WO2020192046A1 - 一种利用含盐废水处理煤泥的浮选工艺 - Google Patents

一种利用含盐废水处理煤泥的浮选工艺 Download PDF

Info

Publication number
WO2020192046A1
WO2020192046A1 PCT/CN2019/106921 CN2019106921W WO2020192046A1 WO 2020192046 A1 WO2020192046 A1 WO 2020192046A1 CN 2019106921 W CN2019106921 W CN 2019106921W WO 2020192046 A1 WO2020192046 A1 WO 2020192046A1
Authority
WO
WIPO (PCT)
Prior art keywords
flotation
salt
slurry
roughing
tailings
Prior art date
Application number
PCT/CN2019/106921
Other languages
English (en)
French (fr)
Inventor
蒋立翔
桂夏辉
武建军
邢耀文
张锐
夏阳超
丁世豪
郭芳余
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2019437717A priority Critical patent/AU2019437717B2/en
Priority to US17/044,273 priority patent/US20220001395A1/en
Publication of WO2020192046A1 publication Critical patent/WO2020192046A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/002Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/08Subsequent treatment of concentrated product
    • B03D1/085Subsequent treatment of concentrated product of the feed, e.g. conditioning, de-sliming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/007Modifying reagents for adjusting pH or conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/04Frothers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/008Water purification, e.g. for process water recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • B03D2203/04Non-sulfide ores
    • B03D2203/08Coal ores, fly ash or soot

