WO2020196605A1 - アルミナ焼結体の製造方法およびアルミナ焼結体 - Google Patents

アルミナ焼結体の製造方法およびアルミナ焼結体 Download PDF

Info

Publication number
WO2020196605A1
WO2020196605A1 PCT/JP2020/013277 JP2020013277W WO2020196605A1 WO 2020196605 A1 WO2020196605 A1 WO 2020196605A1 JP 2020013277 W JP2020013277 W JP 2020013277W WO 2020196605 A1 WO2020196605 A1 WO 2020196605A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
particle size
particles
sintered body
powder
Prior art date
Application number
PCT/JP2020/013277
Other languages
English (en)
French (fr)
Inventor
木村 禎一
智 末廣
義総 奈須
康輔 魚江
Original Assignee
住友化学株式会社
一般財団法人ファインセラミックスセンター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 一般財団法人ファインセラミックスセンター filed Critical 住友化学株式会社
Priority to KR1020217030547A priority Critical patent/KR20210142641A/ko
Priority to US17/442,597 priority patent/US20220169571A1/en
Priority to EP20779356.3A priority patent/EP3950637A4/en
Priority to CN202080024126.6A priority patent/CN113631529A/zh
Publication of WO2020196605A1 publication Critical patent/WO2020196605A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/115Translucent or transparent products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62889Coating the powders or the macroscopic reinforcing agents with a discontinuous coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • C04B2235/783Bimodal, multi-modal or multi-fractional
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon

Definitions

  • the present disclosure relates to a method for producing an alumina sintered body and an alumina sintered body produced by the method, and in particular, a method for producing an alumina sintered body including a transparent alumina sintered portion and an alumina fired product produced by the method. Regarding bundling.
  • a method for sintering ceramics for sintering a method is known in which a layer containing carbon powder is formed on the surface of an unsintered ceramic article, and then the surface of the carbon powder-containing layer is irradiated with a laser (for example).
  • Patent Document 1 The unsintered ceramic article can be formed from an aggregate of ceramic particles for sintering.
  • Alumina single crystal has translucency, so it is used as a transparent member.
  • the Verneuil method, the Czochralski method, and the like are known as methods for producing an alumina single crystal, but these production methods take a long time to obtain a single crystal, and the Czochralski method is a large-scale facility. Is required. Therefore, it is not suitable for manufacturing a wide variety of translucent members in small lots.
  • the sintering method by laser irradiation described in Patent Document 1 an alumina member can be produced in a short time in a small-scale facility, but the alumina member obtained by the sintering method (alumina sintered body) Is opaque, and a method for producing a transparent alumina sintered body has not been established.
  • An object of the present invention is to provide a method for producing an alumina sintered body including a transparent alumina sintered portion that can be used as a transparent member, and an alumina sintered body obtained by the manufacturing method.
  • Aspect 1 of the present invention is A step of molding an alumina powder containing alumina particles having a particle size of 0.1 ⁇ m or more and less than 1 ⁇ m and alumina particles having a particle size of 1 ⁇ m or more and less than 100 ⁇ m to obtain an alumina article.
  • a step of forming a carbon powder-containing layer on the surface of the alumina article to obtain a laminate and This is a method for producing an alumina sintered body, which comprises a step of irradiating the surface of the carbon powder-containing layer of the laminate with a laser to form a transparent alumina sintered portion.
  • Aspect 2 of the present invention The sintering method according to aspect 1, wherein the total pore volume of the alumina article is 0.20 mL / g or less, and the cumulative pore volume of pores having a pore diameter of 4 ⁇ m or more is less than 10% of the total pore volume. Is.
  • Aspect 3 of the present invention The alumina powder Alumina particles having a particle size of 1 ⁇ m or more and less than 100 ⁇ m are contained in an amount of 30 to 95% by volume.
  • Aspect 4 of the present invention An alumina sintered body containing a transparent alumina sintered portion.
  • the alumina sintered part is The transmittance in the visible light region is 50% or more, It is an alumina sintered body in which the number of single crystal structures per unit area is 0.2 pieces / mm 2 or more and 25 pieces / mm 2 or less.
  • a method for producing an alumina sintered body including a transparent alumina sintered portion that can be used as a transparent member, and an alumina sintered body obtained by the manufacturing method can be obtained.
  • FIG. 1 is a schematic view showing an example of alumina powder according to the first embodiment.
  • FIG. 2 is a schematic view showing another example of the alumina powder according to the first embodiment.
  • FIG. 3 is an example of the particle size distribution curve of the alumina particles.
  • 4A to 4D are schematic cross-sectional views showing a method for producing the alumina sintered body according to the first embodiment.
  • 5A to 5C are schematic cross-sectional views showing a method for producing the alumina sintered body according to the second embodiment.
  • FIG. 6A is a schematic view from the upper surface side of the alumina sintered body according to the third embodiment, and
  • FIG. 6B is an enlarged schematic view of a transparent alumina sintered portion contained in the alumina sintered body of FIG. 6A.
  • FIG. 7 is a particle size distribution curve in which the particle sizes of the alumina particles prepared in Examples and Comparative Examples are plotted with the vertical axis representing the frequency and the horizontal axis representing the particle size.
  • FIG. 8 is a particle size distribution curve in which the particle sizes of the alumina particles prepared in Examples and Comparative Examples are plotted with the cumulative distribution on a volume basis on the vertical axis and the particle size on the horizontal axis.
  • FIG. 9 is a graph of pore radius-cumulative pore volume for alumina article samples prepared in Examples and Comparative Examples.
  • FIG. 10 is a transmission spectrum of the alumina sintered body produced in Examples and Comparative Examples.
  • FIG. 11A is an optical micrograph from the upper surface of the alumina sintered body produced in Example 1
  • FIG. 11B is a view in which the grain boundaries of the single crystal structure are entered in the optical micrograph of FIG. 11A
  • FIG. 12A is an optical micrograph from the upper surface of the alumina sintered body produced in Example 2
  • FIG. 12B is a view in which the grain boundaries of the single crystal structure are entered in the optical micrograph of FIG. 12A.
  • the method for producing an alumina sintered body according to the present embodiment is to produce an alumina sintered body containing a transparent alumina sintered portion by sintering a molded body (alumina article) formed from alumina powder by laser irradiation. And includes the following steps 1 to 3. [Step 1] Alumina powder containing particles having different particle sizes is molded to produce an alumina article [Step 2] A carbon powder-containing layer is formed on the surface of the obtained alumina article to contain the alumina article and the carbon powder.
  • Step 3 Irradiating the surface of the carbon powder-containing layer of the laminate with a laser and sintering it to prepare an alumina sintered body containing a transparent alumina sintered portion.
  • the method for producing the transparent alumina sintered body according to the first embodiment will be described with reference to FIGS. 1 to 4.
  • Step 1 Preparation of Alumina Article 21
  • alumina powder containing particles having different particle diameters is molded to produce a molded product (alumina article 21).
  • alumina powder as shown in FIGS. 1 and 2, alumina particles having a particle size of 0.1 ⁇ m or more and less than 1 ⁇ m (referred to as “small particle size alumina particles 11” in the present specification) and an alumina powder having a particle size of 1 ⁇ m or more and 100 ⁇ m or more are used.
  • small particle size alumina particles 11 alumina particles having a particle size of 1 ⁇ m or more and 100 ⁇ m or more
  • Those containing less than alumina particles referred to herein as "large particle size alumina particles 12" are used.
  • the alumina powder suitable for the alumina article can be roughly classified into two.
  • the first alumina powder 100 shown in FIG. 1 is an alumina powder obtained by diffusing and mixing the alumina particles 11 having a small particle size and the alumina particles 12 having a large particle size.
  • the second alumina powder 10 shown in FIG. 2 is an alumina powder obtained by jet mill mixing the alumina particles 11 having a small particle size and the alumina particles 12 having a large particle size.
  • the second alumina powder 10 is mainly composed of alumina composite particles 13 in which the alumina particles 11 having a small particle size are bonded to the surface of the alumina particles 12 having a large particle size.
  • the first alumina powder 100 and the second alumina powder 10 will be described in order.
  • the first alumina powder 100 shown in FIG. 1 is obtained by diffusing and mixing a small particle size alumina particle 11 and a large particle size alumina particle 12 by, for example, a mixer (double cone blender) or the like.
  • a mixer double cone blender
  • the small particle size alumina particles 11 and the large particle size alumina particles 12 are separated from each other or are in contact with each other but are not in a bonded state.
  • the second alumina powder 10 shown in FIG. 2 is produced by mixing two types of alumina particles having different particle sizes while pulverizing them with a jet mill (this is referred to as “jet mill mixing”).
  • jet mill mixing composite particles (referred to as "alumina composite particles 13" in the present specification) in which the small particle size alumina particles 11 are bonded to the surface of the large particle size alumina particles 12 with sufficient strength are formed. It is formed. That is, the second alumina powder 10 is an aggregate of a plurality of alumina composite particles 13 including the small particle size alumina particles 11 and the large particle size alumina particles 12. Details of the method for preparing the second alumina powder 10 will be described later.
  • bonding with sufficient strength means that, in a normal operation (for example, filling a mold for pressure molding, etc.), small-sized alumina particles fall off from large-sized alumina particles. Intended not to.
  • the alumina composite particles 13 are dispersed in an aqueous solution and ultrasonic vibration is applied for 5 minutes or more at an ultrasonic intensity of 40 W, in many alumina composite particles 13, the small particle size alumina particles 11 are large. It falls off from the surface of the alumina particles 12 having a diameter.
  • the alumina composite 13 by ultrasonic vibration.
  • the particle size, content, and the like after separation into the small particle size alumina particles 11 and the large particle size alumina particles 12 are described.
  • the alumina powder (first alumina powder 100 and second alumina powder 10) containing the small particle size alumina particles 11 and the large particle size alumina particles 12 has good moldability in pressure molding and is irradiated with a laser. Sinterability by sintering (referred to as “formability” and “sinterability” in the present specification, respectively) is very good, and a dense and transparent sintered portion can be formed after sintering. It has a remarkable feature.
  • a second alumina powder 10 containing the alumina composite particles 13 is used.
  • the second alumina powder 10 is excellent in moldability and sinterability, and can form a sintered portion having particularly high transparency.
  • the moldability and the sinterability are good, but the sintered portion becomes opaque.
  • the moldability is extremely poor and an alumina article cannot be molded.
  • the small particle size alumina particles 11 had a particle size of 0.1 ⁇ m or more and less than 1 ⁇ m, and the large particle size alumina particles 12 Is preferably 1 ⁇ m or more and less than 100 ⁇ m.
  • the particle size of the small particle size alumina particles 11 is more preferably 0.3 ⁇ m or more and less than 0.8 ⁇ m, and particularly preferably 0.4 ⁇ m or more and less than 0.7 ⁇ m.
  • the particle size of the large particle size alumina particles 12 is more preferably 3 ⁇ m or more and less than 50 ⁇ m, and particularly preferably 10 ⁇ m or more and less than 25 ⁇ m.
  • the first alumina powder 100 and the second alumina powder 10 contain appropriate amounts of each of the small particle size alumina particles 11 and the large particle size alumina particles 12.
  • the present inventors consider that when the alumina sintered body 40 is manufactured by laser sintering, the permeability of the alumina sintered portion 41 is improved by the presence of the alumina particles 12 having a large particle size, and the alumina powder is large. It is presumed that the alumina sintered body 40 having the transparent alumina sintered portion 41 can be formed by including the alumina particles 11 having a particle size.
  • the alumina particles 12 having a large particle size have poor moldability, the alumina article 21 cannot be produced only by the alumina particles 12 having a large particle size.
  • the moldability is improved and the alumina article 21 can be produced. That is, the large particle size alumina particles 12 have a function of enabling the formation of the transparent alumina sintered portion 41, and the small particle size alumina particles 11 have a function of improving the moldability of the alumina powder.
  • the content of the small particle size alumina particles 11 is 5 to 70% by volume, and the content of the large particle size alumina particles 12 is 30 to 95% by volume. Is preferable.
  • the content of the small particle size alumina particles 11 is more preferably 8 to 60% by volume, and particularly preferably 10 to 50% by volume.
  • the content of the large particle size alumina particles 12 is more preferably 40 to 92% by volume, and particularly preferably 50 to 90% by volume.
  • the first alumina powder 100 may be composed of only the alumina particles 11 having a small particle size and the alumina particles 12 having a large particle size, and in addition to these, other alumina particles (for example, alumina having a particle size of 100 ⁇ m or more) may be formed. Particles and / or alumina particles having a particle size of less than 0.1 ⁇ m) may be contained as long as the effects of the embodiments of the present invention are not impaired. Further, the second alumina powder 10 may be composed of only the alumina composite particles 13 containing only the small particle size alumina particles 11 and the large particle size alumina particles 12, and in addition to the alumina composite particles 13, the small particles may be formed.
  • alumina particles 11 having a diameter and / or alumina particles 12 having a large particle size particles that are not bonded to each other and remain in a single state.
  • other alumina particles for example, alumina particles having a particle size of 100 ⁇ m or more, and / or the particle size.
  • Alumina particles smaller than 0.1 ⁇ m may be contained as long as the effects of the embodiments of the present invention are not impaired.
  • the particle size and content of the small particle size alumina particles 11 and the large particle size alumina particles 12 contained in the first alumina powder 100 are determined by adding the first alumina powder 100 in a solution. The particle size is measured by the laser diffraction dispersion method.
  • the particle size and content of the small particle size alumina particles 11 and the large particle size alumina particles 12 contained in the second alumina powder 10 are small particles due to the ultrasonic vibration. After separating the alumina particles 11 having a diameter and the alumina particles 12 having a large particle size, the measurement is performed by a laser diffraction dispersion method.
  • the second alumina powder 10 is dispersed in an aqueous solution, and ultrasonic vibration is applied at a vibration intensity of 40 W for 5 minutes or more.
  • a vibration intensity of 40 W for 5 minutes or more As a result, almost all of the alumina composite particles 13 can be separated into the large particle size alumina particles 12 and the small particle size alumina particles 11.
  • the particle size of the large particle size alumina particles 12 and the small particle size alumina particles 11 dispersed in the solution is measured by a laser diffraction dispersion method.
  • a particle size distribution curve (for example, FIG. 3) is created by plotting the vertical axis as the frequency and the horizontal axis as the particle size.
  • the peak position in the range of less than 1 ⁇ m is defined as the particle size of the small particle size alumina particles 11
  • the peak position in the range of 1 ⁇ m or more is defined as the particle size of the large particle size alumina particles 12.
  • the contents of the small particle size alumina particles 11 and the large particle size alumina particles 12 can be obtained from another particle size distribution curve.
