WO2020190063A1 - 바이오 분석기기 검증용 표준물질 조성물 및 이를 이용한 표준 스트립 - Google Patents
바이오 분석기기 검증용 표준물질 조성물 및 이를 이용한 표준 스트립 Download PDFInfo
- Publication number
- WO2020190063A1 WO2020190063A1 PCT/KR2020/003800 KR2020003800W WO2020190063A1 WO 2020190063 A1 WO2020190063 A1 WO 2020190063A1 KR 2020003800 W KR2020003800 W KR 2020003800W WO 2020190063 A1 WO2020190063 A1 WO 2020190063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- standard
- quantum dot
- material composition
- bioanalyzer
- verification
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54386—Analytical elements
- G01N33/54387—Immunochromatographic test strips
- G01N33/54388—Immunochromatographic test strips based on lateral flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
- G01N33/54346—Nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/582—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/585—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
- G01N33/587—Nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/588—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2496/00—Reference solutions for assays of biological material
- G01N2496/15—Reference solutions for assays of biological material containing dyes to mimic optical absorption of, e.g. hemoglobin
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54386—Analytical elements
Definitions
- the present invention relates to a standard material composition capable of verifying (correcting) the analysis accuracy of a bioanalyzer and a standard strip using the same.
- optical detection method that measures radiant energy transmitted, reflected, and refracted by an object as a function of wavelength has the advantage of being easy and accurate to use, easy to miniaturize or portable, and can be used for various reactions at an inexpensive price. Accordingly, optical detection methods are applied to various fields such as chemistry, physics, biochemistry, immunology, enzymatics, molecular biology, and food science.
- An example of the optical detection method may be a method of detecting (analyzing) by applying a lateral flow strip or a microfluidic chip to a bioanalyzer equipped with an optical unit.
- a verification process of correcting the luminous intensity deviation of the analyzers is required using a standard material as a reference to indicate the required luminous signal intensity. Accordingly, conventionally, an ink mixed with gold or latex, or a phosphor such as europium is used as a standard material, and the verification process of the analyzers has been performed.
- the ink is made of a standard material through a process of printing based on a chromaticity table, an error in color expression occurs every time the printing process is performed, and when exposed to the outside, there is a problem that the life of the ink is not long.
- the phosphor has a problem in that photobleaching occurs during the manufacturing process of the standard material or is sensitive to changes in light, temperature, or humidity, and thus reproducibility is poor.
- An object of the present invention is to provide a standard material composition for verification of a bioanalyzer device capable of verifying (correcting) the analysis accuracy of a bioanalyzer device.
- the present invention is to provide a standard strip made of the standard material composition.
- the present invention is to provide a standard tray made of the standard material composition.
- Another object of the present invention is to provide a method for verifying a bioanalyzer using the standard strip and/or the standard tray.
- the present invention provides a standard material composition for verification of a bioanalyzer device including nanoparticles containing quantum dots.
- the quantum dot-containing nanoparticles include a core portion; A quantum dot part coupled to the surface of the core part; And a shell part protecting the core part and the quantum dot part.
- the quantum dot unit may include a plurality of quantum dot placement layers.
- the shell portion may include a plurality of silica shell layers.
- the quantum dot-containing nanoparticles may further include a support portion for supporting the bonding of the core portion and the shell portion.
- the present invention provides a standard strip including at least one light emitting line formed of the standard material composition for verification of the bioanalyzer.
- a plurality of light emitting lines may be provided, and the concentrations of quantum dots may be different between the plurality of light emitting lines.
- a plurality of light emitting lines may be provided, and light emission signal strengths may be different between the plurality of light emitting lines.
- the present invention provides a standard tray including a light emitting unit formed of the standard material composition for verification of the bioanalyzer.
- the present invention comprises the steps of irradiating a light source to a standard tray including a light emitting unit formed of the standard material composition for verification of the bioanalyzer; Determining whether a light emission intensity value of the light emitting unit emitted by the irradiated light source falls within a range of a standard emission intensity value input to an optical unit of a bioanalyzer; And first correcting the range of the standard emission intensity value input to the optical unit so that the emission intensity value corresponds to the range of the standard emission intensity value according to the determination.
- the verification method of the bioanalyzer device of the present invention comprises the step of secondly correcting the standard emission intensity value input to the optical unit through a standard strip including at least one emission line formed of the standard material composition for verification of the bioanalyzer device. It may contain more.
- the present invention it is possible to increase the analysis accuracy of the bioanalyzer by performing correction of the optical part of the bioanalyzer using a standard strip and/or a standard tray made of a standard material composition containing quantum dot-containing nanoparticles. Therefore, the present invention can contribute to providing a highly reliable bio detection (analysis) result.
- 1 to 4 are cross-sectional views showing quantum dot-containing nanoparticles according to the present invention.
- FIG. 5 is a perspective view showing a standard strip according to the present invention.
- 6 and 7 are flow charts showing the manufacturing process of the standard strip according to the present invention.
- FIG. 8 is a perspective view showing a standard tray according to the present invention.
- FIG. 9 is a schematic diagram showing a standard assembly according to the present invention.
- FIG. 10 is a reference diagram for explaining the verification process of the bioanalyzer according to the present invention.
- FIG. 11 is a reference diagram for explaining Experimental Example 1 according to the present invention.
- quantum dots that have little photobleaching and are not sensitive to changes in light, temperature, or humidity are introduced into a standard material for verification (correction) of a bioanalyzer. It is intended to provide a standard material having an improved lifespan while increasing analysis accuracy, and the present invention will be described in detail with reference to the drawings as follows.
- the present invention provides a standard material composition for verification of a bioanalyzer device (hereinafter referred to as a'standard material composition') comprising quantum dot-containing nanoparticles.
- the reference material composition according to the present invention is used to verify (correct) the bioanalyzer so that the bioanalyzer can display the correct detection value (analysis value) before detecting (analyzing) a biosample (biological sample) with a bioanalyzer. It can be defined as a composition used for.
- the quantum dot-containing nanoparticles included in the standard material composition according to the present invention may not be particularly limited as long as it contains quantum dots. That is, the quantum dot-containing nanoparticles may consist of only quantum dot particles, or may be a combination of quantum dot particles and other components.
- a quantum dot is a semiconductor material that has a spherical shape with an atomic number of about 5 to 10 layers, and the radius is usually 10 nm or less, and when it is reduced to a certain size or less, the electron motion characteristics in the bulk semiconductor material are further restricted. It can be defined as a material that exhibits a quantum confinement effect in which the light emission wavelength is different from that in the bulk state.
- These quantum dots may exhibit a light emission characteristic of emitting energy according to an energy band gab corresponding to itself when it reaches an energy excited state by receiving light from an excitation source.
- the quantum dot-containing nanoparticles of the present invention may be specifically, quantum dot particles or quantum dot-containing nanoparticles including the core portion 10, the quantum dot portion 20, and the shell portion 30 shown in FIG. 1.
- a detailed description of the quantum dot-containing nanoparticles including the core portion 10, the quantum dot portion 20, and the shell portion 30 is as follows.
- the core portion 10 included in the quantum dot-containing nanoparticles of the present invention may include organic particles or inorganic particles.
- the inorganic particles may be specifically composed of one or more components selected from the group consisting of silica, alumina, titanium dioxide, and zinc dioxide. These inorganic particles have high stability, and when applied to the core portion 10, the size of the core portion 10 and the size of the quantum dot-containing nanoparticles can be easily adjusted, and thus, optical particles having various particle sizes It is possible to obtain nanoparticles containing quantum dots having excellent properties (luminescence properties).
- the diameter of the core portion 10 may be 10 to 100,000 nm, specifically 80 to 1,000 nm. As the diameter of the core portion 10 is within the above range, handling and additional post-treatment of the quantum dot-containing nanoparticles can be easily performed.
- the quantum dot part 20 included in the quantum dot-containing nanoparticles of the present invention is bonded to the surface of the core part 10 and may serve to allow the quantum dot-containing nanoparticles to exhibit optical properties.
- the quantum dot unit 20 may be formed of a structure (a single quantum dot laying layer) that entirely surrounds the surface of the core unit 10 with a plurality of quantum dots.
- the quantum dots included in the quantum dot part 20 may form a crosslinking bond with silica, which is a component of the shell part 30, and the quantum dots are randomly or uniformly bonded to the silica that is a component of the shell part 30 through the crosslinking. Can represent a structured structure.
- the quantum dots of the quantum dot part 20 may be uniformly distributed and bonded to the surface of the core part 10 through a process of being modified with a material having a functional group at both ends, whereby the quantum dot part 20 Can be formed.
- the material having functional groups at both ends is specifically a functional group containing at least one atom selected from the group consisting of sulfur, nitrogen and phosphorus at one end, and a silane group, an amino group, a sulfone group, a carboxyl group, and a hydroxy group at the other end.
- One or more functional groups selected from the group consisting of groups may be bonded.
- the material having functional groups at both ends may be mercaptopropyltrimethoxysilane, mercaptomethyldiethoxysilane, mercaptopropylmethyldimethoxysilane, or mercaptopropyltriethoxysilane.
- the quantum dot included in the quantum dot unit 20 is a single core structure composed of a group II-VI series semiconductor component, a group III-V series semiconductor component, or a IV-IV series semiconductor component, or II -It may be formed in a structure in which a coating layer is formed by coating a semiconductor component of a group IV series. This can also be applied to the above-described quantum dot particles.
- the II-VI series semiconductor may be a combination of at least one of group IIB elements on the periodic table and at least one of group VIB elements.
- the II-VI series semiconductor may be selected from the group consisting of CdS, CdSe, CdTe, ZnSe, ZnS, PbS, PbSe, HgS, HgSe, HgTe, CdHgTe and CdSe x Te 1-x .
- the III-V series semiconductor may be specifically selected from the group consisting of GaAs, InAs, and InP.
- the quantum dot has a structure in which a coating layer is formed on a single core rather than a single core structure.
- the coating layer serves as a passivation layer protecting a single core, thereby increasing the stability of the quantum dot.
- a coating layer made of ZnS is formed on a single core made of CdSe or CdS, or a coating layer made of CdSe or ZnSe is formed on a single core structure made of CdSe (Type 1 quantum dot) may be used.
- a quantum dot having a single core structure or a structure in which a coating layer is formed on a single core may be coated with a hydrophobic organic compound (eg, oleic acid).
- a hydrophobic organic compound eg, oleic acid
- the diameter of these quantum dots may be 1 to 50 nm, specifically 1 to 20 nm.
- the diameter of the single core may be 1 to 20 nm, specifically 2 to 10 nm.
- the quantum dot unit 20 including the quantum dot may include a plurality of quantum dot laying layers 21, 22, and 23 as shown in FIG. 2.
- the quantum dot portion 20 includes a first quantum dot laying layer 21 surrounding the surface of the core portion 10, a second quantum dot laying layer 22 surrounding the first quantum dot laying layer 21, and the 2 It may include a third quantum dot laying layer 23 surrounding the quantum dot laying layer 22.