Definitions

  • the invention relates to a flotation process for coal slime, and is particularly suitable for a flotation process for treating coal slime by using salt-containing wastewater in the technical fields of salty wastewater treatment and coal flotation deashing.
  • the purpose of the present invention is to provide a flotation process that has simple steps and good use effect, can efficiently treat salty wastewater from coal chemical plants, reduce the consumption of reagents in the flotation process, and does not harm the environment by using salty wastewater to treat coal slime.
  • the flotation process of the present invention for treating coal slime by using salt-containing wastewater has the following steps:
  • the floating coal slime enters the slurry preconditioner from the bottom through the pipe b, and the collector and foaming agent are fed into the slurry preconditioner through the pipe c to form a mixed slurry;
  • the salt-containing wastewater discharged from the coal chemical industry is fed into the mixing tank and stirred evenly.
  • the salt water concentration after stirring is 30,000 mg/L.
  • the brine is used as dilution water through the circulating pump to enter the slurry pretreatment device along the pipeline a.
  • the salt-containing wastewater is continuously added to the slurry pretreatment device to increase the salt concentration of the mixed liquid in the slurry pretreatment device.
  • the increased salt content effectively reduces the consumption of reagents in the flotation process.
  • the inorganic salt ions in the salt-containing wastewater of the coal chemical industry and the residual Organic matter is adsorbed on the surface of the floating slime;
  • Rotation of the impeller in the slurry preconditioner causes the mixed mine in the slurry preconditioner to circulate, and the preliminary mineralization is completed with the participation of collectors and foaming agents.
  • the mixed slurry that has completed the preliminary mineralization passes through the slurry pump along the pipeline d Feed into the roughing flotation machine for roughing operation; after the mixed slurry undergoes roughing operation, the tailings of the roughing flotation machine e are discharged from the tailings at the bottom of the flotation machine directly as a roughing tailing product.
  • the overflow liquid sorted by the flotation machine is fed into the sedimentation filter centrifugal dehydrator through pipeline f for dehydration operation;
  • the filtrate after the dewatering operation of the overflow liquid is fed into the mixing tank through the pipeline g through the slurry pump, and the filtered residue h is discharged through the pipeline to become the roughing concentrate product, and at the same time, 10% of the chemical consumption of the roughing operation is collected Fill the mixing tank together with the foaming agent and the filtrate.
  • the fully mineralized filtrate i is passed through the pipeline to the flotation column for selection and complete mineralization.
  • the flotation concentrate in the filtrate floats and flows out from the overflow weir on the top of the flotation column through the pipe k, and the flotation tailings of the filtrate after fully mineralization sink in the flotation column from the bottom flow through the pipe j discharge;
  • the ash differentiation tester uses the ash differentiation tester to conduct ash differentiation test on the selected tailings flowing out through pipeline j. If the ash content of the selected tailings is >20%, this part of the tailings o will be fed into the slurry preconditioner again through the slime feed pipe b. For sorting, if the ash content of the beneficiated tailings is less than 20%, this part of the tailings p will be directly discharged as a beneficiary tailing product;
  • the flotation concentrate is discharged from the pipeline k and then enters the filter press for dehydration.
  • the filtered water produced during the dehydration process is adsorbed on the surface of the mineral and reduces its own salt concentration to form brine n, which will be used as a selection operation
  • the added water is directly transported to the flotation column stirring barrel, and the filter cake is discharged after the filter press is dehydrated and discharged from the bottom of the filter press as the final qualified concentrate product;
  • the brine n is also directly transported to the industrial wastewater treatment plant through pipelines for cyclic treatment.
  • the miscellaneous salt produced by the water treatment plant after concentration and evaporation is selected as the rough and selected supplementary salt according to whether the concentration of the feed brine meets the standard. .
  • the concentration of the brine of the mixed slurry under the mixing conditions is controlled at 11700mg/L-35100mg/L.
  • appropriate miscellaneous salt should be added according to actual needs to ensure the stability of the roughing operation's brine concentration;
  • the brine concentration of the mixed slurry during the selection operation is 1170mg/L-3510mg/L.
  • the filtrate after the dehydration operation is fed into the mixing tank through the pipeline g through the slurry pump, and the 10% collector and foaming agent consumed in the roughing operation are added to the mixing tank at the same time, according to the actual production If necessary, add some miscellaneous salt to the mixing tank to adjust the salt water concentration to ensure the stability of the salt water concentration required for the beneficiation operation.
  • the collector is diesel oil and the foaming agent is secondary octanol.
  • composition of the salt is NaCl, Na 2 SO 4 , CaCl 2 and CaSO 4 .
  • the metal salt ions When the mixed slurry is sorted in the roughing flotation machine, after the mineralization of the slurry pre-conditioner, the metal salt ions are fully dissolved into the flotation solution in the roughing flotation machine.
  • the metal salt ions When inflating the valve of the flotation machine, the metal salt ions will compress the double electron layer of the bubbles, and at the same time, it will slow down the discharge rate of the liquid phase between the bubbles, prevent the bubbles from merging with each other, and increase the rise of bubbles in the flotation cell of the rough flotation machine.
  • the foam rate and the thickness of the stabilized flotation foam layer when the foam layer is stable, then open the scraper valve for sorting operations.
  • the filtrate When the filtrate is fully mineralized in the mixing tank, the filtrate enters the selection flotation column for selection operation.
  • the flushing water at the top of the selection flotation column washes away the gangue particles contained in the bubble channels, and the gangue particles are finally followed.
  • the flotation tailings will be directly discharged, the flotation concentrate will float up and flow out from the overflow weir on the beneficiation flotation column through pipe k, and the flotation tailings will sink in the beneficiation flotation column and be discharged from the bottom outflow through pipe j.
  • the hydration film on the surface of the solid particles can be disturbed, so that the hydration film on the surface of the particles loses its own stability or even breaks, thereby improving The adhesion probability of particles and bubbles; at the same time, the metal cations can compress the double electron layer between the bubbles and reduce the discharge rate of the liquid phase between the bubbles, thereby preventing the merger of multiple bubbles and overcoming the deficiencies of the traditional slime flotation separation technology , Effectively reduce the consumption of medicines and improve the efficiency of medicines.