  • a particle size distribution curve (for example, FIG. 3) is created by plotting the vertical axis as the volume-based cumulative distribution and the horizontal axis as the particle size.
  • (cumulative distribution value of particle size 1 ⁇ m)-(cumulative distribution value of particle size 0.1 ⁇ m) is defined as the content of small particle size
  • Cumulative distribution value of is the content of large particle size.
  • the second alumina powder 10 has a specific surface area of 1.5 m 2 / g or more and less than 15 m 2 / g, and a first alumina particle having a specific surface area of 0.01 m 2 / g or more and less than 1.5 m 2 / g. It can be produced by a method including a step of mixing the alumina particles of 2 while crushing them. As such a method, a method including a step (mixing step) of mixing the first alumina particles and the second alumina particles by a jet mill can be mentioned. An example of the mixing process will be described below.
  • the first alumina particles with a specific surface area of 1.5 m 2 / g or more and the second alumina particles with a specific surface area of less than 1.5 m 2 / g are prepared.
  • the first alumina particles, the ratio preferably less than 1.5 m 2 / g or more 15 m 2 / g surface area, 2m 2 / g or more 10m less than 2 / g is more preferable.
  • the second alumina particles has a specific surface area of preferably less than 0.01 m 2 / g or more 1.5 m 2 / g, 0.03 m below 2 / g or more 1.0 m 2 / g is more preferable.
  • the prepared first alumina particles and the second alumina particles are put into a bag, sealed, and the bag is shaken to premix the first alumina particles and the second alumina particles. Get the mixture.
  • the mixing ratio of the first alumina particles and the second alumina particles to be put into the bag is preferably 20:80 to 80:20, more preferably 30:70 to 70:30 in terms of mass ratio. ..
  • the second alumina powder 10 is obtained.
  • the first alumina particles and the second alumina particles collide with each other during the mixing.
  • the first alumina particles are crushed to become “small particle size alumina particles 11" in the second alumina powder 10
  • the second alumina particles are crushed to become the second alumina powder 10.
  • the small particle size alumina particles 11 are strongly bonded to the surface of the large particle size alumina particles 12.
  • alumina particles in addition to the first alumina particles and the second alumina particles, other alumina particles (for example, alumina particles having a particle size of 100 ⁇ m or more and / or alumina particles having a particle size of less than 0.1 ⁇ m). May include.
  • the other alumina particles (referred to as "third alumina particles") are preferably mixed with the first alumina particles and the second alumina particles by a jet mill.
  • the third alumina particles are prepared.
  • the second alumina powder 10 can be obtained by mixing the obtained mixture with a jet mill.
  • the first alumina powder 100 or the second alumina powder 10 is molded to obtain the alumina article 21.
  • the first alumina powder 100 or the second alumina powder 10 is put into the molding die 60, and the pressure jig 61 is pressed in the direction of arrow F for pressure molding. ..
  • the alumina article 21 having a predetermined shape is obtained.
  • the alumina article 21 preferably has a total pore volume of 0.20 mL / g or less, and a cumulative pore volume of pores having a pore diameter of 4 ⁇ m or more is less than 10% of the total pore volume.
  • a more dense transparent alumina sintered portion can be formed.
  • Such an alumina article 21 can be obtained by pressure molding the first alumina powder 100 or the second alumina 10 at a pressure of 10 MPa to 30 MPa.
  • the cumulative pore volume of the pores having a pore diameter of 1 ⁇ m or more in the alumina article 21 is less than 10% of the total pore volume, and an extremely dense transparent alumina sintered portion can be formed.
  • Such an alumina article 21 can be produced by using the second alumina powder 10 produced by jet mill mixing.
  • the pore volume and pore radius are measured by the mercury intrusion method (JIS R 1655: 2003).
  • the cumulative amount of mercury invading the pores is measured while increasing the pressure applied to the mercury.
  • the pressure is converted into the pore radius and the cumulative penetration amount is converted into the cumulative pore volume.
  • the cumulative pore volume is plotted for the range of the pore radius from 100 ⁇ m to 0.0018 ⁇ m to create a graph. From this graph, the total pore volume, the cumulative pore volume at a predetermined pore radius, and the like are read.
  • total pore volume of pores having a pore radius of 0.0018 ⁇ m or more (sometimes simply referred to as “total pore volume”) is the total volume of pores having a pore radius of 0.0018 ⁇ m or more. On the graph, it corresponds to the cumulative pore volume at a pore radius of 0.0018 ⁇ m.
  • the "cumulative pore volume of pores having a pore radius of 4 ⁇ m or more" (sometimes simply referred to as “cumulative pore volume of 4 ⁇ m or more”) is the total volume of pores having a pore radius of 4 ⁇ m or more. Yes, on the graph, it corresponds to the cumulative pore volume at a pore radius of 4 ⁇ m.
  • Step 2 Preparation of Laminate 20
  • a carbon powder-containing layer 22 is formed on the surface 21a of the alumina article 21.
  • the laminate 20 in which the alumina article 21 and the carbon powder-containing layer 22 are laminated is obtained.
  • the carbon powder contained in the carbon powder-containing layer 22 absorbs the laser to be irradiated in the next [step 3] and generates heat, so that the alumina article 21 under the carbon powder-containing layer 22 is sintered.
  • a spray is used using only carbon powder, a composition containing carbon powder and a binder, or a composition containing carbon powder and an organic solvent.
  • a spraying method such as, a printing method such as screen printing, a doctor blade method, a spin coating method, and a coating method such as a curtain coater method.
  • the carbon powder-containing layer 22 may be formed on the entire surface of the surface 21a of the alumina article 21, or may be partially formed only at a predetermined position on the surface 21a.
  • the content ratio of the carbon powder contained in the carbon powder-containing layer 22 is preferably 50% by mass or more, more preferably 80% by mass or more, from the viewpoint of enhancing the absorption capacity of the laser.
  • the thickness of the carbon powder-containing layer 22 is preferably 5 nm to 30 ⁇ m, more preferably 100 nm to 10 ⁇ m from the viewpoint of enhancing the absorption capacity of the laser.
  • Step 3 Preparation of Alumina Sintered Body 40
  • the surface 22a of the carbon powder-containing layer 22 of the laminate 20 is irradiated with a laser to prepare an alumina sintered body 40 including a transparent alumina sintered body 41.
  • the “alumina sintered body 40” means a transparent alumina sintered body 41 including at least a part thereof. Therefore, the alumina sintered body 40 may partially include an opaque non-sintered portion 42, and may further include an opaque alumina sintered portion (not shown).
  • the alumina sintered body 40 preferably comprises only the transparent alumina sintered portion 41.
  • the carbon powder in the carbon powder-containing layer 22 is irradiated at the laser-irradiated irradiation position 31E. Absorbs the energy of the laser. As a result, the carbon powder-containing layer 22 existing at the irradiation position 31E generates heat and disappears instantly.
  • the portion 31P existing in the region directly below the irradiation position 31E (referred to as the “direct region 31R”) is 800 ° C. or higher (estimated temperature). Preheated to.
  • the alumina powder in the portion 21P is sintered to form the alumina sintered portion 41 (FIG. 4D).
  • the alumina sintered portion 41 can be locally formed only at a desired position (part 21P) of the alumina article 21.
  • the portion that is not sintered becomes the non-sintered portion 42.
  • the non-sintered portion 42 may be removed if necessary, and further laser irradiation may be performed to sinter the non-sintered portion 42 to enlarge the alumina sintered portion 41.
  • the alumina article 21 is formed by using an alumina powder (first alumina powder 100 or second alumina powder 10) containing alumina particles 11 having a small particle size and alumina particles 12 having a large particle size. Therefore, when laser irradiation is performed, the first alumina powder 100 or the second alumina powder 10 containing the alumina particles 12 can be densely sintered to form a transparent alumina sintered portion 41.
  • the non-sintered portion 42 is opaque.
  • transparent means that the transmittance of visible light is 50% or more
  • “semi-transparent” means that the transmittance of visible light is 10% or more and less than 50%.
  • opaque means that the transmittance of visible light is less than 10%.
  • the "visible light” means light having a wavelength in the visible light region
  • the “visible light region” means a wavelength region having a wavelength of 360 to 830 nm.
  • the transparent alumina sintered portion 41 formed in the embodiment of the present invention has anisotropy in the internal structure (mainly the grain boundary orientation of the crystal grains) depending on the irradiation direction of the laser. Due to the anisotropy of its internal structure, the transmittance of visible light may be anisotropy. In that case, “transparent”, “semi-transparent”, and “opaque” are determined based on the transmittance of visible light in the direction showing the highest transmittance.
  • the laser 31 may irradiate only a part (predetermined position) of the surface 22a of the carbon powder-containing layer 22, or may irradiate the entire surface 22a of the carbon powder-containing layer 22. ..
  • a method of irradiating the entire surface of the surface 22a with the laser 31 a method of simultaneously irradiating the entire surface using the laser 31 having a large spot diameter (simultaneous irradiation) and a method of relatively moving the irradiation position of the laser 31 having a small spot diameter.
  • scanning irradiation for example, a method of scanning the laser with the laminate 20 fixed, a method of irradiating while changing the optical path of the laser through a light diffusing lens, or a method of fixing the optical path of the laser and the laminate.
  • a method of irradiating a laser while moving 20 can be mentioned.
  • the type of laser used is not particularly limited, but from the viewpoint of enhancing the absorption capacity of the laser, it is preferable to use a laser in a wavelength range (500 nm to 11 ⁇ m) having a high absorption rate by carbon powder.
  • a laser in a wavelength range (500 nm to 11 ⁇ m) having a high absorption rate by carbon powder.
  • Nd YAG laser
  • Nd YVO laser
  • Nd YLF laser
  • titanium sapphire laser titanium sapphire laser
  • carbon dioxide gas laser and the like can be used.
  • the laser irradiation conditions are appropriately selected depending on the sintering area, sintering depth, and the like.
  • Laser output from the viewpoint of advancing properly sintering, preferably 50 ⁇ 2000W / cm 2, more preferably 100 ⁇ 500W / cm 2.
  • the irradiation time is preferably 1 second to 60 minutes, more preferably 5 seconds to 30 minutes.
  • the atmosphere when irradiating the carbon powder-containing layer 22 with the laser is not particularly limited, but may be, for example, air, nitrogen, argon, helium, or the like. Further, the alumina article 21 and / or the carbon powder-containing layer 22 may be preheated before irradiating the laser.
  • the preheating temperature is preferably 300 ° C. or higher, more preferably 400 ° C. or higher, and the upper limit of the preheating temperature is usually 200 ° C. or higher lower than the melting point of the ceramics for sintering.
  • Preheating can be performed by, for example, an infrared lamp, a halogen lamp, resistance heating, high frequency induction heating, microwave heating, or the like.
  • the entire surface of the carbon powder-containing layer 14 in the laminate 20 is irradiated with the laser
  • the entire surface of the carbon powder-containing layer 14 on the base side of the laser-irradiated portion can be the sintered portion 16.
  • a method of irradiating while scanning a laser with the laminate 10 fixed or changing the optical path through a light diffusing lens, or while moving the laminate 10. A method of irradiating a laser with a fixed optical path can be applied.
  • ⁇ Embodiment 2 Manufacturing Method of Transparent Alumina Sintered Body 40>
  • 5A to 5C are schematic cross-sectional views for explaining a method for manufacturing the transparent alumina sintered body 40 according to the second embodiment.
  • the second embodiment is different from the first embodiment in that the alumina article 21 is formed on the base material 23, but is the same as the first embodiment in other respects.
  • the points different from those of the first embodiment will be mainly described.
  • a first alumina powder 100 or a second alumina powder 10 containing particles having different particle sizes is formed on the base material 23 to form the base material 23.
  • a molded product (alumina article 21) is prepared on the top.
  • the base material 23 is preferably made of at least one selected from metals, alloys and ceramics. Examples of the method for forming the alumina article 21 on the base material 23 include a thermal spraying method, an electron beam physical vapor deposition method, a laser chemical vapor deposition method, a cold spray method, ceramic particles for sintering, a dispersion medium, and a polymer used as needed.
  • It can be formed by a conventionally known method such as a method in which a slurry containing a binder is applied, dried, and further degreased.
  • the base material 23 and the alumina article 21 may be joined, or the alumina article 21 may be placed on the base material 23 without being joined.
  • Step 2 Preparation of Laminate 20 As shown in FIG. 5B, a carbon powder-containing layer 22 is formed on the surface 21a of the alumina article 21. As a result, a laminate 200 in which the base material 23, the alumina article 21, and the carbon powder-containing layer 22 are laminated is obtained.
  • Step 3 Preparation of Alumina Sintered Body 40
  • the surface 22a of the carbon powder-containing layer 22 of the laminate 200 is irradiated with a laser to form a transparent alumina sintered portion 41 in the alumina article 21.
  • the alumina sintered body 40 including the transparent alumina sintered portion 41 and the non-sintered portion 42 is formed on the base material 23.
  • FIG. 6A is a schematic view from the upper surface side for explaining the alumina sintered body 40 according to the third embodiment.
  • the alumina sintered body 40 includes a transparent alumina sintered portion 41. Further, the alumina sintered body 40 may include an opaque non-sintered portion 42.
  • the alumina sintered body 40 shown in FIG. 6A includes an alumina sintered portion 41 and a non-sintered portion 42 surrounding the alumina sintered portion 41.
  • the surface 21a of the alumina article 21 in the first embodiment (FIG. 4C) and the second embodiment (FIG. 5B) becomes the upper surface 40a of the alumina sintered body 40 after sintering.
  • the upper surface 40a of the alumina sintered body 40 includes the surface 41a of the transparent alumina sintered portion 41 and the surface 42a of the non-sintered portion 42.
  • FIG. 6B is an enlarged schematic view of the alumina sintered portion 41 of the alumina sintered body 40 shown in FIG. 6A.
  • the alumina sintered portion 41 is transparent, and when observed from the upper surface 41a, it can be visually recognized that the alumina sintered portion 41 is composed of a plurality of single crystal-like structures 410.
  • the "single crystal structure 410" is a crystal particle surrounded by a grain boundary 410b. Within one single crystal structure 410 (that is, within one crystal particle), the crystal orientations are aligned. Each single crystal structure 410 can be regarded as a small single crystal.
  • the individual single crystal structure 410 has high transparency.
