WO2020191976A1 - 空调器的控制方法、装置及空调器 - Google Patents

空调器的控制方法、装置及空调器 Download PDF

Info

Publication number
WO2020191976A1
WO2020191976A1 PCT/CN2019/098237 CN2019098237W WO2020191976A1 WO 2020191976 A1 WO2020191976 A1 WO 2020191976A1 CN 2019098237 W CN2019098237 W CN 2019098237W WO 2020191976 A1 WO2020191976 A1 WO 2020191976A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
air conditioner
temperature
outdoor
preset
Prior art date
Application number
PCT/CN2019/098237
Other languages
English (en)
French (fr)
Inventor
邹大枢
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910227622.0A external-priority patent/CN109945401B/zh
Priority claimed from CN201910248831.3A external-priority patent/CN109945389B/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Priority to CA3134876A priority Critical patent/CA3134876C/en
Priority to EP19922216.7A priority patent/EP3929500B1/en
Priority to ES19922216T priority patent/ES2948266T3/es
Publication of WO2020191976A1 publication Critical patent/WO2020191976A1/zh
Priority to US17/482,927 priority patent/US20220010979A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/172Speeds of the condenser fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of electrical appliances, in particular to a control method and device of an air conditioner, and an air conditioner.
  • air-conditioners usually use air cooling to dissipate heat from the electric control box.
  • the heat dissipation effect is not good, and the heat generated by the electric control box cannot be taken away in time, and the temperature of the components is reduced, thereby affecting the life and reliability of the air conditioner.
  • the higher operating frequency cannot be reached at high temperatures, so that the advantages of the inverter air conditioner cannot be used to meet the needs of users.
  • This application aims to solve one of the technical problems in the related technology at least to a certain extent.
  • the first purpose of this application is to propose an air conditioner that dissipates heat from the electric control box of the air conditioner through the cooling refrigerant pipe, which can take away the heat generated by the electric control box in time, reduce the temperature of the components, and improve the air conditioner.
  • the inverter air conditioner it can reach a higher operating frequency and output more power at high temperatures, giving full play to the advantages of the inverter air conditioner to meet user needs.
  • the second purpose of this application is to provide a control method for an air conditioner.
  • the third purpose of this application is to provide a control device for an air conditioner.
  • the fourth purpose of this application is to propose another control method for an air conditioner.
  • the fifth purpose of this application is to propose another control device for an air conditioner.
  • the sixth purpose of this application is to propose another air conditioner.
  • the seventh purpose of this application is to propose an electronic device.
  • the eighth purpose of this application is to provide a computer-readable storage medium.
  • an air conditioner including:
  • Outdoor condenser indoor evaporator, first electronic expansion valve, throttle valve and heat dissipation refrigerant pipe arranged in the electric control box;
  • the outdoor condenser communicates with the first end of the heat dissipation refrigerant pipe through the first electronic expansion valve
  • the indoor evaporator communicates with the second end of the heat dissipation refrigerant pipe through the throttle valve
  • the first electronic expansion valve is used to throttle the refrigerant in the heating mode
  • the throttle valve is used to throttle the refrigerant in the cooling mode.
  • the outdoor condenser is connected to the first end of the heat dissipation refrigerant pipe through the first electronic expansion valve, and the indoor evaporator is connected to the second end of the heat dissipation refrigerant pipe through the throttle valve.
  • the tube is set in the electric control box, and the heat dissipation refrigerant tube is used to dissipate the electric control box of the air conditioner, which can take away the heat generated by the electric control box in time, reduce the temperature of the components, and improve the reliability and life of the air conditioner; As far as inverter air conditioners are concerned, they can reach higher operating frequencies and output greater power at high temperatures, giving full play to the advantages of inverter air conditioners to meet user needs.
  • the air conditioner further includes: a compressor, a second electronic expansion valve, and a plate heat exchanger; the indoor evaporator passes through the first refrigerant branch of the plate heat exchanger and the section
  • the compressor communicates with the throttle valve through the second refrigerant branch of the plate heat exchanger and the second electronic expansion valve in sequence, and the second electronic expansion valve is used for Throttling the refrigerant in heating mode.
  • the air conditioner further includes: a controller; the controller is configured to: turn on the air conditioner in a cooling mode to obtain an outdoor ambient temperature; and obtain a corresponding preset current threshold according to the outdoor ambient temperature , The preset compressor frequency threshold and the preset current difference threshold; the compressor is started for the first set time, and the current working current is obtained as the first current; the compressor is started for the second set time to obtain the current The operating current is used as the second current, and the current compressor frequency is obtained; it is detected and confirmed that the following three conditions are met at the same time: the second current is greater than the preset current threshold, the second current and the first The current difference is greater than the preset current difference threshold and the current compressor frequency is less than the preset compressor frequency threshold, the air conditioner is controlled to stop and the first electronic expansion valve and the second 2. The control strategy of the electronic expansion valve is exchanged.
  • the air conditioner further includes: a four-way valve and a liquid storage tank; the first valve port of the four-way valve communicates with the outdoor condenser, and the second valve of the four-way valve Port is in communication with the indoor evaporator, the third valve port of the four-way valve is in communication with the liquid storage tank, the fourth valve port of the four-way valve is in communication with the compressor, and the storage The liquid tank communicates with the compressor.
  • the air conditioner further includes: a separator; the liquid storage tank and the compressor are respectively communicated with the fourth valve port of the four-way valve through the separator.
  • an embodiment of the second aspect of the present application proposes a control method of an air conditioner, which is suitable for the air conditioner according to the embodiment of the first aspect of the present application, and the control method includes:
  • the air conditioner is turned on in a cooling mode to obtain the outdoor ambient temperature
  • the compressor is started for a first set time, and the current working current is acquired and used as the first current;
  • the compressor starts for a second set time, obtains the current working current as the second current, and obtains the current compressor frequency;
  • the second current is greater than the preset current threshold
  • the difference between the second current and the first current is greater than the preset current difference threshold
  • the current The compressor frequency of is less than the preset compressor frequency threshold
  • the air conditioner is controlled to stop and the control strategies of the first electronic expansion valve and the second electronic expansion valve are exchanged.
  • the outdoor condenser is connected to the first end of the heat dissipation refrigerant pipe through the first electronic expansion valve, and the indoor evaporator passes through the first refrigerant branch and section of the plate heat exchanger in turn.
  • the flow valve is connected to the second end of the heat-dissipating refrigerant pipe.
  • the heat-dissipating refrigerant pipe is arranged in the electric control box, and the electric control box of the air conditioner is radiated through the heat-dissipating refrigerant pipe, which can take away the heat generated by the electric control box in time and reduce the cost.
  • the device temperature improves the reliability and life of the air conditioner; at the same time, for the inverter air conditioner, it can reach a higher operating frequency and output more power at high temperatures, giving full play to the advantages of the inverter air conditioner to meet user needs.
  • the second current is greater than the preset current threshold
  • the difference between the second current and the first current is greater than the preset current difference threshold
  • the current compressor frequency is less than the preset compressor frequency threshold
  • an embodiment of the third aspect of the present application proposes a control device for an air conditioner, which is suitable for the air conditioner according to the embodiment of the first aspect of the present application, and the control device includes:
  • the first obtaining module is configured to obtain the outdoor ambient temperature after the air conditioner is turned on in the cooling mode
  • the second acquisition module is configured to acquire the corresponding preset current threshold, preset compressor frequency threshold, and preset current difference threshold according to the outdoor ambient temperature;
  • the third acquisition module is configured to acquire the current working current as the first current after the compressor is started for a first set time
  • the fourth acquiring module is configured to acquire the current working current as the second current after the compressor is started for a second set time, and acquire the current compressor frequency;
  • the first control module is configured to detect and confirm that the following three conditions are simultaneously met: the second current is greater than the preset current threshold, and the difference between the second current and the first current is greater than the preset current.
  • the difference threshold and the current compressor frequency are less than the preset compressor frequency threshold, the air conditioner is controlled to stop and the control strategies of the first electronic expansion valve and the second electronic expansion valve are exchanged.
  • the outdoor condenser is connected to the first end of the heat dissipation refrigerant pipe through the first electronic expansion valve, and the indoor evaporator sequentially passes through the first refrigerant branch and section of the plate heat exchanger.
  • the flow valve is connected to the second end of the heat-dissipating refrigerant pipe.
  • the heat-dissipating refrigerant pipe is arranged in the electric control box, and the electric control box of the air conditioner is radiated through the heat-dissipating refrigerant pipe, which can take away the heat generated by the electric control box in time and reduce the cost.
  • the device temperature improves the reliability and life of the air conditioner.
  • the inverter air conditioner can reach a higher operating frequency and output more power at high temperatures, giving full play to the advantages of the inverter air conditioner to meet user needs.
  • the second current is greater than the preset current threshold
  • the difference between the second current and the first current is greater than the preset current difference threshold
  • the current compressor frequency is less than the preset compressor frequency threshold
  • an embodiment of the fourth aspect of the present application proposes an air conditioner control method, which is suitable for the air conditioner described in the embodiment of the first aspect of the present application, and includes:
  • the speed of the outdoor fan and the opening degree of the throttle valve are controlled according to the temperature in the middle of the outdoor condenser.
  • the outdoor ambient temperature is acquired; if the outdoor ambient temperature is equal to or less than the preset outdoor ambient temperature threshold, the central temperature of the outdoor condenser is acquired; according to the outdoor condenser
  • the central temperature controls the speed of the outdoor fan and the opening of the throttle valve, which can make the air conditioner operate stably and reliably at low temperatures, with low cost, high production efficiency, and convenient after-sales maintenance.
  • the controlling the rotation speed of the outdoor fan and the opening of the throttle valve according to the temperature in the middle of the outdoor condenser includes: obtaining the corresponding preset saturated refrigerant temperature according to the outdoor ambient temperature; and detecting; And confirm that the temperature in the middle of the outdoor condenser is greater than the temperature of the preset saturated refrigerant, control the outdoor fan to run at a preset maximum speed, and control the opening of the throttle valve according to the preset target exhaust temperature .
  • the controlling the rotation speed of the outdoor fan and the opening of the throttle valve according to the temperature in the middle of the outdoor condenser further includes: detecting and confirming that the temperature in the middle of the outdoor condenser is equal to or greater than the first temperature
  • the threshold value is less than or equal to the temperature of the preset saturated refrigerant
  • the outdoor fan is controlled to operate at the current speed
  • the throttle valve is controlled to maintain the current opening.
  • the temperature of the preset saturated refrigerant is equal to the first
  • the difference of a temperature threshold is equal to the first preset difference.
  • the controlling the rotation speed of the outdoor fan and the opening of the throttle valve according to the temperature of the middle of the outdoor condenser further includes: detecting and confirming that the temperature of the middle of the outdoor condenser is greater than a second temperature threshold and Less than the first temperature threshold, control the rotation speed of the outdoor fan to gradually decrease according to a first set value until the outdoor fan stops running, detect and confirm that the outdoor fan stops running for a first set time, and control the cooling
  • the opening degree of the flow valve gradually increases, it is detected and confirmed that the temperature in the middle of the outdoor condenser is greater than the temperature of the preset saturated refrigerant, and the throttle valve is controlled to maintain the current opening degree.
  • the temperature of the preset saturated refrigerant is The difference between the second temperature threshold is equal to a second preset difference, and the second preset difference is greater than the first preset difference.
  • the controlling the rotation speed of the outdoor fan and the opening of the throttle valve according to the temperature of the middle of the outdoor condenser further includes: detecting and confirming that the temperature of the middle of the outdoor condenser is equal to or less than the first Two temperature thresholds, controlling the speed of the outdoor fan to gradually decrease according to a second set value until the outdoor fan stops running, detecting and confirming that the outdoor fan stops running for the first set time, and controlling the throttle valve
  • the opening degree gradually increases, detecting and confirming that the temperature in the middle of the outdoor condenser is greater than the temperature of the preset saturated refrigerant, and controlling the throttle valve to maintain the current opening degree, and the second set value is greater than the first A set value.
  • control method further includes: detecting and confirming that the outdoor environment temperature is greater than the outdoor environment temperature threshold, controlling the outdoor fan to operate at the maximum speed, and according to the target exhaust temperature Control the opening degree of the throttle valve.
  • the obtaining the outdoor environment temperature includes: periodically obtaining the outdoor environment temperature.
  • an embodiment of the fifth aspect of the present invention provides an air conditioner control device, which is suitable for the air conditioner described in the embodiment of the first aspect of the present application, and includes:
  • the fifth acquiring module is used to acquire the outdoor ambient temperature in the cooling mode
  • the sixth acquiring module is configured to detect and confirm that the outdoor ambient temperature is equal to or less than a preset outdoor ambient temperature threshold, and acquire the temperature of the middle of the outdoor condenser;
  • the second control module is used to control the rotation speed of the outdoor fan and the opening degree of the throttle valve according to the temperature in the middle of the outdoor condenser.