- the number of the quantum dot laying layers 21, 22, and 23 is not limited as shown in FIG. 2, and may be adjusted according to the physical properties and sizes of the required quantum dot-containing nanoparticles.
- the quantum dot part 20 includes a plurality of quantum dot laying layers 21, 22, and 23
- the quantum dot-containing nanoparticles include multi-layered multiple quantum dots, resulting in high luminous efficiency and improved brightness.
- the shell portion 30 included in the quantum dot-containing nanoparticles is coupled to surround the quantum dot portion 20 and may serve to protect the core portion 10 and the quantum dot portion 20.
- This shell part 30 may be mainly made of silica.
- the thickness of the shell portion 30 may be 1 to 1,000 nm, specifically 1 to 300 nm. As the thickness of the shell portion 30 is within the above range, the core portion 10 and the quantum dot portion 20 are protected and the quantum dot-containing nanoparticles are prevented from becoming excessively heavy, thereby increasing the applicability of the quantum dot-containing nanoparticles.
- the shell part 30 may include a plurality of silica shell layers 31, 32, and 33.
- the shell part 30 includes a first silica shell layer 31 surrounding the quantum dot part 20, a second silica shell layer 32 surrounding the first silica shell layer 32, and the second silica shell layer 32.
- the number of the silica shell layers 31, 32, and 33 is not limited as shown in FIG. 3, and may be adjusted according to the physical properties and sizes of the required quantum dot-containing nanoparticles.
- the capping density of the shell portion 30 is increased, thereby increasing the stability of the quantum dot-containing nanoparticles.
- the size of the quantum dot-containing nanoparticles can be freely controlled to a required level.
- the size of the nanoparticles is controlled by controlling the number of silica shell layers 31, 32, and 33 included in the shell part 30, as well as controlling the volume of the reactant when the shell part 30 is formed. It can also be implemented by controlling the thickness.
- the ratio (a:b, length ratio) of the diameter (a) of the core portion 10 and the thickness (b) of the shell portion 30 is 120 to 3:1 to 7.5, specifically 6 to 3:1 to It can be 2.
- the ratio of the diameter of the core portion 10 and the thickness of the shell portion 30 is within the above range, stability as well as the optical properties of the quantum dot-containing nanoparticles can be improved.
- the quantum dot-containing nanoparticles may further include a support part 40 that is bonded to the core part 10 and the shell part 30, respectively, to support the coupling of the core part 10 and the shell part 30 to each other. That is, referring to FIG. 4, the quantum dot-containing nanoparticles further include a support part 40 of a bridge structure connecting the core part 10 and the shell part 30.
- the bonding density (crosslinking density) of the core portion 10 and the shell portion 30 increases, so that the stability of the quantum dot-containing nanoparticles may be higher, and thus, the quantum dot containing excellent optical properties Nanoparticles can be provided. This may be achieved by improving the optical properties (luminescence properties) of the standard material composition according to the present invention.
- the support portion 40 may be formed of a carbon support having a first functional group bonded to the core portion 10 at one end and a second functional group bonded to the shell portion 30 at the other end.
- the first functional group may be selected from the group consisting of a nitro group, an imide group, an ester group, a maleimide group, an iodoacetamide group, an N-hydroxysuccinimide group, and a tosyl group.
- the second functional group may be selected from the group consisting of a trimethoxysilane group, a triethoxysilane group, a dimethoxysilane group, a diethoxysilane group, a methoxysilane group, and an ethoxysilane group.
- the carbon support may be formed of a main skeleton structure of oligoethylene glycol or polyethylene glycol, the first functional group at one end of the main skeleton structure, and the second functional group bonded to the other end of the main skeleton structure. have.
- the molecular weight of the carbon support may be 100 to 15,000 g/mol.
- quantum dot-containing nanoparticles are included in the standard material composition in 1 to 80 parts by weight, specifically 1 to 40 parts by weight based on 100 parts by weight of the standard material composition, when considering the optical properties, workability, and moldability of the standard material composition. I can.
- the standard material composition according to the present invention may further include a binder resin, a curing agent, an additive, and a solvent so that molding can be performed in various forms.
- the binder resin further included in the standard material composition according to the present invention may not be particularly limited as long as it is a resin used in the field of optical materials.
- the binder resin may be at least one selected from the group consisting of acrylic resins, polyester resins, polyamide resins, polyimide resins, polycarbonate resins, and silicone resins.
- binder resins may be included in the standard material composition in 10 to 50 parts by weight, specifically 25 to 50 parts by weight, based on 100 parts by weight of the standard material composition, when considering workability, moldability, and dispersibility of the standard material composition. .
- the curing agent further included in the standard material composition according to the present invention may not be particularly limited as long as it causes a curing reaction of the binder resin.
- the curing agent may be at least one selected from the group consisting of an oxazoline-based curing agent, a polyisocyanate-based curing agent, a melamine-based curing agent, and a carbodiimide-based curing agent.
- such a curing agent may be included in the standard material composition in 1 to 10 parts by weight, specifically 1 to 5 parts by weight based on 100 parts by weight of the standard material composition.
- the additive further included in the standard material composition according to the present invention may not be particularly limited as long as it is an additive used in the field of optical materials.
- the additive may be one or more selected from the group consisting of inorganic fillers, leveling agents, antifoaming agents, dispersion stabilizers, viscosity modifiers, antioxidants and heat-resistant stabilizers.
- additives may be included in the standard material composition in an amount of 5 to 50 parts by weight, specifically 20 to 50 parts by weight based on 100 parts by weight of the standard material composition, when considering workability and optical properties of the standard material composition .
- the solvent further included in the standard material composition according to the present invention may not be particularly limited as long as it is a solvent used in the field of optical materials.
- the solvent is an aromatic hydrocarbon-based solvent such as benzene, toluene, xylene, and ethylbenzene; Aliphatic hydrocarbon solvents such as pentane, hexane, and heptane; Alcohol solvents such as methanol, ethanol, propanol, isopropanol, cyclohexanol, benzyl alcohol, octanol, ethylene glycol, propylene glycol, and glycerol; Ketone solvents such as acetone, methyl ethyl ketone, diisobutyl ketone, and methyl amyl ketone; Ester solvents such as ethyl acetate, isopropyl acetate, butyl acetate, and ethylacetoacetate; And it may be one
- solvents may be included in the standard material composition in an amount of 1 to 50 parts by weight, specifically 10 to 20 parts by weight, based on 100 parts by weight of the standard material composition, when considering workability and moldability of the standard material composition.
- the standard material composition according to the present invention described above can be applied to verification (correction) of a bioanalyzer through a process of curing and molding to fit a verification device.
- the present invention provides a standard strip, a standard tray, or a standard assembly as the verification device, which will be described in detail as follows.
- the present invention provides a standard strip comprising one or more light emitting lines formed from the standard material composition described above.
- the standard strip according to the present invention is a strip body portion 100; And one or more light emitting lines 200.
- the strip body part 100 included in the standard strip according to the present invention may be made of a material and structure commonly used in the field of biostrips.
- the light-emitting line 200 included in the standard strip according to the present invention is formed of the above-described standard material composition, and may be provided on the strip body part 100 in one or in plurality. Since the above-described quantum dot-containing nanoparticles are included in the light-emitting line 200, it may emit light by a light source.
- the light emitting line 200 may be provided in plural as a first light emitting line 201, a second light emitting line 202, and a third light emitting line 203 as shown in FIG.
- the concentrations of quantum dots between lines may be different from each other. That is, when each light-emitting line is formed, a standard material composition having a different content of quantum dots (quantum dot-containing nanoparticles) is applied to form light-emitting lines having different concentrations of quantum dots.
- the first light-emitting line 201 has a low concentration of quantum dots (C low )
- the second light-emitting line 202 has a higher concentration of quantum dots contained in the first light-emitting line 201 (C low ⁇ C medium )
- the third light-emitting line 203 is higher than the concentration of the quantum dots contained in the second light-emitting line 202 (C low ⁇ C medium ⁇ C high )
- Set the concentration (content) of the quantum dots of each standard composition (control ) To form a plurality of light emitting lines 201, 202, and 203.
- a plurality of light emitting lines 200 may be provided, and light emission signal strengths may be different between the light emitting lines 201, 202, and 203. That is, a plurality of light-emitting lines 201, 202, and 203 having different light-emitting signal strengths may be formed by controlling the transmission process (transmission) of the light-emitting signals emitted from the light-emitting lines 201, 202, and 203.
- the number of light emitting lines 200 is not limited to FIG. 5 and may be appropriately adjusted according to analysis conditions.
- the standard strip according to the present invention is provided with a plurality of light emitting lines 201, 202, and 203 having a quantum dot concentration gradient or different light emission signal intensities, so that the error of the analyzer (deviation ) Can be calibrated in more detail, thereby increasing the analysis accuracy of the bioanalyzer.
- the standard strip according to the present invention may be manufactured through the process shown in FIG. 6 or 7.
- standard material compositions having different contents of quantum dots are applied on a conventional optical film, respectively, and covered with a cover film, followed by a curing process.
- a plurality of QD films with a quantum dot concentration gradient are prepared (for example, three QD films having a concentration of C low , C medium and C high ), and each manufactured QD film is adjusted to the line position of the PVC Backing Card.
- patterned black tape or film is placed on the PVC backing card so that the QD film line is exposed, and a standard card that is not cut is manufactured, and then the standard card is cut to the required size.
- Standard strips according to the invention can be produced.
- a QD sheet made of a standard material composition was prepared, and one surface of an optical film was patterned by a printing method to prepare a masking film in which lines having different light transmittances were formed, After covering the prepared QD sheet with the prepared masking film, a standard card that is not cut is manufactured through a process of curing, and then the standard card is cut to a required size to prepare a standard strip according to the present invention.
- the standard strip according to the present invention includes the light emitting line 200 formed of the above-described standard material composition, it can be conveniently used for verification (correction) of a bio-analyzer device, and can increase the analysis accuracy of the bio-analyzer device.
- photobleaching does not occur during the quality control process, and stable performance can be realized even if the storage environment (light shielding, temperature, humidity, etc.) changes.
- standard strips are manufactured using optical films, UV exposure and external contamination are prevented, thereby ensuring a long service life.
- the present invention provides a standard tray including a light-emitting unit formed of the above-described standard material composition.
- the standard tray according to the present invention includes a tray body portion 300; A reference part 400; And a light emitting unit 500.
- the standard tray according to the present invention may be a tray that serves to mount a bio kit equipped with a bio strip.
- the tray body part 300 included in the standard tray according to the present invention may be made of a material and structure commonly used in the field of a bio tray.
- the reference unit 400 included in the standard tray according to the present invention serves to present a reference point in analyzing the light emission signal of the light emitting unit 500, and may be made of a material that is commonly used.
- the light-emitting unit 500 included in the standard tray according to the present invention may be formed of the above-described standard material composition to emit light by a light source.
- the light-emitting unit 500 may be formed through a process of curing the above-described standard material composition in a paste state.
