WO2020194948A1 - 導電性転写材料、導電パターンの製造方法、積層体、タッチパネル、及び液晶表示装置 - Google Patents

導電性転写材料、導電パターンの製造方法、積層体、タッチパネル、及び液晶表示装置 Download PDF

Info

Publication number
WO2020194948A1
WO2020194948A1 PCT/JP2019/050521 JP2019050521W WO2020194948A1 WO 2020194948 A1 WO2020194948 A1 WO 2020194948A1 JP 2019050521 W JP2019050521 W JP 2019050521W WO 2020194948 A1 WO2020194948 A1 WO 2020194948A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
transfer material
mass
photosensitive layer
Prior art date
Application number
PCT/JP2019/050521
Other languages
English (en)
French (fr)
Inventor
中村 秀之
佐藤 守正
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021508761A priority Critical patent/JP7317102B2/ja
Publication of WO2020194948A1 publication Critical patent/WO2020194948A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present disclosure relates to a conductive transfer material, a method for manufacturing a conductive pattern, a laminate, a touch panel, and a liquid crystal display device.
  • An input device (hereinafter, also referred to as a "touch panel") that can input information corresponding to an instruction image by touching it with a finger, a stylus, or the like is widely used.
  • a conductive film made of ITO Indium Tin Oxide
  • a transfer material has been used in a technique for forming a conductive film.
  • Japanese Patent Application Laid-Open No. 2005-321716 discloses a dry film formed by laminating a photosensitive resin layer (1) having antistatic or conductive properties and a photosensitive resin layer (2) having insulating properties. There is.
  • a photosensitive conductive film including a support film, a conductive layer containing a conductive fiber, and a photosensitive resin layer containing a photosensitive resin is prepared in this order, and a base material is prepared.
  • a method for forming a conductive pattern is disclosed.
  • the single layer that is, the photosensitive resin layer (1) contains a photosensitive material and a conductive material, so that the resolution is high. It is considered difficult to form a conductive pattern that is excellent and has low electrical resistance.
  • the photosensitive layer may remain on the conductive pattern.
  • a conductive layer and a photosensitive resin layer are laminated on a base material in this order, they are conductive.
  • the means for solving the above problems include the following aspects.
  • the binder is a water-soluble binder.
  • the water-soluble binder is cellulose.
  • the water-soluble binder is at least one type of cellulose selected from the group consisting of methyl cellulose, hydroxypropyl methyl cellulose, and hydroxypropyl cellulose.
  • ⁇ 5> The conductive transfer material according to any one of ⁇ 1> to ⁇ 4>, which has an adhesive layer on the opposite side of the conductive layer from the photosensitive layer.
  • ⁇ 6> The conductive transfer material according to ⁇ 5>, wherein the average thickness of the adhesive layer is less than 500 nm.
  • ⁇ 7> The conductive transfer material according to ⁇ 5> or ⁇ 6>, wherein the adhesive layer contains an alkali-soluble binder.
  • ⁇ 8> The conductive transfer material according to any one of ⁇ 1> to ⁇ 7>, wherein the average thickness of the photosensitive layer is 10 nm or more.
  • ⁇ 9> The conductive transfer material according to any one of ⁇ 1> to ⁇ 8>, wherein the average thickness of the photosensitive layer is 200 nm or less.
  • the average particle size of the silver particles is 5 nm to 100 nm, and the content of the silver particles is 60% by mass to 99% by mass with respect to the total mass of the conductive layer ⁇ 1> to ⁇ 10> The conductive transfer material according to any one of.
  • ⁇ 12> The conductive transfer material according to any one of ⁇ 1> to ⁇ 11>, wherein the conductive layer has a five-membered ring structure or a six-membered ring structure and contains a saccharide other than cellulose.
  • ⁇ 13> The conductive transfer material according to any one of ⁇ 1> to ⁇ 12>, wherein the photosensitive layer contains an alkali-soluble binder, a polymerizable compound, and a photopolymerization initiator.
  • ⁇ 14> The conductive transfer material according to any one of ⁇ 1> to ⁇ 13>, which has a cushion layer having an average thickness of 1 ⁇ m to 20 ⁇ m between the temporary support and the photosensitive layer.
  • ⁇ 15> A step of laminating the conductive transfer material according to any one of ⁇ 1> to ⁇ 14> on a base material, a step of pattern-exposing the photosensitive layer of the conductive transfer material, and the above.
  • a method for producing a conductive pattern which includes a step of developing a photosensitive layer and a step of developing the photosensitive layer in this order.
  • ⁇ 16> A laminate having a base material, a conductive layer containing silver particles and a binder, and a cured product layer of a photosensitive composition having an average thickness of less than 500 nm in this order.
  • ⁇ 17> A laminate of ⁇ 16> in which the binder is a water-soluble binder.
  • ⁇ 18> The laminate according to ⁇ 17>, wherein the water-soluble binder is cellulose.
  • the water-soluble binder is at least one type of cellulose selected from the group consisting of methyl cellulose, hydroxypropyl methyl cellulose, and hydroxypropyl cellulose.
  • ⁇ 20> The laminate according to any one of ⁇ 16> to ⁇ 19>, which has an adhesive layer having an average thickness of less than 500 nm between the base material and the conductive layer.
  • the average particle size of the silver particles is 5 nm to 100 nm, and the content of the silver particles is 60% by mass to 99% by mass with respect to the total mass of the conductive layer.
  • ⁇ 16> to ⁇ 20> The laminate according to any one of. ⁇ 22>
  • a touch panel having the laminate according to any one of ⁇ 16> to ⁇ 22>.
  • ⁇ 24> A liquid crystal display device having the laminate according to any one of ⁇ 16> to ⁇ 22>.
  • a conductive transfer material capable of forming a conductive pattern having low surface resistance and contact resistance and having excellent resolution.
  • a method for producing a conductive pattern having low surface resistance and contact resistance and having excellent resolution is provided.
  • a laminate having a conductive layer having low surface resistance and contact resistance is provided.
  • a touch panel having a laminate having a conductive layer having low surface resistance and contact resistance.
  • a liquid crystal display device having a laminate having a conductive layer having a small surface resistance and contact resistance.
  • FIG. 1 is a schematic view showing an example of the layer structure of the conductive transfer material according to the present disclosure.
  • FIG. 2 is a schematic view showing an example of the layer structure of the conductive transfer material according to the present disclosure.
  • FIG. 3 is a schematic view showing an example of the layer structure of the conductive transfer material according to the present disclosure.
  • FIG. 4 is a schematic view showing an example of the layer structure of the laminated body according to the present disclosure.
  • FIG. 5 is a schematic view showing an example of the layer structure of the laminated body according to the present disclosure.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • “(meth) acrylic” means both acrylic and methacrylic, or one of them
  • “(meth) acrylate” means both acrylate and methacrylate, or one of them.
  • (meth) acrylic acid means both acrylic acid and / or methacrylic acid.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
  • the term "process” is included in the term “process” as long as the intended purpose of the process is achieved, not only in an independent process but also in cases where it cannot be clearly distinguished from other processes. ..
  • the notation that does not describe substitution or non-substitution includes those having no substituent as well as those having a substituent.
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • “% by mass” and “% by weight” are synonymous, and “parts by mass” and “parts by weight” are synonymous.
  • the "main chain” means the relatively longest binding chain among the molecules of the polymer compound constituting the resin.
  • the "side chain” means an atomic group branched from the main chain. In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
  • the chemical structural formula may be described as a simplified structural formula omitting a hydrogen atom.
  • the ratio of the constituent units in the resin represents a molar ratio unless otherwise specified.
  • the molecular weight when there is a molecular weight distribution represents the weight average molecular weight (Mw) unless otherwise specified.
  • the conductive transfer material according to the present disclosure has a temporary support, a photosensitive layer having an average thickness of less than 500 nm, and a conductive layer containing silver particles and a binder in this order.
  • a conductive pattern having low surface resistance also referred to as sheet resistance; the same applies hereinafter
  • contact resistance and having excellent resolution is formed.
  • the reason why the conductive transfer material according to the present disclosure exerts the above effect is not clear, but it is presumed as follows.
  • the conductive transfer material according to the present disclosure has a photosensitive layer having an average thickness of less than 500 nm and a conductive layer containing silver particles and a binder, so that one layer also serves as the photosensitive layer and the conductive layer. Compared with the case, the photosensitive layer can contain more photosensitive material and the conductive layer can contain more conductive material, so that the electrical resistance of the conductive pattern is large while improving the resolution in pattern formation.
  • the average thickness of the photosensitive layer is less than 500 nm, when the conductive pattern and other electric conductors are laminated via the photosensitive layer or a cured product thereof, the conductive pattern and the other electric conductors are combined. The interval can be reduced. Therefore, according to the conductive transfer material according to the present disclosure, a conductive pattern having low surface resistance and contact resistance and excellent resolution is formed.
  • FIG. 1 is a schematic view showing an example of the layer structure of the conductive transfer material according to the present disclosure.
  • the conductive transfer material 100 shown in FIG. 1 has a temporary support 10, a photosensitive layer 20, and a conductive layer 30 in this order.
  • the scale of each element shown in the drawings of the present disclosure is not always accurate.
  • the conductive transfer material according to the present disclosure has a temporary support.
  • the temporary support is a support that supports at least the photosensitive layer and the conductive layer and can be peeled off from the adherend (for example, the photosensitive layer).
  • the temporary support preferably has light transmission from the viewpoint that pattern exposure can be performed through the temporary support.
  • “having light transmittance” means that the transmittance of the main wavelength of light used for pattern exposure is 50% or more. From the viewpoint of improving the exposure sensitivity, the transmittance of the main wavelength of the light used for the pattern exposure is preferably 60% or more, more preferably 70% or more. Examples of the method for measuring the transmittance include a method of measuring using a spectrophotometer (for example, MCPD-6800 manufactured by Otsuka Electronics Co., Ltd.).
  • the haze of the temporary support is preferably small. Specifically, the haze of the temporary support is preferably 2% or less, and more preferably 0.5% or less.
  • the number of fine particles, foreign substances, and defects (for example, pinholes) contained in the temporary support is small.
  • the number of fine particles, foreign substances, and defects contained in the temporary support having a diameter of 1 ⁇ m or more is preferably 50 pieces / 10 mm 2 or less, and more preferably 10 pieces / 10 mm 2 or less.
  • the temporary support examples include a glass base material, a resin film, and paper.
  • the temporary support is preferably a resin film from the viewpoint of strength and flexibility.
  • the resin film include a cycloolefin polymer film, a polyethylene terephthalate film, a cellulose triacetate film, a polystyrene film, and a polycarbonate film.
  • the temporary support is preferably a polyethylene terephthalate film from the viewpoint of optical characteristics.
  • the average thickness of the temporary support is not limited and can be set appropriately according to the material.
  • the average thickness of the temporary support is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 150 ⁇ m, and further preferably 10 ⁇ m to 50 ⁇ m from the viewpoint of ease of handling and versatility.
  • the average thickness of the temporary support is measured by the following method.
  • the arithmetic mean value of the thickness of the temporary support measured at 10 randomly selected points is obtained, and the obtained value is taken as the average thickness of the temporary support.
  • a cross-sectional observation image of the temporary support in the thickness direction can be obtained by using a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • the conductive transfer material according to the present disclosure has a photosensitive layer having an average thickness of less than 500 nm. Since the conductive transfer material according to the present disclosure has a photosensitive layer having an average thickness of less than 500 nm, a conductive pattern having low contact resistance and excellent resolution is formed.
  • the average thickness of the photosensitive layer is preferably 400 nm or less, more preferably 300 nm or less, further preferably 200 nm or less, particularly preferably 150 nm or less, and most preferably 60 nm or less. preferable. When the average thickness of the photosensitive layer is within the above range, the contact resistance can be further reduced.
  • the average thickness of the photosensitive layer is preferably 1 nm or more, more preferably 10 nm or more, and particularly preferably 20 nm or more. When the average thickness of the photosensitive layer is within the above range, the developability of the photosensitive layer can be improved.
  • the average thickness of the photosensitive layer is measured by a method according to the method for measuring the average thickness of the temporary support.
  • the minimum transmittance of the photosensitive layer at a wavelength of 400 nm to 700 nm is preferably 80% or more, and more preferably 90% or more.
  • the transmittance is measured by a method according to the method for measuring the transmittance of the temporary support.
  • the photosensitive layer is not limited as long as the average thickness is less than 500 nm, and a known photosensitive layer can be applied.
  • Examples of the photosensitive layer include a positive type photosensitive layer and a negative type photosensitive layer.
  • the photosensitive layer is preferably a negative type photosensitive layer from the viewpoint of chemical resistance and durability.
  • the positive type photosensitive layer is not limited, and a known positive type photosensitive layer can be applied. From the viewpoint of sensitivity, resolution, and removability, the positive photosensitive layer preferably contains a polymer having a structural unit having an acid group protected by an acid-degradable group and a photoacid generator. ..
  • the positive photosensitive layer is described in paragraphs 0033 to 0130 of International Publication No. 2018/179640. These statements are incorporated herein by reference.
  • the positive photosensitive layer contains a polymer (hereinafter, also referred to as “polymer A”) containing a structural unit having an acid-decomposable and protected acid group (hereinafter, also referred to as “constituent unit A”). It is preferable to do so.
  • the acid group protected by the acid-degradable group in the polymer A becomes an acid group by the action of a catalytic amount of acid generated by exposure (that is, a deprotection reaction).
  • the acid groups generated by the deprotection reaction improve the solubility of the positive photosensitive layer in the developer.
  • the polymer A is preferably an addition polymerization type polymer, and more preferably a polymer having a structural unit derived from (meth) acrylic acid or an ester thereof. Even if the polymer A has a structural unit other than the structural unit derived from (meth) acrylic acid or an ester thereof (for example, a structural unit derived from a styrene compound and a structural unit derived from a vinyl compound). Good.
  • the acid group in the structural unit A is not limited, and a known acid group can be applied.
  • the acid group is preferably a carboxy group or a phenolic hydroxyl group (also referred to as a "phenolic hydroxy group").
  • the acid-degradable group in the structural unit A is not limited, and a known acid-degradable group can be applied.
  • the acid-degradable group include a group that is relatively easily decomposed by an acid (for example, an acetal-type functional group such as a 1-alkoxyalkyl group, a tetrahydropyranyl group, and a tetrahydrofuranyl group), and a group that is relatively difficult to decompose by an acid.
  • examples include groups (eg, tertiary alkyl groups such as tert-butyl groups).
  • the acid-degradable group is preferably a group having a structure that protects the acid group in the form of acetal.
  • the acid-decomposable group is preferably an acid-decomposable group having a molecular weight of 300 or less from the viewpoint of suppressing variation in the line width of the conductive wiring when applied to the formation of a conductive pattern.
  • the structural unit having an acid group protected by an acid-degradable group is a structural unit represented by the following formula A1 and the following formula A2 from the viewpoint of suppressing deformation of the pattern shape, solubility in a developing solution, and transferability. It is preferably at least one type of structural unit selected from the group consisting of the structural unit represented by the formula A3 and the structural unit represented by the following formula A3, and more preferably the structural unit represented by the following formula A3. It is particularly preferable that the structural unit is represented by the formula A3-3 described later.
  • the structural unit represented by the following formula A1 and the structural unit represented by the following formula A2 are structural units having a phenolic hydroxyl group protected by an acid-degradable group.
  • the structural unit represented by the following formula A3 is a structural unit having a carboxy group protected by an acid-degradable group.
  • R 11 and R 12 independently represent a hydrogen atom, an alkyl group, or an aryl group, and at least one of R 11 and R 12 is an alkyl group or an aryl group, and R 13 is , Alkyl group, or aryl group, R 11 or R 12 and R 13 may be linked to form a cyclic ether, R 14 represents a hydrogen atom or a methyl group, and X 1 represents. It represents a single bond or a divalent linking group, R 15 represents a substituent, and n represents an integer of 0 to 4.
  • R 21 and R 22 independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 21 and R 22 is an alkyl group or an aryl group, and R 23 is an alkyl group. Representing a group or aryl group, R 21 or R 22 and R 23 may be linked to form a cyclic ether, and R 24 is independently a hydroxy group, a halogen atom, an alkyl group, or an alkoxy group.
  • R 31 and R 32 independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 31 and R 32 is an alkyl group or an aryl group, and R 33 is An alkyl group or an aryl group may be represented, and R 31 or R 32 and R 33 may be linked to form a cyclic ether, R 34 represents a hydrogen atom or a methyl group, and X 0 is a simple substance. It represents a bond or a linking group, and Y represents a sulfur atom or an oxygen atom.
  • R 31 or R 32 when R 31 or R 32 is an alkyl group, the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms.
  • the aryl group is preferably a phenyl group. It is preferable that R 31 and R 32 are independently hydrogen atoms or alkyl groups having 1 to 4 carbon atoms, and at least one of R 31 and R 32 is an alkyl group having 1 to 4 carbon atoms.
  • R 33 is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group and the aryl group in R 31 to R 33 may have a substituent.
  • R 31 or R 32 and R 33 are linked to form a cyclic ether.
  • the number of ring members of the cyclic ether is not limited, but is preferably 5 or 6, and more preferably 5.
  • X 0 is preferably a single bond or an arylene group, and is preferably a single bond.
  • the arylene group may have a substituent.
  • Y is preferably an oxygen atom from the viewpoint of exposure sensitivity.
  • R 34 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint that the glass transition temperature (Tg) of the polymer A can be lowered. More specifically, the content ratio of the structural unit in which R 34 is a hydrogen atom in the formula A3 is 20 mol% or more with respect to the total structural unit represented by the formula A3 contained in the polymer A. preferable.
  • the content ratio (mol%) of the structural unit in which R 34 is a hydrogen atom in the structural unit represented by the formula A3 is calculated by a conventional method from 13 C-nuclear magnetic resonance spectrum (NMR) measurement. Confirm by the intensity ratio of the peak intensity to be obtained.
  • the structural unit represented by the following formula A3-3 is more preferable from the viewpoint of further increasing the sensitivity at the time of pattern formation.
  • R 34 represents a hydrogen atom or a methyl group
  • R 35 to R 41 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 34 is preferably a hydrogen atom.
  • R 35 to R 41 are preferably hydrogen atoms.
  • R 34 in the following constitutional unit represents a hydrogen atom or a methyl group.
  • the polymer A may have one type of structural unit A, or may have two or more types of structural unit A.
  • the content ratio of the structural unit A in the polymer A is preferably 10 mol% or more, more preferably 10 mol% to 90 mol%, and 20 mol% with respect to all the structural units of the polymer A. It is particularly preferably ⁇ 70 mol%.
  • the content ratio of the structural unit A in the polymer A is confirmed by the intensity ratio of the peak intensity calculated by a conventional method from 13 C-NMR measurement.
  • the polymer A preferably contains a structural unit having an acid group (hereinafter, also referred to as “constituent unit B”).
  • the polymer A contains the structural unit B, the sensitivity at the time of pattern formation is improved, and the polymer A is easily dissolved in an alkaline developer in the developing process after the pattern exposure, so that the developing time can be shortened.
  • the acid group in the structural unit B means a proton dissociative group having a pKa of 12 or less.
  • the pKa of the acid group is preferably 10 or less, and more preferably 6 or less. Further, the pKa of the acid group is preferably ⁇ 5 or more.
  • Examples of the acid group in the structural unit B include a carboxy group, a sulfonamide group, a phosphonic acid group, a sulfonic acid group, a phenolic hydroxyl group, and a sulfonylimide group.
  • the acid group is preferably a carboxy group or a phenolic hydroxyl group.
  • the structural unit B can be introduced into the polymer A by copolymerizing a monomer having an acid group.
  • the structural unit B is a structural unit derived from a styrene compound, a structural unit derived from a vinyl compound in which an acid group is substituted, or a structural unit derived from (meth) acrylic acid.
  • the structural unit B may be at least one structural unit selected from the group consisting of a structural unit having a carboxy group and a structural unit having a phenolic hydroxyl group from the viewpoint of improving the sensitivity at the time of pattern formation. preferable.
  • the polymer A may have one type of structural unit B, or may have two or more types of structural unit B.
  • the content ratio of the structural unit B in the polymer A is preferably 0.1 mol% to 20 mol%, preferably 0.5 mol%, based on the total structural units of the polymer A from the viewpoint of pattern formation property. It is more preferably from to 15 mol%, and particularly preferably from 1 mol% to 10 mol%.
  • the content ratio of the structural unit B in the polymer A is confirmed by the intensity ratio of the peak intensity calculated by a conventional method from 13 C-NMR measurement.
  • the polymer A has a structural unit other than the above-mentioned structural unit A and the structural unit B (hereinafter, also referred to as “constituent unit C”) as long as the effect of the conductive transfer material according to the present disclosure is not impaired. You may be.
  • Examples of the monomer forming the structural unit C include a styrene compound, a (meth) acrylic acid alkyl ester, a (meth) acrylic acid cyclic alkyl ester, a (meth) acrylic acid aryl ester, an unsaturated dicarboxylic acid diester, and a bicyclounsaturated compound.
  • Maleimide compounds, unsaturated aromatic compounds, conjugated diene compounds, unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated dicarboxylic acid anhydrides, unsaturated compounds with an aliphatic cyclic skeleton, and other unsaturated compounds. Can be mentioned.
  • the constituent unit C includes styrene, tert-butoxystyrene, methylstyrene, ⁇ -methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, and ethyl vinylbenzoate, (meth).
  • Examples of the structural unit C other than the above include the compounds described in paragraphs 0021 to 0024 of JP2004-246623A.
  • the structural unit C is at least one structural unit selected from the group consisting of a structural unit having an aromatic ring and a structural unit having an aliphatic cyclic skeleton from the viewpoint of improving the electrical properties of the obtained conductive transfer material. Is preferable.
  • the monomers forming the above-mentioned structural unit include styrene, tert-butoxystyrene, methylstyrene, ⁇ -methylstyrene, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and benzyl ( Meta) acrylate can be mentioned.
  • the structural unit C is preferably a structural unit derived from cyclohexyl (meth) acrylate.
  • a (meth) acrylic acid alkyl ester is preferable from the viewpoint of adhesion, and a (meth) acrylic acid alkyl ester having an alkyl group having 4 to 12 carbon atoms is more preferable. .. Specific examples thereof include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • the polymer A may have one type of structural unit C, or may have two or more types of structural unit C.
  • the content ratio of the structural unit C in the polymer A is preferably 70 mol% or less, more preferably 60% by mass or less, and particularly preferably 50% by mass or less, based on all the structural units of the polymer A.
  • the lower limit of the content ratio of the structural unit C in the polymer A may be 0 mol%.
  • the content ratio of the structural unit C in the polymer A is preferably 1 mol% or more, more preferably 5 mol% or more, based on all the structural units of the polymer A. Within the above range, the resolution and adhesion are further improved.
  • the weight average molecular weight of the polymer A is preferably 60,000 or less.
  • the melt viscosity of the photosensitive layer can be kept low, and the bonding at a low temperature (for example, 130 ° C. or less) can be realized when the polymer A is bonded to the substrate.
  • the weight average molecular weight of the polymer A is preferably 2,000 to 60,000, more preferably 3,000 to 50,000.
  • the weight average molecular weight of the polymer A is a polystyrene-equivalent weight average molecular weight measured by the following method.
  • the weight average molecular weight is measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the measuring device a commercially available device can be used. The contents of the device and the measurement technique are known. Hereinafter, a specific measurement method will be described.
  • HLC registered trademark
  • -8220 GPC manufactured by Tosoh Corporation
  • TSKgel registered trademark
  • Super HZM-M 4.6 mm ID ⁇ 15 cm, Tosoh
  • Super HZ4000 (4.6 mm ID x 15 cm, manufactured by Tosoh Corporation), Super HZ3000 (4.6 mm ID x 15 cm, manufactured by Tosoh Corporation), and Super HZ2000 (4.6 mm ID x 15 cm, manufactured by Tosoh Corporation). Each of these is connected in series one by one, and THF (tetrahydrofuran) is used as the eluent.
  • the measurement conditions are a sample concentration of 0.2% by mass, a flow rate of 0.35 mL / min, a sample injection amount of 10 ⁇ L, and a measurement temperature of 40 ° C., using a differential refractive index (RI) detector. ..
  • the calibration curve is "Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: "F-40", “F-20”, “F-4", “F-1”, "A-5000", "A”. It is prepared using any of 7 samples of "-2500” and "A-1000".
  • the positive photosensitive layer may contain one type of polymer A, or may contain two or more types of polymer A.
  • the content of the polymer A in the positive photosensitive layer is 50% by mass to 99.9% by mass with respect to the total mass of the positive photosensitive layer from the viewpoint of exhibiting good adhesion to the substrate. It is preferably 70% by mass to 98% by mass, and more preferably 70% by mass to 98% by mass.
  • the method for producing the polymer A (synthesis method) is not limited, and a known method can be applied.
  • a method for producing the polymer A for example, a polymerizable monomer for forming the structural unit A,, if necessary, a polymerizable monomer for forming the structural unit B having an acid group, and the structural unit C are used. Examples thereof include a method of polymerizing a polymerizable monomer for formation in an organic solvent using a polymerization initiator.
  • the positive photosensitive layer preferably contains a photoacid generator.
  • the positive photosensitive layer contains a photoacid generator, the sensitivity can be improved.
  • a photoacid generator is a compound capable of generating an acid by being irradiated with active rays (for example, ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams).
  • active rays for example, ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams.
  • a compound that is sensitive to active light having a wavelength of 300 nm or more, preferably a wavelength of 300 nm to 450 nm and generates an acid is preferable.
  • a photoacid generator that is not directly sensitive to active light having a wavelength of 300 nm or more can be used as a sensitizer if it is a compound that is sensitive to active light having a wavelength of 300 nm or more and generates an acid when used in combination with a sensitizer. It can be preferably used in combination.
  • a photoacid generator that generates an acid having a pKa of 4 or less is preferable, a photoacid generator that generates an acid having a pKa of 3 or less is more preferable, and a light that generates an acid having a pKa of 2 or less is preferable.
  • Acid generators are particularly preferred.
  • the lower limit of pKa is not limited.
  • the pKa is preferably -10 or more, for example.
  • Examples of the photoacid generator include an ionic photoacid generator and a nonionic photoacid generator.
  • the ionic photoacid generator examples include onium salt compounds (for example, diaryliodonium salt compounds and triarylsulfonium salt compounds), and quaternary ammonium salt compounds.
  • the ionic photoacid generator is preferably an onium salt compound, and more preferably at least one of a triarylsulfonium salt compound and a diaryliodonium salt compound.
  • the ionic photoacid generator described in paragraphs 0114 to 0133 of JP-A-2014-85643 can also be preferably used.
  • nonionic photoacid generator examples include trichloromethyl-s-triazine compounds, diazomethane compounds, imide sulfonate compounds, and oxime sulfonate compounds.
  • the non-ionic photoacid generator is preferably an oxime sulfonate compound from the viewpoint of sensitivity, resolution, and adhesion.
  • Specific examples of the trichloromethyl-s-triazine compound and the diazomethane compound include the compounds described in paragraphs 0083 to 0088 of Japanese Patent Application Laid-Open No. 2011-22149.
  • the photoacid generator preferably contains at least one compound selected from the group consisting of an onium salt compound and an oxime sulfonate compound from the viewpoint of sensitivity and resolution, and preferably contains an oxime sulfonate compound. More preferred.
  • oxime sulfonate compound that is, the compound having an oxime sulfonate structure
  • a compound having an oxime sulfonate structure represented by the following formula (B1) is preferable.
  • R 21 represents an alkyl group or an aryl group
  • * represents a binding site with another atom or another group.
  • any group of the compound having an oxime sulfonate structure represented by the formula (B1) may be substituted, and the alkyl group at R 21 may be linear or have a branched structure. It may have a ring structure. Acceptable substituents are described below.
  • alkyl group represented by R 21 a linear or branched alkyl group having 1 to 10 carbon atoms is preferable.
  • the alkyl group represented by R 21 may be substituted with an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group, or a halogen atom.
  • aryl group represented by R 21 an aryl group having 6 to 18 carbon atoms is preferable, and a phenyl group or a naphthyl group is more preferable.
  • the aryl group represented by R 21 may be substituted with at least one group selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkoxy group, and a halogen atom.
  • the positive type photosensitive layer may contain one kind of photoacid generator, or may contain two or more kinds of photoacid generators.
  • the content of the photoacid generator in the positive photosensitive layer is preferably 0.1% by mass to 10% by mass with respect to the total mass of the positive photosensitive layer from the viewpoint of sensitivity and resolution. More preferably, it is 0.5% by mass to 5% by mass.
  • the positive photosensitive layer may contain a component other than the above components (hereinafter, also referred to as "other component A").
  • the other component A is not limited and can be appropriately selected depending on the purpose and the like. Examples of other components include surfactants, corrosion inhibitors described below, and light stabilizers described below.
  • the surfactant examples include anionic surfactants, cationic surfactants, nonionic (nonionic) surfactants, and amphoteric surfactants. Since the positive photosensitive layer contains a surfactant, the uniformity of the film thickness can be improved. Among the above, the surfactant is preferably a nonionic surfactant.
  • nonionic surfactants include polyoxyethylene higher alkyl ether-based surfactants, polyoxyethylene higher alkylphenyl ether-based surfactants, polyoxyethylene glycol higher fatty acid diester-based surfactants, and silicone-based surfactants. Examples include agents and fluorine-based surfactants. Specific examples of nonionic surfactants include KP (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow (manufactured by Kyoeisha Chemical Co., Ltd.), Ftop (manufactured by JEMCO), Megafuck (registered trademarks, for example, Megafuck F551A, DIC).
  • Florard manufactured by Sumitomo 3M Co., Ltd.
  • Asahi Guard registered trademark, manufactured by AGC Corporation
  • Surflon registered trademark, manufactured by AGC Seichemical Co., Ltd.
  • PolyFox manufactured by OMNOVA
  • Surfinol manufactured by Japan
  • Examples include Shin-Etsu Chemical Co., Ltd.) and SH-8400 (Toray Dow Corning Co., Ltd.).
  • the positive type photosensitive layer may contain one kind of surfactant, or may contain two or more kinds of surfactants.
  • the content of the surfactant in the positive photosensitive layer is preferably 0.05% by mass to 10% by mass with respect to the total mass of the positive photosensitive layer from the viewpoint of uniformity of film thickness. More preferably, it is 0.05% by mass to 5% by mass.
  • the negative type photosensitive layer is not limited, and a known negative type photosensitive layer can be applied. From the viewpoint of developability, the negative type photosensitive layer preferably contains an alkali-soluble binder, a polymerizable compound, and a photopolymerization initiator.
  • alkali-soluble means soluble in 1 mol / L sodium hydroxide solution at 25 ° C. Further, “soluble” means that 0.1 g or more is dissolved in 100 mL of a solvent.
  • the negative photosensitive layer preferably contains an alkali-soluble binder.
  • the alkali-soluble binder is not limited, and a known alkali-soluble binder can be applied.
  • the alkali-soluble binder is preferably an alkali-soluble resin, more preferably a resin having an acid value of 60 mgKOH / g or more, and having a carboxy group having an acid value of 60 mgKOH / g or more (meth).
  • Acrylic resin hereinafter, also referred to as "polymer B" is particularly preferable.
  • the "acid value” means a value measured according to the method described in JIS K0070: 1992.
  • the "(meth) acrylic resin” means a resin containing at least one of a structural unit derived from (meth) acrylic acid and a structural unit derived from (meth) acrylic acid ester.
  • the total ratio of the structural units derived from (meth) acrylic acid and the structural units derived from (meth) acrylic acid ester in the polymer B may be 30 mol% or more with respect to all the structural units of the polymer B. It is preferably 50 mol% or more, more preferably 50 mol% or more.
  • Polymer B has a structural unit having a carboxy group.
  • the structural unit having a carboxy group contained in the (meth) acrylic resin may be one kind or two or more kinds.
  • the content ratio of the structural unit having a carboxy group in the polymer B is preferably 5 mol% to 50 mol% with respect to all the structural units of the (meth) acrylic resin having a carboxy group. It is more preferably 5 mol% to 40 mol%, further preferably 10 mol% to 40 mol%, and particularly preferably 10 mol% to 30 mol%.
  • the alkali-soluble binder preferably has a structural unit having an aromatic ring from the viewpoint of moisture permeability and strength after curing.
  • the monomer forming the structural unit having an aromatic ring include styrene compounds such as styrene, tert-butoxystyrene, methylstyrene, and ⁇ -methylstyrene, and benzyl (meth) acrylate.
  • the structural unit having an aromatic ring is preferably a structural unit derived from a styrene compound.
  • the alkali-soluble binder preferably has a structural unit having an ethylenically unsaturated group from the viewpoint of strength after curing.
  • the alkali-soluble binder preferably has a structural unit having an ethylenically unsaturated group in the side chain.
  • a (meth) acrylic group is preferable, and a (meth) acryloyl group is more preferable.
  • the acid value of the alkali-soluble binder is preferably 60 mgKOH / g or more, more preferably 60 mgKOH / g to 200 mgKOH / g, further preferably 60 mgKOH / g to 150 mgKOH / g, and 60 mgKOH / g to 60 mgKOH / g. It is particularly preferably 130 mgKOH / g.
  • the weight average molecular weight (Mw) of the alkali-soluble binder is preferably more than 3,000, more preferably more than 3,000 and not more than 60,000, and particularly preferably 5,000 to 50,000. ..