  • the outdoor ambient temperature is acquired; if the outdoor ambient temperature is equal to or less than the preset outdoor ambient temperature threshold, the central temperature of the outdoor condenser is acquired; according to the outdoor condenser
  • the central temperature controls the speed of the outdoor fan and the opening of the throttle valve, which can make the air conditioner operate stably and reliably at low temperatures, with low cost, high production efficiency, and convenient after-sales maintenance.
  • an embodiment of the sixth aspect of the present invention provides an air conditioner, including: the control device of the air conditioner as described in the embodiment of the fifth aspect of the present invention.
  • an embodiment of the seventh aspect of the present application proposes an electronic device, including: a memory, a processor, and a computer program stored on the memory and capable of running on the processor, and the processor executes The program implements an air conditioner control method as described in the embodiment of the second aspect of the present application, or another air conditioner control method as described in the embodiment of the fourth aspect of the present application.
  • an embodiment of the fifth aspect of the present application proposes a computer-readable storage medium on which a computer program is stored.
  • a computer-readable storage medium as described in the embodiment of the second aspect of the present application is implemented.
  • Fig. 1 is a structural diagram of an air conditioner according to an embodiment of the present application
  • FIG. 2 is a structural diagram of an air conditioner according to another embodiment of the present application.
  • Fig. 3 is a flowchart of a control method of an air conditioner according to an embodiment of the present application
  • Figure 4 is a structural diagram of a control device for an air conditioner according to an embodiment of the present application.
  • Fig. 5 is a flowchart of a control method of an air conditioner according to another embodiment of the present application.
  • Fig. 6 is a flowchart of a method for controlling an air conditioner according to another embodiment of the present application.
  • Fig. 7 is a flowchart of a control method of an air conditioner according to a specific embodiment of the present application.
  • Figure 8 is a structural diagram of a control device for an air conditioner according to another embodiment of the present application.
  • Fig. 9 is a structural diagram of an air conditioner according to another embodiment of the present application.
  • Fig. 10 is a structural diagram of an electronic device according to an embodiment of the present application.
  • Fig. 1 is a structural diagram of an air conditioner according to an embodiment of the present application. As shown in Fig. 1, the air conditioner includes:
  • the outdoor condenser 11 communicates with the first end of the heat dissipation refrigerant pipe 14 through the first electronic expansion valve 15, and the indoor evaporator 12 communicates with the second end of the heat dissipation refrigerant pipe 14 through the throttle valve 16.
  • the first electronic expansion valve 15 The throttle valve 16 is used to throttle the refrigerant in the heating mode, and the throttle valve 16 is used to throttle the refrigerant in the cooling mode.
  • the heat-dissipating refrigerant pipe 14 may be a section of specific refrigerant pipe arranged in the electric control box 13.
  • the outdoor condenser 11 communicates with the first end of the heat dissipation refrigerant pipe 14 through the first electronic expansion valve 15, and the indoor evaporator 12 communicates with the second end of the heat dissipation refrigerant pipe 14 through the throttle valve 16.
  • the heat dissipation refrigerant tube 14 is arranged in the electric control box 13, and the electric control box 13 is dissipated through the heat dissipation refrigerant tube 14, which can take away the heat generated by the electric control box 13 at high temperature in time, reduce the temperature of the components, and improve the reliability of the air conditioner At the same time, for the inverter air conditioner, it can reach a higher operating frequency and output more power at high temperatures, giving full play to the advantages of the inverter air conditioner to meet user needs.
  • the throttle valve 16 may specifically be a one-way throttle valve. In the heating mode, the refrigerant is throttled by the first electronic expansion valve 15; in the cooling mode, the refrigerant is throttled in one direction by the throttle valve 16, which can avoid condensation in the electric control box 13, thereby increasing the electric capacity. The reliability of the control box 13.
  • the outdoor condenser is connected to the first end of the heat dissipation refrigerant pipe through the first electronic expansion valve, and the indoor evaporator is connected to the second end of the heat dissipation refrigerant pipe through the throttle valve.
  • the tube is set in the electric control box, and the heat dissipation refrigerant tube is used to dissipate the electric control box of the air conditioner, which can take away the heat generated by the electric control box in time, reduce the temperature of the components, and improve the reliability and life of the air conditioner; As far as inverter air conditioners are concerned, they can reach higher operating frequencies and output greater power at high temperatures, giving full play to the advantages of inverter air conditioners to meet user needs.
  • FIG. 2 is a structural diagram of an air conditioner according to another embodiment of the present application. As shown in FIG. 2, based on the embodiment shown in FIG. 1, the air conditioner may further include:
  • the indoor evaporator 12 communicates with the throttle valve 16 through the first refrigerant branch of the plate heat exchanger 19, and the compressor 17 passes through the second refrigerant branch of the plate heat exchanger 19 and the second electronic expansion valve 18 in turn.
  • the valve 16 is in communication, and the second electronic expansion valve 18 is used to throttle the refrigerant in the heating mode.
  • the compressor 17 may specifically be a compressor with injection enthalpy as shown in FIG. 2.
  • the compressor 17 may include: a compressor discharge port 35; a compressor return port 33; and a compressor injection enthalpy port 34 .
  • An exhaust temperature sensor 30 may be provided on the outside of the exhaust pipe of the compressor 17 for detecting the exhaust temperature of the compressor 17.
  • the air conditioner may also include a high-pressure switch 29 and a low-pressure switch 32.
  • One end of the high-pressure switch 29 is embedded in the exhaust pipe of the compressor 17 to detect the exhaust pressure and realize system protection when the pressure is higher than its cut-off value;
  • One end of the low pressure switch 32 is embedded in the return pipe of the compressor 17 to detect the return pressure and realize system protection when the pressure is lower than its cut-off value.
  • the plate heat exchanger 19 is used in the heating mode to realize heat exchange through the refrigerants of different temperatures in the first refrigerant branch and the second refrigerant branch inside, so that the refrigerant at the compressor injection enthalpy port 34 is gaseous,
  • the compressor 17 can greatly increase the heating capacity output under certain conditions.
  • the injection enthalpy inlet and outlet of the injection enthalpy pipeline (second refrigerant branch) of the plate heat exchanger 19 can also be respectively provided with injection enthalpy inlet temperature sensors 27 and injection enthalpy outlet temperature sensors 28, which are used to detect injection The temperature at the enthalpy inlet and the temperature at the jet enthalpy outlet.
  • the second electronic expansion valve 18 is used for throttling the refrigerant in the heating mode, and can be specifically operated according to the temperature at the injection enthalpy inlet and the temperature at the injection enthalpy outlet.
  • the air conditioner may further include:
  • the first valve port of the four-way valve 20 communicates with the outdoor condenser 11, the second valve port of the four-way valve 20 communicates with the indoor evaporator 12, and the third valve port of the four-way valve 20 communicates with the liquid storage tank 21.
  • the fourth valve port of the four-way valve 20 is in communication with the compressor 17, and the liquid storage tank 21 is in communication with the compressor 17.
  • the air conditioner may further include: a separator 22;
  • the liquid storage tank 21 and the compressor 17 are respectively communicated with the fourth port of the four-way valve 20 through the separator 22.
  • the air conditioner may further include an oil return capillary 31, and the separator 22 is used to separate the cold refining oil discharged from the compressor, through the oil return capillary 31, through the compressor return pipe, under the action of high and low pressure difference , The discharged cold refining oil can be returned to the compressor 17 to avoid the compressor 17 being short of oil.
  • the air conditioner may further include: an outdoor ambient temperature sensor 23; a condenser middle temperature sensor 24; an indoor ambient temperature sensor 25; and an evaporator middle temperature sensor 26.
  • the condenser middle temperature sensor 24 is arranged on the surface of the copper pipe in the middle of the outdoor condenser 11 to detect the middle temperature of the outdoor condenser;
  • the outdoor ambient temperature sensor 23 is arranged on the fins on the windward side of the outdoor condenser 11 to detect the outdoor Ambient temperature;
  • the indoor ambient temperature sensor 25 is installed on the fins on the windward side of the indoor evaporator 12 to detect the indoor ambient temperature;
  • the middle evaporator temperature sensor 26 is installed on the surface of the copper tube in the middle of the indoor evaporator 12 to detect indoor evaporation The temperature in the middle of the device 12.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 17 flows through the separator 22, the four-way valve 20 to the outdoor condenser 11 side for heat dissipation, and then passes through the first electronic expansion valve 15 (at this time, the opening is the maximum ), flows through the heat dissipation refrigerant pipe 14 in the electric control box 13, throttling by the throttle valve 16 to form a low temperature and low pressure refrigerant, the refrigerant then flows through the first refrigerant branch of the plate heat exchanger 19 and enters the indoor evaporator 12 performs heat absorption and evaporation, and then enters the liquid storage tank 21, and the gaseous refrigerant flows into the compressor 17 for circulation.
  • the plate heat exchanger 19 enables the refrigerants of different temperatures in the first refrigerant branch and the second refrigerant branch inside to achieve heat exchange, so that the refrigerant at the enthalpy port 34 of the compressor is in a gaseous state.
  • the compressor 17 can greatly increase the heating capacity output under certain conditions.
  • the air conditioner may also include: a controller for:
  • the air conditioner After the air conditioner is turned on in the cooling mode, obtain the outdoor ambient temperature T4; obtain the corresponding preset current threshold I0, preset compressor frequency threshold F0 and preset current difference threshold A according to the outdoor ambient temperature T4; start compressor 17 After the first set time, obtain the current operating current and use it as the first current I1; after the compressor 17 starts for the second set time, obtain the current operating current and use it as the second current I2, and obtain the current compressor frequency F; If the following three conditions are met at the same time: the second current I2 is greater than the preset current threshold I0, the difference I2-I1 between the second current I2 and the first current I1 is greater than the preset current difference threshold A and the current compressor frequency If F is less than the preset compressor frequency threshold F0, the air conditioner is controlled to stop and the control strategies of the first electronic expansion valve 15 and the second electronic expansion valve 18 are exchanged.
  • the mapping relationship between the outdoor ambient temperature T4 and the preset current threshold I0, the preset compressor frequency threshold F0, and the preset current difference threshold A can be pre-established in the program.
  • the outdoor ambient temperature T4 is acquired through the outdoor ambient temperature sensor 23 as shown in FIG. 2, and the above mapping relationship is queried to acquire the preset current threshold I0, the preset compressor frequency threshold F0 and the preset compressor frequency threshold corresponding to T4.
  • the preset current difference threshold A after the compressor 17 is started for the first set time, the current working current is obtained and used as the first current I1; after the compressor 17 is started for the second set time, the current working current is obtained and As the second current I2, and obtain the current compressor frequency F; if the following three conditions are met at the same time: I2>I0, I2-I1>A and F ⁇ F0, it can be judged that the first electronic expansion valve 15 and the Second, the position of the electronic expansion valve 18 is reversed to control the air conditioner to stop, and the control strategies of the first electronic expansion valve 15 and the second electronic expansion valve 18 are exchanged through the built-in preset program.
  • the control strategy is in the cooling mode or heating mode Next, control the opening of the first electronic expansion valve 15 and the second electronic expansion valve 18.
  • the control strategy of the first electronic expansion valve 15 in the current cooling mode is the first opening and the second electronic expansion valve 18 If the strategy is the second degree of opening, the control strategy of the first electronic expansion valve 15 is switched to the second degree of opening, and the control strategy of the second electronic expansion valve 18 is switched to the first degree of opening, thereby ensuring the normal operation of the air conditioner and improving System reliability.
  • the outdoor condenser is connected to the first end of the heat dissipation refrigerant pipe through the first electronic expansion valve, and the indoor evaporator is connected to the second end of the heat dissipation refrigerant pipe through the throttle valve.
  • the tube is set in the electric control box, and the heat dissipation refrigerant tube is used to dissipate the electric control box of the air conditioner, which can take away the heat generated by the electric control box in time, reduce the temperature of the components, and improve the reliability and life of the air conditioner; As far as inverter air conditioners are concerned, they can reach higher operating frequencies and output greater power at high temperatures, giving full play to the advantages of inverter air conditioners to meet user needs.
  • the air conditioner can be controlled to stop and the control strategies of the first electronic expansion valve and the second electronic expansion valve can be exchanged to ensure that the air conditioner can still operate normally even when the first electronic expansion valve and the second electronic expansion valve are plugged in reverse. System reliability.
  • Fig. 3 is a flowchart of a control method of an air conditioner according to an embodiment of the present application.
  • the control method is applicable to the air conditioner shown in the above embodiment.
  • the control method includes:
  • S102 Acquire a corresponding preset current threshold, a preset compressor frequency threshold, and a preset current difference threshold according to the outdoor ambient temperature.
  • the air conditioner is controlled to stop and the control strategies of the first electronic expansion valve and the second electronic expansion valve are exchanged.
  • the outdoor condenser is connected to the first end of the heat dissipation refrigerant pipe through the first electronic expansion valve, and the indoor evaporator passes through the first refrigerant branch and section of the plate heat exchanger in turn.
  • the flow valve is connected to the second end of the heat-dissipating refrigerant pipe.
  • the heat-dissipating refrigerant pipe is arranged in the electric control box, and the electric control box of the air conditioner is dissipated through the heat-dissipating refrigerant pipe, which can take away the heat generated by the electric control box in time and reduce the cost.
  • the device temperature improves the reliability and life of the air conditioner; at the same time, for the inverter air conditioner, it can reach a higher operating frequency and output more power at high temperatures, giving full play to the advantages of the inverter air conditioner to meet user needs.
