WO2020194840A1 - 音響障害防止設備及びその設計方法 - Google Patents

音響障害防止設備及びその設計方法 Download PDF

Info

Publication number
WO2020194840A1
WO2020194840A1 PCT/JP2019/043852 JP2019043852W WO2020194840A1 WO 2020194840 A1 WO2020194840 A1 WO 2020194840A1 JP 2019043852 W JP2019043852 W JP 2019043852W WO 2020194840 A1 WO2020194840 A1 WO 2020194840A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic
unit
prevention equipment
space
raw
Prior art date
Application number
PCT/JP2019/043852
Other languages
English (en)
French (fr)
Inventor
心平 八並
Original Assignee
日本環境アメニティ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本環境アメニティ株式会社 filed Critical 日本環境アメニティ株式会社
Priority to JP2021508711A priority Critical patent/JP7234344B2/ja
Priority to EP19921769.6A priority patent/EP3951112B1/en
Priority to US17/598,697 priority patent/US20220145618A1/en
Publication of WO2020194840A1 publication Critical patent/WO2020194840A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/20Reflecting arrangements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/99Room acoustics, i.e. forms of, or arrangements in, rooms for influencing or directing sound
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/12Rooms, e.g. ANC inside a room, office, concert hall or automobile cabin

Definitions

  • the present invention relates to acoustic damage prevention equipment and a design method thereof. More specifically, the acoustic obstacle prevention equipment including the wall surface surrounding the space, the ceiling surface or the floor surface, and the acoustic obstacle prevention equipment composed of a plurality of raw surfaces, and the acoustic diffuser arranged in the space surrounded by the raw surfaces, etc. , And its design method.
  • acoustic diffusers such as the acoustic diffusion panel described in Patent Document 1 have been proposed as a method for individually adjusting the prevention of multiple reflections and the diffusion of sound.
  • a rotating portion is provided so that the angle of the panel can be changed, so that the sound absorption and reflection directions are individually adjusted at the site to prevent acoustic damage.
  • an object of the present invention to provide an acoustic obstacle prevention device and a design method thereof for preventing acoustic obstacles by appropriately designing a bare surface surrounding a space and a surface structure of an acoustic diffuser. To do.
  • the first configuration of the acoustic disturbance prevention equipment has a plurality of raw surfaces constituting a wall surface, a ceiling surface or a floor surface surrounding the space, and the raw surfaces are at angles with each other. Is n ⁇ (n is a natural number), and the reflection between these raw surfaces prevents acoustic damage.
  • the above configuration is shown, for example, in FIGS. 1 and 2, the effect is shown in FIG. 14, and the "bare surface” is shown as the first bare surface SR, Sr0, 1, ....
  • the angle between the raw surfaces is defined by the angle n ⁇ which is a natural number n times the angle ⁇ defined by the so-called golden ratio (1: ⁇ ). Due to the nature of the golden ratio, the angles according to these regulations do not appear the same even after repeated rotations. Therefore, the plurality of bare surfaces forming the wall surface, ceiling surface, or floor surface surrounding the space are not parallel or equal, and the occurrence of flutter echo or the like due to multiple reflection can be effectively prevented.
  • the second configuration of the sound prevention equipment according to the present invention has a plurality of other raw surfaces constituting the acoustic diffuser installed in the space, and the other raw surfaces have an angle of n ⁇ (n is a natural number). ), And the reflection between these other raw surfaces or the raw surfaces surrounding the space and between these other raw surfaces prevents acoustic interference.
  • FIG. 1 This second configuration is shown in FIG. 1, for example, and its effect is shown in FIG. 14, “The other raw surfaces are the second raw surfaces SV, Sv0, 1, 2, ...:, the third raw surfaces SH, Sh0, 1, 2, ... ,
  • the acoustic diffuser O is shown as the vertical acoustic diffuser OV, Ov0, 1, 2, ...:, the horizontal acoustic diffuser OH, Oh0, 1, 2, ...
  • the acoustics installed in the space.
  • the mutual angles of the plurality of other surface surfaces constituting the diffuser are also designed as n ⁇ . As a result, acoustic interference is prevented between the other surface surfaces by the above principle.
  • the respective raw surfaces or the other raw surfaces may be substantially rectangular, and each raw surface may have an aspect ratio of 1: ⁇ .
  • the wall surface, the ceiling surface, or the floor surface surrounding the space is a substantially rectangular parallelepiped, and the ratio of the three sides of the rectangular parallelepiped may be 1 / ⁇ : 1: ⁇ . Examples of these are shown, for example, in FIG.
  • the third configuration of the acoustic disturbance prevention equipment according to the present invention has an acoustic diffuser installed in a space, and the acoustic diffuser is composed of a plurality of units, and the units are substantially similar to each other or congruent with each other.
  • Each unit is arranged so that the angle between the units is n ⁇ (n is a natural number), and the plain surface between these facets or surrounding the space and the facets thereof. The reflection between them is to prevent acoustic damage.
  • This third configuration is shown in FIGS. 4 to 13 and its effect is shown in FIG. 15, for example.
  • the facets of each unit have the same angle as in each of the above configurations. Be prevented. Therefore, acoustic damage is prevented by the same principle as described above.
  • the rotation between the units that defines the angle between the units includes the revolution of each unit in the world coordinate system and / or the rotation of each unit in the local coordinate system that defines the posture of each unit.
  • Each unit in each acoustic diffuser is repeatedly generated with displacement in the world coordinate system, and the distance L between each unit, or the reference axis of each unit and the world coordinate system or the origin of the world coordinate system.
  • the distance L may be specified by the same magnification, an arbitrary magnification, or n ⁇ times (n is a natural number).
  • Each unit in each of the acoustic diffusers may be enlarged at the same magnification, an arbitrary magnification, or n ⁇ times (n is a natural number).
  • Each unit can be designed as a polyhedron or a curved surface.
  • acoustic diffusion proceeds in multiple directions starting from the apex of each polyhedron, and acoustic damage is prevented.
  • the configuration of the acoustic obstacle prevention equipment including both the acoustic obstacle prevention equipment described in the first configuration and the acoustic obstacle prevention equipment provided with the second acoustic diffuser is in the space surrounded by the plurality of bare surfaces.
  • the acoustic diffuser is provided in the above.
  • the feature of the design method of the first acoustic obstacle prevention equipment is that it has a plurality of raw surfaces forming a wall surface, a ceiling surface or a floor surface surrounding the space, and the raw surfaces have an angle of n ⁇ (n is a natural number).
  • the purpose is to select the raw surfaces so that the reflection between these raw surfaces prevents acoustic interference.