  • metal salt ions for flotation of coal slime can not only ensure the stability of the flotation foam layer, but also greatly reduce the amount of flotation reagents due to the foam stabilization mechanism of salt ions.
  • coal production companies such as coal-to-liquid, coal-to-natural gas, etc.
  • a large amount of high-concentration salt-containing industrial wastewater and hazardous waste generated by this part of the salt-containing wastewater after concentration and evaporation will be generated due to different production processes.
  • the present invention has the following advantages:
  • the flotation process for treating coal slime with salty wastewater provided by the present invention effectively solves the problem of difficult treatment of salty wastewater in coal chemical enterprises, and at the same time, it also provides a way to improve coal slime separation technology. "New ideas.
  • the new sorting process of the present invention meets the production requirements and the concept of taking measures to local conditions and on-site materials. It combines the coal chemical industry and the coal washing site, which not only solves the problem of high production and transportation costs, but also realizes "turning waste into Bao’s environmental protection requirements.
  • the new slime flotation process of the present invention utilizes the salt-containing wastewater of coal chemical enterprises to treat slime, and at the same time greatly reduces the concentration of salt ions in the wastewater. As a pretreatment link of the water treatment plant, this process can reduce the production pressure of subsequent water treatment and improve production efficiency.
  • Figure 1 is a schematic diagram of the separation process of the present invention
  • Figure 2 is a schematic diagram of the structure of the sorting equipment of the present invention.
  • the flotation process for treating coal slime by using salt-containing wastewater of the present invention is characterized in that it includes the following steps:
  • the incoming floating coal slime enters the slurry preconditioner 3 from the bottom through the pipe b, and feeds the collector and foaming agent into the slurry preconditioner 3 through the pipe c to form a mixed slurry;
  • the salt-containing wastewater discharged from the coal chemical industry is fed into the mixing tank 1 and stirred evenly.
  • the salt water concentration after stirring is 30,000 mg/L.
  • the salt composition is NaCl, Na 2 SO 4 , CaCl 2 and CaSO 4 .
  • the brine is used as dilution water through the circulating pump 2 to enter the slurry pretreatment device 3 along the pipeline a.
  • the salt concentration of the mixed liquid in the slurry pretreatment device 3 is increased, and the Salinity effectively reduces the consumption of reagents in the flotation process.
  • the inorganic salt ions and residual organic matter in the salt-containing wastewater of coal chemical industry are adsorbed on the surface of the floating slime;
  • the mixed mine in the slurry pre-conditioner 3 is circulated through the rotation of the impeller in the slurry pre-conditioner 3, and the preliminary mineralization is completed with the participation of the collector and the foaming agent, and the mixed slurry that has completed the preliminary mineralization is passed through the slurry pump 4 Feed the roughing flotation machine 5 along the pipeline d for roughing operation; when the mixed slurry is sorted in the roughing flotation machine 5, after the mineralization of the slurry preconditioner, the metal salt ions are sufficient Dissolved into the flotation solution in the roughing flotation machine 5, when the aeration valve of the roughing flotation machine 5 is opened, the metal salt ions will compress the double electron layer of the bubbles and at the same time slow down the discharge rate of the liquid phase between the bubbles.
  • the foam layer is stable, open the scraper valve for separation; the mixed slurry passes through After the roughing operation, the coarse particle filter residue of the roughing flotation machine 5 is directly discharged as a roughing tailing product through the pipeline, and the overflow liquid sorted by the roughing flotation machine 5 is fed to the sedimentation filter centrifugal dehydrator 6 for dehydration operation;
  • the concentration of the brine of the mixed slurry under the mixing conditions is controlled at 11700mg/L-35100mg/L.
  • appropriate miscellaneous salt should be added according to the actual needs to ensure the stability of the roughing operation's brine concentration;
  • the filtrate after the dewatering operation of the overflow liquid is fed into the mixing tank 8 through the slurry pump 7 through the pipeline g, and the filtered residue h is discharged through the pipeline to become the crude concentrate product.
  • 10% of the collector and foaming agent consumed by the roughing operation are added to the mixing tank 8.
  • the fully mineralized filtrate is passed through the slurry pump 9
  • the pipeline enters the beneficiation flotation column 10 for beneficiation.
  • the brine concentration of the mixed slurry is 1170mg/L-3510mg/L;
  • the flotation concentrate in the filtrate after fully mineralization floats up from the beneficiation column 10
  • the upper overflow weir flows out through the pipe k, and the flotation tailings of the fully mineralized filtrate sink in the flotation column 10 and are discharged from the bottom flow port through the pipe j;
  • the filtrate after the dehydration operation passes through the pipe g through the slurry
  • the pump 7 is fed into the mixing tank 8, while the collector and foaming agent of 10% of the crude selection operation are added to the mixing tank 8, at the same time, the mixing tank 8 needs to be added according to the actual production needs.
  • Part of the miscellaneous salt adjusts the salt water concentration to ensure the stability of the salt water concentration required for the beneficiation operation, the collector is diesel oil, and the foaming agent is secondary octanol;
  • ash differentiation tester 12 uses the ash differentiation tester 12 to perform ash differentiation test on the selected tailings flowing out through pipe j. If the ash content of the selected tailings is >20%, this part of the tailings o will be fed into the slurry preconditioner again through the slime feed pipe b 3 Re-sorting, if the ash content of the selected tailings is less than 20%, this part of tailings p will be directly discharged as the selected tailings product;
  • the flotation concentrate is discharged from the pipeline k and then enters the filter press 11 for dehydration.
  • the filtered water produced during the dehydration process is adsorbed on the surface of the mineral to reduce the concentration of its own salt to form brine n, which will be used as the selection
  • the supplemental water of the operation is directly transported to the mixing barrel 8, and the filter cake m is discharged after dehydration by the filter press 11 as the final qualified concentrate product; the brine n is also directly transported through the pipeline to the industrial wastewater treatment plant for recycling treatment, and the water treatment plant
  • the miscellaneous salt produced after concentration and evaporation is selected as the supplementary salt for roughing and selection according to whether the concentration of the feed brine meets the standard; when the filtrate is completely mineralized in the mixing tank 8, the filtrate enters the selection flotation column 10 for processing In the beneficiation operation, the flushing water l at the top of the beneficiation flotation column 10 washes away the gangue particles contained in the bubble channels, and finally the gangue particles will be