  • the second current is greater than the preset current threshold
  • the difference between the second current and the first current is greater than the preset current difference threshold
  • the current compressor frequency is less than the preset compressor frequency threshold
  • Fig. 4 is a structural diagram of a control device of an air conditioner according to an embodiment of the present application.
  • the control device is suitable for the air conditioner shown in the above embodiment.
  • the control device includes:
  • the first obtaining module 41 is configured to obtain the outdoor ambient temperature after the air conditioner is turned on in the cooling mode
  • the second obtaining module 42 is configured to obtain the corresponding preset current threshold, preset compressor frequency threshold, and preset current difference threshold according to the outdoor ambient temperature;
  • the third acquiring module 43 is configured to acquire the current working current as the first current after the compressor is started for the first set time
  • the fourth acquiring module 44 is configured to acquire the current working current as the second current after the compressor is started for a second set time, and acquire the current compressor frequency;
  • the first control module 45 is configured to meet the following three conditions at the same time: the second current is greater than the preset current threshold, the difference between the second current and the first current is greater than the preset current difference threshold, and the current compressor frequency is less than the preset If the compressor frequency threshold is set, the air conditioner is controlled to stop and the control strategies of the first electronic expansion valve and the second electronic expansion valve are exchanged.
  • the outdoor condenser is connected to the first end of the heat dissipation refrigerant pipe through the first electronic expansion valve, and the indoor evaporator sequentially passes through the first refrigerant branch and section of the plate heat exchanger.
  • the flow valve is connected to the second end of the heat-dissipating refrigerant pipe.
  • the heat-dissipating refrigerant pipe is arranged in the electric control box, and the electric control box of the air conditioner is dissipated through the heat-dissipating refrigerant pipe, which can take away the heat generated by the electric control box in time and reduce the cost.
  • the device temperature improves the reliability and life of the air conditioner; at the same time, for the inverter air conditioner, it can reach a higher operating frequency and output more power at high temperatures, giving full play to the advantages of the inverter air conditioner to meet user needs.
  • the second current is greater than the preset current threshold
  • the difference between the second current and the first current is greater than the preset current difference threshold
  • the current compressor frequency is less than the preset compressor frequency threshold
  • the air conditioner may also work at low temperatures (for example, the outdoor ambient temperature is below -10°C).
  • the outdoor environment temperature is very low, and the outdoor heat exchange is sufficient. Therefore, the refrigerant passing through the outdoor side heat exchange has a large degree of subcooling, resulting in a very low refrigerant temperature after throttling. It is easy to trigger the preset anti-freezing protection program in the room, resulting in frequent shutdowns, which will not only cause large fluctuations in the indoor temperature, but also generate noise due to frequent startup and shutdown; at the same time, due to excessive subcooling, there is no refrigerant passing through the indoor side. Completely evaporate, so that the compressor fluid is compressed, affecting the reliability and life of the compressor.
  • air conditioners usually add temperature sensors or pressure switches or change the heat dissipation area of some condensers so that the air conditioners can operate in low temperature environments.
  • these solutions not only lead to increased costs, but also reduce production efficiency and increase after-sales maintenance. The difficulty.
  • this application also proposes another air conditioner control method, which enables the air conditioner to operate stably and reliably at low temperatures, with low cost, high production efficiency, and convenient after-sales maintenance.
  • a control method of an air conditioner according to another embodiment of the present application may include:
  • S501 Acquire an outdoor ambient temperature T4 in the cooling mode.
  • the outdoor ambient temperature T4 in the cooling mode, can be periodically acquired by the outdoor ambient temperature sensor 23 as shown in FIG. 2, and the acquisition period is T.
  • the outdoor environment temperature threshold T40 may be preset, and the outdoor environment temperature threshold T40 may specifically be the temperature threshold of the air conditioner in a low-temperature cooling working state, for example, -10°C. After obtaining the outdoor ambient temperature T4, compare it with T40. If T4 ⁇ T40, it means that the air conditioner is in a low-temperature refrigeration state at this time. Obtain the central temperature T3 of the outdoor condenser. Specifically, you can use the condensation as shown in Figure 2. The central part temperature sensor 24 obtains the temperature T3 of the central part of the outdoor condenser.
  • S503 Control the rotation speed of the outdoor fan and the opening degree of the throttle valve according to the temperature T3 in the middle of the outdoor condenser.
  • the rotation speed of the outdoor fan and the opening degree of the throttle valve are controlled according to the temperature T3 in the middle of the outdoor condenser, and after T time, return to step S501 and execute the subsequent steps. Controlling the speed of the outdoor fan according to the temperature in the middle of the outdoor condenser can achieve the effect of energy saving and electricity saving.
  • the outdoor ambient temperature is acquired; if the outdoor ambient temperature is equal to or less than the preset outdoor ambient temperature threshold, the central temperature of the outdoor condenser is acquired; according to the outdoor condenser
  • the central temperature controls the speed of the outdoor fan and the opening of the throttle valve, which can make the air conditioner operate stably and reliably at low temperatures, with low cost, high production efficiency, and convenient after-sales maintenance.
  • FIG. 6 is a flowchart of a method for controlling an air conditioner according to another embodiment of the present application.
  • the step S503 in the embodiment shown in FIG. 5 may specifically include:
  • S601 Obtain a corresponding preset saturated refrigerant temperature T30 according to the outdoor ambient temperature T4.
  • the mapping relationship between the outdoor ambient temperature T4 and the preset saturated refrigerant temperature T30 can be preset in the program. After obtaining the outdoor ambient temperature T4, query the above mapping relationship to obtain the corresponding preset saturation The temperature of the refrigerant is T30.
  • the outdoor fan is controlled to operate at the preset maximum speed, and the opening of the throttle valve is controlled according to the preset target exhaust temperature.
  • Step S503 in the embodiment shown in FIG. 5 may further include:
  • the outdoor fan is controlled to maintain the current speed operation, and the throttle valve is controlled to maintain the current opening degree ,
  • the difference between the preset saturated refrigerant temperature T30 and the first temperature threshold T30- ⁇ T1 is equal to the first preset difference ⁇ T1.
  • the first preset difference value ⁇ T1 can be preset, and the first temperature threshold is T30- ⁇ T1. If T30- ⁇ T1 ⁇ T3 ⁇ T30, control the outdoor fan to keep the current speed running, and control the throttle valve to keep the current opening.
  • step S503 in the embodiment shown in FIG. 5 may further include:
  • the speed of the outdoor fan is controlled to gradually decrease according to the first set value until the outdoor fan stops running and stays outdoors After the fan stops running for the first set time, the opening degree of the control throttle valve gradually increases, and when the temperature T3 in the middle of the condenser is greater than the preset saturated refrigerant temperature T30, the control throttle valve maintains the current opening degree.
  • the difference between the temperature T30 of the saturated refrigerant and the second temperature threshold T30- ⁇ T2 is equal to the second preset difference ⁇ T2, and the second preset difference ⁇ T2 is greater than the first preset difference ⁇ T1.
  • the second preset difference value ⁇ T2 can be preset, and the second temperature threshold is T30- ⁇ T2, where ⁇ T2> ⁇ T1. If T30- ⁇ T2 ⁇ T3 ⁇ T30- ⁇ T1, control the speed of the outdoor fan to gradually decrease according to the first set value until the outdoor fan stops running, for example, when the first set value is N gears/minute, control the outdoor fan The speed is gradually reduced according to N gear/minute until the outdoor fan stops running. And after the outdoor fan stops running for the first set time, the opening degree of the control electronic expansion valve gradually increases, and when T3>T30, the control electronic expansion valve maintains the current opening degree.
  • Step S503 in the embodiment shown in FIG. 5 may further include:
  • the speed of the outdoor fan is controlled to gradually decrease according to the second set value until the outdoor fan stops running, and the outdoor fan stops running for the first set time Later, the opening degree of the control throttle valve gradually increases, and when the temperature T3 of the middle of the outdoor condenser is greater than the preset saturated refrigerant temperature T30, the control throttle valve maintains the current opening degree, and the second setting value is greater than the first setting Value.
  • the rotation speed of the outdoor fan is controlled to gradually decrease according to the second set value until the outdoor fan stops running.
  • the second set value is M gear/minute
  • the outdoor fan is controlled
  • the rotation speed of the fan is gradually reduced in M gear/minute until the outdoor fan stops running, wherein the second set value is greater than the first set value.
  • the opening degree of the control throttle valve gradually increases, and when T3>T30, the control throttle valve maintains the current opening degree.
  • control method further includes:
  • the outdoor fan is controlled to operate at the highest speed, and the opening of the throttle valve is controlled according to the target exhaust temperature.
  • the air conditioner is in a non-low-temperature refrigeration state
  • the outdoor fan is controlled to run at the highest speed
  • the opening of the throttle valve is controlled according to the target exhaust temperature. And after T time, return to step S501 and execute its subsequent steps.
  • FIG. 7 is a flowchart of the control method of the air conditioner according to a specific embodiment of the present application. As shown in FIG. 7, the control method specifically includes:
  • step S704 If yes, go to step S704; if not, go to step S703.
  • step S703 Control the outdoor fan to run at the highest speed, control the opening of the throttle valve according to the target exhaust temperature, and return to step S701 after T time.
  • S704 Obtain a corresponding preset saturated refrigerant temperature T30 according to the outdoor ambient temperature T4.
  • step S706 Control the outdoor fan to keep running at the current speed, and control the throttle valve to keep the current opening. And return to step S701 after T time.
  • the outdoor ambient temperature is acquired; if the outdoor ambient temperature is equal to or less than the preset outdoor ambient temperature threshold, the central temperature of the outdoor condenser is acquired; according to the outdoor condenser
  • the central temperature controls the speed of the outdoor fan and the opening of the throttle valve, which can make the air conditioner operate stably and reliably at low temperatures, with low cost, high production efficiency, and convenient after-sales maintenance.
  • Fig. 8 is a structural diagram of a control device of an air conditioner according to an embodiment of the present application. As shown in Fig. 8, the control device includes:
  • the fifth acquiring module 81 is configured to acquire the outdoor ambient temperature in the cooling mode
  • the sixth acquiring module 82 is configured to acquire the temperature of the middle of the condenser if the outdoor ambient temperature is equal to or less than the preset outdoor ambient temperature threshold;
  • the second control module 83 is used to control the speed of the outdoor fan and the opening degree of the electronic expansion valve according to the temperature in the middle of the condenser.
  • the outdoor ambient temperature is acquired; if the outdoor ambient temperature is equal to or less than the preset outdoor ambient temperature threshold, the central temperature of the outdoor condenser is acquired; according to the outdoor condenser
  • the central temperature controls the speed of the outdoor fan and the opening of the throttle valve, which can make the air conditioner operate stably and reliably at low temperatures, with low cost, high production efficiency, and convenient after-sales maintenance.
  • control module 83 is specifically configured to: obtain the corresponding preset saturated refrigerant temperature according to the outdoor ambient temperature; if the temperature of the central part of the outdoor condenser is greater than the preset saturated refrigerant temperature, control The outdoor fan runs at a preset maximum speed and controls the opening of the throttle valve according to the preset target exhaust temperature.
  • control module 83 is specifically configured to: if the temperature in the middle of the outdoor condenser is equal to or greater than the first temperature threshold and less than or equal to the preset saturated refrigerant temperature, control the outdoor fan to maintain the current And control the throttle valve to maintain the current opening degree, and the difference between the preset saturated refrigerant temperature and the first temperature threshold is equal to the first preset difference.
  • control module 83 is specifically configured to: if the temperature in the middle of the outdoor condenser is greater than the second temperature threshold and less than the first temperature threshold, control the rotation speed of the outdoor fan according to the first set value Decrease gradually until the outdoor fan stops running, and after the outdoor fan stops running for the first set time, the opening of the control throttle valve gradually increases, and when the temperature in the middle of the outdoor condenser is greater than the preset saturated refrigerant temperature, the control throttle The flow valve maintains the current opening degree, the difference between the temperature of the preset saturated refrigerant and the second temperature threshold is equal to the second preset difference, and the second preset difference is greater than the first preset difference.
  • control module 83 is specifically configured to: if the temperature in the middle of the outdoor condenser is equal to or less than the second temperature threshold, control the speed of the outdoor fan to gradually decrease according to the second set value until the outdoor The fan stops running, and after the outdoor fan stops running for the first set time, the opening of the control throttle valve gradually increases, and when the temperature in the middle of the condenser is greater than the preset saturated refrigerant temperature, the control throttle valve maintains the current The opening degree, the second setting value is greater than the first setting value.
  • control module 83 is further configured to: if the outdoor ambient temperature is greater than the outdoor ambient temperature threshold, control the outdoor fan to run at the highest speed, and control the throttle valve according to the target exhaust temperature Opening.
  • the fifth obtaining module 81 is specifically configured to periodically obtain the outdoor ambient temperature.
  • an embodiment of the present application further proposes an air conditioner 90, as shown in FIG. 9, including: the air conditioner control device 80 shown in the foregoing embodiment.
  • an embodiment of the present application also proposes an electronic device 100.
  • the electronic device includes a memory 101 and a processor 102.
  • the memory 101 stores a computer program that can run on the processor 102, and the processor 102 executes the program to implement the control method of the air conditioner as shown in the foregoing embodiment.
  • the embodiment of the present application also proposes a non-transitory computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it realizes the control of the air conditioner as shown in the above-mentioned embodiment. method.

