WO2017204512A1 - 피씨알모듈 - Google Patents

피씨알모듈 Download PDF

Info

Publication number
WO2017204512A1
WO2017204512A1 PCT/KR2017/005298 KR2017005298W WO2017204512A1 WO 2017204512 A1 WO2017204512 A1 WO 2017204512A1 KR 2017005298 W KR2017005298 W KR 2017005298W WO 2017204512 A1 WO2017204512 A1 WO 2017204512A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
potential
module
base substrate
reaction space
Prior art date
Application number
PCT/KR2017/005298
Other languages
English (en)
French (fr)
Inventor
최경학
Original Assignee
옵토레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 옵토레인 주식회사 filed Critical 옵토레인 주식회사
Publication of WO2017204512A1 publication Critical patent/WO2017204512A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting

Definitions

  • the present invention relates to a PAL module, and more particularly to a PAL module for easily processing a sample using EWOD (Electro Wetting On Dielectrics) technology and improving the accuracy of inspection.
  • EWOD Electro Wetting On Dielectrics
  • PCR polymerase chain reaction
  • Real-time PCR is a method that can monitor the amplification status of the sample in amplification process in real time and enables quantitative analysis of DNA by measuring the intensity of fluorescence that changes according to the amount of DNA replication.
  • real-time PC devices are typically a heat transfer block for transferring heat to a tube containing a thermoelectric element and a sample, a light source unit for irradiating excitation light to a sample inside the tube, and a light receiving unit for receiving fluorescence generated from the sample. Consists of.
  • PCAL analysis requires a technique for rapidly increasing or decreasing the sample to the target temperature.
  • liquid samples have a high specific heat, it takes a lot of time to change the temperature and reduces the measurement accuracy.
  • the temperature change of the sample is not easy because a sufficient amount of sample is required to be detected by the light receiving unit.
  • the sample is out of a predetermined position and the reagent is contaminated, which causes a problem of resetting or discarding the PAL module.
  • the related technology is Korean Patent Application No. 10-2016-0020053 (February 19, 2016).
  • An object of the present invention is to provide a PAL module which can easily process a sample using EWOD (Electro Wetting On Dielectrics) technology and improve the accuracy of the test.
  • EWOD Electro Wetting On Dielectrics
  • the PCR module is coupled to the reader system.
  • the PCB module includes a base substrate, an optical sensor assembly, a partition, a cover, a sample carrier element, a hydrophobic film, and a control circuit.
  • the base substrate includes an insulating material.
  • the optical sensor assembly may include a plurality of optical sensors disposed in the base substrate and arranged in an array to detect light emitted from a sample and generate an optical sensing signal.
  • the partition wall protrudes on the base substrate to define a reaction space for receiving the sample.
  • the cover is combined with the base substrate on which the partition wall is formed to maintain a constant humidity of the sample.
  • the sample carriers are disposed on the optical sensor assembly.
  • the hydrophobic film covers the sample carrier and defines the bottom surface of the reaction space.
  • the control circuit is electrically connected to the optical sensor assembly and the sample carrier elements, and transmits the optical sensing signal to the reader system, and receives a potential control signal from the reader system and is different from the sample carrier elements. Apply potential potential
  • the sample includes a droplet form disposed on the hydrophobic film, the height of the droplet form and the area in the plane may vary according to the potential potential applied to the sample carrier elements.
  • a ground potential may be applied to the sample carrying device disposed under the sample.
  • a positive potential or a negative potential may be applied to a plurality of sample carriers disposed under the sample.
  • the PAL module may further include temperature control lines including a conductive material and extending for a long time to generate heat according to the flow of current.
  • the PCR module is coupled to the reader system.
  • the PCB module includes a base substrate, an optical sensor assembly, a partition, a cover, a plurality of sample carriers, a hydrophobic film, a hydrophilic coating, and a control circuit.
  • the base substrate includes an insulating material.
  • the optical sensor assembly may include a plurality of optical sensors disposed in the base substrate and arranged in an array to detect light emitted from a sample and generate an optical sensing signal.
  • the partition wall protrudes on the base substrate.
  • the cover is combined with the base substrate on which the partition wall is formed to maintain a constant humidity of the sample.
  • the sample carriers are disposed in the partition wall.
  • the hydrophobic film covers the sample carrying device and is formed on an upper surface of the partition wall.
  • the hydrophilic coating is formed on the inner surface of the reaction space formed between adjacent partitions.
  • the control circuit is electrically connected to the optical sensor assembly and the sample carrier elements, and transmits the optical sensing signal to the reader system, and receives a potential control signal from the reader system and is different from the sample carrier elements. Apply potential potential.
  • the sample comprises a droplet shape, is moved along the top surface of the partition wall is inserted into the reaction space in accordance with the change of the potential potential applied on the sample carrier elements.
  • the present invention can easily change the size and area of the sample in the form of droplets by adjusting the potential of the substrate using the EWOD technology.
  • sample carriers and the hydrophobic film may be disposed on the base substrate, and the sample carriers may be individually driven to move the sample to a desired position in the reaction space.
  • a sample carrier element and a hydrophobic membrane are disposed on the partition wall, and hydrophilic coating is performed in the reaction space, so that the sample can be easily inserted into the reaction space.
  • the plurality of samples may be sequentially separated from the sample source and added to the plurality of reaction spaces. Therefore, the accuracy is improved compared to the case of manually inputting the sample, and even a very small amount of sample can be easily added.
  • the contact area of the sample is reduced and the thickness is increased by adjusting the potential of the sample carriers, the sensitivity of the light measured in the vertical direction is increased, thereby improving accuracy.
  • the temperature of the sample can be easily controlled.
  • the sample is introduced into the reaction space using an automated process to prevent contamination of the reagent during the addition process.
  • FIG. 1 is a block diagram illustrating a PC module mounted in a reader system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating the PAL module illustrated in FIG. 1.
  • FIG 3 is a cross-sectional view showing a PAL module according to another embodiment of the present invention.
  • FIG. 4 is a plan view illustrating the PD module illustrated in FIG. 3.
  • FIG. 5 is a cross-sectional view taken along the line II ′ of FIG. 4.
  • 6 and 7 are plan views illustrating a method of separating a sample from the sample source shown in FIG. 5.
  • 8 to 12 are cross-sectional views illustrating a method of injecting a sample into the reaction space of the PC module shown in FIG.
  • FIG. 13 and 14 are cross-sectional views illustrating a method of inserting a sample into a reaction space of a PAL module according to another embodiment of the present invention.
  • FIG. 15 is a cross-sectional view showing that the sample shown in FIG. 14 is in an aggregated state.
  • FIG. 16 is a cross-sectional view showing that the sample shown in FIG. 14 is in an unfolded state.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a block diagram illustrating a PC module mounted in a reader system according to an embodiment of the present invention.
  • a PCR module 200 is detachably coupled to a reader system 100.
  • the PAL module 200 is driven by the reader system 100.
  • one PC module 200 is shown in Figure 1 is coupled to the reader system 100, a person having ordinary knowledge and skills in the art, a plurality of PC in one reader system 100 It will be appreciated that the module 200 can be modified to be coupled at the same time.
  • the reader system 100 includes a central information processor 110, a memory 120, an interface 130, and a cooling member 150.
  • the central information processor 110 reads the driving data stored in the memory 120 to drive the cooling member 150 and the PC module 200, and applies light sensing information, temperature information, and the like from the PC module 200. Receive and store in memory 120 in real time.
  • the central information processing unit 110 generates gene amplification amount information by calculating gene amplification amount in real time using light sensing information, temperature information, etc. received from the PAL module 200.
  • the central information processor 110 stores the gene amplification information in the memory 120 in real time and transmits the information to the interface 130.
  • the reader system 100 further includes a light source driver 220, a light source 230, and an excitation light source filter 233.
  • the light source driver 220 drives the light source 230 under the control of the central information processor 110 to apply excitation light to the PC module 200.
  • the excitation light source filter 233 is disposed between the light source 230 and the reaction space 240 to filter the wavelength of the light generated by the light source 230 to be uniform.
  • the light source 230 may not be included in the reader system 100 but may be included in the PC module 200.
  • FIG. 2 is a cross-sectional view illustrating the PAL module illustrated in FIG. 1.
  • the PAL module 200 includes a base substrate 301, an optical sensor assembly 300, a partition wall 320, a cover 325, a sample 420, a control interface 430, A sample carrier 440 and a hydrophobic film 445.
  • the base substrate 301 may include various materials such as silicon, sapphire, silicon carbide, germanium, glass, and synthetic resin.
  • the optical sensor assembly 300 includes a plurality of optical sensors 310, an emission filter 313, a temperature sensor 360, and a temperature controller 370.
  • the plurality of photosensors 310 are arranged in an array in the base substrate 301.
  • the optical sensors 310 may include a plurality of photodiodes, a plurality of thin film transistors, and the like, which are formed on a silicon substrate through a semiconductor process.
  • photodiodes may be formed by forming a P-type semiconductor layer, an N-type semiconductor layer, or the like by doping while changing the type of impurities on the silicon substrate.
  • the emission filter 313 is disposed above the light sensors 310 and passes only emission light such as fluorescence and phosphorescence generated in the reaction space 240, and excitation light generated by the light source 230.
  • the emission filter 313 may include a filter in which the photoresist and the pigment are mixed and cured or uncured.
  • the temperature sensor 360 is disposed adjacent to the reaction space 240 in the base substrate 301 or on the base substrate 301 to measure the temperature in the reaction space 240.
  • the temperature sensing signal measured by the temperature sensor 360 is applied to the reader system 100 through the control interface 430.
  • the temperature controller 370 is disposed on the base substrate 301 to adjust the temperature in the reaction space 240.
  • the temperature controller 370 receives the temperature control signal from the control interface 430 to maintain or heat the temperature of the reaction space 240 at a constant level.
  • the temperature controller 370 may include a conductive pattern, a thermoelectric element, and the like.
  • the partition wall 320 protrudes on the base substrate 301 to define the reaction space 240.
  • the partition wall 320 may be formed of various materials such as plastic, PDMS, silicon, and metal.
  • the cover 325 is coupled to the base substrate 301 provided with the partition wall 320 to isolate the reaction space 240 from the outside and maintain the humidity in the reaction space 240.
  • the sample 420 is covered with an oil (not shown) on the surface of the sample 420 so that the sample 420 does not evaporate, and the cover 325 allows the oil (not shown) to be accommodated in the reaction space 240. .
  • the sample 420 is prevented from drying and the electrical characteristics of the sample 420 are prevented from changing.
  • a reagent may be disposed in the reaction space 240 to react with the sample 420 to generate fluorescence or phosphorescence.
  • the reagent (not shown) that reacts with the sample 420 may include a primer, a probe, and the like. Genetic material contained in the sample 420 may be amplified by the primer. When excitation light is applied to the amplified dielectric material, fluorescence and phosphorescence are emitted by the probe.
  • the control interface 430 is connected to the temperature sensor 360, the temperature control unit 370, and the plurality of sample carrier elements 440.
  • the control interface 430 receives the temperature sensing signal from the temperature sensor 360 and transmits the temperature sensing signal to the central information processing unit 110 of the reader system 100.
  • the control interface 430 controls the temperature controller 370 by receiving a temperature sensing signal and a temperature control signal corresponding to the PCC cycle from the central information processor 110 of the reader system 100.
  • the control interface 430 individually controls the sample carrier elements 440 to selectively apply a ground potential, a positive potential, or a negative potential to the sample carrier elements 440.
  • the sample carrier elements 440 may be in a floating state.
  • the sample carrier elements 440 are disposed on the base substrate 301, and receive a ground potential, a positive potential, or a negative potential from the control interface 430 to carry the sample 420 or to carry the sample 420.