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Water Treatments (AREA)

Abstract

一种利用含盐废水处理煤泥的浮选工艺,适用于含盐废水处理与煤炭浮选脱灰技术领域使用。将入浮煤泥、捕收剂与起泡剂给入矿浆预处理器(3),将煤化工企业排出的煤化工含盐废水作为稀释水给入矿浆预处理器(3)一起混合完成矿化;矿化后的矿浆进行粗选作业,对粗选作业后的产物进行精选作业,使用灰分化验仪(12)对精选尾矿进行灰分化验,若精选尾矿的灰分>20%则给入矿浆预处理器重新分选,若精选尾矿的灰分<20%则作为精选尾矿产品排出;精选尾矿产品由管道k排出后进入压滤机(11)进行脱水,压滤机(11)脱水后排出滤饼m作为最终合格的精矿产品。其步骤简单,使用效果好,既提高了浮选的效率同时解决了含盐废水的环保处理。

Description

一种利用含盐废水处理煤泥的浮选工艺 技术领域
本发明涉及一种煤泥的浮选工艺,尤其适用于含盐废水处理与煤炭浮选脱灰技术领域使用的一种利用含盐废水处理煤泥的浮选工艺。
背景技术
我国是一个产煤和耗煤大国,随着机械化采煤比例的提高和重介质选煤的快速发展,我国煤泥呈现出微细化、高灰分、连生体含量大等特点,煤泥难选问题的紧迫感进一步凸显。煤泥分选主要存在回收能力弱,分选适应性差的问题,大多数选煤厂只能通过牺牲产品质量来保证煤泥产率。近年来随着煤炭形式面临的严峻变化,大型化,精细化的分选要求也在不断地提高。煤泥分选过程的完善程度将直接影响到整个选煤厂精煤产品的质量和产率以及整体洗选工艺的洗水平衡。因此,煤泥浮选已成为业内企业亟待解决的难题之一。
针对这种局面,国内外学者做了大量的研究工作。诸如煤泥选前的预处理,包括超声、磨矿和电磁微波等;以及高效浮选药剂的研发,通过新型浮选药剂代替传统柴油和利用一些表面活性剂增强浮选分离过程等。但这些方法并未解决煤泥浮选药量大成本高的问题,煤泥浮选仍存在着瓶颈性的技术壁垒。
发明内容
技术问题:本发明目的是提供一种步骤简单,使用效果好,能够高效处理煤化工厂含盐废水、降低浮选过程药剂消耗、不对环境造成危害的利用含盐废水处理煤泥的浮选工艺。
技术方案:为实现上述目的,本发明的利用含盐废水处理煤泥的浮选工艺,步骤如下:
将入浮煤泥通过管道b从底部进入矿浆预处理器,通过管道c将捕收剂与起泡剂给入矿浆预处理器形成混合矿浆;
将煤化工企业排出的煤化工含盐废水给入搅拌桶搅拌均匀,搅拌均匀后的盐水浓度为30000mg/L,通过循环泵将盐水作为稀释水沿管道a进入矿浆预处理器,随着煤化工含盐废水不断加入矿浆预处理器内从而提高矿浆预处理器中混合液体的盐浓度,提高的盐分有效降低浮选过程中药剂的消耗,同时煤化工含盐废水中的无机盐离子与残留的有机物吸附在入浮煤泥表面;
通过矿浆预处理器内的叶轮转动使矿浆预处理器内的混合矿井发生循环,并在捕收剂与起泡剂参与下完成初步矿化,完成初步矿化的混合矿浆通过渣浆泵沿管道d给入粗选浮选机进行粗选作业;混合矿浆经过粗选作业后,粗选浮选机的尾矿e由浮选机底部的尾矿口排出直接作为粗选尾煤产品排出,粗选浮选机分选的溢流液由管道f给入沉降过滤离心脱水机进行脱水作业;
将溢流液经过脱水作业后的滤液通过管道g经渣浆泵给入搅拌桶,过滤后的滤渣h经管道排出成为粗选精矿产品,同时将粗选作业药耗的10%的捕收剂与起泡剂一并补充加入搅拌桶,滤液在搅拌桶中完全矿化后,利用渣浆泵将完全矿化后的滤液i经管道进入精选浮选柱进行精选作业,完全矿化后的滤液中的浮选精矿上浮从精选浮选柱上部溢流堰经管道k流出,完全矿化后的滤液的浮选尾矿在精选浮选柱中下沉从底流口经管道j排出;
使用灰分化验仪对经管道j流出的精选尾矿进行灰分化验,若精选尾矿的灰分>20%则这部分尾矿o再通过煤泥入料管b再次给入矿浆预处理器重新分选,若精选尾矿的灰分<20%则这部分尾矿p直接作为精选尾矿产品排出;
浮选精矿由管道k排出后进入压滤机进行脱水,脱水过程中产生的滤水因部分金属盐离子吸附在矿物表面从而降低其自身盐分的浓度形成盐水n,盐水n将作为精选作业的补加水直接运往浮选柱搅拌桶,压滤机脱水后排出滤饼m由压滤机的底部排出作为最终合格的精矿产品;
重复上述过程,直至浮选过程全部结束。
所述盐水n还通过管路直接输送至工业废水处理厂进行循环处理,水处理厂经浓缩蒸发后产生的杂盐根据入料盐水的浓度是否达标选择作为粗选和精选的补加盐使用。
粗选作业时混合条件下的混合矿浆的盐水的浓度控制在11700mg/L-35100mg/L,粗选作业时,还需依据实际需要补充适当的杂盐来保证粗选作业盐水浓度的稳定;精选作业时混合矿浆的盐水浓度1170mg/L-3510mg/L。
经过脱水作业后的滤液通过管道g经渣浆泵给入搅拌桶后,在将粗选作业药耗的10%的捕收剂与起泡剂一并补充加入搅拌桶的同时,需根据实际生产的需要,向搅拌桶补加部分杂盐进行盐水浓度的调整,以此保证精选作业所需的盐水浓度稳定,所述捕收剂为柴油,起泡剂为仲辛醇。
所述的盐的成分为NaCl、Na 2SO 4、CaCl 2和CaSO 4
所述混合矿浆在粗选浮选机内进行分选时,在经过矿浆预处理器的矿化后,金属盐离子充分的溶解到粗选浮选机中的浮选溶液中,当打开粗选浮选机的充气阀门时,金属盐离子会压缩气泡的双电子层,同时减缓气泡间液相的排液速率,阻止气泡的相互兼并从而增加粗选浮选机的浮选槽内气泡的起泡速率以及稳定浮选泡沫层的厚度,当泡沫层稳定后再开启刮板阀门进行分选作业。
当滤液在搅拌桶内完全矿化后,滤液进入精选浮选柱进行精选作业,精选浮选柱顶部的冲洗水l冲洗掉气泡通道间夹杂的脉石颗粒,脉石矿粒最后随浮选尾矿将被直接排出,浮选精矿上浮从精选浮选柱上部溢流堰经管道k流出,浮选尾矿在精选浮选柱中下沉从底流口经管道j排出。
