WO2019009495A1 - 강화된 적외선 흡·발광 나노입자 및 이를 이용하는 현장용 진단키트 - Google Patents

강화된 적외선 흡·발광 나노입자 및 이를 이용하는 현장용 진단키트 Download PDF

Info

Publication number
WO2019009495A1
WO2019009495A1 PCT/KR2018/002616 KR2018002616W WO2019009495A1 WO 2019009495 A1 WO2019009495 A1 WO 2019009495A1 KR 2018002616 W KR2018002616 W KR 2018002616W WO 2019009495 A1 WO2019009495 A1 WO 2019009495A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
infrared rays
diagnostic kit
capturing agent
infrared
Prior art date
Application number
PCT/KR2018/002616
Other languages
English (en)
French (fr)
Inventor
이준석
이석
최만호
표희수
김승기
김재영
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170086300A external-priority patent/KR101996815B1/ko
Priority claimed from KR1020180009062A external-priority patent/KR102049946B1/ko
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to US16/341,852 priority Critical patent/US11320425B2/en
Publication of WO2019009495A1 publication Critical patent/WO2019009495A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54306Solid-phase reaction mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • G01N33/54387Immunochromatographic test strips
    • G01N33/54388Immunochromatographic test strips based on lateral flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • G01N33/587Nanoparticles

Definitions

  • the present invention relates to a diagnostic kit capable of rapidly diagnosing a target material with high sensitivity using nanoparticles emitting infrared rays by absorbing infrared rays having enhanced light emission intensity while maintaining a particle size.
  • Lateral flow immunoassay kit is a diagnostic platform suitable for detecting the target substance directly on the spot because of its high economic efficiency and convenience.
  • the diagnostic kit Since the diagnostic kit is based on immunoassay, it can be applied to all tests in which an antigen and an antibody are present. However, in the conventional kit, the color change of the test line must be judged visually and the signal is interfered There is a problem that the sensitivity is lowered. For example, there is a restriction that biomarkers such as HCG hormones, such as pregnancy diagnostic kits, should be present at high concentrations in the specimen or that the specimen type is limited.
  • Patent No. 10-1053473 registered on July 27, 2011
  • Steproid hormone detection kit and method using quantum dot
  • kits using the color change of gold nanoparticles have low sensitivity and are affected by the sample, and the detection results are not uniform.
  • Kits using QDOT fluorescent light signals show that the high luminescence efficiency of QDs is higher than that of gold nanoparticle kits, but ultraviolet light for quantum dot emission generates autofluorescence of kit components (plastic, various pads) and specimens The fluorescence of the visible light is also interfered with the specimen and still affects the sensitivity.
  • the method using chemical signal amplification is not suitable for on-site diagnostic kits because large analytical equipment and skilled experts are needed.
  • the present invention provides a diagnostic kit capable of detecting a target substance with high sensitivity without being influenced by a specimen by using nanoparticles that absorb infrared rays having enhanced light emission intensity and emit infrared rays while maintaining particle size, .
  • nanoparticles according to the present invention are characterized in that rare earth and dopant are doped to absorb infrared rays to emit infrared rays.
  • the nanoparticles according to the present invention may be doped with a rare earth dopant to absorb infrared rays to emit infrared rays, increase the distortion of the crystal structure in nanoparticles, And is doped.
  • the nanoparticles according to the present invention are characterized in that the rare earths include at least one selected from the group consisting of Y, Er, Yb, Tm and Nd.
  • the nanoparticles according to the present invention are characterized in that the rare earth includes Y 50 mol% Y, 48 mol% Yb, and 2 mol% Tm.
  • the hetero dopant includes at least one selected from the group consisting of Ca, Si, Ni and Ti.
  • the nanoparticles according to the present invention are characterized in that the wavelength of infrared rays absorbing light so that there is no interference between the infrared rays absorbing and emitting light and the wavelength of infrared rays emitting light are not the same.
  • the nanoparticles according to the present invention absorb infrared rays having a wavelength of 960 to 980 nm and emit infrared rays having a wavelength of 750 to 850 nm.
  • the nanoparticles according to the present invention include a core layer made of rare earth doped particles, a core layer surrounding the core layer to reduce surface defects to improve surface uniformity, And a shell layer doped with a dopant.
  • the nanoparticles according to the present invention further include a coating layer formed by coating a monomer or a polymer on the outer surface of the cell layer to increase the dispersibility of the nanoparticles in the fluid, Thereby facilitating the fixing.
  • the core layer is formed by mixing 1-octadecine, oleic acid and rare earth to form a homogeneous solution, and adding sodium hydroxide, methanol containing ammonium fluoride Is mixed with the homogeneous solution, stirred, and reacted at a predetermined temperature for a predetermined period of time to form nanoparticles.
  • the shell layer is formed by mixing 1-octadecin, oleic acid, rare earth and heteropotant to form a homogeneous solution, , And methanol containing ammonium fluoride is mixed with the core layer and mixed with the homogeneous solution, and the mixture is stirred at a predetermined temperature for a predetermined time to form a predetermined thickness on the core layer.
  • the capture agent-nanoparticle complex according to the present invention comprises nanoparticles that absorb infrared rays to emit infrared rays; And a capturing agent that binds to the nanoparticles and specifically binds to a target material, wherein the nanoparticles are nanoparticles of the present invention, and the capturing agent binds to the coating layer.
  • the capturing agent comprises an antibody or an extramammer.
  • a diagnostic kit is a kit comprising a specimen containing a target material in one direction to react with the target material, specifically binding to a target material, A capturing agent-nanoparticle complex that emits light; And a second capturing agent that specifically binds to the target material, wherein a target substance bound to the capturing agent-nanoparticle complex binds to the second capturing agent during the movement of the sample, and the capturing agent- Characterized in that the capturing agent-nanoparticle complex of claim 12 is used.
  • the diagnostic kit according to the present invention further comprises a third capturing agent which specifically binds to the capturing agent.
  • the capturing agent-nanoparticle complex moves together with the sample, and the second capturing agent and the third capturing agent are moved at a predetermined interval, And the capturing agent-nanoparticle complex bound to the second capturing agent and the capturing agent-nanoparticle complex bound to the third capturing agent emit infrared rays when the infrared ray is irradiated to the diagnostic kit.
  • the second capturing agent is fixed to the test line of the diagnostic kit
  • the third capturing agent is fixed to the control line of the diagnostic kit, Is located on the front side of the control line.
  • a diagnostic apparatus includes a diagnostic kit, and a controller for receiving the diagnostic kit, irradiating infrared rays to the diagnostic kit, measuring infrared rays emitted from the diagnostic kit, And an infrared reader provided to the terminal of the diagnostic kit, wherein the diagnostic kit is characterized in that the diagnostic kit of claim 16 is used.
  • the infrared reader includes a housing forming an outer shape of the infrared reader; And a controller which is located inside the housing and irradiates infrared rays to a diagnostic kit inserted through an insertion slot of the housing and measures infrared rays emitted from the diagnostic kit and provides the imaged data to an external terminal do
  • the controller includes an interface for exchanging information with the terminal, a battery for supplying power required for operation of the controller, An optical unit for photographing infrared rays emitted from the membrane after the infrared rays are irradiated to the membrane by the irradiation unit; and a controller for digitizing and outputting the photographed image output from the optical unit And an image processing unit.
  • the present invention can quickly diagnose a substance to be detected by a user using various samples such as saliva, blood, feces, beverage, and soil.
  • the present invention includes nanoparticles that absorb infrared rays and emit infrared rays instead of visible light, they can transmit samples with a long wavelength, and background signals are not generated. Thereby, since there is no interference between the light absorbing and the light emitting, the substance to be detected by the user can be detected with high sensitivity.
  • the present invention can further enhance the luminescence intensity in nanoparticles that absorb infrared rays and emit infrared rays, so that the target material can be detected with higher sensitivity.
