WO2020195337A1 - 空調システム - Google Patents

空調システム Download PDF

Info

Publication number
WO2020195337A1
WO2020195337A1 PCT/JP2020/006137 JP2020006137W WO2020195337A1 WO 2020195337 A1 WO2020195337 A1 WO 2020195337A1 JP 2020006137 W JP2020006137 W JP 2020006137W WO 2020195337 A1 WO2020195337 A1 WO 2020195337A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
room
living room
air conditioning
conditioning
Prior art date
Application number
PCT/JP2020/006137
Other languages
English (en)
French (fr)
Inventor
佳臣 高田
直之 舟田
晃規 安藤
歩 小西
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021508255A priority Critical patent/JP7029612B2/ja
Priority to US17/435,410 priority patent/US11940166B2/en
Publication of WO2020195337A1 publication Critical patent/WO2020195337A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This disclosure relates to an air conditioning system.
  • Patent Document 1 in a highly insulated and airtight house having a plurality of living rooms, an air conditioner is independently provided, and each living room is provided with an air supply duct connecting the air conditioning room and each living room.
  • Such a conventional air conditioning system makes the temperature uniform to a predetermined target temperature regardless of the presence or absence of a person in the living room.
  • a person does not exist in the living room, exists in a plurality of living rooms, or exists only in one of the living rooms. Therefore, it can be said that performing the same temperature control for all living rooms is inefficient in terms of energy efficiency.
  • the present disclosure solves the above-mentioned conventional problems, and provides an air conditioning system that performs energy-efficient air conditioning control based on the presence / absence of a person in a plurality of living rooms and whether or not the living room is present. With the goal.
  • the present disclosure is an air-conditioning system for air-conditioning a house by transporting air in an air-conditioned air-conditioned room, and transports air from the air-conditioned room to a living room which is a space constituting the house. It is equipped with a transfer fan, a human sensor that detects the presence / absence of a person in the living room, and an air conditioning system controller that controls the transfer fan.
  • the air conditioning system controller acquires at least the target air conditioning environment of the living room.
  • the room air-conditioning environment control unit that controls the transport fan that conveys air to the room so that the room is determined based on the information from the unit and the human sensor and the room is close to the target air-conditioning environment.
  • the absent room is determined and the absent room is air-conditioned so that the absent room is closer to the quasi-target air-conditioning environment where the energy load is lower than the target air-conditioning environment. It is equipped with an absentee room air-conditioning environment control unit that controls a transport fan that transports the air conditioner. In this way, the intended purpose is achieved.
  • an air conditioning system that controls air conditioning with high energy efficiency based on the presence / absence of a person in a plurality of living rooms and whether or not the room is a living room.
  • FIG. 1 is a schematic connection diagram of an air conditioning system according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an example of a living room arrangement of a house according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic functional block diagram of the system controller of the air conditioning system according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram showing the temperature distribution of the living room of the house according to the first embodiment of the present disclosure.
  • FIG. 5 is a flowchart showing the air conditioning process according to the first embodiment of the present disclosure.
  • FIG. 6 is a diagram showing an example of the relationship between the temperature of the air conditioning room, the room temperature of the living room, and the target temperature of the living room according to the first embodiment of the present disclosure.
  • FIG. 1 is a schematic connection diagram of an air conditioning system according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an example of a living room arrangement of a house according to the first embodiment of the present disclosure.
  • FIG. 7 is a flowchart showing the air conditioning room temperature control process according to the first embodiment of the present disclosure.
  • FIG. 8 is a flowchart showing a fan air volume setting process according to the first embodiment of the present disclosure.
  • FIG. 9 is a flowchart showing a fan air volume adjusting process according to the first embodiment of the present disclosure.
  • FIG. 10 is a flowchart showing the air conditioning room load reduction process according to the first embodiment of the present disclosure.
  • FIG. 11 is a schematic functional block diagram of the system controller of the air conditioning system according to the second embodiment of the present disclosure.
  • FIG. 12 is a diagram showing an operation on the screen of the input / output terminal according to the second embodiment of the present disclosure.
  • FIG. 13 is a schematic connection diagram of the air conditioning system according to the third embodiment of the present disclosure.
  • FIG. 14 is a schematic functional block diagram of the system controller of the air conditioning system according to the third embodiment of the present disclosure.
  • FIG. 1 is a schematic connection diagram of the air conditioning system 19 according to the present embodiment
  • FIG. 2 is a diagram showing an example of a living room arrangement of a general house 1 according to the present embodiment.
  • the air conditioning system 19 includes an outside air introduction fan 4, a plurality of exhaust fans 5 (exhaust fans 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i), and a plurality of transfer fans 3 (convey fans 3a, 3b). , 3c, 3d, 3e, 3f, 3g, 3h, 3i), a plurality of circulation fans 6 (6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h, 6i), and a room temperature sensor 9 (room temperature).
  • Human sensation sensor 11 living room human sensation sensor 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h, 11i
  • air conditioning room temperature sensor 12 air conditioning room humidity sensor 13, air conditioner 7 and humidifier It is composed of 15, a dehumidifier 16, an air purifier 40, an input / output terminal 18, and a system controller 8a (corresponding to an air conditioning system controller).
  • the air conditioning system 19 is installed in a general house 1 which is an example of a house.
  • the general house 1 includes a plurality of (nine in this embodiment) living rooms 2 (living rooms 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i) and at least one air-conditioning room independent of the living room 2.
  • the general house 1 (house) is a house provided as a place where the resident lives a private life, and as a general structure, the living room 2 has a living room (living room), a dining room (kitchen / dining room), and a bedroom. , Storage room, children's room, etc. are included.
  • the living room provided by the air conditioning system 19 may include a toilet, a bathroom, a washroom, a dressing room, a corridor, an entrance, and the like.
  • the air conveyed from each living room 2 is mixed with each other. Further, the outside air is taken into the air conditioning chamber 17 by the outside air introduction fan 4, and is mixed with the air conveyed from each living room 2 by the circulation fan 6.
  • the temperature, humidity, and cleanliness of the air in the air conditioning chamber 17 are suitably controlled by the air conditioner 7, the humidifier 15, the dehumidifier 16, the air purifier 40, and the like provided in the air conditioning chamber 17, that is, the air conditioning environment is controlled. Optimized to generate air to be delivered to living room 2.
  • the air conditioned in the air-conditioning room 17 is conveyed to each living room 2 by the transfer fan 3.
  • the air in each living room 2 is conveyed to the air conditioning room 17 by the circulation fan 6, and is discharged as outside air from the inside of the living room 2 to the outside of the general house 1 by the exhaust fan 5.
  • the air conditioning system 19 controls the exhaust air volume of the exhaust fan 5 to exhaust the outside air from the room, and controls the supply air volume of the outside air introduction fan 4 while interlocking with the exhaust air volume of the exhaust fan 5 to exhaust the outside air into the room. By taking in, the first type ventilation system ventilation is performed.
  • the outside air introduction fan 4 is a fan that takes in outside air into the room of the general house 1, and corresponds to the air supply function of the air supply fan and the heat exchange air fan. As described above, the outside air taken in by the outside air introduction fan 4 is introduced into the air conditioning chamber 17.
  • the air supply air volume of the outside air introduction fan 4 is configured to be set in a plurality of stages, and the exhaust air volume thereof is set according to the exhaust air volume of the exhaust fan 5 as described later.
  • the exhaust fan 5 is a fan that discharges a part of the air in the corresponding living room 2 as outside air through, for example, an exhaust duct, and corresponds to an exhaust function of a ceiling-mounted ventilation fan, a wall-mounted ventilation fan, a range hood, a heat exchange air fan, and the like.
  • the exhaust duct connected to the exhaust fan 5 is directly connected to the outside of the general house 1, but when the exhaust function of the heat exchange air fan is used, the exhaust duct is once connected to the heat exchange air fan. After that, it is connected to the outside of the general house 1. That is, the air passing through the exhaust duct is heat-exchanged with the air passing through the air supply air passage of the heat exchange air fan, and then discharged to the outside of the general house 1.
  • Each exhaust fan 5 is configured so that the exhaust air volume can be set in a plurality of stages. Normally, each exhaust fan 5 is controlled so that the exhaust air volume is set in advance. Then, the exhaust air volume is controlled for each of the exhaust fans 5a to 5i according to the setting by the user and the values acquired by various sensors.
  • the transport fans 3a to 3i are provided on, for example, the wall surface of the air conditioning chamber 17 corresponding to the living rooms 2a to 2i, respectively.
  • the air in the air conditioning chamber 17 is conveyed to the living room 2a via the transfer duct by the transfer fan 3a, is conveyed to the living room 2b via the transfer duct by the transfer fan 3b, and is conveyed to the living room 2c via the transfer duct by the transfer fan 3c. Will be done.
  • the air in the air conditioning chamber 17 is conveyed to the living room 2d via the transfer duct by the transfer fan 3d, is conveyed to the living room 2e via the transfer duct by the transfer fan 3e, and is conveyed to the living room 2f via the transfer duct by the transfer fan 3f. Will be transported to. Further, the air in the air conditioning chamber 17 is conveyed to the living room 2g via the transport duct by the transport fan 3g, is transported to the living room 2h via the transport duct by the transport fan 3h, and is transported to the living room 2h via the transport duct by the transport fan 3i. Will be transported to.
  • the transport duct connected to each living room is provided independently of the transport duct connected to other living rooms.
  • a part of the air in the living rooms 2a to 2i is conveyed to the air conditioning room 17 via the circulation duct by the corresponding circulation fans 6a to 6i, respectively.
  • the circulation ducts connecting the air conditioning chamber 17 and the living room may be provided independently of each other, but a plurality of tributary ducts that are a part of the circulation ducts are merged from the middle and integrated into one circulation duct. After that, it may be connected to the air conditioning chamber 17.
  • the air conditioner 7 corresponds to an air conditioner and controls the air conditioning of the air conditioner room 17.
  • the air conditioner 7 cools or heats the air in the air conditioning chamber 17 so that the temperature of the air in the air conditioning chamber 17 becomes the set target air conditioning temperature in the air conditioning chamber.
  • the humidifier 15 humidifies the air in the air conditioning room 17 so that when the humidity of the air in the air conditioning room 17 is lower than the set target air conditioning humidity in the air conditioning room, the humidity becomes the target air conditioning humidity in the air conditioning room 17.
  • the humidifier 15 may be built in the air conditioner 7, it is desirable to provide the humidifier 15 independent of the air conditioner 7 in order to obtain a humidifying capacity sufficient for a plurality of living rooms 2. ..
  • the dehumidifier 16 dehumidifies the air in the air conditioning room 17 so that when the humidity of the air in the air conditioning room 17 is higher than the set target air conditioning humidity in the air conditioning room, the humidity becomes the target air conditioning humidity in the air conditioning room 17.
  • the dehumidifier 16 may be built in the air conditioner 7, it is desirable to provide the dehumidifier 16 independent of the air conditioner 7 in order to obtain a dehumidifying capacity sufficient for a plurality of living rooms 2. ..
  • the air purifier 40 cleans the air in the air conditioning chamber 17 so that when the cleanliness of the air in the air conditioning chamber 17 is higher than the set target air conditioning cleanliness in the air conditioning chamber, the cleanliness becomes the target air conditioning cleanliness in the air conditioning chamber 17. Clean.
  • the air purifier 40 may be built in the air conditioner 7, an air purifier 40 independent of the air conditioner 7 is provided in order to obtain a cleaning capacity sufficient for a plurality of living rooms 2. Is desirable.
  • the living room temperature sensor 9a is provided in the living room 2a, the living room temperature sensor 9b is provided in the living room 2b, and the living room temperature sensor 9c is provided in the living room 2c. Further, the living room temperature sensor 9d is provided in the living room 2d, the living room temperature sensor 9e is provided in the living room 2e, and the living room temperature sensor 9f is provided in the living room 2f. Further, the living room temperature sensor 9g is provided in the living room 2g, the living room temperature sensor 9h is provided in the living room 2h, and the living room temperature sensor 9i is provided in the living room 2i.
  • the living room temperature sensors 9a to 9i are sensors that acquire the room temperatures of the corresponding living rooms 2a to 2i and transmit them to the system controller 8.
  • the living room humidity sensor 10a is provided in the living room 2a, the living room humidity sensor 10b is provided in the living room 2b, and the living room humidity sensor 10c is provided in the living room 2c. Further, the living room humidity sensor 10d is provided in the living room 2d, the living room humidity sensor 10e is provided in the living room 2e, and the living room humidity sensor 10f is provided in the living room 2f. Further, the living room humidity sensor 10g is provided in the living room 2g, the living room humidity sensor 10h is provided in the living room 2h, and the living room humidity sensor 10i is provided in the living room 2i.
  • the living room humidity sensor 10 is a sensor that acquires the indoor humidity of each of the corresponding living rooms 2a to 2i and transmits it to the system controller 8a.
  • the living room motion sensor 11a is provided in the living room 2a
  • the living room motion sensor 11b is provided in the living room 2b
  • the living room motion sensor 11c is provided in the living room 2c.
  • the living room motion sensor 11d is provided in the living room 2d
  • the living room motion sensor 11e is provided in the living room 2e
  • the living room motion sensor 11f is provided in the living room 2f.
  • the living room motion sensor 11g is provided in the living room 2g
  • the living room motion sensor 11h is provided in the living room 2h
  • the living room motion sensor 11i is provided in the living room 2i.
  • the living room motion sensor 11 is a sensor that acquires the presence / absence information of a person in each of the corresponding living rooms 2a to 2i and transmits it to the system controller 8a.
  • the living room motion sensor 11 may be in any form as long as it is a device for detecting the presence / absence of a person in the target living room 2. That is, the living room motion sensor 11 corresponds to, for example, an infrared sensor, an image sensor, a CO2 concentration sensor, etc. that directly detect the presence of a person, but their respective accuracy and characteristics are different, and they should be adopted according to the purpose. Can be done.
  • proximity wireless communication in which a mobile communication terminal carried by a person determines the presence of a person in the living room by communicating with a communication device provided in the living room 2, the communication device is the living person in the present application. Corresponds to the feeling sensor 11.
  • the air-conditioning room temperature sensor 12 is a sensor that acquires the temperature of the air in the air-conditioning room 17 and transmits it to the system controller 8a.
  • the air conditioning room temperature sensor 12 may be built in the air conditioner 7, but when it is built in the air conditioner 7, only information around the air conditioner 7 (for example, near the air supply port) can be obtained. .. Since the air-conditioning chamber 17 mixes the outside air with the air conveyed from each living room 2 as described above, the temperature sensor is installed independently of the air-conditioning conditioner 7 so that the information of the air-conditioning chamber 17 as a whole can be obtained. It is desirable to prepare.
  • the air-conditioning room humidity sensor 13 is a sensor that acquires the humidity of the air in the air-conditioning room 17 and transmits it to the system controller 8a. For the same reason as the air-conditioning room temperature sensor 12, it is desirable that the air-conditioning room humidity sensor 13 also be provided with a temperature sensor independent of the air-conditioning conditioner 7 so that information on the air-conditioning room 17 as a whole can be obtained.
  • the system controller 8a is a controller that controls the entire air conditioning system 19.
  • the system controller 8a includes an outside air introduction fan 4, an exhaust fan 5, a conveyor fan 3, a circulation fan 6, a living room temperature sensor 9, a living room humidity sensor 10, a living room human feeling sensor 11, an air conditioning room temperature sensor 12, and an air conditioning room humidity sensor 13. It is communicably connected to the air conditioner 7, the humidifier 15, the dehumidifier 16, and the air purifier 40 by wireless communication.
  • the system controller 8a controls the outside air introduction fan 4 and the exhaust fan 5 in conjunction with each other, such as setting the supply air volume of the outside air introduction fan 4 so that the air volume corresponds to the exhaust air volume of the exhaust fan 5.
  • the general house 1 is ventilated by the first-class ventilation method.
  • At least one of the temperature and humidity of the air conditioner chamber 17 is the air conditioner chamber 17 based on the temperature and humidity of the air in the air conditioner chamber 17 acquired by the air conditioner chamber temperature sensor 12 and the air conditioner chamber humidity sensor 13.
  • the air conditioner 7, the humidifier 15, and the dehumidifier 16 as air conditioners are controlled so as to be at least one of the target air conditioner temperature of the air conditioner room and the target air conditioner humidity of the air conditioner room set in.
  • the system controller 8a controls the air purifier 40 as an air conditioner so that the cleanliness of the air conditioner chamber 17 becomes the target air conditioning environment cleanliness of the air conditioner chamber set in the air conditioner chamber 17.
  • system controller 8a determines the living room in which a person exists and the absent room in which no person exists, according to the presence / absence information of the person in each living room 2 acquired by the motion sensor 11.
  • the system controller 8a conveys the room temperature and humidity of each room 2 acquired by the room temperature sensor 9 and the room humidity sensor 10 according to the target air-conditioning temperature and the target air-conditioning humidity set in the room.
  • the air volume of the fan 3 and the air volume of the circulation fan 6 are set.
  • system controller 8a responds to the room temperature and humidity of each room 2 acquired by the room temperature sensor 9 and the room humidity sensor 10, and the quasi-target air-conditioning temperature and quasi-target air-conditioning humidity set in the absent room. , The air volume of the transport fan 3 and the air volume of the circulation fan 6 are set.
  • the air conditioned in the air-conditioned room 17 is transported to each living room 2 with the air volume set in the corresponding transport fan 3, and the air in each living room 2 is set in the corresponding circulation fan 6. It is transported to the air conditioning chamber 17 by the air volume. Therefore, at least one of the indoor temperature, indoor humidity, and cleanliness of each living room 2 is controlled to be at least one of the target air-conditioning temperature, the target air-conditioning humidity, and the target air-conditioning cleanliness.
  • the system controller 8a the outside air introduction fan 4, the exhaust fan 5, the conveyor fan 3, the circulation fan 6, the living room temperature sensor 9, the living room humidity sensor 10, the living room human feeling sensor 11, the air conditioning room temperature sensor 12, and the air conditioning room humidity.
  • the sensor 13, the air conditioner 7, the humidifier 15, the dehumidifier 16 and the air purifier 40 By connecting the sensor 13, the air conditioner 7, the humidifier 15, the dehumidifier 16 and the air purifier 40 by wireless communication, complicated wiring work can be eliminated. However, all of them, or the system controller 8 and a part of them may be configured to be communicable by wired communication.
  • the input / output terminal 18 is communicably connected to the system controller 8a by wireless communication, receives input of information necessary for constructing the air conditioning system 19 and stores it in the system controller 8, or stores the state of the air conditioning system 19 in the system. It is acquired from the controller 8 and displayed.
  • Examples of the input / output terminal 18 include mobile information terminals such as mobile phones, smartphones, and tablets.
  • the input / output terminal 18 does not necessarily have to be connected to the system controller 8a by wireless communication, and may be connected to the system controller 8a so as to be able to communicate by wired communication.
  • the input / output terminal 18 may be realized by, for example, a wall-mounted remote controller.
  • FIG. 3 is a schematic functional block diagram of the system controller 8a.
  • the system controller 8a includes an air conditioning room temperature control unit 23, an air volume determination unit 24a, a fan air volume control unit 20, a total air volume calculation unit 25, an air volume comparison unit 26, and a storage unit 30.
  • the air conditioner room temperature control unit 23 targets the temperature of the air conditioner room 17 (air conditioner room temperature) during the cooling period, that is, when the room temperature (living room temperature) of the living room 2 is high and the air conditioner 7 operates in cooling.
  • the air conditioner 7 as an air conditioner is controlled so that the temperature becomes the same as or lower than the target air conditioner environment (temperature) acquired by the air conditioner environment acquisition unit 33a.
  • the temperature of the air conditioning room 17 is the target air conditioning acquired by the target air conditioning environment acquisition unit 33a.
  • the air conditioner 7 is controlled so that the temperature is equal to or higher than the environment (temperature).
  • the air-conditioning amount determination unit 24a includes the presence / absence room determination unit 32, the target air-conditioning environment acquisition unit 33a, the quasi-target air-conditioning environment storage unit 34a, the living room air-conditioning environment control unit 21, and the absent room air-conditioning environment control unit 22.
