WO2013042946A1 - 모듈형 바이오센서 - Google Patents

모듈형 바이오센서 Download PDF

Info

Publication number
WO2013042946A1
WO2013042946A1 PCT/KR2012/007518 KR2012007518W WO2013042946A1 WO 2013042946 A1 WO2013042946 A1 WO 2013042946A1 KR 2012007518 W KR2012007518 W KR 2012007518W WO 2013042946 A1 WO2013042946 A1 WO 2013042946A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor plate
housing
diameter portion
coupling
coupled
Prior art date
Application number
PCT/KR2012/007518
Other languages
English (en)
French (fr)
Inventor
이진우
최재규
Original Assignee
주식회사 세라젬메디시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세라젬메디시스 filed Critical 주식회사 세라젬메디시스
Priority to US14/345,871 priority Critical patent/US20140326598A1/en
Priority to BR112014006609A priority patent/BR112014006609A2/pt
Priority to JP2014531715A priority patent/JP2015508485A/ja
Publication of WO2013042946A1 publication Critical patent/WO2013042946A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present invention relates to a modular biosensor, and more particularly to a modular biosensor for easily combining or separating the biosensor and detector.
  • Biosensor refers to a measuring device that investigates the properties of substances by using functions of living organisms. Since biomaterials are used as detection elements, they have excellent sensitivity and specificity of reaction. Due to these advantages, biosensors are used in a wide range of fields, such as clinical and chemical analysis in the medical / medical field, process measurement in the bio industry, environmental measurement, and stability evaluation of chemicals. In particular, biosensors are widely used to analyze biological samples including samples in the field of medical diagnosis. Biosensors include enzyme analysis and immunoassay according to the type of detection device, and optical biosensors and electrochemical biosensors according to a method of quantitatively analyzing a target substance in a biological sample.
  • Enzyme assay biosensors use specific reactions of enzymes and substrates, enzymes and enzyme inhibitors.
  • Immunoassay biosensors use specific reactions of antigens and antibodies.
  • the optical biosensor is a method of measuring the concentration of a target substance by measuring light transmittance, absorbance or wavelength change, and is the most commonly used method.
  • the optical biosensor method has an advantage that the reaction mechanism of the various materials to be analyzed is already known and measured after the reaction is performed for a sufficient time, so that the variation in measurement time is small.
  • the optical biosensor has a problem in that the measurement result is affected by the turbidity of the sample, and it is difficult to miniaturize the optical unit, and the measurement time is long and a large amount of the sample is required compared to the electrochemical biosensor.
  • An electrochemical biosensor is a method of measuring the concentration of a target substance by measuring an electrical signal obtained from a biochemical reaction.
  • the electrochemical biosensor has the advantage of being able to amplify a signal even with a very small amount of samples, miniaturization, stable acquisition of a measurement signal, and easy integration with information and communication devices.
  • conventional biosensors generally have a flat strip structure, which is a thin stick type composed of a plurality of thin film layers such as a lower substrate, a reactor plate, a spacer, and an upper substrate, and its size is very small compared to a complicated structure.
  • the main users of these biosensors are diabetics or the elderly, and most of them have dark or trembling eyes, which makes it difficult to insert small biosensors into narrow slits of the detectors.
  • the strip-type biosensor is exposed to the outside when inserted into the detector by the user has a problem that tends to be contaminated.
  • Another object of the present invention is to provide a modular biosensor for preventing contamination due to external exposure.
  • Still another object of the present invention is to provide a modular biosensor for improving ease of use and hygiene.
  • Modular biosensor for achieving the above object of the present invention, is formed in a columnar shape having an opening formed on the bottom surface of one side of the reaction plate to react with the introduction sample to generate a reaction signal,
  • a detector for performing an analysis of the introduced sample based on the reaction signal generated in the reactor plate is inserted into and coupled to the reactor plate, and the reaction is performed at the closed bottom of the position corresponding to the open bottom.
  • the modular biosensor comprises a first cover attached to one end of the housing to protect the reactor plate exposed to the outside through the second structure; And a second cover attached to the other end of the housing to protect the reactor plate exposed to the outside through the first structure.
  • the reaction plate reacts with the introduction sample to generate a reaction signal
  • the opening is formed in the first bottom of the hollow shape
  • the second The bottom surface may have a cap shape, and may include a structure to which the reactor plate is coupled to an inner side surface of the second bottom surface and surround an outer side surface of the structure and slide along an outer side surface of the structure.
  • the structure is a coupling groove for coupling the reactor plate, an introduction port for introducing a sample into the reactor plate coupled to the coupling groove, and the sample introduced through the introduction port to the reactor plate quickly It may include a capillary groove for conveying.
  • a first outer diameter portion and a second outer diameter portion having a width larger than the first outer diameter portion are formed to be vertically adjacent to each other, a stepped surface is formed at a boundary between the first outer diameter portion and the second outer diameter portion, and the inner side of the end portion of the first outer diameter portion Extends in a direction to form a closed bottom surface, and an inner side of the first outer diameter portion is formed with a coupling groove for coupling the reactor plate, and the closed bottom surface for introducing a sample into the reactor plate coupled to the coupling groove.
  • the coupling groove has a first structure and a capillary groove for quickly transferring the sample introduced from the inlet to the reactor plate. It is formed so as to surround the outer surface of the structure, may comprise a housing which slides along the outer surface of the main structure.
  • the first structure includes a second structure in which the coupling groove is formed to be coupled to the reactor plate, and a third structure coupled to the second structure with the reactor plate therebetween to form the first structure. can do.
  • the reactor plate and the detector when the detector is coupled to the substructure or main structure to which the reactor plate is coupled, the reactor plate and the detector contact each other, and thus, the reactor plate and the detector may be easily contacted. That is, in the related art, a reactor plate having a relatively small size is directly inserted into a detector so that the reactor plate and a detector come into contact with each other. By coupling the detector to the substructure or main structure to which the substrate is coupled, the reactor plate and the detector may be in contact with each other, thereby allowing the reactor plate and the detector to be contacted more easily than in the related art.
  • the reactor plate is located inside the lower structure, the upper structure, the housing, the lower cover and the upper cover, or inside the main structure, the housing, the lower cover and the upper cover, and when using the reactor plate, first remove the lower cover and lower Since the detector is coupled to the substructure or the main structure located at the part of which the cover is removed, the reactor plate is not exposed to the outside, thereby preventing the contamination due to external exposure.
  • the reactor plate is separated from the detector by holding and removing the substructure or main structure to which the reactor plate is coupled, and thus, compared to pulling a reactor plate containing blood directly by hand.
  • the reactor plate is separated from the detector by holding and removing the substructure or main structure to which the reactor plate is coupled, and thus, compared to pulling a reactor plate containing blood directly by hand.
  • FIG. 1 is a perspective view illustrating a modular biosensor according to an embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of FIG. 1.
  • 3A and 3B are plan views of the reactor plate of FIG. 1.
  • FIG. 4 is a perspective view of the substructure of FIG.
  • FIG. 5 is a perspective view illustrating the superstructure of FIG. 1.
  • 6A through 6F are cross-sectional views illustrating various coupling forms of a reactor plate in the modular biosensor of FIG. 1.
  • FIG. 7 is a perspective view of the housing of FIG. 1.
  • FIG. 8 is a perspective view illustrating a structure in which the reactor plate, the substructure, and the superstructure of FIG. 1 are combined.
  • FIG. 9 is a perspective view illustrating an internal structure of the substructure of FIG. 1.
  • FIG. 10A and 10B are sectional views showing the operating state of FIG. 1.
  • FIG. 11 is an exploded perspective view illustrating a modular biosensor according to another embodiment of the present invention.
  • FIG. 12 is a perspective view illustrating an external structure of the main structure of FIG. 11.
  • FIG. 13 is a perspective view illustrating an internal structure of the main structure of FIG. 11.
  • FIG. 14A and 14B are perspective views illustrating an operating state of FIG. 11.
  • FIG. 15 is an exploded perspective view illustrating a modular biosensor according to another embodiment of the present invention.
  • FIG. 16 is a perspective view illustrating an external structure of the main structure of FIG. 15.
  • FIG. 17 is a perspective view illustrating an internal structure of the main structure of FIG. 15.
  • FIG. 18 is a perspective view illustrating the first structure and the second structure of FIG. 14.
  • 19A and 19B are perspective views illustrating an operating state of FIG. 14.
  • FIG. 20 is a conceptual diagram illustrating a coupling state of the modular biosensor and detector of FIG. 1.
  • the 'cap shape' refers to a column of a planar figure such as a cylinder, a square column, a pentagonal column, a star column or the like and a three-dimensional figure equivalent to one side of which the bottom is open and the bottom of the corresponding position is blocked. do.
  • a portion where an opening is formed is referred to as an 'open bottom' and a blocked portion at a position corresponding to the 'open bottom' is referred to as a 'closed bottom'.
  • the modular biosensor 1 according to an embodiment of the present invention, the reactor plate 10 for generating a reaction signal by reacting with the sample, has a cap shape, cap shape
  • the detector plate 10 is coupled to the bottom plate 24 and the detector plate 80 is configured to perform analysis on the introduced sample based on the reaction signal generated from the plate plate 10 on the cap-shaped open bottom plate. It may include a substructure 20 is inserted and coupled to contact.
  • the modular biosensor 1 has an upper structure that forms a reaction chamber which is coupled to the closed bottom 24 of the substructure 20 and generates a reaction signal upon coupling to the closed bottom 24 of the substructure 20 ( 30) may be further included.
  • the reaction chamber refers to a region where a reaction occurs in the capillary groove 34 (sample introduction passage or microchannel) through which a sample is introduced.
  • One opening of the capillary groove 34 forms an inlet 35 for introducing a sample into the reactor plate 10.
  • the upper structure 30 may further include a vent hole 33 for discharging air according to the introduction of the sample into the inlet 35.
  • the reactor plate 10 generates a reaction signal by reacting with a sample (or a target biomaterial in the sample), and transmits the generated reaction signal to the detector 80, as shown in FIG. 3A.
  • the reference electrode 12a is formed on one surface of the working electrode 11a and the reference electrode 12a and is electrically connected to the operating electrode 11a and the reference electrode 12a.
  • the transfer electrode 12b may be formed.
  • the working electrode 11a may have a rectangular shape
  • the reference electrode 12a may have a hollow rectangular shape that surrounds the working electrode 11a having a rectangular shape.
  • the reactor plate 10 may be electrically connected to the working electrode 11a and the reference electrode 12a, the operating signal transmission electrode 11b and the reference electrode 12a electrically connected to the working electrode 11a, as shown in FIG. 3B.
  • the reference signal transfer electrodes 12b connected to each other may be formed on the same surface.
  • a reaction reagent (not shown) that reacts with the introduced sample may be provided on the working electrode 11a and the reference electrode 12a.
  • the reactor board 10 is formed of a printed circuit board (PCB) or a flexible printed circuit board (FPCB) in which a substrate and an electrode are integrated.
  • PCB printed circuit board
  • FPCB flexible printed circuit board
  • the position and the shape in which the working electrode 11a, the reference electrode 12a, the operating signal transmission electrode 11b, and the reference signal transmission electrode 12b of the reactor plate 10 are formed are not limited to the above description. That is, the working electrode 11a and the reference electrode 12a may be formed at all positions and may have any shape so as to react with the introduced sample to generate a reaction signal, and have the working signal transmission electrode 11b and the reference.
  • the signal transmission electrode 12b may be formed at any position and may have any shape so as to transmit the generated reaction signal to the detector.
  • the substructure 20 has a hollow cylindrical shape, and the second outer diameter portion 22 having a radius larger than the first outer diameter portion 21 and the first outer diameter portion 21 on the outer surface of the hollow cylinder. ) Is vertically adjacent to each other, and the first stepped surface 23 is formed at the boundary between the first outer diameter portion 21 and the second outer diameter portion 22.
  • the radius of the first outer diameter portion 21 is smaller than the radius of the first inner diameter portion 41 and the radius of the second outer diameter portion 22 so that the substructure 20 slides along the housing 40. Is smaller than the radius of the second inner diameter portion 42.
  • the radius of the second outer diameter portion 22 is larger than the radius of the first inner diameter portion 41 in order to prevent the substructure 20 from sliding off the housing 40. That is, the radius of the second outer diameter portion 22 is formed larger than the radius of the first inner diameter portion 41, so that when the lower structure 20 slides along the housing 40, the first stepped surface 23 is The second stepped surface 43 is caught to prevent the substructure 20 from being separated from the housing 40.
  • a closed bottom surface 24 is formed extending from the end of the first outer diameter portion 21 inwardly (that is, in the direction of the central axis of the hollow cylinder).
  • the shape of the substructure 20 is not limited to the above description.
  • the substructure 20 may have a shape of a hollow angular column (triangular column, square column, pentagonal column, etc.) having a closed bottom at one end.
  • a first coupling groove 25 to which the reactor plate 10 is coupled and a first coupling hole 26 to which the upper structure 30 is coupled are formed at the closed bottom 24 of the lower structure 20.
  • the first coupling groove 25 is formed to correspond to the shape of the reactor plate 10.
  • the first coupling groove 25 is formed such that the rod-shaped reactor plate 10 may be coupled thereto.
  • the area of the first coupling groove 25 may be formed to be equal to the area of one surface of the reactor plate 10.
  • the first coupling groove 25 is formed so that one side toward the outer circumferential surface of the lower structure 20 of the four sides is open, so that one side of the reactor plate 10 is exposed to the outside.
  • the reactor plate 10 may be coupled to the first coupling groove 25 by thermal fusion, ultrasonic fusion, bonding, or interference fitting.
  • the first coupling hole 26 is for coupling the upper structure 30 to the lower structure 20, the radius of the first coupling hole 26 is formed to be smaller than the radius of the coupling protrusion 32, the coupling protrusion ( 32 can be pressed into the first coupling hole (26).
  • at least one first coupling hole 26 is formed in the closed bottom surface 24, and the shape of the first coupling hole 26 is not limited to a circle and may have various shapes such as a triangle, a square, or a pentagon.
  • the second coupling hole 27 to allow the operation signal transmission electrode 11b and the reference signal transmission electrode 12b of the reactor plate 10 to contact the detector 80. ) Is formed.
  • the size and position of the second coupling hole 27 formed in the first coupling groove 25 is the operating signal transmission electrode (11b) and the reference formed on the reactor plate 10 is coupled to the first coupling groove 25 It depends on the size and position of the signal transmission electrode 12b.
  • the substructure 20 further includes an inner wall 28 formed extending from the closed bottom 24 toward the end of the second outer diameter part 22, but the closed bottom 24 and the first outer diameter part ( 21), the dehumidifying agent may be accommodated in the accommodation space formed by the second outer diameter portion 22 and the inner wall 28.
  • the reactor plate 10 and the lower structure 20 are coupled to the upper structure 30, and as shown in FIG. 5, the upper structure 30 has a flat plate shape, the first 'coupling groove 31 and the coupling protrusion. 32 is formed on one surface of the flat plate.
  • the shape of the upper structure 30 may be formed to be the same as the shape of the closed bottom (24).
  • the first 'coupling groove 31 is formed in the same shape as the first coupling groove 25, and the reactor plate 10 is coupled to the first' coupling groove 31. That is, the first 'coupling groove 31 has the same size as the first coupling groove 25, and when the upper structure 30 is coupled to the lower structure 20, the first' coupling groove 31 is first 1 is formed on the upper structure 30 so as to face the coupling groove 25.
  • the first 'coupling groove 31 may be exposed to one side of the reactor plate 10 to the outside. So that it is formed. That is, the first 'coupling groove 31 is formed such that one side of the four sides is open.
  • the reactor plate 10 may be coupled to the first 'combination groove 31 by heat fusion, ultrasonic fusion, bonding or interference fitting.
  • the coupling protrusion 32 is press-fitted into the first coupling hole 26 to couple the lower structure 20 and the upper structure 30, and the coupling protrusion 32 corresponds to the shape of the first coupling hole 26. Is formed. That is, the radius of the coupling protrusion 32 is formed to be larger than the radius of the first coupling hole 26, so that the coupling protrusion 32 can be pressed into the first coupling hole 26 to be coupled. In addition, at least one coupling protrusion 32 is formed in the upper structure 30, and the coupling protrusion 32 is formed to be equal to the number of first coupling holes 26.
  • Vent hole 33 is for discharging the air according to the introduction of the sample into the inlet (35) is formed spaced apart from the inlet (35), the inlet (35) for introducing the sample into the reactor plate (10) This refers to a space formed by one end of the reactor plate 10 coupled to the lower structure 20 and one end of the upper structure 30.
  • the capillary groove 34 is to induce the introduction of a sample by inducing a capillary phenomenon
  • the capillary groove 34 is formed in the longitudinal direction of the reactor plate 10 in the first 'coupling groove 31, the capillary groove 34 One end of the) is connected to the inlet 35 and the other end is connected to the vent hole (33). That is, the sample introduced through the inlet 35 is quickly transferred to the working electrode 11a and the reference electrode 12a of the reactor plate 10 by the capillary phenomenon by the capillary groove 34, and the vent hole 33. ) Discharges the air contained in the capillary groove 34 to the outside as the sample is introduced.
  • vent hole 33, the capillary groove 34, and the introduction hole 35 are formed is not limited to the above description, and the vent hole 33, the capillary groove 34, and the introduction hole 35 are It may be formed in the first coupling groove 25 of the lower structure (20). This is illustrated by taking FIGS. 6A to 6F as an example.
  • the reactor plate 10 is coupled to the first 'coupling groove 31 formed on one surface of the upper structure 30, and the capillary groove 34 has the reactor plate 10 and the upper structure ( 30) can be formed between.
  • the first 'combination groove 31 refers to a groove to which a reactor plate is coupled.
  • the reactor plate 10 is coupled to the first 'coupling groove 31 formed on one surface of the lower structure 20, and the capillary groove 34 has the reactor plate 10 and the lower structure 20. It may be formed between).
  • the reactor plate 10 is coupled to the first 'coupling groove 31 formed on one surface of the lower structure 20, and the capillary groove 34 has the reactor plate 10 and the upper structure 30. It may be formed between).
  • the reactor plate 10 is coupled to the first 'coupling groove 31 formed on one surface of the upper structure 30, and the capillary groove 34 has the reactor plate 10 and the lower structure. It may be formed between (20).
  • the reactor plate 10 is coupled to the first 'coupling groove 31 formed on one surface of the lower structure 20, and the capillary groove 34 is the reactor plate on one surface of the upper structure 30. It may be formed in the area corresponding to (10). As shown in FIG.
  • the reactor plate 10 is coupled to the first 'coupling groove 31 formed on one surface of the upper structure 30, and the capillary groove 34 is disposed on one surface of the lower structure 20. It may be formed in the region corresponding to the reactor plate (10).
  • 6A, 6C, and 6E, as shown in FIG. 3A an operation electrode 11a and a reference electrode 12a are formed on one surface of the reactor plate 10, and an operation signal transmission electrode is formed on the other surface of the reactor plate 10. 11b and the reference signal transmission electrode 12b are formed.
  • 6B, 6D, and 6F on the other hand, as shown in FIG.
  • the working electrode 11a, the reference electrode 12a, the operating signal transmitting electrode 11b and the reference signal transmitting electrode of the reactor plate 10 ( 12b) are all formed on the same surface.