  • the feature of the design method of the second acoustic obstacle prevention equipment is that it has a plurality of other raw surfaces constituting the acoustic diffuser installed in the space, and the other raw surfaces have an angle of n ⁇ (n is n). It is a natural number), and the object is to select the raw surface so that acoustic interference is prevented by reflection between these other raw surfaces or the raw surfaces surrounding the space and between these other raw surfaces.
  • the feature of the design method of the third acoustic obstacle prevention equipment is that it has an acoustic diffuser installed in a space, the acoustic diffuser is composed of a plurality of units, and the respective units are substantially similar figures or congruent with each other.
  • Each unit is arranged so that the angle between them is n ⁇ (n is a natural number), and between these facets or between the bare faces surrounding the space and between these facets.
  • the unit is to be generated and arranged so that acoustic disturbance is prevented by the reflection of.
  • the configuration is shown, for example, in FIGS. 4-13.
  • the acoustic obstacle prevention equipment and its design method for preventing acoustic obstacles by appropriately designing the surface structure surrounding the space and the surface structure of the acoustic diffuser. Came to provide.
  • FIG. 1 It is a three-dimensional view of a room in which the wall surface of the room and the columnar acoustic diffuser are implemented as the acoustic obstacle prevention equipment of the present invention. It is a figure which shows the procedure of designing the wall surface of a room as the acoustic obstacle prevention equipment of this invention, (a) is the side generated by the angle n ⁇ from the Xw, Zw plane, (b) is the generation process of the wall surface using the side. It is a figure which shows.
  • (A) is a diagram showing the aspect ratio when forming the wall surface and the bare surface of the columnar acoustic diffuser
  • (b) is a diagram showing the aspect ratio when forming the solid of the entire room and the solid of each columnar acoustic diffuser.
  • Is. It is a three-dimensional figure which shows an example of an acoustic diffuser installed in a space. It is a three-dimensional figure which shows an example of an acoustic expansion. It is a top view which shows the arrangement example of the unit which constitutes an acoustic diffuser (revolution and rotation are every ⁇ , scale is ⁇ times, and the distance L from the center (the origin Ow of world coordinates) is ⁇ times).
  • FIG. 5 shows another example of the arrangement of the unit which constitutes an acoustic diffuser (there is no revolution in the world coordinate system, the rotation is every ⁇ , the linear movement L is the same, and the scale is the same). It is a top view which shows another example of arrangement of the unit which constitutes an acoustic diffuser (there is no revolution in the world coordinate system, rotation is every ⁇ , linear movement L is ⁇ times, and the scale is the same).
  • An example is shown in which the growth rules of FIG. 5 are applied to each growth center point in a state where a plurality of growth center points exist in a three-dimensional shape, and (a) is an icosahedron in which each vertex is a growth center point.
  • (B) is a diagram showing an acoustic diffuser in which each vertex of (a) is a growth center point. It is a plan view which shows other example of arrangement of the unit which constitutes an acoustic diffuser, (a) is the center when there is no revolving and the distance from the central axis to the local coordinate origin of a unit is zero. The distance from the axis is the same, the revolution is every angle ⁇ , (c) is (b), the distance from the central axis is n ⁇ times, (d) is (a), and each unit is an angle on all of the local coordinate axes. This is the case when it is rotating every ⁇ . This is a comparative example showing the difference in sound diffusion between the room by the method of FIG.
  • FIG. 2 This is a comparative example showing the difference in sound diffusion between the room by the method of FIG. 2 and the normal room, and is the case of the normal room.
  • the "plan view”, “left side view”, “front view”, and “perspective view” are clockwise from the upper right corner with the left end facing up, and the same applies to FIG. 15b).
  • the acoustic obstacle prevention equipment and the design method thereof according to the present invention include a method of rotating a bare surface or the like shown in FIGS. 1 to 3 to form a wall surface or the like and an acoustic diffuser (see FIG. 14 for the effect) and FIGS. 4 to 13.
  • a method of constructing an acoustic diffuser by rotating the unit shown is included.
  • FIGS. 1 to 3 It is a three-dimensional view (planar perspective) of a room in which the wall surface of the room and the columnar acoustic diffuser are implemented as the acoustic obstacle prevention equipment of the present invention.
  • the wall surface is composed of the first bare surface (bare surface) SR (Sr0 to 5).
  • SR first bare surface
  • the angle and position between the bare surfaces are specified, it is expressed only by the world coordinate system (Xw, Yw, Zw).
  • the angle of each bare surface Sr0 to 5 is defined by the angle ⁇ w around the Zw axis.
  • FIG. 2 is a diagram showing a procedure for designing a wall surface of a room as the acoustic damage prevention equipment of the present invention
  • the first bare surfaces SR, Sr0 to 5 are configured by appropriately selecting and using the surfaces generated in FIG. 3A according to the approximate layout of the space constituting the wall surface.
  • Sr1 as n 2
  • the first bare surfaces Sr0 to 5 selectively generated in this way are not parallel to each other due to the nature of the angle using the golden ratio, and prevent acoustic disturbances such as flutter echo. It can also be used for a wall surface, a ceiling surface, and a floor surface, and the axis of rotation may be switched to Xw, Yw, or the like, respectively.
  • a vertical acoustic diffuser OV (Ov0, Ov1, Ov2 ”) And a horizontal acoustic diffuser OH (Oh0, Oh1, Oh2 ...) are further provided in the space surrounded by the first bare surface SR.
  • the longitudinal acoustic diffuser OV is configured by arranging second raw surfaces (other raw surfaces) SVs (Sv20, Sv21, etc.) generated around the Zw axis around the columnar object, similarly to the first raw surface SR.
  • the transverse acoustic diffuser OH is configured by arranging the third raw surface (other raw surface) SH (Sh24, Sh25, etc.) generated around the Xw axis around the columnar object, unlike the first raw surface SR. To. Similarly, the transverse acoustic diffuser may be rotated around the Yw axis to form a bare surface.
  • the surfaces are rotated around any of the axes of Xw, Yw, and Zw to form the first to third raw surfaces SR, SV, and SH, but they may be rotated around axes other than these. , Or two or more axes may be combined and rotated.
  • the axis it is possible to design the same acoustic diffuser included in the embodiments after FIG.
  • the aspect ratio of the same raw surfaces may be divided into 1: ⁇ as shown in FIG. 3 (a). Further, as shown in FIG. 3B, the ratio of the three sides of the entire room, the vertical acoustic diffuser OV, or the horizontal acoustic diffuser OH, which is the space surrounded by the first bare surface SR, is set to 1 / ⁇ : It may be divided into 1: ⁇ . As a result, it is possible to prevent flutter echo and the like due to the ratio of each bare surface, the entire room, or each side of the acoustic diffuser.
  • FIG. 4 a plurality of acoustic diffusers O (O1 to O4) are attached to the pillar P.