  • the present invention can be applied to diseases such as pathogens such as anthrax, botulinum neurotoxin, animal viruses such as foot-and-mouth disease, avian influenza, cancer, cardiovascular diseases, etc. or biomarkers for pregnancy diagnosis.
  • pathogens such as anthrax, botulinum neurotoxin
  • animal viruses such as foot-and-mouth disease, avian influenza, cancer, cardiovascular diseases, etc. or biomarkers for pregnancy diagnosis.
  • FIG. 1 is a schematic configuration diagram of a diagnostic kit according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a diagnostic apparatus according to another embodiment of the present invention.
  • Fig. 3 is a block diagram showing a detailed configuration of a controller of the infrared reader of Fig. 2; Fig.
  • Figure 5 is a TEM image of nanoparticles prepared with different amounts of different dopants.
  • FIG. 6 is a view showing an emission spectrum of nanoparticles prepared by varying the amount of heteropolymers.
  • FIG. 7 is a diagram showing the result of crystal structure analysis of nanoparticles prepared by using different amounts of different dopants.
  • FIG. 8 is a view showing an elemental analysis result of nanoparticles according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing the results of infrared spectroscopic analysis of nanoparticles according to an embodiment of the present invention.
  • FIG. 10 is a graph showing a result of surface charge measurement of a capturing agent-nanoparticle composite according to an embodiment of the present invention.
  • FIG. 11 is an image taken by a camera for confirming the infrared emission capability of nanoparticles according to an embodiment of the present invention.
  • FIG. 12 is a view showing an absorption spectrum of a conventional gold nanoparticle.
  • FIG. 13 is a view showing an emission spectrum of nanoparticles according to an embodiment of the present invention.
  • FIG. 14 is a photograph of a camera showing a result of analyzing a specimen using a diagnostic kit according to an embodiment of the present invention.
  • the diagnostic kit 200 includes a sample pad 1, a conjugation pad 2, and a sample pad 3.
  • the diagnostic kit includes a sample pad 1, a conjugation pad 2, (2), a membrane (3) and an absorbent pad (4) on the support (7), the membrane (3) Are sequentially connected along the moving direction of the specimen.
  • the sample pad 1 refers to a pad capable of absorbing a sample and allowing a diffusion flow of a target material to be analyzed.
  • the sample refers to a substance suspected of containing a target substance to be analyzed, and may also be referred to as a sample or a sample
  • the target substance refers to a substance to be analyzed for concentration or presence.
  • the conjugation pad 2 includes a capture agent-nanoparticle composite 100 and receives a sample transferred from the sample pad 1 to form a capture agent-nanoparticle complex 100 and a sample Refers to a pad to which a target material binds.
  • the conjugation pad 2 may include a capturing agent-nanoparticle complex 100 that binds to a target substance as an analyte in a sample in a dry state. When a liquid sample is applied to the sample pad 1, the liquid sample moves to the conjugation pad 2 after wetting the dry sample pad 1, and the target substance contained in the sample is adsorbed by the capture agent - nanoparticle complex (100).
  • the capturing agent-nanoparticle complex 100 includes nanoparticles doped with a rare earth and a different dopant to absorb infrared rays to emit infrared rays, and a capturing agent that binds to the nanoparticles and specifically binds to the target material .
  • the capturing agent-nanoparticle complex specifically binds to a target material and absorbs infrared rays, emits infrared rays not visible light, that is, transmits a sample with a long wavelength and does not generate a background signal, So that the user can detect the target substance to be detected with high sensitivity.
  • the present invention can rapidly diagnose a substance to be detected by a user using various samples such as saliva, blood, feces, beverage and soil, and can rapidly diagnose a substance such as pathogenic bacteria such as anthrax, botulinum neurotoxin, Animal viruses such as influenza, diseases such as cancer, cardiovascular diseases and the like, or biomarkers for pregnancy diagnosis.
  • pathogenic bacteria such as anthrax, botulinum neurotoxin
  • Animal viruses such as influenza, diseases such as cancer, cardiovascular diseases and the like, or biomarkers for pregnancy diagnosis.
  • the capturing agent-nanoparticle composite 100 absorbs infrared rays upon irradiation with infrared rays to emit infrared rays.
  • the capturing agent-nanoparticle composite 100 is characterized in that a wavelength of an absorbing infrared ray and a wavelength of an emitting infrared ray are not the same (for example, Absorbs infrared rays having a wavelength of 960 to 980 nm, and emits infrared rays having a wavelength of 750 to 850 nm (when the infrared ray having a wavelength of 750 to 850 nm is emitted, Etc.), thereby preventing the influence on the specimen such as blood, manure and the like.
  • the diagnostic kit includes the capturing agent-nanoparticle complex as described above, thereby solving the low sensitivity problem of the existing field immunoassay diagnostic kit and maximizing the sensitivity while maintaining the convenience and economy of the field immunoassay diagnostic kit .
  • the nanoparticles can provide upconversion nanoparticles that absorb light energy of a long wavelength and emit light energy of a short wavelength through pyrolysis synthesis reaction by doping a rare earth element.
  • the nanoparticles can further increase the distortion of the crystal structure in the nanoparticles to some extent by doping the heterogeneous dopant, thereby enabling highly sensitive electron transfer. This makes it possible to increase the emission intensity without changing the size of the nanoparticles themselves.
  • the nanoparticles may include one or more selected from the group consisting of fluorides, oxides, halides, oxysulfides, phosphates, and vanadates.
  • fluorides oxides, halides, oxysulfides, phosphates, and vanadates.
  • it may include one or more selected from the group consisting of Y 2 O 2 S.
  • the rare earth element doped to the nanoparticle may include a lanthanide element.
  • the wavelength range of the light absorbed and emitted by the nanoparticle can be controlled by controlling the kind and concentration of the rare earth element contained in the nanoparticle. have.
  • the rare earth element by controlling the kind and concentration of the rare earth element, it is possible to provide nanoparticles free from absorption of an infrared wavelength and interference of an emission wavelength region.
  • the rare earth for obtaining the above effect include at least one selected from the group consisting of Y, Er, Yb, Tm and Nd. As a more specific embodiment, it may contain 45 to 55 mol% of Y, 43 to 52 mol% of Yb and 1.5 to 3 mol% of Tm.
  • the emission intensity of the nanoparticles can be controlled by controlling the kind or concentration of the heterodopant.
  • the hetero dopant that is further doped to the nanoparticles include at least one selected from the group consisting of Ca, Si, Ni, and Ti.
  • the rare earth and dopant-doped nanoparticles may be prepared by doping by a method commonly used in the art, for example, Qian et al., Small, 5: 2285-2290, 2009; Li et al., Advanced Materials, 20: 4765-4769, 2008; Zhao et al., Nanoscale, 5: 944-952, 2013; Li et al., Nanotechnology, 19: 345606, 2008. Which is incorporated herein by reference in its entirety.
  • the capturing agent may specifically bind to a target substance contained in the specimen.
  • a target substance contained in the specimen For example, an antibody, an aptamer, or the like may be used.
  • the binding of the capture agent to the rare earth element and the dopant- Covalent bond, metal bond, coordination bond, hydrogen bond, and van der Waals bond.
  • the nanoparticles comprise a core layer comprising rare earth doped particles, a shell layer surrounding the core layer to improve surface uniformity by reducing surface defects and further doping a different dopant, And a coating layer formed by coating the polymer to increase the dispersibility of the nanoparticles with respect to the fluid and to facilitate immobilization of the capturing agent, characterized in that the capturing agent binds to the coating layer.
  • the nanoparticles have a core-shell structure to reduce surface defects to increase the uniformity of the surface, increase the monodisperse to maximize the IR emission efficiency, and further doping the cell layer with a hetero dopant The infrared emission intensity can be further improved.
  • the capturing agent-nanoparticle complex may be surface-treated with a monomer or a polymer to increase the dispersibility of the nanoparticle in a fluid such as water and facilitate the immobilization of the antibody.