  • a first temperature comparison unit 27, a second temperature comparison unit 28, and a temperature difference comparison unit 29 are provided.
  • the presence / absence room determination unit 32 determines a living room in which a person exists and an absent room in which no person exists from the information acquired from the living room motion sensor 11.
  • the living room motion sensor 11 itself may determine the presence / absence and send a signal indicating that fact to the presence / absence living room determination unit 32, or the presence / absence based on the signal from the living room motion sensor 11.
  • the living room determination unit 32 may determine the presence or absence.
  • the target air-conditioning environment acquisition unit 33a acquires the target air-conditioning environment (temperature) set in the living room 2 via the input / output terminal 18 for the living room 2 determined by the presence / absence living room determination unit 32 to be a living room. ..
  • the living room air conditioning environment control unit 21 acquires the target air conditioning environment (temperature) acquired by the target air conditioning environment acquisition unit 33a, the temperature of the air conditioning room 17 controlled by the air conditioning room temperature control unit 23, and the living room temperature sensor 9.
  • the air volume of each transport fan 3 corresponding to each living room is determined based on the indoor temperature of each living room.
  • the quasi-target air-conditioning environment storage unit 34a stores the adjacent space distance of the absent room with respect to the living room in association with the quasi-target air-conditioning environment (temperature) corresponding to the adjacent space distance.
  • the adjacent space distance is the distance from the living room of the absent room.
  • the distance referred to here is not the linear distance from the living room to the absent room, but the number of spaces separated from the living room when the absent room is connected when the living room is one space. This is the value shown.
  • an adjacent room adjacent to a living room and separated by a door through which a person can enter and exit is indicated to have an adjacent space distance of 1. If people cannot enter and exit even if they are adjacent to each other, the adjacent space distance will not be 1.
  • the adjacent space distance of the living room connected to the living room by a corridor where people can enter and exit is indicated as 2.
  • the living room 2c when the living room 2a is a living room and the living rooms 2b to 2i are absent living rooms, the living room 2c has an adjacent space distance of 1, and the living rooms 2b, 2d, 2e, and 2h have an adjacent space distance.
  • Adjacent space distance is 3 for living rooms 2f, 2g, and 2i.
  • the adjacent space distances of the living room 2c and the living room 2h are 1, the living rooms 2b, 2d, 2e, 2g, and 2f are the adjacent space distances. Is shown as 2.
  • the quasi-target air-conditioning environment is an air-conditioning environment with a lower energy load than the target air-conditioning environment.
  • the target air-conditioned environment (temperature) of the living room is set to 24 degrees in the summer, that is, in the cooling period.
  • the quasi-target air conditioning environment (temperature) is, for example, 26 degrees, which is an environment higher than 24 degrees, that is, the power consumption of the air conditioner 7 is low.
  • the target air conditioning environment (temperature) of the living room is set to 22 degrees in winter, that is, during the heating period.
  • the quasi-target air conditioning environment (temperature) is, for example, 20 degrees, which is an environment lower than 22 degrees, that is, the power consumption of the air conditioner 7 is low.
  • the temperature is taken as an example for the semi-target air conditioning environment, but in the case of humidity, if the environment requires dehumidification in the rainy season, the humidity setting higher than the humidity setting as the target air conditioning environment (humidity) is the semi-target air conditioning. It becomes the environment (humidity), and vice versa in the dry season.
  • the humidity setting higher than the humidity setting as the target air conditioning environment humidity
  • the environment humidity
  • the quasi-target air-conditioning environment cleaningliness
  • the quasi-target air-conditioning environment storage unit 34a stores that the quasi-target air-conditioning temperature is + 2 ° C. from the target air-conditioning temperature when the space distance adjacent to the absent room is 1 with respect to the living room. .. Further, if the absent room has an adjacent space distance of 2 with respect to the living room, the quasi-target air conditioning temperature is stored as + 4 ° C. from the target air conditioning temperature. Further, if the absent room has an adjacent space distance of 3 with respect to the living room, the quasi-target air conditioning temperature is stored as + 6 ° C. from the target air conditioning temperature.
  • the quasi-target air-conditioning environment storage unit 34a considers the case where all the living rooms 2a to 2i are absent rooms or the absent room is far away from the living room, for example, 4 or more, in the cooling period. If there is, the maximum quasi-target air-conditioning temperature, which is the maximum value of the quasi-target air-conditioning temperature, is stored as, for example, + 8 ° C.
  • the quasi-target air-conditioning environment storage unit 34a stores that the quasi-target air-conditioning temperature is -2 ° C from the target air-conditioning temperature when the absent room is adjacent to the living room by 1. ing. Further, if the absent room has an adjacent space distance of 2 with respect to the living room, the quasi-target air conditioning temperature is stored as -4 ° C from the target air conditioning temperature. Further, if the absent room has an adjacent space distance of 3 with respect to the living room, the quasi-target air conditioning temperature is stored as ⁇ 6 ° C. from the target air conditioning temperature.
  • the quasi-target air-conditioning environment storage unit 34a considers the case where all the living rooms 2a to 2i are absent rooms or the absent room is far away from the living room, for example, 4 or more, in the heating period. If there is, the maximum quasi-target air conditioning temperature is stored as, for example, -8 ° C.
  • FIG. 2 when the living room 2a is a living room and the living rooms 2b to 2i are absent rooms in the summer, that is, during the cooling period, if the target air conditioning temperature of the living room 2a is 20 ° C., the adjacent space distances of the absent rooms 2b and 2c are 1 Therefore, the quasi-target air-conditioning temperature is 22 ° C., the absent room 2d, 2e, and 2h have an adjacent space distance of 2, so the quasi-target air-conditioning temperature is 24 ° C., and the absent room 2f, 2g, and 2i have an adjacent space distance of 3. It becomes 26 ° C.
  • FIG. 4 is a temperature distribution map in the case where the living room 2a is a living room and the living rooms 2b to 2i are absent rooms in the summer, that is, the cooling period, and the same concentration means the same temperature.
  • the absent room air conditioning environment control unit 22 has a quasi-target air conditioning environment (temperature) of each absent room determined based on the information from the target air conditioning environment acquisition unit 33a and the quasi-target air conditioning environment storage unit 34a, and the air conditioning room temperature control unit.
  • the air volume of each transport fan 3 corresponding to each absent room is determined based on the temperature of the air conditioning room 17 controlled by 23 and the room temperature of each absent room acquired by the room temperature sensor 9. The procedure for determining and changing the air volume will be described later.
  • the first temperature comparison unit 27 calculates the temperature difference between the target air conditioning temperature acquired by the target air conditioning environment acquisition unit 33a and the temperature of the air conditioning room detected by the air conditioning room temperature sensor 12 for each living room. Further, the first temperature comparison unit 27 determines the temperature difference between the quasi-target air-conditioning temperature determined via the quasi-target air-conditioning environment storage unit 34a and the temperature of the air-conditioning room detected by the air-conditioning room temperature sensor 12 for each living room. calculate.
  • the second temperature comparison unit 28 calculates the temperature difference between the target air conditioning temperature acquired by the target air conditioning environment acquisition unit 33a and the indoor temperature of the living room detected by the living room temperature sensor 9 for each living room. Further, the second temperature comparison unit 28 determines the temperature difference between the quasi-target air-conditioning temperature determined via the quasi-target air-conditioning environment storage unit 34a and the room temperature of the absent room detected by the living room temperature sensor 9 for each absent room. calculate.
  • the temperature difference comparison unit 29 calculated the temperature difference A calculated by the second temperature comparison unit 28 at the predetermined timing A and the temperature difference B calculated by the second temperature comparison unit 28 at the timing B after a certain time has elapsed from the predetermined timing A. Compare with temperature difference B.
  • the timing A can be rephrased as a predetermined time
  • the timing B can be rephrased as a time after a certain time has elapsed from the predetermined time.
  • the fan air volume control unit 20 determines the individual air volumes of the plurality of transport fans 3a to 3i provided for each of the plurality of living rooms 2a to 2i, and the corresponding transport fans 3a to 3i determined by the air flow rate determination unit 24a. Control the amount of air blown. Further, the fan air volume control unit 20 may also control the circulation fans 6a to 6i, but detailed description thereof will be omitted here.
  • the total amount of blown air calculation unit 25 calculates the total amount of blown air, which is the total amount of air blown by the plurality of transport fans 3a to 3i.
  • the total amount of air blown is indicated by the sum of the amount of air blown per unit time of the transport fans 3a to 3i.
  • the blast volume comparison unit 26 compares the total blast volume calculated by the total blast volume calculation unit 25 with a predetermined blast volume threshold value.
  • the predetermined air flow threshold value can be, for example, a value of 70% to 95% of the total maximum air flow of the plurality of transport fans 3a to 3i or the total maximum air flow.
  • the storage unit 30 is a so-called memory that stores a predetermined predetermined air volume threshold value set in advance. In addition, the storage unit 30 is also used when it is necessary to store information such as numerical values for control by the system controller 8.
  • FIG. 5 is a flowchart showing the air conditioning process.
  • FIG. 6 is a diagram showing an example of the relationship between the temperature of the air conditioning room, the room temperature of the living room, and the target (quasi-target) air conditioning temperature.
  • FIG. 7 is a flowchart showing the air conditioning room temperature control process.
  • FIG. 8 is a flowchart showing a fan air volume setting process.
  • FIG. 9 is a flowchart showing the fan air volume adjustment process.
  • FIG. 10 is a flowchart showing the air conditioning room load reduction process.
  • the air conditioning process executed by the system controller 8a is mainly composed of the air conditioning room temperature control process S100, the fan air volume setting process S200, and the fan air volume adjustment process S300, and is executed in this order.
  • the system controller 8a When the user executes the air conditioning process, the system controller 8a first executes the air conditioning room temperature control process S100 shown in FIG. 7.
  • the system controller 8a acquires the heating / cooling period setting set by the input / output terminal 18 (S101).
  • the heating / cooling period setting is, for example, the cooling period in the summer when the temperature rises and the air conditioner 7 is operated (operated) as a cooling machine, and the heating period in the winter when the temperature becomes low and the air conditioner 7 is operated as a heater. And set.
  • the user sets, for example, June to September as the cooling period and December to March as the heating period for the calendar function of the input / output terminal 18, so that the system controller 8a acquires the setting. can do.
  • the system controller 8a acquires the target air conditioning temperature set in the living room by the input / output terminal 18 via the target air conditioning environment acquisition unit 33a (S102).
  • the air conditioning room temperature control unit 23 sets the target temperature of the air conditioning room 17 (target air conditioning temperature in the air conditioning room) in the air conditioner 7 (S103). Specifically, the target air conditioning temperature in the air conditioning room is determined as follows.
  • FIG. 6 illustrates the temperature environment in the air conditioning room 17, the living room 2d, the absent room 2c, and the absent room 2b.
  • the living room 2d has a room temperature of 27 ° C. and a target air conditioning temperature of 20 ° C.
  • the absent room 2c has a quasi-target air conditioning temperature of 22 ° C. because the room temperature is 27 ° C. and the adjacent space distance from the living room 2d is 1.
  • the absent room 2b has a quasi-target air conditioning temperature of 24 ° C. because the room temperature is 28 ° C. and the adjacent space distance from the living room 2d is 2.
  • the air conditioning room temperature control unit 23 controls the target air conditioning temperature of the air conditioning room to a temperature lower than the target air conditioning temperature. That is, in the example shown in FIG. 6, the temperature is set to 20 ° C. or lower, which is lower than the target air conditioning temperature.
  • the target air conditioning temperature of the air conditioning room is 20 ° C.
  • the air conditioning room temperature control unit 23 controls the target air conditioning temperature of the air conditioning room to a temperature higher than the target air conditioning temperature.
  • the set temperature is 24 ° C.
  • the air conditioning room 17 is cooled to the set temperature of 20 ° C., and if this air conditioning room target air conditioning temperature is used, it is possible to correspond to the target air conditioning temperature (here, 20 ° C. to 24 ° C.) of all the living rooms 2.
  • the system controller 8a executes the fan air volume setting process S200 shown in FIG.
  • the system controller 8a acquires the air conditioning room temperature via the air conditioning room temperature sensor 12 (S201). Subsequently, the system controller 8a acquires the indoor temperature of each living room via the living room temperature sensor 9 (S202). After that, the system controller 8a determines the living room / absent room of the living rooms 2a to 2i via the presence / absence living room determination unit 32 (S203).
  • the system controller 8a determines that the living room is a living room
  • the system controller 8a determines that the living room is an absent living room by determining the target air conditioning temperature of the living room set by the input / output terminal 18 via the target air conditioning environment acquisition unit 33a. If so, the quasi-target air-conditioning temperature acquired by the quasi-target air-conditioning environment storage unit 34a is acquired based on the information from the target air-conditioning environment acquisition unit 33a (S204).
  • the first temperature comparison unit 27 compares the target (quasi-target) air-conditioning temperature with the air-conditioning room temperature and calculates the temperature difference (S205).
  • the air flow rate determination unit 24a determines the air flow rate of each of the transfer fans 3a to 3i based on the calculated temperature difference (S206).
  • the amount of air blown is specifically determined as follows. That is, since the target air-conditioning temperature of the living room 2d is 20 ° C. and the temperature of the air-conditioned air-conditioned room 17 is 20 ° C., the amount of air blown by the transport fan 3c corresponding to the transport duct connecting the living room 2d and the air-conditioned room 17. Is the maximum value.
  • the air blowing amount can be the air blowing capacity of the transport fan or the operating notch. For example, assuming that the air flow rate of the transport fan 3 can be set in 10 steps from 1 to 10 in order from the one with the smallest air flow rate, the air flow rate is determined to be 10.
  • the air volume determining unit 24a blows the maximum amount of air at the same temperature (20 ° C) in the air conditioning chamber 17 in order to lower the indoor temperature of the living room 2d from 27 ° C and further maintain the target air conditioning temperature of 20 ° C. To decide.
  • the air blowing amount determining unit 24a sets the air blowing amount of the transport fan 3b to a value lower than the maximum value.
  • a low value is, for example, an air volume of 8.
  • the target air-conditioning temperature of the absent room 2b having an adjacent space distance of 2 is 24 ° C. and the temperature of the air-conditioning-controlled air-conditioning room 17 is 20 ° C., assuming that the air volume of the transport fan 3a is 10, which is the maximum value.
  • the quasi-target air conditioning temperature of the absent room 2b may be lower than 24 ° C. Therefore, the air blowing amount determining unit 24a sets the air blowing amount of the transport fan 3a to, for example, 6, which is lower than the maximum value.
  • the air blowing amount determining unit 24a is a living room (living room 2d: temperature difference 0) in which the temperature difference calculated by, for example, the first temperature comparison unit 27 is small according to the difference between the target (quasi-target) air conditioning temperature and the temperature of the air conditioning room. With respect to ° C.), the amount of air blown by the transport fan 3c is made larger than that for a living room having a large temperature difference (for example, absent room 2b: temperature difference 5 ° C., absent room 2c: temperature difference 2 ° C.).
  • the fan air volume control unit 20 controls each conveyor fan 3 according to the determination.
  • the temperature of the air-conditioning room 17 controlled by the air-conditioning room temperature control unit 23 and the control of the plurality of independent transfer fans 3a to 3i control the existing room to the target air-conditioning temperature and the absent room to the quasi-target air-conditioning temperature. It becomes possible.
  • the living room With the most comfortable target air-conditioning environment required by a person, and to the absent room with a quasi-target air-conditioning environment with less energy load.
  • the energy load can be reduced compared to setting all the rooms as the target air-conditioning environment.
  • even when a person moves from the living room to the absent room there is little change in the air conditioning environment. Therefore, it is possible to suppress adverse effects such as heat shock that a sudden environmental change gives to a person.
  • the air-conditioning environment of the absent room provides an air-conditioning environment in which the energy load is gradually reduced according to the distance from the living room adjacent to the room. Therefore, the environment changes slowly even when a person moves over a plurality of spaces. Therefore, it is possible to accustom people to the environment and reduce the adverse effects of changes in the environment.
  • the living room is changed to an absent room.
  • the absent room at the new destination is changed to the target air-conditioning environment of the living room, that is, the air-conditioning environment is most comfortable for people.
  • the living room changed from the living room to the absent room shifts to a quasi-target air-conditioning environment with a low energy load, so that the environment with a low energy load can be maintained for the entire house.
  • the room that has not reached the target (quasi-target) air-conditioning temperature is quickly targeted by first blowing air at the maximum air volume. (Semi-target) It is also possible to reach the air conditioning temperature. Even in this case, it is possible to maintain each living room at the target (quasi-target) air conditioning temperature by the fan air volume adjusting process S300 described later.
  • the air-conditioning chamber 17 transports air to a plurality of living rooms 2, if a large amount of air is transported at one time, the air-conditioning treatment of the air-conditioning chamber 17 cannot catch up, that is, the cooling / heating effect is reduced.
  • the air blowing amount determining unit 24a increases the air blowing amount of the transport fan for the living room having a small temperature difference as compared with the living room having a large temperature difference.
  • the air blowing amount determining unit 24a makes the air blowing amount of the transport fan smaller for the living room having a large temperature difference than for the living room having a small temperature difference.
  • the target air conditioning temperature of the living room 2d is 20 ° C., which is the same as the temperature of the air conditioning room 17, so that the living room 2d is controlled to the target air conditioning temperature by controlling the transport fan 3c with the maximum air volume. It is possible. However, for example, for the absent room 2b, the quasi-target air-conditioning temperature is 24 ° C. Therefore, when the air volume in the above example is 5, can the quasi-target air-conditioning temperature be reached or can be maintained? Or it is unclear whether it will be supercooled. The same applies to the absent room 2c. In order to deal with such a situation, the system controller 8a executes the fan air volume adjusting process S300 shown in FIG.
  • the system controller 8a determines whether or not a certain time has elapsed since the fan air volume setting process S200 was completed (S301). If a certain time has not passed, the process waits until a certain time has passed (S301No). This is to operate the air conditioning system in the environment set by the fan air volume setting process S200 and to secure time for bringing the indoor temperature of each living room close to the target air conditioning temperature.
  • the system controller 8a acquires the room temperature of each room via the room temperature sensor 9 (S302). Further, the system controller 8a determines the living room / absent room of the living rooms 2a to 2i via the presence / absence living room determination unit 32 (S303). After that, when the system controller 8a determines that the living room is a living room, the system controller 8a determines that the living room is an absent living room by determining the target air conditioning temperature of the living room set by the input / output terminal 18 via the target air conditioning environment acquisition unit 33a. If so, the quasi-target air-conditioning temperature of the absent room acquired by the quasi-target air-conditioning environment storage unit 34a is acquired based on the information from the target air-conditioning environment acquisition unit 33a (S304).
  • the second temperature comparison unit 28 compares the target (quasi-target) air-conditioning temperature with the room temperature of the living room and calculates the temperature difference (temperature deviation) (S305).
  • the temperature difference comparison unit 29 calculates the temperature difference at the previous timing (corresponding to timing A) stored in the previous fan air volume adjustment process S300. Compare with the temperature difference A. Since this is the first process, the temperature difference A calculated last time does not exist. Therefore, the temperature difference calculated without comparison is stored in the storage unit 30 as the temperature difference A, and the process returns to S301.
  • the temperature difference comparison unit 29 is different from the temperature difference B calculated by the second temperature comparison unit 28 at this timing (corresponding to timing B). , The temperature difference A at the timing A stored in the storage unit 30 is compared.
