WO2020195739A1 - マルチコアファイバ母材の製造方法、マルチコアファイバ母材、およびマルチコアファイバ - Google Patents

マルチコアファイバ母材の製造方法、マルチコアファイバ母材、およびマルチコアファイバ Download PDF

Info

Publication number
WO2020195739A1
WO2020195739A1 PCT/JP2020/009956 JP2020009956W WO2020195739A1 WO 2020195739 A1 WO2020195739 A1 WO 2020195739A1 JP 2020009956 W JP2020009956 W JP 2020009956W WO 2020195739 A1 WO2020195739 A1 WO 2020195739A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
clad
rod
core rod
outer periphery
Prior art date
Application number
PCT/JP2020/009956
Other languages
English (en)
French (fr)
Inventor
正典 高橋
幸一 前田
荒井 慎一
杉崎 隆一
昌義 塚本
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2021508959A priority Critical patent/JPWO2020195739A1/ja
Priority to EP20780062.4A priority patent/EP3950614A4/en
Publication of WO2020195739A1 publication Critical patent/WO2020195739A1/ja
Priority to US17/448,077 priority patent/US20220003921A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01222Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multiple core optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core

Definitions

  • the present invention relates to a method for manufacturing a multi-core fiber base material, a multi-core fiber base material, and a multi-core fiber.
  • a multi-core fiber which is an optical fiber having a plurality of core parts
  • a stacking method is known in which a plurality of core rods having a core portion and a clad portion formed on the outer periphery of the core portion are arranged inside a glass tube having circular holes. There is. In the stack method, the core rods are arranged so that each core portion is located at a regular hexagonal grid point.
  • Patent Document 1 discloses a technique for arranging a non-circular capillary tube inside a glass tube having a non-circular hole.
  • Patent Document 1 has a problem that the degree of freedom in design is low because the core can be arranged only on the grid points.
  • the present invention has been made in view of the above, and is a method for manufacturing a multi-core fiber base material, which has high core position accuracy, a small core non-circle, and a high degree of freedom in design, a multi-core fiber base material, and a multi-core. It is an object of the present invention to provide a fiber.
  • the method for producing a multi-core fiber base material comprises a first core portion and a first clad portion formed on the outer periphery of the first core portion.
  • the distances from the points a1 on the straight line that divides the end face into n pieces at the same central angle are at positions X11 to X1n, respectively, and the maximum value of X11 to X1n is set to X1max.
  • points P11 to P1n are set so as to satisfy X1max-r1 ⁇ R1 ⁇ X1min, and the first circular hole having a radius r1 centered on the points P11 to P1n and the point a1 are centered.
  • the method for producing a multi-core fiber base material according to the present invention includes n polygonal first core rods having a first core portion and a first clad portion formed on the outer periphery of the first core portion, and a second core.
  • This is a preparatory step for preparing a polygonal second core rod having a portion and a second clad portion formed on the outer periphery of the second core portion and a columnar clad, the first core rod and the said.
  • Points P21 to P2n are set so that a plurality of overlapping portions where at least a part of the adjacent first core rods overlap are formed at positions where the distances from the points a2 on the straight line to be divided are X21 to X2n, respectively.
  • a hole forming in the clad a first polygonal hole having the points P21 to P2n as the center of gravity and a second polygonal hole having the point a2 as the center of gravity and including all of the plurality of overlapping portions.
  • a contact surface forming step of forming a contact surface which is a flat surface, abuts on a part of the outer periphery of the first core rod and the second core rod. It is characterized by including.
  • a plane forming step of forming a plane on a part of the outer periphery of the first core rod and forming n planes on the outer periphery of the second core rod is performed. Including, in the insertion step, the first core rod and the second core rod are inserted so that the plane of the first core rod and the plane of the second core rod come into contact with each other.
  • the second pores have a softening temperature higher than that of the first clad portion and the clad instead of the second core rod. It is characterized by inserting a clad rod with a low temperature.
  • the method for producing a multi-core fiber base material according to the present invention is characterized in that, in the above invention, the clad rod contains at least one of chlorine, phosphorus, and fluorine.
  • a marker preparation step for preparing a marker rod in the above invention, a marker preparation step for preparing a marker rod, a third pore forming step for forming a third pore, and the marker in the third pore. It is characterized by including a marker insertion step of inserting a rod.
  • the distances from the point a1 on the straight line that divides the end face into n pieces at the same central angle with the point a1 of the end face as the center are located at positions X11 to X1n, respectively.
  • the maximum value of X1n is X1max
  • the minimum value is X1min
  • points P11 to P1n are set so as to satisfy X1max-r1 ⁇ R1 ⁇ X1min
  • the points P11 to P1n are arranged around the points P11 to P1n.
  • a columnar first core rod having a radius r1 having a first clad portion formed on the outer periphery of the first core portion and n first core rods having a radius r1 and the point a1 are arranged around the second core portion and the second core portion.
  • a columnar second core rod having a radius R1 having a second clad portion formed on the outer periphery of the second core portion, and a clad formed on the outer periphery of the first core rod and the second core rod are provided.
  • the first core rod and a part of the outer periphery of the second core rod are characterized in that a contact surface, which is a flat surface that contacts each other, is formed.
  • the multi-core fiber base material according to the present invention is adjacent to positions X21 to X2n, respectively, on a straight line that divides the end face into n pieces at the same center angle with the end face point a2 as the center.
  • Points P21 to P2n are set so that a plurality of overlapping portions in which at least a part of the polygon overlaps are formed, and the points P21 to P2n are arranged as the center of gravity, and the first core portion and the first core portion N polygonal first core rods having a first clad portion formed on the outer periphery and the point a2 are arranged as the center of gravity, and are formed on the outer periphery of the second core portion and the second core portion.
  • a polygonal second core rod having a second clad portion and including all of the plurality of overlapping portions, and a clad formed on the outer periphery of the first core rod and the second core rod are provided.
  • the multi-core fiber base material according to the present invention is characterized in that, in the above invention, the first clad portion and the clad rod having a softening temperature lower than that of the clad are arranged in place of the second core rod.
  • the multi-core fiber according to the present invention has X11 to X1n at positions X11 to X1n on a straight line that divides the end face into n pieces at the same central angle with the end face point a1 as the center.
  • the maximum value is X1max
  • the minimum value is X1min
  • points P11 to P1n are set so as to satisfy X1max-r1 ⁇ R1 ⁇ X1min
  • the points P11 to P1n are arranged as the center, and the first core portion and the first core portion and the first core portion are arranged.
  • N circular first core regions having a radius r1 having a first clad portion formed on the outer circumference of one core portion and the point a1 are arranged around the second core portion and the second core portion.
  • the first core region and a part of the outer periphery of the second core region are characterized in that a contact surface, which is a plane that abuts each other, is formed.
  • the multi-core fiber according to the present invention is a polygon having an end face point a2 as a center and adjacent polygons at positions X21 to X2n on a straight line that divides the end face into n pieces at the same central angle.
  • Points P21 to P2n are set so that a plurality of overlapping portions where at least a part of the above overlaps are formed, and the points P21 to P2n are arranged as the center of gravity, and are arranged on the first core portion and the outer periphery of the first core portion.
  • N first core regions of a polygon having a first clad portion formed and the point a2 are arranged as the center of gravity, and are formed on the outer periphery of the second core portion and the second core portion.
  • a polygonal second core region that has a second clad portion and includes all of the plurality of overlapping portions, and a clad region formed on the outer periphery of the first core region and the second core region.
  • the first core region and a part of the outer periphery of the second core region are characterized in that a contact surface, which is a plane that abuts each other, is formed.
  • the multi-core fiber according to the present invention is characterized in that, in the above invention, a clad region having a softening temperature lower than that of the first clad portion and the clad region is arranged in place of the second core region.
  • the distances from the points a1 on a straight line that divides the end faces into n pieces at the same central angle with the point a1 of the end face of the clad as the center are X11 to X1n, respectively.
  • the maximum value of X11 to X1n is X1max
  • the minimum value is X1min
  • points P11 to P1n are set so as to satisfy X1max-r1 ⁇ R1 ⁇ X1min
  • This is a preparatory step for preparing n columnar first core rods having a radius r1 having a first clad portion formed and a second rod having a second clad portion in the first vacancies.
  • the method for producing a multi-core fiber base material according to the present invention is characterized in that, in the above invention, a marker preparation step for preparing a marker rod and a marker insertion step for inserting the marker rod into the second pore are included. To do.
  • the multi-core fiber according to the present invention has X11 to X1n at positions X11 to X1n on a straight line that divides the end face into n pieces at the same central angle with the end face point a1 as the center.
  • the maximum value is X1max
  • the minimum value is X1min
  • points P11 to P1n are set so as to satisfy X1max-r1 ⁇ R1 ⁇ X1min
  • the points P11 to P1n are arranged as the center, and the first core portion and the first core portion and the first core portion are arranged.
  • first core region having a radius r1 having a first clad portion formed on the outer periphery of the first core portion, and has a softening temperature higher than that of the first clad portion. It is characterized by having a low low temperature softened clad region.
  • FIG. 1 is a cross-sectional view of a multi-core fiber base material manufactured by the method for manufacturing a multi-core fiber base material according to the first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the positional relationship of the cores in the multi-core fiber base material shown in FIG.
  • FIG. 3 is a flowchart showing a method for manufacturing a multi-core fiber.
  • FIG. 4 is a schematic diagram illustrating a line drawing process.
  • FIG. 5 is a cross-sectional view of a multi-core fiber base material manufactured by the method for manufacturing a multi-core fiber base material according to the second embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the positional relationship of the cores in the multi-core fiber base material shown in FIG. FIG.
  • FIG. 7 is a cross-sectional view of a multi-core fiber base material manufactured by the method for manufacturing a multi-core fiber base material according to the third embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of the multi-core fiber base material according to the first modification.
  • FIG. 9 is a cross-sectional view of a multi-core fiber base material manufactured by the method for manufacturing a multi-core fiber base material according to the fourth embodiment of the present invention.
  • FIG. 10 is a diagram for explaining the positional relationship of the cores in the multi-core fiber base material shown in FIG.
  • FIG. 11 is a cross-sectional view of a multi-core fiber base material manufactured by the method for manufacturing a multi-core fiber base material according to the fifth embodiment of the present invention.
  • FIG. 12 is a diagram for explaining the positional relationship of the cores in the multi-core fiber base material shown in FIG.
  • FIG. 1 is a cross-sectional view of a multi-core fiber base material manufactured by the method for manufacturing a multi-core fiber base material according to the first embodiment of the present invention.
  • the multi-core fiber base material 1 includes four first core rods 2, a second core rod 3, and a clad 4.
  • the first core rod 2, the second core rod 3, and the clad 4 are integrated by an integration step described later.
  • FIG. 1 shows a case where the number of the first core rods 2 is four, the number of the first core rods 2 is not particularly limited.
  • the first core rod 2 has a first core portion 2a and a first clad portion 2b formed on the outer periphery of the first core portion 2a.
