컵(20)을 제거하여(S2414) 반응이 수행되는 큐베트의 분주컵 끼움 홀(21)에 위치시킨다. 아울러, 특정 온도에서 소정의 시간 동안 제2 인큐베이션 과정을 거친다(S2416).
이어서, 제2 인큐베이션 시간 경과 후에 세척 과정을 거치게 된다(S2418). 세척 과정은, 먼저 스트로암(554)에 세척컵(30)을 끼우고, 자성빔(564)을 스트로암(554) 내에 투입하여 반응 챔버(14) 내에 소정의 시간동안 투입하고, 이어서 제1 세척 챔버(15a)내에 투입시킨 후 자성빔(564)을 위 아래로 수회 움직여 세척을 수행한다. 이어서, 다시 자성빔(564)을 스트로암(554) 내에 투입시키고 제2 세척 챔버(15b) 내에 투입시킨 후 자성빔(564)을 위 아래로 수회 움직여 세척을 수행한다. 이어서, 다시 자성빔(564)을 스트로암(554) 내에 투입시키고 검출 챔버(16) 내에 투입시킨 후 세척컵(30)을 제거한다.
이어서, 소정의 시간 동안 제3 인큐베이션 과정을 거친 후, 광학 측정 과정을 수행한다. 광학 측정으로 도출된 결과(농도 등)은 디스플레이 및 프린터로 출력될 수 있다.
도 25는 본 발명의 일 실시예에 따른 세척 과정의 흐름도이다.
먼저, 자성빔(564)이 삽입된 세척컵(30)을 자성비드가 포함된 시료 용액에 투입하여 세척컵(30)의 표면에 시료 용액 내의 자성비드를 포집한다(S2504 내지 S2510). 다음으로, 자성비드가 표면에 포집된 세척컵(30)을 자성빔이 삽입된 상태로 세척 용액으로 이동하여 세척 용액 내에 투입한다(S2512). 다음에 세척컵(30)의 중공부의 말단에 자성빔(564)을 유지한 상태에서 세척컵(30)을 n회 승하강시킨다(S2514). 세척이 완료된 경우, 검출 챔버로 이동하여 광학 측정을 실시할 수 있다(S2516).
한편, 시료 용액 내의 자성비드를 포집하는 단계는 다음과 같이 구분할 수 있다. 우선, 내부에 상하로 관통된 중공을 구비하는 스트로암(554)의 하부에 세척컵(30)을 고정한다(S2504). 그리고 스트로암이 고정된 이동 바디(541)를 하강시켜 세척컵(30)을 자성비드가 포함된 시료 용액에 투입한다(S2506). 다음으로, 이동 바디에 고정된 구동 모터(562)를 구동시켜 상기 스트로암의 중공에 위치하는 자성빔(564)을 하부의 세척컵(30) 내로 삽입시킨다(S2508). 그 후에, 이동 바디 구동부(543)는 상기 스트로암이 고정된 이동 바디와 자성빔(564)을 일체로 이동시켜, 자성비드가 포함된 시료 용액 내에서 자성빔(564)이 삽입된 세척컵(30)을 이동시킬 수 있다(S2510).
이상의 과정을 좀 더 자세히 살펴보면 다음과 같다. 시료 및 시약의 분배, 분주, 반응이 완료되면 분주컵(20)은 리무버 플레이트(350에 의해 채취암(556)으로부터 제거된다(S2502). 이어서 스트로암(554)에 세척컵(30)이 끼워진다(S2504). 세척컵(30)은 반응 챔버(14) 내로 투입되며(S2506), 이어서, 세척컵(30) 내에 자성빔(564)이 투입되어 반응 챔버(14) 내의 자성비드가 세척컵(30)의 표면에 포집된다(S2508). 이때 자성비드와 결합된 반응물질이 함께 포집된다. 자성비드를 좀더 효율적으로 포집하기 위해, 세척컵(30)과 자성빔(564)을 시료 용액 내에서 함께 이동할 수 있다(S2510). 이 상태로 세척컵(30)을 세척 챔버(15)로 이동시킨다(S2512). 세척 챔버(15)에서는 자성빔(564)과 함께 세척컵(30)을 상하로 n회 구동시켜 세척컵(30)의 표면에 부착된 비특이적 생체시료를 세척 용액에 세척한다(S2514). 자성빔(564)은 세척 과정 동안 세척컵(30)의 중공부의 말단까지 하강된 상태를 유지한다. 세척컵(30)의 상승과 하강은 미리 정해진 세척 횟수만큼 실시한다. 시료의 세척이 끝나면, 반응 결과물을 검출 챔버(16)로 이동한다(S2516).