  • the sample carrier elements 440 include plate-shaped electrode pads arranged in parallel with the top surface of the base substrate 301.
  • the sample 420a disposed on the sample carrying device 440 maintains an aggregated state. Specifically, the sample 420a is electrically grounded and does not charge, but when the ground voltage GND is applied to the lower sample transport device 440, the sample 420a has a rounded droplet shape by the hydrophobic film 445. When the sample 420a has a round droplet form, the height in the longitudinal direction is increased. When the potential of the sample carrying device 440 is the ground voltage GND, the contact area between the sample 420a and the hydrophobic film 445 decreases while the thickness in the vertical direction increases. Increasing the longitudinal thickness of the sample 420a increases the intensity of the emitted light measured in the vertical direction, thereby improving the sensitivity and accuracy of the light measured in the vertical direction.
  • the sample 420b disposed on the sample carrying device 440 maintains an unfolded state.
  • the potential of the sample carrier 440 is a positive potential (+) or a negative potential ( ⁇ )
  • the contact area between the sample 420b and the hydrophobic film 445 increases while the thickness in the vertical direction decreases.
  • the heat generated by the temperature controller 370 is transferred to the sample 420b through a large area, thereby facilitating the temperature of the sample 420b. I can regulate it.
  • the hydrophobic film 445 is disposed on the base substrate 301 and covers the top surface of the sample carrier elements 440.
  • the shape of the sample 420 may be more easily changed by the hydrophobic property of the hydrophobic film 445.
  • the sample carrier elements 440 and the hydrophobic film 445 are disposed on the base substrate 301, and the sample carrier elements 440 are individually driven to drive the sample 420. It can be moved to a desired position in the reaction space 240.
  • FIG. 3 is a cross-sectional view showing a PAL module according to another embodiment of the present invention.
  • the remaining components except for a plurality of reaction spaces and hydrophilic coating are the same as the embodiment shown in Figures 1 and 2, duplicate description of the same components will be omitted.
  • the PAL module includes a base substrate 301, an optical sensor assembly 300, a partition 321, a cover 326, a sample 420, a control interface 431, and a sample carrying device 441. , Hydrophobic film 446, and hydrophilic coating 449.
  • the partition wall 321 defines a plurality of reaction spaces 241 protruding from the base substrate 301.
  • the cover 326 is coupled to the base substrate 301 provided with the partition wall 321 to isolate the reaction spaces 241 from the outside and maintain the humidity in the reaction spaces 241.
  • the sample 420 is covered with an oil (not shown) on the surface of the sample 420 so that the sample 420 does not evaporate, and the cover 326 allows the oil (not shown) to be accommodated in the reaction space 241. .
  • the sample 420 is prevented from drying and the electrical characteristics of the sample 420 are prevented from changing.
  • a reagent may be disposed in the reaction spaces 241 to react with the sample 420 to generate fluorescence or phosphorescence.
  • different reagents may be disposed in the reaction spaces 241.
  • the control interface 431 is connected to the temperature sensor 360, the temperature control unit 370, and the plurality of sample carrier elements 441.
  • the control interface 431 individually controls the sample carrier elements 441 to selectively apply a ground potential, a positive potential, or a negative potential to the sample carrier elements 441.
  • the sample carrier elements 441 are disposed on the partition wall 321, and carry the sample 420 or the form of the sample 420 by receiving a ground potential, a positive potential, or a negative potential from the control interface 431. To control.
  • the sample carrier elements 441 include plate-shaped electrode pads arranged in parallel with the top surface of the partition wall 321, and there are no separate sample carrier elements in the reaction space 241.
  • the sample (420a in FIG. 2) disposed on the sample carrying device 441 maintains an aggregated state.
  • the hydrophobic film 446 is disposed on the top surface of the partition wall 321 and covers the top surface of the sample carrier elements 441.
  • the sample 420 of FIG. 2 may move more easily on the hydrophobic film 446 due to the hydrophobic nature of the hydrophobic film 446. Can be changed more easily.
  • the hydrophilic coating 449 is disposed on the inner surface of the reaction space 241 so that the sample (420 of FIG. 2) can be easily received.
  • the sample 420 of FIG. 2 moves on the hydrophobic film 446 and is disposed adjacent to the reaction space 241, the sample 420 is inclined toward the reaction space 241 by the hydrophilic coating 449.
  • the sample inclined toward the reaction space 241 flows downward by its own weight and is inserted into the reaction space 241 by the hydrophilic coating 449.
  • the sample carrier elements 440 and the hydrophobic film 445 are disposed on the partition wall 321, and the hydrophilic coating 449 is performed in the reaction space 241, so that the sample (see FIG. 2).
  • the 420 can be easily inserted into the reaction space 241.
  • FIG. 4 is a plan view illustrating the PD module illustrated in FIG. 3, and FIG. 5 is a cross-sectional view taken along the line II ′ of FIG. 4.
  • the sample source 421 is disposed on one side of the base substrate 301 on which the hydrophilic coating 446 is disposed.
  • the sample source 421 is arranged in the form of droplets by summing up the samples 420 at a capacity that allows a plurality of experiments.
  • the sample carrier elements 441 disposed below the sample source 421 are applied with a positive potential (+) or a negative potential ( ⁇ ) and disposed adjacent to the sample source 421.
  • Ground potential (GND) is applied, so that the sample source 421 is present in the form of a droplet.
  • the sample 420b is separated from a portion of the sample source 421 and sequentially transferred to the plurality of reaction spaces 241.
  • different types of sample sources may be disposed on one side of the base substrate on which the hydrophilic coating is disposed, and different types of samples may be transferred into the reaction spaces 241 from the sample sources.
  • a positive potential (+) or a negative potential ( ⁇ ) is applied to a portion of the sample carrier elements 441 disposed adjacent to the sample source 421. Is applied to draw out a part of the sample source 421.
  • the ground voltage GND is applied to the sample carrying device 441 disposed between the original sample source 421 and the extracted sample 420b.
  • the ground voltage GND is applied between the original sample source 421 and the extracted sample 420b, the extracted sample 420b is separated from the original sample source 421.
  • 6 and 7 are plan views illustrating a method of separating a sample from the sample source shown in FIG. 5.
  • a positive potential (+) when a positive potential (+) is applied to a portion of the sample carrier elements 441 disposed adjacent to the sample source 421, a portion of the sample source 421 may be a positive potential. (+) Projects toward the applied sample carriers 441.
  • a ground voltage is applied between the original sample source 421 and the projected sample source.
  • the sample 420b is separated from the sample source 421.
  • 8 to 12 are cross-sectional views illustrating a method of injecting a sample into the reaction space of the PC module shown in FIG.
  • the sample 420b separated by the sample source 421 is adjacent to the sample. It moves along the carrying element 441. For example, when a positive potential (+) is sequentially applied to the adjacent sample carrying device 441 and the ground voltage GND is sequentially applied to the existing sample carrying device 441, the sample 420b becomes a potential. Move sequentially according to the movement of.
  • the sample carrying device 441 moves the sample 420b to a position adjacent to the reaction space 241.
  • a positive potential (+) is applied to two sample carriers 441 adjacent to the reaction space 241, the sample 420b is in an unfolded state.
  • a positive potential (+) is applied to only one sample carrying device 441 ′′ which is closest to the reaction space 241, and a ground potential is applied to the adjacent sample carrying device 441 ′.
  • GND ground potential
  • the rest of the sample 420a is also moved toward the reaction space 241 by the self-weight of the sample 420a and the attraction of the hydrophilic coating 449.
  • the sample 420 is completely introduced into the reaction space 241 to be in contact with the reagent 423.
  • the sample source 421 includes a sample material in an amount sufficient to be separated into a plurality of samples 420b, and the sample carriers 441 are sequentially driven to provide a plurality of samples ( The 420b is sequentially separated and moved to different reaction spaces 241.
  • the 420b is sequentially separated and moved to different reaction spaces 241.
  • two or more kinds of reagents may be disposed in the plurality of reaction spaces 241.
  • the plurality of samples 240 may be sequentially separated from the sample source 421 and added to the plurality of reaction spaces 241. Therefore, the accuracy is improved compared to the case of manually inputting the sample, and even a very small amount of sample can be easily added.
  • FIG. 13 and 14 are cross-sectional views illustrating a method of inserting a sample into a reaction space of a PAL module according to another embodiment of the present invention.
  • the present embodiment except for the method of driving the sample carriers disposed adjacent to the reaction space is the same as the embodiment shown in Figs. 3 to 12, duplicate description of the same components will be omitted. .
  • a positive potential (+) is applied to one sample carrying device 441a closest to the reaction space 241, and a ground potential GND is applied to an adjacent sample carrying device 441 ′.
  • the sample 420a is in an aggregated state.
  • not only one sample carrying device 441a near the reaction space 241 but also another sample carrying device 441b facing each other around the reaction space 241 has a positive potential (+). Is applied. Since the positive potential (+) serves to attract the sample 420a, when the positive potential (+) is applied to the two sample carriers 441a and 441b facing each other, the sample 420a becomes easier. It may be introduced into the reaction space 421. In another embodiment, a positive potential (+) may be applied to not only the two sample carrier elements 441a and 441b facing each other, but also all the sample carrier elements surrounding and contacting the reaction space 241.
  • a ground voltage GND is applied to one sample carrying device 441a disposed closest to the reaction space 241, and the other facing each other around the reaction space 241.
  • a positive potential (+) is applied to the sample carrying device 441b, the sample 420a is more easily introduced into the reaction space 241.
  • the ground voltage GND is applied to only one sample carrying device 441a among all the sample carrying devices surrounded by the reaction space 241 and the positive potential (+) is applied to the other sample carrying devices. May be authorized.
  • FIG. 15 is a cross-sectional view showing that the sample shown in FIG. 14 is in an aggregated state.
  • the ground voltage GND is applied to all the sample carriers surrounding the reaction space 241.
  • the sample 420a is in an aggregated state.
  • the thickness of the sample is increased to increase the sensitivity of light measured in the vertical direction, thereby improving accuracy.
  • the ground voltage GND may be applied to only some of the sample carriers surrounding the reaction space 241, and the remaining sample carriers may be in a floating state.
  • the sensitivity of the light measured in the vertical direction is increased to improve accuracy.
  • FIG. 16 is a cross-sectional view showing that the sample shown in FIG. 14 is in an unfolded state.
  • a positive potential (+) (or a negative potential ( ⁇ )) is applied to all the sample carriers surrounding the reaction space 241. do.
  • a positive potential (+) is applied to all the sample carriers surrounding the reaction space 241
  • the sample 420b is in an unfolded state.
  • the contact area between the sample 420b and the partition wall 321 increases.
  • heat generated in the temperature controller 370 is more easily transmitted to the sample 420b.
  • a positive voltage (+) may be applied to only some of the sample carriers surrounding the reaction space 241 and the remaining sample carriers may be in a floating state.
  • the temperature of the sample can be easily adjusted when the contact area of the sample is increased and the thickness is reduced by adjusting the potential of the substrate.
  • the present invention can easily change the size and area of the sample in the form of droplets by adjusting the potential of the substrate using the EWOD technology.
  • sample carriers and the hydrophobic film may be disposed on the base substrate, and the sample carriers may be individually driven to move the sample to a desired position in the reaction space.
  • a sample carrier element and a hydrophobic membrane are disposed on the partition wall, and hydrophilic coating is performed in the reaction space, so that the sample can be easily inserted into the reaction space.
  • the plurality of samples may be sequentially separated from the sample source and added to the plurality of reaction spaces. Therefore, the accuracy is improved compared to the case of manually inputting the sample, and even a very small amount of sample can be easily added.
  • the contact area of the sample is reduced and the thickness is increased by adjusting the potential of the sample carriers, the sensitivity of the light measured in the vertical direction is increased, thereby improving accuracy.
  • the temperature of the sample can be easily controlled.
  • the sample is introduced into the reaction space using an automated process to prevent contamination of the reagent during the addition process.
  • the present invention has industrial applicability that can be used in devices for amplifying and testing genetic material.