  • other air venting means such as vent slits may be provided instead of the vent holes 33.
  • a space may be provided between both side surfaces of the reactor plate 10 and the first 'coupling groove 31 to allow air to escape therefrom.
  • the reactor plate 10 may be coupled to the lower structure 20 and the upper structure 30 to form a modular biosensor 1, and through such a modular biosensor 1, reaction
  • the detector 80 is coupled to the substructure 20 to which the substrate 10 is coupled
  • the reactor plate 10 and the detector 80 come into contact with each other, thereby easily contacting the reactor plate 10 and the detector 80.
  • the substructure 20 to which the reactor plate 10 is coupled has a volume larger than that of the reactor plate 10, and thus the detector 80 may be easily coupled to the substructure 20 having such a volume.
  • the substrate 10 and the detector 80 can be easily contacted.
  • the reactor plate 10 is located inside the lower structure 20 and the upper structure 30, there is an advantage that the reactor plate 10 can be exposed to the outside to prevent contamination.
  • the reactor plate 10 is separated from the detector 80, Compared to pulling the reactor plate 10 in which the blood is conventionally directly by hand, there is an advantage in that convenience and hygiene are improved.
  • the modular biosensor 1 is formed to surround the outer surface of the lower structure 20 and the upper structure 30 and of the lower structure 20 and the upper structure 30 It may further include a housing 40 sliding along the outer surface.
  • the housing 40 is formed to surround the outer surfaces of the lower structure 20 and the upper structure 30 to protect the reactor plate 10 exposed through the inlet 35, as shown in FIG. 7.
  • 40 has a hollow cylindrical shape, the first inner diameter portion 41 and the second inner diameter portion 42 having a larger radius than the first inner diameter portion 41 are formed vertically adjacent to the hollow cylindrical inner peripheral surface
  • the second stepped surface 43 is formed at the boundary between the first inner diameter portion 41 and the second inner diameter portion 42.
  • the radius of the first inner diameter portion 41 is formed larger than the radius of the first outer diameter portion 21 in order to allow the housing 40 to slide along the lower structure 20, the second inner diameter portion 42 of the The radius is formed larger than the radius of the second outer diameter portion 22.
  • the radius of the first inner diameter portion 41 is smaller than the radius of the second outer diameter portion 22 in order to prevent the housing 40 from sliding off the lower structure 20. That is, since the radius of the first inner diameter portion 41 is smaller than the radius of the second outer diameter portion 22, when the housing 40 slides along the lower structure 20, the second stepped surface 43 is formed. The first stepped surface 23 is caught to prevent the housing 40 from being separated from the lower structure 20.
  • engaging projections 44 and 45 for preventing the separation of the lower structure 20 may be formed at equal intervals in the circumferential direction, as shown in Figure 10a, 10b
  • the catching protrusions 44 and 45 have a lower catching protrusion 44 for preventing the detachment of the lower structure 20 accommodated inside the housing 40, and the lower structure 20 is the outside of the housing 40.
  • protruding into a may further comprise an upper locking projection (45) for maintaining the protruding state.
  • the lower structure 20 when the lower structure 20 and the upper structure 30 are accommodated in the housing 40, the lower structure 20 may be removed from the housing 40 to prevent the lower structure 20 from being separated from the housing 40.
  • At least one lower locking protrusion 44 is formed at the inner diameter portion 42.
  • the housing 40 may be maintained to maintain the protruding state of the substructure 20 out of the housing 40.
  • At least one upper locking projection 45 is formed in the second inner diameter portion 42 of the.
  • the upper catching protrusion 45 is formed between the lower catching protrusion 44 and the first inner diameter portion 41.
  • the lower locking projection 44 and the upper locking projection 45 may be formed to be inclined in the direction of the second inner diameter portion 42 and the locking step may be formed in the direction of the first inner diameter portion 41.
  • the lower locking projection 44 and the upper locking projection 45 has an inverted triangle shape.
  • the modular biosensor 1 is attached to one end of the housing 40, the upper cover for protecting the reactor plate 10 exposed to the outside through the upper structure 30 ( 50 and a lower cover 60 attached to the other end of the housing 40 to protect the reactor plate 10 exposed to the outside through the lower structure 20.
  • the upper cover 50 and the lower cover 60 prevent exposure of the reactor plate 10 (or reagent applied to the reactor plate 10).
  • a handle portion may be provided on the upper cover 50 and the lower cover 60.
  • the upper cover 50 and the lower cover 60 is preferably formed of a sticker or a thin film.
  • the lower structure 20, the upper structure 30 and the housing 40 may be formed of a synthetic resin material such as plastic, it can be manufactured by injection molding it is easy to change the shape.
  • FIG. 20 illustrates a state in which the detector 80 is coupled to the modular biosensor 1 of FIG. 1, and the detector 80 is removed when the lower cover 60 of the modular biosensor 1 is removed.
  • the detector 80 is inserted into and coupled to the second outer diameter portion 22 of the undercarriage 20, wherein the undercarriage 20 and the superstructure 30 slide along the housing 40, thereby causing the undercarriage 20 and the upper structure 30 are protruded to the outside of the housing 40 so that the inlet 35 for introducing the sample is exposed to the outside.
  • the upper cover 50 attached to the housing 40 is automatically removed.
  • the sample is quickly transferred to the reactor plate 10 by the capillary phenomenon by the capillary groove 34.
  • the sample transferred to the reactor plate 10 causes a redox reaction with the chemical, and the reaction signal is generated at the working electrode 11a and the reference electrode 12a by the reaction, and the generated reaction signal is an operation signal transmission electrode.
  • the response signal transmitted to the reference signal transmission electrode 11b and the reference signal transmission electrode 12b is transferred to the operation signal transmission electrode 11b and the reference signal transmission electrode 12b. Is delivered to the detector 80 in contact with
  • the reactor plate 10 is coupled to the lower structure 20 and the upper structure 30, the housing 40 is coupled to the lower structure 20 to which the reactor plate 10 is coupled, and the housing ( The upper cover 50 and the lower cover 60 may be attached to the 40 to form the modular biosensor 1.
  • the modular biosensor 1 includes a reactor plate 10 that generates a reaction signal by reacting with an introduced sample, and has a hollow shape and a hollow shape.
  • the first outer diameter portion 21 and the second outer diameter portion 22 having a larger radius than the first outer diameter portion 21 are formed vertically adjacent to the shape outer surface, and the first outer diameter portion 21 and the second outer diameter portion are formed.
  • a first stepped surface 23 is formed at the boundary portion of 22 and extends inwardly toward the end of the first outer diameter portion 21 to form a closed bottom surface 24, and is closed in the direction of the second outer diameter portion 22.
  • a first 'coupling groove 31 for coupling the reactor plate 10 is formed at one surface of the bottom surface 24, and a reactor plate coupled to the first' coupling groove 31 is formed at the first outer diameter portion 21. 10) is formed with an introduction port 35 for introducing a sample, the first 'combination groove 31 is a capillary groove for quickly transferring the sample introduced from the introduction port 35 to the reactor plate 10 ( 34 includes the main structure 70 is formed.
  • the reactor plate 10 generates a reaction signal by reacting with the introduced sample and transfers the generated reaction signal to the detector 80.
  • the reactor plate 10 of FIG. 11 is a reactor plate (shown in FIGS. 3A and 3B). Same as 10).
  • the reactor plate 10 and the detector 80 are coupled to the main structure 70, and as shown in FIGS. 12 and 13, the main structure 70 has a hollow cylindrical shape and an outer circumferential surface of the main structure 70.
  • the first outer diameter portion 21 and the second outer diameter portion 22 having a larger radius than the first outer diameter portion 21 are formed adjacent to each other up and down, the first outer diameter portion 21 and the second outer diameter portion 22.
  • the first stepped surface 23 is formed at the boundary of.
  • the radius of the first outer diameter portion 21 is smaller than the radius of the first inner diameter portion 41, and the radius of the second outer diameter portion 22 is reduced.
  • the radius is formed smaller than the radius of the second inner diameter portion 42.
  • the radius of the second outer diameter portion 22 is larger than the radius of the first inner diameter portion 41 in order to prevent the main structure 70 from sliding off the housing 40. That is, since the radius of the second outer diameter portion 22 is larger than the radius of the first inner diameter portion 41, when the main structure 70 slides along the housing 40, the first stepped surface 23 may be formed.
  • the second stepped surface 43 is caught to prevent the main structure 70 from being separated from the housing 40.
  • a closed bottom surface 24 is formed extending from the end of the first outer diameter portion 21 inwardly (that is, in the direction of the central axis of the hollow cylinder). That is, the main structure 70 has a hollow cylindrical shape having a closed bottom at one end, that is, a cap shape.
  • the shape of the main structure 70 is not limited to the above-mentioned description.
  • the main structure 70 may have a shape of a hollow angular column (triangular column, square column, pentagonal column, etc.) having a closed bottom at one end.
  • a first 'coupling groove 31 to which the reactor plate 10 is coupled is formed on an inner side surface of the closed bottom surface 24 (that is, the closed bottom surface in the direction of the second outer diameter portion 22).
  • the first 'coupling groove 31 is formed to correspond to the shape of the reactor plate 10.
  • the first 'coupling groove 31 is formed to allow the reactor plate 10 having a rod shape to be coupled thereto.
  • the reactor plate 10 may be coupled to the first 'coupling groove 31 by heat fusion, ultrasonic fusion, bonding, or interference fitting.
  • an inlet 35 for introducing a sample into the reactor plate 10 coupled to the first 'coupling groove 31 is formed in the first outer diameter portion 21, and a first inlet 35 is formed.
  • One side of the outer diameter portion 21 may be formed to be inclined.
  • Capillary groove 34 is to induce the introduction of the sample through the capillary phenomenon, the capillary groove 34 is formed in the longitudinal direction of the reactor plate 10 in the first 'coupling groove 31, the capillary groove 34 One end of is connected to the inlet (35). That is, the sample introduced through the inlet 35 is quickly transferred to the working electrode 11a and the reference electrode 12a of the reactor plate 10 through the capillary phenomenon by the capillary groove 34.
  • the first 'coupling groove 31 may be formed with a vent hole (not shown) for discharging the air contained in the capillary groove 34 to the outside according to the introduction of the sample, wherein the vent hole is a capillary groove 34 Is formed at the other end. That is, the inlet 35 is formed at one end of the capillary groove 34 and the vent hole is formed at the other end, so that the sample introduced from the inlet 35 can be quickly transferred to the reactor plate 10 through the capillary groove 34. It can be transported to, and the air received in the capillary groove 34 in accordance with the introduction of the sample through the vent hole can be discharged to the outside.
  • the main structure 70 further includes an inner wall 28 formed extending from the closed bottom 24 toward the end of the second outer diameter part 22, but the closed bottom 24 and the first outer diameter part.
  • the dehumidifying agent may be accommodated in the accommodation space formed by the 21, the second outer diameter portion 22, and the inner wall 28.
  • the modular biosensor 1 may further include a housing 40 formed to surround the outer surface of the main structure 70 and slide along the outer circumferential surface of the main structure 70.
  • the housing 40 has a hollow cylindrical shape, and a first inner diameter portion 41 and a second inner diameter portion 42 having a larger radius than the first inner diameter portion 41 are vertically adjacent to the hollow cylindrical inner circumferential surface thereof.
  • the second stepped surface 43 is formed at the boundary between the first inner diameter portion 41 and the second inner diameter portion 42.
  • the radius of the first inner diameter portion 41 is larger than the radius of the first outer diameter portion 21 in order to allow the housing 40 to slide along the main structure 70.
  • the radius is formed larger than the radius of the second outer diameter portion 22.
  • the radius of the first inner diameter portion 41 is smaller than the radius of the second outer diameter portion 22 in order to prevent the housing 40 from sliding off the main structure 70.
  • engaging protrusions 44 and 45 may be formed on the inner side surface of the second inner diameter part 42 to prevent the main structure 70 from being separated.
  • the locking projections 44 and 45 protrude out of the housing 40, the lower locking projection 44 and the main structure 70 to prevent the main structure 70 from being separated from the housing 40 are separated. It may further include an upper locking projection 45 for maintaining a protruding state.
  • At least one lower locking protrusion 44 is formed at the second inner diameter portion 42 to prevent the deviating in the direction of the end portion of the second inner diameter portion 42 of the housing 40.
  • the second inner diameter part may maintain the state in which the main structure 70 protrudes out of the housing 40.
  • At least one upper locking protrusion 45 is formed at 42.
  • Modular biosensor 1 is attached to one end and the other end of the housing 40, respectively, the upper cover 50 and the lower cover to protect the reactor plate 10 exposed to the outside through the main structure 70 ( 60) may be further included.
  • a handle portion may be provided on the upper cover 50 and the lower cover 60.
  • main structure 70 and the housing 40 may be formed of a synthetic resin material such as plastic, it can be manufactured by injection molding it is easy to change the shape.
  • the modular biosensor 1 has a reactor plate 10 that generates a reaction signal by reacting with an introduced sample, and has a hollow shape and a hollow shape.
  • the first outer diameter portion 21 and the second outer diameter portion 22 having a width larger than the first outer diameter portion 21 are formed vertically adjacent to each other, and the first outer diameter portion 21 and the second outer diameter are formed.
  • a first stepped surface 23 is formed at the boundary of the neck portion 22, extends inwardly toward the end of the first outer diameter portion 21 to form a closed bottom surface 24, and the inside of the first outer diameter portion 21 is formed.
  • a first 'coupling groove 31 is formed on the side to couple the reactor plate 10, and the closed bottom 24 introduces a sample into the reactor plate 10 coupled to the first' coupling groove 31.
  • An inlet 35 is formed therein, and the main hole in which the capillary groove 34 for quickly transferring the sample introduced from the inlet 35 to the reactor plate 10 is formed in the first 'coupling groove 31. It includes a tank (70).
  • the reactor plate 10 generates a reaction signal by reacting with the introduced sample and transfers the generated reaction signal to the detector 80.
  • the reactor plate 10 of FIG. 15 is a reactor plate 10 shown in FIGS. 3A and 3B. Same as).
  • the reactor plate 10 and the detector 80 are coupled to the main structure 70, and as shown in FIGS. 15 and 16, the main structure 70 has a hollow rectangular pillar shape and an outer surface of the hollow rectangular pillar.
  • the first outer diameter portion 21 and the second outer diameter portion 22 having a larger width than the first outer diameter portion 21 are formed adjacent to each other up and down, the first outer diameter portion 21 and the second outer diameter portion 22.
  • the first stepped surface 23 is formed at the boundary of.
  • the width refers to the distance between the squares facing each other in the hollow rectangular pillar.
  • the width of the first outer diameter portion 21 is smaller than the width of the first inner diameter portion 41 so that the main structure 70 slides along the housing 40.
  • the width is formed smaller than the width of the second inner diameter portion 42.
  • the width of the second outer diameter portion 22 is larger than the width of the first inner diameter portion 41 in order to prevent the main structure 70 from sliding off the housing 40.
  • the closed bottom surface 24 is formed extending from the end portion of the first outer diameter portion 21 inwardly (that is, in the direction of the central axis of the hollow rectangular pillar). That is, the main structure 70 has the shape of a hollow rectangular pillar, that is, a cap shape having a closed bottom at one end. In addition, the shape of the main structure 70 is not limited to the above-mentioned description.
  • a first 'coupling groove 31 for coupling the reactor plate 10 is formed on an inner surface of the first outer diameter portion 21. That is, since the main structure 70 has a hollow rectangular pillar shape, the first 'coupling groove 31 is formed on the inner side of one of the four side surfaces forming the hollow rectangular pillar.
  • the first 'coupling groove 31 is formed to correspond to the shape of the reactor plate 10. For example, when the reactor plate 10 has a rod shape, the first 'coupling groove 31 is formed to allow the reactor plate 10 having a rod shape to be coupled thereto.
  • the reactor plate 10 may be coupled to the first 'combination groove 31 by heat fusion, ultrasonic fusion, bonding or interference fitting.
  • an inlet 35 for introducing a sample into the reactor plate 10 coupled to the first 'coupling groove 31 is formed in the closed bottom 24.
  • the capillary groove 34 is formed in the longitudinal direction of the reactor plate 10 on the first 'coupling groove 31, and one end of the capillary groove 34 is connected to the inlet 35. That is, the sample introduced through the inlet 35 is quickly transferred to the working electrode 11a and the reference electrode 12a of the reactor plate 10 through the capillary phenomenon by the capillary groove 34.
  • a vent hole (not shown) may be formed in the first 'coupling groove 31 to discharge the air contained in the capillary groove 34 to the outside as the sample is introduced.
  • the main structure 70 further includes an inner wall 28 formed extending from the closed bottom 24 toward the end of the second outer diameter part 22, but the closed bottom 24 and the first outer diameter part.
  • the dehumidifying agent may be accommodated in the accommodation space formed by the 21, the second outer diameter portion 22, and the inner wall 28.
  • the main structure 70 may be formed of two structures. That is, as shown in FIG. 18, the main structure 70 includes the first structure 71 and the second structure (70) with reference to the inner surface of the first outer diameter portion 21 in which the first 'coupling groove 31 is formed. 72).
  • the structure and arrangement of the first 'coupling groove 31 and the capillary groove 34 may be formed in the same manner as in FIGS. 6A to 6F.
  • the first structure 71 may correspond to the upper structure
  • the second structure 72 may correspond to the lower structure 20.
  • the modular biosensor 1 may further include a housing 40 formed to surround the outer surface of the main structure 70 and sliding along the outer surface of the main structure 70.
  • the housing 40 is formed to surround the outer surface of the main structure 70 to protect the reactor plate 10 exposed through the inlet 35, the housing 40 shown in FIG. 15 is shown in FIG. Only the shape of the housing 40 is different and the configuration and function are the same. That is, the housing 40 has a hollow rectangular pillar shape, and the inner surface of the hollow rectangular pillar has a first inner diameter portion 41 and a second inner diameter portion 42 having a larger width than the first inner diameter portion 41. The upper and lower sides are formed adjacent to each other, and a second stepped surface 43 is formed at the boundary between the first inner diameter portion 41 and the second inner diameter portion 42.
  • the width refers to the distance between the squares facing each other in the hollow rectangular pillar.
  • the width of the first inner diameter portion 41 is larger than the width of the first outer diameter portion 21 so that the housing 40 slides along the main structure 70.
  • the width is formed larger than the width of the second outer diameter portion 22.
  • the width of the first inner diameter portion 41 is smaller than the width of the second outer diameter portion 22 in order to prevent the housing 40 from sliding off the main structure 70.
  • engaging protrusions 44 and 45 may be formed in the second inner diameter part 42 to prevent the main structure 70 from being separated.
  • the locking protrusions 44 and 45 have a lower locking protrusion 44 and the main structure 70 protruding out of the housing 40 to prevent the main structure 70 from being separated from the housing 40. If it is, it may further include an upper locking projection (45) for maintaining a protruding state.
  • At least one lower locking projection 44 is formed on the inner side surface of the second inner diameter portion 42 to prevent the deviating in the direction of the end portion of the second inner diameter portion 42 of the housing 40.
  • the second inner diameter part may maintain the main structure 70 protruding out of the housing 40.
  • At least one upper locking protrusion 45 is formed at 42.
  • the modular biosensor 1 is attached to one end and the other end of the housing 40, the upper cover 50 and the lower cover (protecting the reactor plate 10 exposed to the outside through the main structure 70) 60) may be further included.
  • the upper cover 50 and the lower cover 60 may be provided with a handle portion.
  • main structure 70 and the housing 40 may be formed of a synthetic resin material such as plastic, it can be manufactured by injection molding it is easy to change the shape.
  • vent hole 34 capillary groove