본 실시예는 자성비드의 분산과 포집을 반복하지 않고, 포집한 상태에서 상하 반복 구동을 통하여 비특이적 생체시료를 제거하고, 분산과 포집을 반복하는 과정에서 발생될 수 있는 자성비드의 손실과 누락을 감소시킨다. 따라서 측정 결과의 재현성(reproducibility)을 높이고, 변동계수(CV: coefficient of variation)를 감소시키는 효과를 낼 수 있다. 또한, 세척 프로세스의 간소화로 측정 시간을 감소시켜 시간당 측정횟수(Throughput)을 증가시키고 장비의 성능 및 경쟁력을 향상시킬 수 있다.
도 26은 본 발명의 일 실시예에 따른 광학 검사 과정의 흐름도이다.
검출 챔버(16)에 세척컵(30)을 투입한 상태에서 자성빔(564)을 세척컵(30)으로부터 상승시켜 자성비드 면역 복합체를 검출 챔버(16)로 분산시킨다(S2602). 효소가 결합된 감지항체(detection antibody)와 면역반응을 통해 결합된 상태로 자성비드 면역 복합체(magnetic bead immuno-complex)는 검출 챔버(16)로 분산된다. 타겟 물질이 결합되어 생성된 자성비드 면역 복합체의 양에 비례하는 효소는 검출 챔버(16) 내의 기질(substrate)과 반응하여 정량적으로 광신호로 측정될 수 있는 광물질을 생성한다.
미리 설정된 시간이 경과하면 자성빔(564)을 세척컵(30)의 중공부 말단까지 하강시켜 자성비드를 세척컵(30)의 표면에 다시 포집한다(S2604). 다음에는 자성빔(564)을 중공부 말단에 유지한 상태로 세척컵(30)을 상승시킨다(S2606). 이렇게 자성비드를 제거한 상태에서 검출 챔버(16) 내의 기질에 대해 광학 검사를 수행하여 광신호를 검출한다(S2608)
본 실시예에 의하면 효소와 기질의 반응이 진행된 후에 자성비드 면역 복합체를 제거한 상태에서 광학 검사를 수행한다. 따라서 자성비드에 의해 증가되는 바이어스 신호 또는 백그라운드 신호(background signal)가 감소되고, 자성비드에 의한 광 신호의 흡수 및 산란이 감소된다. 또한 자성비드 면역 복합체가 제거되어 효소 반응이 정지된 상태이므로 재현성이 향상된다. 이를 통해 본 실시예는 면역반응 분석성능을 높일 수 있다.
도 27a는 자성비드를 검출 챔버(16)에 유지한 상태에서의 광학 검사의 재현성과 바이어스 값을 설명하고, 도 27b는 본 실시예에 따라 자성비드를 검출 챔버(16)에서 제거한 상태에서 광학 검사의 재현성과 바이어스 값을 설명한다. 여기에서 바이어스 값은 ((타겟 신호의 크기 - 바이어스 신호의 크기)/(타겟 신호의 크기))X100으로 계산한다.
예를 들어, 디바이스 10에서 표준 물질의 농도가 1.0 μIU/㎖인 경우 검출 챔버(16)에 자성비드가 유지된 상태에서는 도 27a에 도시된 바와 같이, 변동계수 CV가 14.4%이고 바이어스 값이 -43.9%이다. 하지만 자성비드가 제거된 상태에서는 도 27b에 도시된 바와 같이, 변동계수 CV가 4.2%로 감소하여 재현성이 커진다. 또한 바이어스 값이 5.7%이므로 SNR(Signal to Noise Ratio)이 커진다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (7)