Abstract

피씨알모듈(PCR Module)은 리더시스템(Reader System)과 탈착가능하도록 결합된다. 피씨알모듈은 베이스기판, 광학센서어셈블리, 격벽, 커버, 시료운반소자들, 소수성막, 및 제어회로를 포함한다. 상기 광학센서어셈블리는 상기 베이스 기판 내에 배치되며 어레이 형상으로 배열되어 시료에서 발생되는 방출광을 감지하여 광감지신호를 생성하는 복수개의 광센서들을 포함한다. 상기 격벽은 상기 베이스기판 상에 돌출되어 상기 시료를 수납하는 반응공간을 정의한다. 상기 시료운반소자들은 상기 광학센서어셈블리 상에 배치된다. 상기 소수성막은 상기 시료운반소자를 커버하고 상기 반응공간의 바닥면을 정의한다. 상기 제어회로는 상기 광학센서어셈블리 및 상기 시료운반소자들에 전기적으로 연결되며, 상기 광감지신호를 상기 리더시스템으로 전송하며, 상기 리더시스템으로부터 전위제어신호를 인가받아 상기 시료운반소자들에 서로 다른 전위 포텐셜을 인가한다.

Description

피씨알모듈
본 발명은 피씨알모듈에 관한 것으로, EWOD(Electro Wetting On Dielectrics)기술을 이용하여 시료를 용이하게 처리하고 검사의 정밀도가 향상되는 피씨알모듈에 관한 것이다.
유전자 증폭기술은 분자진단에 있어서 필수적인 과정으로서 시료 내 미량의 DNA 또는 RNA의 특정 염기서열을 반복적으로 복제하여 증폭하는 기술이다. 그 중 중합효소 연쇄반응 (Polymerase chain reaction, PCR, 피씨알)은 대표적인 유전자 증폭 기술로서 DNA 변성단계(denaturation), Primer 결합단계(annealing), DNA 복제단계(extension)의 3단계로 구성되어 있으며 각 단계는 시료의 온도에 의존되어 있으므로 시료의 온도를 반복적으로 변하게 함으로서 DNA를 증폭 할 수 있다.
실시간 피씨알(Real-time PCR)은 증폭과정에 있는 시료를 실시간으로 증폭 상태를 모니터링 할 수 있는 방법으로서 DNA가 복제량에 따라 변하는 형광의 강도를 측정하여 DNA 의 정량분석을 가능하게 한다. 현재 사용되는 실시간 피씨알 기기는 통상적으로 열전소자와 시료가 담겨있는 튜브에 열을 전달하는 열전달 블록과 튜브 내부의 시료에 여기광을 조사하는 광원부, 그리고 시료에서 발생되는 형광을 수광하기 위한 수광부로 구성되어 있다.
피씨알 분석에는 시료를 목표온도로 급격히 증가시키거나 감소시키는 기술이 필요하다. 그러나 액체 형태의 시료는 비열이 높기 때문에 온도변화에 많은 시간이 소요되며 측정정확도가 감소한다.
더욱이 수광부에서 감지가 가능할 정도로 충분한 양의 시료가 필요하기 때문에, 시료의 온도변화가 용이하지 않다.
또한 수작업에 의해 피씨알모듈에 시료를 투입하는 과정에서 시료가 정해진 위치를 벗어나서 시약이 오염되어 피씨알모듈을 다시 셋팅하거나 폐기하는 문제점이 발생한다.
관련기술은 대한민국특허출원 제10-2016-0020053 (2016. 2. 19.)가 있다.
본 발명의 목적은 EWOD(Electro Wetting On Dielectrics)기술을 이용하여 시료를 용이하게 처리하고 검사의 정밀도가 향상되는 피씨알모듈을 제공하는 것이다.
본 발명의 일 실시예에 따른 피씨알모듈(PCR Module)은 리더시스템(Reader System)과 탈착가능하도록 결합된다. 피씨알모듈은 베이스기판, 광학센서어셈블리, 격벽, 커버, 시료운반소자들, 소수성막, 및 제어회로를 포함한다. 상기 베이스기판은 절연물질을 포함한다. 상기 광학센서어셈블리는 상기 베이스 기판 내에 배치되며 어레이 형상으로 배열되어 시료에서 발생되는 방출광을 감지하여 광감지신호를 생성하는 복수개의 광센서들을 포함한다. 상기 격벽은 상기 베이스기판 상에 돌출되어 상기 시료를 수납하는 반응공간을 정의한다. 상기 커버는 상기 격벽이 형성된 상기 베이스기판과 결합하여 상기 시료의 습도를 일정하게 유지한다. 상기 시료운반소자들은 상기 광학센서어셈블리 상에 배치된다. 상기 소수성막은 상기 시료운반소자를 커버하고 상기 반응공간의 바닥면을 정의한다. 상기 제어회로는 상기 광학센서어셈블리 및 상기 시료운반소자들에 전기적으로 연결되며, 상기 광감지신호를 상기 리더시스템으로 전송하며, 상기 리더시스템으로부터 전위제어신호를 인가받아 상기 시료운반소자들에 서로 다른 전위 포텐셜을 인가한다.
일 실시예에서, 상기 시료는 상기 소수성막 상에 배치되는 액적형태를 포함하며, 상기 시료운반소자들에 인가되는 전위 포텐셜에 따라 상기 액적형태의 높이와 평면상에서의 면적이 달라질 수 있다.
일 실시예에서, 상기 피씨알모듈이 관측모드일 경우, 상기 시료의 하부에 배치되는 시료운반소자에는 접지전위가 인가될 수 있다.
일 실시예에서, 상기 피씨알모듈이 가열모드일 경우, 상기 시료의 하부에 배치되는 복수개의 시료운반소자들에 양의 전위 또는 음의 전위가 인가될 수 있다.
일 실시예에서, 피씨알모듈은 도전성 물질을 포함하고 길게 연장되어 전류의 흐름에 따라 열을 발생시키는 온도조절라인들을 더 포함할 수 있다.
본 발명의 일 실시예에 따른 피씨알모듈(PCR Module)은 리더시스템(Reader System)과 탈착가능하도록 결합된다. 피씨알모듈은 베이스기판, 광학센서어셈블리, 격벽, 커버, 복수개의 시료운반소자들, 소수성막, 친수성코팅, 및 제어회로를 포함한다. 상기 베이스기판은 절연물질을 포함한다. 상기 광학센서어셈블리는 상기 베이스 기판 내에 배치되며 어레이 형상으로 배열되어 시료에서 발생되는 방출광을 감지하여 광감지신호를 생성하는 복수개의 광센서들을 포함한다. 상기 격벽은 상기 베이스기판 상에 돌출된다. 상기 커버는 상기 격벽이 형성된 상기 베이스기판과 결합하여 상기 시료의 습도를 일정하게 유지한다. 상기 시료운반소자들은 상기 격벽 내에 배치된다. 상기 소수성막은 상기 시료운반소자를 커버하고 상기 격벽의 상면에 형성된다. 상기 친수성코팅은 인접하는 격벽들 사이의 형성되는 반응공간의 내면 상에 형성된다. 상기 제어회로는 상기 광학센서어셈블리 및 상기 시료운반소자들에 전기적으로 연결되며, 상기 광감지신호를 상기 리더시스템으로 전송하며, 상기 리더시스템으로부터 전위제어신호를 인가받아 상기 시료운반소자들에 서로 다른 전위 포텐셜을 인가한다.
일 실시예에서, 상기 시료는 액적형상을 포함하며, 상기 시료운반소자들 상에 인가되는 상기 전위포텐셜의 변화에 따라 상기 격벽의 상면을 따라 이동하여 상기 반응공간 내로 삽입된다.
상기와 같은 본 발명에 따르면, 본 발명은 EWOD기술을 이용하여 기판의 전위를 조절하여 액적 형태의 시료의 크기와 면적을 용이하게 변경시킬 수 있다.
또한, 베이스기판 상에 시료운반소자들 및 소수성막을 배치하고, 시료운반소자들을 개별적으로 구동하여 시료를 반응공간 내의 원하는 위치로 이동시킬 수 있다.
또한, 격벽 상에 시료운반소자들 및 소수성막을 배치하고 반응공간 내에 친수성코팅을 하여, 시료를 반응공간에 용이하게 삽입할 수 있다.
또한, 시료소스로부터 순차적으로 복수개의 시료들을 분리하여 복수개의 반응공간들에 투입할 수 있다. 따라서 수작업으로 시료를 투입하는 경우에 비해 정확도가 향상되고, 극미량의 시료라 할지라도 손쉽게 투입이 가능하다.
또한, 시료운반소자들의 전위를 조절하여 시료의 접촉면적을 줄이고 두께를 증가시키는 경우, 수직방향으로 측정되는 광의 감도가 증가하여 정확도가 향상된다.
또한, 시료운반소자들의 전위를 조절하여 시료의 접촉면적을 늘리고 두께를 감소시키는 경우, 시료의 온도가 용이하게 조절될 수 있다.
따라서, 자동화된 공정을 이용하여 시료를 반응공간 내에 투입하여 투입과정에서 시약이 오염되는 것이 방지된다.
도 1은 본 발명의 일 실시예에 따른 리더시스템에 장착된 피씨알모듈을 나타내는 블럭도이다.
도 2는 도 1에 도시된 피씨알모듈을 나타내는 단면도이다.
도 3은 본 발명의 다른 실시예에 따른 피씨알모듈을 나타내는 단면도이다.