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명의 목적은 검출기와 결합 및 분리가 용이한 모듈형 바이오센서를 제공하는 것이다. 상술한 본 발명의 목적을 달성하기 위한 본 발명의 일 측면에 따른 모듈형 바이오센서는, 도입 시료와 반응하여 반응신호를 생성하는 반응기판 일측밑면에 개구가 형성된 기둥형의 도형으로 형성되며, 상기 개구가 형성된 열린밑면에 상기 반응기판에서 생성된 반응신호를 기반으로 도입 시료에 대한 분석을 수행하는 검출기가 상기 반응기판에 접촉되도록 삽입 결합되고, 상기 열린밑면에 대응되는 위치의 닫힌밑면에 상기 반응기판이 결합되는 제1구조체, 상기 닫힌밑면에 결합되고, 상기 닫힌밑면에 결합시 상기 반응신호가 생성되는 반응챔버를 형성하는 제2구조체, 및 상기 제1구조체 및 상기 제2구조체의 외측면을 둘러싸도록 형성되고, 상기 제1구조체 및 상기 제2구조체의 외측면을 따라 슬라이딩 하는 하우징을 포함한다.

Description

모듈형 바이오센서
본 발명은 모듈형 바이오센서에 관한 것으로, 더욱 상세하게는 바이오센서와 검출기를 용이하게 결합 또는 분리하기 위한 모듈형 바이오센서에 관한 것이다.
바이오센서(Biosensor)는 생물이 가지고 있는 기능을 이용하여 물질의 성질 등을 조사하는 측정 장치를 말하며, 생체 물질을 탐지소자로 사용하므로 감도와 반응 특이성이 우수하다. 이러한 장점으로 인해 바이오센서는 의료/의약 분야에서의 임상화학분석, 바이오산업의 공정계측, 환경계측, 화학물질의 안정성 평가 등 광범위한 분야에서 사용되고 있고 그 범위는 계속 확대되고 있다. 특히, 의약 진단 분야에서 시료를 포함한 생체 시료를 분석하기 위하여 바이오센서가 많이 사용되고 있다. 바이오센서는 탐지 소자의 종류에 따라 효소분석법과 면역분석법이 있고, 생체 시료 내 목적 물질을 정량 분석하는 방법에 따라 광학적 바이오센서와 전기화학적 바이오센서가 있다.
효소분석법 바이오센서는 효소와 기질, 효소와 효소 저해제의 특이적인 반응을 이용하는 것이고, 면역분석법 바이오센서는 항원과 항체의 특이적인 반응을 이용하는 것이다.
광학적 바이오센서는 광투과도, 흡광도 또는 파장 변화를 측정하여 목적 물질의 농도를 측정하는 방법으로서, 가장 일반적으로 사용되어 온 방법이다. 광학적 바이오센서에 의한 방법은 분석하고자 하는 다양한 물질들의 반응 메커니즘이 이미 밝혀져 있고, 충분한 시간 동안 반응이 이루어진 후에 측정하므로 측정 시간에 대한 편차가 적다는 장점이 있다. 그러나 광학적 바이오센서는 시료의 혼탁도에 의해 측정 결과가 영향을 받고, 광학부의 소형화가 어렵고, 전기화학적 바이오센서에 비해 측정 시간이 길고 많은 양의 시료가 필요하다는 문제점이 있다.
전기화학적 바이오센서는 생화학 반응으로부터 얻어지는 전기 신호를 측정하여 목적 물질의 농도를 측정하는 방법이다. 전기화학적 바이오센서는 극소량의 시료로도 신호 증폭이 가능하고, 소형화가 쉽고, 측정 신호를 안정적으로 획득할 수 있고, 정보통신기기 등과 쉽게 융합될 수 있다는 장점이 있다.
한편, 종래의 바이오센서는 대개 평면 스트립 구조로서, 하부기판, 반응기판, 스페이서, 상부기판 등의 다수의 박막계층들로 구성된 얇은 스틱형이며, 복잡한 구조에 비해 그 크기가 매우 작다. 그런데 이러한 바이오센서의 주 사용자는 당뇨환자나 노약자이며, 대부분이 눈이 어둡거나 손떨림 증상을 가지고 있어 작은 크기의 바이오센서를 검출기의 좁은 슬릿에 용이하게 삽입하지 못하는 문제점이 있었다.
또한, 스트립 형태의 바이오센서는 사용자에 의해 검출기에 삽입될 때 외부로 노출되므로 오염되기 쉬운 문제점이 있었다.
또한, 혈당을 측정한 후 검출기로부터 스트립 형태의 바이오센서를 제거할 때 사용자는 혈액이 묻어있는 부분의 근방을 손으로 잡아당기므로, 이때 사용자의 손에 혈액이 묻게 되므로 사용에 매우 불편하고 비위생적인 문제점이 있었다.
본 발명의 목적은 검출기와 용이하게 결합 또는 분리시키기 위한 모듈형 바이오센서를 제공하는 것이다.
본 발명의 다른 목적은 외부 노출에 따른 오염을 방지하기 위한 모듈형 바이오센서를 제공하는 것이다.
본 발명의 또 다른 목적은 사용 편의성 및 위생성을 향상시키기 위한 모듈형 바이오센서를 제공하는 것이다.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 일 측면에 따른 모듈형 바이오센서는, 도입 시료와 반응하여 반응신호를 생성하는 반응기판 일측 밑면에 개구가 형성된 기둥형의 도형으로 형성되며, 상기 개구가 형성된 열린밑면에 상기 반응기판에서 생성된 반응신호를 기반으로 도입 시료에 대한 분석을 수행하는 검출기가 상기 반응기판에 접촉되도록 삽입 결합되고, 상기 열린밑면에 대응되는 위치의 닫힌밑면에 상기 반응기판이 결합되는 제1구조체, 상기 닫힌밑면에 결합되고, 상기 닫힌밑면에 결합시 상기 반응신호가 생성되는 반응챔버를 형성하는 제2구조체, 및 상기 제1구조체 및 상기 제2구조체의 외측면을 둘러싸도록 형성되고, 상기 제1구조체 및 상기 제2구조체의 외측면을 따라 슬라이딩 하는 하우징을 포함할 수 있다.
바람직하게, 상기 모듈형 바이오센서는 상기 하우징의 일단에 부착되어 상기 제2구조체를 통해 외부로 노출된 상기 반응기판을 보호하는 제1커버; 및 상기 하우징의 타단에 부착되어 상기 제1구조체를 통해 외부로 노출된 상기 반응기판을 보호하는 제2커버를 더 포함할 수 있다.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 다른 측면에 따른 모듈형 바이오센서는, 도입 시료와 반응하여 반응신호를 생성하는 반응기판, 중공 형상의 제1 밑면에 개구가 형성되고, 제2 밑면은 캡 형상을 가지며, 상기 제2 밑면의 내측면에 상기 반응기판이 결합되는 구조체 및 상기 구조체의 외측면을 둘러싸도록 형성되고, 상기 구조체의 외측면을 따라 슬라이딩 하는 하우징을 포함할 수 있다.
바람직하게, 상기 구조체는 상기 반응기판을 결합하기 위한 결합홈과, 상기 결합홈에 결합되는 상기 반응기판으로 시료를 도입시키기 위한 도입구와, 상기 도입구를 통해 도입되는 시료를 상기 반응기판으로 신속하게 이송시키기 위한 모세관홈을 포함할 수 있다.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 또 다른 측면에 따른 모듈형 바이오센서는, 도입 시료와 반응하여 반응신호를 생성하는 반응기판, 중공의 형상을 가지며, 중공 형상의 외측면에는 제1 외경부 및 상기 제1 외경부보다 폭이 큰 제2 외경부가 상하로 인접하여 형성되고, 상기 제1 외경부와 상기 제2 외경부의 경계부에 단차면이 형성되고, 상기 제1 외경부의 단부 내측방향으로 연장되어 닫힌밑면이 형성되고, 상기 제1 외경부의 내측면에는 상기 반응기판을 결합하기 위한 결합홈이 형성되고, 상기 닫힌밑면에는 상기 결합홈에 결합된 상기 반응기판으로 시료를 도입시키기 위한 도입구가 형성되고, 상기 결합홈에는 상기 도입구에서 도입된 시료를 상기 반응기판으로 신속하게 이송시키기 위한 모세관홈이 형성되는 제1구조체 및 상기 메인구조체의 외측면을 둘러싸도록 형성되고, 상기 메인구조체의 외측면을 따라 슬라이딩 하는 하우징을 포함할 수 있다.
바람직하게, 상기 제1구조체는 상기 결합홈이 형성되어 상기 반응기판과 결합되는 제2구조체 및 상기 반응기판을 사이에 두고 상기 제2 구조체와 결합하여 상기 제1 구조체를 형성하는 제3구조체를 포함할 수 있다.
본 발명에 의하면, 반응기판이 결합된 하부구조체 또는 메인구조체에 검출기를 결합시키면 반응기판과 검출기가 접촉되므로, 반응기판과 검출기를 용이하게 접촉시킬 수 있는 장점이 있다. 즉, 종래에는 상대적으로 작은 크기를 가지는 반응기판을 직접 검출기에 삽입하여 반응기판과 검출기가 접촉되게 하였으나, 본 발명에 의하면 반응기판을 상대적으로 큰 크기를 가지는 하부구조체 또는 메인구조체에 결합하고, 반응기판이 결합된 하부구조체 또는 메인구조체에 검출기를 결합하여 반응기판과 검출기가 접촉되게 함으로써, 종래에 비하여 더욱 용이하게 반응기판과 검출기를 접촉시킬 수 있다.
또한, 반응기판은 하부구조체, 상부구조체, 하우징, 하부커버 및 상부커버의 내측에 위치하거나 메인구조체, 하우징, 하부커버 및 상부커버의 내측에 위치하고, 반응기판의 사용시에 먼저 하부커버를 떼어내고 하부커버를 떼어낸 부분에 위치하는 하부구조체 또는 메인구조체에 검출기를 결합하여 사용하므로, 반응기판이 외부로 노출되지 않아 외부의 노출로 인한 오염을 방지할 수 있는 장점이 있다.
또한, 반응기판을 검출기로부터 분리하는 경우에 반응기판이 결합된 하부구조체 또는 메인구조체를 손으로 잡고 떼어내면 반응기판이 검출기로부터 분리되므로, 종래 혈액이 묻어 있는 반응기판을 직접 손으로 잡아당기는 것에 비하여 편의성 및 위생성이 향상되는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 모듈형 바이오센서를 도시한 사시도이다.
도 2는 도 1의 분해 사시도이다.
도 3a 및 3b는 도 1의 반응기판을 도시한 평면도이다.
도 4는 도 1의 하부구조체를 도시한 사시도이다.
도 5는 도 1의 상부구조체를 도시한 사시도이다.
도 6a 내지 6f는 도 1의 모듈형 바이오센서에서 반응기판의 다양한 결합형태를 도시한 단면도이다.
도 7은 도 1의 하우징을 도시한 사시도이다.
도 8은 도 1의 반응기판, 하부구조체 및 상부구조체가 결합된 구조를 도시한 사시도이다.
도 9는 도 1의 하부구조체의 내부 구조를 도시한 사시도이다.
도 10a 및 10b는 도 1의 동작상태를 도시한 단면도이다.
도 11은 본 발명의 다른 실시예에 따른 모듈형 바이오센서를 도시한 분해 사시도이다.
도 12는 도 11의 메인구조체의 외부 구조를 도시한 사시도이다.
도 13은 도 11의 메인구조체의 내부 구조를 도시한 사시도이다.
도 14a 및 14b는 도 11의 동작상태를 도시한 사시도이다.
도 15는 본 발명의 또 다른 실시예에 따른 모듈형 바이오센서를 도시한 분해 사시도이다.
도 16은 도 15의 메인구조체의 외부 구조를 도시한 사시도이다.
도 17은 도 15의 메인구조체의 내부 구조를 도시한 사시도이다.
도 18은 도 14의 제1 구조체 및 제2 구조체를 도시한 사시도이다.
도 19a 및 19b는 도 14의 동작상태를 도시한 사시도이다.
도 20은 도 1의 모듈형 바이오센서와 검출기의 결합 상태를 도시한 개념도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 발명에서 '캡 형상'은 일측 밑면이 오픈(open)되고 그에 대응되는 위치의 밑면이 막혀있는 원통, 사각기둥, 오각기둥, 별기둥 등의 평면 도형의 기둥이나 이와 동등한 수준의 입체도형을 지칭한다. 예컨대 원통의 아래 밑면에 개구가 형성되고 위의 밑면이 막혀있는 구조이다. 이하 설명에서는 개구가 형성된 부분을 '열린밑면', 상기 '열린밑면'에 대응되는 위치의 막혀있는 부분을 '닫힌밑면'이라 칭하기로 한다.
