WO2020196359A1 - 判定装置、判定方法及び、判定プログラム - Google Patents

判定装置、判定方法及び、判定プログラム Download PDF

Info

Publication number
WO2020196359A1
WO2020196359A1 PCT/JP2020/012586 JP2020012586W WO2020196359A1 WO 2020196359 A1 WO2020196359 A1 WO 2020196359A1 JP 2020012586 W JP2020012586 W JP 2020012586W WO 2020196359 A1 WO2020196359 A1 WO 2020196359A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
engine
rotation speed
flywheel
period
Prior art date
Application number
PCT/JP2020/012586
Other languages
English (en)
French (fr)
Inventor
悠樹 佐藤
昌宏 梶山
佑樹 菅谷
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN202080023181.3A priority Critical patent/CN113614356B/zh
Publication of WO2020196359A1 publication Critical patent/WO2020196359A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines

Definitions

  • the present disclosure relates to a determination device, a determination method, and a determination program, and more particularly to an engine determination device, a determination method, and a determination program in which a fly wheel is provided on an output shaft (crank shaft).
  • a fly wheel that stabilizes the rotation of the crank shaft by inertial force may be provided at the end of the crank shaft of the engine.
  • flywheel for example, a dual mass flywheel in which a primary flywheel arranged on a crankshaft and a secondary flywheel arranged on the clutch side are connected by an elastic member such as a torsion spring is known. (See, for example, Patent Document 1).
  • the dual mass fly wheel has a resonance rotation region (natural frequency band) because it includes a pair of fly wheels as mass mass and a torsion spring as an elastic member. If such a resonance rotation region exists in the normal rotation region of the engine, it causes a large vibration or the like during normal operation. Therefore, the resonance rotation region is generally set to a rotation region equal to or lower than the idling speed.
  • the resonance rotation region of the dual mass flywheel exists in the region below the idle speed, it will always pass through the resonance rotation region when the engine is started. Therefore, every time the engine is started, a resonance phenomenon between the crankshaft and the flywheel may occur, which causes a decrease in the durability of the dual mass flywheel.
  • the technology of the present disclosure determines the occurrence of resonance of the fly wheel with high accuracy.
  • the device of the present disclosure is an engine determination device provided with a fly wheel on the output shaft, and is acquired by a rotation speed acquisition unit that acquires the rotation speed of the output shaft and a rotation speed acquisition unit from the start of the engine.
  • a rotation speed acquisition unit that acquires the rotation speed of the output shaft and a rotation speed acquisition unit from the start of the engine.
  • the second period may be set to be longer than the first period.
  • an engine forced stop control unit that forcibly stops the engine may be further provided.
  • the method of the present disclosure is a method for determining an engine in which a fly wheel is provided on an output shaft, and the rotation speed of the output shaft is acquired from the start of the engine, and the acquired rotation speed is the fly wheel.
  • the state exceeding the upper limit threshold of the resonance rotation region is continued for a predetermined first period or more, it is determined that the fly wheel does not resonate with the output shaft, while the acquired rotation speed is the resonance rotation region. If the state in which the rotation speed exceeds the upper limit threshold is not continued for the first period or more between the time when the lower limit threshold is exceeded and the predetermined second period elapses, the fly wheel is used. It is determined that it resonates with the output shaft.
  • a computer of an engine provided with a flywheel on an output shaft is subjected to a rotation speed acquisition unit for acquiring the rotation speed of the output shaft, and the rotation speed acquired by the rotation speed acquisition unit from the start of the engine.
  • a rotation speed acquisition unit for acquiring the rotation speed of the output shaft, and the rotation speed acquired by the rotation speed acquisition unit from the start of the engine.
  • the state of exceeding the upper limit threshold of the resonance rotation region of the flywheel is continued for a predetermined first period or more, it is determined that the flywheel does not resonate with the output shaft, and the acquired rotation is acquired.
  • the state in which the rotation speed exceeds the upper limit threshold is not continued for the first period or more between the time when the number exceeds the lower limit threshold of the resonance rotation region and the elapse of the predetermined second period.
  • FIG. 1 is a schematic overall configuration diagram showing a part of the power transmission system mounted on the vehicle according to the present embodiment.
  • FIG. 2 is a schematic functional block diagram showing a control device according to the present embodiment and related peripheral configurations.
  • FIG. 3A is a time chart diagram schematically showing an example of a change over time in the rotation speed of the primary fly wheel when it is determined that resonance does not occur in the dual mass fly wheel.