  • the air blowing amount determining unit 24a reduces the air blowing amount of the transport fan 3 (S306Yes ⁇ S307).
  • the air blowing amount determining unit 24a reduces the air blowing amount of the transport fan (S308Yes ⁇ S307).
  • the air blowing amount determining unit 24a increases the air blowing amount of the transport fan (S308No ⁇ S309).
  • Whether or not it is overcooled (overheated) can be determined from the heating / cooling period setting, the target (quasi-target) air conditioning temperature, and the room temperature of the living room.
  • the room temperature of the living room is close to the target (quasi-target) air conditioning temperature (for example, plus or minus 0.3 ° C).
  • the air volume of the transport fan may be maintained unchanged.
  • the fan air volume adjustment process S300 is executed at regular intervals.
  • each room is reached to the target (quasi-target) air-conditioning temperature by the temperature control of the air-conditioning room by the air-conditioning room temperature control unit 23 and the air volume control of the transfer fan 3, and the target (quasi-target) is achieved.
  • Target It becomes possible to maintain the air conditioning temperature.
  • temperature control is possible even if a general fan is used as the transport fan, but in order to enable fine temperature control, it is not affected by the duct length or pressure. It is preferable to use a fan provided with a constant air volume control function unit capable of maintaining a set constant air volume as the conveyor fan.
  • the above air conditioning process is set by changing the setting of each target air conditioning temperature or switching the cooling / heating period as an interrupt process, and when the interrupt process is performed, it is started from the air conditioning temperature control process S100. It will be possible to respond to changes.
  • the air-conditioning chamber 17 is a space having a limited volume.
  • the temperature of the air-conditioning chamber 17 It becomes difficult to maintain. This is because the air-conditioning chamber 17 has a large outflow of temperature-controlled air, and conversely, the inflow of air having a large temperature difference compared to the set temperature of the air-conditioning chamber 17 increases.
  • the system controller 8a may execute the air conditioning room load reduction process S400 shown in FIG.
  • the total amount of blown air calculation unit 25 calculates the total amount of blown air, which is the total amount of air blown by the plurality of transport fans 3a to 3i (S401).
  • the blast amount comparison unit 26 compares the total blast amount (total blast) calculated by the total blast amount calculation unit 25 with a predetermined blast amount threshold value stored in advance in the storage unit 30 (S402).
  • the predetermined air flow threshold is set to a value of 80% of the total maximum air flow of the plurality of transport fans 3a to 3i.
  • the ventilation amount comparison unit 26 when the total ventilation amount exceeds the predetermined ventilation amount threshold value (Yes in S403), the ventilation amount comparison unit 26 further acquires the heating / cooling period setting set in the input / output terminal 18, and based on this information. The heating / cooling period is determined (S404). The air-conditioning volume comparison unit 26 transmits to the air-conditioning room temperature control unit 23 that the total air-blowing amount exceeds a predetermined air-conditioning amount threshold value and that it is in the cooling period or the heating period. If the total amount of air blown is equal to or less than the predetermined air flow amount threshold value (No in S403), the process ends.
  • the air-conditioning room temperature control unit 23 When the air-conditioning room temperature control unit 23 receives that the total amount of air blown exceeds the predetermined air-conditioning amount threshold and that it is in the cooling period or the heating period, in the case of the cooling period, the temperature of the air-conditioning room is further increased from the current setting. Change to lower (S404 cooling period ⁇ S406). Further, in the case of the heating period, the air-conditioning room temperature control unit 23 changes the temperature of the air-conditioning room to a higher level than the current setting (S404 heating period ⁇ S405).
  • the air-conditioning room temperature control unit 23 transmits to the air-conditioning room temperature setting unit 24a that the air-conditioning room temperature setting has been changed, and the air-conditioning room temperature control unit 24a reduces the air-blowing amount of the conveyor fan 3 based on this (S407).
  • the lowering width (cooling period) and raising width (heating period) of the air-conditioning chamber temperature are not fixed values, but are increased in proportion to the amount in which the total ventilation amount exceeds the predetermined ventilation amount threshold value. It is advantageous in terms of utilization efficiency and energy consumption. Specifically, when the predetermined air flow threshold is 70 and the total air flow is 80, the temperature is changed by 2 ° C. Similarly, when the total blast is 90, the temperature is 4 ° C, and when the total blast is 100, the temperature is 6 ° C.
  • the circulation fans 6a to 6i and the transfer fans 3a to 3i are communicated by a duct connecting the living room and the air conditioning room.
  • the circulation fans 6a to 6i do not necessarily have to be connected by a duct, and a space such as a corridor connecting the living rooms can be regarded as a duct.
  • the air in the living room is conveyed from the living room to the corridor by the circulation fans 6a to 6i.
  • the air in the living room conveyed to the corridor is taken into the air-conditioning room 17 that communicates with the corridor.
  • the intake into the air-conditioning chamber 17 may be performed by newly providing a circulation fan on the wall surface facing the corridor of the air-conditioning chamber 17, or may be taken in by making the air-conditioning chamber negative pressure without using the circulation fan. Even with such a configuration, it is expected that the circulation efficiency will be lower than that of connecting with a duct, but it can contribute to the air conditioning system.
  • the living room does not necessarily have to be occupied by people and can be regarded as one space.
  • the corridor and kitchen are also separated to some extent, they can be regarded as one space, which corresponds to one living room.
  • the air conditioning system according to the present disclosure can be applied to a complex house such as a detached house or an apartment.
  • a complex house such as a detached house or an apartment.
  • one system corresponds to each household, and each household is not one living room.
  • the presence / absence of a person in a plurality of living rooms is determined based on the information acquired from each motion sensor, and the air conditioning control is performed based on the adjacent space distance from the living room in which the person exists.
  • the second embodiment relates to air conditioning control when a person in a predetermined living room is aware of the living room to be moved next. It should be noted that other than the air conditioning control, it has already been described in the first embodiment. Therefore, only the control method, which is a change from the first embodiment, will be described below.
  • FIG. 11 is a schematic functional block diagram of the system controller 8b.
  • the system controller 8b includes an air conditioning room temperature control unit 23, an air volume determination unit 24b, a fan air volume control unit 20, a total air volume calculation unit 25, an air volume comparison unit 26, and a storage unit 30. That is, the air flow amount determining unit 24b is provided in place of the air flow amount determining unit 24a of FIG.
  • the air flow amount determination unit 24b includes a change reception unit 44, a control change unit 45, a virtual living room release unit 46, a virtual absent room release unit 47, and a timer setting unit 48. Be prepared.
  • the change reception unit 44 receives an absentee room order for changing a predetermined absentee room to a virtual absentee room or an absentee room order for changing a predetermined absentee room to a virtual absentee room via the input / output terminal 18.
  • the control change unit 45 changes the predetermined absent room to a virtual absent room or changes the predetermined absent room to a virtual absent room based on the absent room order or the absent room order received by the change reception unit 44.
  • the virtual living room refers to a living room that should be treated as a virtual living room, although it is an absent room. That is, the virtual living room is an absent room because there are no people, but for example, when the user plans to move to the absent room (virtual living room) after a predetermined time, the absent room is set as the target air conditioning environment in advance. Used to set to.
  • the virtual absent room is the same as the virtual absent room. In other words, the virtual absent room refers to a room that is a living room but should be treated as a virtual absent room.
  • the virtual absent room is a living room because there are people, but for example, if the user plans to move from the living room (virtual absent room) after a predetermined time, the living room is set to the semi-target air conditioning environment in advance. Used to
  • the virtual living room release unit 46 a person exists in the virtual living room based on the information acquired from the living room motion sensor 11 after the predetermined absent room is changed to the virtual living room by the signal from the control changing unit 45. When it is found that the virtual living room will be changed to a living room.
  • the virtual absent room release unit 47 a person exists in the virtual absent room based on the information acquired from the motion sensor 11 after the predetermined living room is changed to the virtual absent room by the signal from the control change unit 45. When it is found that it will not be done, the virtual absent room is changed to the absent room.
  • the living room air conditioning environment control unit 21 brings the virtual living room closer to the target air conditioning environment.
  • Set the waiting time For example, if you want to set the air conditioning control that brings the virtual living room closer to the target air conditioning environment from 6:00 pm, the control change unit 45 changes the absent room to the virtual living room at 5:30 pm before 6:00 pm. Even if it is present, the air conditioning control can be performed from 6:00 pm if the standby time is set to 30 minutes by the timer setting unit 48.
  • the control change unit 45 changes the absent room to the virtual living room at 5 pm before 6:00 pm. Even in this case, if the standby time is set to 30 minutes by the timer setting unit 48, the air conditioning control can be performed from 5:30 pm and the air conditioning control can be performed by 6:00 pm.
  • the control changing unit 45 receives the living room order has been described here, the same applies to the case where the control changing unit 45 receives the absent room order. That is, when the control change unit 45 changes the predetermined living room to a virtual absent room in response to the absent room command, the absent room air conditioning environment control unit 22 sets the waiting time until the virtual absent room approaches the quasi-target air conditioning environment.
  • the waiting time is 30 even if the control change unit 45 changes the living room to a virtual absent room at 5:30 pm before 6:00 pm. If it is set to minutes, air conditioning control will be performed from 6 pm so that the virtual absent room approaches the semi-target air conditioning environment.
  • the waiting time even if the control change unit 45 changes the living room to a virtual absent room at 5 pm before 6:00 pm. If is set to 30 minutes, it is possible to control the air conditioning from 5:30 pm and control the air conditioning so that the virtual absent room approaches the quasi-target air conditioning environment by 6:00 pm.
  • FIG. 12 is an example of a movement schedule setting screen displayed on the input / output terminal 18.
  • the movement schedule setting screen is provided to the input / output terminal 18 by, for example, the change reception unit 44, or is drawn by an application incorporated in the input / output terminal 18 in advance. Further, as for the position of the person drawn on the movement schedule setting screen, the information acquired from the motion sensor 11 is provided to the input / output terminal 18 via the change reception unit 44, and a humanoid icon is displayed on the entire living room diagram. Is drawn as.
  • living rooms 2a and 2i are determined to be living rooms by the living room motion sensors 11a and 11i, respectively, and living rooms 2b, 2c, 2d, 2e, 2f and 2g are living room motion sensors 11b, 11c and 11d, respectively.
  • 11e, 11f, 11g determine that the room is absent. For example, when the user plans to move from the living room 2i to the absent room 2f, the humanoid icon is moved from the living room 2i to the absent room 2f on the input / output terminal 18 as shown in Step 2.
  • the change reception unit 44 first receives an absentee room command for changing the living room 2i from a living room to a virtual absent room, which is transmitted from the input / output terminal 18 to the system controller 8b, and virtually presents the living room 2f from the absent room. Accepts living room orders to change to living room.
  • the change reception unit 44 transmits the living room order and the absent room order to the control changing unit 45. Further, the control change unit 45 changes the living room 2i from the living room to the virtual absent room and the living room 2f from the absent room to the virtual living room based on the absent room command and the living room command from the change reception unit 44.
  • the system controller 8b controls the air conditioning of the living room 2i changed to the virtual absent room so as to approach the quasi-target air conditioning environment via the absent room air conditioning environment control unit 22, and is changed to the virtual living room.
  • the air conditioning control is performed so that the living room 2f approaches the target air conditioning environment via the living room air conditioning environment control unit 21.
  • the system controller 8b grasps that a person is moving and can control the corresponding absent room as a virtual living room in advance to the target air-conditioning environment, so that the temperature difference between the moving destination and the living room currently in the room becomes small. It is possible to control the air conditioning without affecting the human body as compared with the first embodiment.
  • Step 3 of FIG. 12 it is also possible to set the waiting time until the user performs air conditioning control on the input / output terminal 18, for example, 30 minutes.
  • the user is watching a TV program in the living room 2i and moves to the absent room 2f at the time when the TV program ends, that is, for example, 40 minutes later.
  • the user moves the humanoid icon from the living room 2i to the absent room 2f on the input / output terminal 18.
  • the waiting time is input as 30 minutes on the number line.
  • 30 minutes is a standby time based on the air conditioning time of 10 minutes for the movement after 40 minutes.
  • FIG. 12 shows an example in which the standby time can be set on a number line.
  • the timer setting unit 48 receives the waiting time of 30 minutes transmitted from the input / output terminal 18 to the system controller 8b. Next, the timer setting unit 48 transmits a standby command including a waiting time of 30 minutes input to the living room air conditioning environment control unit 21 or the absent room air conditioning environment control unit 22.
  • the standby command is set so that the living room air conditioning environment control unit 21 or the absent room air conditioning environment control unit 22 performs air conditioning control on the virtual living room and the virtual absent room after the input waiting time has elapsed. It is an instruction to do.
  • the living room air conditioning environment control unit 21 and the absent room air conditioning environment control unit 22 start air conditioning control for the virtual living room or the virtual absent room after a waiting time of 30 minutes has elapsed.
  • the standby time can be set using the timer setting unit 48, the user can input the scheduled movement time in advance according to his / her own convenience.
  • the system controller 8b transmits the information acquired from the living room motion sensors 11i and 11f to the virtual living room release unit 46 and the virtual absent room release unit 47.
  • the virtual living room release unit 46 changes the living room 2f from the virtual living room to the living room based on the information acquired from the living room motion sensor 11f.
  • the virtual absent room release unit 47 changes the living room 2i from the virtual absent room to the absent room based on the information acquired from the living room motion sensor 11i.
  • time range and display format based on the number line are examples, and are not limited to this.
  • the display on the input / output terminal 18 is an example and is not limited to this.
  • FIG. 13 is a schematic connection diagram of the air conditioning system 19 according to the present embodiment
  • FIG. 2 is a diagram showing an example of a living room arrangement of a general house 1 according to the present embodiment. Note that FIG. 2 is as described in the first embodiment. Further, FIG. 13 is the same except that the living room motion sensor 11 is removed from FIG. 1 already described.
  • FIG. 14 is a schematic functional block diagram of the system controller 8c.
  • the system controller 8c includes an air conditioning room temperature control unit 23, an air volume determination unit 24c, a fan air volume control unit 20, a total air volume calculation unit 25, an air volume comparison unit 26, and a storage unit 30. That is, the air flow amount determining unit 24c is provided in place of the air flow amount determining unit 24a of FIG.
  • the air-blowing amount determination unit 24c includes a living room / non-living room storage unit 43, a target air-conditioning environment acquisition unit 33b, a quasi-target air-conditioning environment storage unit 34b, a living room air-conditioning environment control unit 41, a non-living room air-conditioning environment control unit 42, and the like.
  • a first temperature comparison unit 27, a second temperature comparison unit 28, and a temperature difference comparison unit 29 are provided.
  • the living room / non-living room storage unit 43 stores the living rooms 2a to 2i separately into the living room and the non-living room. Further, each living room is stored in association with the living room temperature sensor 9, the transfer fan 3, and the circulation fan 6.
  • the living room mentioned here corresponds to the space where a person spends a long time to live in a house.
  • the living room includes a living room (living room), a dining room (kitchen / dining room), a bedroom, a children's room, and the like.
  • the non-living room corresponds to a space that constitutes a house and does not correspond to a living room.
  • non-living rooms include toilets, storerooms, bathrooms, washrooms, dressing rooms, corridors, entrances, and the like.
  • this kitchen may be regarded as a non-living room, and vice versa. That is, the space to be controlled by air conditioning may be assigned to either a living room or a non-living room.
  • the target air-conditioning environment acquisition unit 33b acquires the target air-conditioning environment set in the living room 2 via the input / output terminal 18 for the living room 2 determined to be a living room based on the living room / non-living room storage unit 43.
  • the quasi-target air-conditioning environment storage unit 34b stores the quasi-target air-conditioning environment of the non-living room with respect to the target air-conditioning environment.
  • An example of setting the target air-conditioning environment (temperature) and the quasi-target air-conditioning environment (temperature) of each living room based on the storage information of the quasi-target air-conditioning environment storage unit 34b is shown below.
  • the quasi-target air-conditioning environment storage unit 34b stores that the quasi-target air-conditioning temperature is + 2 ° C. from the target air-conditioning temperature when the living room is a non-living room.
  • the quasi-target air-conditioning environment storage unit 34b stores that the quasi-target air-conditioning temperature is ⁇ 2 ° C. from the target air-conditioning temperature when the living room is a non-living room.
  • the quasi-target air conditioning temperature of the non-living room is 22 ° C.
  • the target air-conditioning temperature of the living room is 20 ° C. in winter, that is, the heating period
  • the quasi-target air-conditioning temperature of the non-living room is 18 ° C.
  • the living room air conditioning environment control unit 41 is the target air conditioning environment (temperature) of the living room set by the input / output terminal 18 via the target air conditioning environment acquisition unit 33b, and the air conditioning room 17 controlled by the air conditioning room temperature control unit 23.
  • the amount of air blown by each conveyor fan 3 is determined based on the temperature and the room temperature of each living room acquired by the living room temperature sensor 9.
  • the non-living room air-conditioning environment control unit 42 has a quasi-target air-conditioning environment (temperature) of the non-living room determined based on the information from the target air-conditioning environment acquisition unit 33b, the living room / non-living room storage unit 43, and the air-conditioning room temperature control unit.
  • the amount of air blown by each conveyor fan 3 is determined based on the temperature of the air conditioning chamber 17 controlled by 23 and the indoor temperature of each non-living room acquired by the living room temperature sensor 9.
  • the procedure for determining the amount of air blown is as described in the first embodiment.
  • the living room with the most comfortable target air-conditioning environment required by a person, and to provide the non-living room with a quasi-target air-conditioning environment with a small energy load.
  • the energy load can be reduced compared to setting all the rooms as the target air-conditioning environment.
  • it since it provides a comfortable target air-conditioning environment for living rooms that are expected to stay longer than non-living rooms, it is highly possible that it can provide a comfortable air-conditioning environment for people, and the entire building has a simple configuration and a low energy load. Air conditioning can be provided.
  • the air-conditioned environment is used as the temperature.
  • the humidity environment in each living room can be adjusted by adjusting the air volume of the transport fan by adjusting the humidity environment of the air conditioning room. In other words, if we focus on humidity as the air conditioning environment, we maintain the humidity in the air conditioning room at the target air conditioning environment (humidity), which is the most comfortable humidity.
  • the target air-conditioning environment (humidity) is maintained by increasing the air volume of the transport fan in the living room or living room, and the air volume of the transport fan is reduced for the absent room or non-living room compared to the living room or living room. By doing so, it becomes possible to maintain the semi-target air conditioning environment (humidity).
  • the cleanliness of the air-conditioning room can be adjusted by adjusting the cleanliness environment of each room according to the air volume of the transport fan. That is, if attention is paid to cleanliness as an air-conditioning environment, the cleanliness of the air-conditioning room is set to the highest required cleanliness and maintained at the target air-conditioning environment (cleanliness).
  • the target air-conditioning environment (cleanliness) is maintained by increasing the air volume of the transport fan in the living room or living room, and the air volume of the transport fan is increased for the absent room or non-living room compared to the living room or living room. By reducing it, it becomes possible to maintain the semi-target air conditioning environment (cleanliness).
  • the air-conditioning system can determine the presence / absence of people and the living / non-living rooms in a plurality of living rooms, and can efficiently carry out air-conditioning in the entire building by operating with less energy than before.