도 1 내지 도 10에 도시된 바에 의하면 본 발명의 일 실시예에 따른 모듈형 바이오센서(1)는, 시료와 반응하여 반응신호를 생성하는 반응기판(10), 캡 형상을 가지며, 캡 형상의 닫힌밑면(24)에 반응기판(10)이 결합되고 캡 형상의 열린밑면에 반응기판(10)에서 생성된 반응신호를 기반으로 도입 시료에 대한 분석을 수행하는 검출기(80)가 반응기판(10)에 접촉되도록 삽입 결합되는 하부구조체(20)를 포함할 수 있다. 모듈형 바이오센서(1)는, 하부구조체(20)의 닫힌밑면(24)에 결합되고 하부구조체(20)의 닫힌밑면(24)에 결합시 반응신호가 생성되는 반응챔버를 형성하는 상부구조체(30)를 더 포함할 수 있다. 반응챔버는 시료가 도입되는 모세관홈(34)(시료도입로 혹은 미세유로)에서 반응이 일어나는 영역을 일컫는다. 모세관홈(34)의 일측 개구부는 반응기판(10)으로 시료를 도입시키기 위한 도입구(35)를 형성한다. 상부구조체(30)는 도입구(35)로의 시료 도입에 따른 공기를 배출하는 벤트홀(33)을 더 포함할 수 있다. 상기 반응기판(10)은 시료(혹은 시료 중의 타겟생체물질)와 반응하여 반응신호를 생성하고 생성된 반응신호를 검출기(80)로 전달하는 것으로, 도 3a에 도시된 바에 의하면 반응기판(10)은, 일면에 작동전극(11a) 및 기준전극(12a)이 형성되고 타면에 상기 작동전극(11a)과 전기적으로 연결된 작동신호전달전극(11b) 및 상기 기준전극(12a)과 전기적으로 연결된 기준신호전달전극(12b)이 형성될 수 있다. 이때, 작동전극(11a)은 사각형 형상을 가질 수 있으며 기준전극(12a)은 사각형 형상을 가지는 작동전극(11a)을 둘러싸는 형상인 중공의 사각형 형상을 가질 수 있다. 반응기판(10)의 일면에 형성된 작동전극(11a)과 작동신호전달전극(12a), 타면에 형성된 기준전극(11b)과 기준신호전달전극(12b)은 반응기판(10)을 관통하는 경유구멍(Via Hole, 미도시)을 통해 전기적으로 연결될 수 있다.
혹은 반응기판(10)은 도 3b에 도시된 바와 같이 작동전극(11a) 및 기준전극(12a), 작동전극(11a)과 전기적으로 연결된 작동신호전달전극(11b) 및 기준전극(12a)과 전기적으로 연결된 기준신호전달전극(12b)은 모두 동일한 일면에 형성될 수 있다.
작동전극(11a) 및 기준전극(12a)의 상부에 도입 시료와 반응하는 반응시약(미도시)이 구비될 수 있다.
바람직하게, 반응기판(10)은 기판과 전극이 일체화된 PCB(Printed Circuit Board) 또는 FPCB(Flexible Printed Circuit Board)로 형성된다.
또한, 반응기판(10)의 작동전극(11a), 기준전극(12a), 작동신호전달전극(11b) 및 기준신호전달전극(12b)이 형성되는 위치와 형상은 상술한 설명에 한정되지 아니한다. 즉, 작동전극(11a)과 기준전극(12a)은 도입 시료와 반응하여 반응신호를 생성할 수 있도록 하는 모든 위치에 형성될 수 있고 모든 형상을 가질 수 있고, 작동신호전달전극(11b)과 기준신호전달전극(12b)은 생성된 반응신호를 검출기로 전달할 수 있도록 하는 모든 위치에 형성될 수 있고 모든 형상을 가질 수 있다.
도 4에 도시된 바에 의하면 하부구조체(20)는 중공의 원통 형상을 가지며, 중공의 원통 외주면에 제1 외경부(21) 및 제1 외경부(21)보다 반경이 큰 제2 외경부(22)가 상하로 인접하여 형성되고, 제1 외경부(21)와 제2 외경부(22)의 경계부에 제1 단차면(23)이 형성된다.
이때, 하부구조체(20)가 하우징(40)을 따라 슬라이딩 되도록 하기 위하여 제1 외경부(21)의 반경은 제1 내경부(41)의 반경보다 작게 형성되고 제2 외경부(22)의 반경은 제2 내경부(42)의 반경보다 작게 형성된다. 또한, 하부구조체(20)가 슬라이딩 되어 하우징(40)을 이탈하는 것을 방지하기 위하여 제2 외경부(22)의 반경은 제1 내경부(41)의 반경보다 크게 형성된다. 즉, 제2 외경부(22)의 반경이 제1 내경부(41)의 반경보다 크게 형성됨으로써, 하부구조체(20)가 하우징(40)을 따라 슬라이딩 되는 경우에 제1 단차면(23)이 제2 단차면(43)에 걸리게 되어 하부구조체(20)가 하우징(40)으로부터 이탈하는 것이 방지된다.
또한, 제1 외경부(21)의 단부로부터 내측방향(즉, 중공의 원통의 중심축 방향)으로 연장되어 닫힌밑면(24)이 형성된다. 또한, 하부구조체(20)의 형상은 상술한 설명에 한정되지 아니한다. 예를 들어, 하부구조체(20)는 일단에 닫힌밑면이 구비된 중공의 각기둥(삼각기둥, 사각기둥, 오각기둥 등)의 형상을 가질 수 있다.
또한, 하부구조체(20)의 닫힌밑면(24)에는 반응기판(10)이 결합되는 제1 결합홈(25) 및 상기 상부구조체(30)가 결합되는 제1 결합공(26)이 형성된다. 제1 결합홈(25)은 반응기판(10)의 형상에 대응하게 형성된다. 예를 들어, 반응기판(10)이 막대 형상을 가지는 경우에 제1 결합홈(25)은 막대 형상의 반응기판(10)이 결합될 수 있도록 형성된다. 제1 결합홈(25)의 면적은 반응기판(10)의 일면의 면적과 동일하도록 형성될 수 있다. 또한, 제1 결합홈(25)은 4측면 중 하부구조체(20)의 외주면을 향하는 일 측면이 개방되도록 형성되어, 반응기판(10)의 일 측면이 외부로 노출되도록 한다. 또한, 반응기판(10)은 제1 결합홈(25)에 열융착, 초음파융착, 본딩 또는 억지끼움방식 등으로 결합될 수 있다.
제1 결합공(26)은 상부구조체(30)를 하부구조체(20)에 결합하기 위한 것으로, 제1 결합공(26)의 반경은 결합돌기(32)의 반경보다 작도록 형성되어 결합돌기(32)가 제1 결합공(26)에 압입될 수 있도록 한다. 또한, 닫힌밑면(24)에 적어도 하나의 제1 결합공(26)이 형성되며, 제1 결합공(26)의 형상은 원에 한정되지 아니하고 삼각형, 사각형 또는 오각형 등 다양한 형상을 가질 수 있다.
또한, 제1 결합홈(25)의 소정 부분에, 반응기판(10)의 작동신호전달전극(11b) 및 기준신호전달전극(12b)이 검출기(80)와 접촉되도록 하는 제2 결합공(27)이 형성된다. 또한, 제1 결합홈(25)에 형성되는 제2 결합공(27)의 크기와 위치는 제1 결합홈(25)에 결합되는 반응기판(10)에 형성된 작동신호전달전극(11b) 및 기준신호전달전극(12b)의 크기와 위치에 따라 달라진다.
또한, 하부구조체(20)는 닫힌밑면(24)에서부터 제2 외경부(22)의 단부방향으로 연장되어 형성되는 내측벽(28)을 더 포함하되, 닫힌밑면(24), 제1 외경부(21), 제2 외경부(22) 및 내측벽(28)이 형성하는 수용공간에 제습제가 수용될 수 있다.
반응기판(10)과 하부구조체(20)는 상부구조체(30)에 결합되고, 도 5에 도시된 바에 의하면 상부구조체(30)는 평판 형상을 가지며, 제1' 결합홈(31) 및 결합돌기(32)는 평판의 일면에 형성된다. 또한, 상부구조체(30)의 형상은 닫힌밑면(24)의 형상과 동일하게 형성될 수 있다.
제1' 결합홈(31)은 제1 결합홈(25)의 형상과 동일하게 형성되며, 제1' 결합홈(31)에 반응기판(10)이 결합된다. 즉, 제1' 결합홈(31)은 제1 결합홈(25)과 동일한 크기를 가지며, 상부구조체(30)가 하부구조체(20)에 결합하는 경우에 제1' 결합홈(31)은 제1 결합홈(25)과 마주 볼 수 있도록 상부구조체(30)상에 형성된다. 또한, 제1' 결합홈(31)은, 반응기판(10)이 결합된 하부구조체(20)에 상부구조체(30)가 결합되는 경우, 반응기판(10)의 일 측면이 외부로 노출될 수 있도록 형성된다. 즉, 제1' 결합홈(31)은 4측면 중 일 측면이 개방되도록 형성된다. 또한, 반응기판(10)은 제1' 결합홈(31)에 열융착, 초음파융착, 본딩 또는 억지끼움방식 등으로 결합될 수 있다.
결합돌기(32)는 제1 결합공(26)에 압입되어 하부구조체(20)와 상부구조체(30)를 결합시키는 것으로, 결합돌기(32)는 제1 결합공(26)의 형상에 대응하게 형성된다. 즉, 결합돌기(32)의 반경은 제1 결합공(26)의 반경보다 크게 형성되어, 결합돌기(32)가 제1 결합공(26)에 압입되어 결합될 수 있도록 한다. 또한, 상부구조체(30)에 적어도 하나의 결합돌기(32)가 형성되며, 결합돌기(32)는 제1 결합공(26)의 개수와 동일하게 형성된다.
또한, 상부구조체(30)의 제1' 결합홈(31)에는 벤트홀(33) 및 모세관홈(34)이 형성된다. 벤트홀(33)은 도입구(35)로의 시료 도입에 따른 공기를 배출하기 위한 것으로 도입구(35)와 이격되어 형성되고, 도입구(35)는 반응기판(10)으로 시료를 도입시키기 위한 것으로 하부구조체(20)에 결합된 반응기판(10)의 일단과 상부구조체(30)의 일단이 형성하는 공간을 말한다. 모세관홈(34)은 모세관 현상을 유도하여 시료의 도입을 유도하는 것으로, 모세관홈(34)은 제1' 결합홈(31)에서 반응기판(10)의 길이방향으로 형성되며, 모세관홈(34)의 일단은 도입구(35)와 연결되고 타단은 벤트홀(33)과 연결된다. 즉, 도입구(35)를 통해 도입된 시료는 모세관홈(34)에 의한 모세관 현상으로 반응기판(10)의 작동전극(11a)과 기준전극(12a)으로 신속하게 이송되고, 벤트홀(33)은 시료의 도입에 따라 모세관홈(34)에 수용된 공기를 외부로 배출한다. 또한, 벤트홀(33), 모세관홈(34) 및 도입구(35)가 형성되는 위치는 상술한 설명에 한정되지 아니하고, 벤트홀(33), 모세관홈(34) 및 도입구(35)는 하부구조체(20)의 제1 결합홈(25)에 형성될 수 있다. 이는 도 6a 내지 도 6f를 예를 들어 설명한다.
도 6a에 도시된 바에 의하면 상부구조체(30)의 일면에 형성되는 제1' 결합홈(31)에 반응기판(10)이 결합되고, 모세관홈(34)은 반응기판(10)과 상부구조체(30) 사이에 형성될 수 있다. 제1'결합홈(31)은 도면에 별도로 표기되진 않았으나, 반응기판이 결합되는 홈을 일컫는다. 도 6b를 참조하면, 하부구조체(20)의 일면에 형성되는 제1'결합홈(31)에 반응기판(10)이 결합되고, 모세관홈(34)은 반응기판(10)과 하부구조체(20) 사이에 형성될 수 있다. 도 6c를 참조하면, 하부구조체(20)의 일면에 형성되는 제1'결합홈(31)에 반응기판(10)이 결합되고, 모세관홈(34)은 반응기판(10)과 상부구조체(30) 사이에 형성될 수 있다. 도 6d에 도시된 바와 같이, 상부구조체(30)의 일면에 형성되는 제1'결합홈(31)에 반응기판(10)이 결합되고, 모세관홈(34)은 반응기판(10)과 하부구조체(20) 사이에 형성될 수 있다. 도 6e를 참조하면, 하부구조체(20)의 일면에 형성되는 제1'결합홈(31)에 반응기판(10)이 결합되고, 모세관홈(34)은 상부구조체(30)의 일면에서 반응기판(10)에 대응되는 영역에 형성될 수 있다. 도 6f에 도시된 바와 같이, 상부구조체(30)의 일면에 형성되는 제1'결합홈(31)에 반응기판(10)이 결합되고, 모세관홈(34)은 하부구조체(20)의 일면에서 반응기판(10)에 대응되는 영역에 형성될 수 있다. 도 6a, 6c, 6e에 도시된 경우는, 도 3a와 같이 반응기판(10)의 일면에 작동전극(11a) 및 기준전극(12a)이 형성되고 반응기판(10)의 타면에 작동신호전달전극(11b) 및 기준신호전달전극(12b)이 형성되는 형태이다. 반면에 도 6b, 6d, 6f에 도시된 경우는, 도 3b에서와 같이 반응기판(10)의 작동전극(11a), 기준전극(12a), 작동신호전달전극(11b) 및 기준신호전달전극(12b)이 모두 동일한 일면에 형성되는 형태이다. 이와 같은 다양한 결합형태에서 상기 벤트홀(33) 대신 벤트슬릿과 같은 다른 공기배출 수단이 구비될 수도 있다. 예컨대 반응기판(10)의 양측면과 제1'결합홈(31) 사이에 공간을 두고 이를 따라 공기가 빠지도록 할 수도 있다.