  • the core layer may be prepared by mixing 1-octadecine, oleic acid, and rare earth to form a homogeneous solution, mixing methanol containing sodium hydroxide and ammonium fluoride into the homogeneous solution and stirring,
  • the shell layer is formed by mixing 1-octadecin, oleic acid, rare earth, and heteropotant to form a homogeneous solution, and methanol containing sodium hydroxide and ammonium fluoride is added to the homogeneous solution And reacted at a constant temperature for a predetermined time to form a predetermined thickness on the core layer.
  • the polymer forming the coating layer may be selected from the group consisting of polyacrylic acid (PAA), polyallylamine (PAAM), 2-aminoethyl dihydrogen phosphate (AEP), polyethylene glycol diacid glycol diacid, polyethylene glycol maleimide acid, and polyethylene glycol phosphate ester.
  • PAA polyacrylic acid
  • PAAM polyallylamine
  • AEP 2-aminoethyl dihydrogen phosphate
  • polyethylene glycol diacid glycol diacid polyethylene glycol maleimide acid
  • polyethylene glycol phosphate ester polyethylene glycol phosphate ester.
  • the formation of the coating layer may be accomplished using methods routinely practiced in the art and includes, for example, ligand exchange or ligand engineering such as oleic acid oxidation, ligand attraction, ray-by-lay assembly, Surface treatment using silanization, surface polymerization, and the like.
  • the membrane (3) comprises a test line (5) with a second capture agent immobilized thereon responsive to a target material contained in the specimen, and a third capture agent in response to the capture agent of the capture agent-nanoparticle complex (100) Wherein the test line is located closer to the conjugation pad than to the control line.
  • the second capturing agent may be, for example, an antibody, aptamer, or the like that specifically binds to or reacts with a target substance.
  • the third capturing agent may be specifically bound to or reacted with the capturing agent, , An aptamer, and the like can be used.
  • the target substance that specifically binds to the capture agent of the capture agent-nanoparticle complex 100 in the conjugation pad 2 moves to the membrane 3 and part of the target substance moves to the test line 5 and some of the capture agent of the capture agent-nanoparticle complex 100 may be fixed to the control line 6 by reacting with the third capture agent.
  • the second capturing agent is immobilized on the test line 5 in response to the target substance contained in the specimen.
  • the presence or absence of the target substance to be analyzed and the concentration Can be analyzed.
  • the control line 6 has a third capturing agent immobilized thereon responsive to the capturing agent of the capturing agent-nanoparticle composite 100 so that the sample is moved to the necessary part through the infrared ray emission of the control line 6 And whether the capturing agent is working or not, and can be used as a criterion for reading whether the analysis is effective or not.
  • the absorbent pad 4 is a pad for absorbing fluid in a specimen passing through the membrane 3 and the absorbent pad 4 is included in a specimen moving from the sample pad 1 to the membrane 3 And may serve as a pump for absorbing the fluid to cause the sample to continuously move from the sample pad 1 to the membrane 3.
  • the specimen can be moved from the sample pad 1 to the absorbent pad 4 through the specimen expansion liquid, if necessary, depending on the sample volume.
  • the sample solution is developed, for example, including at least one selected from the group consisting of such as PBS (phosphate buffersaline), KCl, NaCl, Tween20, HEPES (4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid) and NaN 3 Solution, but is not limited thereto.
  • the sample pad 1, the conjugation pad 2, the membrane 3 and the absorbent pad 4 may comprise a solid-state capillary support, which may be a chemical, such as an antigen, an antibody, an aptamer or a hapten Any of natural, synthetic, or synthetically modified natural occurring substances having a porous polymer or a plurality of pores capable of serving as a solid-phase capillary carrier of the components can be used without limitation, and the form thereof is not limited .
  • the solid phase capillary support may be selected from the group consisting of cellulosic material, paper, cellulose acetate, nitrocellulose, polyethersulfone, polyethylene.
  • Nylon polyvinylidene fluoride (PVDF), polyester, polypropylene, silica, vinyl chloride, vinyl chloride-propylene copolymer and vinyl chloride-vinyl acetate copolymer, inactivated alumina, diatomaceous earth, MgSO 4 , , Rayon, silica gel, agarose, dextran, gelatin, and polyacrylamide.
  • the membrane may comprise at least one polymer selected from the group consisting of nitrocellulose, polyethersulfone, polyethylene, nylon, polyvinylidene fluoride, polyester and polypropylene.
  • the solid capillary support may have the form of a rod, a plate, a tube, a bead, or the like.
  • the support 7 is not limited to the type and can be used as long as it can support and carry the sample pad 1, the conjugation pad 2, the membrane 3 and the absorption pad 4, It may be liquid impermeable so that the fluid contained in the specimen does not leak through the support.
  • the support 7 may comprise glass, polystyrene, polypropylene, polyester, polybutadiene, polyvinyl chloride, polyamide, polycarbonate, epoxide, methacrylate, polymelamine, .
  • Another embodiment of the present invention is directed to nanoparticles doped with a rare earth and a different dopant to absorb infrared rays to emit infrared rays.
  • the nanoparticles are the same as the nanoparticles described above, and the capturing agent-nanoparticle complex is the same as the capturing agent-nanoparticle complex 100 described above, and thus a detailed description thereof will be omitted.
  • the diagnostic apparatus is directed to a diagnostic apparatus including the diagnostic kit 200 and the infrared reader 300 described above.
  • the infrared reader 300 receives the diagnostic kit 200 and irradiates the diagnostic kit 200 with infrared rays and measures the infrared rays emitted from the diagnostic kit 200 to transmit the imaged data to an external terminal 400.
  • the infrared reader 300 includes a housing 310, a cable 320, a controller 330, and the like.
  • the housing 310 is configured to form an outer shape of the infrared reader 300 and an insertion groove 311 into which the diagnostic kit 200 is inserted is positioned in the housing 310.
  • the cable 320 connects the controller 330 of the infrared reader 300 and the terminal 400 and the terminal 400 displays information transmitted from the controller 330.
  • the cable 330 may be a smart phone, , A tablet or the like can be used.
  • the controller 330 irradiates infrared rays to the diagnostic kit 200 which is located inside the housing 310 and inserted through the insertion slot 311 of the housing 310 and emits infrared rays And an interface unit 331 for exchanging information with the terminal 400.
  • the controller 330 is connected to the battery 400 that supplies power required for the operation of the controller 330,
  • a control unit 336 for controlling the overall operation, The.
  • the irradiation unit 333 irradiates infrared rays having a wavelength of 980 nm
  • the optical unit 334 includes a visible ray blocking filter and an ultraviolet ray blocking filter to take infrared rays.
  • Yet another embodiment of the present invention can provide a method for diagnosing a target substance using the above-described diagnostic apparatus.
  • the method for diagnosing a target material comprises the steps of injecting a sample containing a target material into a sample pad of the diagnostic kit; Irradiating infrared rays to the membrane of the diagnostic kit with the infrared reader after the injected specimen passes through a test line and a control line included in a membrane line of the diagnostic kit; And photographing and imaging the infrared ray emitted from the membrane irradiated with the infrared ray by the infrared reader.
  • Injecting a sample containing the target material into a sample pad of the diagnostic kit comprises injecting a sample containing the target material into a sample pad of the diagnostic kit;
  • the specimen is transferred to a conjugation pad to specifically bind a target substance contained in the specimen to the capture agent of the capture agent-nanoparticle complex in the conjugation pad;
  • the target substance bound to the capture agent-nanoparticle complex is moved to the membrane, and a part of the target substance is bound to the second capture agent to be fixed in the test line 5 and part of the capture agent- Wherein the capture agent reacts with the third capture agent and is fixed to the control line (6);
  • the target material not immobilized on the test line or control line of the membrane may be absorbed by the absorption pad through the membrane.
  • the step of injecting the specimen containing the target material into the sample pad of the diagnostic kit may further include the step of injecting the specimen into the sample pad and then dropping the specimen developing solution onto the sample pad of the diagnostic kit, It is possible to make the movement more easily.