  • FIG. 3B is a time chart diagram schematically showing an example of a time-dependent change in the rotation speed of the primary flywheel when it is determined that resonance occurs in the dual mass flywheel.
  • FIG. 1 is a schematic overall configuration diagram showing a part of the power transmission system mounted on the vehicle according to the present embodiment.
  • the vehicle 1 is equipped with an engine 10 as an example of a driving force source.
  • a clutch device 30 is connected to the crankshaft 11 (output shaft of the present disclosure) of the engine 10 via a dual mass flywheel 20. Further, drive wheels are connected to the clutch device 30 via a transmission (not shown), a propeller shaft, a differential gear, a drive shaft, and the like.
  • the dual mass flywheel 20 is mainly composed of a primary flywheel 21 on the engine 10 side, a secondary flywheel 22 on the clutch device 30 side, and a torsion spring 23.
  • the primary fly wheel 21 is formed in a substantially annular shape having a predetermined mass, and is provided rotatably on the crank shaft 11.
  • a hub 24 is provided on the inner peripheral side of the primary flywheel 21.
  • a ring gear 25 is provided on the outer peripheral side of the primary flywheel 21.
  • the ring gear 25 meshes with the pinion gear 40.
  • a starter motor 41 is connected to the pinion gear 40 via a one-way clutch (not shown) or the like. When the engine 10 is started, the power of the starter motor 41 is transmitted to the crank shaft 11 via the pinion gear 40, the ring gear 25, and the primary fly wheel 21, and the engine 10 is cranked. The drive of the starter motor 41 is controlled in response to a command from the control device 100.
  • the secondary fly wheel 22 is formed in a substantially annular shape having a predetermined mass, and its inner peripheral side is rotatably supported on the outer periphery of the hub 24 via a bearing 26.
  • An annular flange 27 is integrally rotatable on the front end side of the secondary flywheel 22.
  • a torsion spring 23 is arranged between the flange 27 and the primary flywheel 21, and the primary flywheel 21 and the secondary flywheel 22 are connected to each other in the rotational direction via the torsion spring 23 and the flange 27. There is.
  • a clutch friction surface facing the clutch disc 31 of the clutch device 30 is formed on the rear side surface of the secondary flywheel 22.
  • a clutch cover 32 is fixed to the rear side surface of the secondary flywheel 22. Inside the clutch cover 32, each component of the clutch device 30, such as a pressure plate 33 for pressing the clutch disc 31, a diaphragm spring 34, and a release bearing 36 provided on the transmission input shaft 35, is provided.
  • the vehicle 1 is provided with an engine speed sensor 90 that detects the engine speed Ne from the crankshaft 11. The engine speed Ne detected by the engine speed sensor 90 is transmitted to the electrically connected control device 100. Further, the engine 10 mounted on the vehicle 1 is provided with an injector 91 that injects fuel into a combustion chamber (not shown). The fuel injection of the injector 91 is controlled in response to a command from the electrically connected control device 100.
  • FIG. 2 is a schematic functional block diagram showing the control device 100 according to the present embodiment and related peripheral configurations.
  • the control device 100 is, for example, a device that performs calculations such as a computer, and is a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input port, and an output port connected to each other by a bus or the like. Etc., and execute the judgment program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • control device 100 functions as a device including an engine rotation speed acquisition unit 110 (rotation speed acquisition unit), a resonance determination unit 120, and an engine forced stop control unit 130 by executing a determination program.
  • engine rotation speed acquisition unit 110 rotation speed acquisition unit
  • resonance determination unit 120 resonance determination unit
  • engine forced stop control unit 130 by executing a determination program.
  • the engine speed acquisition unit 110 acquires the engine speed Ne (corresponding to the speed of the primary flywheel 21) transmitted from the engine speed sensor 90.
  • the engine speed Ne acquired by the engine speed acquisition unit 110 is transmitted to the resonance determination unit 120.
  • the resonance determination unit 120 determines the dual mass fly wheel 20 by comparing the engine rotation speed Ne transmitted from the engine rotation speed acquisition unit 110 with the resonance rotation region (natural frequency band) of the dual mass fly wheel 20. It is determined whether or not resonance with the crank shaft 11 occurs.
  • specific determination processing by the resonance determination unit 120 will be described. In the following description, it is assumed that the resonance rotation region of the dual mass fly wheel 20 is set to a region lower than the idling rotation speed (for example, about 600 rpm), but the resonance rotation region is larger than the idling rotation speed. It may be set in a high area.
  • FIG. 3A is a time chart diagram schematically showing an example of time-dependent changes in the rotation speed (corresponding to engine rotation speed Ne) of the primary flywheel 21 when it is determined that resonance does not occur in the dual mass flywheel 20. is there.