상술한 바와 같이, 반응기판(10)을 하부구조체(20)와 상부구조체(30)에 결합하여 모듈형 바이오센서(1)를 형성할 수 있으며, 이러한 모듈형 바이오센서(1)를 통해, 반응기판(10)이 결합된 하부구조체(20)에 검출기(80)를 결합하면 반응기판(10)과 검출기(80)가 접촉하게 되므로, 반응기판(10)과 검출기(80)를 용이하게 접촉시킬 수 있는 장점이 있다. 즉, 반응기판(10)이 결합되는 하부구조체(20)는 반응기판(10)보다 큰 부피를 가지며, 이러한 부피를 가지는 하부구조체(20)에 검출기(80)를 용이하게 결합할 수 있으므로, 반응기판(10)과 검출기(80)를 용이하게 접촉시킬 수 있는 장점이 있다.
또한, 반응기판(10)은 하부구조체(20)와 상부구조체(30)의 내측에 위치하므로, 반응기판(10)이 외부로 노출되어 오염되는 것을 방지할 수 있는 장점이 있다.
또한, 반응기판(10)을 검출기(80)로부터 분리하는 경우에 반응기판(10)이 결합된 하부구조체(20)를 손으로 잡고 떼어내면 반응기판(10)이 검출기(80)로부터 분리되므로, 종래 혈액이 묻어 있는 반응기판(10)을 직접 손으로 잡아당기는 것에 비하여 편의성 및 위생성이 향상되는 장점이 있다.
또한, 본 발명의 일 실시예에 따른 모듈형 바이오센서(1)는, 하부구조체(20) 및 상부구조체(30)의 외측면을 둘러싸도록 형성되고 하부구조체(20) 및 상부구조체(30)의 외측면을 따라 슬라이딩 하는 하우징(40)을 더 포함할 수 있다.
하우징(40)은 하부구조체(20)와 상부구조체(30)의 외측면을 둘러싸도록 형성되어 도입구(35)로 노출된 반응기판(10)을 보호하는 것으로, 도 7에 도시된 바에 의하면 하우징(40)은 중공의 원통 형상을 가지며, 중공의 원통 내주면에는 제1 내경부(41) 및 상기 제1 내경부(41)보다 반경이 큰 제2 내경부(42)가 상하로 인접하여 형성되고, 상기 제1 내경부(41)와 상기 제2 내경부(42)의 경계부에는 제2 단차면(43)이 형성된다.
이때, 하우징(40)이 하부구조체(20)를 따라 슬라이딩 되도록 하기 위하여 제1 내경부(41)의 반경은 제1 외경부(21)의 반경보다 크게 형성되고, 제2 내경부(42)의 반경은 제2 외경부(22)의 반경보다 크게 형성된다. 또한, 하우징(40)이 슬라이딩 되어 하부구조체(20)를 이탈하는 것을 방지하기 위하여 제1 내경부(41)의 반경은 제2 외경부(22)의 반경보다 작게 형성된다. 즉, 제1 내경부(41)의 반경이 제2 외경부(22)의 반경보다 작게 형성됨으로써, 하우징(40)이 하부구조체(20)를 따라 슬라이딩 되는 경우에 제2 단차면(43)이 제1 단차면(23)에 걸리게 되어 하우징(40)이 하부구조체(20)로부터 이탈되는 것이 방지된다.
또한, 제2 내경부(42)의 내측면에는 하부구조체(20)의 이탈을 방지하기 위한 걸림돌기(44, 45)가 둘레방향으로 등간격을 두고 형성될 수 있으며, 도 10a, 10b에 도시된 바에 의하면 걸림돌기(44, 45)는 하우징(40)의 내부에 수용된 하부구조체(20)의 이탈을 방지하기 위한 하부걸림돌기(44)와, 하부구조체(20)가 하우징(40)의 외부로 돌출된 경우에 돌출된 상태를 유지하기 위한 상부걸림돌기(45)를 더 포함할 수 있다.
즉, 도 10a에 도시된 바와 같이 하부구조체(20) 및 상부구조체(30)가 하우징(40)의 내부에 수용되는 경우, 하부구조체(20)가 하우징(40)으로부터 이탈되는 것을 방지하기 위하여 제2 내경부(42)에 적어도 하나의 하부걸림돌기(44)가 형성된다.
또한, 도 10b에 도시된 바와 같이 하부구조체(20)가 하우징(40)의 외부로 돌출된 경우, 하부구조체(20)가 하우징(40)의 외부로 돌출된 상태를 유지하기 위하여 하우징(40)의 제2 내경부(42)에 적어도 하나의 상부걸림돌기(45)가 형성된다. 상부걸림돌기(45)는 하부걸림돌기(44)와 제1 내경부(41)의 사이에 형성된다.
또한, 하부걸림돌기(44) 및 상부걸림돌기(45)는 제2 내경부(42)방향으로 경사지게 형성되고 제1 내경부(41) 방향으로 걸림턱이 형성될 수 있다. 예컨대, 하부걸림돌기(44) 및 상부걸림돌기(45)는 역 직삼각형 형상을 가진다. 이로 인해, 하부구조체(20)는 하우징(40)을 따라 제1 내경부(41) 방향으로 용이하게 슬라이딩 되고, 하우징(40)을 따라 제1 내경부(41) 방향으로 슬라이딩 된 하부구조체(20)는 고정되어 제2 내경부(42) 방향으로 슬라이딩 되지 않는다.
또한, 본 발명의 일 실시예에 따른 모듈형 바이오센서(1)는, 하우징(40)의 일단에 부착되어 상부구조체(30)를 통해 외부로 노출된 반응기판(10)을 보호하는 상부커버(50) 및 하우징(40)의 타단에 부착되어 하부구조체(20)를 통해 외부로 노출된 반응기판(10)을 보호하는 하부커버(60)를 더 포함할 수 있다.
상부커버(50) 및 하부커버(60)는 반응기판(10)(혹은 반응기판(10)에 도포된 시약)의 노출을 방지한다. 상부커버(50)와 하부커버(60)를 용이하게 제거하기 위하여, 상부커버(50)와 하부커버(60)에 손잡이부가 구비될 수 있다. 상부커버(50) 및 하부커버(60)는 스티커나 박막의 필름으로 형성되는 것이 바람직하다.
또한, 하부구조체(20), 상부구조체(30) 및 하우징(40)은 플라스틱과 같은 합성수지 재질로 형성될 수 있으며, 사출성형으로 제작될 수 있어 그 형태의 변경이 용이하다.
도 20은 도 1의 모듈형 바이오센서(1)에 검출기(80)가 결합되는 상태를 도시한 것으로, 모듈형 바이오센서(1)의 하부커버(60)가 제거된 상태에서 검출기(80)가 결합된다. 검출기(80)는 하부구조체(20)의 제2 외경부(22) 쪽에서 삽입되어 결합되며, 이때 하부구조체(20) 및 상부구조체(30)는 하우징(40)을 따라 슬라이딩 되고, 이로 인해 하부구조체(20) 및 상부구조체(30)는 하우징(40)의 외부로 돌출되어 시료를 도입시키기 위한 도입구(35)가 외부로 노출되게 된다. 또한, 하부구조체(20) 및 상부구조체(30)가 하우징(40)의 외부로 돌출됨에 따라 하우징(40)에 부착된 상부커버(50)는 자동으로 제거된다. 이후, 외부로 노출된 도입구(35)에 시료가 도입되면 모세관홈(34)에 의한 모세관 현상에 의해 시료가 반응기판(10)으로 신속하게 이송된다. 반응기판(10)으로 이송된 시료는 화학물질과 산화환원 반응을 일으키고, 이러한 반응에 의해 작동전극(11a) 및 기준전극(12a)에서 반응신호가 생성되고, 생성된 반응신호는 작동신호전달전극(11b) 및 기준신호전달전극(12b)으로 전달되고, 작동신호전달전극(11b) 및 기준신호전달전극(12b)에 전달된 반응신호는 작동신호전달전극(11b) 및 기준신호전달전극(12b)에 접촉된 검출기(80)로 전달된다.
상술한 바와 같이, 반응기판(10)을 하부구조체(20)와 상부구조체(30)에 결합하고, 반응기판(10)이 결합된 하부구조체(20)에 하우징(40)을 결합하고, 하우징(40)에 상부커버(50)와 하부커버(60)를 부착하여 모듈형 바이오센서(1)를 형성할 수 있다.
이상 본 발명의 일 실시예에 따른 모듈형 바이오센서를 상세하게 설명하였다. 이하 본 발명의 다른 실시예에 따른 모듈형 바이오센서를 상세하게 설명한다.
도 11 내지 도 14b에 도시된 바에 의하면 본 발명의 다른 실시예에 따른 모듈형 바이오센서(1)는, 도입 시료와 반응하여 반응신호를 생성하는 반응기판(10), 중공의 형상을 가지며 중공의 형상 외측면에는 제1 외경부(21) 및 제1 외경부(21)보다 반경이 큰 제2 외경부(22)가 상하로 인접하여 형성되고, 제1 외경부(21)와 제2 외경부(22)의 경계부에는 제1 단차면(23)이 형성되고, 제1 외경부(21)의 단부 내측방향으로 연장되어 닫힌밑면(24)이 형성되고, 제2 외경부(22) 방향의 닫힌밑면(24)의 일면에는 반응기판(10)을 결합하기 위한 제1' 결합홈(31)이 형성되고, 제1 외경부(21)에는 제1' 결합홈(31)에 결합된 반응기판(10)으로 시료를 도입시키기 위한 도입구(35)가 형성되고, 제1' 결합홈(31)에는 도입구(35)에서 도입된 시료를 반응기판(10)으로 신속하게 이송시키기 위한 모세관홈(34)이 형성되는 메인구조체(70)를 포함한다.
반응기판(10)은 도입되는 시료와 반응하여 반응신호를 생성하고 생성된 반응신호를 검출기(80)로 전달하는 것으로, 도 11의 반응기판(10)은 도 3a, 3b에 도시된 반응기판(10)과 동일하다. 상기 메인구조체(70)에는 반응기판(10) 및 검출기(80)가 결합되며, 도 12, 13에 도시된 바에 의하면 메인구조체(70)는 중공의 원통 형상을 가지며, 메인구조체(70)의 외주면에는 제1 외경부(21) 및 제1 외경부(21)보다 반경이 큰 제2 외경부(22)가 상하로 인접하여 형성되고, 제1 외경부(21)와 제2 외경부(22)의 경계부에는 제1 단차면(23)이 형성된다.
이때, 메인구조체(70)가 하우징(40)을 따라 슬라이딩 되도록 하기 위하여 제1 외경부(21)의 반경은 제1 내경부(41)의 반경보다 작게 형성되고, 제2 외경부(22)의 반경은 제2 내경부(42)의 반경보다 작게 형성된다. 또한, 메인구조체(70)가 슬라이딩 되어 하우징(40)을 이탈하는 것을 방지하기 위하여 제2 외경부(22)의 반경은 제1 내경부(41)의 반경보다 크게 형성된다. 즉, 제2 외경부(22)의 반경이 제1 내경부(41)의 반경보다 크게 형성됨으로써, 메인구조체(70)가 하우징(40)을 따라 슬라이딩 되는 경우에 제1 단차면(23)이 제2 단차면(43)에 걸리게 되어 메인구조체(70)가 하우징(40)으로부터 이탈되는 것이 방지된다.
또한, 제1 외경부(21)의 단부로부터 내측방향(즉, 중공의 원통의 중심축 방향)으로 연장되어 닫힌밑면(24)이 형성된다. 즉, 메인구조체(70)는 일단에 닫힌밑면이 구비된 중공의 원통 형상, 즉 캡(Cap) 형상을 가진다. 또한, 메인구조체(70)의 형상은 상술한 설명에 한정되지 아니한다. 예를 들어, 메인구조체(70)는 일단에 닫힌밑면이 구비된 중공의 각기둥(삼각기둥, 사각기둥, 오각기둥 등)의 형상을 가질 수 있다.
또한, 닫힌밑면(24)의 내측면(즉, 제2 외경부(22) 방향의 닫힌밑면)에는 반응기판(10)이 결합되는 제1' 결합홈(31)이 형성된다. 제1' 결합홈(31)은 반응기판(10)의 형상에 대응하게 형성된다. 예를 들어, 반응기판(10)이 막대 형상을 가지는 경우에 제1' 결합홈(31)은 막대 형상의 반응기판(10)이 결합될 수 있도록 형성된다. 반응기판(10)은 제1' 결합홈(31)에 열융착, 초음파융착, 본딩 또는 억지끼움방식 등으로 결합될 수 있다.
또한, 제1 외경부(21)에는 제1' 결합홈(31)에 결합된 반응기판(10)으로 시료를 도입시키기 위한 도입구(35)가 형성되고, 도입구(35)가 형성된 제1 외경부(21)의 일 측면은 경사지게 형성될 수 있다. 모세관홈(34)은 모세관 현상을 통해 시료의 도입을 유도하는 것으로, 모세관홈(34)은 제1' 결합홈(31)에서 반응기판(10)의 길이방향으로 형성되며, 모세관홈(34)의 일단은 도입구(35)에 연결된다. 즉, 도입구(35)를 통해 도입된 시료는 모세관홈(34)에 의한 모세관 현상을 통해 반응기판(10)의 작동전극(11a)과 기준전극(12a)으로 신속하게 이송된다.
또한, 제1' 결합홈(31)에는 시료의 도입에 따라 모세관홈(34)에 수용된 공기를 외부로 배출하기 위한 벤트홀(미도시)이 형성될 수 있으며, 이때 벤트홀은 모세관홈(34)의 타단에 형성된다. 즉, 모세관홈(34)의 일단에는 도입구(35)가 형성되고 타단에는 벤트홀이 형성됨으로써, 도입구(35)로부터 도입된 시료를 모세관홈(34)을 통해 반응기판(10)으로 신속하게 이송할 수 있으며, 벤트홀을 통해 시료의 도입에 따라 모세관홈(34)에 수용된 공기를 외부로 배출할 수 있다.