  • a contact surface 2c which is a flat surface that abuts on the second core rod 3, is formed on a part of the outer circumference of the first core rod 2.
  • the second core rod 3 has a second core portion 3a and a second clad portion 3b formed on the outer periphery of the second core portion 3a.
  • a contact surface 3c which is a flat surface that abuts on the contact surface 2c of the first core rod 2, is formed on a part of the outer circumference of the second core rod 3. That is, the contact surface 2c and the contact surface 3c are planes that abut each other.
  • the first core portion 2a and the second core portion 3a are made of quartz-based glass having a high refractive index, for example, doped with germanium or the like.
  • the refractive indexes of the first core portion 2a and the second core portion 3a may be the same, but may be different.
  • the first clad portion 2b, the second clad portion 3b, and the clad 4 are made of a material having a lower refractive index than the first core portion 2a and the second core portion 3a, and for example, a dopant for adjusting the refractive index is added. It is composed of pure quartz glass, etc.
  • the refractive indexes of the first clad portion 2b, the second clad portion 3b, and the clad 4 may be the same as each other, but may be different from each other.
  • FIG. 2 is a diagram for explaining the positional relationship of the cores in the multi-core fiber base material shown in FIG.
  • the multi-core fiber base material 1 includes four columnar first core rods 2 having a radius r1, a columnar second core rod 3 having a radius R1, a first core rod 2 and a second core rod 3.
  • a clad 4 formed on the outer circumference of the clad 4 is provided.
  • the first core rod 2 is centered on the point a1 on the end face, and the distance from the point a1 on the straight line that divides the end face into four at the same central angle (the central angle in the first embodiment is 90 °) is different. It is arranged around points P11, P12, P13, and P14 of X11, X12, X13, and X14.
  • the distances X11 to X14 are set so as to satisfy X1max-r1 ⁇ R1 ⁇ X1min, where the maximum value is X1max and the minimum value is X1min. Note that X11 to X14 may be the same, but may be different.
  • the contact surface 2c and the contact surface 3c are formed so as to pass through the intersection of a circle having a radius R1 centered on the point a1 and four circles having a radius r1 centered on the points P11 to P14.
  • the second core rod 3 is arranged around the point a1.
  • the point a1 does not have to be arranged at the center of the clad 4.
  • FIG. 3 is a flowchart showing a method for manufacturing a multi-core fiber.
  • the multi-core fiber base material 1 is manufactured in steps S1 to S5 shown in FIG. 3, and the multi-core fiber base material 1 is drawn in step S6 to manufacture the multi-core fiber.
  • step S1 preparation step.
  • the first core rod 2, the second core rod 3, and the clad 4 can be manufactured by using well-known methods such as VAD (Vapor phase Axial Deposition) method, OVD (Outside Vapor Deposition) method, and MCVD (Modified Chemical Vapor Deposition) method, respectively. ..
  • VAD Vapor phase Axial Deposition
  • OVD Outside Vapor Deposition
  • MCVD Modified Chemical Vapor Deposition
  • the distances from the points a1 on the straight line dividing the end face into four at the same central angle are at positions X11 to X14, respectively, where X1max-r1 ⁇ R1 ⁇ X1min Points P11 to P14 are set so as to satisfy the above conditions.
  • a circular first hole having a radius r1 centered on points P11 to P14 and a circular second hole having a radius R1 centered on point a1 are formed in the clad 4 (step S2: hole forming step). ..
  • the first pore and the second pore are formed at the same time by applying heat to the columnar clad 4.
  • the clad 4 in which the first pores and the second pores are formed in advance may be prepared by a powder molding method or the like.
  • a contact surface 2c and a contact surface 3c which are flat surfaces that abut against each other, are formed on a part of the outer periphery of the first core rod 2 and the second core rod 3 (step S3: contact surface forming step).
  • the contact surface 2c and the contact surface 3c are formed by grinding a part of the outer periphery of the columnar first core rod 2 and the second core rod 3.
  • the first core rod 2 and the second core rod 3 on which the contact surface 2c and the contact surface 3c are formed in advance may be prepared by a powder molding method or the like. Further, the order of the pore forming step and the contact surface forming step may be exchanged.
  • step S4 insertion step. Specifically, the first core rod 2 and the second core rod 3 so that the contact surface 2c formed on the outer circumference of the first core rod 2 and the contact surface 3c formed on the outer circumference of the second core rod 3 come into contact with each other. To insert.
  • step S5 integration step
  • heating is performed using a heating furnace to close (collapse) the gap between the first core rod 2, the second core rod 3, and the clad 4 to integrate them.
  • the integration step may be omitted, and the integration and the drawing may be performed at the same time in the drawing step described below.
  • the multi-core fiber base material 1 is manufactured by the process described above.
  • FIG. 4 is a schematic diagram illustrating a line drawing process.
  • the multi-core fiber base material 1 is set in the drawing furnace 11 of the manufacturing apparatus 10, one end is heated and melted by the heater 11a in the drawing furnace 11, and the glass optical fiber 12 is pulled out vertically downward. ..
  • the outer peripheral surface of the glass optical fiber 12 is coated with an ultraviolet curable resin by a coating device 13, and further irradiated with ultraviolet rays by an ultraviolet irradiation device 14, and the applied ultraviolet curable resin is cured and coated.
  • the guide roller 16 guides the multi-core fiber 15 to the take-up machine 17, and the take-up machine 17 winds the multi-core fiber 15 on the bobbin. In this way, the multi-core fiber 15 is manufactured.
  • a tapered member having an outer diameter of a welded portion substantially equal to that of the multi-core fiber base material 1 may be welded to the drawing start end of the multi-core fiber base material 1.
  • the multi-core fiber 15 manufactured by drawing the multi-core fiber base material 1
  • the multi-core fiber 15 has different dimensions, it has the same cross section as that of FIG. 1, and therefore the illustration is omitted. That is, the multi-core fiber 15 is arranged with the end face point a1 as the center and the distances from the points a1 on the straight line dividing the end face into four at the same central angle centered on the points P11 to P14 of X11 to X14, respectively.
  • first core regions corresponding to the first core rod 2 having a radius r1 having a first core portion 2a and a first clad portion 2b formed on the outer periphery of the first core portion 2a.
  • Region a circular second core region having a radius R1 which is arranged around the point a1 and has a second core portion 3a and a second clad portion 3b formed on the outer periphery of the second core portion 3a. It includes (a region corresponding to the second core rod 3) and a clad region (a region corresponding to the clad 4) formed on the outer periphery of the first core region and the second core region.
  • X11 to X14 are set so as to satisfy X1max-r1 ⁇ R1 ⁇ X1min, where the maximum value is X1max and the minimum value is X1min. Note that X11 to X14 may be the same, but may be different.
  • the positional relationship between the first core rod 2 and the second core rod 3 satisfies X1max-r1 ⁇ R1 ⁇ X1min, so that, among the outer peripheral surfaces of the first core rod 2, A surface having an angle of 180 ° or more from the center is in contact with the clad 4.
  • the positioning accuracy is higher than that of the stack method in which the core rods are positioned with each other.
  • the core non-circle is small.
  • the first core portion 2a can be arranged at an arbitrary position other than the grid points, so that the degree of freedom in design is high.
  • FIG. 5 is a cross-sectional view of a multi-core fiber base material manufactured by the method for manufacturing a multi-core fiber base material according to the second embodiment of the present invention.
  • the multi-core fiber base material 21 includes four first core rods 22, a second core rod 23, and a clad 24.
  • the first core rod 22, the second core rod 23, and the clad 24 are integrated by an integration step described later.
  • FIG. 5 shows a case where the number of the first core rods 22 is four, the number of the first core rods 22 is not particularly limited.
  • the first core rod 22 has a first core portion 22a and a first clad portion 22b formed on the outer periphery of the first core portion 22a.
  • the first core rod 22 is formed with a contact surface 22c, which is a flat surface that contacts the second core rod 23.
  • the second core rod 23 has a second core portion 23a and a second clad portion 23b formed on the outer periphery of the second core portion 23a.
  • the first core portion 22a and the second core portion 23a are made of quartz-based glass having a high refractive index, for example, doped with germanium or the like.
  • the refractive indexes of the first core portion 22a and the second core portion 23a may be the same, but may be different.
  • the first clad portion 22b, the second clad portion 23b, and the clad 24 are made of a material having a lower refractive index than the first core portion 22a and the second core portion 23a, and for example, a dopant for adjusting the refractive index is added. It is made of pure quartz glass that has not been used.
  • the refractive indexes of the first clad portion 22b, the second clad portion 23b, and the clad 24 may be the same, but may be different.
  • FIG. 6 is a diagram for explaining the positional relationship of the cores in the multi-core fiber base material shown in FIG.
  • the multi-core fiber base material 21 has four square first core rods 22 whose outer peripheral surfaces have been ground, a square second core rod 23, a first core rod 22 and a second core rod 23.
  • a clad 24 formed on the outer periphery of the surface is provided.
  • the first core rod 22 is centered on the point a2 on the end face, and the distance from the point a2 on the straight line that divides the end face into four at the same center angle (the center angle in the second embodiment is 90 °) is X21.
  • X22, X23, and X24 are arranged with points P21, P22, P23, and P24 set as the center of gravity so as to form four overlapping portions 22d in which a part of adjacent polygons overlaps. Note that X21 to X24 may be the same, but may be different.
  • the second core rod 23 is arranged around the point a2 and includes all four overlapping portions 22d.
  • the point a2 does not have to be arranged at the center of the clad 24.
  • first core rods 22 having a first core portion 22a and a first clad portion 22b formed on the outer periphery of the first core portion 22a, a second core portion 23a, and the second core portion.
  • a quadrangular second core rod 23 having a second clad portion 23b formed on the outer periphery of the 23a and a columnar clad 24 are prepared (step S1: preparation step).
  • the first core rod 22, the second core rod 23, and the clad 24 can be manufactured by using well-known methods such as a VAD method, an OVD method, and a MCVD method, respectively.
  • the columnar core rod may be ground to manufacture the polygonal first core rod 22 and the second core rod 23.
  • the distances from the points a2 on the straight line that divide the end face into four at the same center angle are at positions X21 to X24, respectively, of the first core rod 22 adjacent to each other.
  • Points P21 to P24 are set so that at least four overlapping portions 22d that partially overlap are formed, and a polygonal first hole having the points P21 to P24 as the center of gravity and four overlapping portions having the point a2 as the center of gravity are formed.
  • a polygonal second vacancies including all 22d are formed in the clad 24 (step S2: vacancies forming step).
  • the first hole and the second hole are formed at the same time by applying heat to the columnar clad 24.
  • the clad 24 in which the first pores and the second pores are formed in advance may be prepared by a powder molding method or the like.
  • a contact surface 22c which is a flat surface that abuts on the contact surface 23c of the second core rod 23, is formed on a part of the outer circumference of the first core rod 22 (step S3: contact surface forming step).
  • the contact surface 22c is formed by grinding one surface of the outer circumference of the quadrangular first core rod 22.
  • the first core rod 22 on which the contact surface 22c is formed in advance may be prepared by a powder molding method or the like. Further, the order of the pore forming step and the contact surface forming step may be exchanged. As described above, when at least a part of the outer circumference of the first core rod 22 or the second core rod 23 is flat, a contact surface may be formed on either the first core rod 22 or the second core rod 23.
  • step S4 insertion step. Specifically, the first core rod 22 and the second core rod 23 are inserted so that the contact surface 22c formed on the outer circumference of the first core rod 2 abuts on the outer circumference of the second core rod 23.
  • step S5 integration step
  • heating is performed using a heating furnace to close (collapse) the gap between the first core rod 22, the second core rod 23, and the clad 24 to integrate them.