Abstract

空調室から家屋を構成する空間である居室に空気を搬送する搬送ファンと、居室における人の在・不在を検知する人感センサーと、搬送ファンを制御する空調システムコントローラと、を備え、少なくとも居室の目標空調環境を取得する目標空調環境取得部と、人感センサーからの情報に基づき人が存在する在居室を判定し、在居室を目標空調環境に近づけるよう、在居室に空気を搬送する搬送ファンを制御する在居室空調環境制御部と、人感センサーからの情報に基づき人が存在しない不在居室を判定し、不在居室を前記在居室に対して目標空調環境よりもエネルギー負荷の低い準目標空調環境に近づけるよう、不在居室に空気を搬送する搬送ファンを制御する不在居室空調環境制御部と、を備えた空調システム等を提供する。

Description

空調システム
 本開示は、空調システムに関するものである。
 従来、住居に対して全館空調機での空調が行なわれている。また、省エネルギー住宅需要の高まりや規制強化に伴い、高断熱・高気密住宅が増加していくことが予想されており、その特徴に適した空調システムが要望されている。
 例えば特許文献1に示されるように、複数個の居室を備えた高断熱・高気密家屋において、空調機を独立して設けるとともに、空調室と各居室を連結する給気ダクトを備え、各居室に配置されたコントローラにより空調室内空気を個別的に分配給気する方法が知られている。
特開2011-127845号公報
 このような従来の空調システムは、居室内における人の在・不在に関わらず、温度を所定の目標温度に均一化する。しかしながら、実際には、人が居室内に存在しない場合や、複数の居室内に存在する場合、あるいはいずれかの居室内のみに存在する場合等が考えられる。このため、全居室に対して同一の温度制御を行うことは、エネルギー効率の面で非効率であるといえる。
 そこで本開示は、上記従来の課題を解決するものであり、複数の居室における人の在・不在や居室であるか否かに基づいて、エネルギー効率の高い空調制御を行う空調システムを提供することを目的とする。
 そして、この目的を達成するために、本開示は、空調した空調室の空気を搬送して家屋を空調する空調システムであって、空調室から家屋を構成する空間である居室に空気を搬送する搬送ファンと、居室における人の在・不在を検知する人感センサーと、搬送ファンを制御する空調システムコントローラと、を備え、空調システムコントローラは、少なくとも居室の目標空調環境を取得する目標空調環境取得部と、人感センサーからの情報に基づき人が存在する在居室を判定し、在居室を前記目標空調環境に近づけるよう、在居室に空気を搬送する搬送ファンを制御する在居室空調環境制御部と、人感センサーからの情報に基づき人が存在しない不在居室を判定し、不在居室を前記在居室に対して目標空調環境よりもエネルギー負荷の低い準目標空調環境に近づけるよう、不在居室に空気を搬送する搬送ファンを制御する不在居室空調環境制御部と、を備える。これにより所期の目的を達成するものである。
 本開示によれば、複数の居室における人の在・不在や居室であるか否かに基づいて、エネルギー効率の高い空調制御を行う空調システムを提供することができる。
図1は、本開示の第1実施形態に係る空調システムの接続概略図である。 図2は、本開示の第1実施形態に係る家屋の居室配置の一例を示す図である。 図3は、本開示の第1実施形態に係る空調システムのシステムコントローラの概略機能ブロック図である。 図4は、本開示の第1実施形態に係る家屋の居室の温度分布を示す図である。 図5は、本開示の第1実施形態に係る空調処理を示すフローチャートである。 図6は、本開示の第1実施形態に係る空調室の温度と居室の室内温度と居室目標温度との関係の一例を示す図である。 図7は、本開示の第1実施形態に係る空調室温度制御処理を示すフローチャートである。 図8は、本開示の第1実施形態に係るファン風量設定処理を示すフローチャートである。 図9は、本開示の第1実施形態に係るファン風量調整処理を示すフローチャートである。 図10は、本開示の第1実施形態に係る空調室負荷低減処理を示すフローチャートである。 図11は、本開示の第2実施形態に係る空調システムのシステムコントローラの概略機能ブロック図である。 図12は、本開示の第2実施形態に係る入出力端末の画面上での操作を示す図である。 図13は、本開示の第3実施形態に係る空調システムの接続概略図である。 図14は、本開示の第3実施形態に係る空調システムのシステムコントローラの概略機能ブロック図である。
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。よって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、並びに、ステップ(工程)及びステップの順序などは、一例であって本開示を限定する主旨ではない。従って、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態1)
 まず、図1、図2を参照して、本開示の実施の形態1に係る空調システム19について説明する。図1は、本実施の形態に係る空調システム19の接続概略図であり、図2は、本実施の形態に係る一般住宅1の居室配置の一例を示す図である。
 空調システム19は、外気導入ファン4と、複数の排気ファン5(排気ファン5a,5b,5c,5d,5e,5f,5g,5h,5i)と、複数の搬送ファン3(搬送ファン3a,3b,3c,3d,3e,3f,3g,3h,3i)と、複数の循環ファン6(6a,6b,6c,6d,6e,6f,6g,6h,6i)と、居室温度センサー9(居室温度センサー9a,9b,9c,9d,9e,9f,9g,9h,9i)と、居室湿度センサー10(居室湿度センサー10a,10b,10c,10d,10e,10f,10g,10h,10i)と、居室人感センサー11(居室人感センサー11a,11b,11c,11d,11e,11f,11g,11h,11i)と、空調室温度センサー12と、空調室湿度センサー13と、エアコンディショナー7と、加湿器15と、除湿器16と、空気清浄機40と、入出力端末18と、システムコントローラ8a(空調システムコントローラに該当)と、を備えて構成される。
 空調システム19は、家屋の一例である一般住宅1内に設置される。一般住宅1は、複数(本実施形態では9つ)の居室2(居室2a,2b,2c,2d,2e,2f,2g,2h,2i)に加え、居室2と独立した少なくとも1つの空調室17を有している。ここで一般住宅1(住宅)とは、居住者がプライベートな生活を営む場として提供された住居であり、一般的な構成として居室2にはリビング(居間)、ダイニング(台所・食堂)、寝室、物置、子供部屋等が含まれる。また空調システム19が提供する居室にトイレ、浴室、洗面所、脱衣所、廊下、玄関等を含んでもよい。
 空調室17は、各居室2より搬送された空気同士が混合される。また、外気導入ファン4により外気が空調室17内に取り込まれ、循環ファン6によって各居室2より搬送された空気と混合される。空調室17の空気は、空調室17内に設けられたエアコンディショナー7、加湿器15、除湿器16、及び空気清浄機40等によって温度、湿度、清浄度が好適に制御され、すなわち空調環境が最適化されて、居室2に搬送すべき空気が生成される。空調室17にて空調された空気は、搬送ファン3により、各居室2に搬送される。
 各居室2の空気は、循環ファン6により空調室17へ搬送される他、排気ファン5によって居室2内から一般住宅1外へ外気として排出される。空調システム19は、排気ファン5の排気風量を制御して室内から外気を排出しつつ、その排気ファン5の排気風量と連動させながら外気導入ファン4の給気風量を制御して室内に外気を取り込むことで、第1種換気方式の換気が行われる。
 外気導入ファン4は、一般住宅1の室内に外気を取り込むファンであり、給気ファンや熱交換気扇の給気機能等が該当する。上述した通り、外気導入ファン4により取り込まれた外気は、空調室17内に導入される。外気導入ファン4の給気風量は、複数段階で設定可能に構成されており、その排気風量は、後述するように、排気ファン5の排気風量に応じて設定される。
 排気ファン5は、対応する居室2の空気の一部を例えば排気ダクトを介して外気として排出するファンであり、天埋換気扇、壁掛換気扇、レンジフード、熱交換気扇の排気機能等が該当する。なお、図1においては排気ファン5に接続された排気ダクトは直接一般住宅1外へ接続されているが、熱交換気扇の排気機能を利用する場合には、排気ダクトはいったん熱交換気扇に接続されてから一般住宅1外へ接続される。つまり排気ダクトを通る空気が熱交換気扇の給気風路を通る空気との間で熱交換されたのち、一般住宅1外へ排出される。排気ファン5aは居室2aに、排気ファン5bは居室2bに、排気ファン5cは居室2cに、排気ファン5dは居室2dに、排気ファン5eは居室2eに、排気ファン5fは居室2fに、排気ファン5gは居室2gに、排気ファン5hは居室2h、排気ファン5iは居室2iに設けられている。
 各排気ファン5は、その排気風量が複数段階で設定可能に構成されている。通常時は、予め設定された排気風量となるように各排気ファン5は制御される。そして、ユーザによる設定や、各種センサーにより取得された値に応じて、排気ファン5a~5i毎に排気風量が制御される。
 搬送ファン3a~3iは、それぞれ居室2a~2iに対応して空調室17の例えば壁面に設けられている。空調室17の空気は、搬送ファン3aによって搬送ダクトを介して居室2aに搬送され、搬送ファン3bによって搬送ダクトを介して居室2bに搬送され、搬送ファン3cによって搬送ダクトを介して居室2cに搬送される。また、空調室17の空気は、搬送ファン3dによって搬送ダクトを介して居室2dに搬送され、搬送ファン3eによって搬送ダクトを介して居室2eに搬送され、搬送ファン3fによって搬送ダクトを介して居室2fに搬送される。また、空調室17の空気は、搬送ファン3gによって搬送ダクトを介して居室2gに搬送され、搬送ファン3hによって搬送ダクトを介して居室2hに搬送され、搬送ファン3iによって搬送ダクトを介して居室2iに搬送される。
 なお、各居室と接続される搬送ダクトは他の居室と接続される搬送ダクトと独立して設けられる。
 循環ファン6aは居室2aに、循環ファン6bは居室2bに、循環ファン6cは居室2cに、循環ファン6dは居室2dに、循環ファン6eは居室2eに、循環ファン6fは居室2fに、循環ファン6gは居室2gに、循環ファン6hは居室2hに、循環ファン6iは居室2iに設けられている。居室2a~2iの空気の一部は、それぞれ対応する循環ファン6a~6iによって、循環ダクトを介して空調室17に搬送される。なお、空調室17と居室とを接続する循環ダクトはそれぞれ互いに独立して設けられてもよいが、循環ダクトの一部である複数の支流ダクトを途中より合流させて1つの循環ダクトに統合した後、空調室17に接続されてもよい。
 エアコンディショナー7は、空調機に該当するものであり、空調室17の空調を制御する。エアコンディショナー7は、空調室17の空気の温度が設定された空調室目標空調温度となるように、空調室17の空気を冷却又は加熱する。
 加湿器15は、空調室17の空気の湿度が設定された空調室目標空調湿度よりも低い場合にその湿度が空調室目標空調湿度となるように、空調室17の空気を加湿する。なお、加湿器15がエアコンディショナー7に内蔵されている場合もあるが、複数の居室2に対応するだけの加湿能力を得るために、エアコンディショナー7とは独立した加湿器15を備えるのが望ましい。
 除湿器16は、空調室17の空気の湿度が設定された空調室目標空調湿度よりも高い場合にその湿度が空調室目標空調湿度となるように、空調室17の空気を除湿する。なお、除湿器16がエアコンディショナー7に内蔵されている場合もあるが、複数の居室2に対応するだけの除湿能力を得るために、エアコンディショナー7とは独立した除湿器16を備えるのが望ましい。
 空気清浄機40は、空調室17の空気の清浄度が設定された空調室目標空調清浄度よりも高い場合にその清浄度が空調室目標空調清浄度となるように、空調室17の空気を清浄する。なお、空気清浄機40がエアコンディショナー7に内蔵されている場合もあるが、複数の居室2に対応するだけの清浄能力を得るために、エアコンディショナー7とは独立した空気清浄機40を備えるのが望ましい。
 居室温度センサー9aは、居室2aに設けられ、居室温度センサー9bは、居室2bに設けられ、居室温度センサー9cは、居室2cに設けられている。また、居室温度センサー9dは、居室2dに設けられ、居室温度センサー9eは、居室2eに設けられ、居室温度センサー9fは、居室2fに設けられている。また、居室温度センサー9gは、居室2gに設けられ、居室温度センサー9hは、居室2hに設けられ、居室温度センサー9iは、居室2iに設けられている。居室温度センサー9a~9iは、対応する居室2a~2iそれぞれの室内温度を取得して、システムコントローラ8に送信するセンサーである。
 居室湿度センサー10aは、居室2aに設けられ、居室湿度センサー10bは、居室2bに設けられ、居室湿度センサー10cは、居室2cに設けられている。また、居室湿度センサー10dは、居室2dに設けられ、居室湿度センサー10eは、居室2eに設けられ、居室湿度センサー10fは、居室2fに設けられている。また、居室湿度センサー10gは、居室2gに設けられ、居室湿度センサー10hは、居室2hに設けられ、居室湿度センサー10iは、居室2iに設けられている。居室湿度センサー10は、対応する居室2a~2iそれぞれの室内湿度を取得して、システムコントローラ8aに送信するセンサーである。
 居室人感センサー11aは、居室2aに設けられ、居室人感センサー11bは、居室2bに設けられ、居室人感センサー11cは、居室2cに設けられている。また、居室人感センサー11dは、居室2dに設けられ、居室人感センサー11eは、居室2eに設けられ、居室人感センサー11fは、居室2fに設けられている。また、居室人感センサー11gは、居室2gに設けられ、居室人感センサー11hは、居室2hに設けられ、居室人感センサー11iは、居室2iに設けられている。居室人感センサー11は、対応する居室2a~2iそれぞれの室内の人の在・不在情報を取得して、システムコントローラ8aに送信するセンサーである。居室人感センサー11は、対象居室2内における人の在・不在を検知するための機器であればその形態を問わない。つまり、居室人感センサー11は、例えば直接的に人の存在を検知する、赤外線センサー、画像センサー、CO2濃度センサーなどが該当するが、それぞれの精度、特性が異なり、目的に応じて採用することができる。また、人が携帯する携帯通信端末が居室2に備えられた通信機と通信することで当該居室における人の存在を判定する例えば近接無線通信等の場合等には、通信機が本願における居室人感センサー11に該当する。
 空調室温度センサー12は、空調室17の空気の温度を取得して、システムコントローラ8aに送信するセンサーである。なお、空調室温度センサー12は、エアコンディショナー7に内蔵されている場合もあるが、エアコンディショナー7に内蔵されている場合にはエアコンディショナー7周囲(例えば給気口付近)の情報しか得られない。空調室17は、上述のように外気と各居室2から搬送された空気とが混合されるため、空調室17全体としての情報が得られるように、エアコンディショナー7とは独立して温度センサーを備えるのが望ましい。
 空調室湿度センサー13は、空調室17の空気の湿度を取得して、システムコントローラ8aに送信するセンサーである。なお、空調室湿度センサー13も空調室温度センサー12と同様の理由で、空調室17全体としての情報が得られるように、エアコンディショナー7とは独立して温度センサーを備えるのが望ましい。