또한, 메인구조체(70)는 닫힌밑면(24)에서부터 제2 외경부(22)의 단부방항으로 연장되어 형성되는 내측벽(28)을 더 포함하되, 닫힌밑면(24), 제1 외경부(21), 제2 외경부(22) 및 내측벽(28)이 형성하는 수용공간에 제습제가 수용될 수 있다.
또한, 모듈형 바이오센서(1)는, 메인구조체(70)의 외측면을 둘러싸도록 형성되고 메인구조체(70)의 외주면을 따라 슬라이딩 되는 하우징(40)을 더 포함할 수 있다. 하우징(40)은 중공의 원통 형상을 가지며, 중공의 원통 내주면에는 제1 내경부(41) 및 제1 내경부(41)보다 반경이 큰 제2 내경부(42)가 상하로 인접하여 형성되고, 제1 내경부(41)와 제2 내경부(42)의 경계부에는 제2 단차면(43)이 형성된다.
이때, 하우징(40)이 메인구조체(70)를 따라 슬라이딩 되도록 하기 위하여 제1 내경부(41)의 반경은 제1 외경부(21)의 반경보다 크게 형성되고, 제2 내경부(42)의 반경은 제2 외경부(22)의 반경보다 크게 형성된다. 또한, 하우징(40)이 슬라이딩 되어 메인구조체(70)을 이탈하는 것을 방지하기 위하여 제1 내경부(41)의 반경은 제2 외경부(22)의 반경보다 작게 형성된다.
또한, 제2 내경부(42)의 내측면에는 메인구조체(70)의 이탈을 방지하기 위한 걸림돌기(44, 45)가 형성될 수 있다. 걸림돌기(44, 45)는 하우징(40)의 내부에 수용된 메인구조체(70)의 이탈을 방지하기 위한 하부걸림돌기(44) 및 메인구조체(70)가하우징(40)의 외부로 돌출된 경우에 돌출된 상태를 유지하기 위한 상부걸림돌기(45)를 더 포함할 수 있다.
즉, 도 14a에 도시된 바와 같이 메인구조체(70)가 하우징(40)의 내부에 수용되어 닫힌밑면(24)과 제2 외경부(22) 단부만이 외부로 노출된 경우, 메인구조체(70)가 하우징(40)의 제2 내경부(42) 단부 방향으로 이탈되는 것을 방지하기 위하여 제2 내경부(42)에 적어도 하나의 하부걸림돌기(44)가 형성된다.
또한, 도 14b에 도시된 바와 같이 메인구조체(70)가 하우징(40)의 외부로 돌출된 경우, 메인구조체(70)가 하우징(40)의 외부로 돌출된 상태를 유지하기 위하여 제2 내경부(42)에 적어도 하나의 상부걸림돌기(45)가 형성된다.
모듈형 바이오센서(1)는, 하우징(40)의 일단 및 타단에 각각 부착되어 상기 메인구조체(70)를 통해 외부로 노출된 반응기판(10)을 보호하는 상부커버(50) 및 하부커버(60)를 더 포함할 수 있다.
상부커버(50)와 하부커버(60)를 용이하게 제거하기 위하여, 상부커버(50)와 하부커버(60)에 손잡이부가 구비될 수 있다.
또한, 메인구조체(70) 및 하우징(40)은 플라스틱과 같은 합성수지 재질로 형성될 수 있으며, 사출성형으로 제작될 수 있어 그 형태의 변경이 용이하다.
또한, 도 11의 모듈형 바이오센서(1)에 검출기가 결합되는 방식은 도 20과 동일하다.
이상 본 발명의 다른 실시예에 따른 모듈형 바이오센서를 상세하게 설명하였다. 이하 본 발명의 또 다른 실시예에 따른 모듈형 바이오센서를 상세하게 설명한다.
도 15 내지 도 19b에 도시된 바에 의하면 본 발명의 다른 실시예에 따른 모듈형 바이오센서(1)는, 도입 시료와 반응하여 반응신호를 생성하는 반응기판(10), 중공의 형상을 가지며 중공의 형상의 외측면에는 제1 외경부(21) 및 제1 외경부(21)보다 폭이 큰 제2 외경부(22)가 상하로 인접하여 형성되고, 제1 외경부(21)와 제2 외경부(22)의 경계부에는 제1 단차면(23)이 형성되고, 제1 외경부(21)의 단부 내측방향으로 연장되어 닫힌밑면(24)이 형성되고, 제1 외경부(21)의 내측면에 반응기판(10)을 결합하기 위한 제1' 결합홈(31)이 형성되고, 닫힌밑면(24)에는 제1' 결합홈(31)에 결합된 반응기판(10)으로 시료를 도입시키기 위한 도입구(35)가 형성되고, 제1' 결합홈(31)에는 도입구(35)에서 도입된 시료를 반응기판(10)으로 신속하게 이송시키기 위한 모세관홈(34)이 형성되는 메인구조체(70)를 포함한다.
반응기판(10)은 도입 시료와 반응하여 반응신호를 생성하고 생성된 반응신호를 검출기(80)로 전달하는 것으로, 도 15의 반응기판(10)은 도 3a, 3b에 도시된 반응기판(10)과 동일하다. 메인구조체(70)에는 반응기판(10) 및 검출기(80)가 결합되며, 도 15, 16에 도시된 바에 의하면 메인구조체(70)는 중공의 사각기둥 형상을 가지며, 중공의 사각기둥의 외측면에는 제1 외경부(21) 및 제1 외경부(21)보다 폭이 큰 제2 외경부(22)가 상하로 인접하여 형성되고, 제1 외경부(21)와 제2 외경부(22)의 경계부에는 제1 단차면(23)이 형성된다. 상기 폭은 중공의 사각기둥에서 마주보는 사각형 간의 거리를 말한다.
이때, 메인구조체(70)가 하우징(40)을 따라 슬라이딩 되도록 하기 위하여 제1 외경부(21)의 폭은 제1 내경부(41)의 폭보다 작게 형성되고, 제2 외경부(22)의 폭은 제2 내경부(42)의 폭보다 작게 형성된다. 또한, 메인구조체(70)가 슬라이딩 되어 하우징(40)을 이탈하는 것을 방지하기 위하여 제2 외경부(22)의 폭은 제1 내경부(41)의 폭보다 크게 형성된다.
또한, 제1 외경부(21)의 단부로부터 내측방향(즉, 중공의 사각기둥의 중심축 방향)으로 연장되어 닫힌밑면(24)이 형성된다. 즉, 메인구조체(70)는 일단에 닫힌밑면이 구비된 중공의 사각기둥의 형상, 즉 캡(Cap) 형상을 가진다. 또한, 메인구조체(70)의 형상은 상술한 설명에 한정되지 아니한다.
또한, 제1 외경부(21)의 내측면에는 상기 반응기판(10)을 결합하기 위한 제1' 결합홈(31)이 형성된다. 즉, 메인구조체(70)는 중공의 사각기둥 형상을 가지므로, 중공의 사각기둥을 형성하는 4측면 중에서 하나의 측면의 내측에 제1' 결합홈(31)이 형성된다. 제1' 결합홈(31)은 반응기판(10)의 형상에 대응하게 형성된다. 예를 들어, 반응기판(10)이 막대 형상을 가지는 경우에 제1' 결합홈(31)은 막대 형상의 반응기판(10)이 결합될 수 있도록 형성된다. 또한, 반응기판(10)은 제1' 결합홈(31)에 열융착, 초음파융착, 본딩 또는 억지끼움방식 등으로 결합될 수 있다.
또한, 닫힌밑면(24)에는 제1' 결합홈(31)에 결합된 반응기판(10)으로 시료를 도입시키기 위한 도입구(35)가 형성된다. 모세관홈(34)은 제1' 결합홈(31)상에서 반응기판(10)의 길이방향으로 형성되며, 모세관홈(34)의 일단은 도입구(35)에 연결된다. 즉, 도입구(35)를 통해 도입된 시료는 모세관홈(34)에 의한 모세관 현상을 통해 반응기판(10)의 작동전극(11a)과 기준전극(12a)으로 신속하게 이송된다.
또한, 제1' 결합홈(31)에는 시료의 도입에 따라 모세관홈(34)에 수용된 공기를 외부로 배출하기 위한 벤트홀(미도시)이 형성될 수 있다.
또한, 메인구조체(70)는 닫힌밑면(24)에서부터 제2 외경부(22)의 단부방항으로 연장되어 형성되는 내측벽(28)을 더 포함하되, 닫힌밑면(24), 제1 외경부(21), 제2 외경부(22) 및 내측벽(28)이 형성하는 수용공간에 제습제가 수용될 수 있다.
또한, 상기에서 메인구조체(70)가 하나의 구조체로 형성된 경우를 설명하였으나, 메인구조체(70)는 두 개의 구조체로 형성될 수도 있다. 즉, 도 18에 도시된 바와 같이 제1' 결합홈(31)이 형성된 제1 외경부(21)의 내측면을 기준으로, 메인구조체(70)는 제1 구조체(71)과 제2 구조체(72)로 나뉠수 있다. 여기에서 제1' 결합홈(31)과 모세관홈(34)의 구조 및 배치는 도 6a 내지 6f와 동일하게 형성될 수 있다. 이때 제1 구조체(71)는 상부구조체(30)에 해당되고, 제2 구조체(72)는 하부구조체(20)에 해당될 수 있다.
또한, 모듈형 바이오센서(1)는, 메인구조체(70)의 외측면을 둘러싸도록 형성되고 메인구조체(70)의 외측면을 따라 슬라이딩 하는 하우징(40)을 더 포함할 수 있다. 하우징(40)은 메인구조체(70)의 외측면을 둘러싸도록 형성되어 도입구(35)로 노출된 반응기판(10)을 보호하는 것으로, 도 15에 도시된 하우징(40)은 도 6에 도시된 하우징(40)과 형상만 상이하고 구성과 기능은 동일하다. 즉, 하우징(40)은 중공의 사각기둥 형상을 가지며, 중공의 사각기둥의 내측면에는 제1 내경부(41) 및 제1 내경부(41)보다 폭이 큰 제2 내경부(42)가 상하로 인접하여 형성되고, 제1 내경부(41)와 제2 내경부(42)의 경계부에는 제2 단차면(43)이 형성된다. 상기 폭은 중공의 사각기둥에서 마주보는 사각형 간의 거리를 말한다.
이때, 하우징(40)이 메인구조체(70)을 따라 슬라이딩 되도록 하기 위하여 제1 내경부(41)의 폭은 제1 외경부(21)의 폭보다 크게 형성되고, 제2 내경부(42)의 폭은 제2 외경부(22)의 폭보다 크게 형성된다. 또한, 하우징(40)이 슬라이딩 되어 메인구조체(70)가 이탈하는 것을 방지하기 위하여 제1 내경부(41)의 폭은 제2 외경부(22)의 폭보다 작게 형성된다.
또한, 제2 내경부(42)에는 메인구조체(70)의 이탈을 방지하기 위한 걸림돌기(44, 45)가 형성될 수 있다. 또한, 걸림돌기(44, 45)는 하우징(40)의 내부에 수용된 메인구조체(70)의 이탈을 방지하기 위한 하부걸림돌기(44) 및 메인구조체(70)가 하우징(40)의 외부로 돌출된 경우에 돌출된 상태를 유지하기 위한 상부걸림돌기(45)를 더 포함할 수 있다.
즉, 도 19a에 도시된 바와 같이 메인구조체(70)가 하우징(40)의 내부에 수용되어 닫힌밑면(24)과 제2 외경부(22) 단부만이 외부로 노출된 경우, 메인구조체(70)가 하우징(40)의 제2 내경부(42) 단부 방향으로 이탈되는 것을 방지하기 위하여 제2 내경부(42)의 내측면에 적어도 하나의 하부걸림돌기(44)가 형성된다.
또한, 도 19b에 도시된 바와 같이 메인구조체(70)가 하우징(40)의 외부로 돌출된 경우, 메인구조체(70)가 하우징(40)의 외부로 돌출된 상태를 유지하기 위하여 제2 내경부(42)에 적어도 하나의 상부걸림돌기(45)가 형성된다.
또한, 모듈형 바이오센서(1)는, 하우징(40)의 일단 및 타단에 부착되어 메인구조체(70)를 통해 외부로 노출된 반응기판(10)을 보호하는 상부커버(50) 및 하부커버(60)를 더 포함할 수 있다. 또한, 상부커버(50)와 하부커버(60)를 용이하게 제거하기 위하여, 상부커버(50)와 하부커버(60)에는 손잡이부가 구비될 수 있다.
또한, 메인구조체(70) 및 하우징(40)은 플라스틱과 같은 합성수지 재질로 형성될 수 있으며, 사출성형으로 제작될 수 있어 그 형태의 변경이 용이하다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
[부호의 설명]
1 :모듈형 바이오센서 10 : 반응기판
11a :작동전극 11b : 작동신호전달전극
12a : 기준전극 12b : 기준신호전달전극
20 :하부구조체 21 : 제1 외경부
22 : 제2 외경부 23 : 제1 단차면
24 :닫힌밑면 25 : 제1 결합홈
26 : 제1 결합공 27 : 제2 결합공
28 :내측벽 30 : 상부구조체
31 : 제1' 결합홈 32 : 결합돌기
33: 벤트홀 34 : 모세관홈
35 : 도입구 40 : 하우징
41 : 제1 내경부 42 : 제2 내경부
43 : 제2 단차면 44 : 하부걸림돌기
45 : 상부걸림돌기 50 : 상부커버
60 :하부커버 70 : 메인구조체
71 :제1 구조체 72 : 제2 구조체
80 : 검출기