  • the rotation speed of the primary fly wheel 21 will be described simply as the engine rotation speed Ne.
  • the engine 10 When the engine 10 starts at time t0, the engine speed Ne gradually increases while fluctuating periodically.
  • the engine 10 is started by turning on an ignition switch (not shown) by the driver, and if the vehicle 1 has an idling stop function, the engine 10 is restarted by canceling the idling stop condition. Start-up shall also be included.
  • the resonance determination unit 120 sets the timer 140 of the control device 100. Start timing by. Then, the resonance determination unit 120 performs dual mass when the engine speed Ne continuously exceeds the upper limit threshold value N Max of the resonance rotation region over a predetermined first period from the time t2 to the time t3. It is determined that resonance does not occur in the flywheel 20.
  • the resonance determination unit 120 has the engine rotation speed Ne after exceeding the upper limit threshold value N Max of the resonance rotation region at time t2 and before reaching time t3. If it falls below the upper limit threshold N Max , the time measurement by the timer 140 is reset. In this way, when the state in which the engine speed Ne exceeds the upper limit threshold value N Max of the resonance rotation region cannot be continued for a predetermined first period, the cumulative time by the timer 140 is temporarily reset to determine the determination accuracy. Will be improved.
  • FIG. 3B is a time chart diagram schematically showing an example of time-dependent changes in the rotation speed (engine rotation speed Ne) of the primary flywheel 21 when it is determined that resonance occurs in the dual mass flywheel 20.
  • the resonance determination unit 120 starts counting by the timer 140 of the control device 100. Then, in the resonance determination unit 120, the engine speed Ne is the upper limit threshold of the resonance rotation region during the period from the time t1 to the time t4 until the predetermined second period (a period longer than the predetermined first period) elapses. If the state exceeding N Max is not continued for a predetermined first period or more, it is determined that resonance occurs in the dual mass fly wheel 20.
  • the engine speed Ne exceeds the upper limit threshold N Max of the resonance rotation region between the time when the engine speed Ne exceeds the lower limit threshold N Min of the resonance rotation region and the elapse of the predetermined second period.
  • the engine forced stop control unit 130 forcibly stalls the engine 10 by stopping the fuel injection of the injector 91. Execute forced stop control.
  • the forced stop control is executed, the information is displayed on the display device 200 provided in the driver's cab. In this way, when there is a possibility of resonance in the dual mass fly wheel 20, the durability of the dual mass fly wheel 20 is lowered by forcibly stalling the engine 10 to avoid the occurrence of resonance. Can be effectively prevented.
  • the method of forcibly stalling the engine 10 is not limited to the method of stopping the fuel injection of the injector 91, and other methods such as forcibly connecting a part of the power transmission system to apply a load to the engine 10 are used. It may be done by a method.
  • the engine rotation speed Ne (the rotation speed of the primary flywheel 21) is acquired from the start of the engine 10, and the acquired engine rotation speed Ne is the resonance rotation of the primary flywheel 21.
  • the state of exceeding the upper limit threshold N Max of the region is continued for a predetermined first period or more, it is determined that resonance does not occur in the dual mass flywheel 20, while the acquired engine speed Ne is the resonance rotation region. If the engine speed Ne exceeds the upper limit threshold N Max for the first period or longer between the time when the lower limit threshold N Min is exceeded and the predetermined second period elapses, the engine speed is dual. It is configured to determine that resonance occurs in the mass flywheel 20.
  • the engine speed Ne rapidly rises from the start of the engine 10 to complete the explosion, and the engine speed Ne momentarily exceeds the upper limit threshold N Max of the resonance rotation region and falls again. Further, it is possible to effectively determine the state in which the engine rotation speed Ne remains in the resonance rotation region and fluctuates, and it is possible to surely improve the determination accuracy of the resonance occurrence.
  • the above embodiment has been described as being applied to the engine 10 including the dual mass flywheel 20, but it can also be applied to the engine including the single mass flywheel.
  • the application of the present disclosure is not limited to the engine 10 of the vehicle 1, and any engine provided with a flywheel can be widely applied to the engine of another industrial machine such as a generator.
  • Engine 11 Crank shaft (output shaft) 20 Dual Mass Flywheel (Flywheel) 21 Primary flywheel 22 Secondary flywheel 23 Torsion spring 90 Engine speed sensor 91 Injector 100 Controller 110 Engine speed acquisition unit (rotation speed acquisition unit) 120 Resonance judgment unit 130 Engine forced stop control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