有益效果:本发明在浮选过程中若加入适量的金属盐离子可以干扰固体颗粒表面的水化 膜,使围绕在颗粒表面的水化膜失去其自身的稳定性甚至使其破裂,从而提高了颗粒与气泡的黏附概率;同时金属阳离子可以压缩气泡间的双电子层,降低气泡间液相的排液速率,从而阻止多个气泡的兼并,克服了传统的煤泥浮选分选技术的不足,有效降低药剂的消耗,提高药剂的作用效率。
利用金属盐离子浮选煤泥既可以保证浮选泡沫层的稳定,同时由于盐离子的稳泡机制,将大幅降低浮选药剂的用量。而在一些煤炭生产企业的现场(如煤制油,煤制天然气等),会因不同的生产工艺产生大量的高浓度含盐工业废水以及由这部分含盐废水经过浓缩蒸发后产生的危废杂盐,废水、废盐的直接排放会对生态环境带来极大的破坏,而处理这部分废水、废盐的工业难度又颇大;若利用含盐工业废水、废盐直接充当煤泥的浮选原溶液,既实现了因地制宜,就地取材的生产理念,同时也突破了煤泥难选的壁垒。金属盐离子可使浮选药剂消耗量可降低至原用量的50%,可使原工业废盐水的盐离子浓度降低20%,极大程度地减少了洗选工艺的生产成本,进一步地实现了废盐水的资源利用,同时也可作为水处理车间的预处理环节极大地缓减后续水处理车间的入料处理压力;
除此之外,本发明还有以下优点:
本发明提出的一种利用含盐废水处理煤泥的浮选工艺有效地解决了煤化工企业含盐废水处理难的问题,同时也为煤泥分选技术的完善提供了一条“以废治废”的新思路。
本发明所述的分选新工艺满足生产要求的因地制宜,就地取材理念,将煤化工企业与煤炭洗选现场相结合,既解决了生产和运输成本高的问题,也实现了“变废为宝”的环保要求。
本发明所述的煤泥浮选新工艺在利用煤化工企业含盐废水处理煤泥的同时,极大程度的降低了废水中盐离子的浓度。该工艺作为水处理工厂的一个预处理环节,可以缓减后续水处理的生产压力,提高了生产效率。
附图说明
图1是本发明的分选工艺流程示意图,
图2是本发明的分选设备结构示意图。
图中:1-搅拌桶,2-循环泵,3-矿浆预处理器,4-渣浆泵,5-粗选浮选机,6-沉降过滤离心脱水机,7-渣浆泵,8-搅拌桶,9-渣浆泵,10-精选浮选柱,11-压滤机,12-灰分化验仪。
具体实施方式
下面结合附图2对本发明的实施作进一步的描述:
如图1和图2所示,本发明的利用含盐废水处理煤泥的浮选工艺,其特征在于包括步骤如下:
将入浮煤泥通过管道b从底部进入矿浆预处理器3,通过管道c将捕收剂与起泡剂给入矿浆预处理器3形成混合矿浆;
将煤化工企业排出的煤化工含盐废水给入搅拌桶1搅拌均匀,搅拌均匀后的盐水浓度为 30000mg/L,所述的盐的成分为NaCl、Na 2SO 4、CaCl 2和CaSO 4,通过循环泵2将盐水作为稀释水沿管道a进入矿浆预处理器3,随着煤化工含盐废水不断加入矿浆预处理器3内从而提高矿浆预处理器3中混合液体的盐浓度,提高的盐分有效降低浮选过程中药剂的消耗,同时煤化工含盐废水中的无机盐离子与残留的有机物吸附在入浮煤泥表面;
通过矿浆预处理器3内的叶轮转动使矿浆预处理器3内的混合矿井发生循环,并在捕收剂与起泡剂参与下完成初步矿化,完成初步矿化的混合矿浆通过渣浆泵4沿管道d给入粗选浮选机5进行粗选作业;所述混合矿浆在粗选浮选机5内进行分选时,在经过矿浆预处理器的矿化后,金属盐离子充分的溶解到粗选浮选机5中的浮选溶液中,当打开粗选浮选机5的充气阀门时,金属盐离子会压缩气泡的双电子层,同时减缓气泡间液相的排液速率,阻止气泡的相互兼并从而增加粗选浮选机5的浮选槽内气泡的起泡速率以及稳定浮选泡沫层的厚度,当泡沫层稳定后再开启刮板阀门进行分选作业;混合矿浆经过粗选作业后,粗选浮选机5的粗颗粒滤渣经管道直接作为粗选尾煤产品排出,粗选浮选机5分选的溢流液给入沉降过滤离心脱水机6进行脱水作业;粗选作业时混合条件下的混合矿浆的盐水的浓度控制在11700mg/L-35100mg/L,粗选作业时,还需依据实际需要补充适当的杂盐来保证粗选作业盐水浓度的稳定;
将溢流液经过脱水作业后的滤液通过管道g经渣浆泵7给入搅拌桶8,过滤后的滤渣h经管道排出成为粗选精矿产品。同时将粗选作业药耗的10%的捕收剂与起泡剂一并补充加入搅拌桶8,滤液在搅拌桶8中完全矿化后,利用渣浆泵9将完全矿化后的滤液经管道进入精选浮选柱10进行精选作业,精选作业时混合矿浆的盐水浓度1170mg/L-3510mg/L;完全矿化后的滤液中的浮选精矿上浮从精选浮选柱10上部溢流堰经管道k流出,完全矿化后的滤液的浮选尾矿在精选浮选柱10中下沉从底流口经管道j排出;经过脱水作业后的滤液通过管道g经渣浆泵7给入搅拌桶8后,在将粗选作业药耗的10%的捕收剂与起泡剂一并补充加入搅拌桶8的同时,需根据实际生产的需要,向搅拌桶8补加部分杂盐进行盐水浓度的调整,以此保证精选作业所需的盐水浓度稳定,所述捕收剂为柴油,起泡剂为仲辛醇;
使用灰分化验仪12对经管道j流出的精选尾矿进行灰分化验,若精选尾矿的灰分>20%则这部分尾矿o再通过煤泥入料管b再次给入矿浆预处理器3重新分选,若精选尾矿的灰分<20%则这部分尾矿p直接作为精选尾矿产品排出;
浮选精矿由管道k排出后进入压滤机11进行脱水,脱水过程中产生的滤水因部分金属盐离子吸附在矿物表面从而降低其自身盐分的浓度形成盐水n,盐水n将作为精选作业的补加水直接运往搅拌桶8,压滤机11脱水后排出滤饼m作为最终合格的精矿产品;所述盐水n还通过管路直接输送至工业废水处理厂进行循环处理,水处理厂经浓缩蒸发后产生的杂盐根据 入料盐水的浓度是否达标选择作为粗选和精选的补加盐使用;当滤液在搅拌桶8内完全矿化后,滤液进入精选浮选柱10进行精选作业,精选浮选柱10顶部的冲洗水l冲洗掉气泡通道间夹杂的脉石颗粒,脉石矿粒最后随浮选尾矿将被直接排出,浮选精矿上浮从精选浮选柱10上部溢流堰经管道k流出,浮选尾矿在精选浮选柱10中下沉从底流口经管道j排出;
重复上述过程,直至浮选过程全部结束。