  • the integration step may be omitted, and the integration and the drawing may be performed at the same time in the drawing step described below.
  • the multi-core fiber base material 21 is manufactured by the process described above.
  • the multi-core fiber base material 21 is drawn (step S6: wire drawing step).
  • the multi-core fiber base material 21 is set in the wire drawing furnace 11 of the manufacturing apparatus 10, and one end is heated and melted by the heater 11a in the wire drawing furnace 11 to rotate the glass optical fiber 12 in the vertical direction. Pull down.
  • the outer peripheral surface of the glass optical fiber 12 is coated with an ultraviolet curable resin by a coating device 13, and further irradiated with ultraviolet rays by an ultraviolet irradiation device 14, and the applied ultraviolet curable resin is cured and coated.
  • the guide roller 16 guides the multi-core fiber 15 to the take-up machine 17, and the take-up machine 17 winds the multi-core fiber 15 on the bobbin. In this way, the multi-core fiber 15 is manufactured.
  • the multi-core fiber 15 manufactured by drawing the multi-core fiber base material 21
  • the multi-core fiber 15 has different dimensions, it has the same cross section as that of FIG. 5, and therefore the illustration is omitted. That is, the multi-core fiber 15 has at least the polygons adjacent to each other at positions X21 to X24 on a straight line that divides the end face into four pieces at the same center angle with the end face point a2 as the center. Points P21 to P24 are set so that four overlapping portions 22d that partially overlap each other are formed, are arranged around the points P21 to P24, and are formed on the outer periphery of the first core portion 22a and the first core portion 22a.
  • the polygonal first core region (region corresponding to the first core rod 22) having the first clad portion 22b and the second core portion 23a and the second core portion are arranged around the point a2.
  • a clad region (a region corresponding to the clad 24) formed on the outer periphery of the second core region is provided. Note that X21 to X24 may be the same, but may be different.
  • the positioning accuracy is high. Further, since there is no gap between the first core rod 22 and the second core rod 23, the core non-circle is small. Further, according to the second embodiment, the first core portion 22a can be arranged at an arbitrary position other than the grid points, so that the degree of freedom in design is high.
  • FIG. 7 is a cross-sectional view of a multi-core fiber base material manufactured by the method for manufacturing a multi-core fiber base material according to the third embodiment of the present invention.
  • the multi-core fiber base material 31 includes four first core rods 32, a clad rod 33, and a clad 34.
  • the first core rod 32, the clad rod 33, and the clad 34 are integrated by an integration step described later.
  • FIG. 7 shows a case where the number of the first core rods 32 is four, the number of the first core rods 32 is not particularly limited.
  • the first core rod 32 has a first core portion 32a and a first clad portion 32b formed on the outer periphery of the first core portion 32a.
  • a flat surface 32c is formed on a part of the outer circumference of the first core rod 32.
  • the clad rod 33 does not have a core portion and has a uniform refractive index.
  • Four planes 33a are formed on the outer circumference of the clad rod 33.
  • the first core portion 32a is made of quartz-based glass having a high refractive index, for example, doped with germanium or the like.
  • the first clad portion 32b, the clad rod 33, and the clad 34 are made of a material having a lower refractive index than that of the first core portion 32a, and are made of, for example, pure quartz glass to which a dopant for adjusting the refractive index is not added. Has been done.
  • the refractive indexes of the first clad portion 32b, the clad rod 33, and the clad 34 may be the same, but may be different.
  • a flat surface 32c is formed on a part of the outer circumference of the first core rod 32, and four planes 32c are formed on the outer circumference of the clad rod 33.
  • 33a is formed (step S3': plane forming step).
  • the first core rod 32 on which the flat surface 32c is formed in advance and the clad rod 33 on which the flat surface 33a is formed may be prepared by a powder forming method or the like.
  • step S4 insertion step. Specifically, the first core rod 32 and the clad rod 33 are inserted so that the plane 32c of the first core rod 32 and the plane 33a of the clad rod 33 come into contact with each other.
  • step S5 is performed in the same manner as in the first embodiment to manufacture the multi-core fiber base material 31.
  • step S6 is performed in the same manner as in the first embodiment to manufacture a multi-core fiber.
  • the positioning accuracy is high. Further, since there is no gap between the first core rod 32 and the clad rod 33, the core non-circle is small. Further, according to the third embodiment, the first core portion 32a can be arranged at an arbitrary position other than the grid points, so that the degree of freedom in design is high.
  • a clad rod may be arranged instead of the second core rod.
  • the clad rod 33 may be a clad rod having a softening temperature lower than that of the first clad portion 32b and the clad 34.
  • the clad rod 33 can lower the softening temperature by containing at least one of chlorine, phosphorus, or fluorine.
  • the clad rod 33 softens first in the integration step, and the gap between the first core rod 32, the clad rod 33, and the clad 34 Since the above is filled, the position shift is less likely to occur, and the position accuracy can be further improved.
  • the clad rod may be arranged in place of the first core rod 2 or the first core rod 22, and further, the clad having a lower softening temperature than the first clad portion and the clad. Rods may be placed.
  • FIG. 8 is a cross-sectional view of the multi-core fiber base material according to the first modification.
  • the second core portion 3a may be displaced from the center of the clad 4.
  • the center of the second core portion 23a or the clad rod 33 may be offset from the center of the clad 24 or the clad 34.
  • FIG. 9 is a cross-sectional view of a multi-core fiber base material manufactured by the method for manufacturing a multi-core fiber base material according to the fourth embodiment of the present invention.
  • the multi-core fiber base material 1B includes four first core rods 2, a second core rod 3, a clad 4, and a marker rod 41.
  • the first core rod 2, the second core rod 3, the clad 4, and the marker rod 41 are integrated by an integration step.
  • FIG. 9 is a cross-sectional view of a multi-core fiber base material manufactured by the method for manufacturing a multi-core fiber base material according to the fourth embodiment of the present invention.
  • the multi-core fiber base material 1B includes four first core rods 2, a second core rod 3, a clad 4, and a marker rod 41.
  • the first core rod 2, the second core rod 3, the clad 4, and the marker rod 41 are integrated by an integration step.
  • the marker rod 41 is made of a material having a refractive index different from that of the clad 4 around the marker rod 41. Other configurations are the same as in the first embodiment.
  • a method for manufacturing a multi-core fiber for manufacturing a multi-core fiber by drawing a line for the multi-core fiber base material 31 manufactured by the method for manufacturing the multi-core fiber base material 31 according to the fourth embodiment of the present invention will be described.
  • a marker rod 41 is prepared as a marker preparation step
  • a third pore is formed as a third pore forming step
  • a marker rod is formed in the third pore as a marker insertion step.
  • the procedure is the same as that of the first embodiment except for the step of inserting the 41.
  • the preparation step of step S1 includes the marker preparation step, and a marker rod having a radius of Rm or less is prepared.
  • the hole forming step of step S2 includes a third hole forming step, and further forms a third hole having a radius Rm.
  • the insertion step of step S4 includes a marker insertion step, and the marker rod 41 is inserted into the third hole.
  • Other steps are the same as in the first embodiment.
  • FIG. 10 is a diagram for explaining the positional relationship of the cores in the multi-core fiber base material shown in FIG.
  • the multi-core fiber base material 1 includes four cylindrical first core rods 2 having a radius r1, a cylindrical second core rod 3 having a radius R1, a first core rod 2 and a second core rod 3 A clad 4 formed on the outer periphery of the rod and at least one columnar marker rod 41 having a radius Rm are provided.
  • Other configurations are the same as in the first embodiment.
  • the plurality of first core portions 2a of the multi-core fiber according to the fourth embodiment can be identified by using the marker rod 41. Can be done.
  • FIG. 11 is a cross-sectional view of a multi-core fiber base material manufactured by the method for manufacturing a multi-core fiber base material according to the fifth embodiment of the present invention.
  • the multi-core fiber base material 1C includes four first core rods 52, a low temperature softening rod 53, and a clad 54.
  • the first core rod 52, the low temperature softening rod 53, and the clad 54 are integrated by an integration step described later.
  • FIG. 7 shows a case where the number of the first core rods 52 is four, the number of the first core rods 52 is not particularly limited.
  • the first core rod 52 has a first core portion 52a and a first clad portion 52b formed on the outer periphery of the first core portion 52a.
  • the low temperature softening rod 53 does not have a core portion and has a uniform refractive index.
  • the first core portion 52a is made of quartz-based glass having a high refractive index and doped with, for example, germanium.
  • the first clad portion 52b, the low temperature softening rod 53, and the clad 54 are made of a material having a lower refractive index than that of the first core portion 52a.
  • the first clad portion 52b and the clad 54 are made of, for example, pure quartz glass to which a dopant for adjusting the refractive index is not added.
  • the refractive indexes of the first clad portion 52b, the low temperature softening rod 53, and the clad 54 may be the same, but may be different. Further, the low temperature softening rod 53 may have a core
  • FIG. 12 is a diagram for explaining the positional relationship of the cores in the multi-core fiber base material shown in FIG.
  • all the columnar first core rods 52 can be inserted into the second holes in the state after being inserted into the first holes.
  • a low temperature softening rod 53 as a second rod having a thickness is prepared.
  • the cross-sectional dimension of the low temperature softening rod 53 is equal to or less than the dimension of the second hole with all the first core rods 52 inserted into the first hole.
  • the low temperature softening rod 53 is a clad rod having a lower softening temperature than the first clad portion 52b and the clad 54.
  • the low temperature softening rod 53 can lower the softening temperature, which is a softening point, by containing at least one of chlorine, phosphorus, or fluorine.
  • step S4 insertion step.
  • step S5 the low temperature softening rod 53 is melted first, and the first core rod 52 in the second pore and the low temperature softening rod 53 in which the gap is melted are filled.
  • step S6 is performed in the same manner as in the first embodiment to manufacture a multi-core fiber.
  • the cross-sectional shape perpendicular to the longitudinal direction of the low-temperature softening rod 53 may be circular or polygonal other than quadrangular.
  • an n-sided shape corresponding to the number n of the first core rods 52 (n: a natural number of 3 or more) is preferable. That is, when the number of the first core rods 52 is n, the cross-sectional shape of the low temperature softening rod 53 is preferably n-sided. Further, it is preferable to insert the n-sided polygon so that the side faces the position of the first core rod 52. As a result, the gap between the first core rod 52 and the low temperature softening rod 53 can be reduced. It is also possible to insert the marker rod 55 into the gap around the low temperature softening rod 53 in the second hole.
  • the maximum value of X11 to X1n is X1max
  • the minimum value is X1min
  • points P11 to P1n are set so as to satisfy X1max-r1 ⁇ R1 ⁇ X1min
  • points P11 to P1n are centered.
  • the low-temperature softening rod 53 having a lower softening temperature than the first clad portion 52b and the clad 54 is inserted into the second pore, so that the low-temperature softening is performed in the integration step. Since the rod 53 can be melted first to fill the second vacancies, not only the step of flattening the first core rod 52 becomes unnecessary, but also misalignment is unlikely to occur, and the position accuracy can be further improved. it can.
  • the present invention is suitable for manufacturing a multi-core fiber having a plurality of core parts.
  • Multi-core fiber base material 2,22,32,52 1st core rod 2a, 22a, 32a, 52a 1st core part 2b, 22b, 32b, 52b 1st clad part 2c, 3c , 22c, 23c Contact surface 3,23 2nd core rod 3a, 23a 2nd core part 3b, 23b 2nd clad part 4,24,34,54 Clad 10
  • Manufacturing equipment 11 Wire drawing furnace 11a Heater 12 Glass optical fiber 13 coating Equipment 14 Ultraviolet irradiation equipment 15 Multi-core fiber 16 Guide roller 17 Winding machine 22d Overlapping part 32c, 33a Flat surface 33 Clad rod 41,55 Marker rod 53 Low temperature softening rod