出力軸(11)にフライホイール(20)が設けられるエンジン(10)の判定装置であって、出力軸(11)の回転数を取得する回転数取得部(110)と、エンジン(10)の始動から取得される回転数が、フライホイール(20)の共振回転領域の上限閾値を超えている状態を所定の第1期間以上継続した場合には、共振しないと判定する一方、取得される回転数が共振回転領域の下限閾値を超えた時から所定の第2期間が経過するまでの間に、回転数が上限閾値を超えている状態を第1期間以上継続しなかった場合には、共振すると判定する共振判定部(120)とを備える。

Description

判定装置、判定方法及び、判定プログラム
 本開示は、判定装置、判定方法及び、判定プログラムに関し、特に、出力軸(クランクシャフト)にフライホイールが設けられるエンジンの判定装置、判定方法及び、判定プログラムに関するものである。
 一般に、エンジンのクランクシャフトの端部には、クランクシャフトの回転を慣性力によって安定化させるフライホイールが設けられる場合がある。
 この種のフライホイールとして、例えば、クランクシャフトに配されるプライマリフライホイールと、クラッチ側に配されるセカンダリフライホイールとを、トーションスプリング等の弾性部材で連結したデュアルマスフライホイールが知られている(例えば、特許文献1参照)。
日本国特開2005-69206号公報
 上記デュアルマスフライホイールは、質量マスとしての一対のフライホイールと、弾性部材としてのトーションスプリングとを備えているため、共振回転領域(固有振動数帯域)を有する。このような共振回転領域がエンジンの通常回転領域に存在すると、通常運転時に大きな振動等を引き起こしてしまうため、共振回転領域はアイドリング回転数以下の回転領域に設定するのが一般的である。
 しかしながら、デュアルマスフライホイールの共振回転領域がアイドル回転数以下の領域に存在すると、エンジンを始動した際には必ず共振回転領域を通過することになる。このため、エンジンを始動する度に、クランクシャフトとフライホイールとの共振現象を生じる可能があり、デュアルマスフライホイールの耐久性を低下させる要因となる。
 本開示の技術は、フライホイールの共振発生を高精度に判定する。
 本開示の装置は、出力軸にフライホイールが設けられるエンジンの判定装置であって、前記出力軸の回転数を取得する回転数取得部と、前記エンジンの始動から前記回転数取得部により取得される前記回転数が、前記フライホイールの共振回転領域の上限閾値を超えている状態を所定の第1期間以上継続した場合には、前記フライホイールを前記出力軸と共振しないと判定する一方、取得される前記回転数が前記共振回転領域の下限閾値を超えた時から所定の第2期間が経過するまで間に、該回転数が前記上限閾値を超えている状態を前記第1期間以上継続しなかった場合には、前記フライホイールを前記出力軸と共振すると判定する共振判定部と、を備える。
 また、前記第2期間が前記第1期間よりも長い期間で設定されてもよい。
 また、前記共振判定部により、前記フライホイールが共振すると判定されると、前記エンジンを強制的に停止させるエンジン強制停止制御部をさらに備えてもよい。
 本開示の方法は、出力軸にフライホイールが設けられるエンジンの判定方法であって、前記エンジンの始動から前記出力軸の回転数を取得すると共に、取得される前記回転数が、前記フライホイールの共振回転領域の上限閾値を超えている状態を所定の第1期間以上継続した場合には、前記フライホイールを前記出力軸と共振しないと判定する一方、取得される前記回転数が前記共振回転領域の下限閾値を超えた時から所定の第2期間が経過するまで間に、該回転数が前記上限閾値を超えている状態を前記第1期間以上継続しなかった場合には、前記フライホイールを前記出力軸と共振すると判定する。
 本開示のプログラムは、出力軸にフライホイールが設けられるエンジンのコンピュータを、前記出力軸の回転数を取得する回転数取得部、前記エンジンの始動から前記回転数取得部により取得される前記回転数が、前記フライホイールの共振回転領域の上限閾値を超えている状態を所定の第1期間以上継続した場合には、前記フライホイールを前記出力軸と共振しないと判定する一方、取得される前記回転数が前記共振回転領域の下限閾値を超えた時から所定の第2期間が経過するまで間に、該回転数が前記上限閾値を超えている状態を前記第1期間以上継続しなかった場合には、前記フライホイールを前記出力軸と共振すると判定する共振判定部、として機能させる。
 本開示の技術によれば、フライホイールの共振発生を高精度に判定することができる。
図1は、本実施形態に係る車両に搭載された動力伝達系の一部を示す模式的な全体構成図である。 図2は、本実施形態に係る制御装置及び、関連する周辺構成を示す模式的な機能ブロック図である。 図3Aは、デュアルマスフライホイールに共振が発生しないと判定された場合の、プライマリフライホイールの回転数の経時変化の一例を模式的に示すタイムチャート図であり、 図3Bは、デュアルマスフライホイールに共振が発生すると判定された場合の、プライマリフライホイールの回転数の経時変化の一例を模式的に示すタイムチャート図である。
 以下、添付図面に基づいて、本実施形態に係る判定装置、判定方法及び、判定プログラムを説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。
 図1は、本実施形態に係る車両に搭載された動力伝達系の一部を示す模式的な全体構成図である。
 図1に示すように、車両1には駆動力源の一例として、エンジン10が搭載されている。エンジン10のクランクシャフト11(本開示の出力軸)には、デュアルマスフライホイール20を介してクラッチ装置30が接続されている。また、クラッチ装置30には、何れも不図示のトランスミッション、プロペラシャフト、デファレンシャルギヤ及び、ドライブシャフト等を介して駆動輪が接続されている。