  • the alumina sintered portion 41 becomes transparent (the transmittance of visible light is 50% or more). Therefore, the alumina sintered portion 41 can be used as a transparent window material or as a transparent covering material by forming the alumina sintered portion 41 on the surface of another member. The method of measuring the transmittance of the alumina sintered portion 41 will be described later. As shown in FIG. 5C, when the alumina sintered body 40 is manufactured on the base material 23, the transmittance of the transparent alumina sintered portion 41 is measured after the base material 23 is removed.
  • the grain boundaries 410b contained in the alumina sintered portion 41 have an effect of scattering light. Therefore, the smaller the number of grain boundaries 410b, the higher the transmittance of the alumina sintered portion 41 in the visible light region.
  • the number of the single crystal structure 410 contained in the alumina sintered portion 41 per unit area is 0. 2 pieces / mm 2 or more and 25 pieces / mm less than 2 . Since the grain boundaries 410b surround the single crystal structure 410, as the number of single crystal structures 410 per unit area decreases, the number of grain boundaries per unit area also decreases. Therefore, by limiting the number of the single crystal structure 410 to less than 25 pieces / mm 2 , the transmittance of the alumina sintered portion 41 can be improved.
  • the interface in the alumina sintered portion 41 cannot be completely eliminated.
  • the number of single crystal structure 410 contained in the alumina sintered portion 41 per unit area is 0.2 pieces / mm 2 from a practical point of view. That's all. Therefore, the transmittance of the alumina sintered portion 41 is usually lower than that of transparent alumina which contains almost no grain boundary 410b like single crystal alumina produced by the Czochralski method or the like.
  • the number of single crystal structure 410 contained in the alumina sintered portion 41 per unit area is determined as follows. In the optical micrograph, a square region having a side of 3 mm is defined at an arbitrary position of the alumina sintered portion 41, and the number (N) of the single crystal structure 410 in the region is counted. The number of (N), by dividing a square area (9 mm 2), calculates the number of single-crystal-like structure 410 per unit area (pieces / mm 2). When defining a square region, it is necessary to define so that the non-sintered portion 42 is not included in the region.
  • the number N is counted in a square area with a side of 3 mm, but when the area of the alumina sintered portion 41 is small and a square area with a side of 3 mm cannot be defined, an exceptional case is a square with a side of 2 mm. It can also be made by narrowing the area of the region, such as a rectangular region of 3 mm ⁇ 2 mm.
  • the grain boundaries 410b tend to line up along the laser irradiation direction. That is, as shown in FIGS. 4C and 5B, when laser irradiation is performed vertically downward from the surface 21a of the alumina article 21 (in FIG. 4C and FIG. 5B, the thickness direction of the alumina article 21), most of the grain boundaries 410b are also generated.
  • the inside of the alumina sintered portion 41 tends to occur vertically downward from the upper surface 41a (in the thickness direction of the alumina sintered portion 41). Therefore, the transmittance of the alumina sintered portion 41 tends to show a high transmittance when measured in the same direction as the laser irradiation direction during manufacturing.
  • the laser irradiation direction at the time of sintering can be estimated from the direction of the grain boundary 410b.
  • the direction of the grain boundary 410b can be confirmed by observing the upper surface, cross section, or fracture surface of the alumina sintered portion 41.
  • the transmittance of the alumina sintered portion 41 can be measured using an absorption spectroscope having a variable wavelength or the like.
  • an absorption spectroscope having a variable wavelength or the like.
  • an ultraviolet-visible absorption spectroscope capable of measuring the absorbance of a solid in the wavelength range from ultraviolet rays to infrared rays is suitable.
  • the transmittance varies depending on the measurement wavelength.
  • the transmittance may vary depending on the direction of the light incident on the alumina sintered portion 41 even if the wavelength is the same for the following reasons.
  • the transmittance measurement of the alumina sintered portion 41 if the grain boundary 410b is on the passage path of the light for measurement, the light is scattered and the transmittance is lowered. On the other hand, if the number of grain boundaries 410b existing on the passage path of the light for measurement is small, the light is not scattered by the grain boundaries 410b and the transmittance increases. As described above, in the case of the alumina sintered body 40 manufactured by laser sintering, the grain boundaries 410b in the alumina sintered portion 41 tend to be aligned in the laser irradiation direction. As described above, since the alumina sintered portion 41 is anisotropic in the direction in which the grain boundaries 410b exist, it is considered that the transmittance is also anisotropic.
  • the transmittance of the visible light region of 50% or more means that the visible light region (wavelength range of 360 to 830 nm) when the transmittance is measured from the measurement direction showing the highest transmittance (maximum transmittance). ) Means that the transmittance is 50% or more. Therefore, when the transmittance is measured from different measurement directions using the alumina sintered portion 41 having a transmittance (maximum transmittance) of 50% or more, the transmittance in the measurement direction is lower than the maximum transmittance (for example, less than 50%). There is a possibility of becoming.
  • the alumina sintered body 40 of the third embodiment is expected to be used as a translucent member because the alumina sintered portion 41 is transparent. Further, since the alumina sintering portion 41 has a grain boundary 410b peculiar to laser sintering, there is a possibility that anisotropy may occur in the transmittance. Therefore, the visibility from a specific direction is high, and the visibility from other directions may be low, and it is expected to be used as a protective film for a liquid crystal screen or the like. Further, when the alumina sintered body 40 is formed on the surface of another member, tensile stress or compressive stress may be applied to the alumina sintered body 40 due to the difference in the coefficient of thermal expansion between the alumina sintered body 40 and the separate member.
  • tensile stress or compressive stress may be applied to the inside of the alumina sintered body 40 when it is rapidly heated or rapidly cooled. Even in such a case, it is expected that the grain boundaries 410b existing in the alumina sintered portion 41 can alleviate those stresses and suppress damage to the alumina sintered body 40.
  • Alumina Powder Sample The following are the conditions for producing the alumina powder sample used in Examples 1 and 2 and Comparative Example 1, the molding conditions for the alumina article produced by pressure molding the alumina powder sample, and the alumina article.
  • the sintering conditions in laser sintering will be described.
  • Table 1 shows the blending ratios of the first alumina particles, the second alumina particles, and the third alumina particles used for preparing the alumina powder samples of Examples 1 and 2 and Comparative Example 1. In the column of each alumina particle in Table 1, "-" means that the alumina particle was not blended.
  • Example 1 High-purity aluminum hydroxide obtained by the hydrolysis method of aluminum alkoxide is mixed with ⁇ -alumina particles having an average particle size of 0.25 ⁇ m and fired in a hydrogen chloride atmosphere to have a specific surface area of 4.8 m 2 /. The first alumina particles of g were obtained. High-purity aluminum hydroxide obtained by the hydrolysis method of aluminum alkoxide was calcined in a hydrogen chloride atmosphere to obtain second alumina particles having a specific surface area of 0.2 m 2 / g. The first alumina particles and the second alumina particles were mixed at a mass ratio of 30:70 and put into a vinyl bag. After sealing the vinyl bag, the particles were vigorously shaken up and down to diffuse and mix. Then, the alumina powder sample of Example 1 was prepared by mixing while crushing with a jet mill crusher (horizontal jet mill crusher PJM-280SP manufactured by Nippon Pneumatic Industries Co., Ltd.).
  • a jet mill crusher horizontal jet mill crusher PJM-
  • alumina powder sample 300 mg is taken, loaded into a die for pellet molding (cylindrical shape with an inner diameter of 10 mm), and pressed at 10 MPa for 30 seconds with a uniaxial press to obtain alumina pellets for sintering (alumina article sample). It was.
  • An aerosol dry graphite film forming lubricant "DGF Spray” (trade name) manufactured by Nippon Ship Tool Co., Ltd. was sprayed on the surface of the alumina article sample for about 1 second. Then, this was left for 30 seconds to obtain a laminated sample having a carbon powder-containing layer having a thickness of about 5 ⁇ m.
  • the surface of the carbon powder-containing layer of the laminated sample was irradiated with a laser having a wavelength of 1064 nm and an output of 500 W for 1 minute.
  • the beam diameter on the surface of the carbon powder-containing layer was set to 10 mm, and the position of the laser was adjusted so that the entire alumina article sample (diameter 10 mm) could be laser sintered.
  • the entire alumina article sample was sintered to obtain an alumina sintered body sample containing no non-sintered portion (that is, the entire alumina sintered portion was formed).
  • Example 2 High-purity aluminum hydroxide obtained by the hydrolysis method of aluminum alkoxide is mixed with ⁇ -alumina seed particles having an average particle size of 0.25 ⁇ m and calcined in a hydrogen chloride atmosphere to have a specific surface area of 0.5 m 2. A third alumina particle of / g was obtained.
  • Example 2 was obtained in the same manner as in Example 1 except that the third alumina particles were used instead of the first alumina particles in Example 1.
  • Comparative Example 1 Same as in Example 1 except that only the first alumina particles were pulverized with a jet mill crusher (horizontal jet mill crusher PJM-380SP manufactured by Nippon Pneumatic Industries Co., Ltd.) to prepare an alumina powder sample. Comparative Example 1 was obtained.
  • a jet mill crusher horizontal jet mill crusher PJM-380SP manufactured by Nippon Pneumatic Industries Co., Ltd.
  • the alumina powder samples of Examples 1 and 2 contained alumina composite particles 13 (particles in which small particle size alumina particles 11 and large particle size alumina particles 12 were bonded).
  • the alumina composite particles 13 were not separated even when the dispersion liquid was added, but were separated into small particle size alumina particles 11 and large particle size alumina particles 12 by ultrasonic dispersion.
  • the alumina powder sample of Comparative Example 1 consisted of only the alumina particles 11 having a small particle size. Since the particles were only in contact with each other, they were easily separated when the dispersion was added.
  • FIG. 7 is a particle size distribution curve obtained by the laser diffraction method, with the vertical axis representing the frequency and the horizontal axis representing the particle size.
  • the peak position in the range of less than 1 ⁇ m is the particle size of the small alumina particles 11 (peak particle size), and the peak position in the range of 1 ⁇ m or more is the particle size of the large particle alumina particles 12. (Peak particle size).
  • the particle size distribution curve shown in FIG. 8 is a particle size distribution curve obtained by a laser diffraction method, with the vertical axis representing the cumulative distribution on a volume basis and the horizontal axis representing the particle size. In the particle size distribution curve of FIG.
  • (cumulative distribution value of particle size 1 ⁇ m)-(cumulative distribution value of particle size 0.1 ⁇ m) is defined as the content (volume%) of the small particle size alumina particles 11 and (particle size 100 ⁇ m).
  • (Cumulative distribution value of 1 ⁇ m)-(cumulative distribution value of particle size 1 ⁇ m) was defined as the content (% by volume) of the large particle size alumina particles 12.
  • Table 2 shows the peak particle size and content of the small particle size alumina particles 11 and the peak particle size and content of the large particle size alumina particles 12 for each of the alumina powder samples of Examples 1, 2 and Comparative Example 1. Is shown in Table 2.
  • the graph of Comparative Example 1 did not have a peak in the range of 1 ⁇ m or more. Therefore, in the column of "peak particle size" of the large particle size alumina particles 12 in Table 2, "-" is indicated to indicate that no peak was confirmed.
  • the peak base of the small alumina particles 11 of Comparative Example 1 extended beyond the particle size of 1 ⁇ m.
  • alumina article sample was dried at 120 ° C. for 4 hours, and then measured by a mercury intrusion method (JIS R 1655: 2003) using Autopore IV9520 (manufactured by micromerits). Measurements were performed with a pore radius in the range of 100 ⁇ m to 0.0018 ⁇ m. Based on the measurement results, a graph was plotted with the horizontal axis representing the pore radius and the vertical axis representing the cumulative pore volume (see FIG. 9).
  • the cumulative pore volume (cumulative pore volume of pores having a pore radius of 4 ⁇ m or more) at a pore radius of 4 ⁇ m was defined as “cumulative pore volume (A) of 4 ⁇ m or more”.
  • the cumulative pore volume at 0.0018 ⁇ m (total pore volume of pores having a pore radius of 0.0018 ⁇ m or more) was defined as “total pore volume (B)”.
  • the measurement results of (A / B ⁇ 100) are shown in Table 3.
  • FIG. 11A is an optical micrograph of the alumina sintered body sample prepared in Example 1.
  • the entire alumina sintered body was a transparent alumina sintered portion.
  • FIG. 11B a square region having a side of 3 mm was defined at an arbitrary position of the alumina sintered portion, and grain boundaries were manually drawn in that region. The grain boundaries can be easily identified by visually observing an optical micrograph (for example, a magnification of 5 to 200 times) with the naked eye.
  • the number (N) of single crystal structures in the square area was counted. Then, the number of (N), divided by the square area (9 mm 2), and calculates the number of single-crystalline structure per unit area (pieces / mm 2).
  • FIG. 12A is an optical micrograph of the alumina sintered body produced in Example 2
  • FIG. 12B is a drawing of grain boundaries within a square region having a side of 3 mm in the optical micrograph of FIG. 12A.
  • N the number of single crystal structures in the square region was counted, and the number of single crystal structures per unit area (pieces / mm 2 ) was calculated.
  • Examples 1 and 2 and Comparative Example 1 will be considered below.
  • alumina powder containing alumina particles 11 having a small particle size and alumina particles 12 having a large particle size was used. Therefore, in the alumina sintered portion of the obtained alumina sintered body, the transmittance in the visible light region of 360 nm to 830 nm was 50% or more. From this, it can be seen that in Examples 1 and 2, a transparent alumina sintered portion was formed.
  • Example 1 since the particle size of the large particle size alumina powder 12 contained in the alumina powder was as large as 18 ⁇ m, the transmittance in the visible light region was 70% or more, and particularly transparent alumina sintered. The part was formed.
  • Comparative Example 1 an alumina powder containing only small-particle size alumina particles 11 was used. Therefore, in the alumina sintered portion of the obtained alumina sintered body, the transmittance in the visible light region was extremely low, and an opaque alumina sintered portion was formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