  • FIG. 5 is an enlarged display of each acoustic diffuser O, and each unit U, which is a rectangular parallelepiped, revolves around the Yw axis of the world coordinate system as a reference axis. Further, as can be seen by comparing a certain unit Un with the unit U (n-1) generated immediately before, each unit U includes both a reference axis and the like (reference axis Yw and world coordinate origin Ow).
  • each unit U is connected to each other by an axis and fixed on the frame F.
  • the surface of each unit U is an element surface Ce, Ce, and the set of each of these unit U is referred to as a facet CS.
  • FIGS. 6 to 9 show an example in which a regular octahedron is used as each unit U.
  • the two vertices on the Yw side of the octahedron are located on the front side and the back side of the paper. The edges between these two vertices and the four vertices displayed in each figure are not displayed.
  • the local coordinate system of each unit Ul is displayed by Xl, Yl, Zl, and the local coordinate origin or unit generation point is displayed by Gl (in unit U1, it is X1, Y1, Z1, G1).
  • FIG. 6 is a plan view showing an arrangement example of the units U constituting the acoustic diffuser.
  • the revolution around the world reference axis Yw and the rotation around each unit reference axis Yl are every ⁇
  • the scale of each unit is ⁇ times
  • the distance L from the center of each unit is expanded ⁇ times. This is an example.
  • FIG. 7 shows the revolution around the world reference axis Yw and the rotation around each unit reference axis Yl are every ⁇ .
  • the scale of each unit is the same, and the distance L from the center of each unit is fixed and does not expand.
  • FIG. 8 shows the state in which the rotation around the reference axis Yl of each unit is eliminated from the state of FIG.
  • FIG. 9 shows the state shown in FIG. 6 in which the rotation around the reference axis Yl of each unit is 2 ⁇ .
  • each ⁇ has the same effect as those described in FIGS. 1 to 3 above in that parallel sides to the sound reflecting surface do not appear. Furthermore, even if there is no rotation as shown in FIG. 8, the position where the vertices of each unit appear is determined by the angle ⁇ using the golden ratio, and reflected sounds having different phase differences are generated from these vertices, resulting in the result. A similar effect can be obtained.
  • each unit U is a rectangular parallelepiped, and it is an example in which only the rotation around the local coordinate axis is performed without revolving.
  • each unit rotates every ⁇ around a local reference axis parallel to the world reference axis Zw.
  • each unit shifts in the Yw axis direction by a distance L
  • each unit shifts by ⁇ times the distance L in the Yw axis direction.
  • the two units may be combined and created, and the same applies to all the above examples.
  • FIG. 12 shows an example in which the growth rule of FIG. 5 is applied to each growth center point in a state where a plurality of growth center points exist in the three-dimensional shape.
  • FIG. 3A shows a regular icosahedron in which each vertex is a growth center point
  • FIG. 3B shows an acoustic diffuser in which each vertex in FIG. 3A is a growth center point.
  • a plurality of growth centers of each acoustic diffuser can be provided at arbitrary positions.
  • FIG. 13 is a plan view showing another example of the arrangement of the units constituting the acoustic diffuser, and the axes are not shown in the figure, but in accordance with the above-mentioned rules, a rectangular parallelepiped shape is formed at a constant pitch in the Zw axis direction (not shown).
  • An example is shown in which the units are linearly transferred and the scales are the same.
  • the rotation is performed at an angle ⁇ around the rotation axis parallel to the Zw axis, and (a) does not revolve and the local coordinate origin O1 or the unit of each unit is rotated from Zw. This is the case where the distance L to the generation point G is zero.
  • FIG. 13 is a plan view showing another example of the arrangement of the units constituting the acoustic diffuser, and the axes are not shown in the figure, but in accordance with the above-mentioned rules, a rectangular parallelepiped shape is formed at a constant pitch in the Zw axis direction (not shown
  • FIG. 3B shows a case where the distance L from Zw to O1 and the like is constant and revolves at an angle ⁇ .
  • FIG. 3C shows a case where the distance L from Zw to O1 and the like is further expanded in addition to (b).
  • (d) is a case where each unit is rotated by an angle ⁇ on all of the local coordinate axes Xl, Yl, and Zl axes.
  • FIG. 14a is a space composed of the first surface SR and the second surface SV designed by the methods of FIGS. 1 and 2, and shows the wave surface of the reflected wave when the test sound wave is radiated in all directions from the central point sound source. is there.
  • the wave surface of the reflected wave is scattered apart, and it can be seen that the acoustic diffusion is properly performed and the acoustic disturbance is prevented.
  • FIG. 14b shows a similar test performed in a room of similar size having parallel planes.
  • the wave surface of the reflected wave is continuous in an arc shape, and it is expected that acoustic damage will occur.
  • FIG. 15a shows how the acoustic diffuser designed by the methods of FIGS. 4 to 13 is arranged in a closed space, and a large number of small spheres collide with the acoustic diffuser and are reflected from the front of the acoustic diffuser. .. The globules are scattered, and it can be seen that acoustic damage is prevented.
  • FIG. 15b shows a similar test using an acoustic diffuser composed of irregularities having only parallel surfaces. The balls are reflected in parallel, and it is expected that acoustic damage will occur.
  • Each of the above-mentioned bare surfaces SR, SV, SH can be composed of a sound absorbing panel or the like in addition to general building materials.
  • the acoustic diffusers O, OV, and OH may be directly produced by a 3D printer, a 3D router, or the like, in addition to molding using a mold.
  • Materials include, for example, ABS, ASA, nylon, acrylic, polypropylene, polycarbonate, PLA (polylactic acid), resin mixed with carbon fiber or Glyce fiber, gypsum, metal material, wood. Etc. can be used.
  • Each of the above units U may be a polyhedron, a curved surface such as a Mobius strip, or a plate-shaped unit. It is desirable that the angle of the facet with respect to the sound radiation direction is changed by the above revolution or rotation, but since acoustic radiation is generated at each vertex and corner, the relationship between the shape of each unit and the sound radiation direction Is not asked.
  • the above embodiments can be implemented in combination, and the acoustic diffuser O designed by the methods of FIGS. 4 to 13 is housed in the space surrounded by the bare surface SR designed by the methods of FIGS. 1 and 2. May be good. Further, instead of the above ⁇ times, n ⁇ times or an arbitrary magnification may be used. If the above n ⁇ or n ⁇ is used for either the dimension or the angle, acoustic interference is prevented.
  • the present invention can be used, for example, as an acoustic disturbance prevention facility and a design method thereof in a concert hall, a music classroom, a music studio, a gymnasium, an outdoor music facility, or the like.
  • CS facet
  • Ce element surface
  • F frame
  • P pillar
  • O acoustic diffuser
  • OV acoustic diffuser
  • OH Oh0, 1, 2, ...: Horizontal acoustic diffusion Body
  • SR Sr0,1,2 ...: 1st bare surface (bare surface)
  • SV SV
  • SH Sh0,1,2 ...: 3rd bare surface (other) (Bare surface)
  • U U0, 1, 2, ...: Unit