Claims (28)

  1. 도입 시료와 반응하여 반응신호를 생성하는 반응기판;
    일측 밑면에 개구가 형성된 기둥형의 도형으로 형성되며, 상기 개구가 형성된 열린밑면에 대응되는 위치의 닫힌밑면에 상기 반응기판이 결합되는 제1구조체; 및
    상기 닫힌밑면에 결합되고, 상기 닫힌밑면에 결합시 상기 반응신호가 생성되는 반응챔버를 형성하는 제2구조체를 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  2. 제1항에 있어서,
    상기 제1구조체 및 상기 제2구조체의 외측면을 둘러싸도록 형성되고, 상기 제1구조체 및 상기 제2구조체의 외측면을 따라 슬라이딩 하는 하우징을 더 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  3. 제2항에 있어서, 상기 반응기판은,
    일면에 형성되는 작동전극 및 기준전극, 상기 작동전극 및 상기 기준전극이 형성되는 일면과 동일한 면 또는 다른 면에 형성되어 상기 작동전극 및 상기 기준전극과 각각 전기적으로 연결되는 작동신호전달전극 및 기준신호전달전극을 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  4. 제3항에 있어서, 상기 반응기판은,
    상기 작동전극 및 상기 기준전극의 상부에 고정되어 도입 시료와 반응하는 화학물질을 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  5. 제2항에 있어서, 상기 제1구조체는,
    상기 닫힌밑면에는 상기 반응기판이 결합되는 제1 결합영역 및 상기 제2구조체가 결합되는 제1 결합수단이 형성되고, 상기 제1 결합영역의 소정 영역에는 상기 반응기판이 상기 검출기와 접촉되도록 하는 개구가 형성되는 것을 특징으로 하는 모듈형 바이오센서.
  6. 제5항에 있어서, 상기 제1 결합영역은,
    결합홈인 것을 특징으로 하는 모듈형 바이오센서.
  7. 제6항에 있어서, 상기 결합홈은,
    도입되는 시료를 상기 반응기판으로 신속하게 이송시키기 위한 시료도입로를 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  8. 제5항에 있어서, 상기 제2구조체는,
    평판 형상을 가지며, 평판의 일면에는 상기 제1 결합영역과 마주보는 위치에 형성되어 상기 반응기판과 결합하는 제2결합영역 및 상기 제1결합수단과 결합하는 제2결합수단이 형성되는 것을 특징으로 하는 모듈형 바이오센서.
  9. 제8항에 있어서, 상기 제2 결합영역은,
    결합홈인 것을 특징으로 하는 모듈형 바이오센서.
  10. 제9항에 있어서, 상기 제2 결합영역은,
    일부 영역에 시료 도입에 따른 공기 배출을 위한 공기배출수단을 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  11. 제8항에 있어서, 상기 제2구조체는,
    도입되는 시료를 상기 반응기판으로 신속하게 이송시키기 위한 시료도입로를 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  12. 제1항에 있어서, 상기 하우징은,
    중공의 형상을 가지며, 중공의 형상 내측면에 상기 제1구조체의 이탈을 방지하기 위한 적어도 하나의 지지수단을 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  13. 제8항에 있어서, 상기 지지수단은,
    상기 하우징의 내부에 수용된 상기 제1구조체의 이탈을 방지하기 위한 제1 지지수단; 및
    상기 제1구조체가 하우징의 외부로 돌출된 경우에 돌출된 상태를 유지하기 위한 제2 지지수단을 더 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  14. 제2항에 있어서, 상기 제1구조체는,
    제습제가 수용되는 수용공간을 더 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  15. 제2항에 있어서,
    상기 하우징의 일단에 부착되어 상기 제2구조체를 통해 외부로 노출된 상기 반응기판을 보호하는 제1커버; 및
    상기 하우징의 타단에 부착되어 상기 제1구조체를 통해 외부로 노출된 상기 반응기판을 보호하는 제2커버를 더 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  16. 도입 시료와 반응하여 반응신호를 생성하는 반응기판; 및
    중공 형상의 제1 밑면에 개구가 형성되고, 제2 밑면은 캡 형상을 가지며, 상기 제2 밑면의 내측면에 상기 반응기판이 결합되는 구조체를 포함하며,
    상기 구조체는 상기 반응기판을 결합하기 위한 결합홈과, 상기 결합홈에 결합되는 상기 반응기판으로 시료를 도입시키기 위한 도입구와, 상기 도입구를 통해 도입되는 시료를 상기 반응기판으로 신속하게 이송시키기 위한 모세관홈을 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  17. 제16항에 있어서,
    상기 구조체의 외측면을 둘러싸도록 형성되고, 상기 구조체의 외측면을 따라 슬라이딩 하는 하우징을 더 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  18. 제17항에 있어서, 상기 구조체는,
    상기 시료 도입 시 공기를 배출하는 공기배출 수단을 더 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  19. 제17항에 있어서, 상기 하우징은,
    중공 형상을 가지며, 중공 형상의 내측면에 상기 구조체의 이탈을 방지하기 위한 적어도 하나의 걸림돌기를 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  20. 제19항에 있어서, 상기 걸림돌기는,
    상기 하우징의 내부에 수용된 상기 구조체의 이탈을 방지하기 위한 하부걸림돌기; 및
    상기 구조체가 하우징의 외부로 돌출된 경우에 돌출된 상태를 유지하기 위한 상부걸림돌기를 더 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  21. 제17항에 있어서, 상기 구조체는,
    제습제가 수용되는 수용공간을 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  22. 제17항에 있어서,
    상기 하우징의 일단에 부착되어 상기 구조체를 통해 외부로 노출된 상기 반응기판을 보호하는 상부커버; 및
    상기 하우징의 타단에 부착되어 상기 구조체를 통해 외부로 노출된 상기 반응기판을 보호하는 하부커버를 더 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  23. 도입 시료와 반응하여 반응신호를 생성하는 반응기판; 및
    중공 형상을 가지며, 중공 형상의 외측면에는 제1 외경부 및 상기 제1 외경부보다 폭이 큰 제2 외경부가 상하로 인접하여 형성되고, 상기 제1 외경부와 상기 제2 외경부의 경계부에 단차면이 형성되고, 상기 제1 외경부의 단부 내측방향으로 연장되어 닫힌밑면이 형성되고, 상기 제1 외경부의 내측면에는 상기 반응기판을 결합하기 위한 결합홈이 형성되고, 상기 닫힌밑면에는 상기 결합홈에 결합된 상기 반응기판으로 시료를 도입시키기 위한 도입구가 형성되고, 상기 결합홈에는 상기 도입구에서 도입된 시료를 상기 반응기판으로 신속하게 이송시키기 위한 모세관홈이 형성되는 제1구조체를 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  24. 제23항에 있어서,
    상기 제1구조체의 외측면을 둘러싸도록 형성되고, 상기 제1구조체의 외측면을 따라 슬라이딩 하는 하우징을 더 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  25. 제24항에 있어서, 상기 제1구조체는,
    상기 결합홈이 형성되어 상기 반응기판과 결합하는 제2구조체; 및
    상기 반응기판을 사이에 두고 상기 제2 구조체와 결합하여 상기 제1구조체를 형성하는 제3구조체를 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  26. 제25항에 있어서, 상기 제2구조체는,
    상기 반응기판과 결합되는 영역에 반응챔버를 포함하는 모세관홈을 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  27. 제25항에 있어서, 상기 제3구조체는,
    상기 반응기판과 결합되는 영역에 반응챔버를 포함하는 모세관홈을 포함하는 것을 특징으로 하는 모듈형 바이오센서.
  28. 제24항에 있어서,
    상기 하우징의 일단에 부착되어 상기 제1구조체를 통해 외부로 노출된 상기 반응기판을 보호하는 상부커버 및 상기 하우징의 타단에 부착되어 상기 제1구조체를 통해 외부로 노출된 상기 반응기판을 보호하는 하부커버를 더 포함하는 것을 특징으로 하는 모듈형 바이오센서.
PCT/KR2012/007518 2011-09-20 2012-09-20 모듈형 바이오센서 WO2013042946A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/345,871 US20140326598A1 (en) 2011-09-20 2012-09-20 Module-type biosensor
BR112014006609A BR112014006609A2 (pt) 2011-09-20 2012-09-20 biossensor de tipo de módulo
JP2014531715A JP2015508485A (ja) 2011-09-20 2012-09-20 モジュール型バイオセンサー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110094423A KR101464028B1 (ko) 2011-09-20 2011-09-20 모듈형 바이오센서
KR10-2011-0094423 2011-09-20