粒径0.1μm以上1μm未満のアルミナ粒子と、粒径1μm以上100μm未満のアルミナ粒子と、を含むアルミナ粉末を成形して、アルミナ物品を得る工程と、前記アルミナ物品の表面に炭素粉末含有層を形成して積層物を得る工程と、前記積層物の前記炭素粉末含有層の表面にレーザを照射して、透明なアルミナ焼結部を形成する工程と、を含むアルミナ焼結体の製造方法である。

Description

アルミナ焼結体の製造方法およびアルミナ焼結体
 本開示は、アルミナ焼結体の製造方法および当該方法で製造されたアルミナ焼結体に関し、特に、透明なアルミナ焼結部を含むアルミナ焼結体の製造方法および当該方法で製造されたアルミナ焼結体に関する。
 焼結用セラミックスの焼結方法として、未焼結のセラミックス物品の表面に、炭素粉末を含む層を形成し、次いで、炭素粉末含有層の表面にレーザを照射する方法が知られている(例えば、特許文献1)。未焼結のセラミックス物品は、焼結用セラミックス粒子の集合体から形成することができる。
国際公開第2017/135387号
 アルミナ単結晶は透光性を有するため、透明部材として利用されている。アルミナ単結晶の製造方法としては、ベルヌーイ法、チョクラルスキー法等が知られているが、それらの製造方法は、単結晶を得るのに長時間かかり、またチョクラルスキー法では大規模な施設が必要となる。そのため、透光部材を多品種かつ小ロットで製造するのには適していない。特許文献1に記載されたレーザ照射による焼結法を用いると、小規模施設において、短時間でアルミナ部材を製造することができるが、焼結法で得られたアルミナ部材(アルミナ焼結体)は不透明であり、透明なアルミナ焼結体を製造する方法は確立されていない。
 本発明の実施形態は、透明部材として使用可能な透明アルミナ焼結部を含むアルミナ焼結体の製造方法、およびその製造方法で得られたアルミナ焼結体を提供することを目的とする。
 本発明の態様1は、
 粒径0.1μm以上1μm未満のアルミナ粒子と、粒径1μm以上100μm未満のアルミナ粒子と、を含むアルミナ粉末を成形して、アルミナ物品を得る工程と、
 前記アルミナ物品の表面に炭素粉末含有層を形成して積層物を得る工程と、
 前記積層物の前記炭素粉末含有層の表面にレーザを照射して、透明なアルミナ焼結部を形成する工程と、を含むアルミナ焼結体の製造方法である。
 本発明の態様2は、
 前記アルミナ物品の総細孔容積が0.20mL/g以下であり、細孔径4μm以上の細孔の累積細孔容積が総細孔容積の10%未満である、態様1に記載の焼結方法である。
 本発明の態様3は、
 前記アルミナ粉末が、
 粒径1μm以上100μm未満のアルミナ粒子を30~95体積%と、
 粒径0.1μm以上1μm未満のアルミナ粒子を5~70体積%を含む、態様1または2に記載の焼結方法である。
 本発明の態様4は、
 透明なアルミナ焼結部を含むアルミナ焼結体であって、
 当該アルミナ焼結部は、
  可視光領域の透過率が50%以上であり、
  単位面積あたりの単結晶状組織の数が0.2個/mm以上、25個/mm未満である、アルミナ焼結体である。
 本発明の実施形態によれば、透明部材として使用可能な透明アルミナ焼結部を含むアルミナ焼結体の製造方法、およびその製造方法で得られたアルミナ焼結体が得られる。
図1は、実施形態1に係るアルミナ粉末の一例を示す模式図である。 図2は、実施形態1に係るアルミナ粉末の別の例を示す模式図である。 図3は、アルミナ粒子の粒度分布曲線の一例である。 図4A~図4Dは、実施形態1に係るアルミナ焼結体の製造方法を示す概略断面図である。 図5A~図5Cは、実施形態2に係るアルミナ焼結体の製造方法を示す概略断面図である。 図6Aは、実施形態3に係るアルミナ焼結体の上面側からの模式図であり、図6Bは、図6Aのアルミナ焼結体に含まれる透明なアルミナ焼結部を拡大した模式図である。 図7は、実施例および比較例で作成したアルミナ粒子の粒度を、縦軸を頻度、横軸を粒径としてプロットした粒度分布曲線である。 図8は、実施例および比較例で作成したアルミナ粒子の粒度を、縦軸を体積基準の累積分布、横軸を粒径としてプロットした粒度分布曲線である。 図9は、実施例および比較例で作製したアルミナ物品試料についての細孔半径-累積細孔容積のグラフである。 図10は、実施例および比較例で作製したアルミナ焼結体の透過スペクトルである。 図11Aは、実施例1で作製したアルミナ焼結体の上面からの光学顕微鏡写真であり、図11Bは、図11Aの光学顕微鏡写真に単結晶状組織の粒界を記入した図である。 図12Aは、実施例2で作製したアルミナ焼結体の上面からの光学顕微鏡写真であり、図12Bは、図12Aの光学顕微鏡写真に単結晶状組織の粒界を記入した図である。
<実施形態1:アルミナ焼結体の製造方法>
 本実施形態に係るアルミナ焼結体の製造方法は、アルミナ粉末から成形した成形体(アルミナ物品)をレーザ照射により焼結して、透明なアルミナ焼結部を含むアルミナ焼結体を製造するものであり、以下の工程1~3を含む。
[工程1]異なる粒径の粒子を含むアルミナ粉末を成形して、アルミナ物品を作製する
[工程2]得られたアルミナ物品の表面に炭素粉末含有層を形成して、アルミナ物品および炭素粉末含有層が積層された積層物を作製する
[工程3]積層物の炭素粉末含有層の表面にレーザを照射して焼結し、透明なアルミナ焼結部を含むアルミナ焼結体を作製する
 以下、図1~図4を参照しながら、実施形態1に係る透明アルミナ焼結体の製造方法を説明する。
[工程1]アルミナ物品21の作製
 工程1では、異なる粒径の粒子を含むアルミナ粉末を成形して、成形体(アルミナ物品21)を作製する。アルミナ粉末としては、図1、図2に示すように、粒径0.1μm以上1μm未満のアルミナ粒子(本明細書では「小粒径のアルミナ粒子11」と称する)と、粒径1μm以上100μm未満のアルミナ粒子(本明細書では「大粒径のアルミナ粒子12」と称する)とを含むものを使用する。
(第1のアルミナ粉末100、第2のアルミナ粉末10について)
 本実施の形態では、アルミナ物品に好適なアルミナ粉末は、大きく分けて2つ挙げられる。図1に示す第1のアルミナ粉末100は、小粒径のアルミナ粒子11と大粒径のアルミナ粒子12とを拡散混合して得られたアルミナ粉末である。図2に示す第2のアルミナ粉末10は、小粒径のアルミナ粒子11と大粒径のアルミナ粒子12とをジェットミル混合して得られたアルミナ粉末である。第2のアルミナ粉末10は、大粒径のアルミナ粒子12の表面に小粒径のアルミナ粒子11が結合したアルミナ複合粒子13から主として構成されている。
 以下に、第1のアルミナ粉末100と、第2のアルミナ粉末10について順次説明する。
 図1に示す第1のアルミナ粉末100は、小粒径のアルミナ粒子11と大粒径のアルミナ粒子12を、例えば混合機(ダブルコーンブレンダー)等により拡散混合して得られる。第1のアルミナ粉末100では、小粒径のアルミナ粒子11と大粒径のアルミナ粒子12は、互いに分離しているか、または互いに接触しているものの結合状態にはなっていないと推測される。
 図2に示す第2のアルミナ粉末10は、粒径の異なる2種類のアルミナ粒子をジェットミルで粉砕しながら混合(これを「ジェットミル混合」と称する)して製造する。ジェットミル混合を行うと、小粒径のアルミナ粒子11が、大粒径のアルミナ粒子12の表面に十分な強さで結合した複合粒子(本明細書では「アルミナ複合粒子13」と称する)が形成される。つまり、第2のアルミナ粉末10は、小粒径のアルミナ粒子11と大粒径のアルミナ粒子12とを含むアルミナ複合粒子13が複数集まった集合体である。
 第2のアルミナ粉末10の調製方法の詳細については後述する。
 本明細書において「十分な強さで結合」とは、通常の操作(例えば、加圧成形用の金型への充填等)では、大粒径のアルミナ粒子から小粒径のアルミナ粒子は脱落しないことを意図している。なお、アルミナ複合粒子13を水溶液中に分散させて、超音波の強度40Wで、5分以上の超音波振動を付与すると、多くのアルミナ複合粒子13では、小粒径のアルミナ粒子11が大粒径のアルミナ粒子12の表面から脱落する。
 本明細書において、第2のアルミナ粉末10に含まれる小粒径のアルミナ粒子11および大粒径のアルミナ粒子12の粒径、含有量等についての記載は、超音波振動によってアルミナ複合体13を小粒径のアルミナ粒子11および大粒径のアルミナ粒子12に分離した後の、それぞれの粒径、含有量等について述べている。
 小粒径のアルミナ粒子11と大粒径のアルミナ粒子12とを含むアルミナ粉末(第1のアルミナ粉末100および第2のアルミナ粉末10)は、加圧成形での成形性が良好で、レーザ照射による焼結での焼結性(本明細書では、それぞれ「成形性」、「焼結性」と称する)が非常に良好で、かつ焼結後には緻密で透明な焼結部を形成できる、というという顕著な特徴を有する。好ましくは、アルミナ複合粒子13を含む第2のアルミナ粉末10を用いる。第2のアルミナ粉末10は、成形性、焼結性に優れ、透明度が特に高い焼結部を形成できる。なお、小粒径のアルミナ粒子11のみから成るアルミナ粉末の場合、成形性および焼結性は良好なものの、焼結部は不透明になる。一方、大粒径のアルミナ粒子12のみから成るアルミナ粉末の場合、成形性が極めて悪く、アルミナ物品を成形できない。
 小粒径のアルミナ粒子11と大粒径のアルミナ粒子12について粒径を測定したときに、小粒径のアルミナ粒子11は粒径0.1μm以上1μm未満であり、大粒径のアルミナ粒子12は粒径1μm以上100μm未満であることが好ましい。小粒径のアルミナ粒子11の粒径は、0.3μm以上0.8μm未満であることがより好ましく、0.4μm以上0.7μm未満であることが特に好ましい。大粒径のアルミナ粒子12の粒径は、3μm以上50μm未満であることがより好ましく、10μm以上25μm未満であることが特に好ましい。
 第1のアルミナ粉末100および第2のアルミナ粉末10には、小粒径のアルミナ粒子11と大粒径のアルミナ粒子12のそれぞれが、適切な量で含まれていることが望ましい。本発明者らは、レーザ焼結によりアルミナ焼結体40を製造する場合、大粒径のアルミナ粒子12の存在により、アルミナ焼結部41の透過率が向上すると考えており、アルミナ粉末が大粒径のアルミナ粒子11を含むことにより、透明なアルミナ焼結部41を有するアルミナ焼結体40が形成可能になったと推測している。一方、大粒径のアルミナ粒子12は成形性が悪いため、大粒径のアルミナ粒子12のみではアルミナ物品21を作製することができない。大粒径のアルミナ粒子12に小粒径のアルミナ粒子11を加えることにより、成形性が向上し、アルミナ物品21を作製可能になる。すなわち、大粒径のアルミナ粒子12は、透明なアルミナ焼結部41を形成可能にする機能を有し、小粒径のアルミナ粒子11は、アルミナ粉末の成形性を向上する機能を有する。
それらの機能をより効果的に発揮するためには、小粒径のアルミナ粒子11の含有量が5~70体積%、大粒径のアルミナ粒子12の含有量が30~95体積%であることが好ましい。小粒径のアルミナ粒子11の含有量は、8~60体積%であることがより好ましく、10~50体積%であることが特に好ましい。大粒径のアルミナ粒子12の含有量は、40~92体積%であることがより好ましく、50~90体積%であることが特に好ましい。
 なお、第1のアルミナ粉末100は、小粒径のアルミナ粒子11と大粒径のアルミナ粒子12のみから成ってもよく、それらに加えて、他のアルミナ粒子(例えば、粒径100μm以上のアルミナ粒子、および/または粒径0.1μm未満のアルミナ粒子)を、本発明の実施形態の効果を損なわない範囲で、含んでもよい。
 また、第2のアルミナ粉末10は、小粒径のアルミナ粒子11と大粒径のアルミナ粒子12のみを含むアルミナ複合粒子13のみから成ってもよく、当該アルミナ複合粒子13に加えて、小粒径のアルミナ粒子11および/または大粒径のアルミナ粒子12(互いに結合せずに単独の状態のままの粒子)を含んでもよい。さらに、アルミナ複合粒子13と、小粒径のアルミナ粒子11および/または大粒径のアルミナ粒子12とに加えて、他のアルミナ粒子(例えば、粒径100μm以上のアルミナ粒子、および/または粒径0.1μm未満のアルミナ粒子)を、本発明の実施形態の効果を損なわない範囲で、含んでもよい。
 第1のアルミナ粉末100の場合、第1のアルミナ粉末100に含まれる小粒径のアルミナ粒子11および大粒径のアルミナ粒子12の粒径および含有量は、第1のアルミナ粉末100を溶液中に分散させて、粒径をレーザ回折分散法で測定する。
 一方、第2のアルミナ粉末10の場合、第2のアルミナ粉末10に含まれる小粒径のアルミナ粒子11および大粒径のアルミナ粒子12の粒径および含有量は、上記超音波振動により小粒径のアルミナ粒子11と大粒径のアルミナ粒子12とを分離した後、レーザ回折分散法により測定する。まず、第2のアルミナ粉末10を水溶液中に分散させて、振動強度40Wで5分以上、超音波振動を付与する。これにより、アルミナ複合粒子13のほぼ全てを大粒径のアルミナ粒子12と小粒径のアルミナ粒子11に分離することができる。その後、溶液中に分散した状態の大粒径のアルミナ粒子12および小粒径のアルミナ粒子11について、粒径をレーザ回折分散法で測定する。
 得られた測定結果から、縦軸を頻度、横軸を粒径としてプロットした粒度分布曲線(例えば、図3)を作成する。この粒度分布曲線において、1μm未満の範囲にあるピーク位置を、小粒径のアルミナ粒子11の粒径、1μm以上の範囲にあるピーク位置を、大粒径のアルミナ粒子12の粒径とする。
 小粒径のアルミナ粒子11および大粒径のアルミナ粒子12の含有量は、別の粒度分布曲線から求めることができる。
 上述したレーザ回折分散法で得られた粒径の測定結果から、縦軸を体積基準の累積分布、横軸を粒径としてプロットした粒度分布曲線(例えば、図3)を作成する。この粒度分布曲線において、(粒径1μmの累積分布値)-(粒径0.1μmの累積分布値)を小粒径の含有量とし、(粒径100μmの累積分布値)-(粒径1μmの累積分布値)を大粒径の含有量とする。
(第2のアルミナ粉末10の調製について)
 図2に示す第2のアルミナ粉末10の調製方法について詳述する。
 第2のアルミナ粉末10は、比表面積が1.5m/g以上15m/g未満の第1のアルミナ粒子と、比表面積が0.01m/g以上1.5m/g未満の第2のアルミナ粒子とを、解砕しながら混合する工程を含む方法により製造することができる。このような方法として、第1のアルミナ粒子と第2のアルミナ粒子とをジェットミルにより混合する工程(混合工程)を含む方法が挙げられる。
 以下に、混合工程の一例を説明する。
・アルミナ粒子の準備
 比表面積が1.5m/g以上の第1のアルミナ粒子と、比表面積が1.5m/g未満の第2のアルミナ粒子を準備する。第1のアルミナ粒子は、比表面積が1.5m/g以上15m/g未満が好ましく、2m/g以上10m/g未満がより好ましい。第2のアルミナ粒子は、比表面積が0.01m/g以上1.5m/g未満が好ましく、0.03m/g以上1.0m/g未満がより好ましい。
・予備混合
 準備した第1のアルミナ粒子および第2のアルミナ粒子を袋に投入して封止し、袋を振ることにより、第1のアルミナ粒子と第2のアルミナ粒子とを予備混合して、混合物を得る。予備混合を行うと、第1のアルミナ粒子の一部が、第2のアルミナ粒子の表面に弱い力で付着する。袋に投入する第1のアルミナ粒子と第2のアルミナ粒子の配合比は、質量比で、20:80~80:20であることが好ましく、30:70~70:30であることがより好ましい。
・ジェットミル混合
 予備混合で得られた混合物をジェットミル混合することにより、第2のアルミナ粉末10が得られる。
 ジェットミルで混合すると、混合中に、第1のアルミナ粒子と第2のアルミナ粒子が衝突する。そのときに、第1のアルミナ粒子は解砕されて、第2のアルミナ粉末10における「小粒径のアルミナ粒子11」となり、第2のアルミナ粒子は解砕されて、第2のアルミナ粉末10における「大粒径のアルミナ粒子12」となる。また、小粒径のアルミナ粒子11は、大粒径のアルミナ粒子12の表面に強く結合するようになる。
 なお、アルミナ粒子としては、第1のアルミナ粒子および第2のアルミナ粒子の他に、他のアルミナ粒子(例えば、粒径100μm以上のアルミナ粒子、および/または粒径0.1μm未満のアルミナ粒子)を含んでもよい。他のアルミナ粒子(これを「第3のアルミナ粒子」と称する)は、第1のアルミナ粒子および第2のアルミナ粒子と共にジェットミルで混合することが好ましい。例えば、「・アルミナ粒子の準備」において、第1のアルミナ粒子および第2のアルミナ粒子だけでなく、第3のアルミナ粒子も準備し、「・予備混合」において、第3のアルミナ粒子を、第1のアルミナ粒子および第2のアルミナ粒子と共に袋に入れて予備混合して、第1のアルミナ粒子、第2のアルミナ粒子および第3のアルミナ粒子の混合物を得る。そして、「・ジェットミル混合」では、得られた混合物をジェットミルで混合することにより、第2のアルミナ粉末10を得ることができる。
(アルミナ物品21の成形)
 第1のアルミナ粉末100または第2のアルミナ粉末10を成形して、アルミナ物品21を得る。例えば、図4Aのように、成形用の金型60に第1のアルミナ粉末100または第2のアルミナ粉末10を投入し、加圧治具61を矢印F方向に加圧して、加圧成形する。これにより、図4Bに示すように、所定の形状のアルミナ物品21が得られる。
 アルミナ物品21は、総細孔容積が0.20mL/g以下であり、細孔径4μm以上の細孔の累積細孔容積が総細孔容積の10%未満であるのが好ましい。そのような特性を有するアルミナ物品21では、レーザ照射により焼結すると、より緻密な透明アルミナ焼結部を形成することができる。
 このようなアルミナ物品21は、第1のアルミナ粉末100または第2のアルミナ10を圧力10MPa~30MPaで加圧成形することにより得ることができる。
 アルミナ物品21の細孔径1μm以上の細孔の累積細孔容積が、総細孔容積の10%未満であるのが特に好ましく、極めて緻密な透明アルミナ焼結部を形成できる。このようなアルミナ物品21は、ジェットミル混合で作製した第2のアルミナ粉末10を用いることにより作製することができる。
 細孔容積および細孔半径は、水銀圧入法(JIS R 1655:2003)により測定する。
 水銀にかける圧力を増加させながら細孔に侵入する水銀の累積侵入量を測定する。得られた測定結果について、圧力を細孔半径に、累積侵入量を累積細孔容積にそれぞれ換算する。そして、換算値を用いて、細孔半径が100μmから0.0018μmまでの範囲について、累積細孔容積をプロットしてグラフを作成する。このグラフから、総細孔容積および所定の細孔半径における累積細孔容積等を読み取る。
 ここで「細孔半径0.0018μm以上の細孔の総細孔容積」(単に「総細孔容積」と称することもある)とは、細孔半径0.0018μm以上の細孔の容積の合計のことであり、グラフ上では、細孔半径0.0018μmにおける累積細孔容積に相当する。
 「細孔半径4μm以上の細孔の累積細孔容積」(単に「4μm以上の累積細孔容積」と称することもある)とは、細孔半径4μm以上の細孔の容積の合計のことであり、グラフ上では、細孔半径4μmにおける累積細孔容積に相当する。「総細孔容積に対する、細孔半径4μm以上の細孔の累積細孔容積の割合」(単に「4μm以上の細孔の割合」と称することもある)は、以下の式(1)から算出する。