 システムコントローラ8aは、空調システム19全体を制御するコントローラである。システムコントローラ8aは、外気導入ファン4、排気ファン5、搬送ファン3、循環ファン6、居室温度センサー9、居室湿度センサー10、居室人感センサー11、空調室温度センサー12、空調室湿度センサー13、エアコンディショナー7、加湿器15及び除湿器16、空気清浄機40と、無線通信により通信可能に接続されている。
 システムコントローラ8aは、排気ファン5の排気風量に応じた風量となるように、外気導入ファン4の給気風量を設定する等、外気導入ファン4と排気ファン5とを連動させて制御する。これにより、一般住宅1に対して第1種換気方式による換気が行われる。
 また、システムコントローラ8aは、空調室温度センサー12及び空調室湿度センサー13により取得される空調室17の空気の温度及び湿度に基づいて、空調室17の温度及び湿度の少なくとも一方が、空調室17に設定された空調室目標空調温度及び空調室目標空調湿度の少なくとも一方となるように、空調機としてのエアコンディショナー7、加湿器15、除湿器16を制御する。またシステムコントローラ8aは、空調室17の清浄度が、空調室17に設定された空調室目標空調環境清浄度となるように、空調機としての空気清浄機40を制御する。
 また、システムコントローラ8aは、居室人感センサー11により取得された各居室2の人の在・不在情報に応じて、人が存在する在居室及び人が存在しない不在居室を判断する。
 そして、システムコントローラ8aは、居室温度センサー9及び居室湿度センサー10により取得された各居室2の室内温度、室内湿度と、在居室に設定された目標空調温度、目標空調湿度等に応じて、搬送ファン3の風量や循環ファン6の風量を設定する。
 さらに、システムコントローラ8aは、居室温度センサー9及び居室湿度センサー10により取得された各居室2の室内温度、室内湿度と、不在居室に設定された準目標空調温度、準目標空調湿度等に応じて、搬送ファン3の風量や循環ファン6の風量を設定する。
 これにより、空調室17にて空調された空気が、対応する搬送ファン3に設定された風量で各居室2に搬送され、また、各居室2の空気が、対応する循環ファン6に設定された風量で空調室17に搬送される。よって、各居室2の室内温度、室内湿度、及び清浄度の少なくとも一つが、目標空調温度や目標空調湿度、及び目標空調清浄度の少なくとも一つとなるように制御される。
 なお、上述のシステムコントローラ8aの詳細な処理は後述する。
 ここで、システムコントローラ8aと、外気導入ファン4、排気ファン5、搬送ファン3、循環ファン6、居室温度センサー9、居室湿度センサー10、居室人感センサー11、空調室温度センサー12、空調室湿度センサー13、エアコンディショナー7、加湿器15、除湿器16及び空気清浄機40が、無線通信で接続されることにより、複雑な配線工事を不要とすることができる。ただし、これら全体を、又は、システムコントローラ8とこれらの一部を、有線通信により通信可能に構成してもよい。
 入出力端末18は、システムコントローラ8aと無線通信により通信可能に接続され、空調システム19を構築するうえで必要な情報の入力を受け付けてシステムコントローラ8に記憶させたり、空調システム19の状態をシステムコントローラ8から取得して表示したりするものである。入出力端末18は、携帯電話、スマートフォン、タブレットといった携帯情報端末が例として挙げられる。
 なお、入出力端末18は、必ずしも無線通信によりシステムコントローラ8aと接続される必要はなく、有線通信により通信可能にシステムコントローラ8aと接続されてもよい。この場合、入出力端末18は、例えば、壁掛のリモートコントローラにより実現されるものであってもよい。
 次いで、図3を参照して、システムコントローラ8aの各機能について説明する。図3は、システムコントローラ8aの概略機能ブロック図である。
 システムコントローラ8aは、空調室温度制御部23、送風量決定部24a、ファン風量制御部20、送風総量算出部25、送風量比較部26、記憶部30を備える。
 空調室温度制御部23は、冷房期、つまり居室2の室内温度(居室内温度)が高く、エアコンディショナー7が冷房運転する場合であれば、空調室17の温度(空調室温度)が、目標空調環境取得部33aが取得した目標空調環境(温度)と同一かそれより低い温度となるように、空調機としてのエアコンディショナー7を制御する。空調室温度制御部23は、暖房期、つまり居室2の室内温度が低く、エアコンディショナー7が暖房運転する場合であれば、空調室17の温度が、目標空調環境取得部33aが取得した目標空調環境(温度)と同一かそれより高い温度となるように、エアコンディショナー7を制御する。
 送風量決定部24aは、在・不在居室判定部32と、目標空調環境取得部33aと、準目標空調環境記憶部34aと、在居室空調環境制御部21と、不在居室空調環境制御部22と、第一温度比較部27と、第二温度比較部28と、温度差比較部29とを備える。
 在・不在居室判定部32は、居室人感センサー11から取得した情報から人が存在する在居室及び人が存在しない不在居室を判定する。居室人感センサー11自体が在・不在を判断してその旨を示す信号を在・不在居室判定部32に送信してもよいし、居室人感センサー11からの信号に基づいて、在・不在居室判定部32が在不在を判定してもよい。
 目標空調環境取得部33aは、在・不在居室判定部32が在居室と判断した居室2に対して、入出力端末18を介して在居室2に設定された目標空調環境(温度)を取得する。
 在居室空調環境制御部21は、目標空調環境取得部33aが取得した目標空調環境(温度)と、空調室温度制御部23にて制御された空調室17の温度と、居室温度センサー9が取得した在居室それぞれの室内温度に基づいて各在居室に対応する各搬送ファン3の送風量を決定する。
 準目標空調環境記憶部34aは、在居室に対する不在居室の隣接空間距離と、当該隣接空間距離に対応する準目標空調環境(温度)とを関連付けて記憶している。
 ここで隣接空間距離とは、不在居室の在居室からの距離である。ただし、ここで言う距離とは、在居室から不在居室までの直線的な距離ではなく、居室を一つの空間とした場合に、在居室からいくつの空間を隔てて不在居室が接続されているかを示す値である。例えば、在居室に隣接し、人が出入り可能なドアを隔てて存在する隣室は、隣接空間距離が1と示される。なお、隣接していても人が出入りできない場合には隣接空間距離が1とはならない。在居室に対して人が出入りできる廊下を隔てて接続される居室は隣接空間距離が2と示される。図2を参照して具体例を示すと、居室2aが在居室、居室2b~2iが不在居室の場合、居室2cは隣接空間距離が1、居室2b、2d、2e、2hは隣接空間距離が2、居室2f、2g、2iは隣接空間距離が3となる。また、居室2a、及び居室2iが在居室であり、これら以外の居室が不在居室の場合、居室2c、居室2hは隣接空間距離が1、居室2b、2d、2e、2g、2fは隣接空間距離が2と示される。
 また、準目標空調環境とは、目標空調環境よりもエネルギー負荷の低い空調環境である。ここで、エネルギー負荷の低い空調環境とは、温度を例にすると、夏季、つまり冷房期に、在居室の目標空調環境(温度)が24度に設定されるとする。この場合、準目標空調環境(温度)とは、24度よりも高い、つまりエアコンディショナー7の消費電力が低い環境である例えば26度である。また、冬季、つまり暖房期に、在居室の目標空調環境(温度)が22度に設定されるとする。この場合、準目標空調環境(温度)とは、22度よりも低い、つまりエアコンディショナー7の消費電力が低い環境である例えば20度である。
 上記は、準目標空調環境に温度を例として説明したが、湿度の場合、雨季で除湿が必要な環境であれば、目標空調環境(湿度)としての湿度設定よりも高い湿度設定が準目標空調環境(湿度)となり、乾季であればその逆となる。また、清浄度の場合、目標空調環境(清浄度)よりも空気清浄度の高い環境が準目標空調環境(清浄度)となる。
 準目標空調環境記憶部34aの記憶情報に基づく各居室の目標空調環境(温度)、準目標空調環境(温度)の設定例を以下に示す。
 例えば夏季、つまり冷房期に、準目標空調環境記憶部34aは、当該不在居室が在居室に対して隣接空間距離が1の場合、準目標空調温度は目標空調温度から+2℃と記憶している。また、当該不在居室が在居室に対して隣接空間距離が2であれば、準目標空調温度は目標空調温度から+4℃と記憶している。また、当該不在居室が在居室に対して隣接空間距離が3であれば、準目標空調温度は目標空調温度から+6℃と記憶している。なお、準目標空調環境記憶部34aは、居室2a~2i全てが不在居室である場合や不在居室が在居室から隣接空間距離が例えば4以上など大きく離れている場合等を考慮し、冷房期であれば準目標空調温度の最大値である最大準目標空調温度を例えば+8℃と記憶している。
 同様に冬季、つまり暖房期に、準目標空調環境記憶部34aは、当該不在居室が在居室に対して隣接空間距離が1の場合、準目標空調温度は目標空調温度から-2℃と記憶している。また、当該不在居室が在居室に対して隣接空間距離が2であれば、準目標空調温度は目標空調温度から-4℃と記憶している。また、当該不在居室が在居室に対して隣接空間距離が3であれば、準目標空調温度は目標空調温度からー6℃と記憶している。なお、準目標空調環境記憶部34aは、居室2a~2i全てが不在居室である場合や不在居室が在居室から隣接空間距離が例えば4以上など大きく離れている場合等を考慮し、暖房期であれば最大準目標空調温度を例えば-8℃と記憶している。
 例えば図2において、夏季、つまり冷房期に居室2aが在居室、居室2b~2iが不在居室の場合、在居室2aの目標空調温度を20℃とすると不在居室2b、2cは隣接空間距離が1のため準目標空調温度22℃、不在居室2d、2e、2hは隣接空間距離が2のため準目標空調温度24℃、不在居室2f、2g、2iは隣接空間距離が3のため準目標空調温度26℃となる。図4は夏季、つまり冷房期に居室2aが在居室、居室2b~2iが不在居室の場合の温度分布図であり、同一の濃度は同一の温度を意味する。
 不在居室空調環境制御部22は、目標空調環境取得部33aからの情報と準目標空調環境記憶部34aとに基づいて決定した各不在居室の準目標空調環境(温度)と、空調室温度制御部23にて制御された空調室17の温度と、居室温度センサー9が取得した不在居室それぞれの室内温度と、に基づいて各不在居室に対応する各搬送ファン3の送風量を決定する。なお、送風量の決定、変更手順については後述する。
 第一温度比較部27は、目標空調環境取得部33aが取得した目標空調温度と、空調室温度センサー12が検出した空調室の温度との温度差を、在居室毎に算出する。また、第一温度比較部27は、準目標空調環境記憶部34aを介して決定した準目標空調温度と、空調室温度センサー12が検出した空調室の温度との温度差を、在居室毎に算出する。
 第二温度比較部28は、目標空調環境取得部33aが取得した目標空調温度と、居室温度センサー9が検出した在居室の室内温度との温度差を、在居室毎に算出する。また、第二温度比較部28は、準目標空調環境記憶部34aを介して決定した準目標空調温度と、居室温度センサー9が検出した不在居室の室内温度との温度差を、不在居室毎に算出する。
 温度差比較部29は、第二温度比較部28が所定のタイミングAにて算出した温度差Aと、第二温度比較部28が所定のタイミングAから一定時間経過後のタイミングBにて算出した温度差Bとを比較する。なお、タイミングAは所定の時刻、タイミングBは所定の時刻から一定時間経過後の時刻と言い換えることができる。
 ファン風量制御部20は、複数の居室2a~2i毎に対応して設けられた複数の搬送ファン3a~3i個々の風量を、送風量決定部24aにて決定された対応する搬送ファン3a~3iの送風量に制御する。また、ファン風量制御部20は、循環ファン6a~6iについても制御してよいが、ここでは詳細説明を省略する。
 送風総量算出部25は、複数の搬送ファン3a~3iによる送風量の総和である送風総量を算出する。ここで送風量の総和とは、搬送ファン3a~3iのそれぞれの単位時間当たりの送風量の和で示される。
 送風量比較部26は、送風総量算出部25が算出した送風総量と所定の送風量閾値とを比較する。ここで所定の送風量閾値とは、例えば複数の搬送ファン3a~3iの最大送風量の総和や、あるいは当該最大送風量の総和の70%~95%の値とすることができる。
 記憶部30は、あらかじめ設定された所定の送風量閾値を記憶する、いわゆるメモリである。また、その他システムコントローラ8による制御に数値などの情報の記憶が必要な場合にも記憶部30が利用される。
 次いで、図5~図10を参照して、システムコントローラ8aにより実行される空調処理について説明する。図5は、空調処理を示すフローチャートである。図6は、空調室の温度と居室の室内温度と目標(準目標)空調温度との関係の一例を示す図である。図7は、空調室温度制御処理を示すフローチャートである。図8は、ファン風量設定処理を示すフローチャートである。図9は、ファン風量調整処理を示すフローチャートである。図10は空調室負荷低減処理を示すフローチャートである。
 システムコントローラ8aが実行する空調処理は、図5に示すように、主に空調室温度制御処理S100、ファン風量設定処理S200、ファン風量調整処理S300により構成され、この順で実行される。
 ユーザが空調処理を実行すると、まず、システムコントローラ8aは、図7に示す空調室温度制御処理S100を実行する。空調室温度制御処理S100では、システムコントローラ8aは、入出力端末18にて設定された冷暖房期設定を取得する(S101)。ここで冷暖房期設定とは、例えば気温が高くなりエアコンディショナー7を冷房機として運転(稼働)させる夏季を冷房期と設定し、気温が低くなりエアコンディショナー7を暖房機として運転させる冬季を暖房期と設定する。ユーザは、入出力端末18のカレンダー機能に対して、例えば六月から九月を冷房期と設定し、一二月から三月を暖房期と設定することで、システムコントローラ8aは当該設定を取得することができる。
 その後、システムコントローラ8aは、目標空調環境取得部33aを介して入出力端末18により在居室に設定された目標空調温度を取得する(S102)。
 目標空調温度を取得すると、空調室温度制御部23は、エアコンディショナー7に空調室17の目標温度(空調室目標空調温度)を設定する(S103)。具体的に空調室目標空調温度は、以下のように決定される。
 図6は、空調室17及び在居室2d、不在居室2c、不在居室2bにおける温度環境を例示している。ここでは冷房期を例として説明する。在居室2dは、室内温度が27℃、目標空調温度が20℃である。不在居室2cは、室内温度が27℃、在居室2dからの隣接空間距離が1であるため、準目標空調温度が22℃である。不在居室2bは、室内温度が28℃、在居室2dからの隣接空間距離が2であるため、準目標空調温度が24℃である。ここで空調室温度制御部23は、S101で取得した冷暖房期設定が冷房期、つまり冷房運転であるため、空調室目標空調温度を目標空調温度より低い温度以下の温度に制御する。つまり、図6に示された例では、目標空調温度より低い20℃以下に設定する。ここでは、空調室目標空調温度を20℃であるものとする。
 なお、暖房期、つまり暖房運転である場合には、空調室温度制御部23は、空調室目標空調温度を目標空調温度より高い温度以上の温度に制御する。図6のような例示はしないが、暖房期の場合例えば設定温度は24℃である。
 上記設定により、空調室17は設定温度である20℃に冷却され、この空調室目標空調温度であればすべての居室2の目標空調温度(ここでは20℃~24℃)に対応可能となる。
 次に、システムコントローラ8aは、図8に示すファン風量設定処理S200を実行する。ファン風量設定処理S200では、システムコントローラ8aは、空調室温度センサー12を介して空調室温度を取得する(S201)。続いて、システムコントローラ8aは、居室温度センサー9を介して各居室の室内温度を取得する(S202)。その後、システムコントローラ8aは、在・不在居室判定部32を介して居室2a~2iの在居室・不在居室判定を行う(S203)。さらに、システムコントローラ8aは、当該居室が在居室と判定された場合は目標空調環境取得部33aを介して入出力端末18により設定された在居室の目標空調温度を、当該居室が不在居室と判定された場合は目標空調環境取得部33aからの情報を基に準目標空調環境記憶部34aが取得した準目標空調温度を取得する(S204)。