  • the weight average molecular weight of the alkali-soluble binder is a polystyrene-equivalent weight average molecular weight measured by a method according to the method for measuring the weight average molecular weight of the polymer A.
  • the negative type photosensitive layer may contain one kind of alkali-soluble binder, or may contain two or more kinds of alkali-soluble binders.
  • the content of the alkali-soluble binder in the negative-type photosensitive layer is preferably 10% by mass to 90% by mass, and preferably 20% by mass to 80% by mass, based on the total mass of the negative-type photosensitive layer. More preferably, it is particularly preferably 30% by mass to 70% by mass.
  • the negative photosensitive layer preferably contains a polymerizable compound.
  • the polymerizable compound is not limited as long as it is a polymerizable compound, and examples thereof include a radical polymerizable compound and a cationically polymerizable compound.
  • the polymerizable compound is preferably a radically polymerizable compound, and more preferably an ethylenically unsaturated compound.
  • An ethylenically unsaturated compound is a compound having one or more ethylenically unsaturated groups.
  • a (meth) acrylic group is more preferable.
  • a (meth) acrylate compound is preferable.
  • the ethylenically unsaturated compound preferably contains a bifunctional or higher functional ethylenically unsaturated compound.
  • the bifunctional or higher functional ethylenically unsaturated compound means a compound having two or more ethylenically unsaturated groups in one molecule.
  • bifunctional ethylenically unsaturated compound examples include tricyclodecanedimethanol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and 1,6-hexanediol di (meth) acrylate. Be done.
  • bifunctional ethylenically unsaturated compounds include, for example, tricyclodecanedimethanol diacrylate (A-DCP, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) and tricyclodecanedimethanol dimethacrylate (DCP, Shin-Nakamura Chemical Co., Ltd.).
  • A-DCP tricyclodecanedimethanol diacrylate
  • DCP tricyclodecanedimethanol dimethacrylate
  • Examples of the trifunctional or higher functional ethylenically unsaturated compound include dipentaerythritol (tri / tetra / penta / hexa) (meth) acrylate, pentaerythritol (tri / tetra) (meth) acrylate, and trimethylolpropane tri (meth).
  • Examples thereof include acrylates, ditrimethylolpropane tetra (meth) acrylates, isocyanuric acid (meth) acrylates, and glycerintri (meth) acrylates.
  • (tri / tetra / penta / hexa) (meth) acrylate includes tri (meth) acrylate, tetra (meth) acrylate, penta (meth) acrylate, and hexa (meth) acrylate. It is a concept.
  • (tri / tetra) (meth) acrylate” is a concept including tri (meth) acrylate and tetra (meth) acrylate.
  • the ethylenically unsaturated compound preferably contains an ethylenically unsaturated compound having an acid group from the viewpoint of improving developability.
  • the acid group include a phosphoric acid group, a sulfonic acid group, and a carboxy group, and a carboxy group is preferable.
  • Examples of the ethylenically unsaturated compound having an acid group include a 3- to 4-functional ethylenically unsaturated compound having an acid group and a 5- to 6-functional ethylenically unsaturated compound having an acid group.
  • Bifunctional or higher functional ethylenically unsaturated compounds having a carboxy group include Aronix (registered trademark) TO-2349 (manufactured by Toagosei Co., Ltd.), Aronix M-520 (manufactured by Toagosei Co., Ltd.), or Aronix M-510 (manufactured by Toagosei Co., Ltd.) (Manufactured by Toagosei Co., Ltd.) is preferable.
  • the ethylenically unsaturated compound having an acid group is also preferably a polymerizable compound having an acid group described in paragraphs 0025 to 0030 of JP-A-2004-239942. These statements are incorporated herein by reference.
  • the negative type photosensitive layer may contain one kind of polymerizable compound, or may contain two or more kinds of polymerizable compounds.
  • the content of the polymerizable compound in the negative type photosensitive layer is preferably 1% by mass to 70% by mass, preferably 5% by mass to 70% by mass, based on the total mass of the negative type photosensitive layer from the viewpoint of photosensitivity. It is more preferably 5% by mass to 60% by mass, and particularly preferably 8% by mass to 50% by mass.
  • the negative type photosensitive layer preferably contains a polymerization initiator.
  • the polymerization initiator at least one of a photopolymerization initiator and a thermal polymerization initiator is preferable, and a photopolymerization initiator is more preferable.
  • the photopolymerization initiator examples include a photopolymerization initiator having an oxime ester structure (hereinafter, also referred to as "oxym-based photopolymerization initiator”) and a photopolymerization initiator having an ⁇ -aminoalkylphenone structure (hereinafter, "" ⁇ -Aminoalkylphenone-based photopolymerization initiator "), photopolymerization initiator having an ⁇ -hydroxyalkylphenone structure (hereinafter, also referred to as” ⁇ -hydroxyalkylphenone-based polymerization initiator "), acylphosphine.
  • oxime ester structure hereinafter, also referred to as "oxym-based photopolymerization initiator”
  • ⁇ -aminoalkylphenone-based photopolymerization initiator examples include acylphosphine.
  • a photopolymerization initiator having an oxide structure hereinafter, also referred to as “acylphosphine oxide-based photopolymerization initiator” and a photopolymerization initiator having an N-phenylglycine structure (hereinafter, “N-phenylglycine-based photopolymerization”). Also referred to as “initiator”).
  • the photopolymerization initiator is selected from the group consisting of an oxime-based photopolymerization initiator, an ⁇ -aminoalkylphenone-based photopolymerization initiator, an ⁇ -hydroxyalkylphenone-based polymerization initiator, and an N-phenylglycine-based photopolymerization initiator. It is preferable to contain at least one of them, and at least one selected from the group consisting of an oxime-based photopolymerization initiator, an ⁇ -aminoalkylphenone-based photopolymerization initiator and an N-phenylglycine-based photopolymerization initiator is contained. Is more preferable.
  • the photopolymerization initiator for example, the photopolymerization initiator described in paragraphs 0031 to 0042 of JP2011-95716A and paragraphs 0064 to 0081 of JP2015-014783 may be used.
  • photopolymerization initiators examples include 1- [4- (phenylthio) phenyl] -1,2-octanedione-2- (O-benzoyloxime) (trade name: IRGACURE (registered trademark) OXE-01).
  • the negative type photosensitive layer may contain one kind of polymerization initiator, or may contain two or more kinds of polymerization initiators.
  • the content of the polymerization initiator in the negative type photosensitive layer is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and more preferably 0.3% by mass, based on the total mass of the negative type photosensitive layer. The above is particularly preferable.
  • the content of the polymerization initiator in the negative type photosensitive layer is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the negative type photosensitive layer.
  • the negative type photosensitive layer may contain a component other than the above components (hereinafter, also referred to as “other component B”).
  • the other component B is not limited and can be appropriately selected depending on the purpose and the like. Examples of the other component B include a heat-crosslinkable compound, a sensitizer, a surfactant, a corrosion inhibitor described later, and a light stabilizer described later.
  • thermocrossable compound examples include a blocked isocyanate compound, a bisphenol A type epoxy compound, a cresol novolac type epoxy compound, a biphenyl type epoxy compound, an alicyclic epoxy compound, and a melamine compound.
  • thermally crosslinkable compound means a compound having one or more functional groups (that is, thermally crosslinkable groups) capable of causing a crosslinking reaction by heat in one molecule.
  • the blocked isocyanate compound is preferable as the heat-crosslinkable compound.
  • the "blocked isocyanate compound” means a compound having a structure in which the isocyanate group of isocyanate is protected (masked) with a blocking agent.
  • the dissociation temperature of the blocked isocyanate compound is preferably 100 ° C. to 160 ° C., more preferably 130 ° C. to 150 ° C.
  • the "dissociation temperature of the blocked isocyanate compound” means that the thermal characteristics of the blocked isocyanate compound are measured by DSC (Differential scanning calorimetry) analysis using a differential scanning calorimeter (for example, DSC6200 manufactured by Seiko Instruments Co., Ltd.). It means the temperature of the endothermic peak associated with the deprotection reaction of the blocked isocyanate compound, which is observed in the case of
  • Blocking agents having a dissociation temperature of 100 ° C. to 160 ° C. include, for example, pyrazole compounds (eg, 3,5-dimethylpyrazole, 3-methylpyrazole, 4-bromo-3,5-dimethylpyrazole, and 4-nitro-. 3,5-Dimethylpyrazole), active methylene compounds (eg, dimethyl malonate (eg, dimethyl malonate, diethyl malonate, din-butyl malonate, and di2-ethylhexyl malonate)), triazole compounds (eg, di2-ethylhexyl malonate).
  • pyrazole compounds eg, 3,5-dimethylpyrazole, 3-methylpyrazole, 4-bromo-3,5-dimethylpyrazole, and 4-nitro-. 3,5-Dimethylpyrazole
  • active methylene compounds eg, dimethyl malonate (eg, dimethyl malonate, diethyl malonate, din-butyl malon
  • the blocked isocyanate compound may be a commercially available product.
  • commercially available products include Karenz AOI-BM, Karenz MOI-BM, Karenz MOI-BP (all manufactured by Showa Denko KK), and block-type Duranate series (manufactured by Asahi Kasei Corporation).
  • the molecular weight of the blocked isocyanate compound is preferably 200 to 3,000, more preferably 250 to 2,600, and particularly preferably 280 to 2,200.
  • the negative type photosensitive layer may contain one kind of heat-crosslinkable compound, or may contain two or more kinds of heat-crosslinkable compounds.
  • the content of the heat-crosslinkable compound in the negative-type photosensitive layer is 1 with respect to the total mass of the negative-type photosensitive layer from the viewpoint of the strength of the obtained cured film (that is, the cured product of the negative-type photosensitive layer). It is preferably from mass% to 50% by mass, and more preferably from 5% by mass to 30% by mass.
  • Examples of the sensitizer include N-phenylglycine.
  • the negative type photosensitive layer may contain one kind of sensitizer, or may contain two or more kinds of sensitizers.
  • the content of the sensitizer in the negative type photosensitive layer is preferably 0.01% by mass to 5% by mass with respect to the total mass of the negative type photosensitive layer.
  • the surfactant As the surfactant, the surfactant described in the above section "Positive type photosensitive layer" can be applied, and the preferred type is also the same.
  • the negative type photosensitive layer may contain one kind of surfactant, or may contain two or more kinds of surfactants.
  • the content of the surfactant in the negative type photosensitive layer is preferably 0.01% by mass to 15% by mass with respect to the total mass of the negative type photosensitive layer from the viewpoint of uniformity of film thickness. More preferably, it is 0.05% by mass to 15% by mass.
  • the method for forming the photosensitive layer is not limited, and a known method can be applied.
  • Examples of the method for forming the photosensitive layer include a method in which a composition for a photosensitive layer containing each of the above components is applied onto an object to be coated and then dried.
  • composition for the photosensitive layer can be prepared by mixing each of the above components and a solvent in an arbitrary ratio.
  • the solvent is not limited, and a known solvent can be applied.
  • the solvent include ethylene glycol monoalkyl ether solvent, ethylene glycol dialkyl ether solvent, ethylene glycol monoalkyl ether acetate solvent, propylene glycol monoalkyl ether solvent, propylene glycol dialkyl ether solvent, and propylene glycol monoalkyl ether.
  • Acetate solvent diethylene glycol dialkyl ether solvent, diethylene glycol monoalkyl ether acetate solvent, dipropylene glycol monoalkyl ether solvent, dipropylene glycol dialkyl ether solvent, dipropylene glycol monoalkyl ether acetate solvent, ester solvent, ketone
  • examples thereof include based solvents, amide solvents, and lactone solvents.
  • the solvent include the ester-based solvent, the ether-based solvent, and the ketone-based solvent described below.
  • the ester solvent include ethyl acetate, propyl acetate, isobutyl acetate, sec-butyl acetate, t-butyl acetate, isopropyl acetate, n-butyl acetate, and 1-methoxy-2-propyl acetate.
  • the ether solvent include diisopropyl ether, 1,4-dioxane, 1,2-dimethoxyethane, 1,3-dioxolane, propylene glycol dimethyl ether, and propylene glycol monoethyl ether.
  • ketone solvent examples include methyl n-butyl ketone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, methyl n-propyl ketone, and methyl isopropyl ketone.
  • the solid content concentration in the composition for the photosensitive layer is not limited and can be appropriately set in the range of, for example, 0.5% by mass to 40% by mass.
  • Examples of the coating method include slit coating, spin coating, curtain coating, and inkjet coating.
  • the drying temperature can be appropriately set according to the type of volatile component such as a solvent.
  • the drying temperature can be appropriately set in the range of, for example, 60 ° C. to 120 ° C.
  • the conductive transfer material according to the present disclosure has a conductive layer containing silver particles and a binder.
  • a conductive pattern having a small surface resistance is formed.
  • the conductive layer contains silver particles. When the conductive layer contains silver particles, a conductive pattern having a small surface resistance is formed.
  • the silver particles are not limited, and known silver particles can be applied.
  • the average particle size of the silver particles is preferably 5 nm to 100 nm, more preferably 5 nm to 50 nm, and particularly preferably 5 nm to 30 nm.
  • the average particle size of the silver particles is within the above range, the silver particles are easily fused to each other, so that the conductivity of the conductive pattern can be improved.
  • the average particle size of silver particles is measured by the following method. Using a transmission electron microscope (TEM), 300 silver particles are observed, and then the diameter of each of the silver particles is determined. Here, the diameter of the silver particle refers to the semimajor length of the silver particle. Next, the average particle size of the silver particles is obtained by arithmetically averaging the measured values.
  • TEM transmission electron microscope
  • the content of the silver particles is preferably 60% by mass to 99% by mass, more preferably 70% by mass to 99% by mass, and 80% by mass to 99% by mass with respect to the total mass of the conductive layer. It is more preferably%, and particularly preferably 85% by mass to 99% by mass.
  • the upper limit of the content of silver particles may be 95% by mass with respect to the total mass of the conductive layer.
  • the conductive layer contains a binder.
  • the binder is not limited, and a known binder can be applied.
  • a water-soluble binder is preferable.
  • the solubility of the conductive layer in the developing solution can be improved.
  • the conductive layer contains a water-soluble binder, when the photosensitive layer and the conductive layer are formed by the coating liquid, the redissolution of the previously formed layer by the solvent can be suppressed. Specifically, by increasing the content ratio of water contained in the composition for the conductive layer described later and increasing the content ratio of the organic solvent contained in the composition for the photosensitive layer, the previously formed layer is regenerated by the solvent. It can be suppressed from being dissolved.
  • water-soluble means the property of dissolving 1 g or more in 100 g of water at 25 ° C.
  • the water-soluble binder is not limited, and a known water-soluble binder can be applied.
  • the water-soluble binder include cellulose, polyvinyl alcohol, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymer, vinylpyrrolidone-vinylcaprolactam-dimethylaminoethylacrylate copolymer, and vinylpyrrolidone-methacrylamidopropyltrimethylammonium salt copolymer.
  • the water-soluble binder is preferably cellulose from the viewpoint of promoting the fusion of silver particles.
  • the cellulose is not limited, and known cellulose can be applied.
  • Examples of cellulose include methyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, and carboxymethyl cellulose.
  • the cellulose is preferably at least one type of cellulose selected from the group consisting of methyl cellulose, hydroxypropyl methyl cellulose, and hydroxypropyl cellulose, and more preferably hydroxypropyl methyl cellulose.
  • the conductive layer may contain one kind of binder, or may contain two or more kinds of binders.
  • the content of the binder is preferably 1% by mass to 40% by mass, more preferably 5% by mass to 30% by mass, and 5% by mass to 20% by mass with respect to the total mass of the conductive layer. Is particularly preferable.
  • the upper limit of the content of the binder may be 15% by mass with respect to the total mass of the conductive layer.
  • the conductive layer preferably contains a saccharide other than cellulose (hereinafter, also simply referred to as “saccharide”) having a five-membered ring structure or a six-membered ring structure.
  • saccharide other than cellulose
  • the resolution of the conductive layer can be improved.
  • the saccharide may be a monosaccharide, or may be a saccharide in which a plurality of monosaccharides are bound by a glycosidic bond (for example, disaccharide, trisaccharide, oligosaccharide, and polysaccharide).
  • sugars include fructose, D-ribose, deoxyribose, inulin, hyaluronic acid, and pullulan.
  • the saccharide is preferably a monosaccharide from the viewpoint of resolution.
  • the saccharide is preferably a monosaccharide other than cellulose having a five-membered ring structure or a six-membered ring structure, and is at least one selected from the group consisting of fructose, D-ribose, and deoxyribose. It is more preferably sugar and particularly preferably fructose.
  • the molecular weight of the saccharide is preferably 5,000 or less, more preferably 1,000 or less, further preferably 500 or less, and particularly preferably 200 or less. When the molecular weight of the saccharide is within the above range, the resolution of the conductive layer can be improved.
  • the lower limit of the molecular weight of sugars is not limited.
  • the molecular weight of the saccharide is preferably 50 or more, more preferably 100 or more.
  • the conductive layer may contain one kind of saccharide, or may contain two or more kinds of saccharides.
  • the content of the saccharide is preferably 0.01% by mass to 10% by mass, more preferably 1% by mass to 5% by mass, based on the total mass of the conductive layer. ..
  • the conductive layer may contain a photosensitive material, if necessary.
  • the photosensitive material is not limited as long as it is a material that can undergo a chemical change by irradiation with active light, and is, for example, a photoacid generator, a sensitizer, and a photopolymerization initiator described in the above section "Photosensitive layer". Can be mentioned.
  • the conductive layer may contain one kind of photosensitive material, or may contain two or more kinds of photosensitive materials.
  • the content of the photosensitive material in the conductive layer is preferably small from the viewpoint of conductivity. That is, the conductive layer is preferably a non-photosensitive conductive layer. Specifically, the content of the photosensitive material in the conductive layer is preferably 5% by mass or less, more preferably 1% by mass or less, and 0.1% by mass, based on the total mass of the conductive layer. It is more preferably% or less, and particularly preferably 0% by mass.
  • the average thickness of the conductive layer is preferably 0.05 ⁇ m to 100 ⁇ m, more preferably 0.05 ⁇ m to 50 ⁇ m, further preferably 0.1 ⁇ m to 10 ⁇ m, and 0. It is particularly preferable that the thickness is 1 ⁇ m to 5 ⁇ m.
  • the average thickness of the conductive layer is measured by a method according to the method for measuring the average thickness of the temporary support.
  • the method for forming the conductive layer is not limited, and a known method can be applied.
  • Examples of the method for forming the conductive layer include a method in which a composition for a conductive layer containing each of the above components is applied onto an object to be coated and then dried.
  • the composition for the conductive layer can be prepared, for example, by mixing each of the above components and a solvent in an arbitrary ratio. Further, the composition for the conductive layer may be prepared by using a silver particle dispersion liquid as a source of silver particles.
  • the silver particle dispersion is a composition containing at least silver particles and a dispersant. As the dispersant, a dispersant described later can be applied.
  • a composition for a conductive layer can be prepared by mixing a silver particle dispersion liquid and a binder.
  • Examples of the silver particle dispersion liquid are described in the metal colloid solution described in JP-A-2001-325831, the silver colloid aqueous solution described in JP-A-2001-167647, and International Publication No. 2013/061527. Examples thereof include colloidal bonding compositions.
  • a chemical reduction method As a method for producing a silver particle dispersion, for example, a chemical reduction method can be mentioned.
  • the chemical reduction method include a method of reducing a silver compound in a solvent.
  • the silver compound include silver nitrate, silver sulfate, silver chloride, silver oxide, silver acetate, silver nitrite, silver chlorate, and silver sulfide.
  • the method for preparing the silver particle dispersion is described in, for example, Japanese Patent Application Laid-Open No. 2001-325831, Japanese Patent Application Laid-Open No. 2001-167647, and International Publication No. 2013/061527, and these descriptions are described in this reference. Incorporated into the specification.
  • a commercially available silver particle dispersion is available, for example, as FlowMetal (registered trademark) SW-1020 manufactured by Bando Chemical Industries, Ltd.
  • Examples of the solvent include water and an organic solvent.
  • Examples of the organic solvent include methyl alcohol, ethyl alcohol, n-propyl alcohol, 2-propyl alcohol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,2,6-.
  • Examples include sulfoxide, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, glycerin, acetone, and ethyl lactate.
  • composition for the conductive layer may contain one kind of solvent, or may contain two or more kinds of solvents.
  • the solid content concentration in the composition for the conductive layer is not limited and can be appropriately set in the range of, for example, 0.5% by mass to 40% by mass.
  • composition for the conductive layer may contain a dispersant.
  • Dispersants include, for example, amines, carboxylic acids, and ionic compounds.
  • amines examples include oleylamine, hexylamine, butylamine, pentylamine, hexylamine, octylamine, dodecylamine, cyclopentylamine, cyclohexylamine, aniline, dipropylamine, dibutylamine, piperidine, hexamethyleneimine, and tripropylamine. Included are dimethylpropanediamine, cyclohexyldimethylamine, pyridine, and quinoline.
  • carboxylic acid examples include formic acid, oxalic acid, acetic acid, hexanoic acid, acrylic acid, octyl acid, and oleic acid.
  • Examples of the ionic compound include trisodium citrate, tripotassium citrate, trilithium citrate, disodium appleate, disodium tartrate, and sodium glycolate.
  • Particularly preferable dispersants include glycerin esters and polyhydric alcohol compounds.
  • composition for the conductive layer may contain one kind of dispersant, or may contain two or more kinds of dispersants.
  • the content of the dispersant is preferably 0.1% by mass to 10% by mass with respect to the total mass of the composition for the conductive layer.
  • composition for the conductive layer may contain a surfactant.
  • a surfactant for example, the surfactant described in the above section "Photosensitive layer” can be applied.
  • composition for the conductive layer may contain one kind of surfactant, or may contain two or more kinds of surfactants.
  • the content of the surfactant is preferably 0.0001% by mass to 1.0% by mass with respect to the total mass of the composition for the conductive layer.
  • Examples of the coating method include slit coating, spin coating, curtain coating, and inkjet coating.
  • the drying temperature can be appropriately set according to the type of volatile component such as a solvent.
  • the drying temperature can be appropriately set in the range of, for example, 60 ° C. to 120 ° C.
  • the drying time is not limited and may be set appropriately according to the drying temperature.
  • the conductive transfer material according to the present disclosure preferably has an adhesive layer on the opposite side of the conductive layer from the photosensitive layer.
  • the adhesion to the transferred body for example, a substrate
  • the adhesion to the transferred body can be improved.
  • FIG. 2 is a schematic view showing an example of the layer structure of the conductive transfer material according to the present disclosure.
  • the conductive transfer material 110 shown in FIG. 2 has a temporary support 10, a photosensitive layer 20, a conductive layer 30, and an adhesive layer 40 in this order.
  • the adhesive layer is preferably an adhesive layer containing an organic material (for example, an organic resin) from the viewpoint of adhesion.
  • the adhesive layer preferably contains an alkali-soluble binder from the viewpoint of removing residues in pattern formation.
  • the alkali-soluble binder is preferably an alkali-soluble resin, more preferably a resin having an acid value of 20 mgKOH / g or more, and a carboxy group having an acid value of 20 mgKOH / g or more, from the viewpoint of removing residues in pattern formation. It is particularly preferable that the (meth) acrylic resin has.
  • the total ratio of the structural units derived from (meth) acrylic acid and the structural units derived from (meth) acrylic acid ester in the (meth) acrylic resin is 30 mol% with respect to all the structural units of the (meth) acrylic resin.
  • the above is preferable, and 50 mol% or more is more preferable.
  • the (meth) acrylic resin having a carboxy group has a structural unit having a carboxy group.
  • the structural unit having a carboxy group contained in the (meth) acrylic resin may be one kind or two or more kinds.
  • the content ratio of the structural unit having a carboxy group in the (meth) acrylic resin having a carboxy group is 3 mol% to 50 mol with respect to all the structural units of the (meth) acrylic resin having a carboxy group from the viewpoint of developability. It is preferably%, more preferably 3 mol% to 40 mol%, and particularly preferably 3 mol% to 35 mol%.
  • the alkali-soluble binder may contain a structural unit having an aromatic ring.
  • the monomer forming a structural unit having an aromatic ring include a styrene compound and a benzyl (meth) acrylate.
  • the styrene compound include styrene, tert-butoxystyrene, methylstyrene, and ⁇ -methylstyrene.
  • the structural unit having an aromatic ring is preferably a structural unit derived from a styrene compound.
  • the alkali-soluble binder may contain a structural unit having an ethylenically unsaturated group.
  • the alkali-soluble binder preferably has a structural unit having an ethylenically unsaturated group in the side chain.
  • a (meth) acrylic group is preferable, and a (meth) acryloyl group is more preferable.
  • the acid value of the alkali-soluble binder is preferably 20 mgKOH / g or more, more preferably 45 mgKOH / g to 200 mgKOH / g, and 50 mgKOH / g or more to 150 mgKOH / g from the viewpoint of residue removal in pattern formation. It is particularly preferable to have.
  • the acid value of the alkali-soluble binder may be 60 mgKOH / g or more, or 80 mgKOH / g or more.
  • the weight average molecular weight of the alkali-soluble binder is preferably more than 3,000, more preferably more than 3,000 and not more than 60,000, and particularly preferably 5,000 to 50,000.
  • the weight average molecular weight of the alkali-soluble binder is a polystyrene-equivalent weight average molecular weight measured by a method according to the method for measuring the weight average molecular weight of the polymer A.
  • the alkali-soluble binder As the alkali-soluble binder, the alkali-soluble binder described in the above section "Negative type photosensitive layer" can also be applied.
  • the adhesive layer may contain other components (that is, other component A and other component B) described in the section of "photosensitive layer".
  • the adhesive layer may contain one kind of alkali-soluble binder, or may contain two or more kinds of alkali-soluble binders.
  • the content of the alkali-soluble binder in the adhesive layer is preferably 50% by mass or more, more preferably 60% by mass or more, based on the total mass of the adhesive layer, from the viewpoint of adhesion and developability. It is particularly preferable that it is 80% by mass or more.
  • the upper limit of the content of the alkali-soluble binder in the adhesive layer is not limited.
  • the content of the alkali-soluble binder in the adhesive layer can be appropriately set in the range of, for example, 100% by mass or less with respect to the total mass of the adhesive layer.
  • the alkali-soluble binder in the adhesive layer may be a thermosetting resin.
  • the thermosetting resin is not limited, and a known thermosetting resin can be applied.
  • the adhesive layer may be an alkali-soluble adhesive layer, a thermosetting adhesive layer, or a photosensitive adhesive layer.
  • the alkali-soluble adhesive layer is composed of at least an alkali-soluble binder as a component of the adhesive layer.
  • the thermosetting adhesive layer is composed of at least a thermosetting resin as a component of the adhesive layer.
  • Examples of the photosensitive adhesive layer include a negative type photosensitive adhesive layer and a positive type photosensitive adhesive layer.
  • the thermosetting adhesive layer or the photosensitive adhesive layer may further have alkali solubility.
  • the adhesive layer is an alkali-soluble adhesive layer, and the photosensitive layer is a positive photosensitive layer.
  • the adhesive layer is an alkali-soluble adhesive layer, and the photosensitive layer is a negative type photosensitive layer.
  • the adhesive layer is a thermosetting adhesive layer, and the photosensitive layer is a positive photosensitive layer.
  • the adhesive layer is a thermosetting adhesive layer, and the photosensitive layer is a negative type photosensitive layer.
  • the adhesive layer is a negative-type photosensitive adhesive layer, and the photosensitive layer is a negative-type photosensitive layer.
  • the adhesive layer is a positive photosensitive adhesive layer, and the photosensitive layer is a positive photosensitive layer.
  • the minimum transmittance of the adhesive layer at a wavelength of 400 nm to 700 nm is preferably 80% or more, and more preferably 90% or more.
  • the transmittance is measured by a method according to the method for measuring the transmittance of the temporary support.
  • the average thickness of the adhesive layer is preferably less than 500 nm, more preferably 250 nm or less, further preferably 100 nm or less, and particularly preferably 80 nm or less.
  • the conductive transfer material according to the present disclosure is transferred to the substrate, the conductive layer and the substrate can be conductive via the adhesive layer.
  • the average thickness of the adhesive layer is preferably 1 nm or more, more preferably 10 nm or more, and particularly preferably 20 nm or more. When the average thickness of the adhesive layer is within the above range, the adhesion to the transferred body can be improved.
  • the average thickness of the adhesive layer is measured by a method similar to the method for measuring the average thickness of the temporary support.
  • the method for forming the adhesive layer is not limited, and known methods can be applied. Examples of the method for forming the adhesive layer include a method in which a composition for an adhesive layer containing each of the above components is applied onto an object to be coated and then dried.
  • Examples of the coating method include slit coating, spin coating, curtain coating, and inkjet coating.
  • the drying temperature can be appropriately set according to the type of volatile component such as a solvent.
  • the drying temperature can be set in the range of, for example, 60 ° C to 120 ° C.
  • the drying time is not limited and may be set appropriately according to the drying temperature.
  • composition for the adhesive layer can be prepared by mixing each of the above components and a solvent in an arbitrary ratio.
  • the solvent is not limited, and examples thereof include the solvent described in the above section "Photosensitive layer".
  • the solid content concentration in the composition for the adhesive layer is not limited and can be appropriately set in the range of, for example, 0.5% by mass to 10% by mass.
  • the conductive transfer material it is preferable that at least one of the photosensitive layer and the conductive layer contains a corrosion inhibitor. Further, the adhesive layer preferably contains a corrosion inhibitor. Since each of the above layers contains a corrosion inhibitor, corrosion of silver particles and the like can be suppressed, so that durability can be improved.
  • the corrosion inhibitor is not limited, and a known corrosion inhibitor can be applied.
  • the corrosion inhibitor include compounds containing at least one of a nitrogen atom and a sulfur atom.
  • the corrosion inhibitor is preferably a heterocyclic compound containing at least one of a nitrogen atom and a sulfur atom, and is a compound containing a 5-membered ring structure containing one or more nitrogen atoms. It is more preferable that the compound is at least one selected from the group consisting of a compound containing a triazole structure, a compound containing a benzoimidazole structure, and a compound containing a thiadiazole structure.
  • the 5-membered ring structure containing one or more nitrogen atoms may be a monocyclic structure or a partial structure constituting a condensed ring.
  • corrosion inhibitors include benzimidazole, 1,2,4-triazole, benztriazole, triltriazole, butylbenzyltriazole, alkyldithiothiazol, alkylthiol, 2-aminopyrimidine, 5,6-dimethylbenzoimidazole, 2-Amino-5-mercapto-1,3,4-thiazylazole, 2,5-dimercapto-1,3,4-thiazizol, 2-mercaptopyrimidine, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, and 2- Examples include mercaptobenzimidazole.
  • the corrosion inhibitor is at least one corrosion inhibitor selected from the group consisting of benzimidazole, 1,2,4-triazole, and 2,5-dimercapto-1,3,4-thiadiazole. Is preferable.
  • the photosensitive layer, the conductive layer, and the adhesive layer may each contain one type of corrosion inhibitor, or may contain two or more types of corrosion inhibitor.
  • the content of the corrosion inhibitor is preferably 0.01% by mass to 8% by mass with respect to the total mass of the layer containing the corrosion inhibitor.
  • the conductive transfer material it is preferable that at least one of the photosensitive layer and the conductive layer contains a light stabilizer. Further, the adhesive layer preferably contains a light stabilizer. Since each of the above layers contains a light stabilizer, the light resistance can be improved.
  • the light stabilizer is not limited, and a known light stabilizer can be applied.
  • the light stabilizer for example, the compounds described in paragraphs 0032 to 0043 of US Patent Application Publication No. 2015/0270024 can be used.
  • the light stabilizer include transition metal compounds.
  • the transition metal contained in the transition metal compound include Fe, Co, Mn, and V.
  • the ligand contained in the transition metal compound for example, acetylacetonato (hereinafter, also referred to as "acac”.), Cyclopentadienyl, bipyridine, phenanthroline, SO 4 2-, and NO 3 - and the like.
  • Specific examples of transition metal compounds include ferrocene, Fe (acac) 3 , Co (acac) 3 , Mn (acac) 3 , VO (acac) 3 , iron ascorbate, iron sulfate, and tris (2,2'-. Bipyridine) Iron sulfate can be mentioned.
  • the photosensitive layer, the conductive layer, and the adhesive layer may each contain one kind of light stabilizer, or may contain two or more kinds of light stabilizers.
  • the content of the light stabilizer is preferably 0.01% by mass to 10% by mass with respect to the total mass of the layer containing the light stabilizer.
  • the content of impurities in the photosensitive layer and the conductive layer is small. Further, when the conductive transfer material according to the present disclosure has the adhesive layer, it is preferable that the content of impurities in the adhesive layer is also small.
  • impurities include sodium, potassium, magnesium, calcium, iron, manganese, copper, aluminum, titanium, chromium, cobalt, nickel, zinc, tin, and ions thereof, as well as free halogen and halide ions ( For example, chloride ion, bromide ion, and iodide ion).
  • the content of impurities in each layer is preferably 1000 ppm or less, more preferably 200 ppm or less, and even more preferably 40 ppm or less on a mass basis. Although the lower limit is not particularly defined, the content of impurities in each layer can be 10 ppb or more, or 100 ppb or more, on a mass basis, from the viewpoint of practically reducing limits and measurement limits. ..
  • Examples of the method for reducing impurities to the above range include selecting a raw material containing no impurities for each layer, preventing impurities from being mixed in when forming the layer, and cleaning. By such a method, the amount of impurities can be kept within the above range. Impurities can be quantified by known methods such as ICP (Inductively Coupled Plasma) emission spectroscopy and atomic absorption spectroscopy.
  • ICP Inductively Coupled Plasma
  • the content of compounds such as benzene, formaldehyde, trichlorethylene, 1,3-butadiene, carbon tetrachloride, chloroform, N, N-dimethylformamide, N, N-dimethylacetamide and hexane is low in each layer.
  • the content of these compounds in each layer is preferably 1000 ppm or less, more preferably 200 ppm or less, still more preferably 40 ppm or less on a mass basis.
  • the lower limit is not particularly defined, the content of the above-mentioned compound in each layer can be 10 ppb or more, or 100 ppb or more, on a mass basis, from the viewpoint of a practically reducing limit and a measurement limit. be able to.
  • the content of impurities in the compound can be suppressed in the same manner as the above-mentioned impurities in the metal. Moreover, it can be quantified by a known measurement method.