4μm以上の細孔の割合=(4μm以上の累積細孔容積)÷(総細孔容積)×100(%)・・・(1)
 同様に、「総細孔容積に対する、細孔半径1μm以上の細孔の累積細孔容積の割合」(単に「1μm以上の細孔の割合」と称することもある)は、以下の式(2)から算出する。

1μm以上の細孔の割合=(1μm以上の累積細孔容積)÷(総細孔容積)×100(%)・・・(2)
[工程2]積層物20の作製
 工程2では、アルミナ物品21の表面21aに炭素粉末含有層22を形成する。これにより、アルミナ物品21および炭素粉末含有層22が積層された積層物20が得られる。炭素粉末含有層22に含まれる炭素粉末が、次の[工程3]において照射するレーザを吸収して発熱することにより、炭素粉末含有層22の下側にあるアルミナ物品21が焼結される。
 炭素粉末含有層22の形成方法としては、例えば、炭素粉末のみ、又は、炭素粉末と、バインダーとを含有する組成物、又は、炭素粉末と、有機溶剤とを含有する組成物を用いて、スプレー等による散布法、スクリーン印刷等の印刷法、ドクターブレード法、スピンコート法、カーテンコーター法等の塗布法等が挙げられる。炭素粉末含有層22は、図4Cに示すように、アルミナ物品21の表面21aの全面に形成してもよく、または表面21aの所定位置にのみ部分的に形成してもよい。
 炭素粉末含有層22に含まれる炭素粉末の含有割合は、レーザの吸収能を高める観点から、好ましくは50質量%以上、より好ましくは80質量%以上である。炭素粉末含有層22の厚さは、レーザの吸収能を高める観点から、好ましくは5nm~30μm、より好ましくは100nm~10μmである。
[工程3]アルミナ焼結体40の作製
 工程3では、積層物20の炭素粉末含有層22の表面22aにレーザを照射して、透明なアルミナ焼結部41を含むアルミナ焼結体40を作製する。本明細書においては、「アルミナ焼結体40」とは、透明なアルミナ焼結部41を少なくとも一部に含むものを意味する。よって、アルミナ焼結体40は、一部に不透明な非焼結部42を含んでもよく、さらには、一部に不透明なアルミナ焼結部(図示せず)を含んでもよい。アルミナ焼結体40は、透明なアルミナ焼結部41のみからなることが好ましい。
 図4Cに示すように、レーザ装置30からのレーザ31を炭素粉末含有層22の表面22aの所定の位置に照射すると、レーザが照射された照射位置31Eでは、炭素粉末含有層22中の炭素粉末がレーザのエネルギーを吸収する。これにより、照射位置31Eに存在する炭素粉末含有層22は、発熱すると同時に瞬時に消失する。そして、炭素粉末含有層22の下側にあるアルミナ物品21は、照射位置31Eの直下の領域(これを「直下領域31R」と称する)内に存在する部分31Pが、800℃以上(推定温度)に予熱される。アルミナ物品21の部分21P(部分21Pの表面上にあった炭素粉末含有層22は既に消失しているので、部分21Pの表面は露出している)に、更にレーザが照射されることで温度上昇が進行する。その結果、部分21P内にあるアルミナ粉末が焼結され、アルミナ焼結部41が形成される(図4D)。これにより、アルミナ物品21の所望の位置(部分21P)にのみ、局所的にアルミナ焼結部41を形成できる。
 なお、アルミナ物品21は、照射位置31Eの直下領域31Rの範囲外にある部分では焼結されないため、焼結されなかった部分は非焼結部42となる。非焼結部42は、必要に応じて除去してもよく、さらに追加のレーザ照射を行って非焼結部42を焼結して、アルミナ焼結部41を拡大してもよい。
 実施形態1では、小粒径のアルミナ粒子11および大粒径のアルミナ粒子12を含むアルミナ粉末(第1のアルミナ粉末100または第2のアルミナ粉末10)を用いてアルミナ物品21を成形しているため、レーザ照射すると、アルミナ粒子12を含む第1のアルミナ粉末100または第2のアルミナ粉末10が緻密に焼結して、透明なアルミナ焼結部41を形成できる。なお、非焼結部42は不透明である。なお、本明細書において「透明」とは、可視光の透過率が50%以上であることをいい、「半透明」とは、可視光の透過率が10%以上50%未満であることをいい、「不透明」とは、可視光の透過率が10%未満のことをいう。本明細書において、「可視光」とは、可視光領域に波長を有する光のことであり、「可視光領域」とは、波長360~830nmの波長域のことを意味する。
 本発明の実施形態で形成される透明なアルミナ焼結部41は、レーザの照射方向に依存して内部構造(主に結晶粒の粒界方位)に異方性を有する。その内部構造の異方性に起因して、可視光の透過率に異方性が生じることがある。その場合は、最も高い透過率を示す方向における可視光の透過率に基づいて、「透明」、「半透明」、「不透明」を判断する。
 レーザ31は、図4Cに示すように炭素粉末含有層22の表面22aの一部(所定位置)にのみ照射してもよいが、炭素粉末含有層22の表面22aの全面に照射してもよい。レーザ31を表面22aの全面に照射する方法としては、スポット径の大きいレーザ31を使用して同時に全面照射する方法(一斉照射)と、スポット径の小さいレーザ31の照射位置を相対的に移動させることにより表面22aの全面に照射する方法(走査照射)がある。走査照射としては、例えば、積層物20を固定した状態でレーザをスキャンさせる方法、光拡散レンズを介してレーザの光路を変化させながら照射する方法、又は、レーザの光路を固定して、積層物20を移動させながらレーザを照射する方法が挙げられる。
 使用するレーザの種類は特に限定されないが、レーザの吸収能を高める観点から、炭素粉末による吸収率の高い波長域(500nm~11μm)のレーザを用いることが好ましい。例えば、Nd:YAGレーザ、Nd:YVOレーザ、Nd:YLFレーザ、チタンサファイアレーザー、炭酸ガスレーザー等を用いることができる。 
 レーザの照射条件は、焼結面積、焼結深さ等により、適宜、選択される。レーザ出力は、焼結を適切に進行させる観点から、好ましくは50~2000W/cm 、より好ましくは100~500W/cm である。また、照射時間は、好ましくは1秒間~60分間、より好ましくは5秒間~30分間である。
 炭素粉末含有層22にレーザを照射する際の雰囲気は、特に限定されないが、例えば、大気、窒素、アルゴン、ヘリウム等とすることができる。また、レーザを照射する前に、アルミナ物品21および/または炭素粉末含有層22を予熱してもよい。予熱温度は、好ましくは300℃以上、より好ましくは400℃以上であり、予熱温度の上限は、通常、焼結用セラミックスの融点より200℃以上低い温度である。予熱は、例えば、赤外線ランプ、ハロゲンランプ、抵抗加熱、高周波誘導加熱、マイクロ波加熱等で行うことができる。
 積層物20における炭素粉末含有層14の全面にレーザ照射を行った場合には、炭素粉末含有層14におけるレーザ照射部の下地側の全面を焼結部16とすることができるので、上記物品12に対して大面積の焼結を行う場合、積層物10を固定した状態でレーザをスキャンさせながら若しくは光拡散レンズを介して光路を変化させながら照射する方法、又は、積層物10を移動させながら、光路を固定したレーザを照射する方法を適用することができる。 
<実施形態2:透明アルミナ焼結体40の製造方法>
 図5A~図5Cは、実施形態2に係る透明アルミナ焼結体40の製造方法を説明するための概略断面図である。実施形態2では、アルミナ物品21を、基材23の上に形成している点で実施形態1と異なるが、その他の点については、実施形態1と同様である。以下、実施形態1と異なる点を中心に説明する。
[工程1]アルミナ物品21の作製
 図5Aに示すように、基材23上で、異なる粒径の粒子を含む第1のアルミナ粉末100または第2のアルミナ粉末10を成形して、基材23上に成形体(アルミナ物品21)を作製する。
 基材23は、金属、合金及びセラミックスから選ばれた少なくとも1種からなることが好ましい。基材23上にアルミナ物品21を形成する方法としては、溶射法、電子ビーム物理蒸着法、レーザ化学蒸着法、コールドスプレー法、焼結用セラミックス粒子、分散媒及び必要に応じて用いられる高分子バインダーを含むスラリーを塗布した後、乾燥を行い、更に脱脂する方法等の、従来、公知の方法で形成することができる。基材23およびアルミナ物品21は、接合されていてよいし、接合されずに、アルミナ物品21が基材23の上に載置されていてもよい。
[工程2]積層物20の作製
 図5Bに示すように、アルミナ物品21の表面21aに炭素粉末含有層22を形成する。これにより、基材23、アルミナ物品21および炭素粉末含有層22が積層された積層物200が得られる。
[工程3]アルミナ焼結体40の作製
 図5Cに示すように、積層物200の炭素粉末含有層22の表面22aにレーザを照射して、アルミナ物品21中に透明なアルミナ焼結部41を形成する。これにより、基材23上に、透明なアルミナ焼結部41と非焼結部42とを含むアルミナ焼結体40が形成される。
<実施形態3:アルミナ焼結体40>
 実施形態3は、実施形態1および2に記載した方法により、アルミナ物品21をレーザ照射で焼結させて得られたアルミナ焼結体40に関する。
 図6Aは、実施形態3に係るアルミナ焼結体40を説明するための上面側からの模式図である。アルミナ焼結体40は、透明なアルミナ焼結部41を含む。さらに、アルミナ焼結体40は、不透明な非焼結部42を含んでいてもよい。図6Aに示すアルミナ焼結体40は、アルミナ焼結部41と、その周囲を取り囲む非焼結部42とを含んでいる。
 図6Aにおける「上面」とは、焼結時にレーザが照射された面に相当する。つまり、実施形態1(図4C)および実施形態2(図5B)におけるアルミナ物品21の表面21aが、焼結後に、アルミナ焼結体40の上面40aとなる。図6Aでは、アルミナ焼結体40の上面40aは、透明なアルミナ焼結部41の表面41aと、非焼結部42の表面42aを含んでいる。
 図6Bは、図6Aに示したアルミナ焼結体40のうち、アルミナ焼結部41の部分を拡大した模式図である。アルミナ焼結部41は透明であり、上面41aから観察すると、複数の単結晶状組織410から構成されていることが視認できる。「単結晶状組織410」とは、粒界410bによって周囲を囲まれた結晶粒子のことである。1つの単結晶状組織410内(つまり、1つの結晶粒子内)では、結晶方位は揃っている。各単結晶状組織410は、小さい単結晶と見なすことがきる。
 個々の単結晶状組織410は透明度が高い。その結果、実施形態3のアルミナ焼結体40では、アルミナ焼結部41は、透明(可視光の透過率が50%以上)になる。そのため、アルミナ焼結部41は透明な窓材として、または他の部材の表面にアルミナ焼結部41を形成することにより透明な被覆材として、利用し得る。
 アルミナ焼結部41の透過率の測定方法については後述する。なお、図5Cに示すように、アルミナ焼結体40を基材23上で製造した場合、透明なアルミナ焼結部41の透過率の測定は、基材23を除去した後に行う。
 アルミナ焼結部41に含まれる粒界410bは、光を散乱させる効果がある。そのため、粒界410bの数が少ないほど、アルミナ焼結部41の可視光領域の透過率が高くなる。実施の形態3のアルミナ焼結体40では、アルミナ焼結部41を上面41aから観察したときに、アルミナ焼結部41中に含まれる単結晶状組織410の単位面積当たりの数が、0.2個/mm以上、25個/mm未満である。粒界410bは、単結晶状組織410を囲むものであるため、単位面積当たりの単結晶状組織410の数が少なくなると、単位面積当たりの粒界の数も少なくなる。そのため、単結晶状組織410の数を25個/mm未満に制限することにより、アルミナ焼結部41の透過率を向上することができる。