  • the step of irradiating infrared rays to the membrane of the diagnostic kit may include injecting a sample containing a target material into a sample pad of the diagnostic kit, and then irradiating infrared rays after a predetermined time has elapsed.
  • the predetermined time refers to the time required for the sample containing the target substance to pass through the test line and the control line included in the membrane of the diagnostic kit.
  • the time required for the test is not limited, Min to 30 minutes, specifically about 5 minutes to 20 minutes.
  • Example 1 Production of infrared absorbing and light emitting nanoparticles
  • the mixed solution was maintained at 100 ° C for 10 minutes and then at 290 ° C for 1 hour and 30 minutes in argon gas.
  • the nanoparticles after cooling the mixture solution were precipitated with ethanol and washed three times with cyclohexane and ethanol to obtain core / shell (core / shell, UCNPs) having a core-shell structure.
  • Nanoparticles were dispersed in 13.4 mL of tetrahydrofuran to prepare a nanoparticle solution.
  • 100 mg of Dopamine hydrochloride was dispersed in 600 ⁇ L of distilled water, Solution to form a nanoparticle mixed solution, and then maintained at 50 DEG C for 5 hours under Argon gas.
  • 16 uL hydrochloric acid was added, followed by washing twice with distilled water to obtain nanoparticles (NH 2 -UCNPs) having amine groups.
  • the avian influenza virus H5N6
  • SATA N-succinimidyl-S-acetyl-thioacetate
  • 61 ⁇ L of dimethyl sulfoxide 182 ⁇ L of 10 mM HEPES (4- Nucleoprotein antibody (anti-human CRP antibody, first antibody) was incubated for 30 minutes at room temperature.
  • 12.5 uL of 0.5 M hydroxylamine hydrochloride solution the reaction was further allowed to proceed for 2 hours After that, 100k filter tubes were used to react and the remaining material was removed to obtain a thiolated antibody.
  • a first solution was prepared by mixing 1.875 mg of the nanoparticles having the amine group prepared in Example 2 (1), 1 mL of distilled water and 12.5 ⁇ L of 1 M HEPES buffer, and 18.8 mg of sulfosuccinimidyl 4- ( N-maleimidomethyl) cyclohexane-1-carboxylate) was added to 100 uL of 10 mM HEPES buffer to prepare a second solution.
  • the first solution was mixed with 1 uL of the second solution, reacted for 2 hours, reacted using a 100 k filter tube, and the remaining materials were removed to obtain the maleimide nanoparticles.
  • Nanoparticles (antibody-nanoparticle complex) immobilized with antibodies were obtained through a centrifuge.
  • a sample pad was thoroughly wetted with 10 mM HEPES buffer containing 0.3% (w / v) PVP (polyvinylpyrrolidone), completely dried, and then cut into a size of 4 mm x 20 mm.
  • the absorbent pad was used after removing water.
  • a second antibody an anti-nucleoprotein having a different epitope from the first antibody
  • Anti-goat antibody reacted with the first antibody immobilized on the antibody-nanoparticle complex was dispensed into the control line (C) using an automatic dispenser, followed by drying at room temperature for 48 hours.
  • the conjugation pad contained 10 mM HEPES containing 2.0% (w / v) BSA (Bovine Serum Albumin), 2.0% (w / v) Tween 20, 2.5% (w / v) sucrose and 0.3%
  • BSA Bovine Serum Albumin
  • Tween 20 2.5% (w / v) sucrose and 0.3%
  • the antibody-nanoparticle complex solution prepared in Example 2 was dispensed and completely dried in a drier before use.
  • Example 1 Each of the nanoparticles prepared in Example 1 (1) and the nanoparticles prepared in (2) of Example 1 was subjected to a Talos F200X TEM with an acceleration voltage of 200 kV And the luminescence spectrum was measured using a NIR spectrometer by irradiating infrared rays of 980 nm to the solution in which each nanoparticle was dispersed and is shown in FIG.
  • the nanoparticles (core / shell) have a globular shape and a diameter of several tens of nanometers, and core and core / It seems that the formation of the shell in the core reduces the surface defects and increases the uniformity of the surface and enhances the luminescence by the hetero dopant.
  • UCNPs were prepared in the same manner as in Example 1, except that the total molar amount of the dopant was maintained and the ratio of lanthanide (Y) to heterogeneous dopant (Ca) was controlled in Example 1.
  • 0% Ca means dopant made with 100 mol% lanthanide (Y)
  • 5% Ca means dopant made with 95 mol% lanthanide (Y) and 5 mol% different dopant (Ca)
  • Ca means a dopant made of 90 mol% lanthanide (Y) and 10 mol% different dopant (Ca)
  • 15% Ca means 85 mol% lanthanide (Y) and 15 mol%
  • 20% Ca means that the dopant is made of 80 mol% lanthanide (Y) and 20 mol% different dopant (Ca).
  • Example 2 Each of the UCNPs prepared in Example 1 (2) and Experimental Example 2 (1) was confirmed through a Talos F200X TEM having an acceleration voltage of 200 kV and shown in FIG. 5, and each of the nanoparticles The luminescence spectrum of the dispersed solution was measured using an NIR spectrometer by irradiating infrared rays at 980 nm and is shown in FIG.
  • the UNCPs have a globular shape and have a diameter of several tens of nanometers, and the diameters do not change much even when the hetero dopant is added. 6, it can be seen that the concentration of the dopant to be added affects the light emission intensity.
  • Example 1 (1) A solution in which each of the nanoparticles prepared in Example 1 (1), Example 1 (2) and Experimental Example 2 (1) was dispersed was placed on a silicon wafer, and the dispersion of nanoparticles The crystal structure was analyzed and shown in FIG. 7.
  • the nanoparticles prepared in (2) of Example 1 were subjected to elemental analysis using a Talos F200X TEM having an acceleration voltage of 200 kV and are shown in FIG. Specifically, the elemental analysis was performed by changing the photographing mode to obtain a dark field image in the TEM, and using an elemental analysis method using energy dispersive x-ray spectroscopy mapping.
  • FIG. 7 (a) it can be seen that the crystal structure of UCNPs having different ratios of core and lanthanide (Y) to heterogeneous dopant (Ca) (B) of Fig. 7 (a), which is an enlarged view of the 15-20 degree portion of 2 theta in the image of (100), the peak value moves slightly to the left in the crystal direction. Therefore, it can be seen that the concentration of the dopant to be added has some influence on the crystal structure.
  • UCNPs prepared in Example 1 (2), NH 2 -UCNPs prepared in Example 1 (1) and nanoparticles immobilized with antibodies prepared in Example 2 (2) (Ab-UCNPs )
  • Ab-UCNPs Were subjected to Fourier transform infrared spectroscopy analysis using an iS10 Fourier transform infrared spectrophotometer, and the results are shown in Fig.
  • the zeta potential was measured using a Zetasizer (Zetasizer Nano ZS90, Malvern) for each of the NH 2 -UCNPs and the antibody-nanoparticle complexes (Ab-UCNPs) prepared in Example 2 (2) And the results are shown in Fig.
  • UNCPs have peaks at 1457 and 1558 cm <" 1 > corresponding to the asymmetric and symmetric vibrations of the COO group, respectively, and the asymmetric and symmetric vibrations of- and verified by transmission band at 2853 and 2924cm -1 in line, NH 2 -UCNPs the amide bond in the band was confirmed at 1635 and 3289cm -1, Ab-UCNPs conforming to each CN vibration and vibration of the amine group NH it can be confirmed that the antibody binds to the nanoparticles at the peaks at 1540 and 1653 cm -1 corresponding to the amide bond.