  • the conductive transfer material according to the present disclosure preferably has a cushion layer between the temporary support and the photosensitive layer.
  • the transferability of the conductive transfer material can be improved.
  • the cushion layer may be one that can be removed by a developing process, or one that can be peeled off from the photosensitive layer when the temporary support is peeled off.
  • FIG. 3 schematically shows an example of the layer structure of the conductive transfer material according to the present disclosure.
  • the conductive transfer material 120 shown in FIG. 3 has a temporary support 10, a cushion layer 50, a photosensitive layer 20, a conductive layer 30, and an adhesive layer 40 in this order.
  • the cushion layer preferably contains a binder polymer.
  • the binder polymer is not limited, and can be appropriately selected from known binder polymers in consideration of transferability.
  • Examples of the binder polymer include thermoplastic resins and alkali-soluble resins.
  • thermoplastic resin is not limited, and a known thermoplastic resin can be applied.
  • thermoplastic resin include low-density polyethylene, medium-density polyethylene, high-density polyethylene, polypropylene and the like.
  • the alkali-soluble resin is not limited, and a known thermoplastic resin can be applied.
  • examples of the alkali-soluble resin include the alkali-soluble binder described in the above-mentioned "photosensitive layer” and "adhesive layer” section.
  • the binder polymer is preferably an alkali-soluble resin, more preferably a resin having an acid value of 60 mgKOH / g or more, and having a carboxy group having an acid value of 60 mgKOH / g or more, from the viewpoint of developability.
  • a (meth) acrylic resin is particularly preferable.
  • a preferred embodiment of the alkali-soluble resin in the cushion layer is the same as the alkali-soluble binder described in the above-mentioned "photosensitive layer".
  • the cushion layer may contain other components.
  • Other components include, for example, plasticizers and surfactants.
  • the plasticizer is not limited, and known plasticizers can be applied.
  • the cushion layer contains a plasticizer, the transferability of the conductive transfer material according to the present disclosure is improved.
  • the plasticizer may be commercially available products, and examples thereof include BPE-500 (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) and UC-3510 (manufactured by Toagosei Co., Ltd.).
  • the cushion layer may contain one kind of plasticizer, or may contain two or more kinds of plasticizers.
  • the content of the plasticizer is preferably 10% by mass to 30% by mass with respect to the total mass of the cushion layer.
  • the surfactant for example, the surfactant described in the above section "Photosensitive layer” can be applied.
  • the cushion layer may contain one kind of surfactant, or may contain two or more kinds of surfactants.
  • the content of the surfactant is preferably 0.1% by mass to 5% by mass with respect to the total mass of the cushion layer.
  • the average thickness of the cushion layer is preferably 1 ⁇ m to 20 ⁇ m, preferably 1 ⁇ m to 10 ⁇ m, and more preferably 3 ⁇ m to 10 ⁇ m.
  • the average thickness of the cushion layer is measured by a method according to the method for measuring the average thickness of the temporary support.
  • the method for forming the cushion layer is not limited, and a known method can be applied.
  • Examples of the method for forming the cushion layer include a method in which a composition for a cushion layer containing each of the above components is applied onto an object to be coated and then dried.
  • Examples of the coating method include slit coating, spin coating, curtain coating, and inkjet coating.
  • the drying temperature can be appropriately set according to the type of volatile component such as a solvent.
  • the drying temperature can be set in the range of, for example, 60 ° C to 120 ° C.
  • the drying time is not limited and may be set appropriately according to the drying temperature.
  • the composition for the cushion layer can be prepared by mixing each of the above components and a solvent in an arbitrary ratio.
  • the solvent is not limited, and examples thereof include the solvent described in the above section "Photosensitive layer".
  • the solid content concentration in the cushion layer composition is not limited and can be appropriately set in the range of, for example, 1% by mass to 40% by mass.
  • the conductive transfer material according to the present disclosure may have an intermediate layer other than the cushion layer between the temporary support and the photosensitive layer.
  • the intermediate layer is preferably arranged between the photosensitive layer and the cushion layer.
  • the intermediate layer As the intermediate layer, the intermediate layer described in paragraphs 0084 to 0087 of JP-A-2005-259138 can be used.
  • the intermediate layer is preferably one that is dispersed or dissolved in water or an alkaline aqueous solution.
  • Examples of the material used for the intermediate layer include polyvinyl alcohol, polyvinylpyrrolidone, cellulose, polyacrylamide, polyethylene oxide, gelatin, polyvinyl ether, polyamide, and copolymers thereof. Among the above, polyvinyl alcohol and polyvinylpyrrolidone are preferable.
  • the average thickness of the intermediate layer is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 0.5 ⁇ m to 4 ⁇ m.
  • the average thickness of the intermediate layer is measured by a method according to the method for measuring the average thickness of the temporary support.
  • the method for forming the intermediate layer is not limited, and known methods can be applied.
  • Examples of the method for forming the intermediate layer include a method in which a composition for an intermediate layer containing each of the above components is applied onto an object to be coated and then dried.
  • Examples of the coating method include slit coating, spin coating, curtain coating, and inkjet coating.
  • the drying temperature can be appropriately set according to the type of volatile component such as a solvent.
  • the drying temperature can be set in the range of, for example, 60 ° C to 120 ° C.
  • the drying time is not limited and may be set appropriately according to the drying temperature.
  • composition for the intermediate layer can be prepared by mixing each of the above components and a solvent in an arbitrary ratio.
  • the solvent is not limited, and examples thereof include the solvent described in the above section "Photosensitive layer".
  • the solid content concentration in the composition for the intermediate layer is not limited and can be appropriately set in the range of, for example, 0.5% by mass to 30% by mass.
  • the conductive transfer material according to the present disclosure may have a protective film at the position of the outermost layer on the side opposite to the side on which the temporary support is arranged with reference to the photosensitive layer.
  • the protective film is not limited, and a known protective film can be applied.
  • the protective film for example, the resin film described in the above-mentioned "temporary support" section can be applied, and the preferable thickness and physical properties are also the same.
  • the method for producing the conductive pattern according to the present disclosure is not limited as long as it is a method using the conductive transfer material according to the present disclosure.
  • the method for producing a conductive pattern according to the present disclosure is a step of laminating the conductive transfer material on a base material (hereinafter, also referred to as a "bonding step") and a pattern of the photosensitive layer of the conductive transfer material. It is preferable to include an exposure step (hereinafter, also referred to as “exposure step”) and a step of developing the photosensitive layer (hereinafter, also referred to as “development step”) in this order.
  • an exposure step hereinafter, also referred to as “exposure step”
  • development step a step of developing the photosensitive layer
  • the conductive transfer material is bonded onto the base material (hereinafter, also referred to as “laminate”).
  • the base material examples include glass, silicon, and film.
  • the base material is preferably glass or film.
  • glass examples include tempered glass represented by Corning's gorilla glass.
  • a film having low optical distortion or a film having high transparency is preferable, and a resin film is more preferable.
  • Examples of the resin constituting the resin film include polyethylene terephthalate (PET), polyethylene naphthalate, polycarbonate, triacetyl cellulose, and cycloolefin polymer.
  • the base material is preferably transparent.
  • the materials used in JP-A-2010-86684, JP-A-2010-152809, and JP-A-2010-257492 can be preferably used.
  • the refractive index of the base material is preferably 1.50 to 1.52.
  • an arbitrary layer such as a layer containing a conductive material may be arranged on the base material.
  • the layer containing the conductive material examples include a metal layer and a conductive metal oxide layer.
  • the term "conductive" used with respect to the conductive metal oxide layer means that the volume resistivity is less than 1 ⁇ 10 6 ⁇ cm.
  • the volume resistivity is preferably less than 1 ⁇ 10 4 ⁇ cm.
  • the metal constituting the metal layer examples include Al (aluminum), Zn (zinc), Cu (copper), Fe (iron), Ni (nickel), Cr (chromium), and Mo (molybdenum).
  • the metal constituting the metal layer may be a single metal composed of one kind of metal element, a metal containing two or more kinds of metal elements, or an alloy containing at least one kind of metal element. There may be.
  • Examples of the conductive metal oxide constituting the conductive metal oxide layer include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and SiO 2 .
  • the layer containing the conductive material is preferably at least one layer selected from the group consisting of a metal layer and a conductive metal oxide layer from the viewpoint of conductivity and fine wire forming property, and is a metal layer. It is more preferable, and a copper layer is particularly preferable.
  • the electrode pattern corresponds to the sensor of the visual recognition part used in the capacitive touch panel or the wiring of the peripheral extraction part.
  • the bonding step when the conductive transfer material and the base material are bonded together, the outermost layer and the base material are arranged on the opposite side of the conductive transfer material from the temporary support (that is, in the direction away from the temporary support). It is preferable to bring them into contact with each other. For example, when the conductive transfer material and the base material are bonded together, it is preferable that the conductive layer or the adhesive layer of the conductive transfer material is brought into contact with the base material. When the conductive transfer material has a protective film, it is preferable to attach the conductive transfer material on the base material after removing the protective film.
  • a known laminator can be used in the method of bonding the conductive transfer material and the base material.
  • Examples of the laminator include a vacuum laminator and an auto-cut laminator.
  • the laminating temperature is preferably 80 ° C. to 150 ° C., more preferably 90 ° C. to 150 ° C., and particularly preferably 100 ° C. to 150 ° C.
  • the laminating temperature refers to the rubber roller temperature.
  • the substrate temperature at the time of laminating examples include 10 ° C. to 150 ° C., preferably 20 ° C. to 150 ° C., and more preferably 30 ° C. to 150 ° C.
  • the base material temperature at the time of laminating is preferably 10 ° C to 80 ° C, more preferably 20 ° C to 60 ° C, and 30 ° C to 50 ° C. Is particularly preferable.
  • the linear pressure at the time of laminating is preferably 0.5 N / cm to 20 N / cm, more preferably 1 N / cm to 10 N / cm, and particularly preferably 1 N / cm to 5 N / cm.
  • the transport speed at the time of laminating is preferably 0.5 m / min to 5 m / min, and more preferably 1.5 m / min to 3 m / min.
  • the photosensitive layer of the conductive transfer material is pattern-exposed.
  • an exposed portion and a non-exposed portion can be formed on the photosensitive layer.
  • the exposed photosensitive layer in the conductive transfer material when the photosensitive layer in the conductive transfer material is of the positive type, the exposed photosensitive layer (that is, the exposed portion) has increased solubility in a developing solution due to a change in polarity.
  • the photosensitive layer in the conductive transfer material is a negative type, the exposed photosensitive layer (that is, the exposed portion) is cured.
  • the method of pattern exposure may be exposure through a mask (also referred to as "photomask”), or digital exposure using a laser or the like.
  • the light source for exposure is not limited and can be appropriately selected according to the components of the photosensitive layer.
  • examples of the light source include a light source capable of irradiating light in a wavelength range in which the exposed portion can be dissolved in a developing solution (for example, 365 nm or 405 nm).
  • examples of the light source include a light source capable of irradiating light in a wavelength range in which the exposed portion can be cured (for example, 365 nm or 405 nm).
  • Specific examples of the light source include various lasers, light emitting diodes (LEDs), ultra-high pressure mercury lamps, high pressure mercury lamps, and metal halide lamps.
  • Exposure is preferably 5mJ / cm 2 ⁇ 200mJ / cm 2, more preferably 10mJ / cm 2 ⁇ 200mJ / cm 2.
  • the photosensitive layer may be pattern-exposed after the temporary support is peeled off from the conductive transfer material transferred onto the substrate, or the photosensitive layer may be pattern-exposed while the temporary support remains. May be good.
  • a pattern can be formed by removing the exposed portion of the conductive transfer material with a developing solution. Further, when the photosensitive layer is a negative type, a pattern can be formed by removing the non-exposed portion of the conductive transfer material with a developing solution.
  • the developer is not limited, and a known developer can be applied.
  • Examples of the developing solution include the developing solutions described in JP-A-5-72724.
  • the developer is preferably an alkaline aqueous solution.
  • alkaline compound that can be contained in the alkaline aqueous solution include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrapropylammonium hydroxy.
  • Do tetrabutylammonium hydroxide, and choline (2-hydroxyethyltrimethylammonium hydroxide).
  • the pH of the alkaline aqueous solution at 25 ° C. is preferably 8 to 13, more preferably 9 to 12, and particularly preferably 10 to 12.
  • the content of the alkaline compound in the alkaline aqueous solution is preferably 0.1% by mass to 5% by mass, more preferably 0.1% by mass to 3% by mass, based on the total mass of the alkaline aqueous solution. ..
  • the liquid temperature of the developing solution is preferably 20 ° C to 40 ° C.
  • Examples of the development method include paddle development, shower development, shower and spin development, and dip development.
  • the laminate according to the present disclosure includes a substrate, a conductive layer containing silver particles and a binder, and a resin layer derived from a non-curable positive photosensitive composition having an average thickness of less than 500 nm. Alternatively, it has a cured product layer of the photosensitive composition in this order.
  • the laminate according to the present disclosure has the above-mentioned structure, thereby reducing the surface resistance and contact resistance of the conductive layer.
  • the resin layer derived from the non-curable positive photosensitive composition may be simply referred to as a “resin layer”
  • the cured product layer of the photosensitive composition may be simply referred to as a “cured product layer”.
  • the laminate according to the present disclosure preferably has a cured product layer among the resin layer and the cured product layer. That is, the laminate according to the present disclosure has a base material, a conductive layer containing silver particles and a binder, and a cured product layer of a photosensitive composition having an average thickness of less than 500 nm in this order. Is preferable.
  • FIG. 4 is a schematic view showing an example of the layer structure of the laminated body according to the present disclosure.
  • the laminate 200 shown in FIG. 4 has a base material 60, a conductive layer 30, and a cured product layer 21 in this order.
  • the laminate according to the present disclosure it is preferable that at least the conductive layer and the resin layer or the cured product layer have a patterned shape.
  • the adhesive layer also has a patterned shape.
  • the laminate according to the present disclosure has a base material.
  • the base material has the same meaning as the base material described in the section of "Method for manufacturing a conductive pattern", and the same applies to the preferred embodiment.
  • the laminate according to the present disclosure has a conductive layer containing silver particles and a binder.
  • the conductive layer has the same meaning as the conductive layer described in the above section “Conductive transfer material”, and the same applies to the preferred embodiment.
  • preferred embodiments of the conductive layer in the laminate according to the present disclosure will be specifically described.
  • the preferred embodiment of the conductive layer in the laminate according to the present disclosure is not limited to the following items, and the preferred embodiment of the conductive layer described in the above section "Conductive transfer material" can be appropriately applied. ..
  • the average particle size of the silver particles is preferably 5 nm to 100 nm, more preferably 5 nm to 50 nm, and particularly preferably 5 nm to 30 nm.
  • the average particle size of silver particles is measured by the method described above.
  • the content of the silver particles is preferably 60% by mass to 99% by mass, more preferably 70% by mass to 99% by mass, and 80% by mass to 99% by mass with respect to the total mass of the conductive layer. It is more preferably%, and particularly preferably 85% by mass to 99% by mass.
  • the binder is preferably a water-soluble binder, more preferably cellulose, and even more preferably at least one cellulose selected from the group consisting of methyl cellulose, hydroxypropyl methyl cellulose, and hydroxypropyl cellulose. It is particularly preferably propylmethylcellulose.
  • the conductive layer preferably contains a saccharide other than cellulose having a five-membered ring structure or a six-membered ring structure, and more preferably a monosaccharide other than cellulose having a five-membered ring structure or a six-membered ring structure.
  • Fructose, D-ribose, and deoxyribose are more preferably at least one sugar selected from the group, and fructose is particularly preferable.
  • the resin layer in the laminate according to the present disclosure is a layer formed by a non-curable positive photosensitive composition. That is, when the photosensitive composition used for producing the laminate according to the present disclosure is a positive type and does not contain a curable component, the obtained laminate has a resin layer. For example, when a laminate is produced using the conductive transfer material according to the present disclosure as described later, the resin layer is formed through bonding of positive photosensitive layers, heat treatment, and the like.
  • the resin layer may contain the components described in the above section "Positive photosensitive layer".
  • the non-curable positive photosensitive composition contains a photoacid generator, the photoacid generator in the resin layer may or may not be inactivated.
  • the cured product layer in the laminate according to the present disclosure is a layer formed by curing the photosensitive composition. Specifically, when the photosensitive composition is a negative type, or when the photosensitive composition is a positive type and contains a curable component, the obtained laminate has a cured product layer.
  • the photosensitive composition capable of forming the cured product layer is not limited as long as it is a composition containing a curable component.
  • the photosensitive composition preferably contains a polymerizable compound and a photopolymerization initiator.
  • the polymerizable compound the polymerizable compound described in the above section “Negative photosensitive layer” can be applied, and the same applies to the preferred embodiments.
  • the photopolymerization initiator the photopolymerization initiator described in the above section "Negative type photosensitive layer” can be applied, and the same applies to the preferred embodiment.
  • the photosensitive composition may be a negative type or a positive type.
  • the positive photosensitive composition can form a cured product by containing a thermosetting component.
  • the cured product layer may contain an alkali-soluble binder.
  • the alkali-soluble binder the alkali-soluble binder described in the above section "Negative type photosensitive layer" can be applied, and the same applies to the preferred embodiment.
  • the cured product layer may contain the cured product of the other component B or the other component B described in the above-mentioned "Negative type photosensitive layer” section.
  • the average thickness of the resin layer or the cured product layer is preferably 400 nm or less, more preferably 300 nm or less, further preferably 200 nm or less, particularly preferably 150 nm or less, and particularly preferably 60 nm or less. Most preferably. When the average thickness of the cured product layer is within the above range, the contact resistance can be further reduced.
  • the lower limit of the average thickness of the resin layer or the cured product layer is not limited.
  • the average thickness of the resin layer or the cured product layer may be appropriately set in the range of, for example, 1 nm or more, preferably 10 nm or more.
  • the average thickness of the resin layer or the cured product layer is measured by a method according to the method for measuring the average thickness of the temporary support.
  • the laminate according to the present disclosure preferably has an adhesive layer having an average thickness of less than 500 nm between the base material and the conductive layer.
  • the adhesive layer according to the present disclosure has an adhesive layer having an average thickness of less than 500 nm, the adhesion between the base material and the conductive layer can be improved, and the conductive layer and the substrate are electrically connected to each other via the adhesive layer. You can also do it.
  • FIG. 5 schematically shows an example of the layer structure of the laminated body according to the present disclosure.
  • the laminate 210 shown in FIG. 5 has a base material 60, an adhesive layer 40, a conductive layer 30, and a cured product layer 21 in this order.
  • the adhesive layer may be the adhesive layer described in the section of "conductive transfer material", or may be a layer obtained by curing the adhesive layer.
  • the preferred embodiment of the adhesive layer is the same as the preferred embodiment of the adhesive layer described in the above section “Conductive transfer material”.
  • the layer formed by curing the adhesive layer is formed, for example, by curing the curable (for example, photocurable and thermosetting) components in the layer by exposure or heating.
  • the average thickness of the adhesive layer is preferably 250 nm or less, more preferably 100 nm or less, and particularly preferably 80 nm or less. When the average thickness of the adhesive layer is within the above range, the conductive layer and the base material can be conductive via the adhesive layer.
  • the average thickness of the adhesive layer is preferably 1 nm or more, more preferably 10 nm or more, and particularly preferably 20 nm or more. When the average thickness of the adhesive layer is within the above range, the adhesion to the substrate can be improved.
  • the average thickness of the adhesive layer is measured by a method similar to the method for measuring the average thickness of the temporary support.
  • the laminate according to the present disclosure it is preferable that at least one of the conductive layer and the resin layer or the cured product layer contains a corrosion inhibitor.
  • the adhesive layer it is preferable that at least one of the conductive layer, the resin layer or the cured product layer, and the adhesive layer contains a corrosion inhibitor. Since each of the above layers contains a corrosion inhibitor, corrosion of silver particles and the like can be suppressed, so that durability can be improved.
  • the corrosion inhibitor has the same meaning as the corrosion inhibitor described in the above section "Conductive transfer material", and the same applies to the preferred embodiment.
  • the laminate according to the present disclosure it is preferable that at least one of the conductive layer and the resin layer or the cured product layer contains a light stabilizer.
  • the laminate according to the present disclosure has the adhesive layer, it is preferable that at least one of the conductive layer, the resin layer or the cured product layer, and the adhesive layer contains a light stabilizer. Since each of the above layers contains a light stabilizer, the light resistance can be improved.
  • the light stabilizer has the same meaning as the light stabilizer described in the above section "Conductive transfer material", and the same applies to the preferred embodiment.
  • impurities In the laminate according to the present disclosure, it is preferable that the content of impurities in the conductive layer and the resin layer or the cured product layer is small. Further, when the laminate according to the present disclosure has the adhesive layer, it is preferable that the content of impurities in the adhesive layer is also small. Impurities have the same meaning as the impurities described in the section of "conductive transfer material", and the preferable range of the content of impurities in each of the above layers is also the same.
  • a method using the conductive transfer material according to the present disclosure is preferable.
  • the method using the conductive transfer material according to the present disclosure include the methods described in the above-mentioned "Method for manufacturing a conductive pattern".
  • the laminate according to the present disclosure can be produced by at least performing the bonding step and the exposure step described in the section of the above-mentioned "Method for manufacturing the conductive pattern”. ..
  • the photosensitive composition is contained.
  • a cured product layer may be formed by curing the layer.
  • the touch panel according to the present disclosure has a laminate according to the present disclosure.
  • the touch panel according to the present disclosure reduces the surface resistance and contact resistance of the conductive layer by having the above-mentioned laminated body.
  • the laminated body in the touch panel according to the present disclosure has the same meaning as the laminated body described in the above-mentioned "laminated body” section, and the preferred embodiment is also the same.
  • Examples of the detection method in the touch panel according to the present disclosure include a resistance film method, a capacitance method, an ultrasonic method, an electromagnetic induction method, and an optical method.
  • the capacitance method is preferable as the detection method.
  • the touch panel type includes, for example, a so-called in-cell type (for example, those shown in FIGS. 5, 6, 7, and 8 of JP-A-2012-517501), and a so-called on-cell type (for example, Japanese Patent Application Laid-Open No. 2013-168125).
  • a so-called in-cell type for example, those shown in FIGS. 5, 6, 7, and 8 of JP-A-2012-517501
  • a so-called on-cell type for example, Japanese Patent Application Laid-Open No. 2013-168125.
  • the touch panels related to this disclosure include "Latest Touch Panel Technology” (July 6, 2009, published by Techno Times Co., Ltd.), supervised by Yuji Mitani, “Touch Panel Technology and Development", CMC Publishing (2004, 12), The configuration disclosed in the FPD International 2009 Forum T-11 lecture textbook, Cypress Semiconductor Corporation application note AN2292, and the like can be applied.
  • the method for manufacturing the touch panel is not limited, and a known method can be applied.
  • a method for manufacturing a touch panel for example, the above method for manufacturing a laminated body can be applied.
  • the liquid crystal display device according to the present disclosure has a laminate according to the present disclosure.
  • the liquid crystal display device according to the present disclosure can reduce the surface resistance and contact resistance of the conductive layer by having the above-mentioned laminate.
  • the laminated body in the liquid crystal display device according to the present disclosure has the same meaning as the laminated body described in the above-mentioned "laminated body" section, and the preferred embodiment is also the same.
  • the laminated body may be arranged in the visible portion of the liquid crystal display device, or may be arranged in an area other than the visible portion.
  • the structure of the liquid crystal display device according to the present disclosure is not limited as long as it has the above-mentioned laminate.
  • the liquid crystal display device is described in, for example, "Next Generation Liquid Crystal Display Technology (edited by Tatsuo Uchida, Kogyo Chosakai Co., Ltd., published in 1994)".
  • the present disclosure will be described in detail by way of examples, but the present disclosure is not limited thereto. That is, the materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present disclosure.
  • the weight average molecular weight is the weight average molecular weight determined by gel permeation chromatography (GPC) in terms of polystyrene. The acid value was measured according to the method described in JIS K0070: 1992.
  • Example 1> Preparation of conductive transfer material
  • the following adhesive layer, conductive layer, and photosensitive layer were placed in this order on a polyethylene terephthalate film (protective film, Lumirror 16KS40 (manufactured by Toray Industries, Inc.)) having a thickness of 16 ⁇ m using a slit-shaped nozzle.
  • composition Ag-1 for conductive layer Ag-1 was prepared by mixing the following components.
  • -Ag ink silver particle dispersion, manufactured by Bando Chemical Industries, Ltd., trade name SW-1020
  • binder 3.0 parts by mass-Hydroxypropyl methyl cellulose (binder, manufactured by Shin-Etsu Chemical Industries, Ltd., trade name METOROSE (registered trademark) 65SH- 5% by mass aqueous solution of 5): 2.0 parts by mass, fructose (sugar, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 5% by mass aqueous solution): 1.0 parts by mass, Megafuck F444 (surfactant, DIC stock) Made by the company): 0.001 part by mass
  • composition for a photosensitive layer was prepared by mixing the following components.
  • composition for the photosensitive layer was applied onto the conductive layer, and then dried at 80 ° C. for 2 minutes to form a photosensitive layer having an average thickness of 0.06 ⁇ m.
  • Example 1 the conductive transfer material of Example 1 was produced by pressure-bonding a polyethylene terephthalate film (temporary support, Lumirror 16KS40 (manufactured by Toray Industries, Inc.)) having a thickness of 16 ⁇ m onto the photosensitive layer.
  • a polyethylene terephthalate film temporary support, Lumirror 16KS40 (manufactured by Toray Industries, Inc.)
  • Examples 2 to 5 and 13 to 19> The conductive layer compositions Ag-2 to Ag-12 were prepared in the same manner as in Example 1 except that the composition of the conductive layer composition Ag-1 was changed according to the description in Table 1.
  • the conductive transfer material was prepared by the same method as in Example 1 except that the conductive layer compositions Ag-2 to Ag-12 selected according to the description in Table 2 were used instead of the conductive layer composition Ag-1. Was produced.
  • Examples 6 to 10 and Comparative Example 1 A conductive transfer material was prepared by the same method as in Example 1 except that the average thickness of the photosensitive layer was changed according to the description in Table 2.
  • Example 11 A conductive transfer material was prepared by the same method as in Example 1 except that the average thickness of the adhesive layer was changed according to the description in Table 2.
  • Example 12 A conductive transfer material was produced by the same method as in Example 1 except that the adhesive layer was not formed.
  • Example 1 except that the conductive layer composition Ag-13 prepared by the following method was used instead of the conductive layer composition Ag-1, and the adhesive layer and the photosensitive layer were not formed.
  • a conductive transfer material was produced by the same method as in the above.
  • composition Ag-13 for conductive layer- Dipentaerythritol hexaacrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
  • IRGACURE OXE02 BASF Japan Co., Ltd.
  • a composition Ag-13 having a silver concentration of 67% by mass was prepared by adding a solution in which parts by mass were dissolved in normal propanol.
  • a pattern is formed by laminating each of the above conductive transfer materials from which the protective film has been peeled off on a cycloolefin polymer film (thickness 38 ⁇ m, refractive index 1.53) (hereinafter, referred to as “lamination process” in this paragraph). Each laminate was obtained.
  • the laminating process was carried out using a vacuum laminator manufactured by MCK under the conditions of a cycloolefin polymer film temperature of 40 ° C., a rubber roller temperature of 100 ° C., a linear pressure of 3 N / cm, and a transport speed of 2 m / min.
  • the surface exposed by peeling the protective film from the conductive transfer material was brought into contact with the surface of the cycloolefin polymer film.
  • a cross-cut test of 100 squares was carried out with reference to JIS K 5400.
  • the photosensitive layer which is the test surface of the pattern-forming laminate from which the temporary support was peeled off (however, in the pattern-forming laminate produced by using the conductive transfer material of Comparative Example 2, the conductive layer was used as the test surface. , The same in this paragraph), after making a 1 mm square grid-like cut using a cutter knife, a transparent adhesive tape # 600 (manufactured by 3M Japan Co., Ltd.) was strongly crimped.
  • A, B or C is a practically acceptable level, preferably A or B, and more preferably A.
  • the evaluation results are shown in Table 2. (Standard) A: 95% or more and 100% or less B: 65% or more and less than 95% C: 35% or more and less than 65% D: less than 35%
  • Electrode pattern laminate Using each of the above conductive transfer materials from which the protective film was peeled off, a laminate for pattern formation was prepared by the same method as described in the above evaluation of laminateability. By patterning each of the above pattern-forming laminates by the following method, electrode pattern laminates having a patterned conductive layer were produced. Using a proximity type exposure machine (manufactured by Hitachi Electronic Engineering Co., Ltd.) equipped with an ultra-high pressure mercury lamp, the surface of the exposure mask (quartz exposure mask having a pattern for forming a transparent electrode) and the temporary support are brought into close contact with each other to form a temporary support. The pattern was exposed with an exposure amount of 1000 mJ / cm 2 (i-line).
  • the resistance measurement laminate was produced by the same method as the electrode pattern laminate production method except that the entire surface was exposed without using a mask.
  • the sheet resistance of the laminate for resistance measurement was measured using a non-contact eddy current type resistance measuring instrument EC-80P (manufactured by Napson Corporation). The measurement results are shown in Table 2.
  • the contact resistance of the photosensitive layer was measured by the TLM (Transmission Line Model) method.
  • the specific measurement method is as follows. Each of the above conductive transfer materials from which the protective film has been peeled off is bonded onto a cycloolefin polymer film (thickness 38 ⁇ m, refractive index 1.53), and the temporary support is peeled off to obtain a “cycloolefin polymer film / adhesive layer”. A laminate having a structure of "/ conductive layer / photosensitive layer" was obtained.
  • Example 12 a laminate having a structure of "cycloolefin polymer film / conductive layer / photosensitive layer” was used, and in Comparative Example 2, a laminate having a structure of "cycloolefin polymer film / conductive layer” was used. Obtained. Separately, seven copper electrodes (thickness) arranged parallel and independently from each other at intervals of 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, and 20 mm on a cycloolefin polymer film (thickness 38 ⁇ m, refractive index 1.53). It was 300 nm in width and 500 ⁇ m in width).
  • a surface of the cycloolefin polymer film on which the copper electrode is formed by peeling off the temporary support of the laminate having the structure of "cycloolefin polymer film / adhesive layer / conductive layer / photosensitive layer” on the side where the copper electrode is formed. was pasted together.
  • a test piece having a structure of "cycloolefin polymer film / copper electrode / photosensitive layer / conductive layer / adhesive layer / cycloolefin polymer film” was obtained.
  • Example 12 a test piece having a structure without a contact layer (cycloolefin polymer film / copper electrode / photosensitive layer / conductive layer / cycloolefin polymer film) was used, and in Comparative Example 2, the conductive layer was formed on the copper electrode. Specimens having a laminated structure (cycloolefin polymer film / copper electrode / conductive layer / cycloolefin polymer film) were prepared. In the plan view of each of the above test pieces, the conductive layer was arranged so as to cross the seven copper electrodes, and the angle formed by each copper electrode and the conductive layer was 90 °.
  • the contact resistance was calculated.
  • a resistivity meter (Loresta-GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was used to measure the resistance between the copper electrodes.
  • the obtained contact resistance was evaluated according to the following criteria. The evaluation results are shown in Table 2.
  • Standard A: The contact resistance is less than 10 ⁇ .
  • D The contact resistance is 50 ⁇ or more.
  • Examples 1 to 19 were smaller than that of Comparative Examples 1 and 2. Further, it was found that Examples 1 to 19 had a smaller sheet resistance and an excellent resolution as compared with Comparative Example 2 using a conductive transfer material having only a photosensitive conductive layer. Further, it was found that Examples 1 to 11 and 13 to 19 were superior in laminating property as compared with Comparative Example 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Human Computer Interaction (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