 但し、レーザ焼結で製造したアルミナ焼結体40の場合、アルミナ焼結部41内の界面を完全になくすことはできない。レーザ焼結で得られたアルミナ焼結体40の場合、現実的な観点から、アルミナ焼結部41中に含まれる単結晶状組織410の単位面積当たりの数は、0.2個/mm以上とする。そのため、チョクラルスキー法等で製造された単結晶アルミナのように粒界410bを殆ど含まない透明アルミナに比べると、アルミナ焼結部41の透過率は、通常は低い。
 アルミナ焼結部41中に含まれる単結晶状組織410の単位面積当たりの数は、次のようにして求める。
 光学顕微鏡写真において、アルミナ焼結部41の任意の位置に、一辺3mmの正方形の領域を規定し、その領域内にある単結晶状組織410の数(N)を数える。数(N)を、正方形の面積(9mm)で割ることにより、単位面積当たりの単結晶状組織410の数(個/mm)を算出する。
 なお、正方形の領域を規定する場合には、当該領域内に非焼結部42が含まれないように規定する必要がある。また、原則として、一辺3mmの正方形の領域で数Nを数えるが、アルミナ焼結部41の面積が小さく、一辺3mmの正方形の領域を規定できない場合には、例外的に、一辺2mmの正方形の領域、3mm×2mmの長方形の領域等のように、領域の面積を狭くしてもできる。
 なお、粒界410bは、レーザの照射方向に沿って並ぶ傾向がある。つまり、図4C、図5Bに図示するように、アルミナ物品21の表面21aから垂直下向き(図4C、図5Bでは、アルミナ物品21の厚さ方向)にレーザ照射すると、粒界410bの多くも、アルミナ焼結部41の内部を、上面41aから垂直下向き(アルミナ焼結部41の厚さ方向)に沿って生じやすい。そのため、アルミナ焼結部41の透過率は、製造時にレーザを照射した方向と同じ方向で測定すると、高い透過率を示す傾向がある。そのため、後述するように、焼結部41の透過率を測定する際には、粒界410bの向きに十分に留意する必要がある。
 また、粒界410bの方向から、焼結時のレーザ照射方向を推定することができる。粒界410bの方向は、アルミナ焼結部41の上面観察、断面観察、または破面観察によって確認することができる。
 次に、アルミナ焼結部41の透過率について説明する。
 アルミナ焼結部41の透過率は、波長可変の吸光分光装置などを用いて測定することができる。例えば、紫外線~赤外線までの波長範囲における固体の吸光度を測定可能な紫外可視吸光分光装置などが好適である。
 一般的に、透過率は測定波長によって変動する。さらに、実施形態3のアルミナ焼結体40の場合、同じ波長であっても、以下の理由によって、アルミナ焼結部41に入射する光の方向によっても透過率が変動し得る。
 アルミナ焼結部41の透過率測定において、測定用の光の通過経路上に粒界410bがあると、光を散乱するため、透過率が低下する。一方、測定用の光の通過経路上に存在する粒界410bの数が少ないと、粒界410bによる光の散乱が起こらず、透過率が上昇する。上述したように、レーザ焼結で製造したアルミナ焼結体40の場合、アルミナ焼結部41中の粒界410bは、レーザ照射方向に揃う傾向がある。このように、アルミナ焼結部41は、粒界410bの存在方向に異方性があるため、透過率にも異方性があると考えられる。
 本明細書において、可視光領域の透過率が50%以上とは、最も高い透過率(最大透過率)を示す測定方向から透過率を測定したときに、可視光領域(360~830nmの波長域)の全てにおいて、透過率が50%以上であることを意味する。そのため、透過率(最大透過率)50%以上のアルミナ焼結部41を用いて、異なる測定方向から透過率を測定すると、その測定方向における透過率は最大透過率より低く(例えば50%未満)になる可能性がある。
 実施形態3のアルミナ焼結体40は、アルミナ焼結部41が透明であるため、透光性部材としての用途が期待される。
 また、アルミナ焼結部41は、レーザ焼結特有の粒界410bを有しているので、透過率に異方性を生じる可能性がある。そのため、特定方向からの視認性は高く、それ以外の方向からの視認性が低くできる可能性があり、液晶画面等の保護フィルムとしての用途が期待される。
 さらに、アルミナ焼結体40を別部材の表面に形成した場合、アルミナ焼結体40と別部材との熱膨張率差によって、アルミナ焼結体40に引張応力または圧縮応力がかかる可能性がある。また、アルミナ焼結体40単体であっても、急加熱または急冷されたときに、アルミナ焼結体40内部に引張応力または圧縮応力がかかる可能性がある。このような場合でも、アルミナ焼結部41内に存在する粒界410bがそれらの応力を緩和して、アルミナ焼結体40の破損を抑制できることが期待される。
(1)アルミナ粉末試料の製造
 以下に、実施例1、2および比較例1で使用したアルミナ粉末試料の作製条件、アルミナ粉末試料を加圧成形して作製したアルミナ物品の成形条件、アルミナ物品のレーザ焼結における焼結条件を説明する。表1には、実施例1~2、比較例1のアルミナ粉末試料の作製に使用した第1のアルミナ粒子、第2のアルミナ粒子および第3のアルミナ粒子の配合率を記載した。なお、表1の各アルミナ粒子の欄において、「-」は、そのアルミナ粒子を配合しなかったことを意味する。
(実施例1)
 アルミニウムアルコキシドの加水分解法により得られた高純度水酸化アルミニウムに、平均粒径が0.25μmのα-アルミナ粒子を混合し、塩化水素雰囲気で焼成することで、比表面積が4.8m/gの第1のアルミナ粒子を得た。アルミニウムアルコキシドの加水分解法により得られた高純度水酸化アルミニウムを塩化水素雰囲気で焼成することで、比表面積が0.2m/gの第2のアルミナ粒子を得た。第1のアルミナ粒子と第2のアルミナ粒子を質量比30:70の割合で配合してビニル袋に投入し、ビニル袋を封止した後に上下に強く振って拡散混合させた。その後に、ジェットミル粉砕機(日本ニューマチック工業株式会社製水平型ジェットミル粉砕機 PJM-280SP)で粉砕しながら混合することで実施例1のアルミナ粉末試料を作製した。
 アルミナ粉末試料を300mg取り分け、ペレット成型用の金型(内径10mmの円筒形)に装填し、1軸プレス機にて10MPaで30秒加圧し、焼結用のアルミナペレット(アルミナ物品試料)を得た。アルミナ物品試料の表面に、日本船舶工具有限会社製エアゾール乾性黒鉛皮膜形成潤滑剤「DGFスプレー」(商品名)の吹き付けを約1秒間行った。その後、これを、30秒間放置して、厚さが約5μmの炭素粉末含有層を備える積層物試料を得た。
 次に、積層物試料の炭素粉末含有層の表面に、波長1064nm、出力500Wのレーザを1分間照射した。このとき、炭素粉末含有層の表面上におけるビーム径を10mmとし、アルミナ物品試料(直径10mm)の全体がレーザ焼結できるように、レーザの位置を調節した。これにより、アルミナ物品試料の全体が焼結されて、非焼結部を含まない(つまり、全体がアルミナ焼結部から成る)アルミナ焼結体試料を得た。
(実施例2)
 アルミニウムアルコキシドの加水分解法により得られた高純度水酸化アルミニウムに、平均粒径が0.25μmのα-アルミナ種粒子を混合し、塩化水素雰囲気で焼成することで、比表面積が0.5m/gの第3のアルミナ粒子を得た。実施例1における第1のアルミナ粒子のかわりに第3のアルミナ粒子を用いた以外は、前記実施例1と同様にして実施例2を得た。
(比較例1)
 第1のアルミナ粒子のみを、ジェットミル粉砕機(日本ニューマチック工業株式会社製水平型ジェットミル粉砕機 PJM-380SP)で粉砕して、アルミナ粉末試料を作製した以外は、前記実施例1と同様にして比較例1を得た。
Figure JPOXMLDOC01-appb-T000001
(2)アルミナ粉末試料の粒度分布測定
 実施例1、2および比較例1のアルミナ粉末試料について、粒度分布を測定した。
 粒度分布測定は、レーザ粒度分布測定装置〔マイクロトラック・ベル(株)製「マイクロトラックMT3300EXII」〕を用いて行った。測定するアルミナ粉末を0.2質量%のヘキサメタ燐酸ソーダ水溶液(以下「分散液」とも称する)に少量添加し、装置内蔵の超音波に40Wで5分間かけて、アルミナ粒子を分散させた。なお、アルミナの屈折率は1.76とした。
 実施例1および2のアルミナ粉末試料は、アルミナ複合粒子13(小粒径のアルミナ粒子11と大粒径のアルミナ粒子12が結合した粒子)を含んでいた。アルミナ複合粒子13は、分散液を添加しても分離しなかったが、超音波分散を行うことによって、小粒径のアルミナ粒子11と大粒径のアルミナ粒子12とに分離した。
 比較例1のアルミナ粉末試料は、小粒径のアルミナ粒子11のみから成っていた。それらの粒子は互いに接触しているのみなので、分散液を添加すると、容易に分離した。
 図7は、レーザ回折法により得られた、縦軸を頻度、横軸を粒径とした粒度分布曲線である。図7の粒度分布曲線において、1μm未満の範囲にあるピーク位置を小粒子のアルミナ粒子11の粒径(ピーク粒径)、1μm以上の範囲にあるピーク位置を大粒子のアルミナ粒子12の粒径(ピーク粒径)とした。また、図8に示す粒度分布曲線は、レーザ回折法により得られた、縦軸を体積基準の累積分布、横軸を粒径とした粒度分布曲線である。図8の粒度分布曲線において、(粒径1μmの累積分布値)-(粒径0.1μmの累積分布値)を小粒径のアルミナ粒子11の含有量(体積%)とし、(粒径100μmの累積分布値)-(粒径1μmの累積分布値)を大粒径のアルミナ粒子12の含有量(体積%)とした。
 表2に、実施例1、2および比較例1の各アルミナ粉末試料について、小粒径のアルミナ粒子11のピーク粒径および含有量と、大粒径のアルミナ粒子12のピーク粒径および含有量を表2に記載した。
 図7の粒度分布曲線から分かるように、比較例1のグラフは、1μm以上の範囲にピークが存在しなかった。そのため、表2の大粒径のアルミナ粒子12の「ピーク粒径」の欄では、ピークが確認されなかったことを表すために、「-」と表記した。
 なお、図7の粒度分布曲線から分かるように、比較例1の小粒子のアルミナ粒子11のピークの裾野は、粒径1μmを超えて延在していた。つまり、比較例1のアルミナ粉末は、図7の粒度分布曲線では粒径1μm以上の範囲にピークが確認されなかったが、粒径1μm以上のアルミナ粒子は存在していた。そのため、表2では、比較例1は、大粒径のアルミナ粒子12の「ピーク粒径」は存在しない(「-」と表記)のに、大粒径のアルミナ粒子12(つまり、粒径1μm以上のアルミナ粒子)の含有量はゼロではなかった。
Figure JPOXMLDOC01-appb-T000002
(3)アルミナ物品試料の細孔分布測定
 実施例1、2および比較例1の各アルミナ粉末試料を4g取り分け、そこに0.04gの水(アルミナ粉末試料の1質量%に相当)を添加して、ビニル袋に投入し、ビニル袋を封止した後に上下に強く振って拡散混合させた。得られた混合物を、ペレット成型用の金型(内径20mmの円筒形)に装填し、1軸プレス機にて30MPaで30秒加圧する。これによりアルミナ粉末ペレット(直径20mm、厚さ4~6mm)が得られた。このアルミナ粉末ペレットを120℃で4時間乾燥して、測定用のアルミナ物品試料を得た。アルミナ物品試料を120℃で4時間乾燥した後、オートポアIV9520(micromeritics社製)を用いて、水銀圧入法(JIS R 1655:2003)により測定した。細孔半径が100μmから0.0018μmまでの範囲で測定を行った。測定結果に基づいて、横軸を細孔半径、縦軸を累積細孔容積としたグラフをプロットした(図9参照)。
 細孔半径4μmにおける累積細孔容積(細孔半径4μm以上の細孔の累積細孔容積)を、「4μm以上の累積細孔容積(A)」とした。
 0.0018μmにおける累積細孔容積(細孔半径0.0018μm以上の細孔の総細孔容積)を、「総細孔容積(B)」とした。
 「4μm以上の細孔の割合(A/B×100)」(細孔半径4μm以上の細孔の割合)は、以下の式(1)から算出した。