Abstract

コアの位置精度が高く、コア非円が小さく、かつ設計の自由度が高いマルチコアファイバ母材の製造方法を提供することを目的とする。マルチコアファイバ母材の製造方法は、半径r1の円柱状のn本の第1コアロッドと、半径R1の円柱状の第2コアロッドと、円柱状のクラッドと、を準備し、クラッドの端面の点a1を中心として、該端面を等しい中心角でn個に分割する直線上の点a1からの距離がそれぞれX11~X1nの位置に、X1max-r1<R1<X1minを満たすように点P11~P1nを設定し、点P11~P1nを中心とする半径r1の円形の第1空孔と、点a1を中心とする半径R1の円形の第2空孔と、をクラッドに形成し、第1空孔に第1コアロッドを、第2空孔に第2コアロッドをそれぞれ挿入し、熱処理によって第1コアロッドと第2コアロッドとクラッドとを一体化する。

Description

マルチコアファイバ母材の製造方法、マルチコアファイバ母材、およびマルチコアファイバ
 本発明は、マルチコアファイバ母材の製造方法、マルチコアファイバ母材、およびマルチコアファイバに関する。
 複数のコア部を有する光ファイバであるマルチコアファイバが知られている。このマルチコアファイバの製造方法として、円形の空孔を有するガラス管の内側に、コア部と該コア部の外周に形成されているクラッド部とを有する複数のコアロッドを配置するスタック法が知られている。スタック法では、各コア部が正六角形の格子点に位置するようにコアロッドを配置する。
 スタック法では、コアロッド間、およびコアロッドとガラス管との間に隙間が生じることにより、コアの位置精度が低い、コアが非円形になる(コア非円が大きい)という課題がある。この課題を解決する技術として、特許文献1には、非円形の空孔を有するガラス管の内側に非円形のキャピラリ管を配置する技術が開示されている。
特許第5888966号公報
 しかしながら、特許文献1の技術では、コアを格子点上にしか配置できないため、設計の自由度が低いという課題があった。
 本発明は、上記に鑑みてなされたものであって、コアの位置精度が高く、コア非円が小さく、かつ設計の自由度が高いマルチコアファイバ母材の製造方法、マルチコアファイバ母材、およびマルチコアファイバを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るマルチコアファイバ母材の製造方法は、第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する半径r1の円柱状のn本の第1コアロッドと、第2コア部と該第2コア部の外周に形成されている第2クラッド部とを有する半径R1の円柱状の第2コアロッドと、円柱状のクラッドと、を準備する準備工程であって、前記第1コアロッドおよび前記第2コアロッドの外周の一部には、互いに当接する平面である当接面が形成されている準備工程と、前記クラッドの端面の点a1を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a1からの距離がそれぞれX11~X1nの位置に、X11~X1nの最大値をX1max、最小値をX1minとして、X1max-r1<R1<X1minを満たすように点P11~P1nを設定し、前記点P11~P1nを中心とする半径r1の円形の第1空孔と、前記点a1を中心とする半径R1の円形の第2空孔と、を前記クラッドに形成する空孔形成工程と、前記第1空孔に前記第1コアロッドを、前記第2空孔に前記第2コアロッドをそれぞれ挿入する挿入工程と、熱処理によって前記第1コアロッドと前記第2コアロッドと前記クラッドとを一体化する一体化工程と、を含むことを特徴とする。
 本発明に係るマルチコアファイバ母材の製造方法は、第1コア部と該第1コア部の外周に形成された第1クラッド部とを有する多角形のn本の第1コアロッドと、第2コア部と該第2コア部の外周に形成されている第2クラッド部とを有する多角形の第2コアロッドと、円柱状のクラッドと、を準備する準備工程であって、前記第1コアロッドおよび前記第2コアロッドの外周の一部には、互いに当接する平面である当接面が形成されている準備工程と、前記クラッドの端面の点a2を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a2からの距離がそれぞれX21~X2nの位置に、隣接する前記第1コアロッドの少なくとも一部が重なる複数の重なり部が形成されるように点P21~P2nを設定し、前記点P21~P2nを重心とする多角形の第1空孔と、前記点a2を重心として前記複数の重なり部を全て包含する多角形の第2空孔と、を前記クラッドに形成する空孔形成工程と、前記第1空孔に前記第1コアロッドを、前記第2空孔に前記第2コアロッドをそれぞれ挿入する挿入工程と、熱処理によって前記第1コアロッドと前記第2コアロッドと前記クラッドとを一体化する一体化工程と、を含むことを特徴とする。
 本発明に係るマルチコアファイバ母材の製造方法では、上記発明において、前記第1コアロッドおよび前記第2コアロッドの外周の一部に、互いに当接する平面である当接面を形成する当接面形成工程を含むことを特徴とする。
 本発明に係るマルチコアファイバ母材の製造方法では、上記発明において、前記第1コアロッドの外周の一部に平面を形成し、前記第2コアロッドの外周にn個の平面を形成する平面形成工程を含み、前記挿入工程において、前記第1コアロッドの平面と前記第2コアロッドの平面とが当接するように前記第1コアロッドおよび前記第2コアロッドを挿入することを特徴とする。
 本発明に係るマルチコアファイバ母材の製造方法では、上記発明において、前記挿入工程において、前記第2空孔には、前記第2コアロッドに換えて、前記第1クラッド部および前記クラッドよりも軟化温度が低いクラッドロッドを挿入することを特徴とする。
 本発明に係るマルチコアファイバ母材の製造方法では、上記発明において、前記クラッドロッドは、塩素、リン、またはフッ素の少なくとも1つを含有することを特徴とする。
 本発明に係るマルチコアファイバ母材の製造方法では、上記発明において、マーカロッドを準備するマーカ準備工程と、第3空孔を形成する第3空孔形成工程と、前記第3空孔に前記マーカロッドを挿入するマーカ挿入工程と、を含むことを特徴とする。
 本発明に係るマルチコアファイバ母材は、端面の点a1を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a1からの距離がそれぞれX11~X1nの位置に、X11~X1nの最大値をX1max、最小値をX1minとして、X1max-r1<R1<X1minを満たすように点P11~P1nを設定し、前記点P11~P1nを中心として配置されており、第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する半径r1の円柱状のn本の第1コアロッドと、前記点a1を中心として配置されており、第2コア部と該第2コア部の外周に形成されている第2クラッド部とを有する半径R1の円柱状の第2コアロッドと、前記第1コアロッドおよび前記第2コアロッドの外周に形成されているクラッドと、を備え、前記第1コアロッドおよび前記第2コアロッドの外周の一部には、互いに当接する平面である当接面が形成されていることを特徴とする。
 本発明に係るマルチコアファイバ母材は、端面の点a2を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a2からの距離がそれぞれX21~X2nの位置に、隣接する多角形の少なくとも一部が重なる複数の重なり部が形成されるように点P21~P2nを設定し、前記点P21~P2nを重心として配置されており、第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する多角形のn本の第1コアロッドと、前記点a2を重心として配置されており、第2コア部と該第2コア部の外周に形成されている第2クラッド部とを有し、前記複数の重なり部を全て包含する多角形の第2コアロッドと、前記第1コアロッドおよび前記第2コアロッドの外周に形成されているクラッドと、備え、前記第1コアロッドおよび前記第2コアロッドの外周の一部には、互いに当接する平面である当接面が形成されていることを特徴とする。
 本発明に係るマルチコアファイバ母材では、上記発明において、前記第2コアロッドに換えて、前記第1クラッド部および前記クラッドよりも軟化温度が低いクラッドロッドが配置されていることを特徴とする。
 本発明に係るマルチコアファイバは、端面の点a1を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a1からの距離がそれぞれX11~X1nの位置に、X11~X1nの最大値をX1max、最小値をX1minとして、X1max-r1<R1<X1minを満たすように点P11~P1nを設定し、前記点P11~P1nを中心として配置されており、第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する半径r1の円形のn個の第1コア領域と、前記点a1を中心として配置されており、第2コア部と該第2コア部の外周に形成されている第2クラッド部とを有する半径R1の円形の第2コア領域と、前記第1コア領域および前記第2コア領域の外周に形成されているクラッド領域と、を備え、前記第1コア領域および前記第2コア領域の外周の一部には、互いに当接する平面である当接面が形成されていることを特徴とする。
 本発明に係るマルチコアファイバは、端面の点a2を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a2からの距離がそれぞれX21~X2nの位置に、隣接する多角形の少なくとも一部が重なる複数の重なり部が形成されるように点P21~P2nを設定し、前記点P21~P2nを重心として配置されており、第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する多角形のn個の第1コア領域と、前記点a2を重心として配置されており、第2コア部と該第2コア部の外周に形成されている第2クラッド部とを有し、前記複数の重なり部を全て包含する多角形の第2コア領域と、前記第1コア領域および前記第2コア領域の外周に形成されているクラッド領域と、備え、前記第1コア領域および前記第2コア領域の外周の一部には、互いに当接する平面である当接面が形成されていることを特徴とする。
 本発明に係るマルチコアファイバでは、上記発明において、前記第2コア領域に換えて、前記第1クラッド部および前記クラッド領域よりも軟化温度が低いクラッド領域が配置されていることを特徴とする。
 本発明に係るマルチコアファイバ母材の製造方法は、クラッドの端面の点a1を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a1からの距離がそれぞれX11~X1nの位置に、X11~X1nの最大値をX1max、最小値をX1minとして、X1max-r1<R1<X1minを満たすように点P11~P1nを設定し、前記点P11~P1nを中心とする半径r1の円形の第1空孔と、前記点a1を中心とする半径R1の円形の第2空孔と、を前記クラッドに形成する空孔形成工程と、第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する半径r1の円柱状のn本の第1コアロッドと、第2クラッド部を有する第2ロッドとを準備する準備工程であって、前記第1空孔に前記第1コアロッドを挿入した状態で前記第2空孔に挿入可能な大きさを有するとともに、前記第1クラッド部および前記クラッドより軟化点が低い前記第2ロッドを準備する準備工程と、前記第1空孔に前記第1コアロッドを、前記第2空孔に前記第2ロッドをそれぞれ挿入する挿入工程と、熱処理によって前記第1コアロッドと前記第2ロッドと前記クラッドとを一体化する一体化工程と、を含むことを特徴とする。
 本発明に係るマルチコアファイバ母材の製造方法では、上記発明において、マーカロッドを準備するマーカ準備工程と、前記第2空孔に前記マーカロッドを挿入するマーカ挿入工程と、を含むことを特徴とする。
 本発明に係るマルチコアファイバは、端面の点a1を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a1からの距離がそれぞれX11~X1nの位置に、X11~X1nの最大値をX1max、最小値をX1minとして、X1max-r1<R1<X1minを満たすように点P11~P1nを設定し、前記点P11~P1nを中心として配置されており、第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する半径r1の円形のn個の第1コア領域と、前記点a1を中心として配置され、前記第1クラッド部よりも軟化温度が低い低温軟化クラッド領域と、を備えることを特徴とする。
 本発明によれば、コアの位置精度が高く、コア非円が小さく、かつ設計の自由度が高いマルチコアファイバ母材の製造方法、マルチコアファイバ母材、およびマルチコアファイバ、という効果を奏する。
図1は、本発明の第1の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の断面図である。 図2は、図1に示すマルチコアファイバ母材におけるコアの位置関係を説明するための図である。 図3は、マルチコアファイバの製造方法を示すフローチャートである。 図4は、線引き工程について説明する模式図である。 図5は、本発明の第2の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の断面図である。 図6は、図5に示すマルチコアファイバ母材におけるコアの位置関係を説明するための図である。 図7は、本発明の第3の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の断面図である。 図8は、変形例1によるマルチコアファイバ母材の断面図である。 図9は、本発明の第4の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の断面図である。 図10は、図9に示すマルチコアファイバ母材におけるコアの位置関係を説明するための図である。 図11は、本発明の第5の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の断面図である。 図12は、図11に示すマルチコアファイバ母材におけるコアの位置関係を説明するための図である。
 以下に、図面を参照して、本発明を実施するための形態(以下、実施形態)について説明する。なお、以下に説明する実施形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率等は、現実と異なる場合がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、図中で適宜xyz座標軸を示し、これにより方向を説明する。
 また、図面の記載において、同一または対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