 上記取得が完了すると、第一温度比較部27は、目標(準目標)空調温度と空調室温度とを比較して温度差を算出する(S205)。
 第一温度比較部27が温度差を算出すると、送風量決定部24aは、算出した温度差に基づいて搬送ファン3a~3iの各々の送風量を決定する(S206)。
 送風量の決定は、具体的に以下のように行われる。すなわち、在居室2dの目標空調温度が20℃、空調制御された空調室17の温度が20℃であるため、在居室2dと空調室17とを結ぶ搬送ダクトに対応する搬送ファン3cの送風量を最大値とする。ここで送風量とは、搬送ファンの送風能力、あるいは動作ノッチとすることができる。例えば搬送ファン3の送風量を送風量の小さいものから順に1~10の10段階の設定が可能とすると、ここでは送風量を10に決定する。つまり送風量決定部24aは、在居室2dの室内温度を27℃から下げ、さらに目標空調温度の20℃を維持するために、空調室17の同温(20℃)の空気を最大量送風するよう、決定する。
 また例えば隣接空間距離が1の不在居室2cの準目標空調温度が22℃、空調制御された空調室17の温度が20℃であるため、搬送ファン3bの送風量を最大値である10とすると、不在居室2cの準目標空調温度が22℃を下回る可能性がある。よって送風量決定部24aは、搬送ファン3bの送風量を最大値よりは低い値とする。低い値とは、例えば送風量が8である。
 同様に隣接空間距離が2の不在居室2bの目標空調温度が24℃、空調制御された空調室17の温度が20℃であるため、搬送ファン3aの送風量を最大値である10とすると、不在居室2bの準目標空調温度が24℃を下回る可能性がある。よって送風量決定部24aは、搬送ファン3aの送風量を最大値より低い例えば6とする。
 つまり、送風量決定部24aは、目標(準目標)空調温度と空調室の温度の差に応じて、例えば第一温度比較部27が算出した温度差が小さい居室(在居室2d:温度差0℃)に対しては、温度差が大きい居室(例えば不在居室2b:温度差5℃、不在居室2c:温度差2℃)に対するよりも搬送ファン3cの送風量を大きくする。
 上記処理は、すべての居室に対して行われる(S207No→S202・・・→S207Yes)。
 送風量決定部24aが各搬送ファン3の風量を決定すると、当該決定に従って、ファン風量制御部20が各搬送ファン3を制御する。
 これにより、空調室温度制御部23が制御した空調室17の温度と、独立した複数の搬送ファン3a~3iの制御によって、在居室を目標空調温度に、不在居室を準目標空調温度に制御することが可能となる。
 以上の処理により、在居室には、人が要求する、すなわち最も心地よい目標空調環境を提供し、不在居室に対してはエネルギー負荷の少ない準目標空調環境を提供することができる。これにより、全居室をすべて目標空調環境とするよりもエネルギー負荷を下げることができる。しかも、人が在居室から不在居室に移動した場合であっても空調環境の変化が少ない。このため、急激な環境変化が人に与える例えばヒートショック等の悪影響を抑制することが可能となる。
 さらに、不在居室の空調環境は、在居室からの隣接空間距離に応じて漸次、エネルギー負荷を下げた空調環境を提供している。このため、人が複数の空間にわたって移動する際であっても環境は緩やかに変化する。したがって、人を環境に慣れさせることができ、環境変化にともなう悪影響を低減できる。
 なお、上記処理に基づけば、人が他の不在居室に移動した後は、その不在居室が在居室となり、さらに在居室が不在居室に変更される。これにより、新たな移動先の不在居室が在居室の目標空調環境に変更され、すなわち人が最も心地よい空調環境となる。そして、在居室から不在居室に変更された居室は、エネルギー負荷の低い準目標空調環境に移行するため、家屋全体としてエネルギー負荷の低い環境が維持可能となる。
 なお、居室の室内温度と目標(準目標)空調温度との差にかかわらず、目標(準目標)空調温度に到達していない居室に対しては、まず最大風量で送風することで、素早く目標(準目標)空調温度に到達させることも可能である。この場合であっても、後述のファン風量調整処理S300によって、各居室を目標(準目標)空調温度に維持することが可能である。しかしながら、空調室17は、複数の居室2に空気を搬送しているため、一度に大量の空気の搬送が発生すると、空調室17の冷暖房処理が追い付かず、つまり冷暖房効果が低下してしまう。例えば空調システムの処理の開始や、不在の住宅に対して家族が帰宅し、各居室が一斉に目標空調温度に設定された場合などがこれに該当する。これらに対応するためには、空調室の体積を大きくしてもよいが、これでは空間コストが上がり、さらに空調機も大容量化が要求される。これに対して送風量決定部24aは、温度差が小さい居室に対し、温度差が大きい居室に対するよりも搬送ファンの送風量を大きくしている。言い換えると、送風量決定部24aは、温度差が大きい居室に対しては、温度差が小さい居室に対するよりも搬送ファンの送風量を小さくしている。これにより、各居室の室内温度を目標(準目標)空調温度に徐々に下げることで、冷暖房効果の低下を抑制し、結果的に空調室の小型化を実現している。
 ところで、上記設定では、例えば在居室2dの目標空調温度は空調室17の温度と同一の20℃であるため、搬送ファン3cを最大風量で制御することで、在居室2dを目標空調温度に制御可能である。しかしながら、例えば不在居室2bに対しては、準目標空調温度が24℃であるため、上記例の送風量が5の場合では、準目標空調温度に到達するのか、または到達して維持できるのか、あるいは過冷却となるのかが不明である。不在居室2cに対しても同様である。このような状況に対応するために、システムコントローラ8aは、図9に示すファン風量調整処理S300を実行する。ファン風量調整処理S300では、システムコントローラ8aは、ファン風量設定処理S200が終了してから一定時間経過したか否かを判定する(S301)。一定時間経過していない場合には、一定時間経過するまで待機する(S301No)。これは、ファン風量設定処理S200が設定した環境にて空調システムを稼働させ、各居室の室内温度を目標空調温度に近づけるための時間を確保するためである。
 一定時間が経過すると、システムコントローラ8aは、居室温度センサー9を介して各居室の室内温度を取得する(S302)。さらに、システムコントローラ8aは、在・不在居室判定部32を介して居室2a~2iの在居室・不在居室判定を行う(S303)。その後、システムコントローラ8aは、当該居室が在居室と判定された場合は目標空調環境取得部33aを介して入出力端末18により設定された在居室の目標空調温度を、当該居室が不在居室と判定された場合は目標空調環境取得部33aからの情報を基に準目標空調環境記憶部34aが取得した不在居室の準目標空調温度を取得する(S304)。
 上記取得が完了すると、第二温度比較部28は、目標(準目標)空調温度と居室の室内温度とを比較して温度差(温度の乖離)を算出する(S305)。
 第二温度比較部28が温度差を算出すると、温度差比較部29は、前回のファン風量調整処理S300にて記憶した、前回のタイミング(タイミングAに該当)にて第二温度比較部が算出した温度差Aと比較する。今回は一回目の処理なので前回算出した温度差Aが存在しないため、比較は行わずに算出した温度差を温度差Aとして記憶部30に記憶してS301の処理に戻る。
 なお、前回のタイミング(タイミングA)にて算出した温度差Aがある場合、温度差比較部29は、今回のタイミング(タイミングBに該当)で第二温度比較部28が算出した温度差Bと、記憶部30に記憶しているタイミングAにおける温度差Aとを比較する。
 ここで、タイミングAからタイミングBへの時間の遷移によって、居室の室内温度の目標(準目標)空調温度からの乖離が小さくなっている場合、つまり温度差Bが温度差Aより小さい場合、搬送ファン3の動作によって、居室の室温が目標(準目標)空調温度に近づいていることを意味する。このため、送風量決定部24aは、搬送ファン3の送風量を減少させる(S306Yes→S307)。
 また、タイミングAからタイミングBへの時間の遷移によって、居室の室内温度の目標(準目標)空調温度からの乖離が無いか又は大きくなっている場合、つまり温度差Bが温度差Aより大きい場合、さらに過冷却(冷房期の場合)、過加熱(暖房期の場合)を判定する(S308)。つまり、乖離が大きくなっている場合には、搬送ファン3の送風量が大きすぎて目標(準目標)空調温度を超えた冷却(加熱)を行っている場合(過処理)と、搬送ファン3の送風量が小さすぎて目標空調温度に近づかず、さらに外気の影響で居室の室内温度が目標(準目標)空調温度から離れている場合と、が考えられる。このため、S308にてこれらを判定する。
 ここで、過冷却や過加熱、つまり過処理であると判定された場合、送風量決定部24aは、搬送ファンの送風量を減少させる(S308Yes→S307)。
 また、過冷却や過加熱、つまり過処理ではないと判定された場合、送風量決定部24aは、搬送ファンの送風量を増加させる(S308No→S309)。
 上述の過冷却(過加熱)か否か(過処理か否か)は、冷暖房期設定と、目標(準目標)空調温度と、居室の室内温度とから判定可能である。
 なお、図9には示していないが、タイミングAからタイミングBへの時間の遷移によって乖離が無く、さらに居室の室内温度が目標(準目標)空調温度に近い(例えばプラスマイナス0.3℃)範囲の場合には、搬送ファンの送風量を変更せず、維持してもよい。
 上記ファン風量調整処理S300は、一定時間ごとに実行される。
 以上に示したファン風量調整処理S300により、空調室温度制御部23による空調室の温度制御と搬送ファン3の送風量制御によって、各居室を目標(準目標)空調温度に到達させ、目標(準目標)空調温度を維持することが可能となる。
 特に空調室17は、循環ファン6等により複数の居室からの様々な温度の空気が流入するため、温度変化が激しい。よって、気圧差とダンパーを利用したシステムなどでは制御が困難であるため、搬送ファン3を利用して送風することが重要である。なお、上述の処理であれば、一般的なファンを搬送ファンに利用しても温度制御が可能であるが、細かい温度制御を可能とするためにも、ダクト長や圧の影響を受けずに設定された一定量の送風量を維持できる風量一定制御機能部を備えたファンを搬送ファンに利用するのが好ましい。
 なお、上記空調処理は、各目標空調温度の設定の変更や冷暖房期の切替処理を割り込み処理として、当該割り込み処理が行われた場合には、空調温度制御処理S100から開始されることで、設定変更に対応可能となる。
 ところで、空調室17は限られた体積を備えた空間であり、例えばすべての居室2a~2iに対して最大の送風量である10で冷房又は暖房する必要が生じた場合、空調室17の温度維持が困難になる。これは、空調室17は、温度調節された空気の流出が多く、逆に空調室17の設定温度に比較して温度差の大きい空気の流入が多くなることに起因する。
 従って、このような状況に対応するために、システムコントローラ8aは、図10に示す空調室負荷低減処理S400を実行してもよい。空調室負荷低減処理S400では、送風総量算出部25は、複数の搬送ファン3a~3iによる送風量の総和である送風総量を算出する(S401)。次に、送風量比較部26は、送風総量算出部25が算出した送風総量(送風総和)と、記憶部30にあらかじめ記憶されている所定の送風量閾値とを比較する(S402)。ここでは、所定の送風量閾値は、複数の搬送ファン3a~3iの最大送風量の総和の80%の値とする。
 ここで、送風総和が所定の送風量閾値を超えている場合(S403でYes)、送風量比較部26は、さらに入出力端末18にて設定された冷暖房期設定を取得し、この情報を基に冷暖房期を判定する(S404)。送風量比較部26は、送風総和が所定の送風量閾値を超えている旨及び冷房期又は暖房期である旨を空調室温度制御部23に送信する。なお、送風総和が所定の送風量閾値以下の場合は(S403でNo)、処理を終了する。
 空調室温度制御部23は、送風総和が所定の送風量閾値を超えている旨と冷房期又は暖房期である旨を受信すると、冷房期の場合には、空調室温度を現状の設定からさらに低く変更する(S404冷房期→S406)。また、空調室温度制御部23は、暖房期の場合には、空調室温度の現状の設定からさらに高く変更する(S404暖房期→S405)。
 空調室温度制御部23は、空調室温度の設定を変更した旨を送風量決定部24aに送信し、送風量決定部24aはこれに基づいて搬送ファン3の送風量を減少させる(S407)。
 これにより、空調室17の温度の設定をより低く(冷房期)あるいは高く(暖房期)変更することで、空調室17の限られた体積を増加させることなく目標(準目標)空調温度の幅広い温度領域に対応可能となる。
 なお、空調室温度の下げ幅(冷房期)や上げ幅(暖房期)は、固定値とするのではなく、送風総和が所定の送風量閾値を超えている量に比例して大きくすると空調室17の利用効率とエネルギー消費量の面で有利である。具体的には、所定の送風量閾値が70であって送風総和が80の場合には、2℃、温度を変更する。同じく送風総和が90の場合には4℃、送風総和が100の場合には6℃といった変更がこれに該当する。
 以上、本開示に係る空調システム及びシステムコントローラについて説明を行ったが、上記実施の形態は、一例であり、これに限定されるものではない。
 例えば、循環ファン6a~6i、及び搬送ファン3a~3iは、居室と空調室とを接続するダクトによって連通されている。しかしながら循環ファン6a~6iについては必ずしもダクトで接続する必要はなく、居室間を結ぶ廊下等の空間をダクトとみなすことも可能である。この場合、居室内の空気は居室から循環ファン6a~6iによって廊下に搬送される。廊下に搬送された居室内の空気は、廊下と連通する空調室17に取り込まれる。空調室17への取り込みは、空調室17の廊下に面した壁面に新たに循環ファンを備えることで行われ、あるいは循環ファンを利用することなく空調室の負圧化により取り込んでもよい。このような構成によっても、ダクトで接続するのに対して循環効率は下がることが予想されるが、空調システムに寄与することができる。
 また、上記実施の形態では、居室として示しているが、居室は必ずしも人が居る必要は無く、一つの空間として捉えることができる。つまり、廊下やキッチンもある程度区切られているのであれば1つの空間として捉えることができ、1つの居室に該当する。
 また、本開示に係る空調システムは、戸建て住宅やマンション等の複合住宅に適用可能である。ただし、空調システムを複合住宅に適用する場合には、1つのシステムが世帯単位に対応するものであり、各世帯を1つの居室とするものではない。
 (実施の形態2)
 続いて、実施の形態2に係る空調システムについて説明を行う。なお、実施の形態1との共通点については説明を省略する。
 実施の形態1においては、各人感センサーから取得した情報を基に複数の居室における人の在・不在を判断し、人が存在する在居室からの隣接空間距離を基に空調制御を行うことでエネルギー効率が高く人体への悪影響の少ない空調システムを提供した。これに対して、温度差による人体への影響を抑制することも可能である。実施の形態2は、所定の居室内の人が次に移動する居室を把握している場合の空調制御に関するものである。なお、空調制御以外は既に実施の形態1で述べた通りである。そのため、以下では実施の形態1からの変更点である制御方法についてのみ述べる。
 まず、図11を参照して、システムコントローラ8bの各機能について説明する。図11は、システムコントローラ8bの概略機能ブロック図である。