  • GNPs Gold nanoparticles
  • UCNPs prepared nanoparticles
  • a buffer solution (stool) containing duck manure, a buffer solution (GNPs in buffer) in which gold nanoparticles were dispersed, and a buffer solution (GNPs in stool) containing duck manure in which gold nanoparticles were dispersed were subjected to UV /
  • the absorption spectra were measured using a VIS / NIR spectrometer and are shown in FIG. 12, which includes duck manure-containing stool, UCNPs in buffer (UCNPs in buffer) and UCNPs dispersed duck manure
  • Each of the buffer solutions (UCNPs in stool) was irradiated with infrared rays having a wavelength of 980 nm, and the emission spectrum was measured using a NIR spectrometer.
  • the gold nanoparticles 1mM HAuCl 4 2 mL of 1% trisodium citrate dihydrate was added to a 20 mL solution, followed by reaction for 10 minutes, followed by centrifugation.
  • FIG. 12 shows that when gold nanoparticles are dispersed in a buffer solution containing opaque manure, it is not possible to confirm the absorption peak at a wavelength of 550 nm.
  • FIG. 13 shows that the UCNPs- It can be confirmed that the buffer solution containing opaque manure is infrared ray of 800 nm wavelength.
  • a sample solution (composed of H5N6 antigen and a transparent buffer solution) with different concentrations of nucleoprotein (C-reactive protein (CRP)) of avian influenza virus (H5N6) was added to the sample pad of the diagnostic kit prepared in Example 3 After 20 minutes, the sample was irradiated with infrared rays having a wavelength of 980 nm and photographed with an infrared camera. The results are shown in FIG. 14 (a).
  • the detection limit of the virus 10 3. 5 EID 50 / mL the higher the viral emission intensity of the test line can be confirmed by larger, the target material of interest from the diagnostic kit It can be easily detected. In addition, it is not difficult to confirm the detection result of the virus in the test line, regardless of whether a transparent buffer solution is used in the sample solution or a buffer solution (opaque) containing manure is used. It is possible to detect the virus stably.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

본 발명은 입자의 크기를 유지하면서도 발광 강도가 강화된 적외선을 흡광하여 적외선을 발광하는 나노입자를 이용하여 고감도로 타겟물질을 신속하게 진단할 수 있는 진단키트에 대한 것이다.

Description

강화된 적외선 흡·발광 나노입자 및 이를 이용하는 현장용 진단키트
본 발명은 입자의 크기를 유지하면서도 발광 강도가 강화된 적외선을 흡광하여 적외선을 발광하는 나노입자를 이용하여 고감도로 타겟물질을 신속하게 진단할 수 있는 진단키트에 대한 것이다.
현장용 면역분석진단키트(Lateral flow immunoassay kit, LFA)는 높은 경제성과 편의성으로 인해 사용자가 현장에서 직접 타겟 물질을 검출하는데 적합한 진단플랫폼이다.
상기 진단키트는 면역분석기법을 기반으로 하기 때문에 항원과 항체가 존재하는 모든 검사에 적용 가능함에도 불구하고 종래 키트는 테스트라인 색 변화를 육안으로 판단해야 하고, 검체의 종류에 따라 신호가 간섭을 받아 감도가 떨어진다는 문제가 있다. 예를 들면, 임신진단키트처럼 HCG 호르몬 같은 바이오 마커가 높은 농도로 검체 내에 존재할 것이 요구되거나 검체 유형이 한정된다는 제한이 있다.
기존 상용화된 현장용 면역분석진단키트로는 금나노입자의 색상변화, 하기의 특허문헌처럼 양자점의 가시광선 형광신호 또는 화학신호증폭을 이용하여 타겟물질을 검출하는 키트가 있다.
<특허문헌>
특허 제10-1053473호(2011. 07. 27. 등록) "양자점을 이용한 스테로이드 호르몬 검출 키트 및 방법"
그러나, 금 나노입자의 색상변화를 이용한 키트는 감도가 낮고, 검체에 영향을 받아 그 검출결과가 불균일하게 나타난다. 양자점 가시광선 형광신호를 이용한 키트는 양자점의 높은 발광효율은 금나노입자를 이용한 키트보다 감도가 높지만 양자점 발광을 위한 자외선이 키트 구성품(플라스틱, 각종 패드)과 검체의 자가형광(autofluorescence)을 발생시키고 가시광선의 형광도 검체에 간섭받아 여전히 감도에 영향을 준다는 문제가 있다. 화학신호증폭을 이용한 방법은 대형 분석장비와 숙련된 전문가가 필요하여 현장용 진단키트로는 부적합하다.
본 발명은 입자의 크기를 유지하면서도 발광 강도가 강화된 적외선을 흡광하여 적외선을 발광하는 나노입자를 이용하여 검체에 영향을 받지 않으면서 고감도로 타겟물질을 검출할 수 있는 진단키트를 제공하는데 그 목적이 있다.
본 발병은 앞서 본 목적을 달성하기 위하여 다음과 같은 구성을 가진 실시예에 의해 구현된다.
본 발명의 일 실시예에 따르면, 본 발명에 따른 나노입자는 희토류 및 이종 도펀트가 도핑되어 적외선을 흡광하여 적외선을 발광하는 것을 특징으로 한다.
본 발명의 다른 실시예에 따르면, 본 발명에 따른 나노입자는 희토류가 도핑되어 적외선을 흡광하여 적외선을 발광하며, 나노입자 내의 결정 구조의 왜곡을 증가시켜 민감한 전자 이동을 가능하도록 이종 도펀트가 추가로 도핑되는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 나노입자에 있어서 상기 이종 도펀트의 종류 또는 농도의 조절을 통해 상기 나노입자의 발광 강도를 조절할 수 있는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 나노입자에 있어서 상기 희토류는 Y, Er, Yb, Tm 및 Nd로 이루어진 군으로부터 선택된 어느 하나 이상을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 나노입자에 있어서 상기 희토류는 Y 50mol%, Yb 48mol% 및 Tm 2mol%를 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 나노입자에 있어서 상기 이종 도펀트는 Ca, Si, Ni 및 Ti로 이루어진 군으로부터 선택된 어느 하나 이상을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 나노입자는 흡·발광하는 적외선 사이의 간섭이 없도록 흡광하는 적외선의 파장과 발광하는 적외선의 파장이 동일하지 않은 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 나노입자는 960 ~ 980nm의 파장을 가지는 적외선을 흡광하여 750 ~ 850nm의 파장을 가지는 적외선을 발광하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 나노입자는 희토류가 도핑된 입자로 이루어진 코어층과, 상기 코어층을 에워싸 표면 결함을 감소시켜 표면의 균일성을 향상시키며 이종 도펀트가 추가로 도핑된 쉘층을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 