Abstract

空間を囲む素面や音響拡散体の表面構造を適切に設計することにより音響障害を防止する音響障害防止設備及びその設計方法を提供すること。 空間を囲む壁面、天井面若しくは床面を構成する、複数の素面を有する。素面は、相互の角度がnα(nは自然数)であり、これらの素面の間の反射で音響障害が防止される。φ=(1+sqrt(5))/2、α=360°*1/(1+φ) 空間に設置される音響拡散体を構成する複数の他の素面に同手法を用いても良い。また、複数のユニットを同角度で複数回転配置させて音響拡散体を構成することもできる。

Description

音響障害防止設備及びその設計方法
 本発明は、音響障害防止設備及びその設計方法に関する。さらに詳しくは、空間を囲む壁面、天井面若しくは床面を構成する複数の素面よりなる音響障害防止設備、及び、かかる素面で囲まれた空間等に配置される音響拡散体を含む音響障害防止設備、並びに、その設計方法に関する。
 例えばコンサートホールや音楽スタジオ等では、フラッターエコー、ロングパスエコー、音響集中等の音響障害を防止する必要がある。これらの音響障害を防止する方策として、多重反射の防止、音の拡散などを個別に調整する手法として、特許文献1記載の音響拡散パネル等、様々な音響拡散体が提案されている。同音響拡散パネルでは、回動部分を設けてパネルの角度を変更可能とすることで、音の吸収及び反射方向を現場で個別に調整し、音響障害を防止している。
特開2006-300995号公報
 かかる従来の実情に鑑みて、本発明は、空間を囲む素面や音響拡散体の表面構造を適切に設計することにより音響障害を防止する音響障害防止設備及びその設計方法を提供することを目的とする。
 上記目的を達成するため、本発明に係る音響障害防止設備の第1の構成は、空間を囲む壁面、天井面若しくは床面を構成する、複数の素面を有し、前記素面は、相互の角度がnα(nは自然数)であり、これらの素面の間の反射で音響障害が防止されることにある。
φ=(1+sqrt(5))/2
α=360°*1/(1+φ)
 上記構成は、例えば、図1、2に、その効果は図14に、「素面」は、第1素面SR,Sr0,1,…として示されている。同構成によれば、いわゆる黄金比(1:φ)で規定された角αの自然数n倍の角度nαにより素面間の角度が規定される。これらの規定による角度は黄金比の性格上、回転を繰り返しても同一の角度が現れない。したがって、空間を囲む壁面、天井面若しくは床面を構成する、複数の素面は平行等になることがなく、多重反射でのフラッターエコー等の発生を有効に防止することができる。
 本発明に係る音響防止設備の第2の構成は、空間に設置される音響拡散体を構成する、複数の他の素面を有し、前記他の素面は、相互の角度がnα(nは自然数)であり、これらの他の素面の間または前記空間を囲む素面及びこれらの他の素面の間の反射で音響障害が防止されることにある。
φ=(1+sqrt(5))/2
α=360°*1/(1+φ)
 この第2の構成は、例えば、図1に、その効果は図14に、「他の素面は、第2素面SV,Sv0,1,2…:、第3素面SH,Sh0,1,2…、音響拡散体Oは縦音響拡散体OV,Ov0,1,2…:、横音響拡散体OH,Oh0,1,2…として示されている。同構成によれば、空間に設置される音響拡散体を構成する複数の他の素面についても、相互の角度がnαとして設計される。この結果、他の素面間でも音響障害が上述の原理で防止される。
 上記各構成において前記各素面または前記各他の素面が略長方形であり、各素面は縦横比が1:φとしてもよい。また、先の構成において、前記空間を囲む壁面、天井面若しくは床面が略直方体であり、この直方体の3辺の比が1/φ:1:φとしてもよい。これらの例は例えば図3に示されている。
 これらの素面、他の素面等、または、空間を構成する略直方体にいわゆる黄金比を適用することで、面、空間としての特定の周波数での波動の強め合いまたは弱め合い等に伴う音響障害を防止できる。
 本発明に係る音響障害防止設備の第3の構成は、空間に設置される音響拡散体を有し、この音響拡散体は複数のユニットから構成され、前記各ユニットは互いに略相似形または合同であると共に表面に小面を有し、前記各ユニットは、相互の角度がnα(nは自然数)となるように配置され、これらの小面の間または前記空間を囲む素面及びこれらの小面の間の反射で音響障害が防止されることにある。
φ=(1+sqrt(5))/2
α=360°*1/(1+φ)
 この第3の構成は、例えば、図4~13に、その効果は図15に示されている。同構成によれば、各ユニットは、相互の角度がnα(nは自然数)となるように配置されているため、上述の各構成と同様に各ユニットの小面も同一の角度となることを防止される。したがって、上述と同様の原理により、音響障害が防止されることとなる。
 前記各ユニット相互の角度を規定する各ユニット相互の回転は、ワールド座標系における各ユニットの公転、及び/または、各ユニットの姿勢を規定するローカル座標系における各ユニットの自転を含むものである。
 前記各音響拡散体における各ユニットがワールド座標系において変位を伴い繰り返し生成されたものであり、各ユニット間の距離L、または、各ユニットとワールド座標系の基準軸若しくはワールド座標系の原点との距離Lが等倍、任意の倍率、または、nφ倍(nは自然数)で規定してもよい。
 特に、各ユニット間距離Lまたは各ユニットと基準軸等との距離Lをnφ倍とすることで、各ユニット間の距離の規則性に伴う音響障害を防止することができる。また、距離が順次拡大することで、各ユニット同士の重なり等を防止することができる。
 前記各音響拡散体における各ユニットが等倍、任意の倍率、または、nφ倍(nは自然数)で拡大するものとしてもよい。
 上記距離の拡大に伴い各ユニットも拡大させることで、各ユニット同士の干渉も防ぐことができ、nφ倍で各ユニットが拡大することにより、各ユニットの大きさの規則性に伴う音響障害を防止することができる。
 前記各ユニットは多面体または曲面体として設計することができる。多面体の場合、各多面体の頂点が起点となってさらに多方向へ音響拡散が進行し、音響障害が防止される。
 上記第1の構成に記載した音響障害防止設備、及び、第2の音響拡散体を設けた音響障害防止設備の双方を備えた音響障害防止設備の構成は、前記複数素面に囲まれた空間内に前記音響拡散体を設けたことにある。
 上記第1の音響障害防止設備の設計方法の特徴は、空間を囲む壁面、天井面若しくは床面を構成する、複数の素面を有し、前記素面は、相互の角度がnα(nは自然数)であり、これらの素面の間の反射で音響障害が防止されるように前記素面を選択することにある。同構成は、例えば図1、2に示されている。
φ=(1+sqrt(5))/2
α=360°*1/(1+φ)
 上記第2の音響障害防止設備の設計方法の特徴は、空間に設置される音響拡散体を構成する、複数の他の素面を有し、前記他の素面は、相互の角度がnα(nは自然数)であり、これらの他の素面の間または前記空間を囲む素面及びこれらの他の素面の間の反射で音響障害が防止されるように前記素面を選択することにある。同構成は、例えば図1に示されている。
φ=(1+sqrt(5))/2