 デュアルマスフライホイール20は、主として、エンジン10側のプライマリフライホイール21と、クラッチ装置30側のセカンダリフライホイール22と、トーションスプリング23とを備えて構成されている。
 プライマリフライホイール21は、所定の質量を有する略円環状に形成されており、クランクシャフト11に一体回転可能に設けられている。プライマリフライホイール21の内周側には、ハブ24が設けられている。また、プライマリフライホイール21の外周側には、リングギヤ25が設けられている。
 リングギヤ25は、ピニオンギヤ40と噛合する。ピニオンギヤ40には、不図示のワンウェイクラッチ等を介してスタータモータ41が接続されている。エンジン10の始動時には、スタータモータ41の動力が、ピニオンギヤ40、リングギヤ25、プライマリフライホイール21を経由してクランクシャフト11に伝達され、エンジン10をクランキングさせるようになっている。スタータモータ41の駆動は、制御装置100からの指令に応じて制御される。
 セカンダリフライホイール22は、所定の質量を有する略円環状に形成されており、その内周側をハブ24の外周にベアリング26を介して回転自在に支持されている。セカンダリフライホイール22の前端側には、円環状のフランジ27が一体回転可能に設けられている。フランジ27とプライマリフライホイール21との間には、トーションスプリング23が配されており、プライマリフライホイール21とセカンダリフライホイール22とが、トーションスプリング23及びフランジ27を介して回転方向に互いに連結されている。
 セカンダリフライホイール22の後側面には、クラッチ装置30のクラッチディスク31と対向するクラッチ摩擦面が形成されている。また、セカンダリフライホイール22の後側面には、クラッチカバー32が固定されている。クラッチカバー32内には、クラッチディスク31を押圧するプレッシャプレート33、ダイヤフラムスプリング34、変速機入力軸35に設けられたレリーズベアリング36等、クラッチ装置30の各構成要素が設けられている。
 車両1には、クランクシャフト11からエンジン回転数Neを検出するエンジン回転数センサ90が設けられている。エンジン回転数センサ90により検出されるエンジン回転数Neは、電気的に接続された制御装置100に送信される。また、車両1に搭載されたエンジン10には、不図示の燃焼室内に燃料を噴射するインジェクタ91が設けられている。インジェクタ91の燃料噴射は、電気的に接続された制御装置100からの指令に応じて制御される。
 図2は、本実施形態に係る制御装置100及び、関連する周辺構成を示す模式的な機能ブロック図である。
 制御装置100は、例えば、コンピュータ等の演算を行う装置であり、互いにバス等で接続されたCPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)、入力ポート、出力ポート等を備え、判定プログラムを実行する。
 また、制御装置100は、判定プログラムの実行により、エンジン回転数取得部110(回転数取得部)、共振判定部120及び、エンジン強制停止制御部130を備える装置として機能する。これら各機能要素は、本実施形態では一体のハードウェアである制御装置100に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。
 エンジン回転数取得部110は、エンジン回転数センサ90から送信されるエンジン回転数Ne(プライマリフライホイール21の回転数に相当)を取得する。エンジン回転数取得部110により取得されるエンジン回転数Neは、共振判定部120に送信される。
 共振判定部120は、エンジン回転数取得部110から送信されるエンジン回転数Neと、デュアルマスフライホイール20の共振回転領域(固有振動数帯域)とを比較することにより、デュアルマスフライホイール20にクランクシャフト11との共振が発生するか否かを判定する。以下、共振判定部120による具体的な判定処理を説明する。なお、以下の説明において、デュアルマスフライホイール20の共振回転領域は、アイドリング回転数(例えば、約600rpm)よりも低い領域に設定されているものとするが、共振回転領域はアイドリング回転数よりも高い領域に設定されてもよい。
 図3Aは、デュアルマスフライホイール20に共振が発生しないと判定された場合の、プライマリフライホイール21の回転数(エンジン回転数Neに相当)の経時変化の一例を模式的に示すタイムチャート図である。なお、以下では、プライマリフライホイール21の回転数を単にエンジン回転数Neとして説明する。
 時刻t0において、エンジン10が始動すると、エンジン回転数Neは周期的に変動しながら次第に上昇する。ここで、エンジン10の始動には、運転者による不図示のイグニッションスイッチのON操作に伴う始動、また、車両1がアイドリングストップ機能を備えていれば、アイドリングストップ条件の解除に伴うエンジン10の再始動も含まれるものとする。
 エンジン回転数Neが時刻t1にて共振回転領域の下限閾値NMinを超え、さらに、時刻t2にて共振回転領域の上限閾値NMaxを超えると、共振判定部120は、制御装置100のタイマ140による計時を開始する。そして、共振判定部120は、時刻t2から時刻t3に至る所定の第1期間に亘って、エンジン回転数Neが共振回転領域の上限閾値NMaxを継続して超えている場合には、デュアルマスフライホイール20に共振が発生しないと判定する。