  1. 자성비드를 이용한 면역반응 분석방법에 있어서,
    검출 챔버에 자성비드를 분산시키는 단계와,
    상기 자성비드를 포집하여 상기 검출 챔버로부터 이탈시킨 후에 상기 검출 챔버에 대해 광학 검사를 수행하는 단계를
    포함하는 것을 특징으로 하는 면역반응 분석방법.
  2. 제1항에 있어서,
    상기 자성비드에 시약이 부착되고, 상기 자성비드가 저장되어 있는 반응 챔버에 생체시료를 주입하여 상기 생체시료 내의 분석물과 상기 시약을 항원항체 반응으로 결합시키는 단계를 더 포함하는 것을 특징으로 하는 면역반응 분석방법.
  3. 제2항에 있어서,
    자성빔이 내부에 위치한 세척컵을 상기 반응 챔버에 투입하여 상기 반응 챔버 내의 자성비드를 상기 세척컵의 표면에 포집하는 단계를 더 포함하는 것을 특징으로 하는 면역반응 분석방법.
  4. 제3항에 있어서,
    상기 자성빔이 내부에 위치한 상태에서 상기 세척컵의 상승과 하강을 세척 챔버에서 반복하여 상기 세척컵의 표면에 부착된 비특이적인 생체시료를 상기 세척 챔버 내의 세척액으로 세척하는 단계를 더 포함하는 것을 특징으로 하는 면역반응 분석방법.
  5. 제4항에 있어서,
    상기 검출 챔버에 자성비드를 분산시키는 단계는
    상기 비특이적인 생체시료가 세척된 세척컵을 상기 자성빔과 함께 상기 검출 챔버로 이동시키는 과정과,
    상기 세척컵으로부터 상기 자성빔을 이탈시키는 과정을
    구비하는 것을 특징으로 하는 면역반응 분석방법.
  6. 제5항에 있어서,
    상기 자성비드를 상기 검출 챔버로부터 이탈시키는 단계는
    상기 세척컵의 내부에 상기 자성빔을 위치시켜 상기 검출 챔버에 분산된 자성비드를 상기 세척컵의 표면에 부착시키는 과정과,
    상기 자성비드가 부착된 세척컵을 상기 자성빔과 함께 상기 검출 챔버로부터 이동시키는 과정을
    구비하는 것을 특징으로 하는 면역반응 분석방법.
  7. 자성비드를 이용한 면역반응 분석방법에 있어서,
    시약이 부착된 자성비드가 저장되어 있는 반응 챔버에 생체시료를 주입하여 상기 생체시료 내의 분석물과 상기 자성비드를 항원항체 반응으로 결합시키는 단계와,
    상기 반응 챔버에 세척컵을 이동시키는 단계와,
    상기 세척컵의 중공부에 자성빔을 하강시켜 상기 세척컵의 말단에 자성빔을 위치시키는 단계와,
    상기 반응 챔버 내의 자성비드를 포집하여 상기 세척컵의 표면에 상기 자성비드를 부착시키는 단계와,
    상기 자성비드가 부착된 세척컵을 세척 챔버로 이동시키는 단계와,
    상기 세척컵의 표면에 부착된 비특이적인 생체시료를 상기 세척 챔버에서 물리적으로 세척하는 단계와,
    상기 비특이적인 생체시료가 세척된 세척컵을 검출 챔버로 이동시키는 단계와,
    상기 세척컵의 중공부에 위치한 자성빔을 상승시켜 상기 세척컵의 표면에 부착된 자성비드를 상기 검출 챔버에 분산시키는 단계와,
    상기 세척컵의 중공부에 자성빔을 하강시켜 상기 검출 챔버에 분산된 자성비드를 상기 세척컵의 표면에 부착시키는 단계와,
    상기 자성비드가 부착된 세척컵을 상기 자성빔과 함께 상기 검출 챔버로부터 이동시킨 후에 상기 검출 챔버에 대해 광학 검사를 수행하는 단계를
    포함하는 것을 특징으로 하는 면역반응 분석방법.
PCT/KR2021/016852 2021-10-26 2021-11-17 자성비드를 이용한 액상 면역반응 분석방법 WO2023074988A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/554,157 US20240183846A1 (en) 2021-10-26 2021-11-17 Method for analyzing liquid immune response using magnetic beads
EP21962611.6A EP4332578A1 (en) 2021-10-26 2021-11-17 Method for analyzing liquid immune response using magnetic beads