나노입자는 상기 셀층의 외면에 모노머 또는 폴리머를 코팅하여 형성된 코팅층을 추가로 포함하여, 나노입자의 유체에 대한 분산성을 증가시키고 포획제의 고정을 용이하게 하도록 하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 나노입자에 있어서 상기 코어층은 1-옥타디신, 올릭산 및 희토류를 혼합하여 동질 용액을 형성하고, 수산화나트륨, 플루오르화 암모늄을 함유하는 메탄올을 상기 동질 용액에 혼합하고 교반한 후, 일정 온도에 일정 시간 반응시켜 나노입자 형태로 형성되며, 상기 쉘층은 1-옥타디신, 올릭산, 희토류 및 이종 도펀트를 혼합하여 동질 용액을 형성하고 수산화나트륨, 플루오르화 암모늄을 함유하는 메탄올을 코어층과 함께 상기 동질 용액에 혼합하고 교반한 후, 일정 온도에 일정 시간 반응시켜 상기 코어층에 일정 두께로 형성되는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 포획제-나노입자 복합체는 적외선을 흡광하여 적외선을 발광하는 나노입자와; 상기 나노입자에 결합하여 타겟물질과 특이적으로 결합하는 포획제;를 포함하며, 상기 나노입자는 제10항의 나노입자가 사용되며, 상기 포획제는 상기 코팅층에 결합하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 포획제-나노입자 복합체에 있어서 상기 포획제는 항체 또는 압타머를 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 진단키트는 타겟 물질을 포함하는 검체를 일 방향으로 이동시켜 상기 타겟 물질과 반응하며, 타겟물질에 특이적으로 결합하며 적외선을 흡광하여 적외선을 발광하는 포획제-나노입자 복합체와; 상기 타겟물질과 특이적으로 결합하는 제2포획제;를 포함하여, 검체의 이동 과정 중에 포획제-나노입자 복합체와 결합한 타겟 물질이 제2포획제와 결합하며, 상기 포획제-나노입자 복합체는 제12항의 포획제-나노입자 복합체가 사용되는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 진단키트는 상기 포획제에 특이적으로 결합하는 제3포획제를 추가로 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 진단키트에 있어서 상기 포획제-나노입자 복합체는 검체와 함께 이동하며, 상기 제2포획제와 제3포획제는 일정 간격을 두고 상기 진단키트에 고정되어, 상기 진단키트에 적외선을 조사하면 제2포획제와 결합한 포획제-나노입자 복합체 및 제3포획제와 결합한 포획제-나노입자 복합체가 적외선을 발광을 하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 진단키트에 있어서 상기 제2포획제는 진단키트의 테스트 라인에 고정되고, 상기 제3포획제는 진단키트의 컨트롤 라인에 고정되며, 테스트 라인은 컨트롤 라인의 전측에 위치하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 진단장치는 진단키트와, 상기 진단키트를 수용하여 상기 진단키트에 적외선을 조사하고 상기 진단키트에서 발산하는 적외선을 측정하여 영상화된 자료를 외부의 단말기에 제공하는 적외선 리더기를 포함하며, 상기 진단키트는 제16항의 진단키트가 사용되는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 진단장치에 있어서 상기 적외선 리더기는 적외선 리더기의 외형을 형성하는 하우징과; 상기 하우징의 내부에 위치하며, 상기 하우징의 삽임홈을 통해 끼워진 진단키트에 적외선을 조사하고 상기 진단키트에서 발산하는 적외선을 측정하여 영상화된 자료를 외부의 단말기에 제공하는 컨트롤러를 포함하는 것을 특징으로 한다
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 진단장치에 있어서 상기 컨트롤러는 상기 단말기와 정보를 교환하는 인터페이스부와, 상기 컨트롤러의 작동에 필요한 전원을 공급하는 배터리와, 상기 하우징 내부에 위치한 진단키트의 멤브레인에 적외선을 조사하는 조사부와, 상기 조사부에 의해 상기 멤브레인에 적외선이 조사된 후 상기 멤브레인에서 발광하는 적외선을 촬영하는 광학부와, 상기 광학부에서 출력된 촬영 영상을 디지털화하여 출력하는 영상처리부를 포함하는 것을 특징으로 한다.
본 발명은 앞서 본 실시예에 의해 다음과 같은 효과를 얻을 수 있다.
본 발명은 타액, 혈액, 분변, 음료, 그리고 토양과 같은 다양한 검체를 사용하여 사용자가 검출하고자 하는 물질을 현장에서 신속하게 진단할 수 있다. 또한, 본 발명은 적외선을 흡광하고, 가시광선이 아닌 적외선을 발광하는 나노입자를 포함함으로써, 파장이 길어서 샘플 투과가 가능하고 백그라운드 시그널이 발생하지 않는다. 이로 인해, 흡광 및 발광간의 간섭이 없으므로, 사용자가 검출하고자 하는 물질을 높은 감도로 검출할 수 있다. 또한, 본 발명은 적외선을 흡광하여 적외선을 발광하는 나노입자에서 발광 강도를 더욱 강화시킴으로써, 타켓물질을 더욱 높은 감도로 검출할 수 있다.
따라서, 본 발명은 탄저균, 보툴리늄 뉴로톡신 등과 같은 병원균, 구제역, 조류독감과 같은 동물 바이러스, 암, 심혈관 질환 등과 같은 질병 또는 임신진단 바이오마커 등에 적용이 가능하다.
도 1은 본 발명의 일 실시예에 따른 진단키트의 개략 구성도.
도 2는 본 발명의 다른 실시예에 따른 진단장치의 사시도.
도 3은 도 2의 적외선 리더기의 컨트롤러의 세부 구성을 나타내는 블럭도.
도 4는 본 발명의 일 실시예에 따른 나노입자의 TEM 이미지와 발광 스펙트럼을 나타내는 도면.
도 5는 이종 도펀트 양을 달리하여 제조된 나노입자의 TEM 이미지.
도 6은 이종 도편트 양을 달리하여 제조된 나노입자의 발광 스펙트럼을 나타내는 도면.
도 7은 이종 도펀트 양을 달리하여 제조된 나노입자의 결정 구조 분석 결과를 나타내는 도면.
도 8은 본 발명의 일 실시예에 따른 나노입자의 원소 분석 결과를 나타내는 도면.
도 9는 본 발명의 일 실시예에 따른 나노입자의 적외선 분광학 분석 결과를 나타내는 도면.
도 10은 본 발명의 일 실시예에 따른 포획제-나노입자 복합체의 표면 전하 측정결과를 나타내는 도면.
도 11은 본 발명의 일 실시예에 따른 나노입자의 적외선 발광능을 확인하기 위한 카메라 촬영 이미지.
도 12는 종래의 금 나노입자의 흡광 스펙트럼을 나타내는 도면.
도 13은 본 발명의 일 실시예에 따른 나노입자의 발광 스펙트럼을 나타내는 도면.
도 14는 본 발명의 일 실시예에 따른 진단 키트를 이용하여 검체 분석 결과를 나타내는 카메라 촬영 이미지.
* 도면에 사용되는 부호의 설명
1: 샘플 패드 2: 컨쥬게이션 패트 3: 멤브레인
4: 흡수패드 5: 테스트 라인 6: 컨트롤 라인
7: 지지체 100: 포획제-나노입자 복합체 200: 진단키트
300: 적외선 리더기 400: 단말기
이하에서는 본 발명에 따른 강화된 적외선 흡·발광 나노입자 및 이를 이용하는 현장용 진단키트를 첨부된 도면을 참조하여 설명한다. 특별한 정의가 없는 한 본 명세서의 모든 용어는 본 발명이 속하는 기술분야의 통상의 지식을 가진 기술자가 이해하는 당해 용어의 일반적 의미와 동일하고 만약 본 명세서에 사용된 용어의 의미와 충돌하는 경우에는 본 명세서에 사용된 정의에 따른다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대해 상세한 설명은 생략한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명의 일 실시예에 따른 강화된 적외선 흡·발광 나노입자를 이용하는 현장용 진단키트를 도 1을 참조하여 설명하면, 상기 진단키트(200)는 샘플 패드(1), 컨쥬게이션 패드(2), 멤브레인(3), 흡수 패드(4) 및 지지체(7)를 포함하며, 상기 지지체(7) 상에 상기 샘플 패드(1), 컨쥬게이션 패드(2), 멤브레인(3) 및 흡수패드(4)가 상기 검체의 이동 방향을 따라 순차적으로 연결되게 된다.
상기 샘플 패드(1)는 검체를 흡수하여 분석대상물인 타겟물질의 확산 흐름이 가능한 패드를 의미한다. 본 발명에서 상기 검체는 분석하고자 하는 타겟 물질을 포함하는 것으로 의심되는 물질을 의미하며, 샘플, 시료로도 지칭될 수 있으며, 상기 타겟 물질은 농도 또는 존재 여부를 분석하고자 하는 대상물질을 의미한다.
상기 컨쥬게이션 패드(2)는 포획제-나노입자 복합체(100)를 포함하고 상기 샘플 패드(1)로부터 이동되는 검체를 수용하여, 상기 포획제-나노입자 복합체(100)와 상기 검체에 포함된 타겟 물질이 결합하는 패드를 의미한다. 상기 컨쥬게이션 패드(2)에는 검체 내의 분석대상물인 타겟 물질과 결합하는 포획제-나노입자 복합체(100)가 건조상태로 포함될 수 있다. 상기 샘플 패드(1)에 액상의 검체가 가해지면, 상기 액상의 검체가 건조상태의 샘플 패드(1)를 적신 후 컨쥬게이션 패드(2)로 이동하여, 검체에 포함된 타겟 물질은 상기 포획제-나노입자 복합체(100)의 포획제와 특이적으로 결합하게 된다.