α=360°*1/(1+φ)
 上記第3の音響障害防止設備の設計方法の特徴は、空間に設置される音響拡散体を有し、音響拡散体は複数のユニットから構成され、前記各ユニットは互いに略相似形または合同であると共に表面に小面を有し、前記各ユニットは、相互の角度がnα(nは自然数)となるように配置され、これらの小面の間または前記空間を囲む素面及びこれらの小面の間の反射で音響障害が防止されるように前記ユニットを生成し配置することにある。同構成は、例えば図4~13に示されている。
φ=(1+sqrt(5))/2
α=360°*1/(1+φ)
 上記本発明に係る音響障害防止設備及びその設計方法の特徴によれば、空間を囲む素面や音響拡散体の表面構造を適切に設計することにより音響障害を防止する音響障害防止設備及びその設計方法を提供するに至った。
 本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。
部屋の壁面や柱状音響拡散体を本発明の音響障害防止設備として実施した部屋の立体図である。 部屋の壁面を本発明の音響障害防止設備として設計する手順を示す図であり、(a)はXw,Zw平面から角nαで生成された辺、(b)は辺を利用した壁面の生成過程を示す図である。 (a)は上記壁面、柱状音響拡散体の素面を構成する場合の縦横比、(b)は上記部屋全体の立体、個々の柱状音響拡散体の立体を構成する場合の縦横高比を示す図である。 空間に設置される音響拡散体の例を示す立体図である。 音響拡体の一例を示す立体図である。 音響拡散体を構成するユニットの配置例を示す平面図である(公転及び自転がα毎、スケールがφ倍、及び、中心(ワールド座標の原点Ow)からの距離Lがφ倍)。 音響拡散体を構成するユニットの配置の他の例を示す平面図である(公転及び自転がα毎、スケール及び中心(ワールド座標の原点Ow)からの距離Lが同一)。 音響拡散体を構成するユニットの配置の他の例を示す平面図である(公転α毎、自転無し、スケール及び中心(ワールド座標の原点Ow)からの距離Lが同一)。 音響拡散体を構成するユニットの配置の他の例を示す平面図である(公転がα毎、自転が2α毎、スケールがφ倍、及び、中心(ワールド座標の原点Ow)からの距離Lがφ倍)。 音響拡散体を構成するユニットの配置の他の例を示す平面図である(ワールド座標系での公転が無、自転がα毎、直線移動Lが同一、及び、スケールが同一)。 音響拡散体を構成するユニットの配置の他の例を示す平面図である(ワールド座標系での公転が無、自転がα毎、直線移動Lがφ倍、及び、スケールが同一)。 立体形状に複数の成長中心点が存在している状態での各成長中心点に図5の成長規則を当て嵌めた例を示し、(a)は各頂点が成長中心点である正20面体、(b)は(a)の各頂点が成長中心点とした音響拡散体を示す図である。 音響拡散体を構成するユニットの配置の他の例を示す平面図であって、(a)は公転が無しかつ中心軸からユニットのローカル座標原点等までの距離ゼロの場合、(b)は中心軸からの距離が同一で公転が角α毎、(c)は(b)にさらに中心軸からの距離がnφ倍、(d)は(a)に加えて各ユニットがローカル座標軸のすべてで角α毎に回転している場合である。 図2の手法による部屋と、通常の部屋との音響拡散の違いを示す比較例であり、図2の手法による部屋の場合である。 図2の手法による部屋と、通常の部屋との音響拡散の違いを示す比較例であり、通常の部屋の場合である。 図5等の手法による音響拡散体を設けた部屋と、通常の部屋との音響拡散の違いを示す比較例であり、図5等の手法による音響拡散体を設けた部屋の場合である(図左端を上にして右上角より時計回りに、「平面図」,「左側面図」,「正面図」,「斜視図」であり、図15bも同様である。)。 図5等の手法による音響拡散体を設けた部屋と、通常の部屋との音響拡散の違いを示す比較例であり、通常の手法による音響拡散体を設けた部屋の場合である。
 次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。
 本発明に係る音響障害防止設備及びその設計方法は、図1~3に示す素面等を回転させて壁面等及び音響拡散体を構成する手法(効果は図14参照)と、図4~13に示すユニットを回転させて音響拡散体を構成する手法(効果は図15参照)とが含まれている。
 まず、部屋を設計する手順について図1~3を参照しながら説明する。部屋の壁面や柱状音響拡散体を本発明の音響障害防止設備として実施した部屋の立体図(平面パース)である。本実施形態では、壁面を第1素面(素面)SR(Sr0~5)により構成してある。本実施形態では素面同士の角度と位置が規定されれば設計できるため、ワールド座標系(Xw,Yw,Zw)のみにより表現してある。各素面Sr0~5の角度は、Zw軸の周りの角度Θwにより規定される。
 図2は、部屋の壁面を本発明の音響障害防止設備として設計する手順を示す図であり、同図(a)はXw,Zw平面からZw軸の周りで角度Θw=nα(nはゼロを含む自然数)で生成された辺を示している。回転の状況を表現するため、ベクトル表示してある。nを1刻みで順次変更して、その横に生成された面を表示してある。
 φ及びαは次のとおり規定される。
φ=(1+sqrt(5))/2
α=360°*1/(1+φ)
すなわち、αは360°を1:φのいわゆる黄金比で案分した角度であり、同角度の整数倍を繰り返すことで、数学的に同一とならない面が複数生成される。
 そして、同図(b)に示すように、壁面を構成する空間の大凡のレイアウトに従い、同図(a)で生成された面を適宜選択利用して、第1素面SR,Sr0~5を構成する。同図(b)での各第1素面は、Sr0はn=0、Sr1はn=2、Sr2はn=7、Sr3はn=17、Sr4はn=19、Sr5はn=15として生成された面を利用している。
 このように選択生成した第1素面Sr0~5は、黄金比を用いた角度の性格上、互いに平行とならず、フラッターエコーなどの音響障害を防止する。壁面、天井面及び床面に利用することも可能であり、回転の軸をそれぞれXw,Yw等に切り替えればよい。
 第1素面SRで囲まれる空間内には、図1に示すように、さらに縦音響拡散体OV(Ov0、Ov1,Ov2…)及び横音響拡散体OH(Oh0、Oh1,Oh2…)が設けられている。縦音響拡散体OVは、上記第1素面SRと同様にZw軸周りで生成される第2素面(他の素面)SV(Sv20,Sv21等)を柱状物の周りに並べることで構成される。一方、横音響拡散体OHは、上記第1素面SRとは異なりXw軸周りで生成される第3素面(他の素面)SH(Sh24,Sh25等)を柱状物の周りに並べることで構成される。同様に、横音響拡散体はYw軸周りで回転させて素面を構成してもよい。
 上記各実施形態では、Xw,Yw,Zwのいずれかの軸周りで面を回転させて第1~第3素面SR、SV,SHを構成したが、これら以外の軸周りで回転させてもよく、また、2以上の軸を組み合わせて回転させてもよい。軸の選択により、図4以降の実施形態に含まれる音響拡散体と同様のものも設計が可能である。