Abstract

本申请提出了一种空调器的控制方法、装置及空调器,该空调器包括:室外冷凝器、室内蒸发器、第一电子膨胀阀、节流阀和设置在电控盒中的散热冷媒管;室外冷凝器通过第一电子膨胀阀与散热冷媒管的第一端相连通,室内蒸发器通过节流阀与散热冷媒管的第二端相连通,第一电子膨胀阀用于在制热模式下对冷媒进行节流,节流阀用于在制冷模式下对冷媒进行节流。本申请的空调器的控制方法、装置及空调器,通过散热冷媒管对空调器的电控盒进行散热,可及时带走电控盒产生的热量,降低元器件温度,提高空调器的可靠性和寿命;同时,对于变频空调器而言,可在高温下达到更高的工作频率,输出更大功率,发挥变频空调器优势,满足用户需求。

Description

空调器的控制方法、装置及空调器
相关申请的交叉引用
本申请基于申请号为201910248831.3,且申请日为2019年03月29日,以及申请号为201910227622.0,且申请日为2019年03月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电器技术领域,尤其涉及一种空调器的控制方法、装置及空调器。
背景技术
相关技术中,空调器通常采用风冷对电控盒进行散热,在高温下其散热效果不好,无法及时带走电控盒产生的热量,降低元器件温度,从而影响空调器的寿命及可靠性;同时,对于变频空调器而言,在高温下无法达到较高的工作频率,从而无法发挥变频空调器的优势,满足用户需求。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的第一个目的在于提出一种空调器,通过散热冷媒管对空调器的电控盒进行散热,可及时带走电控盒产生的热量,降低元器件温度,提高空调器的可靠性和寿命;同时,对于变频空调器而言,可在高温下达到更高的工作频率,输出更大功率,发挥变频空调器优势,满足用户需求。
本申请的第二个目的在于提出一种空调器的控制方法。
本申请的第三个目的在于提出一种空调器的控制装置。
本申请的第四个目的在于提出另一种空调器的控制方法。
本申请的第五个目的在于提出另一种空调器的控制装置。
本申请的第六个目的在于提出另一种空调器。
本申请的第七个目的在于提出一种电子设备。
本申请的第八个目的在于提出一种计算机可读存储介质。
为达上述目的,本申请第一方面实施例提出了一种空调器,包括:
室外冷凝器、室内蒸发器、第一电子膨胀阀、节流阀和设置在电控盒中的散热冷媒管;
所述室外冷凝器通过所述第一电子膨胀阀与所述散热冷媒管的第一端相连通,所述室 内蒸发器通过所述节流阀与所述散热冷媒管的第二端相连通,所述第一电子膨胀阀用于在制热模式下对冷媒进行节流,所述节流阀用于在制冷模式下对冷媒进行节流。
根据本申请实施例提出的空调器,室外冷凝器通过第一电子膨胀阀与散热冷媒管的第一端相连通,室内蒸发器通过节流阀与散热冷媒管的第二端相连通,散热冷媒管设置在电控盒中,通过散热冷媒管对空调器的电控盒进行散热,可及时带走电控盒产生的热量,降低元器件温度,提高空调器的可靠性和寿命;同时,对于变频空调器而言,可在高温下达到更高的工作频率,输出更大功率,发挥变频空调器优势,满足用户需求。
根据本申请的一个实施例,该空调器还包括:压缩机、第二电子膨胀阀和板式换热器;所述室内蒸发器通过所述板式换热器的第一冷媒支路与所述节流阀相连通,所述压缩机依次通过所述板式换热器的第二冷媒支路和所述第二电子膨胀阀与所述节流阀相连通,所述第二电子膨胀阀用于在制热模式下对冷媒进行节流。
根据本申请的一个实施例,该空调器还包括:控制器;所述控制器用于:所述空调器以制冷模式开机,获取室外环境温度;根据所述室外环境温度获取对应的预设电流阈值、预设压缩机频率阈值和预设电流差值阈值;所述压缩机启动第一设定时间,获取当前的工作电流并作为第一电流;所述压缩机启动第二设定时间,获取当前的工作电流并作为第二电流,并获取当前的压缩机频率;检测并确认同时满足以下三个条件:所述第二电流大于所述预设电流阈值、所述第二电流与所述第一电流的差值大于所述预设电流差值阈值和所述当前的压缩机频率小于所述预设压缩机频率阈值,控制所述空调器停机并将所述第一电子膨胀阀和所述第二电子膨胀阀的控制策略进行调换。
根据本申请的一个实施例,该空调器还包括:四通阀和储液罐;所述四通阀的第一阀口与所述室外冷凝器相连通,所述四通阀的第二阀口与所述室内蒸发器相连通,所述四通阀的第三阀口与所述储液罐相连通,所述四通阀的第四阀口与所述压缩机相连通,所述储液罐与所述压缩机相连通。
根据本申请的一个实施例,该空调器还包括:分离器;所述储液罐和所述压缩机分别通过所述分离器与所述四通阀的第四阀口相连通。
为达上述目的,本申请第二方面实施例提出了一种空调器的控制方法,适用于如本申请第一方面实施例所述的空调器,所述控制方法包括:
所述空调器以制冷模式开机,获取室外环境温度;
根据所述室外环境温度获取对应的预设电流阈值、预设压缩机频率阈值和预设电流差值阈值;
所述压缩机启动第一设定时间,获取当前的工作电流并作为第一电流;
所述压缩机启动第二设定时间,获取当前的工作电流并作为第二电流,并获取当前的 压缩机频率;
检测并确认同时满足以下三个条件:所述第二电流大于所述预设电流阈值、所述第二电流与所述第一电流的差值大于所述预设电流差值阈值和所述当前的压缩机频率小于所述预设压缩机频率阈值,控制所述空调器停机并将所述第一电子膨胀阀和所述第二电子膨胀阀的控制策略进行调换。
根据本申请实施例提出的空调器的控制方法,室外冷凝器通过第一电子膨胀阀与散热冷媒管的第一端相连通,室内蒸发器依次通过板式换热器的第一冷媒支路、节流阀与散热冷媒管的第二端相连通,散热冷媒管设置在电控盒中,通过散热冷媒管对空调器的电控盒进行散热,可及时带走电控盒产生的热量,降低元器件温度,提高空调器的可靠性和寿命;同时,对于变频空调器而言,可在高温下达到更高的工作频率,输出更大功率,发挥变频空调器优势,满足用户需求。此外,若同时满足以下三个条件:第二电流大于预设电流阈值、第二电流与第一电流的差值大于预设电流差值阈值和当前的压缩机频率小于预设压缩机频率阈值,可控制空调器停机并将第一电子膨胀阀和第二电子膨胀阀的控制策略进行调换,确保空调器在第一电子膨胀阀和第二电子膨胀阀插反的情况下仍能正常运行,提高系统可靠性。
为达上述目的,本申请第三方面实施例提出了一种空调器的控制装置,适用于如本申请第一方面实施例所述的空调器,所述控制装置包括:
第一获取模块,用于在所述空调器以制冷模式开机后,获取室外环境温度;
第二获取模块,用于根据所述室外环境温度获取对应的预设电流阈值、预设压缩机频率阈值和预设电流差值阈值;
第三获取模块,用于在所述压缩机启动第一设定时间后,获取当前的工作电流并作为第一电流;
第四获取模块,用于在所述压缩机启动第二设定时间后,获取当前的工作电流并作为第二电流,并获取当前的压缩机频率;
第一控制模块,用于检测并确认同时满足以下三个条件:所述第二电流大于所述预设电流阈值、所述第二电流与所述第一电流的差值大于所述预设电流差值阈值和所述当前的压缩机频率小于所述预设压缩机频率阈值,控制所述空调器停机并将所述第一电子膨胀阀和所述第二电子膨胀阀的控制策略进行调换。
根据本申请实施例提出的空调器的控制装置,室外冷凝器通过第一电子膨胀阀与散热冷媒管的第一端相连通,室内蒸发器依次通过板式换热器的第一冷媒支路、节流阀与散热冷媒管的第二端相连通,散热冷媒管设置在电控盒中,通过散热冷媒管对空调器的电控盒进行散热,可及时带走电控盒产生的热量,降低元器件温度,提高空调器的可靠性和寿命; 同时,对于变频空调器而言,可在高温下达到更高的工作频率,输出更大功率,发挥变频空调器优势,满足用户需求。此外,若同时满足以下三个条件:第二电流大于预设电流阈值、第二电流与第一电流的差值大于预设电流差值阈值和当前的压缩机频率小于预设压缩机频率阈值,可控制空调器停机并将第一电子膨胀阀和第二电子膨胀阀的控制策略进行调换,确保空调器在第一电子膨胀阀和第二电子膨胀阀插反的情况下仍能正常运行,提高系统可靠性。
为达上述目的,本申请第四方面实施例提出了一种空调器的控制方法,适用于如本申请第一方面实施例所述的空调器,包括:
在制冷模式下,获取室外环境温度;
检测并确认所述室外环境温度等于或者小于预设的室外环境温度阈值,获取室外冷凝器中部温度;
根据所述室外冷凝器中部温度控制室外风机的转速和节流阀的开度。
根据本发明实施例提出的空调器的控制方法,在制冷模式下,获取室外环境温度;若室外环境温度等于或者小于预设的室外环境温度阈值,则获取室外冷凝器中部温度;根据室外冷凝器中部温度控制室外风机的转速和节流阀的开度,可使空调器在低温下稳定可靠运行,且成本较低,生产效率高,售后维护方便。
根据本发明的一个实施例,所述根据所述室外冷凝器中部温度控制室外风机的转速和节流阀的开度,包括:根据所述室外环境温度获取对应的预设饱和冷媒的温度;检测并确认所述室外冷凝器中部温度大于所述预设饱和冷媒的温度,控制所述室外风机按照预设的最高转速运行,并根据预设的目标排气温度控制所述节流阀的开度。
根据本发明的一个实施例,所述根据所述室外冷凝器中部温度控制室外风机的转速和节流阀的开度,还包括:检测并确认所述室外冷凝器中部温度等于或者大于第一温度阈值且小于或者等于所述预设饱和冷媒的温度,控制所述室外风机保持目前的转速运行,并控制所述节流阀保持目前的开度,所述预设饱和冷媒的温度与所述第一温度阈值的差值等于第一预设差值。
根据本发明的一个实施例,所述根据所述室外冷凝器中部温度控制室外风机的转速和节流阀的开度,还包括:检测并确认所述室外冷凝器中部温度大于第二温度阈值且小于所述第一温度阈值,控制所述室外风机的转速按照第一设定值逐渐降低直至所述室外风机停止运行,检测并确认所述室外风机停止运行第一设定时间,控制所述节流阀的开度逐渐增大,检测并确认所述室外冷凝器中部温度大于所述预设饱和冷媒的温度,控制所述节流阀保持目前的开度,所述预设饱和冷媒的温度与所述第二温度阈值的差值等于第二预设差值,所述第二预设差值大于所述第一预设差值。
根据本发明的一个实施例,所述根据所述室外冷凝器中部温度控制室外风机的转速和节流阀的开度,还包括:检测并确认所述室外冷凝器中部温度等于或者小于所述第二温度阈值,控制所述室外风机的转速按照第二设定值逐渐降低直至所述室外风机停止运行,检测并确认所述室外风机停止运行所述第一设定时间,控制所述节流阀的开度逐渐增大,检测并确认所述室外冷凝器中部温度大于所述预设饱和冷媒的温度,控制所述节流阀保持目前的开度,所述第二设定值大于所述第一设定值。
根据本发明的一个实施例,该控制方法还包括:检测并确认所述室外环境温度大于所述室外环境温度阈值,控制所述室外风机按照所述最高转速运行,并根据所述目标排气温度控制所述节流阀的开度。
根据本发明的一个实施例,所述获取室外环境温度,包括:周期性获取室外环境温度。
为达上述目的,本发明第五方面实施例提出了一种空调器的控制装置,适用于如本申请第一方面实施例所述的空调器,包括:
第五获取模块,用于在制冷模式下,获取室外环境温度;
第六获取模块,用于检测并确认所述室外环境温度等于或者小于预设的室外环境温度阈值,获取室外冷凝器中部温度;
第二控制模块,用于根据所述室外冷凝器中部温度控制室外风机的转速和节流阀的开度。
根据本发明实施例提出的空调器的控制装置,在制冷模式下,获取室外环境温度;若室外环境温度等于或者小于预设的室外环境温度阈值,则获取室外冷凝器中部温度;根据室外冷凝器中部温度控制室外风机的转速和节流阀的开度,可使空调器在低温下稳定可靠运行,且成本较低,生产效率高,售后维护方便。
为达上述目的,本发明第六方面实施例提出了一种空调器,包括:如本发明第五方面实施例所述的空调器的控制装置。为达上述目的,本申请第七方面实施例提出了一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时,实现如本申请第二方面实施例所述的一种空调器的控制方法,或者如本申请第四方面实施例所述的另一种空调器的控制方法。
为达上述目的,本申请第五方面实施例提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请第二方面实施例所述的一种空调器的控制方法,或者如本申请第四方面实施例所述的另一种空调器的控制方法。