(第1の実施形態)
〔マルチコアファイバ母材の構成〕
 まず、本発明の第1の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の構成を説明する。図1は、本発明の第1の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の断面図である。図1に示すように、マルチコアファイバ母材1は、4本の第1コアロッド2と、第2コアロッド3と、クラッド4と、を備える。ただし、第1コアロッド2と第2コアロッド3とクラッド4とは、後述する一体化工程によって一体化されている。図1には、第1コアロッド2が4本である場合を図示したが、第1コアロッド2の本数は特に限定されない。
 第1コアロッド2は、第1コア部2aと該第1コア部2aの外周に形成されている第1クラッド部2bとを有する。第1コアロッド2の外周の一部には、第2コアロッド3に当接する平面である当接面2cが形成されている。
 第2コアロッド3は、第2コア部3aと該第2コア部3aの外周に形成されている第2クラッド部3bとを有する。第2コアロッド3の外周の一部には、第1コアロッド2の当接面2cに当接する平面である当接面3cが形成されている。すなわち、当接面2cおよび当接面3cは、互いに当接する平面である。
 第1コア部2aおよび第2コア部3aは、例えばゲルマニウムなどがドープされた屈折率の高い石英系ガラスによって構成されている。第1コア部2aと第2コア部3aとの屈折率は、同一であってよいが、異なっていてもよい。
 第1クラッド部2b、第2クラッド部3b、およびクラッド4は、第1コア部2aおよび第2コア部3aよりも屈折率の低い材料から構成され、例えば屈折率調整用のドーパントが添加されていない純石英ガラスなどで構成されている。第1クラッド部2bと第2クラッド部3bとクラッド4との屈折率は、互いに同一であってよいが、互いに異なっていてもよい。
 図2は、図1に示すマルチコアファイバ母材におけるコアの位置関係を説明するための図である。図2に示すように、マルチコアファイバ母材1は、半径r1の円柱状の4本の第1コアロッド2と、半径R1の円柱状の第2コアロッド3と、第1コアロッド2および第2コアロッド3の外周に形成されているクラッド4と、を備える。
 第1コアロッド2は、端面の点a1を中心として、該端面を等しい中心角(本第1の実施形態における中心角は90°)で4個に分割する直線上の点a1からの距離がそれぞれX11,X12,X13,X14の点P11,P12,P13,P14を中心として配置されている。距離X11~X14は、最大値をX1max、最小値をX1minとして、X1max-r1<R1<X1minを満たすように設定されている。なお、X11~X14は、同一であってもよいが、異なっていてもよい。
 当接面2cおよび当接面3cは、点a1を中心とする半径R1の円と、点P11~P14を中心とする半径r1の4つの円との交点を通るように形成されている。
 第2コアロッド3は、点a1を中心として配置されている。なお、点a1は、クラッド4の中心に配置されていなくてもよい。
〔マルチコアファイバの製造方法〕
 次に、本発明の第1の実施形態によるマルチコアファイバ母材1の製造方法によって製造したマルチコアファイバ母材1を線引きしてマルチコアファイバを製造するマルチコアファイバの製造方法を説明する。図3は、マルチコアファイバの製造方法を示すフローチャートである。図3に示すステップS1~S5によりマルチコアファイバ母材1を製造し、ステップS6でマルチコアファイバ母材1を線引きしてマルチコアファイバが製造される。
 まず、第1コア部2aと該第1コア部2aの外周に形成されている第1クラッド部2bとを有する半径r1の円柱状の4本の第1コアロッド2と、第2コア部3aと該第2コア部3aの外周に形成されている第2クラッド部3bとを有する半径R1の円柱状の第2コアロッド3と、円柱状のクラッド4と、を準備する(ステップS1:準備工程)。第1コアロッド2、第2コアロッド3、クラッド4は、それぞれVAD(Vapor phase Axial Deposition)法、OVD(Outside Vapor Deposition)法、MCVD(Modified Chemical Vapor Deposition)法などの周知の方法を用いて製造できる。
 続いて、クラッド4の端面の点a1を中心として、該端面を等しい中心角で4個に分割する直線上の点a1からの距離がそれぞれX11~X14の位置に、X1max-r1<R1<X1minを満たすように点P11~P14を設定する。点P11~P14を中心とする半径r1の円形の第1空孔と、点a1を中心とする半径R1の円形の第2空孔とをクラッド4に形成する(ステップS2:空孔形成工程)。第1空孔および第2空孔は、円柱状のクラッド4に熱を加えることによって、同時に形成される。また、粉体成形法などにより、あらかじめ第1空孔および第2空孔が形成されたクラッド4を準備してもよい。
 また、第1コアロッド2および第2コアロッド3の外周の一部に、互いに当接する平面である当接面2cおよび当接面3cを形成する(ステップS3:当接面形成工程)。円柱状の第1コアロッド2および第2コアロッド3の外周の一部を研削することにより、当接面2cおよび当接面3cが形成される。なお、粉体成形法などにより、あらかじめ当接面2cおよび当接面3cが形成された第1コアロッド2および第2コアロッド3を準備してもよい。また、空孔形成工程と当接面形成工程とは、順序を入れ換えてもよい。
 そして、第1空孔に第1コアロッド2を、第2空孔に第2コアロッド3をそれぞれ挿入する(ステップS4:挿入工程)。具体的には、第1コアロッド2の外周に形成された当接面2cおよび第2コアロッド3の外周に形成された当接面3cが互いに当接するように、第1コアロッド2および第2コアロッド3を挿入する。
 その後、熱処理によって第1コアロッド2と第2コアロッド3とクラッド4とを一体化する(ステップS5:一体化工程)。一体化工程では、例えば加熱炉を用いて加熱し、第1コアロッド2と第2コアロッド3とクラッド4との隙間を塞いで(コラプスして)一体化させる。なお、一体化工程を省略し、次に説明する線引き工程にて一体化と線引きとを同時に行ってもよい。以上説明した工程によりマルチコアファイバ母材1が製造される。
 続いて、マルチコアファイバ母材1を線引きする(ステップS6:線引工程)。図4は、線引き工程について説明する模式図である。図4に示すように、マルチコアファイバ母材1を製造装置10の線引炉11にセットし、一端を線引炉11内のヒータ11aによって加熱溶融してガラス光ファイバ12を鉛直方向下向きに引き出す。その後、ガラス光ファイバ12の外周表面に紫外線硬化性樹脂を被覆装置13で塗付し、さらに、紫外線照射装置14によって紫外線を照射し、塗布した紫外線硬化性樹脂を硬化させて被覆したマルチコアファイバ15とする。そして、ガイドローラ16は、マルチコアファイバ15を巻取機17に案内し、巻取機17が、マルチコアファイバ15をボビンに巻き取る。このようにして、マルチコアファイバ15が製造される。
 なお、マルチコアファイバ母材1を製造装置10にセットする前にマルチコアファイバ母材1の線引き開始端に、溶着部の外径がマルチコアファイバ母材1とほぼ等しいテーパ部材を溶着してもよい。これにより線引き開始時の製造ロスが小さくなる上、組立てた母材の多くを製品部として使用できる。
〔マルチコアファイバの構成〕
 次に、マルチコアファイバ母材1を線引きして製造されたマルチコアファイバ15の構成を説明する。マルチコアファイバ15は、寸法は異なるが図1と同様の断面であるから図示を省略する。すなわち、マルチコアファイバ15は、端面の点a1を中心として、該端面を等しい中心角で4個に分割する直線上の点a1からの距離がそれぞれX11~X14の点P11~P14を中心として配置されており、第1コア部2aと該第1コア部2aの外周に形成されている第1クラッド部2bとを有する半径r1の円形の4個の第1コア領域(第1コアロッド2に対応する領域)と、点a1を中心として配置されており、第2コア部3aと該第2コア部3aの外周に形成されている第2クラッド部3bとを有する半径R1の円形の第2コア領域(第2コアロッド3に対応する領域)と、第1コア領域および第2コア領域の外周に形成されているクラッド領域(クラッド4に対応する領域)と、を備える。X11~X14は、最大値をX1max、最小値をX1minとして、X1max-r1<R1<X1minを満たすように設定されている。なお、X11~X14は、同一であってもよいが、異なっていてもよい。
 以上説明した第1の実施形態によれば、第1コアロッド2および第2コアロッド3の位置関係が、X1max-r1<R1<X1minを満たしていることにより、第1コアロッド2の外周面のうち、中心からのなす角が180°以上の面がクラッド4に当接している。その結果、各第1コアロッド2がクラッド4によって位置決めされているため、コアロッド同士が互いに位置決めするスタック法よりも位置精度が高い。さらに、第1コアロッド2と第2コアロッド3との間に隙間がないため、コア非円が小さい。また、第1の実施形態によれば、第1コア部2aを格子点以外の任意の位置に配置することができるため、設計の自由度が高い。
(第2の実施形態)
〔マルチコアファイバ母材の構成〕
 次に、本発明の第2の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の構成を説明する。図5は、本発明の第2の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の断面図である。図5に示すように、マルチコアファイバ母材21は、4本の第1コアロッド22と、第2コアロッド23と、クラッド24と、を備える。ただし、第1コアロッド22と第2コアロッド23とクラッド24とは、後述する一体化工程によって一体化されている。図5には、第1コアロッド22が4本である場合を図示したが、第1コアロッド22の本数は特に限定されない。
 第1コアロッド22は、第1コア部22aと該第1コア部22aの外周に形成されている第1クラッド部22bとを有する。第1コアロッド22には、第2コアロッド23に当接する平面である当接面22cが形成されている。
 第2コアロッド23は、第2コア部23aと該第2コア部23aの外周に形成されている第2クラッド部23bとを有する。
 第1コア部22aおよび第2コア部23aは、例えばゲルマニウムなどがドープされた屈折率の高い石英系ガラスによって構成されている。第1コア部22aと第2コア部23aとの屈折率は、同一であってよいが、異なっていてもよい。
 第1クラッド部22b、第2クラッド部23b、およびクラッド24は、第1コア部22aおよび第2コア部23aよりも屈折率の低い材料で構成されており、例えば屈折率調整用のドーパントが添加されていない純石英ガラスなどで構成されている。第1クラッド部22bと第2クラッド部23bとクラッド24との屈折率は、同一であってよいが、異なっていてもよい。
 図6は、図5に示すマルチコアファイバ母材におけるコアの位置関係を説明するための図である。図6に示すように、マルチコアファイバ母材21は、外周の1面が研削された四角形の4本の第1コアロッド22と、四角形の第2コアロッド23と、第1コアロッド22および第2コアロッド23の外周に形成されたクラッド24と、を備える。
 第1コアロッド22は、端面の点a2を中心として、該端面を等しい中心角(第2の実施形態における中心角は90°)で4個に分割する直線上の点a2からの距離がそれぞれX21,X22,X23,X24の位置に、隣接する多角形の一部が重なる4つの重なり部22dが形成されるように設定された点P21,P22,P23,P24を重心として配置されている。なお、X21~X24は、同一であってもよいが、異なっていてもよい。
 第2コアロッド23は、点a2を中心として配置されており、4つの重なり部22dを全て包含する。なお、点a2は、クラッド24の中心に配置されていなくてもよい。
〔マルチコアファイバの製造方法〕
 次に、本発明の第2の実施形態によるマルチコアファイバ母材21の製造方法によって製造したマルチコアファイバ母材21を線引きしてマルチコアファイバを製造するマルチコアファイバの製造方法を説明する。マルチコアファイバの製造方法の工程は、図3と同様であるから図示を省略する。
 まず、第1コア部22aと該第1コア部22aの外周に形成された第1クラッド部22bとを有する四角形の4本の第1コアロッド22と、第2コア部23aと該第2コア部23aの外周に形成されている第2クラッド部23bとを有する四角形の第2コアロッド23と、円柱状のクラッド24と、を準備する(ステップS1:準備工程)。第1コアロッド22、第2コアロッド23、およびクラッド24は、それぞれVAD法、OVD法、MCVD法などの周知の方法を用いて製造できる。また、円柱状のコアロッドを研削して多角形の第1コアロッド22および第2コアロッド23を製造してもよい。
 続いて、クラッド24の端面の点a2を中心として、該端面を等しい中心角で4個に分割する直線上の点a2からの距離がそれぞれX21~X24の位置に、隣接する第1コアロッド22の少なくとも一部が重なる4つの重なり部22dが形成されるように点P21~P24を設定し、点P21~P24を重心とする多角形の第1空孔と、点a2を重心として4つの重なり部22dを全て包含する多角形の第2空孔と、をクラッド24に形成する(ステップS2:空孔形成工程)。第1空孔および第2空孔は、円柱状のクラッド24に熱を加えることによって、同時に形成される。また、粉体成形法などにより、あらかじめ第1空孔および第2空孔が形成されたクラッド24を準備してもよい。
 また、第1コアロッド22の外周の一部に、第2コアロッド23の当接面23cに当接する平面である当接面22cを形成する(ステップS3:当接面形成工程)。四角形の第1コアロッド22の外周の一面を研削することにより、当接面22cが形成される。なお、粉体成形法などにより、あらかじめ当接面22cが形成された第1コアロッド22を準備してもよい。また、空孔形成工程と当接面形成工程とは、順序を入れ換えてもよい。このように、第1コアロッド22または第2コアロッド23の外周の少なくとも一部が平面である場合、第1コアロッド22または第2コアロッド23のいずれか一方に当接面を形成してもよい。
 次に、第1空孔に第1コアロッド22を、第2空孔に第2コアロッド23をそれぞれ挿入する(ステップS4:挿入工程)。具体的には、第1コアロッド2の外周に形成された当接面22cが第2コアロッド23の外周に当接するように第1コアロッド22および第2コアロッド23を挿入する。
 その後、熱処理によって第1コアロッド22と第2コアロッド23とクラッド24とを一体化する(ステップS5:一体化工程)。一体化工程では、例えば加熱炉を用いて加熱し、第1コアロッド22と第2コアロッド23とクラッド24との隙間を塞いで(コラプスして)一体化させる。なお、一体化工程を省略し、次に説明する線引き工程にて一体化と線引きを同時に行ってもよい。以上説明した工程によりマルチコアファイバ母材21が製造される。