Claims (7)

  1. 一种利用含盐废水处理煤泥的浮选工艺,其特征在于包括步骤如下:
    将入浮煤泥通过管道b从底部进入矿浆预处理器(3),通过管道c将捕收剂与起泡剂给入矿浆预处理器(3)形成混合矿浆;
    将煤化工企业排出的煤化工含盐废水给入搅拌桶(1)搅拌均匀,搅拌均匀后的盐水浓度为30000mg/L,通过循环泵(2)将盐水作为稀释水沿管道a进入矿浆预处理器(3),随着煤化工含盐废水不断加入矿浆预处理器(3)内,从而提高矿浆预处理器(3)中混合液体的盐浓度,提高的盐分有效降低浮选过程中药剂的消耗,同时煤化工含盐废水中的无机盐离子与残留的有机物吸附在入浮煤泥表面;
    通过矿浆预处理器(3)内的叶轮转动使矿浆预处理器(3)内的混合矿浆发生循环,并在捕收剂与起泡剂参与下完成初步矿化,完成初步矿化的混合矿浆通过渣浆泵(4)沿管道d给入粗选浮选机(5)进行粗选作业;混合矿浆经过粗选作业后,粗选浮选机(5)的尾矿e由浮选机底部的尾矿口排出直接作为粗选尾煤产品排出,粗选浮选机(5)分选的溢流液由管道f给入沉降过滤离心脱水机(6)进行脱水作业;
    将溢流液经过脱水作业后的滤液通过管道g经渣浆泵(7)给入搅拌桶(8),过滤后的滤渣h经管道排出成为粗选精矿产品,同时将粗选作业药耗的10%的捕收剂与起泡剂一并补充加入搅拌桶(8),滤液在搅拌桶(8)中完全矿化后,利用渣浆泵(9)将完全矿化后的滤液i经管道进入精选浮选柱(10)进行精选作业,完全矿化后的滤液中的浮选精矿上浮从精选浮选柱(10)上部溢流堰经管道k流出,完全矿化后的滤液的浮选尾矿在精选浮选柱(10)中下沉从底流口经管道j排出;
    使用灰分化验仪(12)对经管道j流出的精选尾矿进行灰分化验,若精选尾矿的灰分>20%则这部分尾矿o再通过煤泥入料管b再次给入矿浆预处理器(3)重新分选,若精选尾矿的灰分<20%则这部分尾矿p直接作为精选尾矿产品排出;
    浮选精矿由管道k排出后进入压滤机(11)进行脱水,脱水过程中产生的滤水因部分金属盐离子吸附在矿物表面从而降低其自身盐分的浓度形成盐水n,盐水n将作为精选作业的补加水直接运往浮选柱搅拌桶(8),压滤机(11)脱水后排出滤饼m由压滤机的底部排出作为最终合格的精矿产品;
    重复上述过程,直至浮选过程全部结束。
  2. 根据权利要求1所述的利用含盐废水处理煤泥的浮选工艺,其特征在于:所述盐水n还通过管路直接输送至工业废水处理厂进行循环处理,水处理厂经浓缩蒸发后产生的杂盐根据入料盐水的浓度是否达标选择作为粗选和精选的补加盐使用。
  3. 根据权利要求1所述的利用含盐废水处理煤泥的浮选工艺,其特征在于:粗选作业时混合条件下的混合矿浆的盐水的浓度控制在11700mg/L-35100mg/L,粗选作业时,还需依据实际需要补充适当的杂盐来保证粗选作业盐水浓度的稳定;精选作业时混合矿浆的盐水浓度1170mg/L-3510mg/L。
  4. 根据权利要求1所述的利用含盐废水处理煤泥的浮选工艺,其特征在于:经过脱水作业后的滤液通过管道g经渣浆泵(7)给入搅拌桶(8)后,在将粗选作业药耗的10%的捕收剂与起泡剂一并补充加入搅拌桶(8)的同时,需根据实际生产的需要,向搅拌桶(8)补加部分杂盐进行盐水浓度的调整,以此保证精选作业所需的盐水浓度稳定,所述捕收剂为柴油,起泡剂为仲辛醇。
  5. 根据权利要求1、3或4所述的利用含盐废水处理煤泥的浮选工艺,其特征在于:所述的盐的成分为NaCl、Na 2SO 4、CaCl 2和CaSO 4
  6. 根据权利要求1所述的利用含盐废水处理煤泥的浮选工艺,其特征在于:所述混合矿浆在粗选浮选机(5)内进行分选时,在经过矿浆预处理器的矿化后,金属盐离子充分的溶解到粗选浮选机(5)中的浮选溶液中,当打开粗选浮选机(5)的充气阀门时,金属盐离子会压缩气泡的双电子层,同时减缓气泡间液相的排液速率,阻止气泡的相互兼并从而增加粗选浮选机(5)的浮选槽内气泡的起泡速率以及稳定浮选泡沫层的厚度,当泡沫层稳定后再开启刮板阀门进行分选作业。
  7. 根据权利要求1所述的利用含盐废水处理煤泥的浮选工艺,其特征在于:当滤液在搅拌桶(8)内完全矿化后,滤液进入精选浮选柱(10)进行精选作业,精选浮选柱(10)顶部的冲洗水l冲洗掉气泡通道间夹杂的脉石颗粒,脉石矿粒最后随浮选尾矿将被直接排出,浮选精矿上浮从精选浮选柱(10)上部溢流堰经管道k流出,浮选尾矿在精选浮选柱(10)中下沉从底流口经管道j排出。
PCT/CN2019/106921 2019-03-28 2019-09-20 一种利用含盐废水处理煤泥的浮选工艺 WO2020192046A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2019437717A AU2019437717B2 (en) 2019-03-28 2019-09-20 Flotation process for treating coal slime by using salt-containing wastewater
US17/044,273 US20220001395A1 (en) 2019-03-28 2019-09-20 Flotation process for treating coal slime by using salt-containing waste water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910242811.5 2019-03-28
CN201910242811.5A CN109759239B (zh) 2019-03-28 2019-03-28 一种利用含盐废水处理煤泥的浮选工艺