附图说明
图1是根据本申请一个实施例的空调器的结构图;
图2是根据本申请另一个实施例的空调器的结构图;
图3是根据本申请一个实施例的空调器的控制方法的流程图;
图4是根据本申请一个实施例的空调器的控制装置的结构图;
图5是根据本申请另一个实施例的空调器的控制方法的流程图;
图6是根据本申请又一个实施例的空调器的控制方法的流程图;
图7是根据本申请一个具体实施例的空调器的控制方法的流程图;
图8是根据本申请另一个实施例的空调器的控制装置的结构图;
图9是根据本申请又一个实施例的空调器的结构图;
图10是根据本申请一个实施例的电子设备的结构图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面结合附图来描述本申请实施例的空调器的控制方法、装置及空调器。
图1是根据本申请一个实施例的空调器的结构图,如图1所示,该空调器包括:
室外冷凝器11、室内蒸发器12、第一电子膨胀阀15、节流阀16和设置在电控盒13中的散热冷媒管14;
室外冷凝器11通过第一电子膨胀阀15与散热冷媒管14的第一端相连通,室内蒸发器12通过节流阀16与散热冷媒管14的第二端相连通,第一电子膨胀阀15用于在制热模式下对冷媒进行节流,节流阀16用于在制冷模式下对冷媒进行节流。其中,散热冷媒管14可为设置在电控盒13中的一段特定的冷媒管。
本申请实施例中,室外冷凝器11通过第一电子膨胀阀15与散热冷媒管14的第一端相连通,室内蒸发器12通过节流阀16与散热冷媒管14的第二端相连通,散热冷媒管14设置在电控盒13中,通过散热冷媒管14对电控盒13进行散热,可及时带走高温下电控盒13产生的热量,降低元器件的温度,提高空调器的可靠性及寿命,同时,对于变频空调器而言,可在高温下达到更高的工作频率,输出更大功率,发挥变频空调器优势,满足用户需求。
其中,节流阀16具体可为单向节流阀。在制热模式下,通过第一电子膨胀阀15对冷媒进行节流;在制冷模式下,通过节流阀16对冷媒进行单向节流,可避免电控盒13出现凝露,从而提高电控盒13的可靠性。
根据本申请实施例提出的空调器,室外冷凝器通过第一电子膨胀阀与散热冷媒管的第 一端相连通,室内蒸发器通过节流阀与散热冷媒管的第二端相连通,散热冷媒管设置在电控盒中,通过散热冷媒管对空调器的电控盒进行散热,可及时带走电控盒产生的热量,降低元器件温度,提高空调器的可靠性和寿命;同时,对于变频空调器而言,可在高温下达到更高的工作频率,输出更大功率,发挥变频空调器优势,满足用户需求。
如图2所示,图2是根据本申请另一个实施例的空调器的结构图,如图2所示,在图1所示实施例基础上,该空调器还可包括:
压缩机17、第二电子膨胀阀18和板式换热器19;
室内蒸发器12通过板式换热器19的第一冷媒支路与节流阀16相连通,压缩机17依次通过板式换热器19的第二冷媒支路和第二电子膨胀阀18与节流阀16相连通,第二电子膨胀阀18用于在制热模式下对冷媒进行节流。
本申请实施例中,压缩机17具体可为如图2所示的带喷焓的压缩机,压缩机17可包括:压缩机排气口35;压缩机回气口33;压缩机喷焓口34。在压缩机17排气管的外侧可设置排气温度传感器30,用于检测压缩机17排气温度。该空调器还可包括高压开关29和低压开关32,高压开关29一端嵌入到压缩机17排气管的内部,用于检测排气压力,并在压力高于其断开值时实现系统保护;低压开关32一端嵌入压缩机17回气管的内部,用于检测回气压力,并在压力低于其关断值时实现系统保护。
板式换热器19用于在制热模式下,使得通过其内部的第一冷媒支路和第二冷媒支路的不同温度的冷媒实现热交换,使得压缩机喷焓口34的冷媒为气态,从而实现压缩机17在一定条件下,能大幅度提高制热能力输出。其中,板式换热器19的喷焓管路(第二冷媒支路)的喷焓进口处及出口处还可分别设置喷焓进口温度传感器27及喷焓出口温度传感器28,分别用于检测喷焓进口处的温度和喷焓出口处的温度。第二电子膨胀阀18用于在制热模式下对冷媒进行节流,具体可根据喷焓进口处的温度和喷焓出口处的温度进行相应操作。
如图2所示,在图1所示实施例基础上,该空调器还可包括:
四通阀20和储液罐21;
四通阀20的第一阀口与室外冷凝器11相连通,四通阀20的第二阀口与室内蒸发器12相连通,四通阀20的第三阀口与储液罐21相连通,四通阀20的第四阀口与压缩机17相连通,储液罐21与压缩机17相连通。
如图2所示,在图1所示实施例基础上,该空调器还可包括:分离器22;
储液罐21和压缩机17分别通过分离器22与四通阀20的第四阀口相连通。
本申请实施例中,该空调器还可包括回油毛细管31,分离器22用于实现分离压缩机排出的冷炼油,通过回油毛细管31,通过压缩机回气管,在高低压差的作用下,实现把排出的冷炼油回流到压缩机17中,避免压缩机17缺油。
如图2所示,该空调器还可包括:室外环境温度传感器23;冷凝器中部温度传感器24;室内环境温度传感器25;蒸发器中部温度传感器26。其中,冷凝器中部温度传感器24设置在室外冷凝器11中部铜管的表面,用于检测室外冷凝器中部温度;室外环境温度传感器23设置在室外冷凝器11迎风面的翅片上,用于检测室外环境温度;室内环境温度传感器25设置在室内蒸发器12迎风面的翅片上,用于检测室内环境温度;蒸发器中部温度传感器26设置在室内蒸发器12中部铜管的表面,用于检测室内蒸发器12中部的温度。
本申请实施例的空调器的工作原理如下:
(1)空调器制冷时,压缩机17排出高温高压气体冷媒流经分离器22、四通阀20到室外冷凝器11侧进行散热后,经过第一电子膨胀阀15(此时开度为最大),流经电控盒13内的散热冷媒管14,通过节流阀16进行节流,形成低温低压冷媒,冷媒再流经板式换热器19的第一冷媒支路,进入到室内蒸发器12进行吸热蒸发,再进入储液罐21,气态冷媒再流进压缩机17中进行循环。
(2)空调器制热时,压缩机17排出高温高压气体冷媒流经分离器22、四通阀20到室内蒸发器12侧进行散热后,冷媒再流进板式换热器19的第一冷媒支路到节流阀16(此时制热不节流)、电控盒13内的散热冷媒管14,经过第一电子膨胀阀15节流,形成低温低压冷媒,冷媒再流入到室外侧冷凝器11进行吸热蒸发,进入储液罐21,气态冷媒再流进压缩机17中进行循环。板式换热器19在制热模式下,使得通过其内部的第一冷媒支路和第二冷媒支路的不同温度的冷媒实现热交换,使得压缩机喷焓口34的冷媒为气态,从而实现压缩机17在一定条件下,能大幅度提高制热能力输出。
该空调器还可包括:控制器,用于:
在空调器以制冷模式开机后,获取室外环境温度T4;根据室外环境温度T4获取对应的预设电流阈值I0、预设压缩机频率阈值F0和预设电流差值阈值A;在压缩机17启动第一设定时间后,获取当前的工作电流并作为第一电流I1;在压缩机17启动第二设定时间后,获取当前的工作电流并作为第二电流I2,并获取当前的压缩机频率F;若同时满足以下三个条件:第二电流I2大于预设电流阈值I0、第二电流I2与第一电流I1的差值I2-I1大于预设电流差值阈值A和当前的压缩机频率F小于预设压缩机频率阈值F0,则控制空调器停机并将第一电子膨胀阀15和第二电子膨胀阀18的控制策略进行调换。
本申请实施例中,可在程序中预先建立室外环境温度T4与预设电流阈值I0、预设压缩机频率阈值F0和预设电流差值阈值A的映射关系。在空调器以制冷模式开机后,通过如图2所示室外环境温度传感器23获取室外环境温度T4,查询上述映射关系,获取与T4对应的预设电流阈值I0、预设压缩机频率阈值F0和预设电流差值阈值A;在压缩机17启动第一设定时间后,获取当前的工作电流并作为第一电流I1;在压缩机17启动第二设定时间 后,获取当前的工作电流并作为第二电流I2,并获取当前的压缩机频率F;如果同时满足以下三个条件:I2>I0、I2-I1>A和F<F0,则可判断此时第一电子膨胀阀15和第二电子膨胀阀18位置插反,控制空调器停机,并通过内置预设程序将第一电子膨胀阀15和第二电子膨胀阀18的控制策略进行调换,控制策略即在制冷模式或制热模式下对第一电子膨胀阀15和第二电子膨胀阀18开度的控制方式,例如,当前制冷模式下第一电子膨胀阀15的控制策略为第一开度,第二电子膨胀阀18的控制策略为第二开度,则将第一电子膨胀阀15的控制策略调换为第二开度,将第二电子膨胀阀18的控制策略调换为第一开度,从而保证空调器正常运行,提高系统可靠性。
根据本申请实施例提出的空调器,室外冷凝器通过第一电子膨胀阀与散热冷媒管的第一端相连通,室内蒸发器通过节流阀与散热冷媒管的第二端相连通,散热冷媒管设置在电控盒中,通过散热冷媒管对空调器的电控盒进行散热,可及时带走电控盒产生的热量,降低元器件温度,提高空调器的可靠性和寿命;同时,对于变频空调器而言,可在高温下达到更高的工作频率,输出更大功率,发挥变频空调器优势,满足用户需求。此外,若同时满足以下三个条件:第二电流大于预设电流阈值、第二电流与第一电流的差值大于预设电流差值阈值和当前的压缩机频率小于预设压缩机频率阈值,可控制空调器停机并将第一电子膨胀阀和第二电子膨胀阀的控制策略进行调换,确保空调器在第一电子膨胀阀和第二电子膨胀阀插反的情况下仍能正常运行,提高系统可靠性。
图3是根据本申请一个实施例的空调器的控制方法的流程图,该控制方法适用于上述实施例所示的空调器,如图3所示,该控制方法包括:
S101,在空调器以制冷模式开机后,获取室外环境温度。
S102,根据室外环境温度获取对应的预设电流阈值、预设压缩机频率阈值和预设电流差值阈值。
S103,在压缩机启动第一设定时间后,获取当前的工作电流并作为第一电流。
S104,在压缩机启动第二设定时间后,获取当前的工作电流并作为第二电流,并获取当前的压缩机频率。
S105,若同时满足以下三个条件:第二电流大于预设电流阈值、第二电流与第一电流的差值大于预设电流差值阈值和当前的压缩机频率小于预设压缩机频率阈值,则控制空调器停机并将第一电子膨胀阀和第二电子膨胀阀的控制策略进行调换。
需要说明的是,前述对空调器实施例的解释说明也适用于该实施例的空调器的控制方法,此处不再赘述。
根据本申请实施例提出的空调器的控制方法,室外冷凝器通过第一电子膨胀阀与散热冷媒管的第一端相连通,室内蒸发器依次通过板式换热器的第一冷媒支路、节流阀与散热 冷媒管的第二端相连通,散热冷媒管设置在电控盒中,通过散热冷媒管对空调器的电控盒进行散热,可及时带走电控盒产生的热量,降低元器件温度,提高空调器的可靠性和寿命;同时,对于变频空调器而言,可在高温下达到更高的工作频率,输出更大功率,发挥变频空调器优势,满足用户需求。此外,若同时满足以下三个条件:第二电流大于预设电流阈值、第二电流与第一电流的差值大于预设电流差值阈值和当前的压缩机频率小于预设压缩机频率阈值,可控制空调器停机并将第一电子膨胀阀和第二电子膨胀阀的控制策略进行调换,确保空调器在第一电子膨胀阀和第二电子膨胀阀插反的情况下仍能正常运行,提高系统可靠性。
图4是根据本申请一个实施例的空调器的控制装置的结构图,该控制装置适用于上述实施例所示的空调器,如图4所示,该控制装置包括:
第一获取模块41,用于在空调器以制冷模式开机后,获取室外环境温度;
第二获取模块42,用于根据室外环境温度获取对应的预设电流阈值、预设压缩机频率阈值和预设电流差值阈值;
第三获取模块43,用于在压缩机启动第一设定时间后,获取当前的工作电流并作为第一电流;
第四获取模块44,用于在压缩机启动第二设定时间后,获取当前的工作电流并作为第二电流,并获取当前的压缩机频率;
第一控制模块45,用于若同时满足以下三个条件:第二电流大于预设电流阈值、第二电流与第一电流的差值大于预设电流差值阈值和当前的压缩机频率小于预设压缩机频率阈值,则控制空调器停机并将第一电子膨胀阀和第二电子膨胀阀的控制策略进行调换。
需要说明的是,前述对空调器实施例的解释说明也适用于该实施例的空调器的控制装置,此处不再赘述。