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210144086A KR102698118B1 (ko) 2021-10-26 2021-10-26 자성비드를 이용한 액상 면역반응 분석방법
KR10-2021-0144086 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023074988A1 true WO2023074988A1 (ko) 2023-05-04

Family

ID=86160022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016852 WO2023074988A1 (ko) 2021-10-26 2021-11-17 자성비드를 이용한 액상 면역반응 분석방법

Country Status (4)

Country Link
US (1) US20240183846A1 (ko)
EP (1) EP4332578A1 (ko)
KR (1) KR102698118B1 (ko)
WO (1) WO2023074988A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970062691A (ko) * 1996-02-14 1997-09-12 후지이 히로시 생체내 물질의 분석 방법
KR20090110159A (ko) * 2008-04-17 2009-10-21 성균관대학교산학협력단 단백질 정량 방법
KR101495665B1 (ko) * 2014-05-09 2015-02-26 한국생명공학연구원 마그네틱을 이용한 형광다중면역검사법
JP2016085093A (ja) * 2014-10-24 2016-05-19 日本電子株式会社 自動分析装置及び分離洗浄方法
KR20210078004A (ko) * 2019-12-18 2021-06-28 바디텍메드(주) 자동화된 액상 면역반응 분석용 분석장치 및 이를 이용한 면역반응 분석방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5805628B2 (ja) 2009-05-15 2015-11-04 ビオメリュー・インコーポレイテッド 微生物の自動検出装置
KR101809645B1 (ko) 2014-05-30 2017-12-15 주식회사 이지다이아텍 자동 면역분석 수행장치
KR101997097B1 (ko) 2016-12-30 2019-07-05 주식회사 이지다이아텍 거대 자성입자 복합체를 이용한 자동 면역분석장치 및 방법
KR102220357B1 (ko) * 2019-06-10 2021-02-25 한국전자기술연구원 면역진단 키트 및 이를 이용한 면역진단 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970062691A (ko) * 1996-02-14 1997-09-12 후지이 히로시 생체내 물질의 분석 방법
KR20090110159A (ko) * 2008-04-17 2009-10-21 성균관대학교산학협력단 단백질 정량 방법
KR101495665B1 (ko) * 2014-05-09 2015-02-26 한국생명공학연구원 마그네틱을 이용한 형광다중면역검사법
JP2016085093A (ja) * 2014-10-24 2016-05-19 日本電子株式会社 自動分析装置及び分離洗浄方法
KR20210078004A (ko) * 2019-12-18 2021-06-28 바디텍메드(주) 자동화된 액상 면역반응 분석용 분석장치 및 이를 이용한 면역반응 분석방법

Also Published As

Publication number Publication date
EP4332578A1 (en) 2024-03-06
US20240183846A1 (en) 2024-06-06
KR20230059663A (ko) 2023-05-03
KR102698118B1 (ko) 2024-08-23

Similar Documents

Publication Publication Date Title
US11693019B2 (en) Automated liquid-phase immunoassay apparatus
US10670499B2 (en) Station, used for test apparatus, having integrated reaction and detection means
US4626684A (en) Rapid and automatic fluorescence immunoassay analyzer for multiple micro-samples
CA2867125C (en) Interactive test device and apparatus with timing mechanism
CA2716575C (en) Optical measuring instrument
US20080096285A1 (en) Method for Automatic Determination of Sample
WO2020027470A1 (ko) 자동화된 액상 면역반응 분석 장치 및 그 방법
CN104081210A (zh) 具有气动式样本致动的光学测定装置
CN104081207A (zh) 用于光学和电化学测定的检验装置
JPWO2015053290A1 (ja) 化学発光測定装置およびその方法
WO2016182382A1 (ko) 일체화된 반응 및 검출 수단을 구비한 시험 장치에 사용되는 스테이션
JP2022510883A (ja) フローアッセイアナライザ
EP0488152A2 (en) Method for immunoassay and apparatus therefor
WO2023074988A1 (ko) 자성비드를 이용한 액상 면역반응 분석방법
US20210190771A1 (en) Automated liquid immunoassay device and method therefor
KR102321031B1 (ko) 자성 비드를 이용한 액상 면역반응 분석장치
CN209559739U (zh) 一种elisa分析仪
EP1163497B1 (en) Producing and measuring light and determining the amounts of analytes in microplate wells
CN109520930A (zh) 一种elisa分析仪
WO2022114530A1 (ko) 면역 진단을 위한 진단 카트리지 및 이를 이용한 리더기와 진단 시스템
KR101423588B1 (ko) 다중 진단 장치 및 이를 이용한 진단 분석 방법
WO2024033027A1 (en) Reader system for a lateral flow test and according method
CN117420295A (zh) 一种多通道干式荧光免疫分析仪
JPH04324346A (ja) 化学発光測定方法および測定装置
JPH04324345A (ja) 化学発光測定方法及び測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18554157

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021962611

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021962611

Country of ref document: EP

Effective date: 20231130

NENP Non-entry into the national phase

Ref country code: DE