- the standard tray according to the present invention includes the light-emitting unit 500 formed of the above-described standard material composition, it can be conveniently used for verification (correction) of a bio-analyzer device, and can increase the analysis accuracy of the bio-analyzer device.
- the present invention provides a standard assembly in which the standard strip and the standard tray are combined. That is, referring to FIG. 9, the present invention can provide a standard assembly including a standard kit equipped with the standard strip and the standard tray equipped with the standard kit. This standard assembly can be efficiently used for the first and second calibration of the bioanalyzer described below.
- the present invention provides a method of verifying a bioanalyzer using the above-described standard strip and/or standard tray, which will be described in detail as follows.
- the verification of the bioanalyzer according to the present invention may be performed before the analysis of the biosample (for example, antigen, receptor, virus, enzyme, infectious immunoglobulin, cytokine, or other infectious factor) with the bioanalyzer. have.
- the light emission intensity of the light-emitting part 500 of the standard tray or the part other than the light-emitting line 200 of the standard strip is defined as a background value, and the light emission intensity of the light-emitting part 500 or the light-emitting line 200 in quantitative/qualitative analysis
- the background value is minus (-) from the value, and verification and analysis can be performed.
- a light source is irradiated on a standard tray including the light-emitting unit 500 formed of the above-described standard material composition.
- the light source may be an external light source or a light source provided in the analyzer, and the wavelength may be ultraviolet (Blue Light, ⁇ 420 nm).
- the range of the standard light emission intensity value input to the optical unit may be determined based on a numerical value according to quantum yields or photoluminescence capable of representing a bio sample to be analyzed.
- the bioanalyzer may be verified through a process of first correcting the range of the standard emission intensity value input to the optical unit so that the emission intensity value corresponds to the standard emission intensity value range by the determination.
- the first correction may be omitted.
- the first correction may be performed by applying a standard strip including the light emitting line 200 instead of the standard tray including the light emitting unit 500.
- the method of verifying the bioanalyzer according to the present invention is a process of secondly correcting the standard emission intensity value input to the optical unit through a standard strip including one or more emission lines 200 formed of the above-described standard material composition.
- the standard luminous intensity value set in the optical section of the bio-analysis device is 2 It is to correct the car.
- the correction of the optical part of the bioanalyzer device through the standard strip including the light emitting line 200 may be performed by applying the correlation coefficient c shown in FIG.
- the present invention can have the same light emission intensity value for each bioanalyzer device.
- the first and/or second correction is performed every predetermined period (1 month to 6 months), and the verification process of the bioanalyzer device may be updated.
- the analysis error (deviation) of the bioanalyzer device can be further minimized, and thus the analysis of the bioanalyzer device Accuracy can be improved.
- the bio-analyzer device is not particularly limited as long as it is an analyzer in which software capable of analyzing an optical unit and an emission intensity value is programmed, and specifically, a mobile phone, a bio-reader, and the like may be mentioned.
- the error of the optical part of the bioanalyzer device is an error between the optical part (CCD, CMOS) itself that each bioanalyzer device has, an error due to the operating environment of the optical part (illuminance of the peripheral mirror), an error due to the light source (UV)
- the accuracy of the analysis of the bioanalyzer can be increased by verifying (correcting) such an error.
- a standard material composition was prepared by adding and mixing quantum dot particles (CdSe/ZnS, 10 nm) coated with oleic acid to a polyester resin, an aromatic hydrocarbon solvent and additives (antifoaming agent, dispersion stabilizer), and then adding a curing agent. . At this time, the quantum dot particles were added to be 5 parts by weight based on 100 parts by weight of the composition.
- quantum dot particles CdSe/ZnS, 10 nm
- a standard material composition was prepared through the same procedure as in Example 1, except that the quantum dot particles were added so as to be 10 parts by weight based on 100 parts by weight of the composition.
- a standard material composition was prepared through the same procedure as in Example 1, except that the quantum dot particles were added so as to be 20 parts by weight based on 100 parts by weight of the composition.
- a standard material composition was prepared through the same procedure as in Example 1, except that the quantum dot-containing nanoparticle 1 prepared through the above process was used instead of the quantum dot particle.
- a carbon support (molecular weight 1000 g/mol) having a maleimide group and a triethoxysilane group bonded to each end and having a polyethylene glycol main skeleton was added and stirred for 15 minutes, and then mercaptopropyltriethoxy After adding 100 ⁇ l of silane (MPTES) and stirring for 15 minutes, 100 ⁇ l of 25% aqueous ammonia (NH 4 OH(aq)) as a base was added and stirred for 3 hours to have a structure in which three quantum dot deposition layers are stacked. While forming the quantum dot portion, the carbon support was bonded to the surface of the core portion.
- MPTES silane
- NH 4 OH(aq) 25% aqueous ammonia
- a standard material composition was prepared in the same manner as in Example 1, except that the quantum dot-containing nanoparticle 2 prepared through the above process was used instead of the quantum dot particle.
- Standard strips were prepared from the standard material compositions each prepared in Examples 1 to 3 (applied to the process of FIG. 6). Specifically, three QD films (8 ⁇ 300 nm) having different quantum dot concentrations through a curing process after applying the standard material composition each prepared in Examples 1 to 3 on an optical film, covering it with a cover film, and Were prepared respectively. After attaching each manufactured QD film to the PVC Backing Card according to the line position of the PVC Backing Card (60 ⁇ 300 nm), patterned Black Tape (60 ⁇ 300 nm) is applied to the PVC so that the 3 QD film lines are exposed. A standard card was prepared by placing it on the backing card and attaching it. Next, the prepared Standard Card was cut to prepare a standard strip.
- the standard strip prepared in Preparation Example 1 was fired in a bio kit, and then UV irradiated to visually check the color of the quantum dot emission line, and then analyzed with a bio-dedicated reader. The results of visual confirmation and reader analysis are shown in FIG. 11.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Medicinal Chemistry (AREA)
- Pathology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Luminescent Compositions (AREA)
Abstract
본 발명은 양자점 함유 나노입자를 포함하는 바이오 분석기기 검증용 표준물질 조성물에 관한 것이다. 이러한 본 발명은 상기 표준물질 조성물로 제조된 표준 스트립 및/또는 표준 트레이를 통해 바이오 분석기기의 분석 정확도를 높일 수 있다.
Description
본 발명은 바이오 분석기기의 분석 정확도를 검증(보정)할 수 있는 표준물질 조성물 및 이를 이용한 표준 스트립에 관한 것이다.
물체에 투과, 반사, 굴절되는 복사 에너지를 파장의 함수로 측정하는 광학적 검출방법은 사용이 쉽고 정확하며, 소형화 내지 휴대화가 용이하고, 저렴한 가격으로 다양한 반응에 이용할 수 있는 장점을 가지고 있다. 이에 광학적 검출방법은 화학, 물리학, 생화학, 면역학, 효소학, 분자생물학, 식품학 등과 같은 다양한 분야에 적용되고 있다.
상기 광학적 검출방법의 예로는, 광학부가 구비된 바이오 분석기기에 측방유동 스트립(Lateral flow strip) 또는 마이크로플루이딕 칩(Microfluidic chip)을 적용하여 검출(분석)하는 방법을 들 수 있다.
그런데 상기 분석기기의 제조에 있어서, 분석기기마다 장착되는 하드웨어의 구성이 동일하게 설계됨에도 불구하고 구성품의 전자기적 특성의 편차 및 각 구성 조합의 편차 등 다양한 변수로 인해 제조되는 다수의 분석기기가 동일한 발광 신호에 대하여 동일한 데이터를 획득하지 못하는 문제가 있다. 이는 발광 신호 강도를 측정하여 검출 물질을 정량적으로 진단 및 분석함에 있어, 그 결과에 대한 분석 정확도(신뢰성) 저하를 야기하게 된다.
따라서 다수의 분석기기를 통해 검출을 진행할 때, 요구되는 발광 신호 강도를 나타내도록 기준이 되는 표준물질을 이용하여 분석기기들의 발광 강도 편차를 보정하는 검증 과정이 요구된다. 이에 따라 종래에는 골드 또는 라텍스 등이 혼합된 잉크, 또는 유로퓸(europium) 등의 형광체가 표준물질로 사용되어 분석기기들의 검증 과정이 이루어진 바 있다.
그러나 상기 잉크는 색도표를 기준으로 인쇄하는 과정을 거쳐 표준물질로 제조되기 때문에 인쇄 과정이 이루어질 때마다 색표현의 오차가 발생하고, 외부에 노출 시 쉽게 오염되어 그 수명이 길지 못한 문제점이 있다. 또한 상기 형광체는 표준물질의 제조과정에서 광퇴색(photobleaching) 현상이 발생하거나 빛, 온도 또는 습도 등의 변화에 민감하여 재현성이 떨어지는 문제점이 있다.
이에 바이오 분석기기의 분석 정확도를 높이기 위해 개선된 표준물질의 개발이 요구되고 있는 실정이다.
본 발명은 바이오 분석기기의 분석 정확도를 검증(보정)할 수 있는 바이오 분석기기 검증용 표준물질 조성물을 제공하고자 한다.
또한 본 발명은 상기 표준물질 조성물로 제조된 표준 스트립을 제공하고자 한다.
또 본 발명은 상기 표준물질 조성물로 제조된 표준 트레이를 제공하고자 한다.
또 본 발명은 상기 표준 스트립 및/또는 상기 표준 트레이를 이용한 바이오 분석기기의 검증 방법을 제공하고자 한다.
상기 과제를 해결하기 위해 본 발명은, 양자점 함유 나노입자를 포함하는 바이오 분석기기 검증용 표준물질 조성물을 제공한다.
상기 양자점 함유 나노입자는, 코어부; 상기 코어부의 표면에 결합된 양자점부; 및 상기 코어부와 상기 양자점부를 보호하는 쉘부를 포함할 수 있다.
상기 양자점부는 복수의 양자점포설층을 포함할 수 있다.
상기 쉘부는 복수의 실리카쉘층을 포함할 수 있다.
상기 양자점 함유 나노입자는, 상기 코어부와 상기 쉘부의 결합을 지지하는 지지부를 더 포함할 수 있다.
한편 본 발명은, 상기 바이오 분석기기 검증용 표준물질 조성물로 형성된 하나 이상의 발광 라인을 포함하는 표준 스트립을 제공한다.
상기 발광 라인은 복수로 구비되며, 복수의 발광 라인 간에 양자점의 농도가 서로 상이할 수 있다.
상기 발광 라인은 복수로 구비되며, 복수의 발광 라인 간에 발광 신호 강도가 서로 상이할 수 있다.
또한 본 발명은, 상기 바이오 분석기기 검증용 표준물질 조성물로 형성된 발광부를 포함하는 표준 트레이를 제공한다.