 システムコントローラ8bは、空調室温度制御部23、送風量決定部24b、ファン風量制御部20、送風総量算出部25、送風量比較部26、記憶部30を備える。つまり図3の送風量決定部24aに代えて送風量決定部24bを備えている。
 送風量決定部24bは、送風量決定部24aに加えて、変更受付部44と、制御変更部45と、仮想在居室解除部46と、仮想不在居室解除部47と、タイマー設定部48とを備える。
 変更受付部44は、入出力端末18を介して所定の不在居室を仮想在居室に変更する在居室命令、または所定の在居室を仮想不在居室に変更する不在居室命令を受け付ける。
 制御変更部45は、変更受付部44が受け付けた在居室命令または不在居室命令を基に、所定の不在居室を仮想在居室に変更する、もしくは所定の在居室を仮想不在居室に変更する。ここで仮想在居室とは不在居室ではあるが仮想的に在居室として扱うべき居室を指す。つまり、仮想在居室は、人が存在しないため不在居室ではあるが、例えばユーザが、所定の時間後に不在居室(仮想在居室)に移動する予定がある場合には、あらかじめ不在居室を目標空調環境に設定するために用いられる。なお、仮想不在居室も仮想在居室と同様である。つまり、仮想不在居室とは、在居室ではあるが仮想的に不在居室として扱うべき居室を指す。仮想不在居室は、人が存在するため在居室ではあるが、例えばユーザが、所定の時間後に在居室(仮想不在居室)から移動する予定がある場合には、あらかじめ在居室を準目標空調環境に設定するために用いられる。
 仮想在居室解除部46は、所定の不在居室が制御変更部45からの信号で仮想在居室に変更された後に、居室人感センサー11から取得した情報を基に仮想在居室内に人が存在することが判明した際に、仮想在居室を在居室に変更する。
 仮想不在居室解除部47は、所定の在居室が制御変更部45からの信号で仮想不在居室に変更された後に、居室人感センサー11から取得した情報を基に仮想不在居室内に人が存在しないことが判明した際に、仮想不在居室を不在居室に変更する。
 タイマー設定部48は、制御変更部45が在居室命令を受けて所定の不在居室を仮想在居室に変更した場合に、在居室空調環境制御部21が仮想在居室を目標空調環境に近づけるまでの待機時間を設定する。例えば、午後6時から仮想在居室を目標空調環境に近づける空調制御を設定したい場合には、午後6時以前の午後5時30分に制御変更部45が不在居室を仮想在居室に変更している場合でもタイマー設定部48で待機時間を30分に設定すれば午後6時から空調制御を行うことが出来る。また、午後6時までに仮想在居室を目標空調環境に近づける空調制御を設定したい場合には、午後6時より前の午後5時に制御変更部45が不在居室を仮想在居室に変更している場合でもタイマー設定部48で待機時間を30分に設定すれば午後5時30分から空調制御を行い午後6時までに空調制御を行うことも可能である。なお、ここでは制御変更部45が在居室命令を受けた場合に関して述べたが、制御変更部45が不在居室命令を受けた場合も同様である。つまり制御変更部45が不在居室命令を受けて所定の在居室を仮想不在居室に変更した場合に、不在居室空調環境制御部22が仮想不在居室を準目標空調環境に近づけるまでの待機時間を設定する。例えば、午後6時から空調制御を行う設定をしたい場合には、午後6時以前の午後5時30分に制御変更部45が在居室を仮想不在居室に変更している場合でも待機時間を30分に設定すれば午後6時から仮想不在居室が準目標空調環境に近づくように空調制御を行う。また、午後6時までに準目標空調環境に近づける待機時間を設定したい場合に、午後6時より前の午後5時に制御変更部45が在居室を仮想不在居室に変更している場合でも待機時間を30分に設定すれば午後5時30分から空調制御を行い午後6時までに仮想不在居室が準目標空調環境に近づくような空調制御を行うことも可能である。
 以下、図12を参照しながら、変更受付部44、制御変更部45、仮想在居室解除部46、仮想不在居室解除部47、タイマー設定部48の具体的な動作について一例を挙げて説明する。
 図12は入出力端末18に表示される移動予定設定画面の一例である。なお、移動予定設定画面は、例えば変更受付部44により入出力端末18に提供され、或いはあらかじめ入出力端末18に組み込まれたアプリケーションにより描画される。また、移動予定設定画面に描画される人の位置は、居室人感センサー11から取得された情報が変更受付部44を介して入出力端末18に提供され、居室全体図上に人型のアイコンとして描画される。
 図12のStep1において居室2a、2iはそれぞれ居室人感センサー11a,11iによって在居室と判断されており、居室2b、2c、2d、2e、2f、2gはそれぞれ居室人感センサー11b、11c、11d、11e、11f、11gによって不在居室と判断されている。例えばユーザが、在居室2iから不在居室2fに移動する予定がある場合には、Step2に示すように、入出力端末18上で在居室2iから不在居室2fへ人型のアイコンを移動させる。
 この入力により、まず変更受付部44は入出力端末18からシステムコントローラ8bへ送信された、居室2iを在居室から仮想不在居室へと変更する不在居室命令、及び、居室2fを不在居室から仮想在居室へと変更する在居室命令を受け付ける。
 次に変更受付部44は、制御変更部45へ在居室命令及び不在居室命令を伝える。さらに制御変更部45は変更受付部44からの不在居室命令及び在居室命令を基に居室2iを在居室から仮想不在居室へ、居室2fを不在居室から仮想在居室へと変更する。
 続いて、システムコントローラ8bは仮想不在居室へと変更された居室2iを、不在居室空調環境制御部22を介して準目標空調環境に近づくように空調制御を行い、仮想在居室へと変更された居室2fを、在居室空調環境制御部21を介して目標空調環境に近づくように空調制御を行う。
 これによって、人が移動することをシステムコントローラ8bが把握し、対応する不在居室を仮想在居室として目標空調環境に予め制御できるため、移動先と現在在室中の居室の温度差が小さくなり、実施の形態1よりも人体への影響を及ぼさない空調制御が可能になる。
 また、この際に、図12のStep3に示すように、ユーザが入出力端末18上で空調制御を行うまでの待機時間を例えば30分に設定することも可能である。具体的な例を挙げると、例えばユーザが在居室2iにてTV番組を視聴しており、当該TV番組が終了する時刻、つまり例えば40分後の時刻に不在居室2fに移動するものとする。このような場合には、ユーザは、Step2に示すように、入出力端末18上で在居室2iから不在居室2fへ人型のアイコンを移動させる。また、Step3に示すように数直線上で待機時間を30分として入力する。ここで、30分は40分後の移動に対して10分の空調時間を踏まえた待機時間である。なお、図12においては数直線上で待機時間を設定できる例を挙げている。
 変更受付部44が在居室命令及び不在居室命令を受け付ける際に、タイマー設定部48は入出力端末18からシステムコントローラ8bへ送信された30分の待機時間を受け付ける。次にタイマー設定部48は在居室空調環境制御部21もしくは不在居室空調環境制御部22へ入力された30分の待機時間を含む待機命令を送信する。ここで待機命令とは在居室空調環境制御部21もしくは不在居室空調環境制御部22が、入力された待機時間を経過してから仮想在居室及び仮想不在居室に対して空調制御を行うように設定する命令である。これによって、在居室空調環境制御部21及び不在居室空調環境制御部22は30分の待機時間経過後に仮想在居室もしくは仮想不在居室に対して空調制御を開始する。
 タイマー設定部48を用いて待機時間を設定できるため、ユーザが自己の都合に合わせて予め移動予定時間を入力できる。
 また、システムコントローラ8bは居室人感センサー11i、11fから取得した情報を仮想在居室解除部46および仮想不在居室解除部47へ送信する。人が実際に移動した後、仮想在居室解除部46は居室人感センサー11fから取得した情報を基に居室2fを仮想在居室から在居室に変更する。さらに仮想不在居室解除部47は居室人感センサー11iから取得した情報を基に居室2iを仮想不在居室から不在居室へと変更する。これによって上記制御以外は実施の形態1と同様の制御が可能となる。
 なお、数直線による時間範囲及び表示形式は一例であり、これに限定されるものではない。
 また、上記入出力端末18上の表示は一例でありこれに限定されるものではない。
 (実施の形態3)
 続いて、実施の形態3について説明を行う。なお、実施の形態1との共通点については説明を省略する。
 まず、図13、図2を参照して、本開示の実施の形態2に係る空調システム19について説明する。図13は、本実施の形態に係る空調システム19の接続概略図であり、図2は、本実施の形態に係る一般住宅1の居室配置の一例を示す図である。なお、図2は実施の形態1で既に説明した通りである。また、図13はすでに説明した図1から居室人感センサー11を除いている点以外は同様である。
 次いで、図14を参照して、システムコントローラ8cの各機能について説明する。図14は、システムコントローラ8cの概略機能ブロック図である。
 システムコントローラ8cは、空調室温度制御部23、送風量決定部24c、ファン風量制御部20、送風総量算出部25、送風量比較部26、記憶部30を備える。つまり図3の送風量決定部24aに代えて送風量決定部24cを備えている。
 送風量決定部24cは、居室・非居室記憶部43と、目標空調環境取得部33bと、準目標空調環境記憶部34bと、居室空調環境制御部41と、非居室空調環境制御部42と、第一温度比較部27と、第二温度比較部28と、温度差比較部29とを備える。
 居室・非居室記憶部43は、居室2a~2iを居室と非居室に分けて記憶している。また、各居室と、居室温度センサー9、搬送ファン3、循環ファン6とが対応付けて記憶されている。ここで言う居室とは、人が家屋に居住するにあたり長時間過ごす空間が該当する。つまり、居室とはリビング(居間)、ダイニング(台所・食堂)、寝室、子供部屋等が含まれる。また、非居室とは、家屋を構成する空間であって居室に該当しない空間が該当する。つまり非居室とは、トイレ、物置、浴室、洗面所、脱衣所、廊下、玄関等が含まれる。なお、台所での滞在頻度が短い家庭であれば、当然ながらこの台所を非居室に該当させてもよく、その逆も可能である。つまり、空調制御対象となる空間が居室か非居室かのどちらかに割り当てられていればよい。
 目標空調環境取得部33bは、居室・非居室記憶部43に基づいて居室と判断した居室2に対して、入出力端末18を介して居室2に設定された目標空調環境を取得する。
 準目標空調環境記憶部34bは、目標空調環境に対する非居室の準目標空調環境を記憶している。準目標空調環境記憶部34bの記憶情報に基づく各居室の目標空調環境(温度)、準目標空調環境(温度)の設定例を以下に示す。
 例えば夏季、つまり冷房期に、準目標空調環境記憶部34bは、当該居室が非居室の場合、準目標空調温度は目標空調温度から+2℃と記憶している。同様に冬季、つまり暖房期に、準目標空調環境記憶部34bは、当該居室が非居室の場合、準目標空調温度は目標空調温度から-2℃と記憶している。
 例えば図2において、夏季、つまり冷房期に居室の目標空調温度を20℃とすると、非居室の準目標空調温度は22℃となる。同様に冬季、つまり暖房期に居室の目標空調温度が20℃とすると、非居室の準目標空調温度は18℃となる。
 居室空調環境制御部41は、目標空調環境取得部33bを介して入出力端末18により設定された居室の目標空調環境(温度)と、空調室温度制御部23にて制御された空調室17の温度と、居室温度センサー9が取得した居室それぞれの室内温度に基づいて各搬送ファン3の送風量を決定する。
 非居室空調環境制御部42は、目標空調環境取得部33bからの情報と、居室・非居室記憶部43とに基づいて決定した非居室の準目標空調環境(温度)と、空調室温度制御部23にて制御された空調室17の温度と、居室温度センサー9が取得した非居室それぞれの室内温度とに基づいて各搬送ファン3の送風量を決定する。送風量の決定手順は実施の形態1で述べたとおりである。以上のように、居室には、人が要求する、すなわち最も心地よい目標空調環境を提供し、非居室に対してはエネルギー負荷の少ない準目標空調環境を提供することができる。これにより、全居室をすべて目標空調環境とするよりもエネルギー負荷を下げることができる。しかも、非居室よりも在室時間が長いと予想される居室に心地よい目標空調環境を提供しているため、人に心地よい空調環境を提供できる可能性が高く、単純な構成でエネルギー負荷の低い全館空調が提供できる。
 当然、人が居室から非居室に移動した場合であっても空調環境の変化が少ないため、急激な環境変化が人に与える例えばヒートショック等の悪影響を抑制することが可能となる。なお、上記実施の形態1、2及び3は、空調環境を温度として説明を行った。しかしながら、空調室を利用した全館空調であれば、空調室の湿度環境を整えることで各居室における湿度環境も搬送ファンの風量によって調節可能となる。つまり、空調環境として湿度に着目すれば、空調室の湿度を最も心地よい湿度である目標空調環境(湿度)に維持する。そして、在居室や居室には搬送ファンの風量を増加させることで目標空調環境(湿度)に維持し、不在居室や非居室に対しては、在居室や居室に比べて搬送ファンの風量を減少させることで、準目標空調環境(湿度)に維持することが可能となる。
 当然ながら、清浄度も同様に、空調室の清浄度環境を整えることで各居室における清浄度環境を搬送ファンの風量によって調節可能となる。つまり、空調環境として清浄度に着目すれば、空調室の清浄度を、要求される最も高い清浄度に設定し、目標空調環境(清浄度)に維持する。そして、在居室や居室には搬送ファンの風量を増加させることで目標空調環境(清浄度)に維持し、不在居室や非居室に対しては、在居室や居室に比べて搬送ファンの風量を減少させることで、準目標空調環境(清浄度)に維持することが可能となる。
 これによって、温度だけではなく、湿度及び清浄度についても、省エネルギーの全館空調が実現可能となる。
 本開示にかかる空調システムは、複数の居室にて人の在・不在や居室・非居室を判断し、従来よりも省エネルギーの運転で、全館空調を効率的に実施できるものである。
 1  一般住宅
 2、2a、2b、2c、2d、2e、2f、2g、2h、2i  居室
 3、3a、3b、3c、3d、3e、3f、3g、3h、3i  搬送ファン
 4  外気導入ファン
 5、5a、5b、5c、5d、5e、5f、5g、5h、5i  排気ファン
 6、6a、6b、6c、6d、6e、6f、6g、6h、6i  循環ファン
 7  エアコンディショナー
 8、8a、8b、8c  システムコントローラ
 9、9a、9b、9c、9d、9e、9f、9g、9h、9i  居室温度センサー
 10、10a、10b、10c、10d、10e、10f、10g、10h、10i  居室湿度センサー
 11、11a、11b、11c、11d、11e、11f、11g、11h、11i  居室人感センサー
 12  空調室温度センサー
 13  空調室湿度センサー
 15  加湿器
 16  除湿器
 17  空調室
 18  入出力端末
 19  空調システム
 20  ファン風量制御部
 21  在居室空調環境制御部
 22  不在居室空調環境制御部
 23  空調室温度制御部
 24a、24b、24c  送風量決定部
 25  送風総量算出部
 26  送風量比較部
 27  第一温度比較部
 28  第二温度比較部
 29  温度差比較部
 30  記憶部
 32  在・不在居室判定部
 33a、33b  目標空調環境取得部
 34a、34b  準目標空調環境記憶部
 40  空気清浄機
 41  居室空調環境制御部
 42  非居室空調環境制御部
 43  居室・非居室記憶部
 44  変更受付部
 45  制御変更部
 46  仮想在居室解除部
 47  仮想不在居室解除部
 48  タイマー設定部