 このように、エンジン回転数Neが共振回転領域の上限閾値NMaxを超えている状態が所定の第1期間以上継続したことをもって、デュアルマスフライホイール20を共振しないと判定することで、エンジン回転数Neが共振回転領域の上限閾値NMaxを瞬間的に超え、再度共振回転領域まで低下してしまった場合等に、共振が発生しないと誤判定することを効果的に防止できるようになっている。
 なお、共振判定部120は、図3A中に破線Lで示すように、エンジン回転数Neが、時刻t2にて共振回転領域の上限閾値NMaxを超えた後、時刻t3に至るよりも前に上限閾値NMaxを下回った場合には、タイマ140による計時をリセットする。このように、エンジン回転数Neが共振回転領域の上限閾値NMaxを超える状態を所定の第1期間継続できなかった場合には、タイマ140の計時による累積時間を一旦リセットすることで、判定精度の向上が図られるようになる。
 図3Bは、デュアルマスフライホイール20に共振が発生すると判定された場合の、プライマリフライホイール21の回転数(エンジン回転数Ne)の経時変化の一例を模式的に示すタイムチャート図である。
 時刻t0において、エンジン10が始動すると、エンジン回転数Neは周期的に変動しながら次第に上昇する。時刻t1にて、エンジン回転数Neが共振回転領域の下限閾値NMinを超えると、共振判定部120は、制御装置100のタイマ140による計時を開始する。そして、共振判定部120は、時刻t1から時刻t4に至る所定の第2期間(所定の第1期間よりも長い期間)が経過するまでの間に、エンジン回転数Neが共振回転領域の上限閾値NMaxを超える状態を所定の第1期間以上継続しなかった場合には、デュアルマスフライホイール20に共振が発生すると判定する。
 このように、エンジン回転数Neが共振回転領域の下限閾値NMinを超えた時から所定の第2期間が経過するまで間に、エンジン回転数Neが共振回転領域の上限閾値NMaxを超えている状態を所定の第1期間以上継続できなかった場合に、デュアルマスフライホイール20を共振すると判定することで、エンジン回転数Neが共振回転領域内及び該領域の付近に留まって変動している状態を効果的に判別することが可能となり、判定精度の向上を図ることができるようになる。
 図2に戻り、エンジン強制停止制御部130は、共振判定部120によりデュアルマスフライホイール20が共振すると判定されると、インジェクタ91の燃料噴射を停止させることにより、エンジン10を強制的にストールさせる強制停止制御を実行する。強制停止制御が実行されると、当該情報は運転室に設けられた表示装置200に表示される。このように、デュアルマスフライホイール20に共振の可能性がある場合には、エンジン10を強制的にストールさせて共振の発生を未然に回避することにより、デュアルマスフライホイール20の耐久性の低下を効果的に防止することが可能になる。
 なお、強制停止制御の実行回数等の各種情報は、不図示の外部通信装置により車両1の管理基地局等に送信してもよい。また、エンジン10を強制的にストールさせる手法は、インジェクタ91の燃料噴射を停止させる手法に限定されず、動力伝達系の一部を強制的に接続してエンジン10に負荷を掛ける等、他の手法により行ってもよい。
 以上詳述した本実施形態によれば、エンジン10の始動からエンジン回転数Ne(プライマリフライホイール21の回転数)を取得すると共に、取得されるエンジン回転数Neが、プライマリフライホイール21の共振回転領域の上限閾値NMaxを超えている状態を所定の第1期間以上継続した場合には、デュアルマスフライホイール20に共振は発生しないと判定する一方、取得されるエンジン回転数Neが共振回転領域の下限閾値NMinを超えた時から所定の第2期間が経過するまで間に、エンジン回転数Neが上限閾値NMaxを超えている状態を第1期間以上継続しなかった場合には、デュアルマスフライホイール20に共振が発生すると判定するように構成されている。
 これにより、エンジン10の始動からエンジン回転数Neが速やかに上昇して完爆に至る状態と、エンジン回転数Neが共振回転領域の上限閾値NMaxを瞬間的に超えて再度低下してしまう状態や、エンジン回転数Neが共振回転領域に留まって変動している状態とを効果的に判別することが可能となり、共振発生の判定精度を確実に向上することが可能になる。
 また、デュアルマスフライホイール20に共振が発生すると判定された場合には、エンジン10の燃料噴射を停止させて、エンジン10を強制的にストールするように構成されている。これにより、デュアルマスフライホイール20の共振発生を未然に回避することが可能となり、デュアルマスフライホイール20の耐久性の低下を効果的に防止することができる。
 なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
 例えば、上記実施形態は、デュアルマスフライホイール20を備えるエンジン10に適用されるものとして説明したが、シングルマスフライホイールを備えるエンジンにも適用することが可能である。また、本開示の適用は、車両1のエンジン10に限定されず、フライホイールを備えるエンジンであれば、発電機等、他の産業機械のエンジンにも広く適用することが可能である。
 本出願は、2019年3月25日付で出願された日本国特許出願(特願2019-056814)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示の技術によれば、フライホイールの共振発生を高精度に判定することができる。
 10 エンジン
 11 クランクシャフト(出力軸)
 20 デュアルマスフライホイール(フライホイール)
 21 プライマリフライホイール
 22 セカンダリフライホイール
 23 トーションスプリング
 90 エンジン回転数センサ
 91 インジェクタ
 100 制御装置
 110 エンジン回転数取得部(回転数取得部)
 120 共振判定部
 130 エンジン強制停止制御部