根据本申请实施例提出的空调器的控制装置,室外冷凝器通过第一电子膨胀阀与散热冷媒管的第一端相连通,室内蒸发器依次通过板式换热器的第一冷媒支路、节流阀与散热冷媒管的第二端相连通,散热冷媒管设置在电控盒中,通过散热冷媒管对空调器的电控盒进行散热,可及时带走电控盒产生的热量,降低元器件温度,提高空调器的可靠性和寿命;同时,对于变频空调器而言,可在高温下达到更高的工作频率,输出更大功率,发挥变频空调器优势,满足用户需求。此外,若同时满足以下三个条件:第二电流大于预设电流阈值、第二电流与第一电流的差值大于预设电流差值阈值和当前的压缩机频率小于预设压缩机频率阈值,可控制空调器停机并将第一电子膨胀阀和第二电子膨胀阀的控制策略进行调换,确保空调器在第一电子膨胀阀和第二电子膨胀阀插反的情况下仍能正常运行,提高系统可靠性。
需要说明的是,在空调器实际运行的过程中,也可出现在低温下(例如室外环境温度-10℃以下)工作的情况。当空调器在低温下工作时,由于室外环境温度很低,室外换热很足,从而通过室外侧换热后的冷媒有很大的过冷度,导致节流后的冷媒温度很低,很容易触发室内预设的防冻结保护程序,导致频繁停机,这不但会导致室内温度波动较大,还会因为频繁开停机产生噪音;同时,由于过冷度过大,导致通过室内侧的冷媒没有完全蒸发,从而压缩机液压缩,影响压缩机的可靠性及寿命。
目前,空调器通常通过增设温度传感器或者压力开关或者更改部分冷凝器的散热面积等方式使得空调器可以在低温环境下运行,但是这些方案不但导致成本上升,还降低了生产效率,增加了售后维护的难度。为此,本申请还提出了另一种空调器的控制方法,使空调器在低温下稳定可靠运行,且成本较低,生产效率高,售后维护方便。
如图5所示,根据本申请另一个实施例的空调器的控制方法可包括:
S501,在制冷模式下,获取室外环境温度T4。
本申请实施例中,在制冷模式下,可通过如图2所示的室外环境温度传感器23周期性获取室外环境温度T4,获取周期为T。
S502,若室外环境温度T4等于或者小于预设的室外环境温度阈值T40,则获取室外冷凝器中部温度T3。
本申请实施例中,可预设室外环境温度阈值T40,室外环境温度阈值T40具体可为空调器为低温制冷工作状态的温度阈值,例如-10℃。获取室外环境温度T4后,将其与T40比较,如果T4≤T40,则说明此时空调器为低温制冷工作状态,获取室外冷凝器中部温度T3,具体的,可通过如图2所示的冷凝器中部温度传感器24获取室外冷凝器中部温度T3。
S503,根据室外冷凝器中部温度T3控制室外风机的转速和节流阀的开度。
本申请实施例中,根据室外冷凝器中部温度T3控制室外风机的转速和节流阀的开度,并在T时间后,返回S501步骤并执行其后续步骤。根据室外冷凝器中部温度控制室外风机的转速可达到节能省电的效果。
根据本申请实施例提出的空调器的控制方法,在制冷模式下,获取室外环境温度;若室外环境温度等于或者小于预设的室外环境温度阈值,则获取室外冷凝器中部温度;根据室外冷凝器中部温度控制室外风机的转速和节流阀的开度,可使空调器在低温下稳定可靠运行,且成本较低,生产效率高,售后维护方便。
如图6所示,图6是根据本申请又一个实施例的空调器的控制方法的流程图,图5所示实施例S503步骤具体可包括:
S601,根据室外环境温度T4获取对应的预设饱和冷媒的温度T30。
本申请实施例中,可在程序中预设室外环境温度T4与预设饱和冷媒的温度T30之间 的映射关系,获取室外环境温度T4后,查询上述映射关系,即可获取对应的预设饱和冷媒的温度T30。
S602,若室外冷凝器中部温度T3大于预设饱和冷媒的温度T30,则控制室外风机按照预设的最高转速运行,并根据预设的目标排气温度控制节流阀的开度。
本申请实施例中,如果T3>T30,则控制室外风机按照预设的最高转速运行,并根据预设的目标排气温度控制节流阀的开度。
图5所示实施例S503步骤还可包括:
若室外冷凝器中部温度T3等于或者大于第一温度阈值T30-△T1且小于或者等于预设饱和冷媒的温度T30,则控制室外风机保持目前的转速运行,并控制节流阀保持目前的开度,预设饱和冷媒的温度T30与第一温度阈值T30-△T1的差值等于第一预设差值△T1。
本申请实施例中,可预设第一预设差值△T1,则第一温度阈值即为T30-△T1。如果T30-△T1≤T3≤T30,则控制室外风机保持目前的转速运行,并控制节流阀保持目前的开度。
进一步的,图5所示实施例S503步骤还可包括:
若室外冷凝器中部温度T3大于第二温度阈值T30-△T2且小于第一温度阈值T30-△T1,则控制室外风机的转速按照第一设定值逐渐降低直至室外风机停止运行,并在室外风机停止运行第一设定时间后,控制节流阀的开度逐渐增大,并在冷凝器中部温度T3大于预设饱和冷媒的温度T30时,控制节流阀保持目前的开度,预设饱和冷媒的温度T30与第二温度阈值T30-△T2的差值等于第二预设差值△T2,第二预设差值△T2大于第一预设差值△T1。
本申请实施例中,可预设第二预设差值△T2,则第二温度阈值为T30-△T2,其中,△T2>△T1。如果T30-△T2<T3<T30-△T1,则控制室外风机的转速按照第一设定值逐渐降低直至室外风机停止运行,例如当第一设定值为N档/分钟时,控制室外风机的转速按N档/分钟逐渐降低直至室外风机停止运行。并在室外风机停止运行第一设定时间后,控制电子膨胀阀的开度逐渐增大,并在T3>T30时,控制电子膨胀阀保持目前的开度。
图5所示实施例S503步骤还可包括:
若室外冷凝器中部温度T3等于或者小于第二温度阈值T30-△T2,则控制室外风机的转速按照第二设定值逐渐降低直至室外风机停止运行,并在室外风机停止运行第一设定时间后,控制节流阀的开度逐渐增大,并在室外冷凝器中部温度T3大于预设饱和冷媒的温度T30时,控制节流阀保持目前的开度,第二设定值大于第一设定值。
本申请实施例中,如果T3≤T30-△T2,则控制室外风机的转速按照第二设定值逐渐降低直至室外风机停止运行,例如当第二设定值为M档/分钟时,控制室外风机的转速按M档/分钟逐渐降低直至室外风机停止运行,其中,第二设定值大于第一设定值。并在室外风机停止运行第一设定时间后,控制节流阀的开度逐渐增大,并在T3>T30时,控制节流阀 保持目前的开度。
在图5所示实施例基础上,该控制方法还包括:
若室外环境温度T4大于室外环境温度阈值T40,则控制室外风机按照最高转速运行,并根据目标排气温度控制节流阀的开度。
本申请实施例中,如果T4>T40,则空调器非低温制冷工作状态,控制室外风机按照最高转速运行,并根据目标排气温度控制节流阀的开度。并在T时间后,返回S501步骤并执行其后续步骤。
下面结合图7对本申请实施例的空调器的控制方法进行详细描述,图7是根据本申请一个具体实施例的空调器的控制方法的流程图,如图7所示,该控制方法具体包括:
S701,在制冷模式下,周期性获取室外环境温度T4,获取周期为T。
S702,判断是否T4≤T40。
若是,进入步骤S704;若否,进入步骤S703。
S703,控制室外风机按照最高转速运行,并根据目标排气温度控制节流阀的开度,并在T时间后返回S701步骤。
S704,根据室外环境温度T4获取对应的预设饱和冷媒的温度T30。
若T3>T30,进入步骤S705;
若T30-△T1≤T3≤T30,进入步骤S706;
若T30-△T2<T3<T30-△T1,进入步骤S707;
若T3≤T30-△T2,进入步骤S708。
S705,控制室外风机按照预设的最高转速运行,并根据预设的目标排气温度控制节流阀的开度。并在T时间后返回S301步骤。
S706,控制室外风机保持目前的转速运行,并控制节流阀保持目前的开度。并在T时间后返回S701步骤。
S707,控制室外风机的转速按照第一设定值逐渐降低直至室外风机停止运行,并在室外风机停止运行第一设定时间后,控制节流阀的开度逐渐增大,并在冷凝器中部温度T3大于预设饱和冷媒的温度T30时,控制节流阀保持目前的开度。并在T时间后返回S701步骤。
S708,控制室外风机的转速按照第二设定值逐渐降低直至室外风机停止运行,并在室外风机停止运行第一设定时间后,控制节流阀的开度逐渐增大,并在冷凝器中部温度T3大于预设饱和冷媒的温度T30时,控制节流阀保持目前的开度。并在T时间后返回S701步骤。
根据本申请实施例提出的空调器的控制方法,在制冷模式下,获取室外环境温度;若 室外环境温度等于或者小于预设的室外环境温度阈值,则获取室外冷凝器中部温度;根据室外冷凝器中部温度控制室外风机的转速和节流阀的开度,可使空调器在低温下稳定可靠运行,且成本较低,生产效率高,售后维护方便。
图8是根据本申请一个实施例的空调器的控制装置的结构图,如图8所示,该控制装置包括:
第五获取模块81,用于在制冷模式下,获取室外环境温度;
第六获取模块82,用于若室外环境温度等于或者小于预设的室外环境温度阈值,则获取冷凝器中部温度;
第二控制模块83,用于根据冷凝器中部温度控制室外风机的转速和电子膨胀阀的开度。
需要说明的是,前述对空调器的控制方法实施例的解释说明也适用于该实施例的空调器的控制装置,此处不再赘述。
根据本申请实施例提出的空调器的控制装置,在制冷模式下,获取室外环境温度;若室外环境温度等于或者小于预设的室外环境温度阈值,则获取室外冷凝器中部温度;根据室外冷凝器中部温度控制室外风机的转速和节流阀的开度,可使空调器在低温下稳定可靠运行,且成本较低,生产效率高,售后维护方便。
在本申请实施例一种可能的实现方式中,控制模块83具体用于:根据室外环境温度获取对应的预设饱和冷媒的温度;若室外冷凝器中部温度大于预设饱和冷媒的温度,则控制室外风机按照预设的最高转速运行,并根据预设的目标排气温度控制节流阀的开度。
在本申请实施例一种可能的实现方式中,控制模块83具体用于:若室外冷凝器中部温度等于或者大于第一温度阈值且小于或者等于预设饱和冷媒的温度,则控制室外风机保持目前的转速运行,并控制节流阀保持目前的开度,预设饱和冷媒的温度与第一温度阈值的差值等于第一预设差值。
在本申请实施例一种可能的实现方式中,控制模块83具体用于:若室外冷凝器中部温度大于第二温度阈值且小于第一温度阈值,则控制室外风机的转速按照第一设定值逐渐降低直至室外风机停止运行,并在室外风机停止运行第一设定时间后,控制节流阀的开度逐渐增大,并在室外冷凝器中部温度大于预设饱和冷媒的温度时,控制节流阀保持目前的开度,预设饱和冷媒的温度与第二温度阈值的差值等于第二预设差值,第二预设差值大于第一预设差值。
在本申请实施例一种可能的实现方式中,控制模块83具体用于:若室外冷凝器中部温度等于或者小于第二温度阈值,则控制室外风机的转速按照第二设定值逐渐降低直至室外风机停止运行,并在室外风机停止运行第一设定时间后,控制节流阀的开度逐渐增大,并在冷凝器中部温度大于预设饱和冷媒的温度时,控制节流阀保持目前的开度,第二设定值 大于第一设定值。
在本申请实施例一种可能的实现方式中,控制模块83还用于:若室外环境温度大于室外环境温度阈值,则控制室外风机按照最高转速运行,并根据目标排气温度控制节流阀的开度。
在本申请实施例一种可能的实现方式中,第五获取模块81具体用于:周期性获取室外环境温度。
需要说明的是,前述对空调器的控制方法实施例的解释说明也适用于该实施例的空调器的控制装置,此处不再赘述。
根据本申请实施例提出的空调器的控制装置,在制冷模式下,获取室外环境温度;若室外环境温度等于或者小于预设的室外环境温度阈值,则获取冷凝器中部温度;根据冷凝器中部温度控制室外风机的转速和电子膨胀阀的开度,可使空调器在低温下稳定可靠运行,且成本较低,生产效率高,售后维护方便。为了实现上述实施例,本申请实施例还提出一种空调器90,如图9所示,包括:上述实施例所示的空调器的控制装置80。
为了实现上述实施例,本申请实施例还提出一种电子设备100,如图10所示,该电子设备包括存储器101和处理器102。存储器101上存储有可在处理器102上运行的计算机程序,处理器102执行程序,实现如上述实施例所示的空调器的控制方法。
为了实现上述实施例,本申请实施例还提出一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,实现如上述实施例所示的空调器的控制方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (18)