또 본 발명은, 상기 바이오 분석기기 검증용 표준물질 조성물로 형성된 발광부를 포함하는 표준 트레이에 광원을 조사하는 단계; 상기 조사된 광원에 의해 발광하는 상기 발광부의 발광 강도 값이 바이오 분석기기의 광학부에 입력된 표준 발광 강도 값 범위에 해당되는지 판단하는 단계; 및 상기 판단에 의해 상기 발광 강도 값이 상기 표준 발광 강도 값 범위에 해당되도록 상기 광학부에 입력된 표준 발광 강도 값 범위를 1차 보정하는 단계를 포함하는 바이오 분석기기의 검증 방법을 제공한다.
이러한 본 발명의 바이오 분석기기의 검증방법은 상기 바이오 분석기기 검증용 표준물질 조성물로 형성된 하나 이상의 발광 라인을 포함하는 표준 스트립을 통해 상기 광학부에 입력된 표준 발광 강도 값을 2차 보정하는 단계를 더 포함할 수 있다.
본 발명에 따르면, 양자점 함유 나노입자를 포함하는 표준물질 조성물로 제조된 표준 스트립 및/또는 표준 트레이를 이용하여 바이오 분석기기의 광학부의 보정을 수행함으로써 바이오 분석기기의 분석 정확도를 높일 수 있다. 따라서 본 발명은 신뢰성이 높은 바이오 검출(분석) 결과를 제공하는 것에 기여할 수 있다.
도 1 내지 도 4는 본 발명에 따른 양자점 함유 나노입자를 나타낸 단면도이다.
도 5는 본 발명에 따른 표준 스트립을 나타낸 사시도이다.
도 6 및 도 7은 본 발명에 따른 표준 스트립의 제조과정을 나타낸 흐름도이다.
도 8은 본 발명에 따른 표준 트레이를 나타낸 사시도이다.
도 9는 본 발명에 따른 표준 어셈블리를 나타낸 개략도이다.
도 10은 본 발명에 따른 바이오 분석기기의 검증 과정을 설명하기 위한 참고도이다.
도 11을 본 발명에 따른 실험예 1을 설명하기 위한 참고도이다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 광퇴색(photobleaching) 현상이 거의 없고, 빛, 온도 또는 습도 등의 변화에 민감하지 않은 양자점(quantum dot)을 바이오 분석기기의 검증(보정)을 위한 표준물질에 도입하여 바이오 분석기기의 분석 정확도를 높이면서, 수명이 향상된 표준물질을 제공하고자 한 것으로, 이러한 본 발명에 대해 도면을 참조하여 구체적으로 설명하면 다음과 같다.
본 발명은 양자점 함유 나노입자를 포함하는 바이오 분석기기 검증용 표준물질 조성물(이하, '표준물질 조성물' 이라 함)을 제공한다. 본 발명에 따른 표준물질 조성물은 바이오 분석기기로 바이오 시료(생물학적 시료)를 검출(분석)하기 전에 바이오 분석기기가 정확한 검출 값(분석 값)을 나타낼 수 있도록 바이오 분석기기를 검증(보정)하는 데에 활용하는 조성물로 정의할 수 있다.
본 발명에 따른 표준물질 조성물에 포함되는 양자점 함유 나노입자는 양자점을 함유하는 것이라면 특별히 한정되지 않을 수 있다. 즉, 상기 양자점 함유 나노입자는 양자점 입자만으로 이루어져 있거나, 양자점 입자와 다른 성분이 복합된 것일 수 있다. 이때, 본 발명에서 양자점이란 반도체 물질로서 원자가 5 내지 10층 정도의 층을 이루어 구형을 나타내면서 반지름은 통상 10 nm 이하이고, 일정 크기 이하로 작아지면 벌크 상태의 반도체 물질 내 전자운동 특성이 더욱 제약을 받게 되어 벌크 상태와는 발광 파장이 달라지는 양자제한(quantum confinement) 효과를 나타내는 물질로 정의될 수 있다. 이러한 양자점은 여기원(excitation source)으로부터 빛을 받아 에너지 여기 상태에 이르면 자체적으로 해당하는 에너지 밴드갭(band gab)에 따른 에너지를 방출하는 발광 특성을 나타낼 수 있다.
본 발명의 양자점 함유 나노입자는 구체적으로, 양자점 입자 또는 도 1에 도시된 코어부(10), 양자점부(20) 및 쉘부(30)를 포함하는 양자점 함유 나노입자일 수 있다. 상기 코어부(10), 양자점부(20) 및 쉘부(30)를 포함하는 양자점 함유 나노입자에 대해 구체적으로 설명하면 다음과 같다.
본 발명의 양자점 함유 나노입자에 포함되는 코어부(10)는 유기물 입자 또는 무기물 입자를 포함할 수 있다. 상기 무기물 입자는 구체적으로 실리카, 알루미나, 이산화티타늄 및 이산화아연으로 이루어진 군에서 선택되는 1종 이상의 성분으로 이루어진 것일 수 있다. 이러한 무기물 입자는 안정성이 높아, 이를 코어부(10)에 적용할 경우, 코어부(10)의 크기와 더불어 양자점 함유 나노입자의 크기를 용이하게 조절할 수 있으며, 이로 인해 다양한 입자 크기를 가지면서 광학 특성(발광 특성)도 우수한 양자점 함유 나노입자를 얻을 수 있다.
이러한 코어부(10)의 직경은 10 내지 100,000 nm, 구체적으로는 80 내지 1,000 nm일 수 있다. 코어부(10)의 직경이 상기 범위 내임에 따라 양자점 함유 나노입자의 핸들링 및 추가 후처리가 용이하게 이루어질 수 있다.
본 발명의 양자점 함유 나노입자에 포함되는 양자점부(20)는 상기 코어부(10)의 표면에 결합되는 것으로, 양자점 함유 나노입자가 광학 특성을 나타낼 수 있도록 하는 역할을 할 수 있다. 구체적으로 양자점부(20)는 복수의 양자점이 상기 코어부(10)의 표면을 전체적으로 둘러싸는 구조(단일 양자점포설층)로 이루어질 수 있다. 또한 양자점부(20)에 포함된 양자점은 상기 쉘부(30)의 성분인 실리카와 가교 결합을 형성할 수 있으며, 상기 가교 결합을 통해 쉘부(30)의 성분인 실리카에 양자점이 랜덤 또는 균일하게 결합된 구조를 나타낼 수 있다.
일례로, 상기 양자점부(20)의 양자점은 양 말단에 작용기를 갖는 물질로 개질되는 과정을 통해 상기 코어부(10)의 표면에 균일하게 분산 결합될 수 있으며, 이로 인해 양자점부(20)가 형성될 수 있다. 상기 양 말단에 작용기를 갖는 물질은 구체적으로 일측 말단에 황, 질소 및 인으로 이루어진 군에서 선택되는 1종 이상의 원자를 포함하는 작용기와, 타측 말단에 실란기, 아미노기, 설폰기, 카르복시기 및 하이드록시기로 이루어진 군에서 선택되는 1종 이상의 작용기가 결합된 것일 수 있다. 구체적으로 상기 양 말단에 작용기를 갖는 물질은 머캅토프로필트리메톡시실란, 머캅토메틸디에톡시실란, 머캅토프로필메틸디메톡시실란, 또는 머캅토프로필트리에톡시실란일 수 있다.
한편, 상기 양자점부(20)에 포함되는 양자점은 II-VI족 계열의 반도체 성분, III-V족 계열의 반도체 성분 또는 IV-IV족 계열의 반도체 성분으로 이루어진 단일 코어 구조이거나, 단일 코어에 II-IV족 계열의 반도체 성분이 코팅되어 코팅층이 형성된 구조로 이루어질 수 있다. 이는 상술한 양자점 입자에도 적용될 수 있다.
상기 II-VI족 계열의 반도체는 주기율표상의 IIB족 원소 중 적어도 하나와, VIB족 원소 중 적어도 하나가 결합된 것일 수 있다. 구체적으로 II-VI족 계열의 반도체는 CdS, CdSe, CdTe, ZnSe, ZnS, PbS, PbSe, HgS, HgSe, HgTe, CdHgTe 및 CdSe
xTe
1-x로 이루어진 군에서 선택될 수 있다. 상기 III-V족 계열의 반도체는 구체적으로 GaAs, InAs 및 InP로 이루어진 군에서 선택될 수 있다.
여기서 양자점은 단일 코어 구조보다 단일 코어에 코팅층이 형성된 구조를 갖는 것이 발광 효율 측면에서 보다 바람직할 수 있다. 이는 상기 코팅층이 단일 코어를 보호하는 보호층(passivation layer) 역할을 하여 양자점의 안정성을 높일 수 있기 때문이다. 구체적으로 양자점으로는 CdSe 또는 CdS로 이루어진 단일 코어에 ZnS로 이루어진 코팅층이 형성된 것이거나, CdSe로 이루어진 단일 코어 구조에 CdSe 또는 ZnSe로 이루어진 코팅층이 형성된 것(Type 1 양자점)이 사용될 수 있다.
또한 양자점으로는 단일 코어 구조 또는 단일 코어에 코팅층이 형성된 구조를 갖는 양자점에 소수성 유기 화합물(예를 들어, 올레산)이 코팅된 것이 사용될 수 있다.
이러한 양자점의 직경은 1 내지 50 nm, 구체적으로 1 내지 20 nm일 수 있다. 또한 양자점이 단일 코어에 코팅층이 형성된 구조를 갖는 것일 경우, 상기 단일 코어의 직경은 1 내지 20 nm, 구체적으로 2 내지 10 nm일 수 있다.
상기 양자점을 포함하는 양자점부(20)는 도 2에 도시된 바와 같이 복수의 양자점포설층(21, 22, 23)을 포함할 수 있다. 구체적으로 양자점부(20)는 코어부(10)의 표면을 둘러싸는 제1 양자점포설층(21), 상기 제1 양자점포설층(21)을 둘러싸는 제2 양자점포설층(22) 및 상기 제2 양자점포설층(22)을 둘러싸는 제3 양자점포설층(23)을 포함할 수 있다. 여기서 양자점포설층(21, 22, 23)의 개수는 도 2에 도시된 바로 한정되지 않고, 요구되는 양자점 함유 나노입자의 물성 및 크기에 따라 조절될 수 있다. 이와 같이 양자점부(20)가 복수의 양자점포설층(21, 22, 23)을 포함할 경우, 양자점 함유 나노입자는 다층 다중 양자점을 포함하게 되어 높은 발광 효율(quantum yield)과 개선된 밝기(brightness)를 나타낼 수 있다. 이는 본 발명에 따른 표준물질 조성물의 광학 특성(발광 특성)이 향상되는 것으로 이루어질 수 있다.
상기 양자점 함유 나노입자에 포함되는 쉘부(30)는 양자점부(20)를 둘러싸도록 결합되는 것으로, 코어부(10)와 양자점부(20)를 보호하는 역할을 할 수 있다. 이러한 쉘부(30)는 주로 실리카로 이루어질 수 있다.
상기 쉘부(30)의 두께는 1 내지 1,000 nm, 구체적으로는 1 내지 300 nm일 수 있다. 쉘부(30)의 두께가 상기 범위 내임에 따라 코어부(10)와 양자점부(20)를 보호하면서 양자점 함유 나노입자가 과도하게 무거워지는 것이 방지되어 양자점 함유 나노입자의 응용성을 높일 수 있다.