仮支持体と、平均厚さが500nm未満である感光層と、銀粒子、及びバインダーを含有する導電層と、をこの順で有する導電性転写材料、及びその応用を提供する。

Description

導電性転写材料、導電パターンの製造方法、積層体、タッチパネル、及び液晶表示装置
 本開示は、導電性転写材料、導電パターンの製造方法、積層体、タッチパネル、及び液晶表示装置に関する。
 指、タッチペン等で触れることにより、指示画像に対応する情報の入力が行える入力装置(以下、「タッチパネル」ともいう。)が広く利用されている。タッチパネルにおいては、通常、ITO(Indium Tin Oxide)からなる導電膜が用いられている。また、近年では、導電膜を形成する技術において転写材料が利用されている。
 例えば、特開2005-321716号公報には、帯電防止性または導電性を有する感光性樹脂層(1)と絶縁性を有する感光性樹脂層(2)を積層してなるドライフィルムが開示されている。
 国際公開第2013/151052号には、支持フィルムと、導電性繊維を含有する導電層と、感光性樹脂を含有する感光性樹脂層と、をこの順に備える感光性導電フィルムを用意し、基材上に上記導電層が密着するように上記導電層及び上記感光性樹脂層をラミネートするラミネート工程と、上記基材上の上記感光性樹脂層を露光及び現像することにより導電パターンを形成するパターニング工程と、を備える、導電パターンの形成方法が開示されている。
 しかしながら、例えば特開2005-321716号公報に記載されたドライフィルムにおいては、単一の層、すなわち、感光性樹脂層(1)が感光性材料及び導電性材料を含有するため、解像性に優れ、かつ、電気抵抗が小さい導電パターンを形成することは困難であると考えられる。
 また、転写材料を用いる導電パターンの形成過程においては、導電パターン上に感光層が残存する場合がある。導電パターンと他の電気導電体とを導通させる場合においては、導電性を向上させるために、通常、導電パターン上の感光層を除去する必要がある。一方、製造工程の簡素化の観点から、導電パターン上の感光層を除去することなく、上記感光層を介して、導電パターンと他の電気伝導体とを導通させることが求められている。しかしながら、例えば国際公開第2013/151052号に記載された感光性導電フィルムを用いて導電パターンを形成する方法では、基材上に導電層及び感光性樹脂層がこの順で積層されるものの、導電層の接触抵抗が大きいため、感光性樹脂層を介した導電パターンと他の電気伝導体との導電性は低いと考えられる。そして、国際公開第2013/151052号に記載された感光性導電フィルムを用いて形成される導電パターンの電気抵抗についても改善の余地がある。
 本開示は、上記の事情に鑑みてなされたものである。
 本開示の一態様は、表面抵抗及び接触抵抗が小さく、かつ、優れた解像性を有する導電パターンを形成できる導電性転写材料を提供することを目的とする。
 本開示の他の一態様は、表面抵抗及び接触抵抗が小さく、かつ、優れた解像性を有する導電パターンの製造方法を提供することを目的とする。
 本開示の他の一態様は、表面抵抗及び接触抵抗が小さい導電層を有する積層体を提供することを目的とする。
 本開示の他の一態様は、表面抵抗及び接触抵抗が小さい導電層を有する積層体を有するタッチパネルを提供することを目的とする。
 本開示の他の一態様は、表面抵抗及び接触抵抗が小さい導電層を有する積層体を有する液晶表示装置を提供することを目的とする。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 仮支持体と、平均厚さが500nm未満である感光層と、銀粒子、及びバインダーを含有する導電層と、をこの順で有する導電性転写材料。
<2> 上記バインダーが、水溶性バインダーである<1>に記載の導電性転写材料。
<3> 上記水溶性バインダーが、セルロースである<2>に記載の導電性転写材料。
<4> 上記水溶性バインダーが、メチルセルロース、ヒドロキシプロピルメチルセルロース、及びヒドロキシプロピルセルロースからなる群より選択される少なくとも1種のセルロースである<2>に記載の導電性転写材料。
<5> 上記導電層の上記感光層とは反対側に、接着層を有する<1>~<4>のいずれか1つに記載の導電性転写材料。
<6> 上記接着層の平均厚さが、500nm未満である<5>に記載の導電性転写材料。
<7> 上記接着層が、アルカリ可溶性バインダーを含有する<5>又は<6>に記載の導電性転写材料。
<8> 上記感光層の平均厚さが、10nm以上である<1>~<7>のいずれか1つに記載の導電性転写材料。
<9> 上記感光層の平均厚さが、200nm以下である<1>~<8>のいずれか1つに記載の導電性転写材料。
<10> 上記感光層の平均厚さが、150nm以下である<1>~<9>のいずれか1つに記載の導電性転写材料。
<11> 上記銀粒子の平均粒子径が、5nm~100nmであり、上記銀粒子の含有量が、上記導電層の全質量に対して、60質量%~99質量%である<1>~<10>のいずれか1つに記載の導電性転写材料。
<12> 上記導電層が、五員環構造又は六員環構造を有する、セルロース以外の糖類を含有する<1>~<11>のいずれか1つに記載の導電性転写材料。
<13> 上記感光層が、アルカリ可溶性バインダー、重合性化合物、及び光重合開始剤を含有する<1>~<12>のいずれか1つに記載の導電性転写材料。
<14> 上記仮支持体と上記感光層との間に、平均厚さが1μm~20μmであるクッション層を有する<1>~<13>のいずれか1つに記載の導電性転写材料。
<15> 基材上に、<1>~<14>のいずれか1つに記載の導電性転写材料を貼り合わせる工程と、上記導電性転写材料における上記感光層をパターン露光する工程と、上記感光層を現像する工程と、をこの順で含む導電パターンの製造方法。
<16> 基材と、銀粒子、及びバインダーを含有する導電層と、平均厚さが500nm未満である、感光性組成物の硬化物層と、をこの順で有する積層体。
<17> 上記バインダーが、水溶性バインダーである<16>の積層体。
<18> 上記水溶性バインダーが、セルロースである<17>に記載の積層体。
<19> 上記水溶性バインダーが、メチルセルロース、ヒドロキシプロピルメチルセルロース、及びヒドロキシプロピルセルロースからなる群より選択される少なくとも1種のセルロースである<17>に記載の積層体。
<20> 上記基材と上記導電層との間に、平均厚さが500nm未満である接着層を有する<16>~<19>のいずれか1つに記載の積層体。
<21> 上記銀粒子の平均粒子径が、5nm~100nmであり、上記銀粒子の含有量が、上記導電層の全質量に対して、60質量%~99質量%である<16>~<20>のいずれか1つに記載の積層体。
<22> 上記導電層が、五員環構造又は六員環構造を有する、セルロース以外の糖類を含有する<16>~<21>のいずれか1つに記載の積層体。
<23> <16>~<22>のいずれか1つに記載の積層体を有するタッチパネル。
<24> <16>~<22>のいずれか1つに記載の積層体を有する液晶表示装置。
 本開示の一態様によれば、表面抵抗及び接触抵抗が小さく、かつ、優れた解像性を有する導電パターンを形成できる導電性転写材料が提供される。
 本開示の他の一態様によれば、表面抵抗及び接触抵抗が小さく、かつ、優れた解像性を有する導電パターンの製造方法が提供される。
 本開示の他の一態様によれば、表面抵抗及び接触抵抗が小さい導電層を有する積層体が提供される。
 本開示の他の一態様によれば、表面抵抗及び接触抵抗が小さい導電層を有する積層体を有するタッチパネルが提供される。
 本開示の他の一態様によれば、表面抵抗及び接触抵抗が小さい導電層を有する積層体を有する液晶表示装置が提供される。
図1は、本開示に係る導電性転写材料の層構成の一例を示す概略図である。 図2は、本開示に係る導電性転写材料の層構成の一例を示す概略図である。 図3は、本開示に係る導電性転写材料の層構成の一例を示す概略図である。 図4は、本開示に係る積層体の層構成の一例を示す概略図である。 図5は、本開示に係る積層体の層構成の一例を示す概略図である。
 以下、本開示の実施形態について詳細に説明する。なお、本開示は、以下の実施形態に何ら制限されず、本開示の目的の範囲内において、適宜変更を加えて実施することができる。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、「(メタ)アクリル」とは、アクリル及びメタクリルの双方、又は、いずれか一方を意味し、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの双方、又は、いずれか一方を意味し、「(メタ)アクリロキシ」とは、アクリロキシ及びメタクリロキシの双方、又は、いずれか一方を意味する。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有しないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 本開示において、「主鎖」とは樹脂を構成する高分子化合物の分子中で相対的に最も長い結合鎖を意味する。
 本開示において、「側鎖」とは主鎖から枝分かれしている原子団を意味する。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、化学構造式は、水素原子を省略した簡略構造式で記載する場合もある。
 本開示において、樹脂中の構成単位の割合は、特に断りが無い限り、モル割合を表す。
 本開示において、分子量分布がある場合の分子量は、特に断りが無い限り、重量平均分子量(Mw)を表す。
<導電性転写材料>
 本開示に係る導電性転写材料は、仮支持体と、平均厚さが500nm未満である感光層と、銀粒子、及びバインダーを含有する導電層と、をこの順で有する。
 本開示に係る導電性転写材料によれば、表面抵抗(シート抵抗ともいう。以下同じ。)及び接触抵抗が小さく、かつ、優れた解像性を有する導電パターンが形成される。本開示に係る導電性転写材料が、上記効果を奏する理由は明らかではないが、以下のように推察される。
 本開示に係る導電性転写材料は、平均厚さが500nm未満である感光層と、銀粒子、及びバインダーを含有する導電層と、を有することで、1つの層が感光層及び導電層を兼ねる場合に比べて、感光層には感光性材料をより多く含有でき、導電層には導電性材料をより多く含有できるため、パターン形成における解像性を向上しつつ、導電パターンの電気抵抗が大きくなることを抑制できる。さらに、感光層の平均厚さが500nm未満であることで、感光層又はその硬化物を介して導電パターン及び他の電気伝導体を積層させた場合に、導電パターンと他の電気伝導体との間隔を小さくできる。よって、本開示に係る導電性転写材料によれば、表面抵抗及び接触抵抗が小さく、かつ、優れた解像性を有する導電パターンが形成される。
 本開示に係る導電性転写材料の一実施形態について図面を参照して説明する。図1は、本開示に係る導電性転写材料の層構成の一例を示す概略図である。図1に示される導電性転写材料100は、仮支持体10と、感光層20と、導電層30と、をこの順で有する。なお、本開示の図面において示される各要素の縮尺は、必ずしも正確ではない。
[仮支持体]
 本開示に係る導電性転写材料は、仮支持体を有する。
 仮支持体は、少なくとも、感光層、及び導電層を支持し、被着体(例えば、感光層)から剥離可能な支持体である。
 仮支持体は、仮支持体を介してパターン露光できるという観点から、光透過性を有することが好ましい。本開示において、「光透過性を有する」とは、パターン露光に使用する光の主波長の透過率が50%以上であることを意味する。パターン露光に使用する光の主波長の透過率は、露光感度向上の観点から、60%以上が好ましく、70%以上がより好ましい。透過率の測定方法としては、分光光度計(例えば、大塚電子株式会社製MCPD-6800)を用いて測定する方法が挙げられる。
 露光感度向上の観点から、仮支持体のヘイズは、小さい方が好ましい。具体的に、仮支持体のヘイズは、2%以下であることが好ましく、0.5%以下であることがより好ましい。
 露光感度向上及び解像度向上の観点から、仮支持体に含まれる微粒子、異物、及び欠陥(例えば、ピンホール)の数は少ない方が好ましい。仮支持体に含まれる直径1μm以上の、微粒子、異物、及び欠陥の数は、50個/10mm以下であることが好ましく、10個/10mm以下であることがより好ましい。
 仮支持体としては、例えば、ガラス基材、樹脂フィルム、及び紙が挙げられる。仮支持体は、強度及び可撓性の観点から、樹脂フィルムであることが好ましい。樹脂フィルムとしては、例えば、シクロオレフィンポリマーフィルム、ポリエチレンテレフタレートフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、及びポリカーボネートフィルムが挙げられる。上記の中でも、仮支持体は、光学特性の観点から、ポリエチレンテレフタレートフィルムであることが好ましい。
 仮支持体の平均厚さは、制限されず、材料に応じて適宜設定することができる。仮支持体の平均厚さは、取扱い易さ、及び汎用性の観点から、5μm~200μmであることが好ましく、10μm~150μmであることがより好ましく、10μm~50μmであることが更に好ましい。
 仮支持体の平均厚さは以下の方法によって測定する。
 仮支持体の厚み方向の断面観察像において、無作為に選択した10箇所で測定される仮支持体の厚さの算術平均値を求め、得られる値を仮支持体の平均厚さとする。仮支持体の厚み方向の断面観察像は、走査型電子顕微鏡(SEM)、又は透過型電子顕微鏡(TEM)を用いて得ることができる。
 また、仮支持体の好ましい態様については、例えば、特開2014-85643号公報の段落0017~段落0018に記載がある。これらの記載は参照により本明細書に組み込まれる。
[感光層]
 本開示に係る導電性転写材料は、平均厚さが500nm未満である感光層を有する。本開示に係る導電性転写材料が、平均厚さが500nm未満である感光層を有することで、接触抵抗が小さく、かつ、優れた解像性を有する導電パターンが形成される。
 感光層の平均厚さは、400nm以下であることが好ましく、300nm以下であることがより好ましく、200nm以下であることがさらに好ましく、150nm以下であることが特に好ましく、60nm以下であることが最も好ましい。感光層の平均厚さが上記範囲内であることで、接触抵抗をさらに小さくできる。
 感光層の平均厚さは、1nm以上であることが好ましく、10nm以上であることがより好ましく、20nm以上であることが特に好ましい。感光層の平均厚さが上記範囲内であることで、感光層の現像性を向上できる。
 感光層の平均厚さは、上記仮支持体の平均厚さの測定方法に準ずる方法により測定する。
 波長400nm~700nmにおける感光層の最低透過率は、80%以上であることが好ましく、90%以上であることがより好ましい。透過率は、上記仮支持体の透過率の測定方法に準ずる方法により測定する。
 感光層としては、平均厚さが500nm未満であれば制限されず、公知の感光層を適用できる。感光層としては、例えば、ポジ型の感光層、及びネガ型の感光層が挙げられる。上記の中でも、感光層は、耐薬品性、及び耐久性の観点から、ネガ型の感光層であることが好ましい。
(ポジ型の感光層)
 ポジ型の感光層としては、制限されず、公知のポジ型の感光層を適用できる。ポジ型の感光層は、感度、解像度、及び除去性の観点から、酸分解性基で保護された酸基を有する構成単位を有する重合体と、光酸発生剤と、を含有することが好ましい。
 ポジ型の感光層については、国際公開第2018/179640号の段落0033~段落0130に記載がある。これらの記載は参照により本明細書に取り込まれる。
-酸分解性基で保護された酸基を有する構成単位を有する重合体-
 ポジ型の感光層は、酸分解性で保護された酸基を有する構成単位(以下、「構成単位A」ともいう。)を含む重合体(以下、「重合体A」ともいう。)を含有することが好ましい。重合体A中の酸分解性基で保護された酸基は、露光により生じる触媒量の酸の作用(すなわち、脱保護反応)により、酸基となる。脱保護反応によって生じた酸基により、現像液へのポジ型の感光層の溶解性が向上する。
 重合体Aは、付加重合型の重合体であることが好ましく、(メタ)アクリル酸又はそのエステルに由来する構成単位を有する重合体であることがより好ましい。なお、重合体Aは、(メタ)アクリル酸又はそのエステルに由来する構成単位以外の構成単位(例えば、スチレン化合物に由来する構成単位、及びビニル化合物に由来する構成単位)を有していてもよい。
 構成単位Aにおける酸基は、制限されず、公知の酸基を適用できる。酸基は、カルボキシ基、又はフェノール性水酸基(「フェノール性ヒドロキシ基」ともいう。)であることが好ましい。
 構成単位Aにおける酸分解性基は、制限されず、公知の酸分解性基を適用できる。酸分解性基としては、例えば、酸により比較的分解し易い基(例えば、1-アルコキシアルキル基、テトラヒドロピラニル基、テトラヒドロフラニル基等のアセタール型官能基)、及び酸により比較的分解し難い基(例えば、tert-ブチル基等の第三級アルキル基)が挙げられる。上記の中でも、酸分解性基は、アセタールの形で酸基を保護する構造を有する基であることが好ましい。また、酸分解性基は、導電パターンの形成に適用した場合における導電配線の線幅のバラツキが抑制される観点から、分子量が300以下の酸分解性基であることが好ましい。
 酸分解性基で保護された酸基を有する構成単位は、パターン形状の変形抑制、現像液への溶解性、及び転写性の観点から、下記式A1により表される構成単位、下記式A2により表される構成単位、及び下記式A3により表される構成単位からなる群より選択される少なくとも1種の構成単位であることが好ましく、下記式A3により表される構成単位であることがより好ましく、後述する式A3-3により表される構成単位であることが特に好ましい。下記式A1で表される構成単位及び下記式A2で表される構成単位は、酸分解性基で保護されたフェノール性水酸基を有する構成単位である。下記式A3で表される構成単位は、酸分解性基で保護されたカルボキシ基を有する構成単位である。
Figure JPOXMLDOC01-appb-C000001
 式A1中、R11及びR12は、それぞれ独立して、水素原子、アルキル基、又はアリール基を表し、R11及びR12の少なくとも一方が、アルキル基、又はアリール基であり、R13は、アルキル基、又はアリール基を表し、R11又はR12と、R13とが連結して環状エーテルを形成してもよく、R14は、水素原子、又はメチル基を表し、Xは、単結合、又は二価の連結基を表し、R15は、置換基を表し、nは、0~4の整数を表す。
 式A2中、R21及びR22は、それぞれ独立して、水素原子、アルキル基、又はアリール基を表し、R21及びR22の少なくとも一方が、アルキル基又はアリール基であり、R23はアルキル基又はアリール基を表し、R21又はR22と、R23とが連結して環状エーテルを形成してもよく、R24は、それぞれ独立して、ヒドロキシ基、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アリール基、アラルキル基、アルコキシカルボニル基、ヒドロキシアルキル基、アリールカルボニル基、アリールオキシカルボニル基、又はシクロアルキル基を表し、mは、0~3の整数を表す。
 式A3中、R31及びR32は、それぞれ独立して、水素原子、アルキル基、又はアリール基を表し、R31及びR32の少なくとも一方が、アルキル基又はアリール基であり、R33は、アルキル基、又はアリール基を表し、R31又はR32と、R33とが連結して環状エーテルを形成してもよく、R34は、水素原子、又はメチル基を表し、Xは、単結合、又は連結基を表し、Yは、硫黄原子、又は酸素原子を表す。
 式A3中、R31又はR32がアルキル基の場合、アルキル基は、炭素数1~10のアルキル基であることが好ましい。R31又はR32がアリール基の場合、アリール基は、フェニル基であることが好ましい。R31及びR32は、それぞれ独立して、水素原子、又は炭素数1~4のアルキル基であり、R31及びR32の少なくとも一方が炭素数1~4のアルキル基であることが好ましい。
 式A3中、R33は、炭素数1~10のアルキル基であることが好ましく、炭素数1~6のアルキル基であることがより好ましい。
 式A3中、R31~R33におけるアルキル基及びアリール基は、置換基を有していてもよい。
 式A3中、R31又はR32と、R33とが連結して環状エーテルを形成することが好ましい。環状エーテルの環員数は、制限されないが、5又は6であることが好ましく、5であることがより好ましい。
 式A3中、Xは、単結合、又はアリーレン基であることが好ましく、単結合であることが好ましい。アリーレン基は、置換基を有していてもよい。
 式A3中、Yは、露光感度の観点から、酸素原子であることが好ましい。
 式A3中、R34は水素原子又はメチル基を表し、重合体Aのガラス転移温度(Tg)をより低くし得るという観点から、水素原子であることが好ましい。より具体的には、式A3におけるR34が水素原子である構成単位の含有比率は、重合体Aに含まれる式A3で表される全構成単位に対して、20モル%以上であることが好ましい。なお、式A3で表される構成単位中の、式A3におけるR34が水素原子である構成単位の含有比率(モル%)は、13C-核磁気共鳴スペクトル(NMR)測定から常法により算出されるピーク強度の強度比により確認する。
 式A3で表される構成単位の中でも、下記式A3-3で表される構成単位が、パターン形成時の感度を更に高める観点からより好ましい。
Figure JPOXMLDOC01-appb-C000002
 式A3-3中、R34は、水素原子、又はメチル基を表し、R35~R41は、それぞれ独立して、水素原子、又は炭素数1~4のアルキル基を表す。式A3-3中、R34は、水素原子であることが好ましい。式A3-3中、R35~R41は、水素原子であることが好ましい。
 式A3で表される構成単位の好ましい具体例を以下に示す。なお、下記の構成単位におけるR34は、水素原子、又はメチル基を表す。
Figure JPOXMLDOC01-appb-C000003
 重合体Aは、1種の構成単位Aを有していてもよく、又は2種以上の構成単位Aを有していてもよい。
 重合体Aにおける構成単位Aの含有比率は、重合体Aの全構成単位に対して、10モル%以上であることが好ましく、10モル%~90モル%であることがより好ましく、20モル%~70モル%であることが特に好ましい。重合体Aにおける構成単位Aの含有比率は、13C-NMR測定から常法により算出されるピーク強度の強度比により確認する。
 重合体Aは、酸基を有する構成単位(以下、「構成単位B」ともいう。)を含むことが好ましい。重合体Aが構成単位Bを含むことで、パターン形成時の感度が良好となり、また、パターン露光後の現像工程においてアルカリ性の現像液に溶けやすくなるため現像時間の短縮化を図ることができる。
 構成単位Bにおける酸基とは、pKaが12以下のプロトン解離性基を意味する。感度向上の観点から、酸基のpKaは、10以下であることが好ましく、6以下であることがより好ましい。また、酸基のpKaは、-5以上であることが好ましい。
 構成単位Bにおける酸基としては、例えば、カルボキシ基、スルホンアミド基、ホスホン酸基、スルホン酸基、フェノール性水酸基、及びスルホニルイミド基が挙げられる。上記の中でも、酸基は、カルボキシ基、又はフェノール性水酸基であることが好ましい。
 重合体Aへの構成単位Bの導入は、酸基を有するモノマーを共重合させることで行うことができる。
 構成単位Bは、スチレン化合物に由来する構成単位若しくはビニル化合物に由来する構成単位に対して酸基が置換した構成単位、又は(メタ)アクリル酸に由来する構成単位であることがより好ましい。
 構成単位Bは、パターン形成時の感度がより良好となるという観点から、カルボキシ基を有する構成単位及びフェノール性水酸基を有する構成単位からなる群より選択される少なくとも1種の構成単位であることが好ましい。
 重合体Aは、1種の構成単位Bを有していてもよく、又は2種以上の構成単位Bを有していてもよい。
 重合体Aにおける構成単位Bの含有比率は、パターン形成性の観点から、重合体Aの全構成単位に対して、0.1モル%~20モル%であることが好ましく、0.5モル%~15モル%であることがより好ましく、1モル%~10モル%であることが特に好ましい。重合体Aにおける構成単位Bの含有比率は、13C-NMR測定から常法により算出されるピーク強度の強度比により確認する。
 重合体Aは、本開示に係る導電性転写材料の効果を損なわない範囲で、既述の構成単位A及び構成単位B以外の構成単位(以下、「構成単位C」ともいう。)を有していてもよい。
 構成単位Cを形成するモノマーとしては、例えば、スチレン化合物、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸環状アルキルエステル、(メタ)アクリル酸アリールエステル、不飽和ジカルボン酸ジエステル、ビシクロ不飽和化合物、マレイミド化合物、不飽和芳香族化合物、共役ジエン系化合物、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸無水物、脂肪族環式骨格を有する不飽和化合物、及びその他の不飽和化合物が挙げられる。
 構成単位Cとしては、具体的には、スチレン、tert-ブトキシスチレン、メチルスチレン、α-メチルスチレン、アセトキシスチレン、メトキシスチレン、エトキシスチレン、クロロスチレン、ビニル安息香酸メチル、ビニル安息香酸エチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル、アクリロニトリル、又はエチレングリコールモノアセトアセテートモノ(メタ)アクリレートを重合して形成される構成単位が挙げられる。上記以外の構成単位Cとしては、特開2004-264623号公報の段落0021~段落0024に記載の化合物が挙げられる。
 構成単位Cとしては、得られる導電性転写材料の電気特性を向上させる観点から、芳香環を有する構成単位及び脂肪族環式骨格を有する構成単位からなる群より選択される少なくとも1種の構成単位であることが好ましい。上記構成単位を形成するモノマーとして、例えば、スチレン、tert-ブトキシスチレン、メチルスチレン、α-メチルスチレン、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、及びベンジル(メタ)アクリレートが挙げられる。上記の中でも、構成単位Cは、シクロヘキシル(メタ)アクリレート由来の構成単位であることが好ましい。
 また、構成単位Cを形成するモノマーとしては、密着性の観点から、例えば、(メタ)アクリル酸アルキルエステルが好ましく、炭素数4~12のアルキル基を有する(メタ)アクリル酸アルキルエステルがより好ましい。具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、及び(メタ)アクリル酸2-エチルヘキシルが挙げられる。
 重合体Aは、1種の構成単位Cを有していてもよく、又は2種以上の構成単位Cを有していてもよい。
 重合体Aにおける構成単位Cの含有比率は、重合体Aの全構成単位に対して、70モル%以下が好ましく、60質量%以下がより好ましく、50質量%以下が特に好ましい。重合体Aにおける構成単位Cの含有比率の下限値は、0モル%でもよい。重合体Aにおける構成単位Cの含有比率は、重合体Aの全構成単位に対して、1モル%以上であることが好ましく、5モル%以上であることがより好ましい。上記範囲であると、解像度及び密着性がより向上する。
 重合体Aの重量平均分子量は、60,000以下であることが好ましい。重合体Aの重量平均分子量が60,000以下であることで、感光層の溶融粘度を低く抑え、基板と貼り合わせる際において低温(例えば130℃以下)での貼り合わせを実現することができる。また、重合体Aの重量平均分子量は、2,000~60,000であることが好ましく、3,000~50,000であることがより好ましい。重合体Aの重量平均分子量は、以下の方法によって測定されるポリスチレン換算の重量平均分子量である。
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定する。測定装置としては、市販の装置を用いることができる。装置の内容、及び測定技術は公知である。以下、具体的な測定方法を説明する。
 GPCによる重量平均分子量の測定においては、測定装置として、HLC(登録商標)-8220GPC(東ソー株式会社製)を用い、カラムとして、TSKgel(登録商標)Super HZM-M(4.6mmID×15cm、東ソー株式会社製)、Super HZ4000(4.6mmID×15cm、東ソー株式会社製)、Super HZ3000(4.6mmID×15cm、東ソー株式会社製)、及びSuper HZ2000(4.6mmID×15cm、東ソー株式会社製)をそれぞれ1本ずつ直列に連結したものを用い、溶離液として、THF(テトラヒドロフラン)を用いる。また、測定条件としては、試料濃度を0.2質量%、流速を0.35mL/分、サンプル注入量を10μL、及び測定温度を40℃とし、示差屈折率(RI)検出器を用いて行う。検量線は、東ソー株式会社製の「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、及び「A-1000」の7サンプルのいずれかを用いて作製する。