Claims (11)

  1. 空調した空調室の空気を搬送して家屋を空調する空調システムであって、
    前記空調室から前記家屋を構成する空間である居室に空気を搬送する搬送ファンと、
    前記居室における人の在・不在を検知する人感センサと、
    前記搬送ファンを制御する空調システムコントローラと、を備え、
    前記空調システムコントローラは、
     少なくとも前記居室の目標空調環境を取得する目標空調環境取得部と、
     前記人感センサからの情報に基づき人が存在する在居室を判定し、当該在居室を前記目標空調環境に近づけるよう、前記在居室に空気を搬送する搬送ファンを制御する在居室空調環境制御部と、
     前記人感センサからの情報に基づき人が存在しない不在居室を判定し、当該不在居室を前記在居室に対して前記目標空調環境よりもエネルギー負荷の低い準目標空調環境に近づけるよう、前記不在居室に空気を搬送する搬送ファンを制御する不在居室空調環境制御部と、を備えた空調システム。
  2. 前記不在居室空調環境制御部は、
     前記不在居室の前記準目標空調環境を、前記在居室からの隣接空間距離に応じて変更する請求項1記載の空調システム。
  3. 前記不在居室空調環境制御部は、
     前記隣接空間距離が遠い不在居室ほどエネルギー負荷の低い準目標空調環境に制御する請求項2記載の空調システム。
  4. 前記空調システムコントローラは、
     所定の不在居室を仮想在居室に変更する旨の在居室命令を受け付ける変更受付部と、
     前記変更受付部を介して受け付けた前記在居室命令に基づいて前記所定の不在居室を仮想在居室に変更する制御変更部と、を備え、
    前記在居室空調環境制御部は、
     前記仮想在居室に設定された前記不在居室を前記目標空調環境に近づけるよう、前記仮想在居室に対応する居室に空気を搬送する搬送ファンを制御する、請求項1記載の空調システム。
  5. 前記空調システムコントローラは、
     前記仮想在居室における人感センサからの情報に基づき当該仮想在居室における人の存在が検知された場合に前記仮想在居室を前記在居室に変更する仮想在居室解除部を備えた請求項4記載の空調システム。
  6. 前記在居室命令は、
     所定の待機時間に関する情報を含み、
    前記空調システムコントローラは、
     前記制御変更部が前記変更受付部を介して前記在居室命令を受け付けた際に、前記待機時間に基づいて、前記仮想在居室に設定された前記不在居室を前記目標空調環境に近づけるまでの待機時間を設定するタイマー設定部を備えた請求項4記載の空調システム。
  7. 前記空調システムコントローラは、
     所定の在居室を仮想不在居室に変更する旨の不在居室命令を受け付ける変更受付部と、
     前記変更受付部を介して受け付けた前記不在居室命令に基づいて前記所定の在居室を仮想不在居室に変更する制御変更部と、を備え、
    前記不在居室空調環境制御部は、
     前記仮想不在居室に設定された前記在居室を前記準目標空調環境に近づけるよう、前記仮想不在居室に対応する居室に空気を搬送する搬送ファンを制御する、請求項1記載の空調システム。
  8. 前記空調システムコントローラは、
     前記仮想不在居室における人感センサからの情報に基づき当該仮想不在居室における人の存在が検知されない場合に前記仮想不在居室を前記不在居室に変更する仮想不在居室解除部を備えた請求項7記載の空調システム。
  9. 前記不在居室命令は、
     所定の待機時間に関する情報を含み、
    前記空調システムコントローラは、
     前記制御変更部が前記変更受付部を介して前記不在居室命令を受け付けた際に、前記待機時間に基づいて、前記仮想不在居室に設定された前記在居室を前記準目標空調環境に近づけるまでの待機時間を設定するタイマー設定部を備えた請求項7記載の空調システム。
  10. 空調した空調室の空気を搬送して家屋を構成する居室と非居室とを空調する空調システムであって、
    前記空調室から前記居室及び前記非居室に空気を搬送する搬送ファンと、
    前記搬送ファンを制御する空調システムコントローラと、を備え、
    前記空調システムコントローラは、
     少なくとも前記居室の目標空調環境を取得する目標空調環境取得部と、
     前記居室に対して前記目標空調環境に近づけるよう、前記居室に空気を搬送する搬送ファンを制御する居室空調環境制御部と、
     前記非居室に対して前記目標空調環境よりもエネルギー負荷の低い準目標空調環境に近づけるよう、前記非居室に空気を搬送する搬送ファンを制御する非居室空調環境制御部と、を備えた空調システム。
  11. 前記目標空調環境は、温度、湿度、清浄度の少なくとも1つを含む請求項1または10記載の空調システム。
PCT/JP2020/006137 2019-03-26 2020-02-17 空調システム WO2020195337A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021508255A JP7029612B2 (ja) 2019-03-26 2020-02-17 空調システム
US17/435,410 US11940166B2 (en) 2019-03-26 2020-02-17 Air conditioning system for transferring air in an air-conditioned room

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019057584 2019-03-26
JP2019-057584 2019-03-26
JP2019173008 2019-09-24
JP2019-173008 2019-09-24

Publications (1)

Publication Number Publication Date
WO2020195337A1 true WO2020195337A1 (ja) 2020-10-01

Family

ID=72610794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006137 WO2020195337A1 (ja) 2019-03-26 2020-02-17 空調システム

Country Status (3)

Country Link
US (1) US11940166B2 (ja)
JP (1) JP7029612B2 (ja)
WO (1) WO2020195337A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127965A (ja) * 2007-11-27 2009-06-11 Toyota Motor Corp 建物
JP2015172482A (ja) * 2015-06-01 2015-10-01 三菱電機株式会社 温度調整システム、温度調整方法、システムコントローラ及びプログラム
WO2015190001A1 (ja) * 2014-06-13 2015-12-17 三菱電機株式会社 空気調和システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4453679B2 (ja) * 2005-05-24 2010-04-21 ダイキン工業株式会社 設備制御システムおよび設備制御装置
JP5331330B2 (ja) * 2007-12-06 2013-10-30 トヨタホーム株式会社 建物
JP2011127845A (ja) 2009-12-18 2011-06-30 Aihome Co Ltd 空調システム
JP5528833B2 (ja) * 2010-01-29 2014-06-25 三洋電機株式会社 換気制御装置
JP5505040B2 (ja) * 2010-03-31 2014-05-28 ダイキン工業株式会社 空調コントローラ
US20150136378A1 (en) 2012-06-22 2015-05-21 Mitsubishi Electric Corporation Air-conditioning system
JP6053440B2 (ja) 2012-10-09 2016-12-27 三菱電機株式会社 温度調整システム、温度調整方法、システムコントローラ及びプログラム
US20140222241A1 (en) * 2013-02-04 2014-08-07 Joseph David Ols Climate Control
US10088211B2 (en) 2013-11-08 2018-10-02 Mitsubishi Electric Corporation Air-conditioning apparatus
US20150168002A1 (en) * 2013-12-18 2015-06-18 Google Inc. Systems and methods for determining or modifying a temperature program based on occupant activity
JP6558921B2 (ja) * 2015-03-20 2019-08-14 三菱電機株式会社 空調制御装置
JP2017101861A (ja) * 2015-11-30 2017-06-08 パナソニックIpマネジメント株式会社 空気制御システム、空気制御方法及び空気制御装置
US20180363933A1 (en) * 2017-06-14 2018-12-20 Joseph A. Ross Zoning System for Air Conditioning (HVAC) Equipment
JP6815515B2 (ja) * 2017-07-31 2021-01-20 三菱電機株式会社 空気調和システム及びゾーン空調制御方法
US10908561B2 (en) * 2017-12-12 2021-02-02 Distech Controls Inc. Environment controller and method for inferring one or more commands for controlling an appliance taking into account room characteristics
CN112352255A (zh) * 2018-09-24 2021-02-09 开利公司 用于管理会议室中的会议的占用室传感器的使用
US10941957B2 (en) * 2018-11-09 2021-03-09 Ademco Inc. Building controller utilizing multiple sensors and a programmable schedule

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127965A (ja) * 2007-11-27 2009-06-11 Toyota Motor Corp 建物
WO2015190001A1 (ja) * 2014-06-13 2015-12-17 三菱電機株式会社 空気調和システム
JP2015172482A (ja) * 2015-06-01 2015-10-01 三菱電機株式会社 温度調整システム、温度調整方法、システムコントローラ及びプログラム

Also Published As

Publication number Publication date
JP7029612B2 (ja) 2022-03-04
US11940166B2 (en) 2024-03-26
US20230105512A1 (en) 2023-04-06
JPWO2020195337A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
JP6941772B2 (ja) 空調システム、空調システムコントローラ
WO2020195338A1 (ja) 空調システムコントローラ
CN112567179B (zh) 空调系统、空调系统控制器
JP2020051680A (ja) 換気空調システム
JP6234569B2 (ja) 空気調和システム
WO2020166503A1 (ja) 空調システム
WO2020195337A1 (ja) 空調システム
JP7352780B2 (ja) 空調システム、空調システムコントローラ
US11635225B2 (en) Air conditioning system
CN113551325B (zh) 空调系统、空调系统控制器
US20230082958A1 (en) Air-conditioning system and air-conditioning system controller
JP7462131B2 (ja) 空調システム
JP7462132B2 (ja) 空調システム
WO2020066801A1 (ja) 空調システム
JPWO2020175103A1 (ja) 空調システム、空調制御プログラムおよび空調制御プログラムを保存している記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776402

Country of ref document: EP

Kind code of ref document: A1