이와 같은 쉘부(30)는 도 3에 도시된 바와 같이 복수의 실리카쉘층(31, 32, 33)을 포함할 수 있다. 구체적으로, 쉘부(30)는 양자점부(20)를 둘러싸는 제1 실리카쉘층(31), 상기 제1 실리카쉘층(32)을 둘러싸는 제2 실리카쉘층(32) 및 상기 제2 실리카쉘층(32)을 둘러싸는 제3 실리카쉘층(33)을 포함할 수 있다. 여기서 실리카쉘층(31, 32, 33)의 개수는 도 3에 도시된 바로 한정되지 않고, 요구되는 양자점 함유 나노입자의 물성 및 크기에 따라 조절될 수 있다. 이와 같이 쉘부(30)가 복수의 실리카쉘층(31, 32, 33)을 포함할 경우, 쉘부(30)의 캡핑 밀도가 높아져 양자점 함유 나노입자의 안정성을 높일 수 있다. 또한 실리카쉘층(31, 32, 33)의 개수를 조절함으로써 양자점 함유 나노입자의 크기를 요구되는 수준으로 자유롭게 제어할 수 있다. 이때, 나노입자의 크기 제어는 쉘부(30)에 포함되는 실리카쉘층(31, 32, 33)의 개수를 조절하는 것과 더불어 쉘부(30)의 형성 시 반응물질의 부피를 조절하여 쉘부(30)의 두께를 제어하는 것으로도 구현될 수 있다.
한편 상기 코어부(10)의 직경(a)과 상기 쉘부(30)의 두께(b)의 비율(a:b, 길이비)은 120 내지 3:1 내지 7.5, 구체적으로 6 내지 3:1 내지 2일 수 있다. 코어부(10)의 직경과 쉘부(30)의 두께의 비율이 상기 범위 내임에 따라 양자점 함유 나노입자의 광학 특성과 더불어 안정성을 높일 수 있다.
이러한 상기 양자점 함유 나노입자는 코어부(10)와 쉘부(30)에 각각 결합되어 코어부(10)와 쉘부(30)의 결합을 지지하는 지지부(40)를 더 포함할 수 있다. 즉, 도 4를 참조하면, 양자점 함유 나노입자는 코어부(10)와 쉘부(30) 사이를 연결하는 브릿지(bridge) 구조의 지지부(40)를 더 포함하는 것이다. 이러한 지지부(40)를 더 포함할 경우, 코어부(10)와 쉘부(30)의 결합 밀도(가교 밀도)가 높아져 양자점 함유 나노입자의 안정성이 보다 높아질 수 있고, 이로 인해 광학 특성이 우수한 양자점 함유 나노입자를 제공할 수 있다. 이는 본 발명에 따른 표준물질 조성물의 광학 특성(발광 특성)이 향상되는 것으로 이루어질 수 있다.
상기 지지부(40)는 코어부(10)에 결합되는 제1 작용기를 일측 말단에 가지고, 쉘부(30)에 결합되는 제2 작용기를 타측 말단에 가지는 탄소 지지체로 형성될 수 있다. 여기서 상기 제1 작용기는 니트로기, 이미드기, 에스테르기, 말레이미드기, 요오드아세트아미드기, N-하이드록시석신이미드기 및 토실기로 이루어진 군에서 선택될 수 있다. 또한 상기 제2 작용기는 트리메톡시실란기, 트리에톡시실란기, 디메톡시실란기, 디에톡시실란기, 메톡시실란기 및 에톡시실란기로 이루어진 군에서 선택될 수 있다.
구체적으로 상기 탄소 지지체는 올리고에틸렌글리콜 또는 폴리에틸렌글리콜이 주 골격 구조를 이루며, 상기 주 골격 구조의 일측 말단에 상기 제1 작용기가, 상기 주 골격 구조의 타측 말단에 상기 제2 작용기가 결합된 것일 수 있다. 또한 탄소 지지체의 분자량은 100 내지 15,000 g/mol일 수 있다. 상기 탄소 지지체가 올리고에틸렌글리콜, 또는 폴리에틸렌글리콜과 같은 주 골격 구조를 가질 경우, 양자점 함유 나노입자의 제조과정에서 용매(예를 들어, 에탄올)에 대한 분산성을 높일 수 있으며, 이로 인해 결합 밀도(가교 밀도) 및 안정성이 향상된 양자점 함유 나노입자를 제공할 수 있다.
이러한 양자점 함유 나노입자는 표준물질 조성물의 광학 특성, 작업성, 성형성 등을 고려할 때, 표준물질 조성물 100 중량부를 기준으로 1 내지 80 중량부, 구체적으로는 1 내지 40 중량부로 표준물질 조성물에 포함될 수 있다.
한편 본 발명에 따른 표준물질 조성물은 다양한 형태로 성형이 이루어질 수 있도록 바인더 수지, 경화제, 첨가제 및 용매를 더 포함할 수 있다.
본 발명에 따른 표준물질 조성물에 더 포함되는 바인더 수지는 광학 소재 분야에서 사용되는 수지라면 특별히 한정되지 않을 수 있다. 구체적으로 바인더 수지는 아크릴계 수지, 폴리에스테르계 수지, 폴리아미드계 수지, 폴리이미드계 수지, 폴리카보네이트계 수지 및 실리콘계 수지로 이루어진 군에서 선택되는 1종 이상일 수 있다.
이러한 바인더 수지는 표준물질 조성물의 작업성, 성형성, 분산성 등을 고려할 때, 표준물질 조성물 100 중량부를 기준으로 10 내지 50 중량부, 구체적으로는 25 내지 50 중량부로 표준물질 조성물에 포함될 수 있다.
본 발명에 따른 표준물질 조성물에 더 포함되는 경화제는 상기 바인더 수지의 경화 반응을 일으키는 것이라면 특별히 한정되지 않을 수 있다. 구체적으로 경화제는 옥사졸린계 경화제, 폴리이소시아네이트계 경화제, 멜라민계 경화제 및 카르보디이미드계 경화제로 이루어진 군에서 선택되는 1종 이상일 수 있다.
이러한 경화제는 표준물질 조성물의 경화성, 작업성 등을 고려할 때, 표준물질 조성물 100 중량부를 기준으로 1 내지 10 중량부, 구체적으로는 1 내지 5 중량부로 표준물질 조성물에 포함될 수 있다.
본 발명에 따른 표준물질 조성물에 더 포함되는 첨가제는 광학 소재 분야에서 사용되는 첨가제라면 특별히 한정되지 않을 수 있다. 구체적으로 첨가제는 무기충전제, 레벨링제, 소포제, 분산안정제, 점도조절제, 산화방지제 및 내열안정제로 이루어진 군에서 선택되는 1종 이상일 수 있다.
이러한 첨가제는 표준물질 조성물의 작업성, 광학 특성 등을 고려할 때, 표준물질 조성물 100 중량부를 기준으로 5 내지 50 중량부, 구체적으로는 20 내지 50 중량부로 표준물질 조성물에 포함될 수 있다
.
본 발명에 따른 표준물질 조성물에 더 포함되는 용매는 광학 소재 분야에서 사용되는 용매라면 특별히 한정되지 않을 수 있다. 구체적으로 용매는 벤젠, 톨루엔, 자일렌, 에틸벤젠 등과 같은 방향족 탄화수소계 용매; 펜탄, 헥산, 헵탄 등과 같은 지방족 탄화수소계 용매; 메탄올, 에탄올, 프로판올, 이소프로판올, 사이클로헥산올, 벤질알코올, 옥탄올, 에틸렌글리콜, 프로필렌글리콜, 글리세롤 등과 같은 알코올계 용매; 아세톤, 메틸에틸케톤, 디이소부틸케톤, 메틸아밀케톤 등과 같은 케톤계 용매; 에틸아세테이트, 이소프로필아세테이트, 부틸아세테이트, 에틸아세토아세테이트 등과 같은 에스테르계 용매; 및 에틸에테르, 부틸에테르, 테트라하이드로퓨란 등과 같은 에테르계 용매로 이루어진 군에서 선택되는 1종 이상일 수 있다.
이러한 용매는 표준물질 조성물의 작업성, 성형성 등을 고려할 때, 표준물질 조성물 100 중량부를 기준으로 1 내지 50 중량부, 구체적으로는 10 내지 20 중량부로 표준물질 조성물에 포함될 수 있다.
상술한 본 발명에 따른 표준물질 조성물은 검증 디바이스에 맞게 경화 및 성형되는 과정을 거쳐 바이오 분석기기의 검증(보정)에 적용될 수 있다. 구체적으로 본 발명은 상기 검증 디바이스로 표준 스트립, 표준 트레이, 또는 표준 어셈블리를 제공하는데, 이에 대해 구체적으로 설명하면 다음과 같다.
본 발명은 상술한 표준물질 조성물로 형성된 하나 이상의 발광 라인을 포함하는 표준 스트립을 제공한다. 구체적으로 도 5를 참조하면, 본 발명에 따른 표준 스트립은 스트립 몸체부(100); 및 하나 이상의 발광 라인(200)을 포함할 수 있다.
본 발명에 따른 표준 스트립에 포함되는 스트립 몸체부(100)는 바이오 스트립(strip) 분야에서 통상적으로 사용되는 소재 및 구조로 이루어질 수 있다.
본 발명에 따른 표준 스트립에 포함되는 발광 라인(200)은 상술한 표준물질 조성물로 형성된 것으로, 스트립 몸체부(100) 상에 하나 또는 복수로 구비될 수 있다. 이러한 발광 라인(200)에는 상술한 양자점 함유 나노입자가 포함되어 있어 광원에 의해 발광할 수 있다.
구체적으로 발광 라인(200)은 도 5에 도시된 바와 같이 제1 발광 라인(201), 제2 발광 라인(202) 및 제3 발광 라인(203)으로 복수로 구비될 수 있으며, 이때, 각 발광 라인 간에 양자점의 농도는 서로 상이할 수 있다. 즉, 각 발광 라인의 형성 시, 양자점(양자점 함유 나노입자)의 함량이 서로 상이한 표준물질 조성물을 각각 적용하여 양자점의 농도가 서로 상이한 발광 라인을 형성하는 것이다. 일례로, 제1 발광 라인(201)은 양자점의 농도를 낮게(C
low), 제2 발광 라인(202)은 제1 발광 라인(201)에 함유된 양자점의 농도보다 높게(C
low<C
medium), 제3 발광 라인(203)은 제2 발광 라인(202)에 함유된 양자점의 농도보다 높게(C
low<C
medium<C
high) 각 표준물질 조성물의 양자점의 농도(함량)를 설정(조절)하여 복수의 발광 라인(201, 202, 203)을 형성할 수 있다.
또한 발광 라인(200)은 복수로 구비되되, 각 발광 라인(201, 202, 203) 간에 발광 신호 강도가 서로 상이할 수 있다. 즉, 각 발광 라인(201, 202, 203)에서 방출되는 발광 신호의 투과 과정(투과도)을 제어하여 서로 상이한 발광 신호 강도를 나타내는 복수의 발광 라인(201, 202, 203)을 형성할 수 있다.