Claims (6)

  1.  出力軸にフライホイールが設けられるエンジンの判定装置であって、
     前記出力軸の回転数を取得する回転数取得部と、
     前記エンジンの始動から前記回転数取得部により取得される前記回転数が、前記フライホイールの共振回転領域の上限閾値を超えている状態を所定の第1期間以上継続した場合には、前記フライホイールを前記出力軸と共振しないと判定する一方、取得される前記回転数が前記共振回転領域の下限閾値を超えた時から所定の第2期間が経過するまで間に、該回転数が前記上限閾値を超えている状態を前記第1期間以上継続しなかった場合には、前記フライホイールを前記出力軸と共振すると判定する共振判定部と、を備える
     判定装置。
  2.  前記第2期間が前記第1期間よりも長い期間で設定されている
     請求項1に記載の判定装置。
  3.  前記共振判定部により、前記フライホイールが共振すると判定されると、前記エンジンを強制的に停止させるエンジン強制停止制御部をさらに備える
     請求項1に記載の判定装置。
  4.  前記共振判定部により、前記フライホイールが共振すると判定されると、前記エンジンを強制的に停止させるエンジン強制停止制御部をさらに備える
     請求項2に記載の判定装置。
  5.  出力軸にフライホイールが設けられるエンジンの判定方法であって、
     前記エンジンの始動から前記出力軸の回転数を取得すると共に、取得される前記回転数が、前記フライホイールの共振回転領域の上限閾値を超えている状態を所定の第1期間以上継続した場合には、前記フライホイールを前記出力軸と共振しないと判定する一方、取得される前記回転数が前記共振回転領域の下限閾値を超えた時から所定の第2期間が経過するまで間に、該回転数が前記上限閾値を超えている状態を前記第1期間以上継続しなかった場合には、前記フライホイールを前記出力軸と共振すると判定する
     判定方法。
  6.  出力軸にフライホイールが設けられるエンジンのコンピュータを、
     前記出力軸の回転数を取得する回転数取得部、
     前記エンジンの始動から前記回転数取得部により取得される前記回転数が、前記フライホイールの共振回転領域の上限閾値を超えている状態を所定の第1期間以上継続した場合には、前記フライホイールを前記出力軸と共振しないと判定する一方、取得される前記回転数が前記共振回転領域の下限閾値を超えた時から所定の第2期間が経過するまで間に、該回転数が前記上限閾値を超えている状態を前記第1期間以上継続しなかった場合には、前記フライホイールを前記出力軸と共振すると判定する共振判定部、として機能させる
     判定プログラム。
PCT/JP2020/012586 2019-03-25 2020-03-23 判定装置、判定方法及び、判定プログラム WO2020196359A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080023181.3A CN113614356B (zh) 2019-03-25 2020-03-23 判定装置、判定方法以及存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019056814A JP7131450B2 (ja) 2019-03-25 2019-03-25 判定装置、判定方法及び、判定プログラム
JP2019-056814 2019-03-25