  1. 一种空调器,其特征在于,包括:室外冷凝器、室内蒸发器、第一电子膨胀阀、节流阀和设置在电控盒中的散热冷媒管;
    所述室外冷凝器通过所述第一电子膨胀阀与所述散热冷媒管的第一端相连通,所述室内蒸发器通过所述节流阀与所述散热冷媒管的第二端相连通,所述第一电子膨胀阀用于在制热模式下对冷媒进行节流,所述节流阀用于在制冷模式下对冷媒进行节流。
  2. 根据权利要求1所述的空调器,其特征在于,还包括:压缩机、第二电子膨胀阀和板式换热器;
    所述室内蒸发器通过所述板式换热器的第一冷媒支路与所述节流阀相连通,所述压缩机依次通过所述板式换热器的第二冷媒支路和所述第二电子膨胀阀与所述节流阀相连通,所述第二电子膨胀阀用于在制热模式下对冷媒进行节流。
  3. 根据权利要求2所述的空调器,其特征在于,还包括:控制器;所述控制器用于:
    所述空调器以制冷模式开机,获取室外环境温度;
    根据所述室外环境温度获取对应的预设电流阈值、预设压缩机频率阈值和预设电流差值阈值;
    所述压缩机启动第一设定时间,获取当前的工作电流并作为第一电流;
    所述压缩机启动第二设定时间,获取当前的工作电流并作为第二电流,并获取当前的压缩机频率;
    检测并确认同时满足以下三个条件:所述第二电流大于所述预设电流阈值、所述第二电流与所述第一电流的差值大于所述预设电流差值阈值和所述当前的压缩机频率小于所述预设压缩机频率阈值,控制所述空调器停机并将所述第一电子膨胀阀和所述第二电子膨胀阀的控制策略进行调换。
  4. 根据权利要求2和3中任一项所述的空调器,其特征在于,还包括:四通阀和储液罐;
    所述四通阀的第一阀口与所述室外冷凝器相连通,所述四通阀的第二阀口与所述室内蒸发器相连通,所述四通阀的第三阀口与所述储液罐相连通,所述四通阀的第四阀口与所述压缩机相连通,所述储液罐与所述压缩机相连通。
  5. 根据权利要求4所述的空调器,其特征在于,还包括:分离器;
    所述储液罐和所述压缩机分别通过所述分离器与所述四通阀的第四阀口相连通。
  6. 一种空调器的控制方法,其特征在于,适用于如权利要求2所述的空调器,所述控制方法包括:
    所述空调器以制冷模式开机,获取室外环境温度;
    根据所述室外环境温度获取对应的预设电流阈值、预设压缩机频率阈值和预设电流差值阈值;
    所述压缩机启动第一设定时间,获取当前的工作电流并作为第一电流;
    所述压缩机启动第二设定时间,获取当前的工作电流并作为第二电流,并获取当前的压缩机频率;
    检测并确认同时满足以下三个条件:所述第二电流大于所述预设电流阈值、所述第二电流与所述第一电流的差值大于所述预设电流差值阈值和所述当前的压缩机频率小于所述预设压缩机频率阈值,控制所述空调器停机并将所述第一电子膨胀阀和所述第二电子膨胀阀的控制策略进行调换。
  7. 一种空调器的控制装置,其特征在于,适用于如权利要求2所述的空调器,所述控制装置包括:
    第一获取模块,用于在所述空调器以制冷模式开机后,获取室外环境温度;
    第二获取模块,用于根据所述室外环境温度获取对应的预设电流阈值、预设压缩机频率阈值和预设电流差值阈值;
    第三获取模块,用于在所述压缩机启动第一设定时间后,获取当前的工作电流并作为第一电流;
    第四获取模块,用于在所述压缩机启动第二设定时间后,获取当前的工作电流并作为第二电流,并获取当前的压缩机频率;
    第一控制模块,用于检测并确认同时满足以下三个条件:所述第二电流大于所述预设电流阈值、所述第二电流与所述第一电流的差值大于所述预设电流差值阈值和所述当前的压缩机频率小于所述预设压缩机频率阈值,控制所述空调器停机并将所述第一电子膨胀阀和所述第二电子膨胀阀的控制策略进行调换。
  8. 一种空调器的控制方法,其特征在于,适用于如权利要求1所述的空调器,包括:
    在制冷模式下,获取室外环境温度;
    检测并确认所述室外环境温度等于或者小于预设的室外环境温度阈值,获取室外冷凝器中部温度;
    根据所述室外冷凝器中部温度控制室外风机的转速和节流阀的开度。
  9. 根据权利要求8所述的控制方法,其特征在于,所述根据所述室外冷凝器中部温度控制室外风机的转速和节流阀的开度,包括:
    根据所述室外环境温度获取对应的预设饱和冷媒的温度;
    检测并确认所述室外冷凝器中部温度大于所述预设饱和冷媒的温度,控制所述室外风 机按照预设的最高转速运行,并根据预设的目标排气温度控制所述节流阀的开度。
  10. 根据权利要求9所述的控制方法,其特征在于,所述根据所述室外冷凝器中部温度控制室外风机的转速和节流阀的开度,还包括:
    检测并确认所述室外冷凝器中部温度等于或者大于第一温度阈值且小于或者等于所述预设饱和冷媒的温度,控制所述室外风机保持目前的转速运行,并控制所述节流阀保持目前的开度,所述预设饱和冷媒的温度与所述第一温度阈值的差值等于第一预设差值。
  11. 根据权利要求10所述的控制方法,其特征在于,所述根据所述室外冷凝器中部温度控制室外风机的转速和节流阀的开度,还包括:
    检测并确认所述室外冷凝器中部温度大于第二温度阈值且小于所述第一温度阈值,控制所述室外风机的转速按照第一设定值逐渐降低直至所述室外风机停止运行,并在所述室外风机停止运行第一设定时间后,控制所述节流阀的开度逐渐增大,检测并确认所述室外冷凝器中部温度大于所述预设饱和冷媒的温度,控制所述节流阀保持目前的开度,所述预设饱和冷媒的温度与所述第二温度阈值的差值等于第二预设差值,所述第二预设差值大于所述第一预设差值。
  12. 根据权利要求11所述的控制方法,其特征在于,所述根据所述室外冷凝器中部温度控制室外风机的转速和节流阀的开度,还包括:
    检测并确认所述室外冷凝器中部温度等于或者小于所述第二温度阈值,控制所述室外风机的转速按照第二设定值逐渐降低直至所述室外风机停止运行,检测并确认所述室外风机停止运行所述第一设定时间,控制所述节流阀的开度逐渐增大,检测并确认所述室外冷凝器中部温度大于所述预设饱和冷媒的温度,控制所述节流阀保持目前的开度,所述第二设定值大于所述第一设定值。
  13. 根据权利要求8-12中任一项所述的控制方法,其特征在于,还包括:
    检测并确认所述室外环境温度大于所述室外环境温度阈值,控制所述室外风机按照所述最高转速运行,并根据所述目标排气温度控制所述节流阀的开度。
  14. 根据权利要求8-13中任一项所述的控制方法,其特征在于,所述获取室外环境温度,包括:
    周期性获取室外环境温度。
  15. 一种空调器的控制装置,其特征在于,适用于如权利要求1所述的空调器,所述控制装置包括:
    第五获取模块,用于在制冷模式下,获取室外环境温度;
    第六获取模块,用于检测并确认所述室外环境温度等于或者小于预设的室外环境温度阈值,获取室外冷凝器中部温度;
    第二控制模块,用于根据所述室外冷凝器中部温度控制室外风机的转速和节流阀的开度。
  16. 一种空调器,其特征在于,包括:如权利要求15所述的空调器的控制装置。
  17. 一种电子设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时,实现如权利要求6所述的空调器的控制方法,或者如权利要求8-14中任一项所述的空调器的控制方法。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求6所述的空调器的控制方法,或者如权利要求8-14中任一项所述的空调器的控制方法。
PCT/CN2019/098237 2019-03-25 2019-07-29 空调器的控制方法、装置及空调器 WO2020191976A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3134876A CA3134876C (en) 2019-03-25 2019-07-29 Air conditioner control method and device and air conditioner
EP19922216.7A EP3929500B1 (en) 2019-03-25 2019-07-29 Air conditioner control method and device, and air conditioner
ES19922216T ES2948266T3 (es) 2019-03-25 2019-07-29 Procedimiento y dispositivo de control de acondicionador de aire, y acondicionador de aire
US17/482,927 US20220010979A1 (en) 2019-03-25 2021-09-23 Air conditioner control method and device and air conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910227622.0 2019-03-25
CN201910227622.0A CN109945401B (zh) 2019-03-25 2019-03-25 空调器的控制方法、装置及空调器
CN201910248831.3A CN109945389B (zh) 2019-03-29 2019-03-29 空调器的控制方法、装置及空调器
CN201910248831.3 2019-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/482,927 Continuation US20220010979A1 (en) 2019-03-25 2021-09-23 Air conditioner control method and device and air conditioner