여기서 발광 라인(200)의 개수는 도 5에 한정되지 않고, 분석 조건에 따라 적절히 조절될 수 있다.
이와 같이 본 발명에 따른 표준 스트립에는 양자점 농도 구배를 갖거나 발광 신호 강도가 서로 상이한 복수의 발광 라인(201, 202, 203)이 구비되어 있어, 바이오 분석기기의 검증 과정에서 분석기기의 오차(편차)를 보다 세밀하게 보정할 수 있으며, 이로 인해 바이오 분석기기의 분석 정확도를 높일 수 있다.
이러한 본 발명에 따른 표준 스트립은 도 6 또는 도 7에 도시된 과정을 거쳐 제조될 수 있다.
구체적으로 도 6에 도시된 바와 같이 양자점(또는 양자점 함유 나노입자)의 함량이 서로 상이한 표준물질 조성물을 각각 통상적인 광학 필름(Optics film) 상에 도포하고, 이를 커버 필름으로 덮은 후 경화 과정을 거쳐 양자점 농도 구배를 갖는 복수의 QD film을 제조하고(일례로, C
low, C
medium, C
high의 농도를 갖는 3개의 QD film 제조), 제조된 각 QD film을 PVC Backing Card의 라인 위치에 맞춰 PVC Backing Card에 부착한 후, 패턴화된 Black Tape(또는 film)을 QD film 라인이 노출되도록 PVC Backing Card 상에 놓고 부착하여 커팅되지 않은 Standard Card를 제조한 다음, 요구되는 크기로 Standard Card를 커팅하여 본 발명에 따른 표준 스트립을 제조할 수 있다.
또한 도 7에 도시된 바와 같이 표준물질 조성물로 이루어진 QD Sheet를 준비하고, 광학 필름(Optics film)의 일측 표면을 프린팅 방식으로 패턴화하여 광투과도가 서로 상이한 라인들이 형성된 마스킹 필름을 제조한 후, 준비된 QD Sheet를 제조된 마스킹 필름으로 덮은 후 경화시키는 과정을 거쳐 커팅되지 않은 Standard Card를 제조한 다음, 요구되는 크기로 Standard Card를 커팅하여 본 발명에 따른 표준 스트립을 제조할 수 있다.
본 발명에 따른 표준 스트립은 상술한 표준물질 조성물로 형성된 발광 라인(200)을 포함하기 때문에 바이오 분석기기의 검증(보정)에 편리하게 사용될 수 있으며, 바이오 분석기기의 분석 정확도를 높일 수 있다. 또한 표준 스트립의 제조 시 Quality Control 과정에서 광퇴색(photobleaching) 현상이 잘 일어나지 않으며, 보관 환경(빛 차폐, 온도, 습도 등)이 변하더라도 안정적인 성능구현이 가능할 수 있다. 또 광학 필름을 사용하여 표준 스트립이 제조되기 때문에 자외선 노출 및 외부 오염 등이 방지되어 긴 사용 수명을 확보할 수 있다.
본 발명은 상술한 표준물질 조성물로 형성된 발광부를 포함하는 표준 트레이를 제공한다. 구체적으로 도 8을 참조하면, 본 발명에 따른 표준 트레이는 트레이 몸체부(300); 기준부(400); 및 발광부(500)를 포함할 수 있다. 여기서 본 발명에 따른 표준 트레이는 바이오 스트립이 구비된 바이오 키트(kit)가 장착되는 역할을 하는 트레이일 수 있다.
본 발명에 따른 표준 트레이에 포함되는 트레이 몸체부(300)는 바이오 트레이(tray) 분야에서 통상적으로 사용되는 소재 및 구조로 이루어질 수 있다.
본 발명에 따른 표준 트레이에 포함되는 기준부(400)는 발광부(500)의 발광 신호를 분석함에 있어 기준점을 제시하는 역할을 하는 것으로, 통상적으로 사용되는 소재로 이루어질 수 있다.
본 발명에 따른 표준 트레이에 포함되는 발광부(500)는 상술한 표준물질 조성물로 형성되어 광원에 의해 발광할 수 있다. 이러한 발광부(500)는 상술한 표준물질 조성물을 페이스트(paste) 상태로 경화시키는 과정을 거쳐 형성될 수 있다.
본 발명에 따른 표준 트레이는 상술한 표준물질 조성물로 형성된 발광부(500)를 포함하기 때문에 바이오 분석기기의 검증(보정)에 편리하게 사용될 수 있으며, 바이오 분석기기의 분석 정확도를 높일 수 있다.
본 발명은 상술한 표준 스트립과 표준 트레이가 결합된 표준 어셈블리를 제공한다. 즉, 도 9를 참조하면, 본 발명은 상술한 표준 스트립이 구비된 표준 키트(kit)와 상기 표준 키트가 장착된 상술한 표준 트레이를 포함하는 표준 어셈블리를 제공할 수 있다. 이러한 표준 어셈블리는 후술되는 바이오 분석기기의 1차 및 2차 보정에 효율적으로 사용될 수 있다.
한편, 본 발명은 상술한 표준 스트립 및/또는 표준 트레이를 이용하여 바이오 분석기기를 검증하는 방법을 제공하는데, 이에 대해 구체적으로 설명하면 다음과 같다. 여기서 본 발명에 따른 바이오 분석기기의 검증은 바이오 분석기기로 바이오 시료(예를 들어, 항원, 수용체, 바이러스, 효소, 감염성 면역글로블린, 사이토카인 또는 기타 감염인자)의 분석을 진행하기 전에 이루어지는 것일 수 있다. 또한 표준 트레이의 발광부(500) 또는 표준 스트립의 발광 라인(200)이 아닌 부분의 발광 강도를 background 값으로 정의하고, 정량/정성 분석 시 발광부(500) 또는 발광 라인(200)의 발광 강도 값에서 background 값을 마이너스(-)한 값으로, 검증 및 분석이 이루어질 수 있다.
먼저, 상술한 표준물질 조성물로 형성된 발광부(500)를 포함하는 표준 트레이에 광원을 조사한다. 이때, 광원은 외부의 광원 또는 분석기기에 구비된 광원일 수 있으며, 그 파장은 자외선(Blue Light, <420 nm)일 수 있다.
다음, 상기 조사된 광원에 의해 발광하는 상기 발광부(500)의 발광 강도 값이 바이오 분석기기의 광학부에 입력된 표준 발광 강도 값 범위에 해당되는지 판단한다. 즉, 표준 트레이에 구비된 발광부(500)에서 방출되는 발광 신호를 바이오 분석기기의 광학부에서 수신하여 수신된 발광 신호의 강도가 광학부에 입력(세팅)된 표준 발광 신호의 강도 범위 내에 해당하는지 광학부의 소프트웨어에서 판단하는 것이다. 여기서 광학부에 입력된 표준 발광 강도 값 범위는 분석 대상인 바이오 시료를 나타낼 수 있는 양자점 발광효율(quantum yields) 또는 발광피크(photoluminescence)에 따른 수치를 기준으로 정해질 수 있다.
그 다음, 상기 판단에 의해 상기 발광 강도 값이 상기 표준 발광 강도 값 범위에 해당되도록 상기 광학부에 입력된 표준 발광 강도 값 범위를 1차 보정하는 과정을 통해 바이오 분석기기의 검증이 이루어질 수 있다. 여기서 상기 판단 과정에서 발광부(500)의 발광 강도 값이 광학부에 입력된 표준 발광 강도 값 범위 내에 있는 것으로 확인될 경우, 1차 보정은 생략될 수 있다. 또한 1차 보정은 발광부(500)를 포함하는 표준 트레이 대신에 발광 라인(200)을 포함하는 표준 스트립을 적용하여 이루어질 수도 있다.
이러한 본 발명에 따른 바이오 분석기기를 검증하는 방법은 상술한 표준물질 조성물로 형성된 하나 이상의 발광 라인(200)을 포함하는 표준 스트립을 통해 상기 광학부에 입력된 표준 발광 강도 값을 2차 보정하는 과정을 더 거칠 수 있다. 즉, 하나 이상의 발광 라인(200)을 포함하는 표준 스트립에 광원을 조사하고, 조사된 광원에 의해 발광하는 발광 라인(200)의 발광 강도 값이, 상기 1차 보정된 바이오 분석기기의 광학부에 세팅된 표준 발광 강도 값에 해당되는지 판단하여, 세팅된 표준 발광 강도 값(1차 보정이 이루어진 표준 발광 강도 값)에 해당하지 않을 경우, 바이오 분서기기의 광학부에 세팅된 표준 발광 강도 값을 2차 보정하는 것이다.
일례로, 발광 라인(200)을 포함하는 표준 스트립을 통한 바이오 분석기기의 광학부의 보정은 도 10에 도시된 상관계수(c)를 보정에 적용함으로써 이루어질 수 있다. 즉, Y
0 = a
0X + b
0라는 수식에 맞게 발광 강도 값을 갖도록 제조된 표준 스트립을 통해 바이오 분석기기의 광학부에 입력된 표준 발광 강도 값을 분석하여 수식화하면 Y
1 = a
1X + b
1라는 수식을 얻을 수 있다. 여기서 Y
0와 Y
1의 상관계수(c)를 구하고, 이를 Y
1에 적용하면 보정된 Y
1’= c(a
1X + b
1)이라는 수식을 얻을 수 있다. 상기 보정된 Y
1’= c(a
1X + b
1)이라는 수식을 통해 광학부의 오차(편차)가 보정됨으로써 본 발명은 바이오 분석기기마다 동일한 표준 스트립의 발광 강도 값을 갖도록 할 수 있다.
본 발명에서 상기 1차 및/또는 2차 보정은 소정의 주기(1개월 내지 6개월)마다 이루어져 바이오 분석기기의 검증 과정이 업데이트될 수 있다.
이와 같이 본 발명은 상기 1차 및/또는 2차 보정 과정을 거쳐 바이오 분석기기를 검증(보정)하기 때문에 바이오 분석기기의 분석 오차(편차)를 보다 최소화할 수 있으며, 이로 인해 바이오 분석기기의 분석 정확도를 높일 수 있다.
본 발명에서 바이오 분석기기란 광학부와 발광 강도 값을 분석할 수 있는 소프트웨어가 프로그래밍된 분석기기라면 특별히 한정되지 않으며, 구체적으로 핸드폰, 바이오 리더기 등을 들 수 있다. 또한 본 발명에서 바이오 분석기기의 광학부의 오차는 바이오 분석기기마다 갖는 광학부(CCD, CMOS) 자체 간의 오차, 광학부 가동 환경(주변환경의 조도)에 의한 오차, 광원(UV)에 의한 오차 등을 의미할 수 있으며, 본 발명은 이러한 오차를 검증(보정)하여 바이오 분석기기의 분석 정확도를 높일 수 있다.