Publications (1)

Publication Number Publication Date
WO2013042946A1 true WO2013042946A1 (ko) 2013-03-28

Family

ID=47914623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007518 WO2013042946A1 (ko) 2011-09-20 2012-09-20 모듈형 바이오센서

Country Status (5)

Country Link
US (1) US20140326598A1 (ko)
JP (1) JP2015508485A (ko)
KR (1) KR101464028B1 (ko)
BR (1) BR112014006609A2 (ko)
WO (1) WO2013042946A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101600371B1 (ko) * 2015-05-26 2016-03-07 (주) 비비비 오토 코딩 가능한 전기 화학적 바이오 센서 및 이의 제조 방법
US10444177B2 (en) 2015-05-26 2019-10-15 Bbb Inc. No coding type biosensor and method for manufacturing the same
US11867653B2 (en) 2020-03-11 2024-01-09 Monroe Biosensors, Inc. Systems and methods for mounting biosensors using a consumable fluid reservoir
KR102536484B1 (ko) * 2022-10-25 2023-05-26 주식회사 아리비앤씨 광학적 혈당측정기 구조물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040028112A1 (en) * 2000-07-21 2004-02-12 Thomas Carlsson Micro-calorimeter apparatus
EP1467198A2 (en) * 2003-04-11 2004-10-13 Therm-o-Disc Incorporated Robust chemoresistor sensor
KR20070115915A (ko) * 2005-03-02 2007-12-06 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 니들 일체형 바이오센서
KR20100072533A (ko) * 2008-12-22 2010-07-01 한국전자통신연구원 바이오 센서 칩
KR100991573B1 (ko) * 2000-12-11 2010-11-04 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 나노센서

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3060991B2 (ja) * 1997-05-08 2000-07-10 日本電気株式会社 バイオセンサ
WO2007108513A1 (ja) * 2006-03-22 2007-09-27 Matsushita Electric Industrial Co., Ltd. バイオセンサーおよび成分濃度測定装置
GB2451840B (en) * 2007-08-14 2012-01-18 Owen Mumford Ltd Lancing devices
US8169006B2 (en) * 2008-11-29 2012-05-01 Electronics And Telecommunications Research Institute Bio-sensor chip for detecting target material
JP5514464B2 (ja) * 2009-03-31 2014-06-04 テルモ株式会社 成分測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040028112A1 (en) * 2000-07-21 2004-02-12 Thomas Carlsson Micro-calorimeter apparatus
KR100991573B1 (ko) * 2000-12-11 2010-11-04 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 나노센서
EP1467198A2 (en) * 2003-04-11 2004-10-13 Therm-o-Disc Incorporated Robust chemoresistor sensor
KR20070115915A (ko) * 2005-03-02 2007-12-06 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 니들 일체형 바이오센서
KR20100072533A (ko) * 2008-12-22 2010-07-01 한국전자통신연구원 바이오 센서 칩

Also Published As

Publication number Publication date
BR112014006609A2 (pt) 2017-03-28
US20140326598A1 (en) 2014-11-06
KR101464028B1 (ko) 2014-12-04
JP2015508485A (ja) 2015-03-19
KR20130030867A (ko) 2013-03-28

Similar Documents

Publication Publication Date Title
EP1942332B1 (en) Measuring device, measuring apparatus and method of measuring
WO2013042946A1 (ko) 모듈형 바이오센서
WO2013162175A1 (ko) 생화학 분석 카트리지
WO2014010960A1 (en) Fluid analysis cartridge
WO2011030982A1 (ko) 휴대형 배뇨 분석용 디지털 리더기
WO2019168236A1 (ko) 유체 검사 카트리지, 이를 포함하는 유체 검사장치 및 검사장치의 제어방법
WO2013042877A2 (ko) 바이오센서 및 그 측정장치
US8778152B2 (en) Sensor used together with a detector to measure biomaterial, and apparatus using same
WO2010113564A1 (ja) 成分測定装置
WO2010140773A2 (ko) 생체물질을 측정하는 바이오센서
EP0357625B1 (en) Assay apparatus and use thereof
WO2020096292A1 (ko) 체외진단용 분석장치의 카트리지
JP6677273B2 (ja) マイクロサンプリングチップ及びそのマイクロサンプリングチップを用いる検査装置
WO2017034073A1 (en) Test instrument and method of controlling the same
WO2014137145A1 (ko) 식별정보를 갖는 바이오 센서
WO2017095047A1 (ko) 유체분석 카트리지 및 이를 포함하는 유체분석장치
WO2017204512A1 (ko) 피씨알모듈
WO2021145580A1 (ko) 화학물질 검출 장치 및 화학물질 검출 방법
KR100961468B1 (ko) 자동 진단 시스템
WO2023080305A1 (ko) 일체형 분자 진단 장치 및 이를 이용한 분자 진단 방법
WO2013073885A1 (ko) 식별 정보를 가지는 바이오 센서 및 그 측정 장치
WO2017119583A1 (ko) 검사장치 및 그 제어방법
WO2023095965A1 (ko) 진단 스트립
WO2010140772A2 (ko) 생체물질을 측정하는 장치 및 그 제조 방법
WO2024096195A1 (ko) 생체 분석물의 정량적 샘플링을 통한 현장 검사 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531715

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014006609

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12833940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014006609

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140319