Publications (1)

Publication Number Publication Date
WO2020191976A1 true WO2020191976A1 (zh) 2020-10-01

Family

ID=72609125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098237 WO2020191976A1 (zh) 2019-03-25 2019-07-29 空调器的控制方法、装置及空调器

Country Status (5)

Country Link
US (1) US20220010979A1 (zh)
EP (1) EP3929500B1 (zh)
CA (1) CA3134876C (zh)
ES (1) ES2948266T3 (zh)
WO (1) WO2020191976A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965544A (zh) * 2021-02-03 2021-06-15 山东益方农牧科技有限公司 一种养殖舍内温度智慧管理方法及系统
CN113587407A (zh) * 2021-07-30 2021-11-02 美的集团武汉暖通设备有限公司 空调防凝露控制方法、装置、空调器及存储介质
CN115962595A (zh) * 2023-03-16 2023-04-14 河南工学院 一种基于液氮制冷的冷藏车及液氮制冷系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543329B (zh) * 2022-01-17 2023-10-20 青岛海尔空调器有限总公司 用于空调器的回油控制方法及装置、空调器、存储介质
CN114608180B (zh) * 2022-03-15 2023-07-25 广东开利暖通空调股份有限公司 一种室外机电子膨胀阀的控制方法
CN115523741B (zh) * 2022-08-09 2023-12-19 青岛海尔空调器有限总公司 热泵烘干机的控制方法、装置和热泵烘干机
CN115523593B (zh) * 2022-08-19 2023-06-20 宁波奥克斯电气股份有限公司 电子膨胀阀的控制方法、装置及空调器
CN117177545B (zh) * 2023-10-30 2024-02-23 北京环都拓普空调有限公司 一种机房空调

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106614A (ja) * 2002-09-17 2004-04-08 Calsonic Kansei Corp 車両用空調機および空調機用パワーモジュール
CN106196336A (zh) * 2016-07-14 2016-12-07 海信科龙电器股份有限公司 应用于变频空调的散热系统、变频空调室外机和变频空调
CN109373533A (zh) * 2018-10-22 2019-02-22 广东美的暖通设备有限公司 调节方法、调节装置、多联机系统和计算机可读存储介质
CN109945389A (zh) * 2019-03-29 2019-06-28 广东美的制冷设备有限公司 空调器的控制方法、装置及空调器
CN109945401A (zh) * 2019-03-25 2019-06-28 广东美的制冷设备有限公司 空调器的控制方法、装置及空调器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102050A (ja) * 2012-11-21 2014-06-05 Daikin Ind Ltd 冷凍装置
WO2017019141A1 (en) * 2015-07-24 2017-02-02 Exxonmobil Upstream Research Company Enhanced heat transfer in plate-fin heat exchangers
JP6599007B2 (ja) * 2016-07-22 2019-10-30 三菱電機株式会社 空気調和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106614A (ja) * 2002-09-17 2004-04-08 Calsonic Kansei Corp 車両用空調機および空調機用パワーモジュール
CN106196336A (zh) * 2016-07-14 2016-12-07 海信科龙电器股份有限公司 应用于变频空调的散热系统、变频空调室外机和变频空调
CN109373533A (zh) * 2018-10-22 2019-02-22 广东美的暖通设备有限公司 调节方法、调节装置、多联机系统和计算机可读存储介质
CN109945401A (zh) * 2019-03-25 2019-06-28 广东美的制冷设备有限公司 空调器的控制方法、装置及空调器
CN109945389A (zh) * 2019-03-29 2019-06-28 广东美的制冷设备有限公司 空调器的控制方法、装置及空调器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965544A (zh) * 2021-02-03 2021-06-15 山东益方农牧科技有限公司 一种养殖舍内温度智慧管理方法及系统
CN113587407A (zh) * 2021-07-30 2021-11-02 美的集团武汉暖通设备有限公司 空调防凝露控制方法、装置、空调器及存储介质
CN115962595A (zh) * 2023-03-16 2023-04-14 河南工学院 一种基于液氮制冷的冷藏车及液氮制冷系统

Also Published As

Publication number Publication date
EP3929500A1 (en) 2021-12-29
US20220010979A1 (en) 2022-01-13
EP3929500A4 (en) 2022-07-27
CA3134876A1 (en) 2020-10-01
CA3134876C (en) 2023-09-26
ES2948266T3 (es) 2023-09-07
EP3929500B1 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
WO2020191976A1 (zh) 空调器的控制方法、装置及空调器
CN109945401B (zh) 空调器的控制方法、装置及空调器
CN200996753Y (zh) 带经济器的中间补气压缩机制冷系统
TWI715719B (zh) 用以控制冷凍系統之系統及方法
CN109945389B (zh) 空调器的控制方法、装置及空调器
JP5495526B2 (ja) 熱源システムおよびその制御方法
US11268737B2 (en) Refrigeration cycle apparatus
US20230104997A1 (en) Outdoor unit, air conditioner, and method for controlling air conditioner
CN114992889A (zh) 复叠式热泵系统及其控制方法
CN110849020A (zh) 一种热泵型空调及其控制方法
CN208765103U (zh) 热泵系统
CN105020936B (zh) 空调热泵热水系统
WO2023207222A1 (zh) 空调器及其控制方法
CN209857294U (zh) 制冷系统及具有其的空调器
KR20100046365A (ko) 히트펌프 시스템
KR20100005736U (ko) 히트펌프 시스템
JP4074422B2 (ja) 空調機とその制御方法
WO2021224962A1 (ja) 空気調和装置
WO2017050072A1 (zh) 风冷热泵冷热水机组及其化霜控制方法
CN210512224U (zh) 一种制冷剂循环系统
CN113357691A (zh) 一种空调、地暖、热水三合一低温空气源热泵机组
KR101299502B1 (ko) 멀티형 공기조화기 및 그 제어방법
CN215489945U (zh) 一种空调、地暖、热水三合一低温空气源热泵机组
CN218120240U (zh) 一种热泵系统
EP1508752A1 (en) Thermohygrostat-type air conditioner with means for controlling evaporation temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3134876

Country of ref document: CA

Ref document number: 2019922216

Country of ref document: EP

Effective date: 20210920

NENP Non-entry into the national phase

Ref country code: DE