도 4는 도 3에 도시된 피씨알모듈을 나타내는 평면도이다.
도 5는 도 4의 I-I'라인의 단면도이다.
도 6 및 도 7은 도 5에 도시된 시료소스로부터 시료를 분리하는 방법을 나타내는 평면도들이다.
도 8 내지 도 12는 도 3에 도시된 피씨알모듈의 반응공간에 시료를 투입하는 방법을 나타내는 단면도들이다.
도 13 및 도 14는 본 발명의 또 다른 실시예에 따른 피씨알모듈의 반응공간에 시료를 투입하는 방법을 나타내는 단면도들이다.
도 15는 도 14에 도시된 시료가 응집된 상태인 것을 나타내는 단면도이다.
도 16은 도 14에 도시된 시료가 펼쳐진 상태인 것을 나타내는 단면도이다.
본문에 개시되어 있는 본 발명의 실시예들에 대해서, 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본문에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니 된다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 구성요소에 대해 사용하였다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위로부터 이탈되지 않은 채 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 설명하고자 한다. 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 일 실시예에 따른 리더시스템에 장착된 피씨알모듈을 나타내는 블럭도이다.
도 1을 참조하면, 피씨알모듈(PCR Module; 200)은 리더시스템(Reader System; 100)에 탈착가능하도록 결합된다. 피씨알모듈(200)은 리더시스템(100)에 의해 구동된다. 도 1에는 하나의 피씨알모듈(200)이 리더시스템(100)에 결합되는 것이 도시되어 있으나, 당해기술분야에서 통상의 지식과 기술을 가진 사람이라면 하나의 리더시스템(100)에 복수개의 피씨알모듈(200)이 동시에 결합되도록 변형될 수 있음을 이해할 것이다.
리더시스템(100)은 중앙정보처리부(110), 메모리(120), 인터페이스(130), 및 냉각부재(150)를 포함한다.
중앙정보처리부(110)는 메모리(120)에 저장된 구동데이터를 독출하여 냉각부재(150) 및 피씨알모듈(200)을 구동하고, 피씨알모듈(200)로부터 광센싱정보, 온도정보 등을 인가받아 실시간으로 메모리(120)에 저장한다.
중앙정보처리부(110)는 피씨알모듈(200)로부터 인가받은 광센싱정보, 온도정보 등을 이용하여 유전자 증폭량을 실시간으로 계산하여 유전자증폭량 정보를 생성한다. 중앙정보처리부(110)는 유전자증폭량 정보를 실시간으로 메모리(120)에 저장하고 인터페이스(130)로 전송한다.
본 실시예에서, 리더시스템(100)은 광원구동부(220), 광원(230), 및 여기광원필터(233)를 더 포함한다.
광원구동부(220)는 중앙정보처리부(110)의 제어에 의해 광원(230)을 구동하여 피씨알모듈(200)로 여기광을 인가한다.
여기광원필터(233)는 광원(230)과 반응공간(240) 사이에 배치되어, 광원(230)에서 발생된 광의 파장이 균일해지도록 필터링한다.
다른 실시예에서, 광원(230)이 리더시스템(100)에 포함되는 것이 아니라, 피씨알모듈(200)에 포함될 수도 있다.
도 2는 도 1에 도시된 피씨알모듈을 나타내는 단면도이다.
도 1 및 도 2를 참조하면, 피씨알모듈(200)은 베이스기판(301), 광학센서 어셈블리(300), 격벽(320), 커버(325), 시료(420), 제어인터페이스(430), 시료운반소자(440), 및 소수성막(445)을 포함한다.
베이스기판(301)은 실리콘, 사파이어, 실리콘카바이트, 게르마늄, 유리, 합성수지 등 다양한 물질을 포함한다.
광학센서 어셈블리(300)는 복수개의 광센서들(310), 이미션필터(313), 온도센서(360), 및 온도제어부(370)를 포함한다.
복수개의 광센서들(310)은 베이스기판(301) 내에 어레이 형상으로 배열된다. 본 실시예에서, 광센서들(310)은 반도체공정을 통하여 실리콘기판 상에 형성되는 복수개의 포토다이오드들, 복수개의 박막트랜지스터들, 등을 포함할 수 있다. 예를 들어, 실리콘기판에 불순물의 종류를 변경하면서 도핑하여 P형반도체층, N형반도체층 등을 형성하여 포토다이오드들을 형성할 수 있다.
이미션필터(313)는 광센서들(310)의 상부에 배치되어 반응공간(240) 내에서 생성된 형광·인광 등의 방출광(Emission Light)만을 통과시키고 광원(230)에서 생성된 여기광을 차단한다. 예를 들어, 이미션필터(313)는 포토레지스트와 안료가 혼합되어 경화 또는 미경화된 필터를 포함할 수 있다.
온도센서(360)는 베이스기판(301) 내에 또는 베이스기판(301) 상에서 반응공간(240)에 인접하게 배치되어, 반응공간(240) 내의 온도를 측정한다. 온도센서(360)에 의해 측정된 온도감지신호는 제어인터페이스(430)를 통하여 리더시스템(100)으로 인가된다.
온도제어부(370)는 베이스기판(301) 상에 배치되어 반응공간(240) 내의 온도를 조절한다. 본 실시예에서, 온도제어부(370)는 제어인터페이스(430)로부터 온도제어신호를 인가받아 반응공간(240)의 온도를 일정하게 유지시키거나 가열시킨다. 예를 들어, 온도제어부(370)는 도전패턴, 열전소자, 등을 포함할 수 있다.
격벽(320)은 베이스기판(301) 상에 돌출되어 반응공간(240)을 정의한다. 격벽(320)은 플라스틱, PDMS, 실리콘, 금속 등 다양한 재질로 형성될 수 있다.
커버(325)는 격벽(320)이 설치된 베이스기판(301)과 결합하여 반응공간(240)을 외부와 격리시키고 반응공간(240) 내의 습도를 유지시킨다. 본 실시예에서, 시료(420)가 증발되지 않도록 시료(420) 표면에 오일(도시되지 않음)을 덮으며, 커버(325)는 오일(도시되지 않음)이 반응공간(240) 내에 수용되도록한다. 따라서, 시료(420)가 건조되는 것을 방지하고 시료(420)의 전기적 특성이 변화되는 것을 방지된다.
반응공간(240) 내에 시약(도시되지 않음)이 배치되어 시료(420)와 반응하여 형광·인광 등을 생성할 수 있다. 본 실시예에서, 시료(420)와 반응하는 시약(도시되지 않음)은 프라이머(Primer), 프로브(Probe) 등을 포함할 수 있다. 시료(420) 내에 포함된 유전물질은 프라이머에 의해 유전자증폭이 개시될 수 있다. 증폭된 유전물질에 여기광이 인가되면, 프로브에 의해 형광·인광 등이 방사된다.
제어인터페이스(430)는 온도센서(360), 온도제어부(370), 및 복수개의 시료운반소자들(440)과 연결된다.
제어인터페이스(430)는 온도센서(360)로부터 온도감지신호를 인가받아 리더시스템(100)의 중앙정보처리부(110)로 전달한다.
제어인터페이스(430)는 리더시스템(100)의 중앙정보처리부(110)로부터 온도감지신호 및 피씨알사이클에 대응되는 온도제어신호를 인가받아 온도제어부(370)를 제어한다.
제어인터페이스(430)는 시료운반소자들(440)을 개별적으로 제어하여 시료운반소자들(440)에 선택적으로 접지전위, 양의 전위, 또는 음의 전위를 인가한다. 접지전위, 양의 전위 또는 음의 전위가 인가되지 않는 시료운반소자들(440)의 경우, 플로팅(floating) 상태일 수 있다.
시료운반소자들(440)은 베이스기판(301) 상에 배치되고, 제어인터페이스(430)로부터 접지전위, 양의 전위, 또는 음의 전위를 인가받아 시료(420)를 운반하거나 시료(420)의 형태를 제어한다. 본 실시예에서, 시료운반소자들(440)은 베이스기판(301)의 상면에 평행하게 배열된 평판형상의 전극패드들을 포함한다.