 続いて、マルチコアファイバ母材21を線引きする(ステップS6:線引工程)。図4を用いて説明したように、マルチコアファイバ母材21を製造装置10の線引炉11にセットし、一端を線引炉11内のヒータ11aによって加熱溶融してガラス光ファイバ12を鉛直方向下向きに引き出す。その後、ガラス光ファイバ12の外周表面に紫外線硬化性樹脂を被覆装置13で塗付し、さらに、紫外線照射装置14によって紫外線を照射し、塗布した紫外線硬化性樹脂を硬化させて被覆したマルチコアファイバ15とする。そして、ガイドローラ16は、マルチコアファイバ15を巻取機17に案内し、巻取機17が、マルチコアファイバ15をボビンに巻き取る。このようにして、マルチコアファイバ15が製造される。
〔マルチコアファイバの構成〕
 次に、マルチコアファイバ母材21を線引きして製造されたマルチコアファイバ15の構成を説明する。マルチコアファイバ15は、寸法は異なるが図5と同様の断面であるから図示を省略する。すなわち、マルチコアファイバ15は、端面の点a2を中心として、該端面を等しい中心角で4個に分割する直線上の点a2からの距離がそれぞれX21~X24の位置に、隣接する多角形の少なくとも一部が重なる4つの重なり部22dが形成されるように点P21~P24を設定し、点P21~P24を中心として配置され、第1コア部22aと該第1コア部22aの外周に形成された第1クラッド部22bとを有する多角形の4個の第1コア領域(第1コアロッド22に対応する領域)と、点a2を中心として配置され、第2コア部23aと該第2コア部23aの外周に形成されている第2クラッド部23bとを有し、4つの重なり部22dを全て包含する多角形の第2コア領域(第2コアロッド23に対応する領域)と、第1コア領域および第2コア領域の外周に形成されているクラッド領域(クラッド24に対応する領域)と、備える。なお、X21~X24は、同一であってもよいが、異なっていてもよい。
 以上説明した第2の実施形態によれば、第1コアロッド22と第2コアロッド23とがクラッド24によって位置決めされるため、位置精度が高い。さらに、第1コアロッド22と第2コアロッド23との間に隙間がないため、コア非円が小さい。また、第2の実施形態によれば、第1コア部22aを格子点以外の任意の位置に配置することができるため、設計の自由度が高い。
(第3の実施形態)
〔マルチコアファイバ母材の構成〕
 次に、本発明の第3の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の構成を説明する。図7は、本発明の第3の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の断面図である。図7に示すように、マルチコアファイバ母材31は、4本の第1コアロッド32と、クラッドロッド33と、クラッド34と、を備える。ただし、第1コアロッド32とクラッドロッド33とクラッド34とは、後述する一体化工程によって一体化されている。図7には、第1コアロッド32が4本である場合を図示したが、第1コアロッド32の本数は特に限定されない。
 第1コアロッド32は、第1コア部32aと該第1コア部32aの外周に形成されている第1クラッド部32bとを有する。第1コアロッド32の外周の一部には、平面32cが形成されている。
 クラッドロッド33は、コア部を有しておらず、屈折率が均一である。クラッドロッド33の外周には、4つの平面33aが形成されている。
 第1コア部32aは、例えばゲルマニウムなどがドープされた屈折率の高い石英系ガラスによって構成されている。
 第1クラッド部32b、クラッドロッド33およびクラッド34は、第1コア部32aよりも屈折率の低い材料で構成されており、例えば屈折率調整用のドーパントが添加されていない純石英ガラスなどで構成されている。第1クラッド部32bとクラッドロッド33とクラッド34との屈折率は、同一であってよいが、異なっていてもよい。
〔マルチコアファイバの製造方法〕
 次に、本発明の第3の実施形態によるマルチコアファイバ母材31の製造方法によって製造したマルチコアファイバ母材31を線引きしてマルチコアファイバを製造するマルチコアファイバの製造方法を説明する。当接面形成工程以外の工程は第1の実施形態と同様であってよいので、説明を省略する。
 第1の実施形態と同様にステップS1~S2を行った後、当接面形成工程に換えて、第1コアロッド32の外周の一部に平面32cを形成し、クラッドロッド33の外周に4個の平面33aを形成する(ステップS3’:平面形成工程)。なお、粉体成形法などにより、あらかじめ平面32cが形成された第1コアロッド32および平面33aが形成されたクラッドロッド33を準備してもよい。
 そして、第1空孔に第1コアロッド32を、第2空孔にクラッドロッド33をそれぞれ挿入する(ステップS4:挿入工程)。具体的には、第1コアロッド32の平面32cとクラッドロッド33の平面33aとが当接するように第1コアロッド32およびクラッドロッド33を挿入する。その後、第1の実施形態と同様にステップS5を行いマルチコアファイバ母材31が製造される。さらに、第1の実施形態と同様にステップS6を行いマルチコアファイバが製造される。
 以上説明した第3の実施形態によれば、第1コアロッド32とクラッドロッド33とがクラッド34に位置決めされるため、位置精度が高い。さらに、第1コアロッド32とクラッドロッド33との間に隙間がないため、コア非円が小さい。また、第3の実施形態によれば、第1コア部32aを格子点以外の任意の位置に配置することができるため、設計の自由度が高い。
 また、第3の実施形態のように、第2コアロッドに代えてクラッドロッドを配置してもよい。さらに、クラッドロッド33は、第1クラッド部32bおよびクラッド34よりも軟化温度が低いクラッドロッドであってもよい。クラッドロッド33は、塩素、リん、またはフッ素の少なくとも1つを含有することにより、軟化温度を低くすることができる。クラッドロッド33が第1クラッド部32bおよびクラッド34よりも軟化温度が低いと、一体化工程において、クラッドロッド33が先に軟化し、第1コアロッド32とクラッドロッド33とクラッド34との間の隙間を埋めるため、位置ずれが生じにくく、さらに位置精度を向上させることができる。第1の実施形態および第2の実施形態においても、第1コアロッド2または第1コアロッド22に代えてクラッドロッドを配置してもよく、さらに、第1クラッド部およびクラッドよりも軟化温度が低いクラッドロッドを配置してもよい。
(変形例1)
 図8は、変形例1によるマルチコアファイバ母材の断面図である。図8に示すマルチコアファイバ母材1Aのように、クラッド4の中心から第2コア部3aをずらして配置してもよい。第2の実施形態、第3の実施形態においても同様に、第2コア部23aまたはクラッドロッド33の中心をクラッド24またはクラッド34の中心からずらして配置してもよい。
(第4の実施形態)
〔マルチコアファイバ母材の構成〕
 次に、本発明の第4の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の構成を説明する。図9は、本発明の第4の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の断面図である。図9に示すように、マルチコアファイバ母材1Bは、4本の第1コアロッド2と、第2コアロッド3と、クラッド4と、マーカロッド41とを備える。第1コアロッド2、第2コアロッド3、クラッド4、およびマーカロッド41は、一体化工程によって一体化されている。図9には、第1コアロッド2が4本であり、マーカロッド41が1本である場合を図示したが、第1コアロッド2やマーカロッド41の本数は特に限定されない。また、マーカロッド41を挿入する位置もいずれの位置であってもよい。マーカロッド41は、マーカロッド41の周囲のクラッド4とは異なる屈折率の材料から構成される。その他の構成は、第1の実施形態と同様である。
〔マルチコアファイバの製造方法〕
 次に、本発明の第4の実施形態によるマルチコアファイバ母材31の製造方法によって製造したマルチコアファイバ母材31を線引きしてマルチコアファイバを製造するマルチコアファイバの製造方法について説明する。第4の実施形態によるマルチコアファイバの製造方法は、マーカ準備工程としてマーカロッド41を準備し、第3空孔形成工程として第3空孔を形成し、マーカ挿入工程として第3空孔にマーカロッド41を挿入する工程以外は、第1の実施形態と同様である。すなわち、まず、ステップS1の準備工程がマーカ準備工程を含み、半径Rm以下のマーカロッドを準備する。次に、ステップS2の空孔形成工程が第3空孔形成工程を含み、さらに半径Rmの第3空孔を形成する。ステップS4の挿入工程がマーカ挿入工程を含み、第3空孔にマーカロッド41を挿入する。その他の工程は、第1の実施形態と同様である。
 図10は、図9に示すマルチコアファイバ母材におけるコアの位置関係を説明するための図である。図10に示すように、マルチコアファイバ母材1は、半径r1の円柱状の4本の第1コアロッド2と、半径R1の円柱状の第2コアロッド3と、第1コアロッド2および第2コアロッド3の外周に形成されたクラッド4と、半径Rmの円柱状の少なくとも1本のマーカロッド41とを備える。その他の構成は、第1の実施形態と同様である。
 以上説明した第4の実施形態によれば、さらにマーカロッド41を設けることができるので、第4の実施形態によるマルチコアファイバの複数の第1コア部2aを、マーカロッド41を用いて識別することができる。
(第5の実施形態)
〔マルチコアファイバ母材の構成〕
 次に、本発明の第5の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の構成を説明する。図11は、本発明の第5の実施形態によるマルチコアファイバ母材の製造方法によって製造されるマルチコアファイバ母材の断面図である。図11に示すように、マルチコアファイバ母材1Cは、4本の第1コアロッド52と、低温軟化ロッド53と、クラッド54と、を備える。ただし、第1コアロッド52と低温軟化ロッド53とクラッド54とは、後述する一体化工程によって一体化されている。図7には、第1コアロッド52が4本である場合を図示したが、第1コアロッド52の本数は特に限定されない。
 第1コアロッド52は、第1コア部52aと該第1コア部52aの外周に形成されている第1クラッド部52bとを有する。低温軟化ロッド53は、コア部を有しておらず、屈折率が均一である。第1コア部52aは、例えばゲルマニウムなどがドープされた屈折率の高い石英系ガラスによって構成されている。第1クラッド部52b、低温軟化ロッド53、およびクラッド54は、第1コア部52aよりも屈折率の低い材料から構成される。第1クラッド部52bおよびクラッド54は、例えば屈折率調整用のドーパントが添加されていない純石英ガラスなどから構成される。第1クラッド部52bと低温軟化ロッド53とクラッド54との屈折率は、同一であってよいが、異なっていてもよい。また、低温軟化ロッド53がコア部を有していても良い。
〔マルチコアファイバの製造方法〕
 次に、本発明の第5の実施形態によるマルチコアファイバ母材1Cの製造方法によって製造したマルチコアファイバ母材1Cを線引きしてマルチコアファイバを製造するマルチコアファイバの製造方法を説明する。当接面形成工程以外の工程は第1の実施形態と同様であってよいので、説明を省略する。図12は、図11に示すマルチコアファイバ母材におけるコアの位置関係を説明するための図である。
 第1の実施形態と同様にステップS1~S2を行う前後または並行して、全ての円柱状の第1コアロッド52を第1空孔に挿入した後の状態で、第2空孔に挿入可能な太さの第2ロッドとしての低温軟化ロッド53を準備する。換言すると、低温軟化ロッド53の断面の寸法は、全ての第1コアロッド52を第1空孔に挿入した状態での第2空孔の寸法以下とする。低温軟化ロッド53は、第1クラッド部52bおよびクラッド54よりも軟化温度が低いクラッドロッドである。低温軟化ロッド53は、塩素、リン、またはフッ素の少なくとも1つを含有することにより、軟化点である軟化温度を低下できる。
 次に、第1空孔に第1コアロッド52を挿入した後、第2空孔に低温軟化ロッド53を挿入する(ステップS4:挿入工程)。その後、第1の実施形態と同様にステップS5を実行することにより、低温軟化ロッド53が先に溶解して、第2空孔における第1コアロッド52と隙間が溶解した低温軟化ロッド53によって充満される。その後、一体化されてマルチコアファイバ母材1Cが製造される。さらに、第1の実施形態と同様にステップS6を行いマルチコアファイバが製造される。
 低温軟化ロッド53の長手方向に垂直な断面形状は、円形であっても四角形以外の多角形であってもよい。断面形状が多角形である場合には、第1コアロッド52の本数n(n:3以上の自然数)に対応したn角形の形状が好ましい。すなわち、第1コアロッド52の本数がn本である場合に、低温軟化ロッド53の断面形状は、n角形であることが好ましい。また、n角形の辺が第1コアロッド52の位置に対向するように挿入することが好ましい。これにより、第1コアロッド52と低温軟化ロッド53との間の隙間を低減できる。また、第2空孔において低温軟化ロッド53の周辺の隙間にマーカロッド55を挿入することも可能である。
 これにより、第5の実施形態によるマルチコアファイバは、端面の点a1を中心として、端面を等しい中心角でn個、ここでは4個(n=4)に分割する直線上の前記点a1からの距離がそれぞれX11~X1nの位置に、X11~X1nの最大値をX1max、最小値をX1minとして、X1max-r1<R1<X1minを満たすように点P11~P1nを設定し、点P11~P1nを中心として配置されており、第1コア部52aと第1コア部52aの外周に形成されている第1クラッド部52bとを有する半径r1の円形のn個の第1コア領域(第1コアロッド52に対応する領域)と、点a1を中心として配置され、第1クラッド部52bよりも軟化温度が低い低温軟化クラッド領域(低温軟化ロッド53に対応する領域)と、を備える。
 以上説明した第5の実施形態によれば、第1クラッド部52bおよびクラッド54よりも軟化温度が低い低温軟化ロッド53を、第2空孔に挿入していることにより、一体化工程において低温軟化ロッド53が先に溶解して第2空孔を埋めることができるため、第1コアロッド52の平面化の工程が不要になるのみならず、位置ずれが生じにくく、さらに位置精度を向上させることができる。
 本発明は、複数のコア部を有するマルチコアファイバの製造に適用して好適なものである。
 1,1A,1B,1C,21,31 マルチコアファイバ母材
 2,22,32,52 第1コアロッド
 2a,22a,32a、52a 第1コア部
 2b,22b,32b、52b 第1クラッド部
 2c,3c,22c,23c 当接面
 3,23 第2コアロッド
 3a,23a 第2コア部
 3b,23b 第2クラッド部
 4,24,34,54 クラッド
 10 製造装置
 11 線引炉
 11a ヒータ
 12 ガラス光ファイバ
 13 被覆装置
 14 紫外線照射装置
 15 マルチコアファイバ
 16 ガイドローラ
 17 巻取機
 22d 重なり部
 32c,33a 平面
 33 クラッドロッド
 41,55 マーカロッド
 53 低温軟化ロッド