Publications (1)

Publication Number Publication Date
WO2020192046A1 true WO2020192046A1 (zh) 2020-10-01

Family

ID=66460041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106921 WO2020192046A1 (zh) 2019-03-28 2019-09-20 一种利用含盐废水处理煤泥的浮选工艺

Country Status (4)

Country Link
US (1) US20220001395A1 (zh)
CN (1) CN109759239B (zh)
AU (1) AU2019437717B2 (zh)
WO (1) WO2020192046A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337817A (zh) * 2022-08-15 2022-11-15 云南大红山管道有限公司 一种提升管道输送及脱水效率的浓缩池控制方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759239B (zh) * 2019-03-28 2020-01-17 中国矿业大学 一种利用含盐废水处理煤泥的浮选工艺
CN110899001B (zh) * 2019-10-24 2021-11-12 国家能源集团乌海能源有限责任公司 难浮煤泥两段浮选工艺
CN111530637B (zh) * 2020-04-15 2022-03-15 深圳瑞科天启科技有限公司 一种用于矿物浮选的捕收剂及其制备方法和用途
CN113697980A (zh) * 2021-09-03 2021-11-26 中国矿业大学 一种污染水环境下炭基吸附剂的浮选分离回收系统及方法
CN114956244A (zh) * 2022-03-24 2022-08-30 中国矿业大学 一种煤气化渣碳灰分离及与煤化工废水联合处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA924031A (en) * 1971-02-08 1973-04-03 L. Johnston David Separation of mercury sulphide from antimony sulphide
JPS58189054A (ja) * 1982-04-28 1983-11-04 Babcock Hitachi Kk 石炭の浮遊選鉱法
US5346630A (en) * 1990-05-08 1994-09-13 Unilever Patent Holdings B.V. Coal dewatering
CN103041926A (zh) * 2013-01-30 2013-04-17 唐山国华科技国际工程有限公司 高灰分细煤泥的浮选工艺方法
CN203916914U (zh) * 2014-06-24 2014-11-05 中国矿业大学 一种煤泥浮选及浮选精煤脱水系统
CN105127002A (zh) * 2015-07-17 2015-12-09 中国矿业大学 一种有效减少精煤中高灰细泥污染的浮选工艺
CN107952588A (zh) * 2016-10-14 2018-04-24 中国石油化工股份有限公司 煤气化灰渣中回收碳的工艺
CN109759239A (zh) * 2019-03-28 2019-05-17 中国矿业大学 一种利用含盐废水处理煤泥的浮选工艺