 上記各第1~第3素面SR、SV,SHを構成するにあたり、同素面の縦横比を図3(a)に示すように1:φに案分しても良い。また、図3(b)に示すように、第1素面SRによって囲まれる空間である部屋全体、縦音響拡散体OV、または、横音響拡散体OHそれぞれの3辺の比を、1/φ:1:φに案分してもよい。これらにより、各素面または部屋全体若しくは音響拡散体の各辺の比によるフラッターエコー等を防止することが可能となる。
 次に、図4~13を参照しながら、ユニットを回転させて音響拡散体を構成する方法について説明する。図4には複数の音響拡散体O(O1~O4)が柱Pに取り付けられている。図5は各音響拡散体Oを拡大表示したもので、ワールド座標系のYw軸を基準軸とし、直方体である各ユニットUが公転している。また、あるユニットUnと一つ前に生成されるユニットU(n-1)を比較してわかるように、各ユニットUは、基準軸等(基準軸Yw及びワールド座標原点Owの双方を含む。)からの距離を拡大させると共に寸法も拡大し、ローカル座標の各軸周りで自転している。各ユニットUは相互に軸で連結され、フレームF上に固定されている。各ユニットUの表面は要素面Ce、Ceであり、これらの各ユニットUごとの集合を小面CSと称する。
 図6~図9では、各ユニットUとして正八面体を用いた例を示す。正八面体のYw側の2頂点は、紙面手前側及び奥側に位置している。これらの2頂点と各図に表示されている4頂点との間の辺は表示を省略する。各ユニットUlのローカル座標系はXl,Yl,Zlにて、ローカル座標原点またはユニット生成点はGlにて表示する(ユニットU1では、X1,Y1,Z1,G1となる)。
 図6は、音響拡散体を構成するユニットUの配置例を示す平面図である。この例では、ワールド基準軸Yw周りの公転及び各ユニット基準軸Yl周りの自転がα毎であり、各ユニットのスケールがφ倍、及び、各ユニットの中心からの距離Lがφ倍に拡大している例である。
 図7では、ワールド基準軸Yw周りの公転及び各ユニット基準軸Yl周りの自転がα毎である。しかし、各ユニットのスケールは同一であり、各ユニットの中心からの距離Lは固定で拡大していない例である。図8は図7の状態から各ユニット基準軸Yl周りの自転を無くしたものである。図9は図6の状態に各ユニット基準軸Yl周りの自転を2αとしたものである。
 これらの各図を比較すると理解されるように、各ユニットの中心からの距離Lがφ倍に拡大すると、ユニット配置上のユニット相互の干渉が防がれ、各ユニットのスケールがφ倍に拡大されると、ユニットを合理的に拡大配置することができる。これらのφ倍の拡大は、寸法相互の比率によるフラッターエコー等を防止することで音響障害の防止に役立つ。
 各αの公転及び自転は、音響の反射面に対する平行な辺が現れないという点において、上記図1~3での説明と同様の効果ができる。さらに図8のように自転がない場合でも、各ユニットの頂点が現れる位置が黄金比を利用した角度αで決定され、これらの頂点から位相差の異なる反射音が生成されるため、結果的に同様の効果を得ることができる。
 図10,11では各ユニットUが直方体であり、公転はせずにローカル座標軸周りでの自転のみを行う例である。両図では、各ユニットがワールド基準軸Zwに平行なローカル基準軸周りでαごとに回転している。図10の例では、各ユニットは距離LずつYw軸方向に変移し、図11の例では、各ユニットは距離Lのφ倍ずつYw軸方向に変移している。図11の例で見られるように、2つのユニットが重なり合う場合は2つのユニットを結合して作成すればよく、上記のすべての例において同様である。
 図12は、立体形状に複数の成長中心点が存在している状態での各成長中心点に図5の成長規則を当て嵌めた例を示す。同図(a)は各頂点が成長中心点である正20面体、同図(b)は(a)の各頂点が成長中心点とした音響拡散体を示す。同例にみられるように、各音響拡散体の成長中心は複数を任意の位置に設けることができる。
 図13は、音響拡散体を構成するユニットの配置の他の例を示す平面図であり、軸は図に表記しないが、上述の規則に従い、図示省略するZw軸方向に一定ピッチで直方体形状のユニットが直線変移し、スケールは同一である例を示す。同図(a)~(c)はいずれもZw軸に平行な自転軸周りで角αで自転しており、(a)は公転せず、かつ、Zwから各ユニットのローカル座標原点O1またはユニット生成点Gまでの距離Lがゼロの場合である。同図(b)はZwからO1等までの距離Lが一定で角度αで公転する場合である。同図(c)は(b)に加えさらにZwからO1等までの距離Lが拡大する場合である。(d)は(a)に加えて各ユニットがローカル座標軸Xl,Yl,Zl軸のすべてで角α毎に回転している場合である。
 図14,15に本手法により設計した効果を示す。図14aは図1,2の手法により設計した第1素面SR及び第2素面SVからなる空間であり、中央の点音源からテスト音波を四方に放射した場合の反射波の波面を表示したものである。反射波の波面はバラバラに散らばっており、音響拡散が適切になされ、音響障害の防止がなされている様子が伺える。一方、図14bは互いに平行な面を有する同程度のサイズの部屋で同様の試験を行ったものである。反射波の波面は円弧状に連続し、音響障害の発生が予想される。
 図15aは、図4~13の手法により設計した音響拡散体を閉空間に配置し、音響拡散体の正面から多数の小球を音響拡散体に衝突させて反射する様子を表したものである。小球は散乱しており、音響障害の防止される様子が伺える。一方、図15bは平行な面のみの凹凸で構成された音響拡散体を用いて同様の試験を行ったものである。ボールは平行に反射され、音響障害の発生が予想される。
 上記各素面SR,SV,SHは、一般的な建材の他、吸音パネルなどで構成することができる。また、音響拡散体O,OV,OHは、型を用いた成形の他、3Dプリンター、3Dルーターなどで直接制作してもよい。材料としては、例えば、ABS,ASA、ナイロン、アクリル、ポリプロピレン、ポリカーボネイト、PLA(ポリ乳酸)、及び、こられの樹脂にカーボンファイバまたはグライスファイバの混入されたもの、石膏、並びに、金属材料、木等を用いることができる。
 上記各ユニットUは、多面体の他、メビウスの帯など曲面を用いたものでもよく、板状のものでもよい。上記公転または自転により、音の放射方向に対する小面の角度が変更されることが望ましいが、各頂点や角部での音響放射が発生するため、各ユニットの形状と音の放射方向の関係性は問われないものである。
 上記実施形態はそれぞれ組み合わせて実施することが可能であり、図1,2の手法により設計した素面SRに囲まれた空間に、図4~13の手法により設計した音響拡散体Oを収納してもよい。また、上記φ倍の代わりにnφ倍や任意倍率を用いても良い。寸法または角度のいずれかに上記nφまたはnαが用いられれば、音響障害が防止される。
 本発明は、例えば、コンサートホール、音楽教室、音楽スタジオ、体育館、野外音楽施設等における音響障害防止設備及びその設計方法として利用することができる。
CS:小面、Ce:要素面、F:フレーム、P:柱、O:音響拡散体、OV,Ov0,1,2…:縦音響拡散体、OH,Oh0,1,2…:横音響拡散体、SR,Sr0,1,2…:第1素面(素面)、SV,Sv0,1,2…:第2素面(他の素面)、SH,Sh0,1,2…:第3素面(他の素面)、U,U0,1,2…:ユニット