시료운반소자(440)에 접지전압(GND)이 인가되면, 시료운반소자(440) 상에 배치된 시료(420a)는 응집된 상태를 유지한다. 구체적으로, 시료(420a)는 전기적으로 접지되어 전하를 띄지 않는데 하부의 시료운반소자(440)에 접지전압(GND)이 인가되면, 소수성막(445)에 의해 둥그런 형태의 액적형태를 갖는다. 시료(420a)가 둥그런 형태의 액적형태를 갖는 경우, 세로방향의 높이가 높아진다. 시료운반소자(440)의 전위가 접지전압(GND)이면 시료(420a)와 소수성막(445) 사이의 접촉면적이 줄어드는 반면에 세로방향의 두께는 증가한다. 시료(420a)의 세로방향의 두께가 증가하면 수직방향으로 측정되는 방사광의 강도가 증가하여, 수직방향으로 측정되는 광의 감도 및 정확도가 향상된다.
반면에, 시료운반소자(440)에 양의 전위(+) 또는 음의 전위(-)가 인가되면, 시료운반소자(440) 상에 배치된 시료(420b)는 펼쳐진 상태를 유지한다. 시료운반소자(440)의 전위가 양의 전위(+) 또는 음의 전위(-)이면 시료(420b)와 소수성막(445) 사이의 접촉면적이 증가하는 반면에 세로방향의 두께는 감소한다. 시료(420b)와 소수성막(445) 사이의 접촉면적이 증가하면, 온도제어부(370)에서 발생된 열이 넓은 면적을 통하여 시료(420b)에 전달되기 때문에, 시료(420b)의 온도를 용이하게 조절할 수 있다.
시료운반소자들(440)의 구체적인 구동방법은 도 4 내지 도 9를 참조하여 후술한다.
소수성막(445)은 베이스기판(301) 상에 배치되고 시료운반소자들(440)의 상면을 커버한다. 시료(420)가 시료운반소자들(440) 상에 배치되면 소수성막(445)의 소수성 특성에 의해 시료(420)의 형태를 보다 용이하게 변경할 수 있다.
상기와 같은 본 실시예에 따르면, 베이스기판(301) 상에 시료운반소자들(440) 및 소수성막(445)을 배치하고, 시료운반소자들(440)을 개별적으로 구동하여 시료(420)를 반응공간(240) 내의 원하는 위치로 이동시킬 수 있다.
도 3은 본 발명의 다른 실시예에 따른 피씨알모듈을 나타내는 단면도이다. 본 실시예에서, 복수개의 반응공간 및 친수성코팅을 제외한 나머지 구성요소들은 도 1 및 도 2에 도시된 실시예와 동일하므로, 동일한 구성요소들에 대한 중복되는 설명은 생략한다.
도 3을 참조하면, 피씨알모듈은 베이스기판(301), 광학센서 어셈블리(300), 격벽(321), 커버(326), 시료(420), 제어인터페이스(431), 시료운반소자(441), 소수성막(446), 및 친수성코팅(449)을 포함한다.
격벽(321)은 베이스기판(301) 상에 돌출되어 구획되는 복수개의 반응공간들(241)을 정의한다.
커버(326)는 격벽(321)이 설치된 베이스기판(301)과 결합하여 반응공간들(241)을 외부와 격리시키고 반응공간들(241) 내의 습도를 유지시킨다. 본 실시예에서, 시료(420)가 증발되지 않도록 시료(420) 표면에 오일(도시되지 않음)을 덮으며, 커버(326)는 오일(도시되지 않음)이 반응공간(241) 내에 수용되도록한다. 따라서, 시료(420)가 건조되는 것을 방지하고 시료(420)의 전기적 특성이 변화되는 것을 방지된다.
반응공간들(241) 내에 시약(도시되지 않음)이 배치되어 시료(420)와 반응하여 형광·인광 등을 생성할 수 있다. 본 실시예에서, 각 반응공간들(241) 내에 서로 다른 시약(도시되지 않음)이 배치될 수도 있다.
제어인터페이스(431)는 온도센서(360), 온도제어부(370), 및 복수개의 시료운반소자들(441)과 연결된다.
제어인터페이스(431)는 시료운반소자들(441)을 개별적으로 제어하여 시료운반소자들(441)에 선택적으로 접지전위, 양의 전위, 또는 음의 전위를 인가한다.
시료운반소자들(441)은 격벽(321) 상에 배치되고, 제어인터페이스(431)로부터 접지전위, 양의 전위, 또는 음의 전위를 인가받아 시료(420)를 운반하거나 시료(420)의 형태를 제어한다. 본 실시예에서, 시료운반소자들(441)은 격벽(321)의 상면에 평행하게 배열된 평판형상의 전극패드들을 포함하며, 반응공간(241) 내에는 별도의 시료운반소자들이 존재하지 않는다.
시료운반소자(441)에 접지전압(GND)이 인가되면, 시료운반소자(441) 상에 배치된 시료(도 2의 420a)는 응집된 상태를 유지한다.
반면에, 시료운반소자(441)에 양의 전위(+) 또는 음의 전위(-)가 인가되면, 시료운반소자(441) 상에 배치된 시료(도 2의 420b)는 펼쳐진 상태를 유지한다.
소수성막(446)은 격벽(321)의 상면 상에 배치되고 시료운반소자들(441)의 상면을 커버한다. 시료(도 2의 420)가 시료운반소자들(441) 상에 배치되면 소수성막(446)의 소수성 특성에 의해 시료(도 2의 420)가 소수성막(446) 상에서 보다 용이하게 이동할 수 있으며 형태를 보다 용이하게 변경할 수 있다.
친수성코팅(449)은 반응공간(241)의 내면 상에 배치되어 시료(도 2의 420)가 용이하게 수납되도록 한다. 시료(도 2의 420)가 소수성막(446) 상에서 이동하다가 반응공간(241)에 인접하게 배치되면, 친수성코팅(449)에 의해 반응공간(241)쪽으로 기울어지게 된다. 반응공간(241)쪽으로 기울어진 시료(도 2의 420)는 자체적인 중량에 의해 아래쪽으로 흐르게 되며 친수성코팅(449)에 의해 반응공간(241)내에 삽입된다.
상기와 같은 본 실시예에 따르면, 격벽(321) 상에 시료운반소자들(440) 및 소수성막(445)을 배치하고 반응공간(241) 내에 친수성코팅(449)을 하여, 시료(도 2의 420)를 반응공간(241)에 용이하게 삽입할 수 있다.
도 4는 도 3에 도시된 피씨알모듈을 나타내는 평면도이며, 도 5는 도 4의 I-I'라인의 단면도이다.
도 3 내지 도 5를 참조하면, 친수성코팅(446)이 배치된 베이스기판(301) 상의 일측에 시료소스(421)를 배치한다. 시료소스(421)는 복수회 실험이 가능한 용량으로 시료(420)를 합산하여 액적형태로 배치한 것이다.
시료소스(421)의 하부에 배치된 시료운반소자들(441)에는 양의 전위(+) 또는 음의 전위(-)가 인가되고 시료소스(421)에 인접하여 배치된 시료운반소자들(441)ㅇ에는 접지전위(GND)가 인가되어, 시료소스(421)가 하나의 액적형태로 존재하도록 한다.
시료소스(421)의 일부로부터 시료(420b)를 분리하여 복수개의 반응공간들(241)에 순차적으로 이송한다. 다른 실시예에서, 친수성코팅이 배치된 베이스기판의 일측에 서로 다른 종류의 시료소스들이 배치되고 상기 시료소스들로부터 서로 다른 종류의 시료들이 반응공간들(241)내로 이송될 수 있다.
시료소스(421)의 일부로부터 시료(420b)를 분리하기 위하여, 시료소스(421)에 인접하게 배치된 시료운반소자들(441)의 일부에 양의 전위(+) 또는 음의 전위(-)를 인가하여 시료소스(421)의 일부를 인출한다. 시료소스(421)의 일부가 인출되면 본래의 시료소스(421)와 인출된 시료(420b)의 사이에 배치된 시료운반소자(441)에 접지전압(GND)을 인가한다. 본래의 시료소스(421)와 인출된 시료(420b)의 사이에 접지전압(GND)이 인가되면, 인출된 시료(420b)가 본래의 시료소스(421)로부터 분리된다.
도 6 및 도 7은 도 5에 도시된 시료소스로부터 시료를 분리하는 방법을 나타내는 평면도들이다.
도 3 내지 도 6을 참조하면, 시료소스(421)에 인접하게 배치된 시료운반소자들(441)의 일부에 양의 전위(+)가 인가되면, 시료소스(421)의 일부가 양의 전위(+)가 인가된 시료운반소자들(441) 쪽으로 돌출된다.
도 3 내지 도 5, 및 도 7을 참조하면, 본래의 시료소스(421)와 돌출된 시료소스의 사이에 접지전압을 인가한다. 본래의 시료소스(421)와 돌출된 시료소스의 사이에 접지전압을 인가하면, 시료(420b)가 시료소스(421)로부터 분리된다.
도 8 내지 도 12는 도 3에 도시된 피씨알모듈의 반응공간에 시료를 투입하는 방법을 나타내는 단면도들이다.