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1780830A (en) * 1926-05-27 1930-11-04 Lessing Rudolf Treatment of carbonaceous materials
US4127390A (en) * 1977-08-25 1978-11-28 Coalmet Corporation Hydrodesulfurization of coal and the like
US4842615A (en) * 1981-03-24 1989-06-27 Carbon Fuels Corporation Utilization of low rank and waste coals in transportable fluidic fuel systems
GB9909553D0 (en) * 1998-06-09 1999-06-23 Univ Nottingham Materials separation
JP4969764B2 (ja) * 2003-07-09 2012-07-04 三井造船株式会社 微粉炭の回収方法及び装置
CN201394437Y (zh) * 2009-03-20 2010-02-03 中国矿业大学 强制混合调浆设备
CA2777987A1 (en) * 2009-10-20 2011-04-28 Soane Mining, Llc Systems and methods for recovering fine particles from fluid suspensions for combustion
CN102430480A (zh) * 2011-10-19 2012-05-02 中国矿业大学 一种粗精煤再磨再选分选工艺
CN102773168B (zh) * 2012-07-16 2013-12-11 中国矿业大学 一种褐煤反浮选药剂组合使用方法
US10376837B2 (en) * 2013-03-14 2019-08-13 The University Of Wyoming Research Corporation Conversion of carbon dioxide utilizing chemoautotrophic microorganisms systems and methods
CN103394416B (zh) * 2013-08-22 2014-11-26 陕西延长石油矿业有限责任公司 一种煤炭浮选剂及其制备方法
CN204194145U (zh) * 2014-09-23 2015-03-11 新矿内蒙古能源有限责任公司 高灰细粒煤泥柱式二次浮选设备
CN104525385B (zh) * 2015-01-14 2017-01-25 中南大学 一种选煤捕收剂及其制备方法
CN105396684A (zh) * 2015-12-21 2016-03-16 深圳市瑞成世代实业有限公司 一种从煤泥中提取超低灰纯煤的方法
CN105597915B (zh) * 2016-03-11 2018-02-16 中煤科工集团唐山研究院有限公司 一种可实现宽粒级双重介全部粗煤泥分选工艺
CN105903547A (zh) * 2016-05-16 2016-08-31 中国矿业大学 一种基于溶液化学特征调控的煤泥泥化抑制方法
CN107127055A (zh) * 2017-05-23 2017-09-05 西北矿冶研究院 一种难选氧化煤泥的分选方法及其分选装置
CN107149988B (zh) * 2017-06-22 2019-02-19 中国矿业大学 一种选择性团聚粘土矿物的煤泥浮选工艺及装置
CN109731697B (zh) * 2019-03-14 2019-12-13 中国矿业大学 一种宽粒级浮选系统及工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA924031A (en) * 1971-02-08 1973-04-03 L. Johnston David Separation of mercury sulphide from antimony sulphide
JPS58189054A (ja) * 1982-04-28 1983-11-04 Babcock Hitachi Kk 石炭の浮遊選鉱法
US5346630A (en) * 1990-05-08 1994-09-13 Unilever Patent Holdings B.V. Coal dewatering
CN103041926A (zh) * 2013-01-30 2013-04-17 唐山国华科技国际工程有限公司 高灰分细煤泥的浮选工艺方法
CN203916914U (zh) * 2014-06-24 2014-11-05 中国矿业大学 一种煤泥浮选及浮选精煤脱水系统
CN105127002A (zh) * 2015-07-17 2015-12-09 中国矿业大学 一种有效减少精煤中高灰细泥污染的浮选工艺
CN107952588A (zh) * 2016-10-14 2018-04-24 中国石油化工股份有限公司 煤气化灰渣中回收碳的工艺
CN109759239A (zh) * 2019-03-28 2019-05-17 中国矿业大学 一种利用含盐废水处理煤泥的浮选工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIONG LIANG , YU GUANGXIN , SUN YUOING , XIAO GANG : "Application of strong brine from coal chemical industry in coal slime water settling", CLEAN COAL TECHNOLOGY, vol. 21, no. 4, 31 July 2015 (2015-07-31), pages 25 - 28, XP009523575, ISSN: 1006-6772, DOI: 10.13226/j.issn.1006-6772.2015.04.007 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337817A (zh) * 2022-08-15 2022-11-15 云南大红山管道有限公司 一种提升管道输送及脱水效率的浓缩池控制方法及装置

Also Published As

Publication number Publication date
CN109759239A (zh) 2019-05-17
AU2019437717B2 (en) 2022-08-11
CN109759239B (zh) 2020-01-17
US20220001395A1 (en) 2022-01-06
AU2019437717A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
WO2020192046A1 (zh) 一种利用含盐废水处理煤泥的浮选工艺
CN108380397A (zh) 一种低浓度含云母方解石型萤石尾矿的回收方法
Azevedo et al. Treatment and water reuse of lead-zinc sulphide ore mill wastewaters by high rate dissolved air flotation
CN109865599B (zh) 一种化工杂盐的资源化利用方法
WO2020252960A1 (zh) 一种宽粒级煤泥的分选回收系统及分选回收工艺
CN111215253B (zh) 一种低阶煤浮选药剂及浮选方法
CN109940034A (zh) 浮选修复重金属污染土壤的方法
CN104016520B (zh) 利用气浮耦合混凝预处理煤化工废水的装置预处理煤气化废水的方法
CN105880032B (zh) 一种中低品位胶磷矿重浮联合分选方法
CN107282287A (zh) 一种铜钼矿选厂厂前回水利用方法
CN106746008A (zh) 含pam的尾矿废水处理循环系统和工艺
CN105384230B (zh) 一种纤维素废水预处理装置及应用
CN109502834B (zh) 一种含十二烷基磺酸钠的选矿废水的处理方法
CN108325756A (zh) 一种富含方解石与毒重石的重晶石选矿方法
CN205840846U (zh) 钻井泥浆不落地处理装置
RU2771707C1 (ru) Флотационный способ обработки угольного шлама с применением солесодержащей отработанной воды
RU2771707C9 (ru) Флотационный способ обработки угольного шлама с применением солесодержащей отработанной воды
CN205917137U (zh) 一种煤化工废水中污泥回收再利用系统
CN205773736U (zh) 一种菱镁矿尾矿浮选废水循环利用装置
CN209849075U (zh) 一种碳酸盐型萤石矿的分选系统
CN111841876A (zh) 一种铜锡多金属矿选矿废水分段回用的方法
CN207957997U (zh) 一种尾矿废水循环利用系统
CN220258319U (zh) 一种两步法资源化利用气化炉渣的装置
CN203820520U (zh) 碳酸钙废水处理系统
CN204602418U (zh) 简易搅拌式浮选机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019437717

Country of ref document: AU

Date of ref document: 20190920

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921588

Country of ref document: EP

Kind code of ref document: A1