 ポジ型の感光層は、1種の重合体Aを含有していてもよく、又は2種以上の重合体Aを含有していてもよい。
 ポジ型の感光層における重合体Aの含有量は、基材に対して良好な密着性を発現させる観点から、ポジ型の感光層の全質量に対して、50質量%~99.9質量%であることが好ましく、70質量%~98質量%であることがより好ましい。
 重合体Aの製造方法(合成法)は、制限されず、公知の方法を適用できる。重合体Aの製造方法としては、例えば、構成単位Aを形成するための重合性モノマー、さらに必要に応じて、酸基を有する構成単位Bを形成するための重合性モノマー、及び構成単位Cを形成するための重合性モノマーを、有機溶剤中、重合開始剤を用いて重合する方法が挙げられる。
-光酸発生剤-
 ポジ型の感光層は、光酸発生剤を含有することが好ましい。ポジ型の感光層が光酸発生剤を含有することで、感度を向上できる。
 光酸発生剤は、活性光線(例えば、紫外線、遠紫外線、X線、及び荷電粒子線)を照射されることにより酸を発生することができる化合物である。光酸発生剤としては、波長300nm以上、好ましくは波長300nm~450nmの活性光線に感応し、酸を発生する化合物が好ましい。また、波長300nm以上の活性光線に直接感応しない光酸発生剤についても、増感剤と併用することによって波長300nm以上の活性光線に感応し、酸を発生する化合物であれば、増感剤と組み合わせて好ましく用いることができる。
 光酸発生剤としては、pKaが4以下の酸を発生する光酸発生剤が好ましく、pKaが3以下の酸を発生する光酸発生剤がより好ましく、pKaが2以下の酸を発生する光酸発生剤が特に好ましい。pKaの下限値は、制限されない。pKaは、例えば、-10以上であることが好ましい。
 光酸発生剤としては、例えば、イオン性光酸発生剤、及び非イオン性光酸発生剤が挙げられる。
 イオン性光酸発生剤としては、例えば、オニウム塩化合物(例えば、ジアリールヨードニウム塩化合物、及びトリアリールスルホニウム塩化合物)、及び第四級アンモニウム塩化合物が挙げられる。上記の中でも、イオン性光酸発生剤は、オニウム塩化合物であることが好ましく、トリアリールスルホニウム塩化合物、及びジアリールヨードニウム塩化合物の少なくとも一方であることがより好ましい。
 イオン性光酸発生剤としては、特開2014-85643号公報の段落0114~0133に記載のイオン性光酸発生剤も好ましく用いることができる。
 非イオン性光酸発生剤としては、例えば、トリクロロメチル-s-トリアジン化合物、ジアゾメタン化合物、イミドスルホネート化合物、及びオキシムスルホネート化合物が挙げられる。上記の中でも、非イオン性光酸発生剤は、感度、解像度、及び密着性の観点から、オキシムスルホネート化合物であることが好ましい。トリクロロメチル-s-トリアジン化合物、及びジアゾメタン化合物の具体例としては、特開2011-221494号公報の段落0083~段落0088に記載の化合物が挙げられる。
 上記の中でも、光酸発生剤は、感度及び解像度の観点から、オニウム塩化合物、及びオキシムスルホネート化合物からなる群より選択される少なくとも1種の化合物を含むことが好ましく、オキシムスルホネート化合物を含むことがより好ましい。
 オキシムスルホネート化合物、すなわち、オキシムスルホネート構造を有する化合物としては、下記式(B1)で表されるオキシムスルホネート構造を有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(B1)中、R21は、アルキル基、又はアリール基を表し、*は、他の原子、又は他の基との結合部位を表す。
 式(B1)で表されるオキシムスルホネート構造を有する化合物は、いずれの基も置換されてもよく、R21におけるアルキル基は、直鎖状であっても、分岐構造を有していても、環構造を有していてもよい。許容される置換基は以下に説明する。
 R21で表されるアルキル基としては、炭素数1~10の、直鎖状又は分岐状アルキル基が好ましい。R21で表されるアルキル基は、炭素数6~11のアリール基、炭素数1~10のアルコキシ基、シクロアルキル基、又はハロゲン原子で置換されてもよい。
 R21で表されるアリール基としては、炭素数6~18のアリール基が好ましく、フェニル基又はナフチル基がより好ましい。R21で表されるアリール基は、炭素数1~4のアルキル基、アルコキシ基、及びハロゲン原子からなる群より選択される少なくとも1種の基で置換されてもよい。
 ポジ型の感光層は、1種の光酸発生剤を含有していてもよく、又は2種以上の光酸発生剤を含有していてもよい。
 ポジ型の感光層における光酸発生剤の含有量は、感度、及び解像度の観点から、ポジ型の感光層の全質量に対して、0.1質量%~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましい。
-他の成分A-
 ポジ型の感光層は、上記成分以外の成分(以下、「他の成分A」ともいう。)を含有していてもよい。他の成分Aは、制限されず、目的等に応じて適宜選択できる。他の成分としては、例えば、界面活性剤、後述する腐食防止剤、及び後述する光安定化剤が挙げられる。
 界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系(非イオン系)界面活性剤、及び両性界面活性剤が挙げられる。ポジ型の感光層が界面活性剤を含有することで、膜厚の均一性を高めることができる。上記の中でも、界面活性剤は、ノニオン系界面活性剤であることが好ましい。
 ノニオン系界面活性剤としては、例えば、ポリオキシエチレン高級アルキルエーテル系界面活性剤、ポリオキシエチレン高級アルキルフェニルエーテル系界面活性剤、ポリオキシエチレングリコールの高級脂肪酸ジエステル系界面活性剤、シリコーン系界面活性剤、及びフッ素系界面活性剤が挙げられる。ノニオン系界面活性剤の具体例としては、KP(信越化学工業株式会社製)、ポリフロー(共栄社化学株式会社製)、エフトップ(JEMCO社製)、メガファック(登録商標、例えばメガファックF551A、DIC株式会社製)、フロラード(住友スリーエム株式会社製)、アサヒガード(登録商標、AGC株式会社製)、サーフロン(登録商標、AGCセイケミカル株式会社製)、PolyFox(OMNOVA社製)、サーフィノール(日信化学工業株式会社製)、及びSH-8400(東レ・ダウコーニング株式会社製)が挙げられる。
 ポジ型の感光層は、1種の界面活性剤を含有していてもよく、又は2種以上の界面活性剤を含有していてもよい。
 ポジ型の感光層における界面活性剤の含有量は、膜厚の均一性の観点から、ポジ型の感光層の全質量に対して、0.05質量%~10質量%であることが好ましく、0.05質量%~5質量%であることがより好ましい。
(ネガ型の感光層)
 ネガ型の感光層としては、制限されず、公知のネガ型の感光層を適用できる。ネガ型の感光層は、現像性の観点から、アルカリ可溶性バインダー、重合性化合物、及び光重合開始剤を含有することが好ましい。
 本開示において、「アルカリ可溶性」とは、25℃の1mol/L水酸化ナトリウム溶液に可溶であることをいう。また、「可溶である」とは、100mLの溶媒に0.1g以上溶解することをいう。
-アルカリ可溶性バインダー-
 ネガ型の感光層は、アルカリ可溶性バインダーを含有することが好ましい。
 アルカリ可溶性バインダーとしては、制限されず、公知のアルカリ可溶性バインダーを適用できる。アルカリ可溶性バインダーは、現像性の観点から、アルカリ可溶性樹脂であることが好ましく、酸価60mgKOH/g以上の樹脂であることがより好ましく、酸価60mgKOH/g以上の、カルボキシ基を有する(メタ)アクリル樹脂(以下、「重合体B」ともいう。)であることが特に好ましい。
 本開示において、「酸価」とは、JIS K0070:1992に記載の方法にしたがって測定された値を意味する。
 本開示において、「(メタ)アクリル樹脂」とは、(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸エステルに由来する構成単位の少なくとも一方を含む樹脂を意味する。
 重合体Bにおける(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸エステルに由来する構成単位の合計割合は、重合体Bの全構成単位に対して、30モル%以上であることが好ましく、50モル%以上であることがより好ましい。
 重合体Bは、カルボキシ基を有する構成単位を有する。上記(メタ)アクリル樹脂に含まれるカルボキシ基を有する構成単位は、1種であってもよく、又は2種以上であってもよい。
 重合体Bにおけるカルボキシ基を有する構成単位の含有比率は、現像性の観点から、カルボキシ基を有する(メタ)アクリル樹脂の全構成単位に対して、5モル%~50モル%であることが好ましく、5モル%~40モル%であることがより好ましく、10モル%~40モル%であることがさらに好ましく、10モル%~30モル%であることが特に好ましい。
 アルカリ可溶性バインダーは、硬化後の透湿度及び強度の観点から、芳香環を有する構成単位を有することが好ましい。芳香環を有する構成単位を形成するモノマーとしては、スチレン、tert-ブトキシスチレン、メチルスチレン、α-メチルスチレン等のスチレン化合物、及びベンジル(メタ)アクリレートが挙げられる。芳香環を有する構成単位としては、スチレン化合物由来の構成単位であることが好ましい。
 アルカリ可溶性バインダーは、硬化後の強度の観点から、エチレン性不飽和基を有する構成単位を有することが好ましい。アルカリ可溶性バインダーは、側鎖にエチレン性不飽和基を有する構成単位を有することが好ましい。エチレン性不飽和基としては、(メタ)アクリル基が好ましく、(メタ)アクリロキシ基がより好ましい。
 アルカリ可溶性バインダーの酸価は、60mgKOH/g以上であることが好ましく、60mgKOH/g~200mgKOH/gであることがより好ましく、60mgKOH/g~150mgKOH/gであることがさらに好ましく、60mgKOH/g~130mgKOH/gであることが特に好ましい。
 アルカリ可溶性バインダーの重量平均分子量(Mw)は、3,000を超えることが好ましく、3,000を超え60,000以下であることがより好ましく、5,000~50,000であることが特に好ましい。アルカリ可溶性バインダーの重量平均分子量は、上記重合体Aの重量平均分子量の測定方法に準ずる方法により測定されるポリスチレン換算の重量平均分子量である。
 ネガ型の感光層は、1種のアルカリ可溶性バインダーを含有していてもよく、又は2種以上のアルカリ可溶性バインダーを含有していてもよい。
 ネガ型の感光層におけるアルカリ可溶性バインダーの含有量は、ネガ型の感光層の全質量に対して、10質量%~90質量%であることが好ましく、20質量%~80質量%であることがより好ましく、30質量%~70質量%であることが特に好ましい。
-重合性化合物-
 ネガ型の感光層は、重合性化合物を含有することが好ましい。
 重合性化合物としては、重合可能な化合物であれば制限されず、例えば、ラジカル重合性化合物、及びカチオン重合性化合物が挙げられる。上記の中でも、重合性化合物は、ラジカル重合性化合物であることが好ましく、エチレン性不飽和化合物であることがより好ましい。エチレン性不飽和化合物は、1つ以上のエチレン性不飽和基を有する化合物である。エチレン性不飽和基としては、(メタ)アクリル基がより好ましい。エチレン性不飽和化合物としては、(メタ)アクリレート化合物が好ましい。
 エチレン性不飽和化合物としては、2官能以上のエチレン性不飽和化合物を含むことが好ましい。ここで、2官能以上のエチレン性不飽和化合物とは、一分子中にエチレン性不飽和基を2つ以上有する化合物を意味する。
 2官能のエチレン性不飽和化合物としては、例えば、トリシクロデカンジメタノールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、及び1,6-ヘキサンジオールジ(メタ)アクリレートが挙げられる。
 具体的な2官能のエチレン性不飽和化合物としては、例えば、トリシクロデカンジメタノールジアクリレート(A-DCP、新中村化学工業株式会社製)、トリシクロデカンジメタノールジメタクリレート(DCP、新中村化学工業株式会社製)、1,9-ノナンジオールジアクリレート(A-NOD-N、新中村化学工業株式会社製)、1,6-ヘキサンジオールジアクリレート(A-HD-N、新中村化学工業株式会社製)、及びポリテトラメチレングリコール#650ジアクリレート(A-PTMG-65、新中村化学工業株式会社製)が挙げられる。
 3官能以上のエチレン性不飽和化合物としては、例えば、ジペンタエリスリトール(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート、ペンタエリスリトール(トリ/テトラ)(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、イソシアヌル酸(メタ)アクリレート、及びグリセリントリ(メタ)アクリレートが挙げられる。ここで、「(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート」との用語は、トリ(メタ)アクリレート、テトラ(メタ)アクリレート、ペンタ(メタ)アクリレート、及びヘキサ(メタ)アクリレートを包含する概念である。また、「(トリ/テトラ)(メタ)アクリレート」との用語は、トリ(メタ)アクリレート及びテトラ(メタ)アクリレートを包含する概念である。
 エチレン性不飽和化合物は、現像性向上の観点から、酸基を有するエチレン性不飽和化合物を含むことが好ましい。酸基としては、例えば、リン酸基、スルホン酸基、及びカルボキシ基が挙げられ、カルボキシ基が好ましい。
 酸基を有するエチレン性不飽和化合物としては、例えば、酸基を有する3~4官能のエチレン性不飽和化合物、及び酸基を有する5~6官能のエチレン性不飽和化合物が挙げられる。
 カルボキシ基を有する2官能以上のエチレン性不飽和化合物としては、アロニックス(登録商標)TO-2349(東亞合成株式会社製)、アロニックスM-520(東亞合成株式会社製)、又はアロニックスM-510(東亞合成株式会社製)が好ましい。
 酸基を有するエチレン性不飽和化合物は、特開2004-239942号公報の段落0025~0030に記載の酸基を有する重合性化合物であることも好ましい。これらの記載は参照により本明細書に組み込まれる。
 ネガ型の感光層は、1種の重合性化合物を含有していてもよく、又は2種以上の重合性化合物を含有していてもよい。
 ネガ型の感光層における重合性化合物の含有量は、感光性の観点から、ネガ型の感光層の全質量に対して、1質量%~70質量%であることが好ましく、5質量%~70質量%であることがより好ましく、5質量%~60質量%であることがさらに好ましく、8質量%~50質量%であることが特に好ましい。
-重合開始剤-
 ネガ型の感光層は、重合開始剤を含有することが好ましい。
 重合開始剤としては、光重合開始剤、及び熱重合開始剤の少なくとも一方が好ましく、光重合開始剤がより好ましい。
 光重合開始剤としては、例えば、オキシムエステル構造を有する光重合開始剤(以下、「オキシム系光重合開始剤」ともいう。)、α-アミノアルキルフェノン構造を有する光重合開始剤(以下、「α-アミノアルキルフェノン系光重合開始剤」ともいう。)、α-ヒドロキシアルキルフェノン構造を有する光重合開始剤(以下、「α-ヒドロキシアルキルフェノン系重合開始剤」ともいう。)、アシルフォスフィンオキサイド構造を有する光重合開始剤(以下、「アシルフォスフィンオキサイド系光重合開始剤」ともいう。)、及びN-フェニルグリシン構造を有する光重合開始剤(以下、「N-フェニルグリシン系光重合開始剤」ともいう。)が挙げられる。
 光重合開始剤は、オキシム系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、α-ヒドロキシアルキルフェノン系重合開始剤、及びN-フェニルグリシン系光重合開始剤からなる群より選択される少なくとも1種を含むことが好ましく、オキシム系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤及びN-フェニルグリシン系光重合開始剤からなる群より選択される少なくとも1種を含むことがより好ましい。
 また、光重合開始剤としては、例えば、特開2011-95716号公報の段落0031~0042、特開2015-014783号公報の段落0064~0081に記載された光重合開始剤を用いてもよい。
 光重合開始剤の市販品としては、例えば、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン-2-(O-ベンゾイルオキシム)(商品名:IRGACURE(登録商標) OXE-01、BASF社製)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチルオキシム)(商品名:IRGACURE OXE-02、BASF社製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(商品名:IRGACURE 379EG、BASF社製)、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(商品名:IRGACURE 907、BASF社製)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン(商品名:IRGACURE 127、BASF社製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン(商品名:IRGACURE 369、BASF社製)、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(商品名:IRGACURE 1173、BASF社製)、1-ヒドロキシシクロヘキシルフェニルケトン(商品名:IRGACURE 184、BASF社製)、及び2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名:IRGACURE 651、BASF社製)等が挙げられる。
 ネガ型の感光層は、1種の重合開始剤を含有していてもよく、又は2種以上の重合開始剤を含有していてもよい。
 ネガ型の感光層における重合開始剤の含有量は、ネガ型の感光層の全質量に対して、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.3質量%以上が特に好ましい。また、ネガ型の感光層における重合開始剤の含有量は、ネガ型の感光層の全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。
-他の成分B-
 ネガ型の感光層は、上記成分以外の成分(以下、「他の成分B」ともいう。)を含有していてもよい。他の成分Bは、制限されず、目的等に応じて適宜選択できる。他の成分Bとしては、例えば、熱架橋性化合物、増感剤、界面活性剤、後述する腐食防止剤、及び後述する光安定化剤が挙げられる。
 熱架橋性化合物としては、例えば、ブロックイソシアネート化合物、ビスフェノールA型のエポキシ化合物、クレゾールノボラック型のエポキシ化合物、ビフェニル型のエポキシ化合物、脂環式のエポキシ化合物、及びメラミン化合物が挙げられる。ここで、「熱架橋性化合物」とは、熱により架橋反応を起こし得る官能基(すなわち、熱架橋性基)を1分子中に1つ以上有する化合物を意味する。
 上記の中でも、熱架橋性化合物としては、ブロックイソシアネート化合物が好ましい。ここで、「ブロックイソシアネート化合物」とは、イソシアネートのイソシアネート基をブロック剤で保護(マスク)した構造を有する化合物を意味する。
 ブロックイソシアネート化合物の解離温度は、100℃~160℃であることが好ましく、130℃~150℃であることがより好ましい。ここで、「ブロックイソシアネート化合物の解離温度」とは、示差走査熱量計(例えば、セイコーインスツルメンツ株式会社製、DSC6200)を用いて、DSC(Differential scanning calorimetry)分析にてブロックイソシアネート化合物の熱特性を測定した場合に観察される、ブロックイソシアネート化合物の脱保護反応に伴う吸熱ピークの温度を意味する。
 解離温度が100℃~160℃であるブロック剤としては、例えば、ピラゾール化合物(例えば、3,5-ジメチルピラゾール、3-メチルピラゾール、4-ブロモ-3,5-ジメチルピラゾール、及び4-ニトロ-3,5-ジメチルピラゾール)、活性メチレン化合物(例えば、マロン酸ジエステル(例えば、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジn-ブチル、及びマロン酸ジ2-エチルヘキシル))、トリアゾール化合物(例えば、1,2,4-トリアゾール)、及びオキシム化合物(例えば、ホルムアルドオキシム、アセトアルドオキシム、アセトオキシム、メチルエチルケトオキシム、シクロヘキサノンオキシム等の分子内に-C(=N-OH)-で表される構造を有する化合物)が挙げられる。上記の中でも、保存安定性の観点から、オキシム化合物、又はピラゾール化合物が好ましく、オキシム化合物がより好ましい。
 ブロックイソシアネート化合物は、市販品であってもよい。市販品として、例えば、カレンズAOI-BM、カレンズMOI-BM、カレンズMOI-BP(いずれも昭和電工株式会社製)、及びブロック型のデュラネートシリーズ(旭化成株式会社製)が挙げられる。
 ブロックイソシアネート化合物の分子量は、200~3,000であることが好ましく、250~2,600であることがより好ましく、280~2,200であることが特に好ましい。
 ネガ型の感光層は、1種の熱架橋性化合物を含有していてもよく、又は2種以上の熱架橋性化合物を含有していてもよい。
 ネガ型の感光層における熱架橋性化合物の含有量は、得られる硬化膜(すなわち、ネガ型の感光層の硬化物)の強度の観点から、ネガ型の感光層の全質量に対して、1質量%~50質量%であることが好ましく、5質量%~30質量%であることがより好ましい。
 増感剤としては、例えば、N-フェニルグリシンが挙げられる。
 ネガ型の感光層は、1種の増感剤を含有していてもよく、又は2種以上の増感剤を含有していてもよい。
 ネガ型の感光層における増感剤の含有量は、ネガ型の感光層の全質量に対して、0.01質量%~5質量%であることが好ましい。
 界面活性剤としては、上記「ポジ型の感光層」の項において説明した界面活性剤を適用でき、好ましい種類も同様である。
 ネガ型の感光層は、1種の界面活性剤を含有していてもよく、又は2種以上の界面活性剤を含有していてもよい。
 ネガ型の感光層における界面活性剤の含有量は、膜厚の均一性の観点から、ネガ型の感光層の全質量に対して、0.01質量%~15質量%であることが好ましく、0.05質量%~15質量%であることがより好ましい。
(感光層の形成方法)
 感光層の形成方法は、制限されず、公知の方法を適用できる。感光層の形成方法としては、例えば、上記各成分を含む感光層用組成物を、被塗布物上に塗布し、次いで乾燥させる方法が挙げられる。
 感光層用組成物は、上記各成分、及び溶剤を任意の割合で混合することによって調製できる。
 溶剤は、制限されず、公知の溶剤を適用できる。溶剤としては、例えば、エチレングリコールモノアルキルエーテル系溶剤、エチレングリコールジアルキルエーテル系溶剤、エチレングリコールモノアルキルエーテルアセテート系溶剤、プロピレングリコールモノアルキルエーテル系溶剤、プロピレングリコールジアルキルエーテル系溶剤、プロピレングリコールモノアルキルエーテルアセテート系溶剤、ジエチレングリコールジアルキルエーテル系溶剤、ジエチレングリコールモノアルキルエーテルアセテート系溶剤、ジプロピレングリコールモノアルキルエーテル系溶剤、ジプロピレングリコールジアルキルエーテル系溶剤、ジプロピレングリコールモノアルキルエーテルアセテート系溶剤、エステル系溶剤、ケトン系溶剤、アミド系溶剤、及びラクトン系溶剤が挙げられる。
 また、溶剤の好ましい例としては、以下に記載のエステル系溶剤、エーテル系溶剤、及びケトン系溶剤が挙げられる。
 エステル系溶剤としては、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸sec-ブチル、酢酸t-ブチル、酢酸イソプロピル、酢酸n-ブチル、及び1-メトキシ-2-プロピルアセテートが挙げられる。
 エーテル系溶剤としては、ジイソプロピルエーテル、1,4-ジオキサン、1,2-ジメトキシエタン、1,3-ジオキソラン、プロピレングリコールジメチルエーテル、及びプロピレングリコールモノエチルエーテルが挙げられる。
 ケトン系溶剤としては、メチルn-ブチルケトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、メチルn-プロピルケトン、及びメチルイソプロピルケトンが挙げられる。
 感光層用組成物中の固形分濃度は、制限されず、例えば、0.5質量%~40質量%の範囲で適宜設定できる。
 塗布方法としては、例えば、スリット塗布、スピン塗布、カーテン塗布、及びインクジェット塗布が挙げられる。
 乾燥温度は、溶剤等の揮発性成分の種類に応じて適宜設定することができる。乾燥温度は、例えば、60℃~120℃の範囲で適宜設定することができる。
[導電層]
 本開示に係る導電性転写材料は、銀粒子、及びバインダーを含有する導電層を有する。本開示に係る導電性転写材が上記導電層を有することで、表面抵抗が小さい導電パターンが形成される。
(銀粒子)
 導電層は、銀粒子を含有する。導電層が銀粒子を含有することで、表面抵抗が小さい導電パターンが形成される。銀粒子としては、制限されず、公知の銀粒子を適用できる。
 銀粒子の平均粒子径は、5nm~100nmであることが好ましく、5nm~50nmであることがより好ましく、5nm~30nmであることが特に好ましい。銀粒子の平均粒子径が上記範囲内であることで、銀粒子同士が融着しやすくなるため、導電パターンの導電性を向上できる。
 銀粒子の平均粒子径は、以下の方法により測定する。
 透過型電子顕微鏡(TEM)を用いて、300個の銀粒子を観察し、次いで、上記各銀粒子の直径を求める。ここで、銀粒子の直径とは、銀粒子の長軸長さを指す。次に、測定値を算術平均することで、銀粒子の平均粒子径を求める。
 銀粒子の含有量は、上記導電層の全質量に対して、60質量%~99質量%であることが好ましく、70質量%~99質量%であることがより好ましく、80質量%~99質量%であることがさらに好ましく、85質量%~99質量%であることが特に好ましい。銀粒子の含有量が上記範囲内であることで、導電層中の銀粒子の密度を向上できるため、導電パターンの導電性を向上できる。銀粒子の含有量の上限は、上記導電層の全質量に対して、95質量%であってもよい。
(バインダー)
 導電層は、バインダーを含有する。バインダーとしては、制限されず、公知のバインダーを適用できる。バインダーとしては、水溶性バインダーが好ましい。導電層が水溶性バインダーを含有することで、現像液への導電層の溶解性を向上できる。また、導電層が水溶性バインダーを含有することで、感光層及び導電層を塗布液により形成する場合において、先に形成した層の溶剤による再溶解を抑制できる。具体的に、後述する導電層用組成物に含まれる水の含有比率を大きくし、感光層用組成物に含まれる有機溶剤の含有比率を大きくすることで、先に形成した層が溶剤により再溶解されることを抑制できる。
 本開示において、「水溶性」とは、25℃の水100gに対して1g以上溶解する性質を意味する。
 水溶性バインダーとしては、制限されず、公知の水溶性バインダーを適用できる。水溶性バインダーとしては、例えば、セルロース、ポリビニルアルコール、ポリビニルピロリドン、ビニルピロリドン-酢酸ビニル共重合体、ビニルピロリドン-ビニルカプロラクタム-ジメチルアミノエチルアクリレート共重合体、ビニルピロリドン-メタクリルアミドプロピルトリメチルアンモニウム塩共重合体、ビニルピロリドン-ジメチルアミノエチルメタクリレート共重合体、ビニルピロリドン-ジメチルアミノエチルアクリレート共重合体、及びビニルピロリドン-ビニルアルコールコポリマーが挙げられる。上記の中でも、水溶性バインダーは、銀粒子の融着を促進する観点から、セルロースであることが好ましい。
 セルロースとしては、制限されず、公知のセルロースを適用できる。セルロースとしては、例えば、メチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、及びカルボキシメチルセルロースが挙げられる。
 上記の中でも、セルロースは、メチルセルロース、ヒドロキシプロピルメチルセルロース、及びヒドロキシプロピルセルロースからなる群より選択される少なくとも1種のセルロースであることが好ましく、ヒドロキシプロピルメチルセルロースであることがより好ましい。
 導電層は、1種のバインダーを含有していてもよく、又は2種以上のバインダーを含有していてもよい。
 バインダーの含有量は、上記導電層の全質量に対して、1質量%~40質量%であることが好ましく、5質量%~30質量%であることがより好ましく、5質量%~20質量%であることが特に好ましい。バインダーの含有量の上限は、上記導電層の全質量に対して、15質量%であってもよい。
(糖類)