상기 포획제-나노입자 복합체(100)는 희토류 및 이종 도펀트가 도핑되어 적외선을 흡광하여 적외선을 발광하는 나노입자와, 상기 나노입자에 결합하여 타겟물질과 특이적으로 결합하는 포획제 등을 포함한다. 상기 포획제-나노입자 복합체는 타겟 물질에 특이적으로 결합하며 적외선을 흡광하고 가시광선이 아닌 적외선을 발광하여, 즉 파장이 길어 샘플 투과가 가능하고 백그라운드 시그널이 발생하지 않으므로, 흡광 및 발광 간의 간섭이 없어 사용자가 검출하고자 하는 타겟물질을 높은 감도로 검출할 수 있게 된다. 따라서, 본 발명은 타액, 혈액, 분변, 음료 및 토양과 같은 다양한 검체를 사용하여 사용자가 검출하고자 하는 물질을 현장에서 신속하게 진단할 수 있으며, 예컨대 탄저균, 보툴리늄 뉴로톡신 등과 같은 병원균, 구제역, 조류독감과 같은 동물 바이러스, 암, 심혈관 질환 등과 같은 질병 또는 임신진단 바이오 마커 등의 여러 분야에 적용될 수 있다.
상기 포획제-나노입자 복합체(100)는 적외선 조사시 적외선을 흡광하여 적외선을 발광하게 되는데, 흡광하는 적외선의 파장과 발광하는 적외선의 파장이 동일하지 않은 것을 특징으로 하며(예컨대, 장파장의 적외선을 흡광하여 단파장의 적외선을 발광함), 바람직하게는 960 ~ 980nm의 파장을 가지는 적외선을 흡광하여 750 ~ 850nm의 파장을 가지는 적외선을 발광한다(상기 750 ~ 850nm의 파장을 가지는 적외선이 발광되는 경우 티슈 등과 같은 바이오 물질에 대한 투과도를 높여 혈액, 분뇨 등과 같은 검체에 대한 영향을 방지할 수 있음). 또한, 적외선은 검체가 불투명한 혼합 용액이여도 높은 투과도를 나타내므로, 혈액, 분뇨, 타액, 음료, 토양 등 다양한 종류의 검체를 대상으로 할 수 있고, 자가형광(autofluorescence)을 발생시키지 않아, 신호 대 잡음비(signal to noise ratio)의 향상이 가능하다. 따라서, 상기 진단키트는 상기와 같은 포획제-나노입자 복합체를 포함함으로써, 기존 현장용 면역분석진단키트의 낮은 감도 문제를 해결하여, 상기 현장용 면역분석진단키트의 편의성과 경제성을 유지하면서도 민감도를 극대화시킬 수 있게 된다.
상기 나노입자는 희토류 원소를 도핑함으로써, 열분해 합성반응을 통해 장파장의 빛에너지를 흡수하고 단파장의 빛에너지를 발광하는 업컨버전(upconversion) 나노입자를 제공할 수 있다. 또한, 상기 나노입자는 이종 도펀트를 추가로 도핑함으로써, 나노입자 내의 결정 구조의 왜곡을 어느 정도 증가시켜 매우 민감한 전자 이동을 가능하게 할 수 있다. 이를 통해 나노 입자 자체 크기에 큰 변화 없이 발광 강도를 더욱 크게 할 수 있다.
일 실시예로서 상기 나노입자는 플루오르화물, 산화물, 할로겐화물, 산황화물, 인산염 및 바나듐산염으로 이루어지 군에서 선택된 어느 하나 이상을 포함할 수 있다. 예를 들면, NaYF4, NaYbF4, NaGdF4, NaLaF4, LaF3, GdF3, GdOF, La2O3, Lu2O3, Y2O3 및 Y2O2S로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다. 상기 나노입자에 도핑되는 희토류 원소는 란타나이드 원소를 포함할 수 있으며, 상기 나노입자에 포함된 희토류 원소의 종류 및 농도의 조절을 통해 상기 나노입자가 흡광 및 발광하는 빛의 파장 영역대를 조절할 수 있다. 또한, 상기 희토류 원소의 종류 및 농도의 조절을 통해 적외선 파장의 흡광과 발광 파장영역의 간섭이 없는 나노입자를 제공할 수 있다. 상기 효과를 얻기 위한 상기 희토류의 예로는 Y, Er, Yb, Tm 및 Nd으로 이루어진 군으로부터 선택된 어느 하나 이상을 들 수 있다. 보다 구체적인 일 실시예로서, Y 45 ~ 55mol%, Yb 43 ~ 52mol% 및 Tm 1.5 ~ 3mol%의 희토류를 포함할 수 있다. 상기 이종 도펀트의 종류 또는 농도의 조절을 통해 상기 나노입자의 발광 강도를 조절할 수 있다. 상기 나노입자에 추가로 도핑되는 이종 도펀트의 예로는 Ca, Si, Ni 및 Ti로 이루어진 군으로부터 선택된 어느 하나 이상을 들 수 있다.
상기 희토류 및 이종 도펀트가 도핑된 나노입자는 본 발명의 기술분야에서 통상적으로 사용되는 방법에 의해 도핑되어 제조될 수 있으며, 예를 들면 Qian et al., Small, 5: 2285-2290, 2009; Li et al., Advanced Materials, 20:4765-4769, 2008; Zhao et al., Nanoscale, 5:944-952, 2013; Li et al., Nanotechnology, 19:345606, 2008에 기재된 방법을 사용하여 제조될 수 있다. 상기 문헌은 그 전체가 본 명세서에 참고로서 통합된다.
상기 포획제는 검체에 포함되어 있는 타겟 물질에 특이적으로 결합하는 구성으로, 예컨대 항체, 앱타머 등이 사용될 수 있으며, 상기 희토류 원소 및 이종 도펀트가 도핑된 나노입자와 포획제의 결합은 이온결합, 공유결합, 금속결합, 배위결합, 수소결합, 및 반데르발스 결합에서 선택된 결합을 포함하나 이에 한정되지 않는다.
상기 나노입자는 희토류가 도핑된 입자로 이루어진 코어층과, 상기 코어층을 에워싸 표면 결함을 감소시켜 표면의 균일성을 향상시키며 이종 도펀트가 추가로 도핑된 쉘층과, 상기 셀층의 외면에 모노머 또는 폴리머를 코팅하여 형성되어 나노입자의 유체에 대한 분산성을 증가시키고 포획제의 고정을 용이하게 하도록 하는 코팅층을 포함하며, 상기 포획제는 상기 코팅층에 결합하는 것을 특징으로 한다. 상기 나노입자는 코어-쉘 구조를 가짐으로써 표면결함을 감소시켜 표면의 균일성을 증가시키며 단순분산도(monodisperse)를 증가시켜 적외선 발광 효율을 극대화할 수 있고, 셀층에 이종 도펀트를 추가로 도핑함으로써 적외선 발광 강도를 더욱 향상시킬 수 있다. 상기 포획제-나노입자 복합체는 나노입자가 모노머 또는 폴리머에 의해 표면처리 됨으로써 물과 같은 검체 내 포함된 유체에 대한 분산성이 증가하고 항체의 고정을 용이하게 할 수 있다.
예컨대, 상기 코어층은 1-옥타디신, 올릭산 및 희토류를 혼합하여 동질 용액을 형성하고, 수산화나트륨, 플루오르화 암모늄을 함유하는 메탄올을 상기 동질 용액에 혼합하고 교반한 후, 일정 온도에 일정 시간 반응시켜 나노입자 형태로 형성되며, 상기 쉘층은 1-옥타디신, 올릭산, 희토류 및 이종 도펀트를 혼합하여 동질 용액을 형성하고 수산화나트륨, 플루오르화 암모늄을 함유하는 메탄올을 코어층과 함께 상기 동질 용액에 혼합하고 교반한 후, 일정 온도에 일정 시간 반응시켜 상기 코어층에 일정 두께로 형성되게 된다.