4μm以上の細孔の割合=(4μm以上の累積細孔容積)÷(総細孔容積)×100(%)・・・(1)
 実施例1、2および比較例1の各アルミナ粉末試料から成形されたアルミナ物品試料について、4μm以上の累積細孔容積(A)、総細孔容積(B)、および4μm以上の細孔の割合(A/B×100)の測定結果を表3に記載した。
Figure JPOXMLDOC01-appb-T000003
(4)アルミナ焼結部の透過スペクトル測定
 実施例1、2および比較例1で得られたアルミナ焼結体試料のアルミナ焼結部に対して、紫外可視吸光分光装置(Perkin-Elmer Lambda 950)を用いて透過スペクトルを測定した(図10)。なお、透過率測定の測定方向(光の透過方向)が、焼結時のレーザ照射方向と一致するように、アルミナ焼結体試料を測定装置内にセットした。また、ビームのサイズは2mm×4mm程度とし、試料の厚みは0.8mmとした。
 360nm~830nmの可視光領域における透過率の範囲を表4に示した。表4の「評価」では、可視光領域における透過率の最小値が50%未満を「不可」、50%以上を「良」、70%以上を「優」とした。
Figure JPOXMLDOC01-appb-T000004
(5)アルミナ焼結部の単結晶状組織
 実施例1および実施例2で作製したアルミナ焼結体試料の上面からの光学顕微鏡写真を撮影し、単位面積当たりの単結晶状組織の数を計測した。
 図11Aは、実施例1で作製したアルミナ焼結体試料の光学顕微鏡写真である。アルミナ焼結体の全体が透明なアルミナ焼結部となっていた。図11Bに示すように、アルミナ焼結部の任意の位置に、一辺3mmの正方形の領域を規定し、その領域内において粒界を手動で描画した。なお、粒界は、光学顕微鏡写真(例えば、倍率5~200倍)を肉眼で視認することで、容易に特定可能である。当該正方形の領域内にある単結晶状組織の数(N)を数えた。そして、数(N)を、正方形の面積(9mm)で割って、単位面積当たりの単結晶状組織の数(個/mm)を算出した。
 実施例2で作製したアルミナ焼結体試料についても、同様の測定を行った。図12Aは、実施例2で作製したアルミナ焼結体の光学顕微鏡写真であり、図12Bは、図12Aの光学顕微鏡写真において、一辺3mmの正方形の領域内における粒界を描画したものである。実施例2のアルミナ焼結体試料について、正方形の領域内にある単結晶状組織の数(N)を数え、単位面積当たりの単結晶状組織の数(個/mm)を算出した。
 実施例1および2について、単結晶状組織の数(N)および単位面積当たりの単結晶状組織の数(個/mm)を表5に記載した。
Figure JPOXMLDOC01-appb-T000005
 実施例1、2および比較例1について、以下に考察する。
 実施例1、2は、小粒径のアルミナ粒子11と、大粒径のアルミナ粒子12と、を含むアルミナ粉末を用いた。そのため、得られたアルミナ焼結体のアルミナ焼結部では、360nm~830nmの可視光領域における透過率は50%以上となった。このことから、実施例1、2では、透明なアルミナ焼結部が形成されたことが分かる。
 特に、実施例1では、アルミナ粉末に含まれる大粒径のアルミナ粉末12の粒径が18μmと大きかったであったので、可視光領域における透過率が70%以上となり、特に透明なアルミナ焼結部が形成された。
 また、実施例1、2のアルミナ焼結体のアルミナ焼結部は、単位面積当たりの単結晶状組織の数が少なかった。
 比較例1は、小粒径のアルミナ粒子11のみを含むアルミナ粉末を用いた。そのため、得られたアルミナ焼結体のアルミナ焼結部では、可視光領域における透過率は極めて低く、不透明なアルミナ焼結部が形成された。
 本出願は、出願日が2019年3月26日である日本国特許出願、特願第2019-058796号を基礎出願とする優先権主張を伴う。特願第2019-058796号は参照することにより本明細書に取り込まれる。
  10、100 アルミナ粉末
  11 小粒径のアルミナ粒子
  12 大粒径のアルミナ粒子
  13 アルミナ複合粒子
  20、200 積層物
  21 アルミナ物品
  22 炭素粉末含有層、
  23 基材
  30 レーザ照射手段
  31 レーザ
  31E 照射位置
  31R 照射位置の直下領域
  40 アルミナ焼結体
  41 アルミナ焼結部
  410 単結晶状組織
  410b 粒界
  42 非焼結部
  60 金型
  61 加圧治具

Claims (4)

  1.  粒径0.1μm以上1μm未満のアルミナ粒子と、粒径1μm以上100μm未満のアルミナ粒子と、を含むアルミナ粉末を成形して、アルミナ物品を得る工程と、
     前記アルミナ物品の表面に炭素粉末含有層を形成して積層物を得る工程と、
     前記積層物の前記炭素粉末含有層の表面にレーザを照射して、透明なアルミナ焼結部を形成する工程と、を含むアルミナ焼結体の製造方法。
  2.  前記アルミナ物品の総細孔容積が0.20mL/g以下であり、細孔径4μm以上の細孔の累積細孔容積が総細孔容積の10%未満である、請求項1に記載の焼結方法。
  3.  前記アルミナ粉末は、
     粒径1μm以上100μm未満のアルミナ粒子を30~95体積%と、
     粒径0.1μm以上1μm未満のアルミナ粒子を5~70体積%を含む、請求項1または2に記載の焼結方法。
  4.  透明なアルミナ焼結部を含むアルミナ焼結体であって、
     当該アルミナ焼結部は、
      可視光領域の透過率が50%以上であり、
      単位面積あたりの単結晶状組織の数が0.2個/mm以上、25個/mm未満である、アルミナ焼結体。
PCT/JP2020/013277 2019-03-26 2020-03-25 アルミナ焼結体の製造方法およびアルミナ焼結体 WO2020196605A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217030547A KR20210142641A (ko) 2019-03-26 2020-03-25 알루미나 소결체의 제조 방법 및 알루미나 소결체
US17/442,597 US20220169571A1 (en) 2019-03-26 2020-03-25 Alumina sintered body production method and alumina sintered body
EP20779356.3A EP3950637A4 (en) 2019-03-26 2020-03-25 METHOD FOR PRODUCTION OF SINTERED ALUMINUM BODY AND SINTERED ALUMINUM BODY
CN202080024126.6A CN113631529A (zh) 2019-03-26 2020-03-25 氧化铝烧结体的制造方法及氧化铝烧结体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019058796A JP7311286B2 (ja) 2019-03-26 2019-03-26 アルミナ焼結体の製造方法およびアルミナ焼結体
JP2019-058796 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020196605A1 true WO2020196605A1 (ja) 2020-10-01

Family

ID=72609885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013277 WO2020196605A1 (ja) 2019-03-26 2020-03-25 アルミナ焼結体の製造方法およびアルミナ焼結体

Country Status (7)

Country Link
US (1) US20220169571A1 (ja)
EP (1) EP3950637A4 (ja)
JP (1) JP7311286B2 (ja)
KR (1) KR20210142641A (ja)
CN (1) CN113631529A (ja)
TW (1) TW202043177A (ja)
WO (1) WO2020196605A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022189655A1 (de) * 2021-03-12 2022-09-15 Technische Universität Darmstadt Verfahren und vorrichtung zur herstellung von keramiken und keramisches produkt
WO2022224759A1 (ja) * 2021-04-21 2022-10-27 住友化学株式会社 多孔質セラミックス焼結体の製造方法および多孔質セラミックス焼結体
WO2024219135A1 (ja) * 2023-04-21 2024-10-24 住友化学株式会社 アルミナ顆粒

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057551A1 (ja) * 2015-09-30 2017-04-06 日本碍子株式会社 アルミナ焼結体及び光学素子用下地基板
WO2017135387A1 (ja) 2016-02-05 2017-08-10 一般財団法人ファインセラミックスセンター セラミックス焼結体の製造方法、並びにセラミックス成形体の製造方法及び製造装置
CN108996998A (zh) * 2018-10-08 2018-12-14 广东工业大学 一种组合物及制备透明陶瓷的方法
JP2019058796A (ja) 2013-07-30 2019-04-18 ユナイテッド サージカル, インコーポレイテッドUnited Surgical, Inc. 膝装具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783445B2 (ja) * 1999-01-29 2006-06-07 住友化学株式会社 透光性アルミナ焼結体の製造方法およびその用途
JP2005008447A (ja) * 2003-06-17 2005-01-13 Nihon Ceratec Co Ltd 酸窒化アルミニウム焼結体の製造方法、酸窒化アルミニウム焼結体、および半導体または液晶製造装置部材
JP5100983B2 (ja) 2005-06-24 2012-12-19 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー セメント組成物用発泡剤、それを含有するセメント組成物、セメント組成物の収縮防止法、および発泡剤のセメント組成物への使用
JP2014015362A (ja) 2012-07-10 2014-01-30 Tosoh Corp 表面強化層を有する透光性アルミナ焼結体およびその製造方法
JP6626500B2 (ja) * 2015-05-13 2019-12-25 日本碍子株式会社 アルミナ焼結体及び光学素子用下地基板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019058796A (ja) 2013-07-30 2019-04-18 ユナイテッド サージカル, インコーポレイテッドUnited Surgical, Inc. 膝装具
WO2017057551A1 (ja) * 2015-09-30 2017-04-06 日本碍子株式会社 アルミナ焼結体及び光学素子用下地基板
WO2017135387A1 (ja) 2016-02-05 2017-08-10 一般財団法人ファインセラミックスセンター セラミックス焼結体の製造方法、並びにセラミックス成形体の製造方法及び製造装置
CN108996998A (zh) * 2018-10-08 2018-12-14 广东工业大学 一种组合物及制备透明陶瓷的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950637A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022189655A1 (de) * 2021-03-12 2022-09-15 Technische Universität Darmstadt Verfahren und vorrichtung zur herstellung von keramiken und keramisches produkt
WO2022224759A1 (ja) * 2021-04-21 2022-10-27 住友化学株式会社 多孔質セラミックス焼結体の製造方法および多孔質セラミックス焼結体
WO2024219135A1 (ja) * 2023-04-21 2024-10-24 住友化学株式会社 アルミナ顆粒

Also Published As

Publication number Publication date
TW202043177A (zh) 2020-12-01
US20220169571A1 (en) 2022-06-02
EP3950637A1 (en) 2022-02-09
EP3950637A4 (en) 2022-12-21
JP7311286B2 (ja) 2023-07-19
JP2020158333A (ja) 2020-10-01
KR20210142641A (ko) 2021-11-25
CN113631529A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2020196605A1 (ja) アルミナ焼結体の製造方法およびアルミナ焼結体
KR102246056B1 (ko) 불투명 석영 유리 및 그의 제조 방법
JP6119528B2 (ja) 透明セスキオキサイド焼結体の製造方法
TW201610187A (zh) 製造非晶相金屬合金組件之方法
Chen et al. Hot isostatic pressing of transparent AlON ceramics with Y2O3/La2O3 additives
KR102533534B1 (ko) 탄화텅스텐 베이스 초경합금 및 그 제조방법
CN101474777A (zh) 一种金属结合剂的超薄金刚石切割片制作工艺
JP2012116710A (ja) シリカガラスルツボの製造方法、シリカガラスルツボ
CN108367358A (zh) 制备包括无机颗粒和不连续纤维的金属基体复合材料的方法
WO2021172128A1 (ja) 焼結体の製造方法
Osipov et al. Synthesis and study of Fe2+: MgAl2O4 ceramics for active elements of solid-state lasers
JP6693575B2 (ja) 窒化ケイ素粉末、多結晶シリコンインゴット用離型剤及び多結晶シリコンインゴットの製造方法
JP2015151320A (ja) 不透明石英ガラスおよびその製造方法
JP2001322871A (ja) 希土類元素を含有する酸化物焼結体およびその製造方法
CN111689764B (zh) 一种低成本激光选区熔化用陶瓷粉末制备及其离焦成形方法
Kruk et al. On the possibility of using arc plasma melting technique in preparation of transparent yttria ceramics
EP3416928A1 (en) Transparent fluoride ceramic material and a method for its preparation
Christian Advancing fracture behavior of boron carbide with arc melt processing
JP6885002B2 (ja) 不透明石英ガラス
JP2015209372A (ja) 不透明石英ガラスおよびその製造方法
JP2017154945A (ja) 不透明石英ガラス
Supe NOVEL FORMULATIONS AND PROCESSING CONDITIONS TO 3D PRINT CU ALLOYS FOR NAVAL APPLICATIONS
JP6252257B2 (ja) 不透明石英ガラスおよびその製造方法
KR20230079075A (ko) 흑색 석영 유리 및 그 제조 방법
JP2019139071A (ja) 波長変換部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020779356

Country of ref document: EP

Effective date: 20211026