Publications (1)

Publication Number Publication Date
WO2020196359A1 true WO2020196359A1 (ja) 2020-10-01

Family

ID=72611001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012586 WO2020196359A1 (ja) 2019-03-25 2020-03-23 判定装置、判定方法及び、判定プログラム

Country Status (3)

Country Link
JP (1) JP7131450B2 (ja)
CN (1) CN113614356B (ja)
WO (1) WO2020196359A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218664A (zh) * 2021-04-22 2021-08-06 东风柳州汽车有限公司 双质量飞轮共振检测方法、装置、设备及存储介质
CN114526156A (zh) * 2022-01-18 2022-05-24 东风汽车集团股份有限公司 双质量飞轮装置、车辆和车辆的控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054601A (ja) * 2003-08-05 2005-03-03 Isuzu Motors Ltd エンジンの始動時制御方法及び装置
JP2005069206A (ja) * 2003-08-28 2005-03-17 Honda Motor Co Ltd 内燃機関の制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385894B2 (ja) * 2004-08-25 2009-12-16 トヨタ自動車株式会社 エンジンの始動制御方法及び始動制御装置
KR20160063848A (ko) * 2014-11-27 2016-06-07 현대자동차주식회사 차량의 dmf 보호 방법, 및 차량의 dmf 보호 장치
DE102015101005B4 (de) * 2015-01-23 2022-12-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Starten eines Kraftfahrzeugmotors sowie Motorsteuergerät zur Steuerung eines Kraftfahrzeugmotors
CN105402040B (zh) * 2015-10-27 2018-05-22 上海汽车集团股份有限公司 双质量飞轮保护控制方法
JP6766665B2 (ja) * 2017-01-27 2020-10-14 株式会社デンソー 車両用電子制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054601A (ja) * 2003-08-05 2005-03-03 Isuzu Motors Ltd エンジンの始動時制御方法及び装置
JP2005069206A (ja) * 2003-08-28 2005-03-17 Honda Motor Co Ltd 内燃機関の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218664A (zh) * 2021-04-22 2021-08-06 东风柳州汽车有限公司 双质量飞轮共振检测方法、装置、设备及存储介质
CN114526156A (zh) * 2022-01-18 2022-05-24 东风汽车集团股份有限公司 双质量飞轮装置、车辆和车辆的控制方法

Also Published As

Publication number Publication date
JP2020159229A (ja) 2020-10-01
JP7131450B2 (ja) 2022-09-06
CN113614356A (zh) 2021-11-05
CN113614356B (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
JP4831172B2 (ja) 内燃機関の自動停止始動制御装置
WO2020196359A1 (ja) 判定装置、判定方法及び、判定プログラム
KR100740061B1 (ko) 엔진 시동 장치 및 방법
CN110546057B (zh) 通过在发动机运转时检测双质量飞轮进入共振来保护双质量飞轮的方法
JP4135587B2 (ja) エンジンの始動時制御方法及び装置
JP5910945B2 (ja) 内燃機関の始動制御装置
US20160153520A1 (en) Method and device for protecting dual mass flywheel of vehicle
JP3823854B2 (ja) エンジン始動装置
JP4017575B2 (ja) 内燃機関の制御装置
JP6361343B2 (ja) 駆動装置
JP4936558B2 (ja) エンジン制御装置
US20070251482A1 (en) Starter apparatus for vehicle
US11458830B2 (en) Powertrain system
JP2009250071A (ja) 内燃機関の制御装置
EP3318779B1 (en) Damper for absorbing rotational variation
JP6828391B2 (ja) エンジン再始動装置
FR3022302A1 (fr) Procede d'arret d'un moteur a combustion interne de vehicule automobile muni d'un double volant amortisseur
JP4174386B2 (ja) 内燃機関の始動装置
JP6720586B2 (ja) エンジン始動装置
JP2003314415A (ja) ベルト機構の異常検出装置
JP4305411B2 (ja) スタータ用トルク伝達装置
JP2017210900A (ja) 充電制御装置
KR100792887B1 (ko) 하이브리드 전기자동차의 엔진 역회전 방지 방법
JP7151679B2 (ja) 異常検出装置
JP7063054B2 (ja) エンジン自動停止始動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779584

Country of ref document: EP

Kind code of ref document: A1