Claims (16)

  1.  第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する半径r1の円柱状のn本の第1コアロッドと、第2コア部と該第2コア部の外周に形成されている第2クラッド部とを有する半径R1の円柱状の第2コアロッドと、円柱状のクラッドと、を準備する準備工程であって、前記第1コアロッドおよび前記第2コアロッドの外周の一部には、互いに当接する平面である当接面が形成されている準備工程と、
     前記クラッドの端面の点a1を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a1からの距離がそれぞれX11~X1nの位置に、X11~X1nの最大値をX1max、最小値をX1minとして、
     X1max-r1<R1<X1min
     を満たすように点P11~P1nを設定し、前記点P11~P1nを中心とする半径r1の円形の第1空孔と、前記点a1を中心とする半径R1の円形の第2空孔と、を前記クラッドに形成する空孔形成工程と、
     前記第1空孔に前記第1コアロッドを、前記第2空孔に前記第2コアロッドをそれぞれ挿入する挿入工程と、
     熱処理によって前記第1コアロッドと前記第2コアロッドと前記クラッドとを一体化する一体化工程と、を含む
     ことを特徴とするマルチコアファイバ母材の製造方法。
  2.  第1コア部と該第1コア部の外周に形成された第1クラッド部とを有する多角形のn本の第1コアロッドと、第2コア部と該第2コア部の外周に形成されている第2クラッド部とを有する多角形の第2コアロッドと、円柱状のクラッドと、を準備する準備工程であって、前記第1コアロッドおよび前記第2コアロッドの外周の一部には、互いに当接する平面である当接面が形成されている準備工程と、
     前記クラッドの端面の点a2を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a2からの距離がそれぞれX21~X2nの位置に、隣接する前記第1コアロッドの少なくとも一部が重なる複数の重なり部が形成されるように点P21~P2nを設定し、前記点P21~P2nを重心とする多角形の第1空孔と、前記点a2を重心として前記複数の重なり部を全て包含する多角形の第2空孔と、を前記クラッドに形成する空孔形成工程と、
     前記第1空孔に前記第1コアロッドを、前記第2空孔に前記第2コアロッドをそれぞれ挿入する挿入工程と、
     熱処理によって前記第1コアロッドと前記第2コアロッドと前記クラッドとを一体化する一体化工程と、を含む
     ことを特徴とするマルチコアファイバ母材の製造方法。
  3.  前記第1コアロッドおよび前記第2コアロッドの外周の一部に、互いに当接する平面である当接面を形成する当接面形成工程を含む
     ことを特徴とする請求項1または2に記載のマルチコアファイバ母材の製造方法。
  4.  前記第1コアロッドの外周の一部に平面を形成し、前記第2コアロッドの外周にn個の平面を形成する平面形成工程を含み、
     前記挿入工程において、前記第1コアロッドの平面と前記第2コアロッドの平面とが当接するように前記第1コアロッドおよび前記第2コアロッドを挿入する
     ことを特徴とする請求項1に記載のマルチコアファイバ母材の製造方法。
  5.  前記挿入工程において、前記第2空孔には、前記第2コアロッドに換えて、前記第1クラッド部および前記クラッドよりも軟化温度が低いクラッドロッドを挿入する
     ことを特徴とする請求項1~4のいずれか1つに記載のマルチコアファイバ母材の製造方法。
  6.  前記クラッドロッドは、塩素、リン、またはフッ素の少なくとも1つを含有する
     ことを特徴とする請求項5に記載のマルチコアファイバ母材の製造方法。
  7.  マーカロッドを準備するマーカ準備工程と、
     第3空孔を形成する第3空孔形成工程と、
     前記第3空孔に前記マーカロッドを挿入するマーカ挿入工程と、を含む
     ことを特徴とする請求項1に記載のマルチコアファイバ母材の製造方法。
  8.  端面の点a1を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a1からの距離がそれぞれX11~X1nの位置に、X11~X1nの最大値をX1max、最小値をX1minとして、
     X1max-r1<R1<X1min
     を満たすように点P11~P1nを設定し、前記点P11~P1nを中心として配置されており、第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する半径r1の円柱状のn本の第1コアロッドと、
     前記点a1を中心として配置されており、第2コア部と該第2コア部の外周に形成されている第2クラッド部とを有する半径R1の円柱状の第2コアロッドと、
     前記第1コアロッドおよび前記第2コアロッドの外周に形成されているクラッドと、
     を備え、
     前記第1コアロッドおよび前記第2コアロッドの外周の一部には、互いに当接する平面である当接面が形成されている
     ことを特徴とするマルチコアファイバ母材。
  9.  端面の点a2を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a2からの距離がそれぞれX21~X2nの位置に、隣接する多角形の少なくとも一部が重なる複数の重なり部が形成されるように点P21~P2nを設定し、前記点P21~P2nを重心として配置されており、第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する多角形のn本の第1コアロッドと、
     前記点a2を重心として配置されており、第2コア部と該第2コア部の外周に形成されている第2クラッド部とを有し、前記複数の重なり部を全て包含する多角形の第2コアロッドと、
     前記第1コアロッドおよび前記第2コアロッドの外周に形成されているクラッドと、
     備え、
     前記第1コアロッドおよび前記第2コアロッドの外周の一部には、互いに当接する平面である当接面が形成されている
     ことを特徴とするマルチコアファイバ母材。
  10.  前記第2コアロッドに換えて、前記第1クラッド部および前記クラッドよりも軟化温度が低いクラッドロッドが配置されている
     ことを特徴とする請求項8または9に記載のマルチコアファイバ母材。
  11.  端面の点a1を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a1からの距離がそれぞれX11~X1nの位置に、X11~X1nの最大値をX1max、最小値をX1minとして、
     X1max-r1<R1<X1min
     を満たすように点P11~P1nを設定し、前記点P11~P1nを中心として配置されており、第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する半径r1の円形のn個の第1コア領域と、
     前記点a1を中心として配置されており、第2コア部と該第2コア部の外周に形成されている第2クラッド部とを有する半径R1の円形の第2コア領域と、
     前記第1コア領域および前記第2コア領域の外周に形成されているクラッド領域と、
     を備え、
     前記第1コア領域および前記第2コア領域の外周の一部には、互いに当接する平面である当接面が形成されている
     ことを特徴とするマルチコアファイバ。
  12.  端面の点a2を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a2からの距離がそれぞれX21~X2nの位置に、隣接する多角形の少なくとも一部が重なる複数の重なり部が形成されるように点P21~P2nを設定し、前記点P21~P2nを重心として配置されており、第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する多角形のn個の第1コア領域と、
     前記点a2を重心として配置されており、第2コア部と該第2コア部の外周に形成されている第2クラッド部とを有し、前記複数の重なり部を全て包含する多角形の第2コア領域と、
     前記第1コア領域および前記第2コア領域の外周に形成されているクラッド領域と、備え、
     前記第1コア領域および前記第2コア領域の外周の一部には、互いに当接する平面である当接面が形成されている
     ことを特徴とするマルチコアファイバ。
  13.  前記第2コア領域に換えて、前記第1クラッド部および前記クラッド領域よりも軟化温度が低いクラッド領域が配置されている
     ことを特徴とする請求項11または12に記載のマルチコアファイバ。
  14.  クラッドの端面の点a1を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a1からの距離がそれぞれX11~X1nの位置に、X11~X1nの最大値をX1max、最小値をX1minとして、
     X1max-r1<R1<X1min
     を満たすように点P11~P1nを設定し、前記点P11~P1nを中心とする半径r1の円形の第1空孔と、前記点a1を中心とする半径R1の円形の第2空孔と、を前記クラッドに形成する空孔形成工程と、
     第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する半径r1の円柱状のn本の第1コアロッドと、第2クラッド部を有する第2ロッドとを準備する準備工程であって、前記第1空孔に前記第1コアロッドを挿入した状態で前記第2空孔に挿入可能な大きさを有するとともに、前記第1クラッド部および前記クラッドより軟化点が低い前記第2ロッドを準備する準備工程と、
     前記第1空孔に前記第1コアロッドを、前記第2空孔に前記第2ロッドをそれぞれ挿入する挿入工程と、
     熱処理によって前記第1コアロッドと前記第2ロッドと前記クラッドとを一体化する一体化工程と、を含む
     ことを特徴とするマルチコアファイバ母材の製造方法。
  15.  マーカロッドを準備するマーカ準備工程と、
     前記第2空孔に前記マーカロッドを挿入するマーカ挿入工程と、を含む
     ことを特徴とする請求項14に記載のマルチコアファイバ母材の製造方法。
  16.  端面の点a1を中心として、該端面を等しい中心角でn個に分割する直線上の前記点a1からの距離がそれぞれX11~X1nの位置に、X11~X1nの最大値をX1max、最小値をX1minとして、
     X1max-r1<R1<X1min
     を満たすように点P11~P1nを設定し、前記点P11~P1nを中心として配置されており、第1コア部と該第1コア部の外周に形成されている第1クラッド部とを有する半径r1の円形のn個の第1コア領域と、
     前記点a1を中心として配置され、前記第1クラッド部よりも軟化温度が低い低温軟化クラッド領域と、を備える
     ことを特徴とするマルチコアファイバ。
PCT/JP2020/009956 2019-03-27 2020-03-09 マルチコアファイバ母材の製造方法、マルチコアファイバ母材、およびマルチコアファイバ WO2020195739A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021508959A JPWO2020195739A1 (ja) 2019-03-27 2020-03-09
EP20780062.4A EP3950614A4 (en) 2019-03-27 2020-03-09 METHOD FOR MAKING A MULTI-CORE FIBER PREFORM, MULTI-CORE FIBER PREFORM AND MULTI-CORE FIBER
US17/448,077 US20220003921A1 (en) 2019-03-27 2021-09-20 Manufacturing method of multicore fiber preform, multicore fiber preform, and multicore fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-059982 2019-03-27
JP2019059982 2019-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/448,077 Continuation US20220003921A1 (en) 2019-03-27 2021-09-20 Manufacturing method of multicore fiber preform, multicore fiber preform, and multicore fiber