도 3, 도 7, 및 도 8을 참조하면, 시료(420b)에 인접하는 시료운반소자(441)의 전위가 순차적으로 변화하면, 시료소스(421)로 분리된 시료(420b)가 인접하는 시료운반소자(441)를 따라서 이동한다. 예를 들어, 인접하는 시료운반소자(441)에 순차적으로 양의 전위(+)가 인가되고 기존의 시료운반소자(441)에 순차적으로 접지전압(GND)이 인가되면, 시료(420b)가 전위의 이동에 따라 순차적으로 이동한다.
도 3 및 도 9를 참조하면, 시료운반소자(441)는 시료(420b)를 반응공간(241)에 인접한 위치까지 이동시킨다. 반응공간(241)에 인접하는 두 개의 시료운반소자들(441)에 양의 전위(+)가 인가되면, 시료(420b)는 펼쳐진 상태가 된다.
도 3 및 도 10을 참조하면, 반응공간(241)에 가장 가까이 있는 하나의 시료운반소자(441")에만 양의 전위(+)가 인가되고 인접하는 시료운반소자(441')에는 접지전위(GND)가 인가되면, 시료(420a)는 응집된 상태가 된다.
시료(420a)가 응집된 상태가 되면 시료(420a)의 한쪽이 반응공간(241) 내의 친수성코팅(449)와 접촉하게 된다.
도 3 및 도 11을 참조하면, 시료(420a)의 한쪽이 반응공간(241) 내의 친수성코팅(449)와 접촉하게 되면, 시료(420a)의 나머지 부분도 친수성코팅(449) 쪽으로 이동하게 된다.
이후 계속하여 시료(420a)의 자중(自重) 및 친수성코팅(449)의 인력에 의해 시료(420a)의 나머지 부분도 반응공간(241) 쪽으로 이동하게 된다.
이때, 반응공간(241)에 가장 인접하게 배치된 시료운반소자(441")에 접지전압(GND)을 인가하면, 시료(420a)가 반응공간(241) 쪽으로 이동하는 것이 보다 용이해진다.
도 3 및 도 11을 참조하면, 시료(420)가 반응공간(241) 내에 완전히 투입되어 시약(423)과 접촉하게 된다.
본 실시예에서, 시료소스(421)는 복수개의 시료(420b)로 분리될 수 있을 만큼의 양의 시료물질을 포함하고 있으며, 시료운반소자들(441)을 순차적으로 구동하여 복수개의 시료들(420b)을 순차적으로 분리하여 서로 다른 반응공간들(241)로 이동시킨다. 예를 들어, 복수개의 반응공간들(241)에는 2종류 이상의 시약들(도시되지 않음)이 배치될 수 있다.
상기와 같은 본 실시예에 따르면, 시료소스(421)로부터 순차적으로 복수개의 시료들(240)을 분리하여 복수개의 반응공간들(241)에 투입할 수 있다. 따라서 수작업으로 시료를 투입하는 경우에 비해 정확도가 향상되고, 극미량의 시료라 할지라도 손쉽게 투입이 가능하다.
도 13 및 도 14는 본 발명의 또 다른 실시예에 따른 피씨알모듈의 반응공간에 시료를 투입하는 방법을 나타내는 단면도들이다. 본 실시예에서, 반응공간에 인접하게 배치된 시료운반소자들의 구동방법을 제외한 나머지 구성요소들은 도 3 내지 도 12에 도시된 실시예와 동일하므로, 동일한 구성요소들에 대한 중복되는 설명은 생략한다.
도 13을 참조하면, 반응공간(241)에 가장 가까이 있는 하나의 시료운반소자(441a)에 양의 전위(+)가 인가되고 인접하는 시료운반소자(441')에는 접지전위(GND)가 인가되면, 시료(420a)는 응집된 상태가 된다.
본 실시예에서, 반응공간(241)에 가까이 있는 하나의 시료운반소자(441a) 뿐만 아니라 반응공간(241)을 중심으로 서로 마주보는 다른 하나의 시료운반소자(441b)에도 양의 전위(+)가 인가된다. 양의 전위(+)는 시료(420a)를 끌어당기는 역할을 하므로, 서로 마주보는 두 개의 시료운반소자들(441a, 441b)에 양의 전위(+)가 인가되면 시료(420a)가 보다 용이하게 반응공간(421) 내로 투입될 수 있다. 다른 실시예에서, 서로 마주보는 두 개의 시료운반소자들(441a, 441b) 뿐만 아니라 반응공간(241)에 접하여 둘러싸고 있는 모든 시료운반소자들에 양의 전위(+)가 인가될 수도 있다.
도 14를 참조하면, 이후 반응공간(241)에 가장 인접하게 배치된 하나의 시료운반소자(441a)에 접지전압(GND)을 인가하고, 반응공간(241)을 중심으로 서로 마주보는 다른 하나의 시료운반소자(441b)에는 양의 전위(+)를 인가하면, 시료(420a)가 반응공간(241)내로 보다 용이하게 투입된다. 다른 실시예에서, 반응공간(241)에 접하여 둘러싸고 있는 모든 시료운반소자들 중에서 하나의 시료운반소자(441a)에만 접지전압(GND)이 인가되고 나머지 시료운반소자들에는 양의 전위(+)가 인가될 수도 있다.
도 15는 도 14에 도시된 시료가 응집된 상태인 것을 나타내는 단면도이다.
도 15를 참조하면, 반응공간(241) 내에 시료(420a)가 투입된 후에 반응공간(241)을 둘러싸고 있는 모든 시료운반소자들에 접지전압(GND)을 인가한다. 반응공간(241)을 둘러싸고 있는 모든 시료운반소자들에 접지전압(GND)이 인가되면, 시료(420a)가 응집된 상태가 된다. 시료(420a)가 응집된 상태가 되면 시료의 두께가 증가하여 수직방향으로 측정되는 광의 감도가 증가하여 정확도가 향상된다.
다른 실시예에서, 반응공간(241)을 둘러싸고 있는 일부의 시료운반소자들에만 접지전압(GND)을 인가하고 나머지 시료운반소자들은 플로팅 상태일 수도 있다.
상기와 같은 본 실시예에 따르면, 기판의 전위를 조절하여 시료의 접촉면적을 줄이고 두께를 증가시키는 경우, 수직방향으로 측정되는 광의 감도가 증가하여 정확도가 향상된다.
도 16은 도 14에 도시된 시료가 펼쳐진 상태인 것을 나타내는 단면도이다.
도 16을 참조하면, 반응공간(241) 내에 시료(420a)가 투입된 후에 반응공간(241)을 둘러싸고 있는 모든 시료운반소자들에 양의 전위(+)(또는 음의 전위(-))를 인가한다. 반응공간(241)을 둘러싸고 있는 모든 시료운반소자들에 양의 전위(+)가 인가되면, 시료(420b)가 펼쳐진 상태가 된다. 시료(420b)가 펼쳐진 상태가 되면 시료(420b)와 격벽(321) 사이의 접촉면적이 증가한다. 시료(420b)와 격벽(321) 사이의 접촉면적이 증가하면, 온도제어부(370)에서 발생된 열이 시료(420b)에 보다 용이하게 전달된다.
다른 실시예에서, 반응공간(241)을 둘러싸고 있는 일부의 시료운반소자들에만 양의 전압(+)을 인가하고 나머지 시료운반소자들은 플로팅 상태일 수도 있다.
상기와 같은 본 실시예에 따르면, 기판의 전위를 조절하여 시료의 접촉면적을 늘리고 두께를 감소시키는 경우, 시료의 온도가 용이하게 조절될 수 있다.
상기와 같은 본 발명의 실시예들에 따르면, 본 발명은 EWOD기술을 이용하여 기판의 전위를 조절하여 액적 형태의 시료의 크기와 면적을 용이하게 변경시킬 수 있다.
또한, 베이스기판 상에 시료운반소자들 및 소수성막을 배치하고, 시료운반소자들을 개별적으로 구동하여 시료를 반응공간 내의 원하는 위치로 이동시킬 수 있다.
또한, 격벽 상에 시료운반소자들 및 소수성막을 배치하고 반응공간 내에 친수성코팅을 하여, 시료를 반응공간에 용이하게 삽입할 수 있다.
또한, 시료소스로부터 순차적으로 복수개의 시료들을 분리하여 복수개의 반응공간들에 투입할 수 있다. 따라서 수작업으로 시료를 투입하는 경우에 비해 정확도가 향상되고, 극미량의 시료라 할지라도 손쉽게 투입이 가능하다.
또한, 시료운반소자들의 전위를 조절하여 시료의 접촉면적을 줄이고 두께를 증가시키는 경우, 수직방향으로 측정되는 광의 감도가 증가하여 정확도가 향상된다.
또한, 시료운반소자들의 전위를 조절하여 시료의 접촉면적을 늘리고 두께를 감소시키는 경우, 시료의 온도가 용이하게 조절될 수 있다.
따라서, 자동화된 공정을 이용하여 시료를 반응공간 내에 투입하여 투입과정에서 시약이 오염되는 것이 방지된다.
본 발명은 유전물질을 증폭하여 검사하는 장치에 사용될 수 있는 산업상 이용가능성을 갖는다.