 導電層は、五員環構造又は六員環構造を有する、セルロース以外の糖類(以下、単に「糖類」ともいう。)を含有することが好ましい。導電層が上記糖類を含有することで、導電層の解像性を向上できる。
 糖類としては、単糖であってもよく、又は複数の単糖がグリコシド結合により結合した糖類(例えば、二糖、三糖、オリゴ糖、及び多糖)であってもよい。糖類としては、例えば、フルクトース、D-リボース、デオキシリボース、イヌリン、ヒアルロン酸、及びプルランが挙げられる。
 上記の中でも、糖類は、解像性の観点から、単糖であることが好ましい。具体的に、糖類は、五員環構造又は六員環構造を有する、セルロース以外の単糖であることが好ましく、フルクトース、D-リボース、及びデオキシリボースからなる群より選択される少なくとも1種の糖であることがより好ましく、フルクトースであることが特に好ましい。
 糖類の分子量は、5,000以下であることが好ましく、1,000以下であることがより好ましく、500以下であることがさらに好ましく、200以下であることが特に好ましい。糖類の分子量が上記範囲内であることで、導電層の解像性を向上できる。糖類の分子量の下限は、制限されない。糖類の分子量は、50以上であることが好ましく、100以上であることがより好ましい。
 導電層は、1種の糖類を含有していてもよく、又は2種以上の糖類を含有していてもよい。
 糖類の含有量は、解像性の観点から、導電層の全質量に対して、0.01質量%~10質量%であることが好ましく、1質量%~5質量%であることがより好ましい。
(感光性材料)
 導電層は、必要に応じて、感光性材料を含有していてもよい。感光性材料としては、活性光線の照射により化学変化を起こし得る材料であれば制限されず、例えば、上記「感光層」の項において説明した光酸発生剤、増感剤、及び光重合開始剤が挙げられる。
 導電層は、1種の感光性材料を含有していてもよく、又は2種以上の感光性材料を含有していてもよい。
 導電層中の感光性材料の含有量は、導電性の観点から、少ないことが好ましい。すなわち、導電層は、非感光性の導電層であることが好ましい。具体的に、導電層中の感光性材料の含有量は、導電層の全質量に対して、5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましく、0質量%であることが特に好ましい。
(導電層の平均厚さ)
 導電層の平均厚さは、導電性の観点から、0.05μm~100μmであることが好ましく、0.05μm~50μmであることがより好ましく、0.1μm~10μmであることがさらに好ましく、0.1μm~5μmであることが特に好ましい。導電層の平均厚さは、上記仮支持体の平均厚さの測定方法に準ずる方法により測定する。
(導電層の形成方法)
 導電層の形成方法は、制限されず、公知の方法を適用できる。導電層の形成方法としては、例えば、上記各成分を含む導電層用組成物を、被塗布物上に塗布し、次いで乾燥させる方法が挙げられる。
 導電層用組成物は、例えば、上記各成分、及び溶剤を任意の割合で混合することによって調製できる。また、導電層用組成物は、銀粒子の供給源として銀粒子分散液を用いて調製してもよい。銀粒子分散液は、少なくとも、銀粒子、及び分散剤を含む組成物である。分散剤としては、後述する分散剤を適用できる。例えば、銀粒子分散液、及びバインダーを混合することによって導電層用組成物を調製することができる。
 銀粒子分散液としては、例えば、特開2001-325831号公報に記載された金属コロイド液、特開2001-167647号公報に記載された銀コロイド水溶液、及び国際公開第2013/061527号に記載された接合用組成物が挙げられる。
 銀粒子分散液の製造方法としては、例えば、化学還元法が挙げられる。化学還元法においては、例えば、銀化合物を溶剤中で還元する方法が挙げられる。銀化合物としては、例えば、硝酸銀、硫酸銀、塩化銀、酸化銀、酢酸銀、亜硝酸銀、塩素酸銀、及び硫化銀が挙げられる。また、銀粒子分散液の調製方法は、例えば、特開2001-325831号公報、特開2001-167647号公報、及び国際公開第2013/061527号に記載されており、これらの記載は参照により本明細書に組み込まれる。また、銀粒子分散液の市販品は、例えば、バンドー化学株式会社製のFlowMetal(登録商標)SW-1020として入手可能である。
 溶剤としては、例えば、水、及び有機溶剤が挙げられる。有機溶剤としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、2-プロピルアルコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,2,6-ヘキサントリオール、1-エトキシ-2-プロパノール、2-ブトキシエタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、グリセリン、アセトン、及び乳酸エチルが挙げられる。
 導電層用組成物は、1種の溶剤を含有していてもよく、又は2種以上の溶剤を含有していてもよい。
 導電層用組成物中の固形分濃度は、制限されず、例えば、0.5質量%~40質量%の範囲で適宜設定できる。
 導電層用組成物は、分散剤を含有していてもよい。分散剤としては、例えば、アミン、カルボン酸、及びイオン性化合物が挙げられる。
 アミンとしては、例えば、オレイルアミン、ヘキシルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、オクチルアミン、ドデシルアミン、シクロペンチルアミン、シクロヘキシルアミン、アニリン、ジプロピルアミン、ジブチルアミン、ピペリジン、ヘキサメチレンイミン、トリプロピルアミン、ジメチルプロパンジアミン、シクロヘキシルジメチルアミン、ピリジン、及びキノリンが挙げられる。
 カルボン酸としては、例えば、ギ酸、シュウ酸、酢酸、ヘキサン酸、アクリル酸、オクチル酸、及びオレイン酸が挙げられる。
 イオン性化合物としては、例えば、クエン酸三ナトリウム、クエン酸三カリウム、クエン酸三リチウム、りんご酸二ナトリウム、酒石酸二ナトリウム、及びグリコール酸ナトリウムが挙げられる。
 特に好ましい分散剤としては、グリセリンエステル類、又は多価アルコール化合物が挙げられる。
 導電層用組成物は、1種の分散剤を含有していてもよく、又は2種以上の分散剤を含有していてもよい。
 分散剤の含有量は、導電層用組成物の全質量に対して、0.1質量%~10質量%であることが好ましい。
 導電層用組成物は、界面活性剤を含有していてもよい。界面活性剤としては、例えば、上記「感光層」の項において説明した界面活性剤を適用できる。
 導電層用組成物は、1種の界面活性剤を含有していてもよく、又は2種以上の界面活性剤を含有していてもよい。
 界面活性剤の含有量は、導電層用組成物の全質量に対して、0.0001質量%~1.0質量%であることが好ましい。
 塗布方法としては、例えば、スリット塗布、スピン塗布、カーテン塗布、及びインクジェット塗布が挙げられる。
 乾燥温度は、溶剤等の揮発性成分の種類に応じて適宜設定することができる。乾燥温度は、例えば、60℃~120℃の範囲で適宜設定することができる。
 乾燥時間は、制限されず、乾燥温度に応じて適宜設定すればよい。
[接着層]
 本開示に係る導電性転写材料は、上記導電層の上記感光層とは反対側に、接着層を有することが好ましい。本開示に係る導電性転写材料が接着層を有することで、被転写体(例えば、基板)との密着性を向上できる。
 接着層を有する導電性転写材料の一実施形態について図面を参照して説明する。図2は、本開示に係る導電性転写材料の層構成の一例を示す概略図である。図2に示す導電性転写材料110は、仮支持体10と、感光層20と、導電層30と、接着層40と、をこの順で有する。
 接着層は、密着性の観点から、有機材料(例えば、有機樹脂)を含有する接着層であることが好ましい。接着層は、パターン形成における残渣除去の観点から、アルカリ可溶性バインダーを含有することが好ましい。
 アルカリ可溶性バインダーとしては、パターン形成における残渣除去の観点から、アルカリ可溶性樹脂であることが好ましく、酸価20mgKOH/g以上の樹脂であることがより好ましく、酸価20mgKOH/g以上の、カルボキシ基を有する(メタ)アクリル樹脂であることが特に好ましい。
 (メタ)アクリル樹脂中における(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸エステルに由来する構成単位の合計割合は、(メタ)アクリル樹脂の全構成単位に対して、30モル%以上であることが好ましく、50モル%以上であることがより好ましい。
 カルボキシ基を有する(メタ)アクリル樹脂は、カルボキシ基を有する構成単位を有する。上記(メタ)アクリル樹脂に含まれるカルボキシ基を有する構成単位は、1種であってもよく、又は2種以上であってもよい。
 カルボキシ基を有する(メタ)アクリル樹脂におけるカルボキシ基を有する構成単位の含有比率は、現像性の観点から、カルボキシ基を有する(メタ)アクリル樹脂の全構成単位に対して、3モル%~50モル%であることが好ましく、3モル%~40モル%であることがより好ましく、3モル%~35モル%であることが特に好ましい。
 アルカリ可溶性バインダーは、芳香環を有する構成単位を含んでいてもよい。芳香環を有する構成単位を形成するモノマーとしては、例えば、スチレン化合物、及びベンジル(メタ)アクリレートが挙げられる。スチレン化合物としては、例えば、スチレン、tert-ブトキシスチレン、メチルスチレン、及びα-メチルスチレンが挙げられる。芳香環を有する構成単位は、スチレン化合物由来の構成単位であることが好ましい。
 アルカリ可溶性バインダーは、エチレン性不飽和基を有する構成単位を含んでいてもよい。アルカリ可溶性バインダーは、側鎖にエチレン性不飽和基を有する構成単位を有することが好ましい。エチレン性不飽和基としては、(メタ)アクリル基が好ましく、(メタ)アクリロキシ基がより好ましい。
 アルカリ可溶性バインダーの酸価は、パターン形成における残渣除去の観点から、20mgKOH/g以上であることが好ましく、45mgKOH/g~200mgKOH/gであることがより好ましく、50mgKOH/g以上~150mgKOH/gであることが特に好ましい。同様の理由により、アルカリ可溶性バインダーの酸価は、60mgKOH/g以上であってもよく、又は80mgKOH/g以上であってもよい。
 アルカリ可溶性バインダーの重量平均分子量は、3,000を超えることが好ましく、3,000を超え60,000以下であることがより好ましく、5,000~50,000であることが特に好ましい。アルカリ可溶性バインダーの重量平均分子量は、上記重合体Aの重量平均分子量の測定方法に準ずる方法により測定されるポリスチレン換算の重量平均分子量である。
 アルカリ可溶性バインダーとしては、上記「ネガ型の感光層」の項において説明したアルカリ可溶性バインダーを適用することもできる。
 接着層は、上記成分に加えて、上記「感光層」の項において説明した他の成分(すなわち、他の成分A、及び他の成分B)を含有していてもよい。
 接着層は、1種のアルカリ可溶性バインダーを含有していてもよく、又は2種以上のアルカリ可溶性バインダーを含有していてもよい。
 接着層におけるアルカリ可溶性バインダーの含有量は、密着性及び現像性の観点から、接着層の全質量に対して、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、80質量%以上であることが特に好ましい。接着層におけるアルカリ可溶性バインダーの含有量の上限は、制限されない。接着層におけるアルカリ可溶性バインダーの含有量は、接着層の全質量に対して、例えば、100質量%以下の範囲で適宜設定することができる。
 また、接着層におけるアルカリ可溶性バインダーは、熱硬化性樹脂であってもよい。熱硬化性樹脂は、制限されず、公知の熱硬化性樹脂を適用できる。
 接着層は、アルカリ可溶性の接着層であってもよく、熱硬化性の接着層であってもよく、又は感光性の接着層であってもよい。アルカリ可溶性の接着層は、接着層の成分として、少なくともアルカリ可溶性バインダーによって構成される。熱硬化性の接着層は、接着層の成分として、少なくとも熱硬化性樹脂によって構成される。感光性の接着層としては、例えば、ネガ型感光性の接着層、及びポジ型感光性の接着層が挙げられる。熱硬化性の接着層、又は感光性の接着層は、アルカリ可溶性をさらに有していてもよい。
 接着層と感光層との組み合わせとしては、下記(a)~(f)にそれぞれ記載された組み合わせが好ましく、下記(a)~(e)にそれぞれ記載された組み合わせがより好ましい。
(a)接着層がアルカリ可溶性の接着層であり、感光層がポジ型の感光層である。
(b)接着層がアルカリ可溶性の接着層であり、感光層がネガ型の感光層である。
(c)接着層が熱硬化性の接着層であり、感光層がポジ型の感光層である。
(d)接着層が熱硬化性の接着層であり、感光層がネガ型の感光層である。
(e)接着層がネガ型感光性の接着層であり、感光層がネガ型の感光層である。
(f)接着層がポジ型感光性の接着層であり、感光層がポジ型の感光層である。
 波長400nm~700nmにおける接着層の最低透過率は、80%以上であることが好ましく、90%以上であることがより好ましい。透過率は、上記仮支持体の透過率の測定方法に準ずる方法により測定する。
 接着層の平均厚さは、500nm未満であることが好ましく、250nm以下であることがより好ましく、100nm以下であることがさらに好ましく、80nm以下であることが特に好ましい。接着層の平均厚さが上記範囲内であることで、本開示に係る導電性転写材料を基板に転写した場合に、接着層を介して導電層と基板とを導通できる。
 接着層の平均厚さは、1nm以上であることが好ましく、10nm以上であることがより好ましく、20nm以上であることが特に好ましい。接着層の平均厚さが上記範囲内であることで、被転写体との密着性を向上できる。
 接着層の平均厚さは、上記仮支持体の平均厚さの測定方法に準ずる方法により測定する。
(接着層の形成方法)
 接着層の形成方法は、制限されず、公知の方法を適用できる。接着層の形成方法としては、例えば、上記各成分を含む接着層用組成物を、被塗布物上に塗布し、次いで乾燥させる方法が挙げられる。
 塗布方法としては、例えば、スリット塗布、スピン塗布、カーテン塗布、及びインクジェット塗布が挙げられる。
 乾燥温度は、溶剤等の揮発性成分の種類に応じて適宜設定することができる。乾燥温度は、例えば、60℃~120℃の範囲で設定することができる。
 乾燥時間は、制限されず、乾燥温度に応じて適宜設定すればよい。
 接着層用組成物は、上記各成分、及び溶剤を任意の割合で混合することによって調製できる。
 溶剤としては、制限されず、例えば、上記「感光層」の項において説明した溶剤が挙げられる。
 接着層用組成物中の固形分濃度は、制限されず、例えば、0.5質量%~10質量%の範囲で適宜設定できる。
[腐食防止剤]
 本開示に係る導電性転写材料において、上記感光層、及び上記導電層の少なくとも一方は、腐食防止剤を含有することが好ましい。また、上記接着層は、腐食防止剤を含有することが好ましい。上記各層が、腐食防止剤を含むことで、銀粒子等の腐食を抑制できるため、耐久性を向上できる。
 腐食防止剤は、制限されず、公知の腐食防止剤を適用できる。腐食防止剤としては、例えば、窒素原子及び硫黄原子の少なくとも1つを含有する化合物が挙げられる。腐食防止剤は、耐久性の観点から、窒素原子及び硫黄原子の少なくとも1つを含有する複素環式化合物であることが好ましく、1つ以上の窒素原子を含有する5員環構造を含む化合物であることがより好ましく、トリアゾール構造を含む化合物、ベンゾイミダゾール構造を含む化合物、及びチアジアゾール構造を含む化合物からなる群より選択される少なくとも1種の化合物であることが特に好ましい。1つ以上の窒素原子を含有する5員環構造は、単環の構造であってもよく、又は縮合環を構成する部分構造であってもよい。
 腐食防止剤の具体例としては、ベンゾイミダゾール、1,2,4-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、ブチルベンジルトリアゾール、アルキルジチオチアジアゾール、アルキルチオール、2-アミノピリミジン、5,6-ジメチルベンゾイミダゾール、2-アミノ-5-メルカプト-1,3,4-チアジアゾール、2,5-ジメルカプト-1,3,4-チアジアゾール、2-メルカプトピリミジン、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール、及び2-メルカプトベンゾイミダゾールが挙げられる。上記の中でも、腐食防止剤は、ベンゾイミダゾール、1,2,4-トリアゾール、及び2,5-ジメルカプト-1,3,4-チアジアゾールからなる群より選択される少なくとも1種の腐食防止剤であることが好ましい。
 感光層、導電層、及び接着層は、それぞれ、1種の腐食防止剤を含有していてもよく、又は2種以上の腐食防止剤を含有していてもよい。
 腐食防止剤の含有量は、腐食防止剤を含有する層の全質量に対して、0.01質量%~8質量%であることが好ましい。
[光安定化剤]
 本開示に係る導電性転写材料において、上記感光層、及び上記導電層の少なくとも一方は、光安定化剤を含有することが好ましい。また、上記接着層は、光安定化剤を含有することが好ましい。上記各層が、光安定化剤を含有することで、耐光性を向上できる。
 光安定化剤は、制限されず、公知の光安定化剤を適用できる。光安定化剤としては、例えば、米国特許出願公開第2015/0270024号明細書の段落0032~段落0043に記載の化合物を使用できる。
 光安定化剤の具体例としては、遷移金属化合物が挙げられる。遷移金属化合物に含まれる遷移金属としては、例えば、Fe、Co、Mn、及びVが挙げられる。遷移金属化合物に含まれる配位子としては、例えば、アセチルアセトナト(以下、「acac」ともいう。)、シクロペンタジエニル、ビピリジン、フェナントロリン、SO 2-、及びNO が挙げられる。遷移金属化合物の具体例としては、フェロセン、Fe(acac)、Co(acac)、Mn(acac)、VO(acac)、アスコルビン酸鉄、硫酸鉄、及びトリス(2,2’-ビピリジン)硫酸鉄が挙げられる。
 感光層、導電層、及び接着層は、それぞれ、1種の光安定化剤を含有していてもよく、又は2種以上の光安定化剤を含有していてもよい。
 光安定化剤の含有量は、光安定化剤を含有する層の全質量に対して、0.01質量%~10質量%であることが好ましい。
[不純物]
 本開示に係る導電性転写材料において、上記感光層、及び上記導電層における不純物の含有量は少ないことが好ましい。また、本開示に係る導電性転写材料が上記接着層を有する場合、上記接着層における不純物の含有量も少ないことが好ましい。
 不純物の具体例としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、マンガン、銅、アルミニウム、チタン、クロム、コバルト、ニッケル、亜鉛、スズ、及びこれらのイオン、並びに、遊離ハロゲン、及びハロゲン化物イオン(例えば、塩化物イオン、臭化物イオン、及びヨウ化物イオン)が挙げられる。
 各層における不純物の含有量は、質量基準で、1000ppm以下であることが好ましく、200ppm以下であることがより好ましく、40ppm以下であることがさらに好ましい。下限は特に定めるものではないが、現実的に減らせる限界及び測定限界の観点から、各層における不純物の含有量は、質量基準で、10ppb以上とすることができ、又は100ppb以上とすることができる。
 不純物を上記範囲に減らす方法としては、各層の原料に不純物を含まないものを選択すること、層の形成時に不純物の混入を防ぐこと、及び洗浄すること等が挙げられる。このような方法により、不純物量を上記範囲内とすることができる。
 不純物は、例えば、ICP(Inductively Coupled Plasma)発光分光分析法、原子吸光分光法等の公知の方法で定量することができる。
 また、各層における、ベンゼン、ホルムアルデヒド、トリクロロエチレン、1,3-ブタジエン、四塩化炭素、クロロホルム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサン等の化合物の含有量が少ないことが好ましい。これら化合物の各層中における含有量としては、質量基準で、1000ppm以下が好ましく、200ppm以下がより好ましく、40ppm以下がさらに好ましい。下限は特に定めるものではないが、現実的に減らせる限界及び測定限界の観点から、上記した化合物の各層中における含有量は、質量基準で、10ppb以上とすることができ、又は100ppb以上とすることができる。
 化合物の不純物は、上記の金属の不純物と同様の方法で含有量を抑制することができる。また、公知の測定法により定量することができる。
[クッション層]
 本開示に係る導電性転写材料は、上記仮支持体と上記感光層の間に、クッション層を有することが好ましい。本開示に係る導電性転写材料がクッション層を有することで、導電性転写材料の転写性を向上できる。
 クッション層は、現像処理によって除去され得るものであってもよく、又は仮支持体の剥離とともに感光層から剥離され得るものであってもよい。
 クッション層を有する導電性転写材料の一実施形態について図面を参照して説明する。図3は、本開示に係る導電性転写材料の層構成の一例を概略的に示している。図3に示す導電性転写材料120は、仮支持体10と、クッション層50と、感光層20と、導電層30と、接着層40と、をこの順で有する。
 クッション層は、バインダーポリマーを含有することが好ましい。バインダーポリマーとしては、制限されず、転写性を考慮して公知のバインダーポリマーから適宜選択できる。バインダーポリマーとしては、例えば、熱可塑性樹脂、及びアルカリ可溶性樹脂が挙げられる。
 熱可塑性樹脂は、制限されず、公知の熱可塑性樹脂を適用できる。熱可塑性樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、及びポリプロピレン等が挙げられる。
 アルカリ可溶性樹脂は、制限されず、公知の熱可塑性樹脂を適用できる。アルカリ可溶性樹脂としては、例えば、上記「感光層」及び「接着層」の項において説明したアルカリ可溶性バインダーが挙げられる。
 上記の中でも、バインダーポリマーは、現像性の観点から、アルカリ可溶性樹脂であることが好ましく、酸価60mgKOH/g以上の樹脂であることがより好ましく、酸価60mgKOH/g以上の、カルボキシ基を有する(メタ)アクリル樹脂であることが特に好ましい。クッション層におけるアルカリ可溶性樹脂の好ましい実施形態は、上記「感光層」において説明したアルカリ可溶性バインダーと同様である。
 クッション層は、他の成分を含有していてもよい。他の成分としては、例えば、可塑剤、及び界面活性剤が挙げられる。
 可塑剤は、制限されず、公知の可塑剤を適用できる。クッション層が可塑剤を含有することによって、本開示に係る導電性転写材料の転写性が向上する。可塑剤としては、市販品であってもよく、例えば、BPE-500(新中村化学工業株式会社製)、及びUC-3510(東亞合成株式会社製)が挙げられる。
 クッション層は、1種の可塑剤を含有していてもよく、又は2種以上の可塑剤を含有していてもよい。
 可塑剤の含有量は、クッション層の全質量に対して、10質量%~30質量%であることが好ましい。
 界面活性剤としては、例えば、上記「感光層」の項において説明した界面活性剤を適用できる。
 クッション層は、1種の界面活性剤を含有していてもよく、又は2種以上の界面活性剤を含有していてもよい。
 界面活性剤の含有量は、クッション層の全質量に対して、0.1質量%~5質量%であることが好ましい。
 クッション層の平均厚さは、転写性の観点から、1μm~20μmであることが好ましく、1μm~10μmであることが好ましく、3μm~10μmであることがより好ましい。クッション層の平均厚さは、上記仮支持体の平均厚さの測定方法に準ずる方法により測定する。
(クッション層の形成方法)
 クッション層の形成方法は、制限されず、公知の方法を適用できる。クッション層の形成方法としては、例えば、上記各成分を含むクッション層用組成物を、被塗布物上に塗布し、次いで乾燥させる方法が挙げられる。
 塗布方法としては、例えば、スリット塗布、スピン塗布、カーテン塗布、及びインクジェット塗布が挙げられる。
 乾燥温度は、溶剤等の揮発性成分の種類に応じて適宜設定することができる。乾燥温度は、例えば、60℃~120℃の範囲で設定することができる。
 乾燥時間は、制限されず、乾燥温度に応じて適宜設定すればよい。
 クッション層用組成物は、上記各成分、及び溶剤を任意の割合で混合することによって調製できる。
 溶剤としては、制限されず、例えば、上記「感光層」の項において説明した溶剤が挙げられる。
 クッション層用組成物中の固形分濃度は、制限されず、例えば、1質量%~40質量%の範囲で適宜設定できる。
[中間層]
 本開示に係る導電性転写材料は、上記仮支持体と上記感光層との間に、上記クッション層以外の中間層を有していてもよい。本開示に係る転写フィルムがクッション層を有する場合、中間層は、感光層とクッション層との間に配置されることが好ましい。
 中間層としては、特開2005-259138号公報の段落0084~0087に記載の中間層を用いることができる。中間層としては、水又はアルカリ水溶液に、分散又は溶解するものが好ましい。
 中間層に用いられる材料としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、セルロース、ポリアクリルアミド、ポリエチレンオキサイド、ゼラチン、ポリビニルエーテル、ポリアミド、及びこれらの共重合体が挙げられる。上記の中でも、ポリビニルアルコール、及びポリビニルピロリドンが好ましい。
 中間層の平均厚さは、0.5μm~10μmであることが好ましく、0.5μm~4μmであることがより好ましい。中間層の平均厚さは、上記仮支持体の平均厚さの測定方法に準ずる方法により測定する。
(中間層の形成方法)
 中間層の形成方法は、制限されず、公知の方法を適用できる。中間層の形成方法としては、例えば、上記各成分を含む中間層用組成物を、被塗布物上に塗布し、次いで乾燥させる方法が挙げられる。
 塗布方法としては、例えば、スリット塗布、スピン塗布、カーテン塗布、及びインクジェット塗布が挙げられる。
 乾燥温度は、溶剤等の揮発性成分の種類に応じて適宜設定することができる。乾燥温度は、例えば、60℃~120℃の範囲で設定することができる。
 乾燥時間は、制限されず、乾燥温度に応じて適宜設定すればよい。
 中間層用組成物は、上記各成分、及び溶剤を任意の割合で混合することによって調製できる。
 溶剤としては、制限されず、例えば、上記「感光層」の項において説明した溶剤が挙げられる。
 中間層用組成物中の固形分濃度は、制限されず、例えば、0.5質量%~30質量%の範囲で適宜設定できる。
[保護フィルム]
 本開示に係る導電性転写材料は、感光層を基準にして仮支持体が配置された側とは反対側の最外層の位置に、保護フィルムを有していてもよい。保護フィルムとしては、制限されず、公知の保護フィルムを適用できる。保護フィルムとしては、例えば、上記「仮支持体」の項において記載した樹脂フィルムを適用することができ、好ましい厚さ、及び物性も同様である。
<導電パターンの製造方法>
 本開示に係る導電パターンの製造方法としては、本開示に係る導電性転写材料を使用する方法であれば制限されない。本開示に係る導電パターンの製造方法は、基材上に、上記導電性転写材料を貼り合わせる工程(以下、「貼り合わせ工程」ともいう。)と、上記導電性転写材料における上記感光層をパターン露光する工程(以下、「露光工程」ともいう。)と、上記感光層を現像する工程(以下、「現像工程」ともいう。)と、をこの順で含むことが好ましい。本開示に係る導電パターンの製造方法によれば、上記工程を含むことで、表面抵抗及び接触抵抗が小さく、かつ、解像性に優れる導電パターンが形成される。
[貼り合わせ工程]
 貼り合わせ工程においては、基材上に、上記導電性転写材料を貼り合わせる(以下、「ラミネート」ともいう。)。
 基材としては、例えば、ガラス、シリコン、及びフィルムが挙げられる。基材は、ガラス、又はフィルムであることが好ましい。
 ガラスとしては、例えば、コーニング社のゴリラガラスに代表される強化ガラスが挙げられる。
 フィルムとしては、光学的に歪みが小さいフィルム、又は透明度が高いフィルムが好ましく、樹脂フィルムがより好ましい。
 樹脂フィルムを構成する樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリカーボネート、トリアセチルセルロース、及びシクロオレフィンポリマーが挙げられる。
 基材は、透明であることが好ましい。透明の基材としては、特開2010-86684号公報、特開2010-152809号公報、及び特開2010-257492号公報に用いられている材料を好ましく用いることができる。また、基材の屈折率は、1.50~1.52であることが好ましい。
 基材上には、必要に応じて、導電性材料を含む層等の任意の層が配置されていてもよい。
 導電性材料を含む層としては、例えば、金属層、及び導電性金属酸化物層が挙げられる。ここで、導電性金属酸化物層に関して使用される用語「導電性」とは、体積抵抗率が1×10Ωcm未満であることを意味する。体積抵抗率は、1×10Ωcm未満であることが好ましい。