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
[실시예 1]
폴리에스테르 수지, 방향족 탄화수소계 용매 및 첨가제(소포제, 분산안정제)에 올레산으로 코팅된 양자점 입자(CdSe/ZnS, 10nm)를 첨가하고 혼합한 후, 경화제를 첨가하는 과정을 거쳐 표준물질 조성물을 제조하였다. 이때, 양자점 입자는 조성물 100 중량부를 기준으로, 5 중량부가 되도록 첨가하였다.
[실시예 2]
양자점 입자를 조성물 100 중량부를 기준으로, 10 중량부가 되도록 첨가한 것을 제외하고는 실시예 1과 동일한 과정을 거쳐 표준물질 조성물을 제조하였다.
[실시예 3]
양자점 입자를 조성물 100 중량부를 기준으로, 20 중량부가 되도록 첨가한 것을 제외하고는 실시예 1과 동일한 과정을 거쳐 표준물질 조성물을 제조하였다.
[실시예 4]
1) 양자점 함유 나노입자의 제조
직경 120 nm 크기(10mg/ml)의 실리카 입자로 이루어진 코어부에 1%(v/v) 머캅토프로필트리메톡시실란(MPTMS) 100 ㎕를 첨가하고 25 ℃에서 12 시간 동안 교반하여, 실리카 입자 표면에 싸이올기를 도입하였다.
다음, 싸이올기가 도입된 실리카 입자에, 올레산(소수성)으로 코팅하는 과정을 거친 양자점 입자(CdSe/ZnS, 100 mg/ml) 4 mg을 첨가하고 격렬하게 볼텍스 교반시켜 양자점 입자를 실리카 입자의 싸이올기에 결합시켰다. 이어서 소수성 용매인 디클로로메탄 8 ㎖를 추가로 첨가하고 10 분 동안 교반시켜 미결합된 양자점 입자를 추가로 결합시켰다. 이어서 머캅토프로필트리에톡시실란(MPTES) 100 ㎕를 첨가하고 15분 동안 교반한 다음, 염기로서 25% 암모니아수(NH
4OH(aq)) 100 ㎕를 첨가하고 3시간 동안 교반하여 3개의 양자점포설층이 적층된 구조를 갖는 양자점부를 형성하였다.
그 다음, 코어부와 양자점부가 형성된 나노입자를 에탄올로 3회 세척한 후, 테트라에틸 오르소실리케이트 100 ㎕와 25% 암모니아수를 첨가하고 20시간 동안 400 rpm 하에 교반하여 쉘부를 형성하였다. 이후, 에탄올로 3회 세척하는 과정을 거쳐 실리카 코어부; 3개의 양자점포설층이 적층된 양자점부; 및 실리카 쉘부를 포함하는 양자점 함유 나노입자 1을 제조하였다.
2) 표준물질 조성물 제조
양자점 입자 대신에 상기 과정을 거쳐 제조된 양자점 함유 나노입자 1을 사용한 것을 제외하고는 실시예 1과 동일한 과정을 거쳐 표준물질 조성물을 제조하였다.
[실시예 5]
1) 양자점 함유 나노입자의 제조
직경 120 nm 크기(10mg/ml)의 실리카 입자로 이루어진 코어부에 1%(v/v) 머캅토프로필트리메톡시실란(MPTMS) 100 ㎕를 첨가하고 25 ℃에서 12 시간 동안 교반하여, 실리카 입자 표면에 싸이올기를 도입하였다.
다음, 싸이올기가 도입된 실리카 입자에, 올레산(소수성)으로 코팅하는 과정을 거친 양자점 입자(CdSe/ZnS, 100 mg/ml) 4 mg을 첨가하고 격렬하게 볼텍스 교반시켜 양자점 입자를 실리카 입자의 싸이올기에 결합시켰다. 이어서 소수성 용매인 디클로로메탄 8 ㎖를 추가로 첨가하고 10 분 동안 교반시켜 미결합된 양자점 입자를 추가로 결합시켰다.
그 다음, 말레이미드기와 트리에톡시실란기가 각각 양 말단에 결합되고 폴리에틸렌글리콜 주 골격을 갖는 탄소 지지체(분자량 1000 g/mol) 150 ㎕를 첨가하고 15 분 동안 교반한 다음, 머캅토프로필트리에톡시실란(MPTES) 100 ㎕를 첨가하고 15분 동안 교반한 다음, 염기로서 25% 암모니아수(NH
4OH(aq)) 100 ㎕를 첨가하고 3시간 동안 교반하여 3개의 양자점포설층이 적층된 구조를 갖는 양자점부를 형성하면서 코어부 표면에 탄소 지지체를 결합시켰다.
다음, 코어부, 양자점부 및 탄소 지지체가 결합된 나노입자를 에탄올로 3회 세척한 후, 테트라에틸 오르소실리케이트 100 ㎕와 25% 암모니아수를 첨가하고 20시간 동안 400 rpm 하에 교반하여 지지부와 쉘부를 형성하였다. 이후, 에탄올로 3회 세척하는 과정을 거쳐 실리카 코어부; 3개의 양자점포설층이 적층된 양자점부; 탄소 지지부; 및 실리카 쉘부를 포함하는 양자점 함유 나노입자 2를 제조하였다.
2) 표준물질 조성물 제조
양자점 입자 대신에 상기 과정을 거쳐 제조된 양자점 함유 나노입자 2를 사용한 것을 제외하고는 실시예 1과 동일한 과정을 거쳐 표준물질 조성물을 제조하였다.
[제조예 1]
실시예 1 내지 3에서 각각 제조된 표준물질 조성물로 표준 스트립을 제조하였다(도 6 과정 적용). 구체적으로 실시예 1 내지 3에서 각각 제조된 표준물질 조성물을 광학 필름(Optics film) 상에 도포하고, 이를 커버 필름으로 덮은 후 경화 과정을 거쳐 양자점 농도가 상이한 3개의 QD film(8×300 ㎚)을 각각 제조하였다. 다음 제조된 각 QD film을 PVC Backing Card(60×300 ㎚)의 라인 위치에 맞춰 PVC Backing Card에 부착한 후, 패턴화된 Black Tape(60×300 ㎚)를 3개의 QD film 라인이 노출되도록 PVC Backing Card 상에 놓고 부착하여 커팅되지 않은 Standard Card를 제조하였다. 다음, 제조된 Standard Card를 커팅하여 표준 스트립을 제조하였다.
[실험예 1]
제조예 1에서 제조된 표준 스트립을 바이오 키트에 장작한 후, UV를 조사하여 양자점 발광 라인 색을 육안으로 확인하고, 이후 바이오 전용 리더기로 분석하였다. 육안 확인 및 리더기 분석 결과는 도 11에 나타내었다.
도 11을 참조하면, 육안으로 첫번째 line A의 신호만 확인되었으나, 리더기로 분석하면, line A와 더불어 line B 및 line C가 모두 확인됨을 알 수 있었다. 이와 같이 확인된 3개 line의 발광 강도(Fluorescence intensity) 값을 이용하여 본 발명에 따른 바이오 분석기기의 검증 과정(도 10의 수식 보정 과정을 거침)을 거쳐 바이오 분석기기의 광학부 및 광원의 보정을 수행할 수 있었다.
Claims (11)
- 양자점 함유 나노입자를 포함하는 바이오 분석기기 검증용 표준물질 조성물.
- 제1항에 있어서,상기 양자점 함유 나노입자는, 코어부; 상기 코어부의 표면에 결합된 양자점부; 및 상기 코어부와 상기 양자점부를 보호하는 쉘부를 포함하는 것인 바이오 분석기기 검증용 표준물질 조성물.
- 제2항에 있어서,상기 양자점부는 복수의 양자점포설층을 포함하는 것인 바이오 분석기기 검증용 표준물질 조성물.
- 제2항에 있어서,상기 쉘부는 복수의 실리카쉘층을 포함하는 것인 바이오 분석기기 검증용 표준물질 조성물.
- 제2항에 있어서,상기 양자점 함유 나노입자는, 상기 코어부와 상기 쉘부의 결합을 지지하는 지지부를 더 포함하는 것인 바이오 분석기기 검증용 표준물질 조성물.
- 제1항 내지 제5항 중 어느 한 항에 따른 바이오 분석기기 검증용 표준물질 조성물로 형성된 하나 이상의 발광 라인을 포함하는 표준 스트립.
- 제6항에 있어서,상기 발광 라인은 복수로 구비되며,복수의 발광 라인 간에 양자점의 농도가 서로 상이한 것인 표준 스트립.
- 제6항에 있어서,상기 발광 라인은 복수로 구비되며,복수의 발광 라인 간에 발광 신호 강도가 서로 상이한 것인 표준 스트립.
- 제1항 내지 제5항 중 어느 한 항에 따른 바이오 분석기기 검증용 표준물질 조성물로 형성된 발광부를 포함하는 표준 트레이.
- 제1항에 따른 바이오 분석기기 검증용 표준물질 조성물로 형성된 발광부를 포함하는 표준 트레이에 광원을 조사하는 단계;상기 조사된 광원에 의해 발광하는 상기 발광부의 발광 강도 값이 바이오 분석기기의 광학부에 입력된 표준 발광 강도 값 범위에 해당되는지 판단하는 단계; 및상기 판단에 의해 상기 발광 강도 값이 상기 표준 발광 강도 값 범위에 해당되도록 상기 광학부에 입력된 표준 발광 강도 값 범위를 1차 보정하는 단계를 포함하는 바이오 분석기기의 검증 방법.