Publications (1)

Publication Number Publication Date
WO2020195739A1 true WO2020195739A1 (ja) 2020-10-01

Family

ID=72610500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009956 WO2020195739A1 (ja) 2019-03-27 2020-03-09 マルチコアファイバ母材の製造方法、マルチコアファイバ母材、およびマルチコアファイバ

Country Status (4)

Country Link
US (1) US20220003921A1 (ja)
EP (1) EP3950614A4 (ja)
JP (1) JPWO2020195739A1 (ja)
WO (1) WO2020195739A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4212489A1 (de) 2022-01-18 2023-07-19 Heraeus Quarzglas GmbH & Co. KG Verfahren und halbzeug zur herstellung einer mehrkernfaser
EP4227273A1 (de) * 2022-02-14 2023-08-16 Heraeus Quarzglas GmbH & Co. KG Verfahren und zwischenprodukt zur herstellung einer mehrkernfaser mit einem marker

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341162A (ja) * 1992-03-06 1993-12-24 Alcatel Nv 通信ケーブル用の多重導波路型円筒形光伝導体
JP2002524766A (ja) * 1998-09-09 2002-08-06 コーニング・インコーポレーテッド 半径方向及び方位角方向に非対称なコアを有するシングルモード光導波路ファイバ
CN1557754A (zh) * 2004-01-16 2004-12-29 长飞光纤光缆有限公司 保偏光纤的制造方法
WO2010073821A1 (ja) * 2008-12-24 2010-07-01 古河電気工業株式会社 マルチコア光ファイバ
CN102730960A (zh) * 2012-06-11 2012-10-17 烽火通信科技股份有限公司 多孔光纤预制棒的制造方法
US20130239623A1 (en) * 2012-03-06 2013-09-19 J-Fiber Gmbh Methods for Making Active Laser Fibers
WO2014178293A1 (ja) * 2013-05-01 2014-11-06 古河電気工業株式会社 光ファイバ母材の製造方法、及び光ファイバの製造方法
JP5888966B2 (ja) 2011-12-16 2016-03-22 古河電気工業株式会社 フォトニックバンドギャップファイバの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68912288T2 (de) * 1988-12-09 1994-05-05 Alcatel Nv Verfahren zum Verarbeiten einer Vorform für polarisationserhaltende optische Fasern.
FR2701571B1 (fr) * 1993-02-15 1995-03-17 Georges Le Noane Guides optiques multicÓoeurs de grande précision et de petites dimensions et procédé de fabrication de ces guides.
DE69840860D1 (de) * 1997-06-30 2009-07-16 Hamamatsu Photonics Kk Faserbündel und Faserlasergerät unter Verwendung des Faserbündels
US7107795B2 (en) * 2003-02-11 2006-09-19 Cheo Peter K Method for forming high-density multicore phase-locked fiber laser array
JP2013072963A (ja) * 2011-09-27 2013-04-22 Sumitomo Electric Ind Ltd マルチコア光ファイバの製造方法及びマルチコア光ファイバコネクタの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341162A (ja) * 1992-03-06 1993-12-24 Alcatel Nv 通信ケーブル用の多重導波路型円筒形光伝導体
JP2002524766A (ja) * 1998-09-09 2002-08-06 コーニング・インコーポレーテッド 半径方向及び方位角方向に非対称なコアを有するシングルモード光導波路ファイバ
CN1557754A (zh) * 2004-01-16 2004-12-29 长飞光纤光缆有限公司 保偏光纤的制造方法
WO2010073821A1 (ja) * 2008-12-24 2010-07-01 古河電気工業株式会社 マルチコア光ファイバ
JP5888966B2 (ja) 2011-12-16 2016-03-22 古河電気工業株式会社 フォトニックバンドギャップファイバの製造方法
US20130239623A1 (en) * 2012-03-06 2013-09-19 J-Fiber Gmbh Methods for Making Active Laser Fibers
CN102730960A (zh) * 2012-06-11 2012-10-17 烽火通信科技股份有限公司 多孔光纤预制棒的制造方法
WO2014178293A1 (ja) * 2013-05-01 2014-11-06 古河電気工業株式会社 光ファイバ母材の製造方法、及び光ファイバの製造方法

Also Published As

Publication number Publication date
EP3950614A1 (en) 2022-02-09
US20220003921A1 (en) 2022-01-06
JPWO2020195739A1 (ja) 2020-10-01
EP3950614A4 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
EP2960218B1 (en) Method for manufacturing base material
WO2020195739A1 (ja) マルチコアファイバ母材の製造方法、マルチコアファイバ母材、およびマルチコアファイバ
JP5889350B2 (ja) 光ファイバ母材の製造方法および光ファイバの製造方法
JP2009211066A (ja) フォトニックバンドギャップ光ファイバ及びその製造方法
JP5750853B2 (ja) プリフォームの作製方法、光ファイバの製造方法及び光ファイバ
EP3129328B1 (en) Method for making soot preforms and glass optical fibers
EP2166385A2 (en) Microstructure optical fiber and method for making same
JP2019038706A (ja) マルチコア光ファイバ母材の製造方法、及び、マルチコア光ファイバの製造方法
EP4105185B1 (en) Method for manufacturing a preform for a multi-core optical fiber and a multi-core optical fiber
WO2011001850A1 (ja) フォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法
US20100195964A1 (en) Fiber with airlines
JP6291892B2 (ja) マルチコア光ファイバ母材製造方法
JP6966311B2 (ja) マルチコア光ファイバ母材の製造方法、及び、マルチコア光ファイバの製造方法
US11242276B2 (en) Method for producing a glass-fibre preform with a core of a polygonal core cross section
WO2022059699A1 (ja) マルチコアファイバ
KR101225484B1 (ko) 다각형 코어 광섬유 제조용 모재 및 이의 제조 방법
JP2016017007A (ja) フォトニッククリスタル光ファイバ母材の製造方法
US10464837B2 (en) Method for inserting a core rod into an outer cladding tube with spacer
JP6216263B2 (ja) マルチコアファイバ用母材及びこれを用いたマルチコアファイバ、及び、マルチコアファイバ用母材の製造方法及びこれを用いたマルチコアファイバの製造方法
RU2543006C2 (ru) Способ производства преформ с заданным профилем показателя преломления, преформа и оптическое волокно
JP6666882B2 (ja) シングルコア光ファイバ用母材の製造方法、及び、シングルコア光ファイバの製造方法
JP2019081678A (ja) マルチコアファイバの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20780062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508959

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020780062

Country of ref document: EP

Effective date: 20211027