Claims (7)

  1. 리더시스템(Reader System)과 탈착가능하도록 결합되는 피씨알모듈(PCR Module)에 있어서,
    절연물질을 포함하는 베이스기판;
    상기 베이스 기판 내에 배치되며 어레이 형상으로 배열되어 시료에서 발생되는 방출광을 감지하여 광감지신호를 생성하는 복수개의 광센서들을 포함하는 광학센서어셈블리;
    상기 베이스기판 상에 돌출되어 상기 시료를 수납하는 반응공간을 정의하는 격벽;
    상기 격벽이 형성된 상기 베이스기판과 결합하여 상기 시료의 습도를 일정하게 유지시키는 커버;
    상기 광학센서어셈블리 상에 배치되는 복수개의 시료운반소자들;
    상기 시료운반소자를 커버하고 상기 반응공간의 바닥면을 정의하는 소수성막; 및
    상기 광학센서어셈블리 및 상기 시료운반소자들에 전기적으로 연결되며, 상기 광감지신호를 상기 리더시스템으로 전송하며, 상기 리더시스템으로부터 전위제어신호를 인가받아 상기 시료운반소자들에 서로 다른 전위 포텐셜을 인가하는 제어회로를 포함하는 피씨알모듈.
  2. 제1항에 있어서, 상기 시료는 상기 소수성막 상에 배치되는 액적형태를 포함하며, 상기 시료운반소자들에 인가되는 전위 포텐셜에 따라 상기 액적형태의 높이와 평면상에서의 면적이 달라지는 것을 특징으로 하는 피씨알모듈.
  3. 제2항에 있어서, 상기 피씨알모듈이 관측모드일 경우, 상기 시료의 하부에 배치되는 시료운반소자에는 접지전위가 인가되는 것을 특징으로 하는 피씨알모듈.
  4. 제2항에 있어서, 상기 피씨알모듈이 가열모드일 경우, 상기 시료의 하부에 배치되는 복수개의 시료운반소자들에 양의 전위 또는 음의 전위가 인가되는 것을 특징으로 하는 피씨알모듈.
  5. 제1항에 있어서, 도전성 물질을 포함하고 길게 연장되어 전류의 흐름에 따라 열을 발생시키는 온도조절라인들을 더 포함하는 것을 특징으로 하는 피씨알모듈.
  6. 리더시스템(Reader System)과 탈착가능하도록 결합되는 피씨알모듈(PCR Module)에 있어서,
    절연물질을 포함하는 베이스기판;
    상기 베이스 기판 내에 배치되며 어레이 형상으로 배열되어 시료에서 발생되는 방출광을 감지하여 광감지신호를 생성하는 복수개의 광센서들을 포함하는 광학센서어셈블리;
    상기 베이스기판 상에 돌출되어 반응공간을 형성하는 격벽;
    상기 격벽이 형성된 상기 베이스기판과 결합하여 상기 시료의 습도를 일정하게 유지시키는 커버;
    상기 격벽 내에 배치되는 복수개의 시료운반소자들;
    상기 시료운반소자를 커버하고 상기 격벽의 상면에 형성되는 소수성막;
    인접하는 격벽들 사이의 형성되는 반응공간의 내면 상에 형성되는 친수성코팅; 및
    상기 광학센서어셈블리 및 상기 시료운반소자들에 전기적으로 연결되며, 상기 광감지신호를 상기 리더시스템으로 전송하며, 상기 리더시스템으로부터 전위제어신호를 인가받아 상기 시료운반소자들에 서로 다른 전위 포텐셜을 인가하는 제어회로를 포함하는 피씨알모듈.
  7. 제6항에 있어서, 상기 시료는 액적형상을 포함하며, 상기 시료운반소자들 상에 인가되는 상기 전위포텐셜의 변화에 따라 상기 격벽의 상면을 따라 이동하여 상기 반응공간 내로 삽입되는 것을 특징으로 하는 피씨알모듈.
PCT/KR2017/005298 2016-05-25 2017-05-22 피씨알모듈 WO2017204512A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160064269 2016-05-25
KR10-2016-0064269 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017204512A1 true WO2017204512A1 (ko) 2017-11-30