- 제10항에 있어서,제1항에 따른 바이오 분석기기 검증용 표준물질 조성물로 형성된 하나 이상의 발광 라인을 포함하는 표준 스트립을 통해 상기 광학부에 입력된 표준 발광 강도 값을 2차 보정하는 단계를 더 포함하는 바이오 분석기기의 검증 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021556650A JP7353666B2 (ja) | 2019-03-20 | 2020-03-19 | バイオアナライザー検証用標準材料組成物、及びそれを用いた標準ストリップ |
CN202080022222.7A CN113597558A (zh) | 2019-03-20 | 2020-03-19 | 用于验证生物分析仪的标准材料组合物和使用其的标准条带 |
US17/439,286 US20220155293A1 (en) | 2019-03-20 | 2020-03-19 | Standard material composition for verifying bioanalyzer and standard strip using same |
EP20773305.6A EP3919912A4 (en) | 2019-03-20 | 2020-03-19 | COMPOSITION OF STANDARD MATERIAL FOR VERIFYING A BIOANALYZER AND STANDARD STRIP USING IT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20190031876 | 2019-03-20 | ||
KR10-2019-0031876 | 2019-03-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020190063A1 true WO2020190063A1 (ko) | 2020-09-24 |
Family
ID=72519309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/003800 WO2020190063A1 (ko) | 2019-03-20 | 2020-03-19 | 바이오 분석기기 검증용 표준물질 조성물 및 이를 이용한 표준 스트립 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220155293A1 (ko) |
EP (1) | EP3919912A4 (ko) |
JP (1) | JP7353666B2 (ko) |
KR (1) | KR102306937B1 (ko) |
CN (1) | CN113597558A (ko) |
WO (1) | WO2020190063A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100704011B1 (ko) * | 2005-02-16 | 2007-04-04 | 한국과학기술원 | 금속나노입자와 양자점의 fret에 의한 생체분자특이결합 검출 방법 |
KR101327542B1 (ko) * | 2012-03-15 | 2013-11-08 | 광주과학기술원 | 양자점 기반의 경쟁 면역분석법 및 다중 유세포 분석법을 이용한 시료 중 오염물질의 검출 방법 |
KR101575396B1 (ko) * | 2013-03-18 | 2015-12-10 | 주식회사 나노스퀘어 | 양자점 함유 나노복합입자 및 그 제조방법 |
KR101609618B1 (ko) * | 2009-07-17 | 2016-04-06 | 서울대학교산학협력단 | 양자점 함유 입자 및 이의 제조 방법 |
KR20190001742A (ko) * | 2017-06-28 | 2019-01-07 | 주식회사 파나진 | 양자점을 분산광원으로 하는 표적 핵산 검출 방법 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3694754B2 (ja) * | 1996-07-19 | 2005-09-14 | アークレイ株式会社 | 基準反射体の汚れ検出方法、反射率測定装置、および記憶媒体 |
DE10043113C2 (de) | 2000-08-31 | 2002-12-19 | Pe Diagnostik Gmbh | Verfahren zur Verbesserung der Messgenauigkeit bei Sensoren, insbesondere Bio-Sensoren, die Fluoreszenzstrahlung auswerten |
EP1345026B1 (en) | 2002-03-15 | 2010-05-05 | Affymetrix, Inc. | System and method for scanning of biological materials |
US20050030601A1 (en) | 2003-06-12 | 2005-02-10 | Affymetrix, Inc. | System and method for scanner instrument calibration using a calibration standard |
MXPA06013728A (es) | 2004-05-26 | 2007-05-09 | Genera Biosystems Pty Ltd | Biosensor que usa modos por galeria de murmullos en microesferas. |
US20060131361A1 (en) * | 2004-12-16 | 2006-06-22 | Eastman Paul S | Quantum dot-encoded bead set for calibration and quantification of multiplexed assays, and methods for their use |
KR100821192B1 (ko) | 2005-09-08 | 2008-04-11 | 주식회사바이테리얼즈 | 형광성을 가지는 자성 나노 입자 및 그 제조방법 |
CA2720041C (en) | 2008-04-17 | 2017-01-17 | Klaus Haberstroh | Fluorescence standards and their use |
US9999694B2 (en) | 2009-07-02 | 2018-06-19 | Sloan-Kettering Institute For Cancer Research | Multimodal silica-based nanoparticles |
WO2013006207A1 (en) | 2011-07-01 | 2013-01-10 | The Regents Of The University Of California | Direct assembly of hydrophobic nanoparticles to multifunction structures |
KR101438893B1 (ko) | 2012-07-27 | 2014-09-12 | 가톨릭대학교 산학협력단 | 체외진단용 정량검사의 정확도 검증을 위한 이차원 플롯 생성장치 및 방법 |
US9562846B2 (en) | 2013-07-10 | 2017-02-07 | Kla-Tencor Corporation | Particle suspensions used as low-contrast standards for inspection of liquids |
CN103630682A (zh) * | 2013-11-12 | 2014-03-12 | 成都领御生物技术有限公司 | 一种量子点标记的试条卡 |
KR102240166B1 (ko) * | 2013-11-17 | 2021-04-14 | 퀀텀-에스아이 인코포레이티드 | 분자들을 프로빙 검출 및 분석하기 위한 외부 광원을 구비한 통합 디바이스 |
EP3077798B1 (en) | 2013-12-06 | 2022-06-22 | Quidel Corporation | Method for reducing analyzer variability using a normalization target |
KR101489195B1 (ko) * | 2014-01-28 | 2015-02-04 | 강원대학교산학협력단 | 형광신호 측정기의 형광신호 보정용 시트 및 그 제조방법 |
KR101567327B1 (ko) * | 2014-04-24 | 2015-11-10 | 주식회사 나노스퀘어 | 양자점 함유 복합입자 및 이의 제조 방법 |
KR20160004524A (ko) * | 2014-07-03 | 2016-01-13 | 한화첨단소재 주식회사 | 양자점 기반 나노구조체 및 이를 포함하는 광학필름 |
JP2017523280A (ja) | 2014-07-10 | 2017-08-17 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | ポリマー材料における及びそれに関する改善 |
CN104880440B (zh) * | 2015-05-11 | 2018-01-23 | 深圳天吉新创科技有限公司 | 标准色卡、标准色卡制作方法及生物分析检测套件 |
US10266760B2 (en) * | 2015-05-13 | 2019-04-23 | Osram Opto Semiconductors Gmbh | Composition of, and method for forming, a semiconductor structure with multiple insulator coatings |
JP2019502907A (ja) | 2015-12-02 | 2019-01-31 | ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ | 顕微鏡法及び蛍光撮像ための基準マーカとしての蛍光ナノダイアモンド |
SG11201805118XA (en) | 2015-12-18 | 2018-07-30 | Biofire Defense Llc | Solid fluorescence standard |
CN108474874B (zh) | 2015-12-23 | 2022-07-01 | 皇家飞利浦有限公司 | 用于数字病理学的校准载玻片 |
CA3011339A1 (en) | 2016-01-15 | 2017-07-20 | Robert A. Levine | Performing one or more analyses on a thin layer of biologic fluid using optically responsive chemical sensors |
CN106324242B (zh) * | 2016-07-29 | 2018-09-28 | 江苏量点科技有限公司 | 量子点试纸条的质检系统及质检方法 |
KR101960616B1 (ko) * | 2017-09-28 | 2019-03-21 | (주)바이오스퀘어 | 다중 양자점 기반 고감도 생체분자 검출법 |
KR101876151B1 (ko) | 2017-12-13 | 2018-08-09 | (주)에스티엠 | 시료 분석물 측정 방법 |
-
2020
- 2020-03-19 CN CN202080022222.7A patent/CN113597558A/zh active Pending
- 2020-03-19 EP EP20773305.6A patent/EP3919912A4/en active Pending
- 2020-03-19 KR KR1020200033609A patent/KR102306937B1/ko active IP Right Grant
- 2020-03-19 WO PCT/KR2020/003800 patent/WO2020190063A1/ko unknown
- 2020-03-19 US US17/439,286 patent/US20220155293A1/en active Pending
- 2020-03-19 JP JP2021556650A patent/JP7353666B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100704011B1 (ko) * | 2005-02-16 | 2007-04-04 | 한국과학기술원 | 금속나노입자와 양자점의 fret에 의한 생체분자특이결합 검출 방법 |
KR101609618B1 (ko) * | 2009-07-17 | 2016-04-06 | 서울대학교산학협력단 | 양자점 함유 입자 및 이의 제조 방법 |
KR101327542B1 (ko) * | 2012-03-15 | 2013-11-08 | 광주과학기술원 | 양자점 기반의 경쟁 면역분석법 및 다중 유세포 분석법을 이용한 시료 중 오염물질의 검출 방법 |
KR101575396B1 (ko) * | 2013-03-18 | 2015-12-10 | 주식회사 나노스퀘어 | 양자점 함유 나노복합입자 및 그 제조방법 |
KR20190001742A (ko) * | 2017-06-28 | 2019-01-07 | 주식회사 파나진 | 양자점을 분산광원으로 하는 표적 핵산 검출 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20200112714A (ko) | 2020-10-05 |
JP2022527692A (ja) | 2022-06-03 |
JP7353666B2 (ja) | 2023-10-02 |
KR102306937B1 (ko) | 2021-09-30 |
US20220155293A1 (en) | 2022-05-19 |
CN113597558A (zh) | 2021-11-02 |
EP3919912A1 (en) | 2021-12-08 |
EP3919912A4 (en) | 2023-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011008064A9 (ko) | 양자점 함유 입자 및 이의 제조 방법 | |
US8827759B2 (en) | Method of manufacturing light emitting device | |
JP5221122B2 (ja) | シリコーン樹脂基材 | |
JP6570937B2 (ja) | 感光性樹脂組成物 | |
WO2017111194A1 (ko) | 바이오 센서용 광학 표지자, 이를 포함하는 광학 바이오센서 및 상기 바이오 센서용 광학 표지자의 제조방법 | |
JP2017021322A (ja) | 量子ドット分散体及びこれを含む自発光型感光性樹脂組成物、並びにこれを利用して製造されたカラーフィルター及び画像表示装置 | |
WO2020190063A1 (ko) | 바이오 분석기기 검증용 표준물질 조성물 및 이를 이용한 표준 스트립 | |
JP2009065145A (ja) | 半導体発光装置、バックライトおよびカラー画像表示装置 | |
EP3115783A1 (en) | Integrated phosphor nanoparticle marking agent, and fluorescent immunostaining method employing same | |
WO2014030985A1 (ko) | 생체 분자 분석용 미소 입자 및 이의 제조방법, 생체 분자 분석용 키트, 및 이를 이용한 생체 분자 분석 방법. | |
CN112924669B (zh) | 基于光学三原色的多色测流免疫层析试纸条及其制备和检测方法 | |
CN110099954B (zh) | 黄色固化性树脂组合物、利用其制造的滤色器及图像显示装置 | |
WO2021167248A1 (ko) | 형광염료의 종류에 따라 촬영방식을 선택하는 크로마토그래피 검사장치 및 그 제어방법 | |
US20080160548A1 (en) | Microoptical Detection System and Method for Determination of Temperature-Dependent Parameters of Analytes | |
WO2015005504A1 (ko) | 혈당측정용 바이오칩 및 그를 포함하는 스마트폰용 혈당측정기 | |
WO2018093021A1 (ko) | 황색 경화성 수지 조성물, 이를 포함하는 컬러필터 및 화상표시장치 | |
WO2021145580A1 (ko) | 화학물질 검출 장치 및 화학물질 검출 방법 | |
WO2021153903A1 (ko) | 코어/쉘 나노 입자의 에너지 준위 특성화 방법 | |
KR20180110640A (ko) | 양자점 포함 나노입자 및 제조방법 | |
WO2019017623A2 (ko) | 나노입자 어셈블리 구조체 및 이를 이용한 면역 분석 방법 | |
CN111752098A (zh) | 自发光感光性树脂组合物、彩色滤光片和图像显示装置 | |
WO2024043404A1 (ko) | 표적물질 신호 검출 위한 이미지 획득 장치 및 획득방법 | |
WO2024054050A1 (ko) | 세포 계수 장치의 품질관리용 슬라이드 및 이의 제조방법 | |
WO2019009495A1 (ko) | 강화된 적외선 흡·발광 나노입자 및 이를 이용하는 현장용 진단키트 | |
EP3234552A1 (en) | Structure for optical analysis and ink composition for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20773305 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021556650 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020773305 Country of ref document: EP Effective date: 20210830 |