Claims (13)

  1. 空間を囲む壁面、天井面若しくは床面を構成する、複数の素面を有し、
    前記素面は、相互の角度がnα(nは自然数)であり、
    これらの素面の間の反射で音響障害が防止される音響障害防止設備。
    φ=(1+sqrt(5))/2
    α=360°*1/(1+φ)
  2. 空間に設置される音響拡散体を構成する、複数の他の素面を有し、
    前記他の素面は、相互の角度がnα(nは自然数)であり、
    これらの他の素面の間または前記空間を囲む素面及びこれらの他の素面の間の反射で音響障害が防止される音響障害防止設備。
    φ=(1+sqrt(5))/2
    α=360°*1/(1+φ)
  3. 前記各素面または前記各他の素面が略長方形であり、各素面は縦横比が1:φである請求項1または2記載の音響障害防止設備。
  4. 前記空間を囲む壁面、天井面若しくは床面が略直方体であり、この直方体の3辺の比が1/φ:1:φである請求項1記載の音響障害防止設備。
  5. 空間に設置される音響拡散体を有し、この音響拡散体は複数のユニットから構成され、前記各ユニットは互いに略相似形または合同であると共に表面に小面を有し、
    前記各ユニットは、相互の角度がnα(nは自然数)となるように配置され、
    これらの小面の間または前記空間を囲む素面及びこれらの小面の間の反射で音響障害が防止される音響障害防止設備。
    φ=(1+sqrt(5))/2
    α=360°*1/(1+φ)
  6. 前記各ユニット相互の角度を規定する各ユニット相互の回転は、ワールド座標系における各ユニットの公転、及び/または、各ユニットの姿勢を規定するローカル座標系における各ユニットの自転を含むものである請求項5記載の音響障害防止設備。
  7. 前記各音響拡散体における各ユニットがワールド座標系において変位を伴い繰り返し生成されたものであり、各ユニット間の距離L、または、各ユニットとワールド座標系の基準軸若しくはワールド座標系の原点との距離Lが等倍、任意の倍率、または、nφ倍(nは自然数)で規定される請求項5または6に記載の音響障害防止設備。
  8. 前記各音響拡散体における各ユニットが等倍、任意の倍率、または、nφ倍(nは自然数)で拡大するものである請求項5~7のいずれかに記載の音響障害防止設備。
  9. 前記各ユニットが多面体または曲面体である請求項5~8のいずれかに記載の音響障害防止設備。
  10. 請求項1記載の音響障害防止設備、及び、請求項2、5~9のいずれかに記載の音響障害防止設備の双方を備えた音響障害防止設備であって、前記複数素面に囲まれた空間内に前記音響拡散体を設けた音響障害防止設備。
  11. 請求項1記載の音響障害防止設備の設計方法であって、
    空間を囲む壁面、天井面若しくは床面を構成する、複数の素面を有し、
    前記素面は、相互の角度がnα(nは自然数)であり、
    これらの素面の間の反射で音響障害が防止されるように前記素面を選択する音響障害防止設備の設計方法。
    φ=(1+sqrt(5))/2
    α=360°*1/(1+φ)
  12. 請求項2記載の音響障害防止設備の設計方法であって、
    空間に設置される音響拡散体を構成する、複数の他の素面を有し、
    前記他の素面は、相互の角度がnα(nは自然数)であり、
    これらの他の素面の間または前記空間を囲む素面及びこれらの他の素面の間の反射で音響障害が防止されるように前記素面を選択する音響障害防止設備の設計方法。
    φ=(1+sqrt(5))/2
    α=360°*1/(1+φ)
  13. 請求項5~9のいずれかに記載の音響障害防止設備の設計方法であって、
    空間に設置される音響拡散体を有し、音響拡散体は複数のユニットから構成され、
    前記各ユニットは互いに略相似形または合同であると共に表面に小面を有し、
    前記各ユニットは、相互の角度がnα(nは自然数)となるように配置され、
    これらの小面の間または前記空間を囲む素面及びこれらの小面の間の反射で音響障害が防止されるように前記ユニットを生成し配置する音響障害防止設備の設計方法。
    φ=(1+sqrt(5))/2
    α=360°*1/(1+φ)
PCT/JP2019/043852 2019-03-28 2019-11-08 音響障害防止設備及びその設計方法 WO2020194840A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021508711A JP7234344B2 (ja) 2019-03-28 2019-11-08 音響障害防止設備及びその設計方法
EP19921769.6A EP3951112B1 (en) 2019-03-28 2019-11-08 Acoustic obstruction prevention equipment and fabrication method thereof
US17/598,697 US20220145618A1 (en) 2019-03-28 2019-11-08 Acoustic obstruction prevention equipment and design method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019064633 2019-03-28
JP2019-064633 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020194840A1 true WO2020194840A1 (ja) 2020-10-01