Family

ID=60412473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005298 WO2017204512A1 (ko) 2016-05-25 2017-05-22 피씨알모듈

Country Status (2)

Country Link
KR (1) KR101904506B1 (ko)
WO (1) WO2017204512A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106242A1 (fr) * 2017-11-28 2019-06-06 Osmose Dispositif de renouvellement d' air dans une enceinte confinée

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102222511B1 (ko) * 2019-06-04 2021-03-03 (주)옵토레인 Pcr용 웰 어레이

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668320B1 (ko) * 2003-12-10 2007-01-12 삼성전자주식회사 중합 효소 연쇄 반응용 모듈 및 이를 채용한 다중중합효소 연쇄 반응 시스템
KR20080014758A (ko) * 2005-04-01 2008-02-14 쓰리엠 이노베이티브 프로퍼티즈 컴파니 제거가능한 광학 모듈을 갖는 멀티플렉스 형광 검출 장치
KR100952102B1 (ko) * 2007-08-29 2010-04-13 한양대학교 산학협력단 마이크로 중합효소 연쇄반응용 칩 및 이의 제조방법
KR20100114557A (ko) * 2009-04-16 2010-10-26 한국전자통신연구원 중합효소 연쇄반응 장치
KR101368463B1 (ko) * 2010-04-23 2014-03-03 나노바이오시스 주식회사 2개의 열 블록을 포함하는 pcr 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7338637B2 (en) * 2003-01-31 2008-03-04 Hewlett-Packard Development Company, L.P. Microfluidic device with thin-film electronic devices
KR102041205B1 (ko) * 2013-03-18 2019-11-06 주식회사 미코바이오메드 패턴 히터가 반복 배치된 pcr 열 블록 및 이를 포함하는 pcr 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668320B1 (ko) * 2003-12-10 2007-01-12 삼성전자주식회사 중합 효소 연쇄 반응용 모듈 및 이를 채용한 다중중합효소 연쇄 반응 시스템
KR20080014758A (ko) * 2005-04-01 2008-02-14 쓰리엠 이노베이티브 프로퍼티즈 컴파니 제거가능한 광학 모듈을 갖는 멀티플렉스 형광 검출 장치
KR100952102B1 (ko) * 2007-08-29 2010-04-13 한양대학교 산학협력단 마이크로 중합효소 연쇄반응용 칩 및 이의 제조방법
KR20100114557A (ko) * 2009-04-16 2010-10-26 한국전자통신연구원 중합효소 연쇄반응 장치
KR101368463B1 (ko) * 2010-04-23 2014-03-03 나노바이오시스 주식회사 2개의 열 블록을 포함하는 pcr 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106242A1 (fr) * 2017-11-28 2019-06-06 Osmose Dispositif de renouvellement d' air dans une enceinte confinée

Also Published As

Publication number Publication date
KR101904506B1 (ko) 2018-10-05
KR20170133267A (ko) 2017-12-05

Similar Documents

Publication Publication Date Title
US11703475B2 (en) Method of using integrated electro-microfluidic probe card
WO2013119049A1 (ko) 생물학적 시료의 자동 분석 장치 및 방법
US20090280476A1 (en) Droplet-based affinity assay device and system
WO2017204512A1 (ko) 피씨알모듈
US20080038810A1 (en) Droplet-based nucleic acid amplification device, system, and method
US20070242111A1 (en) Droplet-based diagnostics
JP2009526549A (ja) 生物学的試料または化学的試料の温度調整装置とその使用方法
WO2014148800A1 (ko) 패턴 히터가 반복 배치된 pcr 열 블록 및 이를 포함하는 pcr 장치
WO2016105073A1 (ko) 반복 슬라이딩 구동 수단을 구비하는 pcr 장치 및 이를 이용하는 pcr 방법
EP2016189A2 (en) Droplet-based pyrosequencing
WO2010041875A2 (ko) 초고속 고감도 dna 염기서열 분석 시스템 및 그 분석 방법
US20120045786A1 (en) Opto-fluidic microscope diagnostic system
DE60030042D1 (de) Verfahren und Vorrichtung zum zeitlichen Steuern der intermittierenden Beleuchtung einer Probenröhre auf einer Zentrifugationsplatte und zum Kalibrieren eines Probenröhrenabbildungssystems
WO2016182382A1 (ko) 일체화된 반응 및 검출 수단을 구비한 시험 장치에 사용되는 스테이션
WO2018194240A1 (ko) 원심력을 이용한 디지털 pcr 장치 및 방법
WO2016143995A1 (ko) 멀티플렉스 pcr 칩 및 이를 포함하는 멀티플렉스 pcr 장치
WO2020226194A1 (ko) 프로브 조립체 및 이를 포함하는 마이크로 진공 프로브 스테이션
WO2017204513A1 (ko) 피씨알모듈 및 이를 이용한 검사방법
WO2022154254A1 (ko) 회전형 카트리지를 이용하는 분자 진단 장치
WO2021145580A1 (ko) 화학물질 검출 장치 및 화학물질 검출 방법
WO2022215817A1 (ko) 액적의 크기 제어가 가능한 능동형 액적 생성장치, 이를 이용한 액적 크기 제어방법 및 액적 생성 자가진단 장치
WO2018062963A2 (ko) 유동 채널을 갖는 렌즈프리 cmos 광 어레이 센서 패키지 모듈의 유체흐름 특성 평가 방법
WO2014014268A1 (ko) 금속 나노입자를 이용하여 전기화학적 신호를 검출하는 실시간 pcr 장치
WO2018199689A2 (ko) 거대 자성입자 복합체를 이용한 자동 면역분석장치 및 방법
WO2022080970A1 (en) Solution mixing device and solution mixing method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17803031

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17803031

Country of ref document: EP

Kind code of ref document: A1