 金属層を構成する金属としては、例えば、Al(アルミニウム)、Zn(亜鉛)、Cu(銅)、Fe(鉄)、Ni(ニッケル)、Cr(クロム)、及びMo(モリブデン)が挙げられる。金属層を構成する金属は、1種の金属元素からなる単体の金属であってもよく、2種以上の金属元素を含む金属であってもよく、又は少なくとも1種の金属元素を含む合金であってもよい。
 導電性金属酸化物層を構成する導電性金属酸化物としては、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、及びSiOが挙げられる。
 導電性材料を含む層は、導電性、及び細線形成性の観点から、金属層及び導電性金属酸化物層からなる群より選択される少なくとも1種の層であることが好ましく、金属層であることがより好ましく、銅層であることが特に好ましい。
 導電性材料を含む層としては、静電容量型タッチパネルに用いられる視認部のセンサーに相当する電極パターン又は周辺取り出し部の配線であることが好ましい。
 貼り合わせ工程において、導電性転写材料と基材とを貼り合わせる際、導電性転写材料において仮支持体とは反対側(すなわち、仮支持体から離間する方向)に配置された最外層と基材とを接触させることが好ましい。例えば、導電性転写材料と基材とを貼り合わせる際、導電性転写材料における導電層又は接着層と基材とを接触させることが好ましい。また、導電性転写材料が保護フィルムを有する場合には、保護フィルムを除去した後、基材上に導電性転写材料を貼り合わせることが好ましい。
 導電性転写材料と基材とを貼り合わせる方法においては、公知のラミネーターを使用できる。ラミネーターとしては、例えば、真空ラミネーター、及びオートカットラミネーターが挙げられる。
 ラミネート温度は、80℃~150℃であることが好ましく、90℃~150℃であることがより好ましく、100℃~150℃であることが特に好ましい。ゴムローラーを備えたラミネーターを用いる場合、ラミネート温度とは、ゴムローラー温度を指す。
 ラミネート時の基材温度としては、例えば、10℃~150℃が挙げられ、20℃~150℃が好ましく、30℃~150℃がより好ましい。基材として樹脂フィルムを用いる場合には、ラミネート時の基材温度は、10℃~80℃であることが好ましく、20℃~60℃であることがより好ましく、30℃~50℃であることが特に好ましい。
 ラミネート時の線圧は、0.5N/cm~20N/cmであることが好ましく、1N/cm~10N/cmであることがより好ましく、1N/cm~5N/cmであることが特に好ましい。
 ラミネート時の搬送速度は、0.5m/分~5m/分であることが好ましく、1.5m/分~3m/分であることがより好ましい。
[露光工程]
 露光工程においては、上記導電性転写材料における上記感光層をパターン露光する。感光層をパターン露光することで、感光層に露光部及び非露光部を形成できる。
 露光工程においては、導電性転写材料における感光層がポジ型である場合、露光された感光層(すなわち、露光部)は、極性変化によって現像液への溶解性が増大する。一方、導電性転写材料における感光層がネガ型である場合、露光された感光層(すなわち、露光部)は、硬化する。
 パターン露光の方法は、マスク(「フォトマスク」ともいう。)を介した露光であってもよく、又はレーザー等を用いたデジタル露光であってもよい。
 露光の光源は、制限されず、感光層の成分に応じて適宜選択できる。例えば、感光層がポジ型である場合、光源としては、露光部が現像液に溶解し得る波長域の光(例えば、365nm、又は405nm)を照射できる光源が挙げられる。また、例えば、感光層がネガ型である場合、光源としては、露光部が硬化し得る波長域の光(例えば、365nm、又は405nm)を照射できる光源が挙げられる。光源の具体例としては、各種レーザー、発光ダイオード(LED)、超高圧水銀灯、高圧水銀灯、及びメタルハライドランプが挙げられる。
 露光量は、5mJ/cm~200mJ/cmであることが好ましく、10mJ/cm~200mJ/cmであることがより好ましい。
 露光工程においては、基材上に転写された導電性転写材料から仮支持体を剥離した後に感光層をパターン露光してもよく、又は仮支持体を残したまま、感光層をパターン露光してもよい。
[現像工程]
 現像工程においては、上記感光層を現像する。
 現像工程においては、感光層がポジ型である場合、導電性転写材料の露光部を現像液によって除去することで、パターンを形成できる。また、感光層がネガ型である場合、導電性転写材料の非露光部を現像液によって除去することで、パターンを形成できる。
 現像液は、制限されず、公知の現像液を適用できる。現像液としては、例えば、特開平5-72724号公報に記載された現像液が挙げられる。
 現像液は、アルカリ性水溶液であることが好ましい。アルカリ性水溶液に含有され得るアルカリ性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、及びコリン(2-ヒドロキシエチルトリメチルアンモニウムヒドロキシド)が挙げられる。
 アルカリ性水溶液の25℃におけるpHは、8~13であることが好ましく、9~12であることがより好ましく、10~12であることが特に好ましい。
 アルカリ性水溶液中におけるアルカリ性化合物の含有量は、アルカリ性水溶液の全質量に対して、0.1質量%~5質量%であることが好ましく、0.1質量%~3質量%であることがより好ましい。
 現像液の液温度は、20℃~40℃であることが好ましい。
 現像の方式としては、例えば、パドル現像、シャワー現像、シャワー及びスピン現像、並びにディップ現像が挙げられる。
<積層体>
 本開示に係る積層体は、基材と、銀粒子、及びバインダーを含有する導電層と、平均厚さが500nm未満である、非硬化性であるポジ型感光性組成物に由来する樹脂層、又は感光性組成物の硬化物層と、をこの順で有する。本開示に係る積層体は、上記構成を有することで、導電層の表面抵抗及び接触抵抗を小さくする。以下、非硬化性であるポジ型感光性組成物に由来する樹脂層を単に「樹脂層」、感光性組成物の硬化物層を単に「硬化物層」ということがある。
 本開示に係る積層体は、耐薬品性、及び耐久性の観点から、樹脂層及び硬化物層のうち、硬化物層を有することが好ましい。すなわち、本開示に係る積層体は、基材と、銀粒子、及びバインダーを含有する導電層と、平均厚さが500nm未満である、感光性組成物の硬化物層と、をこの順で有することが好ましい。
 本開示に係る積層体の一実施形態について図面を参照して説明する。図4は、本開示に係る積層体の層構成の一例を示す概略図である。図4に示される積層体200は、基材60と、導電層30と、硬化物層21と、をこの順で有する。
 本開示に係る積層体において、少なくとも、導電層と、樹脂層又は硬化物層とは、パターン状の形状を有することが好ましい。本開示に係る積層体が後述する接着層を有する場合、接着層もパターン状の形状を有することが好ましい。
[基材]
 本開示に係る積層体は、基材を有する。基材は、上記「導電パターンの製造方法」の項において説明した基材と同義であり、好ましい実施形態も同様である。
[導電層]
 本開示に係る積層体は、銀粒子、及びバインダーを含有する導電層を有する。導電層は、上記「導電性転写材料」の項において説明した導電層と同義であり、好ましい実施形態も同様である。以下、本開示に係る積層体における導電層の好ましい実施形態について、具体的に説明する。なお、本開示に係る積層体における導電層の好ましい実施形態は、下記の事項に制限されるものではなく、上記「導電性転写材料」の項において説明した導電層の好ましい実施形態を適宜適用できる。
 銀粒子の平均粒子径は、5nm~100nmであることが好ましく、5nm~50nmであることがより好ましく、5nm~30nmであることが特に好ましい。銀粒子の平均粒子径は、既述の方法により測定する。
 銀粒子の含有量は、上記導電層の全質量に対して、60質量%~99質量%であることが好ましく、70質量%~99質量%であることがより好ましく、80質量%~99質量%であることがさらに好ましく、85質量%~99質量%であることが特に好ましい。
 バインダーは、水溶性バインダーであることが好ましく、セルロースであることがより好ましく、メチルセルロース、ヒドロキシプロピルメチルセルロース、及びヒドロキシプロピルセルロースからなる群より選択される少なくとも1種のセルロースであることがさらに好ましく、ヒドロキシプロピルメチルセルロースであることが特に好ましい。
 導電層は、五員環構造又は六員環構造を有する、セルロース以外の糖類を含有することが好ましく、五員環構造又は六員環構造を有する、セルロース以外の単糖であることがより好ましく、フルクトース、D-リボース、及びデオキシリボースからなる群より選択される少なくとも1種の糖であることがさらに好ましく、フルクトースであることが特に好ましい。
[樹脂層]
 本開示に係る積層体における樹脂層は、非硬化性であるポジ型感光性組成物によって形成される層である。つまり、本開示に係る積層体の製造に用いられる感光性組成物が、ポジ型であり、かつ、硬化性の成分を含有しない場合、得られる積層体は樹脂層を有する。例えば、後述するように本開示に係る導電性転写材料を用いて積層体を製造する場合、樹脂層は、ポジ型の感光層の貼り合わせ、及び熱処理等を経て形成される。樹脂層は、上記「ポジ型の感光層」の項において説明した成分を含有していてもよい。非硬化性であるポジ型感光性組成物が光酸発生剤を含有する場合、樹脂層における光酸発生剤は、失活していてもよく、又は失活していなくてもよい。
[硬化物層]
 本開示に係る積層体における硬化物層は、感光性組成物が硬化してなる層である。具体的に、感光性組成物がネガ型である場合、又は感光性組成物がポジ型であり、かつ、硬化性の成分を含有する場合、得られる積層体は硬化物層を有する。
 硬化物層を形成可能な感光性組成物としては、硬化性の成分を含有する組成物であれば制限されない。感光性組成物は、重合性化合物、及び光重合開始剤を含有することが好ましい。重合性化合物としては、上記「ネガ型の感光層」の項において説明した重合性化合物を適用でき、好ましい実施形態も同様である。光重合開始剤としては、上記「ネガ型の感光層」の項において説明した光重合開始剤を適用でき、好ましい実施形態も同様である。上記感光性組成物は、ネガ型であってもよく、又はポジ型であってもよい。ポジ型の感光性組成物は、熱硬化性の成分を含有することにより硬化物を形成できる。
 硬化物層は、アルカリ可溶性バインダーを含有していてもよい。アルカリ可溶性バインダーとしては、上記「ネガ型の感光層」の項において説明したアルカリ可溶性バインダーを適用でき、好ましい実施形態も同様である。
 また、硬化物層は、上記「ネガ型の感光層」の項において説明した他の成分B又は他の成分Bの硬化物を含有していてもよい。
 樹脂層又は硬化物層の平均厚さは、400nm以下であることが好ましく、300nm以下であることがより好ましく、200nm以下であることがさらに好ましく、150nm以下であることが特に好ましく、60nm以下であることが最も好ましい。硬化物層の平均厚さが上記範囲内であることで、接触抵抗をさらに小さくできる。
 樹脂層又は硬化物層の平均厚さの下限は、制限されない。樹脂層又は硬化物層の平均厚さは、例えば、1nm以上、好ましくは10nm以上の範囲で適宜設定すればよい。
 樹脂層又は硬化物層の平均厚さは、上記仮支持体の平均厚さの測定方法に準ずる方法により測定する。
[接着層]
 本開示に係る積層体は、上記基材と上記導電層との間に、平均厚さが500nm未満である接着層を有することが好ましい。本開示に係る積層体が、平均厚さが500nm未満である接着層を有することで、基材と導電層との密着性を向上でき、また、接着層を介して導電層と基板とを導通することもできる。
 接着層を有する積層体の一実施形態について図面を参照して説明する。図5は、本開示に係る積層体の層構成の一例を概略的に示している。図5に示す積層体210は、基材60と、接着層40と、導電層30と、硬化物層21と、をこの順で有する。
 接着層は、上記「導電性転写材料」の項において説明した接着層であってもよく、又は上記接着層が硬化してなる層であってもよい。接着層の好ましい実施形態は、上記「導電性転写材料」の項において説明した接着層の好ましい実施形態と同様である。接着層が硬化してなる層は、例えば、層中の硬化性(例えば、光硬化性、及び熱硬化性)の成分が露光又は加熱によって硬化されることによって形成される。
 接着層の平均厚さは、250nm以下であることが好ましく、100nm以下であることがより好ましく、80nm以下であることが特に好ましい。接着層の平均厚さが上記範囲内であることで、接着層を介して導電層と基材とを導通できる。
 接着層の平均厚さは、1nm以上であることが好ましく、10nm以上であることがより好ましく、20nm以上であることが特に好ましい。接着層の平均厚さが上記範囲内であることで、基材との密着性を向上できる。
 接着層の平均厚さは、上記仮支持体の平均厚さの測定方法に準ずる方法により測定する。
[腐食防止剤]
 本開示に係る積層体において、上記導電層、及び上記樹脂層又は上記硬化物層の少なくとも1つは、腐食防止剤を含有することが好ましい。本開示に係る積層体が上記接着層を有する場合、上記導電層、上記樹脂層又は上記硬化物層、及び上記接着層の少なくとも1つは、腐食防止剤を含有することが好ましい。上記各層が、腐食防止剤を含むことで、銀粒子等の腐食を抑制できるため、耐久性を向上できる。腐食防止剤は、上記「導電性転写材料」の項において説明した腐食防止剤と同義であり、好ましい実施形態も同様である。
[光安定化剤]
 本開示に係る積層体において、上記導電層、及び上記樹脂層又は上記硬化物層の少なくとも1つは、光安定化剤を含有することが好ましい。本開示に係る積層体が上記接着層を有する場合、上記導電層、上記樹脂層又は上記硬化物層、及び上記接着層の少なくとも1つは、光安定化剤を含有することが好ましい。上記各層が、光安定化剤を含有することで、耐光性を向上できる。光安定化剤は、上記「導電性転写材料」の項において説明した光安定化剤と同義であり、好ましい実施形態も同様である。
[不純物]
 本開示に係る積層体において、上記導電層、及び上記樹脂層又は上記硬化物層における不純物の含有量は少ないことが好ましい。また、本開示に係る積層体が上記接着層を有する場合、上記接着層における不純物の含有量も少ないことが好ましい。不純物は、上記「導電性転写材料」の項において説明した不純物と同義であり、上記各層における不純物の含有量の好ましい範囲も同様である。
[積層体の製造方法]
 本開示に係る積層体の製造方法としては、本開示に係る導電性転写材料を用いる方法が好ましい。本開示に係る導電性転写材料を用いる方法としては、例えば、上記「導電パターンの製造方法」の項において説明した方法が挙げられる。例えば、本開示に係る導電性転写材料を用いて、上記「導電パターンの製造方法」の項において説明した、貼り合わせ工程、及び露光工程を少なくとも行うことによって、本開示に係る積層体を製造できる。
 また、上記「導電性転写材料」の項において説明した各層の形成方法によって、基材上に導電層と、感光性組成物を含有する層と、を形成した後、感光性組成物を含有する層を硬化することにより硬化物層を形成してもよい。
<タッチパネル>
 本開示に係るタッチパネルは、本開示に係る積層体を有する。本開示に係るタッチパネルは、上記積層体を有することで、導電層の表面抵抗及び接触抵抗を小さくする。
 本開示に係るタッチパネルにおける積層体は、上記「積層体」の項において説明した積層体と同義であり、好ましい実施形態も同様である。
 本開示に係るタッチパネルにおける検出方法としては、例えば、抵抗膜方式、静電容量方式、超音波方式、電磁誘導方式、及び光学方式が挙げられる。上記の中でも、検出方法としては、静電容量方式が好ましい。
 タッチパネル型としては、例えば、いわゆるインセル型(例えば、特表2012-517051号公報の図5、図6、図7、図8に記載のもの)、いわゆるオンセル型(例えば、特開2013-168125号公報の図19に記載のもの、特開2012-89102号公報の図1及び図5に記載のもの)、OGS(One Glass Solution)型、TOL(Touch-on-Lens)型(例えば、特開2013-54727号公報の図2に記載のもの)、その他の構成(例えば、特開2013-164871号公報の図6に記載のもの)、及び各種アウトセル型(いわゆる、GG、G1・G2、GFF、GF2、GF1、G1Fなど)が挙げられる。
 本開示に係るタッチパネルとしては、『最新タッチパネル技術』(2009年7月6日、株式会社テクノタイムズ社発行)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。
 タッチパネルの製造方法は、制限されず、公知の方法を適用できる。タッチパネルの製造方法においては、例えば、上記積層体の製造方法を適用できる。
<液晶表示装置>
 本開示に係る液晶表示装置は、本開示に係る積層体を有する。本開示に係る液晶表示装置は、上記積層体を有することで、導電層の表面抵抗及び接触抵抗を小さくできる。
 本開示に係る液晶表示装置における積層体は、上記「積層体」の項において説明した積層体と同義であり、好ましい実施形態も同様である。積層体は、液晶表示装置の視認部に配置されていてもよく、又は視認部以外の領域に配置されていてもよい。
 本開示に係る液晶表示装置の構造は、上記積層体を有していれば制限されない。液晶表示装置については、例えば「次世代液晶ディスプレイ技術(内田 龍男編集、株式会社工業調査会、1994年発行)」に記載されている。
 以下、実施例により本開示を詳細に説明するが、本開示はこれらに制限されるものではない。すなわち、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本開示の趣旨を逸脱しない限り、適宜、変更することができる。
 以下の実施例において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算で求めた重量平均分子量である。また、酸価は、JIS K0070:1992に記載の方法にしたがって測定した。
<銀粒子の平均粒子径>
 透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、300個の銀粒子を観察して、各銀粒子の直径を求めた。測定値を算術平均することで、銀粒子の平均粒子径を求めた。
<実施例1>
(導電性転写材料の作製)
 スリット状ノズルを用いて、厚さ16μmのポリエチレンテレフタレートフィルム(保護フィルム、ルミラー16KS40(東レ株式会社製))の上に、以下の接着層、導電層、及び感光層をこの順に設置した。
-接着層の形成-
 アクリル酸/アクリル酸-メタクリル酸グリシジル付加体/アクリル酸2-エチルヘキシル(モル比:22/38/40、質量比:9.3/47.6/43.1、重量平均分子量:9,700、Mw/Mn:1.92、Tg(ガラス転移温度):-31℃、I/O:0.8、酸価:84.8mgKOH/g)の1-メトキシ-2-プロパノール溶液(固形分1.5質量%)を、スリット状ノズルを用いて上記ポリエチレンテレフタレートフィルム上に塗布した。次いで、80℃で2分間乾燥した。接着層の平均厚さは0.06μmであった。上記「I/O」は、有機概念図に基づく無機性値Iを有機性値Oで除した値を指す。
-導電層用組成物Ag-1の調製-
 以下の各成分を混合することによって導電層用組成物Ag-1を調製した。
・Agインク(銀粒子分散液、バンドー化学株式会社製、商品名SW-1020):3.0質量部
・ヒドロキシプロピルメチルセルロース(バインダー、信越化学工業株式会社製、商品名METOLOSE(登録商標)65SH-5の5質量%水溶液):2.0質量部
・フルクトース(糖類、富士フイルム和光純薬株式会社製、5質量%の水溶液):1.0質量部
・メガファックF444(界面活性剤、DIC株式会社製):0.001質量部
-導電層の形成-
 得られた導電層用組成物Ag-1を、上記接着層上に塗布し、80℃3分乾燥させて、平均厚さ0.8μmの導電層を形成した。
-感光層の形成-
 以下の各成分を混合することによって感光層用組成物を調製した。
・下記構造のポリマー(重量平均分子量38、000):5.0質量部
・ジペンタエリスリトールヘキサアクリレート(新中村化学工業株式会社製):5.0質量部
・IRGACURE OXE02(BASFジャパン株式会社):0.5質量部
・メガファックF-551A(DIC株式会社製):0.01質量部
・メチルエチルケトン:60質量部
・プロピレングリコールモノメチルエーテルアセテート:30質量部
Figure JPOXMLDOC01-appb-C000005
 上記導電性層の上に、上記感光層用組成物を塗布し、次いで80℃で2分間乾燥させることによって、平均厚さ0.06μmの感光層を形成した。
 次に、上記感光層の上に厚さ16μmのポリエチレンテレフタレートフィルム(仮支持体、ルミラー16KS40(東レ株式会社製))を圧着することにより、実施例1の導電性転写材料を作製した。
<実施例2~5及び13~19>
 導電層用組成物Ag-1の組成を表1の記載に従って変更したこと以外は、実施例1と同様の方法により、導電層用組成物Ag-2~Ag-12をそれぞれ調製した。導電層用組成物Ag-1に代えて、表2の記載に従って選択した導電層用組成物Ag-2~Ag-12を使用したこと以外は、実施例1と同様の方法により導電性転写材料を作製した。
<実施例6~10、及び比較例1>
 感光層の平均厚さを表2の記載に従って変更したこと以外は、実施例1と同様の方法により導電性転写材料を作製した。
<実施例11>
 接着層の平均厚さを表2の記載に従って変更したこと以外は、実施例1と同様の方法により導電性転写材料を作製した。
<実施例12>
 接着層を形成しなかったこと以外は、実施例1と同様の方法により導電性転写材料を作製した。
<比較例2>
 導電層用組成物Ag-1に代えて、以下の方法により調製した導電層用組成物Ag-13を使用したこと、及び接着層と感光層とを形成しなかったこと以外は、実施例1と同様の方法により導電性転写材料を作製した。
-導電層用組成物Ag-13の調製-
 実施例1において使用した導電層用組成物Ag-1に、ジペンタエリスリトールヘキサアクリレート(新中村化学工業株式会社製):5.0質量部、及びIRGACURE OXE02(BASFジャパン株式会社):0.5質量部をノルマルプロパノールに溶解した溶液を添加することにより、銀濃度が67質量%である組成物Ag-13を調製した。
<ラミネート性>
 保護フィルムを剥離した上記各導電性転写材料を、シクロオレフィンポリマーフィルム(厚さ38μm、屈折率1.53)上に貼り合わせること(以下、本段落において「ラミネート加工」という。)によって、パターン形成用積層体をそれぞれ得た。ラミネート加工は、MCK社製真空ラミネーターを用いて、シクロオレフィンポリマーフィルム温度40℃、ゴムローラー温度100℃、線圧3N/cm、搬送速度2m/分の条件で行った。また、ラミネート加工においては、導電性転写材料から保護フィルムを剥離することによって露出する面を、シクロオレフィンポリマーフィルム表面に接触させた。
 次に、各パターン形成用積層体を用いて、JIS K 5400を参考に100マスのクロスカット試験を実施した。仮支持体を剥離したパターン形成用積層体の試験面である感光層(ただし、比較例2の導電性転写材料を用いて作製したパターン形成用積層体においては導電層を試験面とした。以下、本段落において同じ。)に、カッターナイフを用いて1mm四方の格子状の切り傷を入れた後、透明粘着テープ#600(スリーエムジャパン株式会社製)を強く圧着させた。透明粘着テープを180度方向に剥離した後、感光層の状態を顕微鏡で観察し、剥離前の感光層の面積に対する、剥離後に残存する感光層の面積の割合([剥離後に残存する感光層の面積]/[剥離前の感光層の面積])を算出し、以下の基準にしたがってラミネート性を評価した。A、B又はCであることが実用上許容されるレベルであり、A又はBであることが好ましく、Aであることがより好ましい。評価結果を表2に示す。
(基準)
 A:95%以上100%以下
 B:65%以上95%未満
 C:35%以上65%未満
 D:35%未満
<解像度>
 以下の方法によって作製した、ラインアンドスペースの比(パターン幅/パターンの間隔)が1/3である各電極パターン積層体において、残渣、及びパターンの欠けがないパターンの最小線幅を解像度とした。測定結果を表2に示す。
(電極パターン積層体の作製)
 保護フィルムを剥離した上記各導電性転写材料を用いて、上記ラミネート性の評価に記載した方法と同様の方法によりパターン形成用積層体をそれぞれ作製した。上記各パターン形成用積層体を以下の方法によりパターニング処理することにより、パターン化された導電層を有する電極パターン積層体をそれぞれ作製した。
 超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング株式会社製)を用いて、露光マスク(透明電極形成用パターンを有する石英露光マスク)面と仮支持体とを密着させ、仮支持体を介して露光量1000mJ/cm(i線)でパターン露光した。仮支持体を剥離後、炭酸ソーダ1質量%水溶液を用いて、23℃で30秒間現像処理を実施した。現像処理後、電極パターンに超純水を噴射することで残渣を除去した。以上の手順により、接着層、導電層、及び感光層をパターニングした。その後、エアを吹きかけて水分を除去した。次いで、145℃、30分間の加熱処理を行うことで、電極パターン積層体を作製した。
 なお、上記各電極パターン積層体における硬化物層(感光層の硬化物)の平均厚さは、露光前の感光層の平均厚さと同じである。
<シート低抗(表面抵抗)>
 上記電極パターン積層体の作製において、マスクを介さずに全面露光したこと以外は、上記電極パターン積層体の作製方法と同様の方法により、抵抗測定用積層体を作製した。非接触式の渦電流方式の抵抗測定器EC-80P(ナプソン株式会社製)を用いて、抵抗測定用積層体のシート抵抗を測定した。測定結果を表2に示す。
<接触低抗>
 TLM(Transmission Line Model)法によって感光層の接触抵抗を測定した。具体的な測定方法は、以下のとおりである。
 保護フィルムを剥離した上記各導電性転写材料を、シクロオレフィンポリマーフィルム(厚さ38μm、屈折率1.53)上に貼り合わせ、仮支持体を剥離することで、「シクロオレフィンポリマーフィルム/接着層/導電層/感光層」の構造を有する積層体を得た。ただし、実施例12においては「シクロオレフィンポリマーフィルム/導電層/感光層」の構造を有する積層体を、比較例2においては「シクロオレフィンポリマーフィルム/導電層」の構造を有する積層体を、それぞれ得た。
 別途、シクロオレフィンポリマーフィルム(厚さ38μm、屈折率1.53)上に、2mm、4mm、6mm、8mm、12mm、及び20mmの間隔で、互いに平行かつ独立に配置された7つの銅電極(厚さ300nm、幅500μm)を形成した。
 銅電極を形成したシクロオレフィンポリマーフィルムの銅電極を形成した側に、「シクロオレフィンポリマーフィルム/接着層/導電層/感光層」の構造を有する積層体の仮支持体を剥離して露出した面を貼り合わせた。これにより、「シクロオレフィンポリマーフィルム/銅電極/感光層/導電層/接着層/シクロオレフィンポリマーフィルム」の構造を有する試験体を得た。ただし、実施例12においては接触層が無い構造(シクロオレフィンポリマーフィルム/銅電極/感光層/導電層/シクロオレフィンポリマーフィルム)を有する試験体を、比較例2においては銅電極上に導電層が積層された構造(シクロオレフィンポリマーフィルム/銅電極/導電層/シクロオレフィンポリマーフィルム)を有する試験体を、それぞれ作製した。
 上記各試験体の平面視において、導電層は、7つの銅電極を横断するように配置されており、各銅電極と導電層とのなす角は90°であった。隣り合う銅電極間の抵抗を測定し、そして、銅電極間の抵抗(縦軸)及び距離(横軸)の関係をプロットすることによって、銅電極と感光層(比較例2においては導電層)との接触抵抗を求めた。銅電極間の抵抗の測定には、抵抗率計(ロレスタ-GP、株式会社三菱ケミカルアナリテック製)を用いた。得られた接触抵抗を、以下の基準に従って評価した。評価結果を表2に示す。
(基準)
 A:接触抵抗が10Ω未満である。
 B:接触抵抗が10Ω以上20Ω未満である。
 C:接触抵抗が20Ω以上50Ω未満である。
 D:接触抵抗が50Ω以上である。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表2において、次の略号は、それぞれ、以下の意味を有する。
・「HPMC」:ヒドロキシプロピルメチルセルロース
・「PVP」:ポリビニルピロリドン
・「MC」:メチルセルロース
・「HPC」:ヒドロキシプロピルセルロース
・「PVA」:ポリビニルアルコール
 表2により、実施例1~19は、比較例1~2に比べて、接触抵抗が小さいことがわかった。また、実施例1~19は、感光性を有する導電層のみを有する導電性転写材料を用いた比較例2に比べて、シート抵抗が小さく、そして、解像度が優れることがわかった。さらに、実施例1~11及び13~19は、比較例2に比べて、ラミネート性に優れることがわかった。
 2019年3月28日に出願された日本国特許出願2019-064594号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。