Family

ID=72608885

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/043852 WO2020194840A1 (ja) 2019-03-28 2019-11-08 音響障害防止設備及びその設計方法
PCT/JP2020/014393 WO2020196900A1 (ja) 2019-03-28 2020-03-27 音響障害防止等装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014393 WO2020196900A1 (ja) 2019-03-28 2020-03-27 音響障害防止等装置

Country Status (6)

Country Link
US (1) US20220145618A1 (ja)
EP (1) EP3951112B1 (ja)
JP (2) JP7234344B2 (ja)
KR (1) KR20210131408A (ja)
CN (1) CN113632163A (ja)
WO (2) WO2020194840A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102602666B1 (ko) * 2023-03-29 2023-11-15 주식회사 소노볼트 사운드 디퓨저

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309999A (ja) * 1991-04-09 1992-11-02 Matsushita Electric Ind Co Ltd 音響反射体
JP2000110278A (ja) * 1998-10-09 2000-04-18 Yamaha Corp 音響拡散板並びに該音響拡散板を用いた室内音響構造
JP2003302095A (ja) * 2002-04-05 2003-10-24 Tohoku Kogyo Kk 消音ダンパー
JP2006300995A (ja) 2005-04-15 2006-11-02 Matsushita Electric Works Ltd 音響拡散パネル装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB250527A (en) * 1925-04-08 1927-01-13 Ernst Milkutat Improved method for the construction of concert halls and the like
US1737666A (en) * 1925-04-08 1929-12-03 Milkutat Ernst Auditorium
JPH06173363A (ja) * 1992-12-08 1994-06-21 Matsushita Electric Ind Co Ltd 音響モジュール
US5884436A (en) * 1995-05-09 1999-03-23 Lear Corporation Reverberation room for acoustical testing
JP2000110277A (ja) * 1998-10-09 2000-04-18 Yamaha Corp 音響ブロック並びに該音響ブロックを用いた室内音響構造
JP3580718B2 (ja) * 1999-03-02 2004-10-27 ヤマハ株式会社 音響散乱体および音響室
KR100581534B1 (ko) * 2004-01-30 2006-05-22 황금찬 음향확산판
JP2006276670A (ja) * 2005-03-30 2006-10-12 Kenwood Corp 音響反射ユニット
CA2603471C (en) * 2005-04-14 2013-07-23 Douglas P. Magyari Acoustic scatterer
JP4899090B2 (ja) * 2006-04-27 2012-03-21 戸田建設株式会社 吸音構造
JP4998234B2 (ja) * 2007-12-05 2012-08-15 ヤマハ株式会社 音響拡散体
WO2009142267A1 (ja) * 2008-05-21 2009-11-26 日東紡音響エンジニアリング株式会社 反射体構造物、音場調整方法、柱状反射体構造物、部屋、プログラム、音響諸室設計システム
CN202055358U (zh) * 2011-01-14 2011-11-30 上海建声建筑科技有限公司 扩散吸音体
US10255900B2 (en) * 2016-01-14 2019-04-09 Acoustic First Corporation Systems, apparatuses, and methods for sound diffusion
CN208618593U (zh) * 2018-07-23 2019-03-19 四川森海鑫声学科技有限公司 三角斜面扩散体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309999A (ja) * 1991-04-09 1992-11-02 Matsushita Electric Ind Co Ltd 音響反射体
JP2000110278A (ja) * 1998-10-09 2000-04-18 Yamaha Corp 音響拡散板並びに該音響拡散板を用いた室内音響構造
JP2003302095A (ja) * 2002-04-05 2003-10-24 Tohoku Kogyo Kk 消音ダンパー
JP2006300995A (ja) 2005-04-15 2006-11-02 Matsushita Electric Works Ltd 音響拡散パネル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951112A4

Also Published As

Publication number Publication date
EP3951112A4 (en) 2022-05-11
EP3951112A1 (en) 2022-02-09
CN113632163A (zh) 2021-11-09
JP7234344B2 (ja) 2023-03-07
WO2020196900A1 (ja) 2020-10-01
JP7177250B2 (ja) 2022-11-22
KR20210131408A (ko) 2021-11-02
JPWO2020194840A1 (ja) 2020-10-01
US20220145618A1 (en) 2022-05-12
JPWO2020196900A1 (ja) 2020-10-01
EP3951112B1 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
Berkhout et al. Array technology for acoustic wave field analysis in enclosures
WO2020194840A1 (ja) 音響障害防止設備及びその設計方法
JPH08272380A (ja) 仮想3次元空間音響の再生方法および装置
JP5319668B2 (ja) 反射体構造物、音場調整方法、柱状反射体構造物、部屋、プログラム、音響諸室設計システム
Rindel Room acoustic prediction modelling
Pilch et al. The effect of geometrical and material modification of sound diffusers on their acoustic parameters
Anderson et al. Loudspeaker line array educational demonstration
Krokstad et al. Fifteen years' experience with computerized ray tracing
US8515105B2 (en) System and method for sound generation
Lee et al. Acoustic scattering characteristics of Penrose-tiling-type diffusers
KR20020012565A (ko) 복합 뷰잉부를 구비한 3차원 하이브리드 스크린
JPWO2020194840A5 (ja)
US5651679A (en) Virtual polyhedra models
Christensen et al. Predicting acoustics in class rooms
Hammad Simulation of noise distribution in rectangular rooms by means of computer modelling techniques
Peters et al. Improving meeting room acoustic performance through customized sound scattering surfaces
US20060078196A1 (en) Distributed apexes for 3-D ultrasound scan geometry
US10475436B2 (en) Hexagonal 2-dimensional reflection phase grating diffuser
JP4255421B2 (ja) 住宅の音シミュレーションシステム
JP2689753B2 (ja) 音響反射体
Chen et al. Special Relativity in Three-Dimensional Space-Time Frames
Chan et al. Modelling of Scattering from Balcony Fronts
Zeng et al. Prediction of the Characteristics of Complicated Sound Fields in Long Enclosures by a Beam-Tracing Method
Jasiūnienė Modelling of 3D reflections from triangles using the Huygens approach
Hongisto The calculation of the sound insulation of double panels–comparison of existing models

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508711

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019921769

Country of ref document: EP

Effective date: 20211027