Claims (24)

  1.  仮支持体と、
     平均厚さが500nm未満である感光層と、
     銀粒子、及びバインダーを含有する導電層と、
     をこの順で有する導電性転写材料。
  2.  前記バインダーが、水溶性バインダーである請求項1に記載の導電性転写材料。
  3.  前記水溶性バインダーが、セルロースである請求項2に記載の導電性転写材料。
  4.  前記水溶性バインダーが、メチルセルロース、ヒドロキシプロピルメチルセルロース、及びヒドロキシプロピルセルロースからなる群より選択される少なくとも1種のセルロースである請求項2に記載の導電性転写材料。
  5.  前記導電層の前記感光層とは反対側に、接着層を有する請求項1~請求項4のいずれか1項に記載の導電性転写材料。
  6.  前記接着層の平均厚さが、500nm未満である請求項5に記載の導電性転写材料。
  7.  前記接着層が、アルカリ可溶性バインダーを含有する請求項5又は請求項6に記載の導電性転写材料。
  8.  前記感光層の平均厚さが、10nm以上である請求項1~請求項7のいずれか1項に記載の導電性転写材料。
  9.  前記感光層の平均厚さが、200nm以下である請求項1~請求項8のいずれか1項に記載の導電性転写材料。
  10.  前記感光層の平均厚さが、150nm以下である請求項1~請求項9のいずれか1項に記載の導電性転写材料。
  11.  前記銀粒子の平均粒子径が、5nm~100nmであり、前記銀粒子の含有量が、前記導電層の全質量に対して、60質量%~99質量%である請求項1~請求項10のいずれか1項に記載の導電性転写材料。
  12.  前記導電層が、五員環構造又は六員環構造を有する、セルロース以外の糖類を含有する請求項1~請求項11のいずれか1項に記載の導電性転写材料。
  13.  前記感光層が、アルカリ可溶性バインダー、重合性化合物、及び光重合開始剤を含有する請求項1~請求項12のいずれか1項に記載の導電性転写材料。
  14.  前記仮支持体と前記感光層との間に、平均厚さが1μm~20μmであるクッション層を有する請求項1~請求項13のいずれか1項に記載の導電性転写材料。
  15.  基材上に、請求項1~請求項14のいずれか1項に記載の導電性転写材料を貼り合わせる工程と、
     前記導電性転写材料における前記感光層をパターン露光する工程と、
     前記感光層を現像する工程と、
     をこの順で含む導電パターンの製造方法。
  16.  基材と、
     銀粒子、及びバインダーを含有する導電層と、
     平均厚さが500nm未満である、感光性組成物の硬化物層と、
     をこの順で有する積層体。
  17.  前記バインダーが、水溶性バインダーである請求項16の積層体。
  18.  前記水溶性バインダーが、セルロースである請求項17に記載の積層体。
  19.  前記水溶性バインダーが、メチルセルロース、ヒドロキシプロピルメチルセルロース、及びヒドロキシプロピルセルロースからなる群より選択される少なくとも1種のセルロースである請求項17に記載の積層体。
  20.  前記基材と前記導電層との間に、平均厚さが500nm未満である接着層を有する請求項16~請求項19のいずれか1項に記載の積層体。
  21.  前記銀粒子の平均粒子径が、5nm~100nmであり、前記銀粒子の含有量が、前記導電層の全質量に対して、60質量%~99質量%である請求項16~請求項20のいずれか1項に記載の積層体。
  22.  前記導電層が、五員環構造又は六員環構造を有する、セルロース以外の糖類を含有する請求項16~請求項21のいずれか1項に記載の積層体。
  23.  請求項16~請求項22のいずれか1項に記載の積層体を有するタッチパネル。
  24.  請求項16~請求項22のいずれか1項に記載の積層体を有する液晶表示装置。
PCT/JP2019/050521 2019-03-28 2019-12-24 導電性転写材料、導電パターンの製造方法、積層体、タッチパネル、及び液晶表示装置 WO2020194948A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021508761A JP7317102B2 (ja) 2019-03-28 2019-12-24 導電性転写材料及び導電パターンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019064594 2019-03-28
JP2019-064594 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020194948A1 true WO2020194948A1 (ja) 2020-10-01

Family

ID=72610793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050521 WO2020194948A1 (ja) 2019-03-28 2019-12-24 導電性転写材料、導電パターンの製造方法、積層体、タッチパネル、及び液晶表示装置

Country Status (3)

Country Link
JP (1) JP7317102B2 (ja)
TW (1) TW202035152A (ja)
WO (1) WO2020194948A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004430A1 (ja) * 2022-06-30 2024-01-04 富士フイルム株式会社 転写フィルム、パターンの形成方法、及び回路配線の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11652052B2 (en) 2021-03-29 2023-05-16 Tpk Advanced Solutions Inc. Contact structure and electronic device having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002332A1 (ja) * 2010-07-02 2012-01-05 富士フイルム株式会社 導電層転写材料、及びタッチパネル
JP2013010261A (ja) * 2011-06-29 2013-01-17 Fujifilm Corp 導電性フイルム
WO2013151052A1 (ja) * 2012-04-04 2013-10-10 日立化成株式会社 導電パターンの形成方法及び導電パターン基板
JP2016043496A (ja) * 2014-08-19 2016-04-04 国立大学法人名古屋大学 導電性フィルム
JP2016110726A (ja) * 2014-12-03 2016-06-20 三菱製紙株式会社 光透過性導電材料積層体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210972A (ja) * 2008-03-06 2009-09-17 Jsr Corp 転写フィルムおよびパターンの形成方法
JP6008519B2 (ja) * 2012-03-08 2016-10-19 国立大学法人東京工業大学 金属ナノ粒子及びその製造方法並びに導電性インク
JP2016097595A (ja) * 2014-11-21 2016-05-30 日立化成株式会社 積層体及びその製造方法、フィルムセット、感光性導電フィルム、並びに、電子部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002332A1 (ja) * 2010-07-02 2012-01-05 富士フイルム株式会社 導電層転写材料、及びタッチパネル
JP2013010261A (ja) * 2011-06-29 2013-01-17 Fujifilm Corp 導電性フイルム
WO2013151052A1 (ja) * 2012-04-04 2013-10-10 日立化成株式会社 導電パターンの形成方法及び導電パターン基板
JP2016043496A (ja) * 2014-08-19 2016-04-04 国立大学法人名古屋大学 導電性フィルム
JP2016110726A (ja) * 2014-12-03 2016-06-20 三菱製紙株式会社 光透過性導電材料積層体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004430A1 (ja) * 2022-06-30 2024-01-04 富士フイルム株式会社 転写フィルム、パターンの形成方法、及び回路配線の製造方法

Also Published As

Publication number Publication date
JPWO2020194948A1 (ja) 2021-11-18
JP7317102B2 (ja) 2023-07-28
TW202035152A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
TWI689852B (zh) 觸控式面板用電極的保護膜的形成方法、感光性樹脂組成物與感光性元件、以及觸控式面板的製造方法
TWI625655B (zh) 觸控式面板用電極的保護膜的形成方法、感光性樹脂組成物與感光性元件、以及觸控式面板的製造方法
JP6858269B2 (ja) 回路配線の製造方法、タッチパネルの製造方法及びパターン付き基材の製造方法
WO2020137284A1 (ja) 導電性転写材料、パターンつき基板の製造方法、回路基板の製造方法、積層体、及びタッチパネル
WO2020137797A1 (ja) 導電性転写材料、パターンつき基板の製造方法、積層体、及びタッチパネル
WO2019102771A1 (ja) 感光性転写材料、樹脂パターン製造方法、及び、配線製造方法
JP7317102B2 (ja) 導電性転写材料及び導電パターンの製造方法
WO2018186428A1 (ja) タッチセンサ及びタッチセンサの製造方法
JP2017009702A (ja) 感光性樹脂組成物及び感光性エレメント
TW202003595A (zh) 感光性轉印材料、樹脂圖案之製造方法、電路配線之製造方法及觸控面板之製造方法
WO2021132389A1 (ja) 導電性基板の製造方法、導電性基板、タッチセンサー、アンテナ、電磁波シールド材料
JPWO2020116068A1 (ja) 転写材料、樹脂パターンの製造方法、回路配線の製造方法、及びタッチパネルの製造方法
WO2020137144A1 (ja) 感光性転写材料、積層体、タッチパネル、パターン付き基板の製造方法、回路基板の製造方法、及びタッチパネルの製造方法
JP7152593B2 (ja) 転写フィルム、及び、パターン付き基板の製造方法
JP7389071B2 (ja) 導電性パターンの形成方法、メタルメッシュセンサーの製造方法、及び、構造体の製造方法
WO2021132384A1 (ja) 導電性基板の製造方法、導電性基板、タッチセンサー、アンテナ、電磁波シールド材料
WO2021024650A1 (ja) 感光性転写部材、樹脂パターンの製造方法、回路配線の製造方法、タッチパネルの製造方法
JPWO2017056530A1 (ja) 感光性樹脂組成物、感光性エレメント、レジストパターンの形成方法及びタッチパネルの製造方法
WO2020174767A1 (ja) パターンつき基板の製造方法、回路基板の製造方法、タッチパネルの製造方法、及び積層体
JP2021144723A (ja) 硬化膜付きタッチパネル用基材の製造方法、それに用いる感光性樹脂組成物、感光性エレメント及びタッチパネル
TW202003594A (zh) 感光性轉印材料、樹脂圖案之製造方法、電路配線之製造方法及觸控面板之製造方法
TW201832000A (zh) 感光性轉印材料、電路配線的製造方法及觸控面板的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508761

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921725

Country of ref document: EP

Kind code of ref document: A1