상기 코팅층을 형성하는 폴리머는 폴리아크릴 애씨드(polyacrylic acid, PAA), 폴리아릴아민(polyallylamine, PAAM), 2-아미노에틸 디하이드로젠 포스페이트(2-aminoethyl dihydrogen phosphate, AEP), 폴리에틸렌 글리콜 디애씨드(Polyethylene glycol diacid), 폴리에틸렌 글리콜 말레이미드 애씨드(Polyethylene glycol maleimide acid) 및 폴리에틸렌 글리콜 포스페이트 에스테르(Polyethylene glycol phosphate ester)로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다. 상기 코팅층의 형성은 당업계에서 통상적으로 실시되는 방법들을 사용하여 이루어질 수 있으며, 예를 들면 예를 들면 리간드 교환(ligand exchange) 또는 올레산 산화와 같은 리간드 엔지니어링, 리간드 어트렉션, 레이-바이-레이 어셈블리, 실란화를 이용한 표면처리, 표면 폴리머화 등에 의해 처리될 수 있다. 또는, Photon Upconversion Nanomaterials, Fan Zhang, Springer, 2015에 기재된 방법에 의해 표면처리 될 수 있으며, 상기 문헌은 그 전체가 본 명세서에 참고로서 통합된다.
상기 멤브레인(3)은 상기 검체에 포함된 타겟 물질에 반응하는 제2포획제가 고정된 테스트 라인(5)과, 상기 포획제-나노입자 복합체(100)의 포획제에 반응하는 제3포획제가 고정된 컨트롤 라인(6)을 포함하고, 상기 테스트 라인(5)은 상기 컨트롤 라인(6)보다 상기 컨쥬게이션 패드(2)에 더 근접하게 위치하게 된다. 상기 제2포획제는 타겟 물질에 특이적으로 결합 또는 반응하는 구성으로 예컨대 항체, 앱타머 등이 사용될 수 있고, 상기 제3포획제는 상기 포획제에 특이적으로 결합 또는 반응하는 구성으로 예컨대 항체, 앱타머 등이 사용될 수 있다.
상기 컨쥬게이션 패드(2)에서 포획제-나노입자 복합체(100)의 포획제와 특이적으로 결합한 타겟 물질은 멤브레인(3)으로 이동하여, 일부는 상기 제2포획제와 결합하여 상기 테스트 라인(5)에서 고정되고 일부는 상기 포획제-나노입자 복합체(100)의 포획제가 제3포획제와 반응하여 상기 컨트롤 라인(6)에 고정될 수 있다.
상기 테스트 라인(5)에는 상기 검체에 포함된 타겟물질에 반응하는 제2포획제가 고정되어 있어, 이의 적외선 발광 유무 및 발광 강도 측정을 통해 검체에 분석대상 타겟 물질이 포함되어 있는지 여부와 그 농도를 분석할 수 있다.
상기 컨트롤 라인(6)에는 상기 포획제-나노입자 복합체(100)의 포획제에 반응하는 제3포획제가 고정되어 있어, 상기 컨트롤 라인(6)의 적외선 발광 유무를 통해 검체가 필요부분까지 이동했는지 여부와 포획제의 작동 여부를 판정하여 분석의 실효성 유무를 판독하는 기준으로 사용될 수 있다.
상기 흡수 패드(4)는 상기 멤브레인(3)을 통과하는 검체 중 유체를 흡수하는 패드로, 상기 흡수 패드(4)는 상기 샘플 패드(1)에서 상기 멤브레인(3)으로 이동하는 검체에 포함된 유체를 흡수하여 상기 검체가 샘플 패드(1)에서 멤브레인(3)으로 지속적으로 이동하도록 하는 펌프 역할을 할 수 있다. 상기 검체는 검체 용량에 따라 필요 시 검체 전개액을 통하여 샘플 패드(1)에서 흡수 패드(4)로 이동할 수 있다. 상기 검체 전개액은 예를 들어 PBS(phosphate buffersaline), KCl, NaCl, Tween20, HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 및 NaN3 등으로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 용액일 수 있으나, 이에 제한되지는 않는다.
상기 샘플 패드(1), 컨쥬게이션 패드(2), 멤브레인(3) 및 흡수패드(4)는 고체상 모세관 지지물을 포함할 수 있으며, 상기 고체상 모세관 지지물은 항원, 항체, 앱타머 또는 합텐과 같은 화학적 성분들의 고체상 모세관 캐리어(carrier)로서 역할을 할 수 있는 기공성의 폴리머 또는 다수의 기공을 갖는 천연, 합성, 또는 합성에 의해 변형된 천연 발생 물질이라면 제한되지 않고 사용될 수 있으며, 그 형태도 제한되지 않는다. 예를 들어, 상기 고체상 모세관 지지물은 셀룰로오스 물질, 종이, 셀룰로오스 아세테이트, 니트로셀룰로오스, 폴리에테르 술폰, 폴리에틸렌. 나일론, 폴리비닐리덴 플루오라이드(PVDF), 폴리에스테르, 폴리프로필렌, 실리카, 비닐 클로라이드, 비닐클로라이드-프로필렌 공중합체 및 비닐 클로라이드-비닐 아세테이트 공중합체, 불활성화된 알루미나, 규조토, MgSO4, 면, 나일론, 레이온, 실리카겔, 아가로스, 덱스트란, 젤라틴 및 폴리아크릴아미드로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다. 보다 구체적인 예로서, 상기 멤브레인은 니트로셀룰로오스, 폴리에테르술폰, 폴리에틸렌, 나일론, 폴리비닐리덴 플루오라이드, 폴리에스테르 및 폴리프로필렌으로 이루어진 군에서 선택된 하나 이상의 중합체를 포함할 수 있다. 또한, 일 실시예로서 상기 고체상 모세관 지지물은 막대기, 판, 튜브 또는 비드(bead) 등과 같은 형태를 가질 수 있다.
상기 지지체(7)는 상기 샘플 패드(1), 컨쥬게이션 패드(2), 멤브레인(3) 및 흡수 패드(4)를 지지하고, 운반할 수 있다면 그 종류에 제한되지 않고 모두 사용 가능하며, 상기 검체에 포함된 유체가 지지체를 통해 누출되지 않도록 액체 불투과성인 것일 수 있다. 예를 들어, 상기 지지체(7)는 유리, 폴리스티렌, 폴리프로필렌, 폴리에스테르, 폴리부타디엔, 폴리비닐클로라이드, 폴리아미드, 폴리카르보네이트, 에폭시드, 메타크릴레이트, 폴리멜라민 등을 포함할 수 있다.
본 발명의 다른 실시예는 희토류 및 이종 도펀트가 도핑되어 적외선을 흡광하여 적외선을 발광하는 나노입자에 대한 것이며, 본 발명이 또 다른 실시예는 타겟 물질에 특이적으로 결합하며 적외선을 흡광하고 가시광선이 아닌 적외선을 발광하는 포획제-나노입자 복합체에 대한 것이다. 상기 나노입자는 앞서 설명한 나노입자와 동일하며, 상기 포획제-나노입자 복합체는 앞서 설명한 포획제-나노입자 복합체(100)와 동일하므로 자세한 설명은 생략하기로 한다.
본 발명의 또 다른 실시예에 따른 진단장치를 도 1 내지 3을 참조하여 설명하면, 상기 진단장치는 상술한 진단키트(200) 및 적외선 리더기(300)를 포함하는 진단장치에 대한 것이다.
상기 적외선 리더기(300)는 상기 진단키트(200)를 수용하여 상기 진단키트(200)에 적외선을 조사하고 상기 진단키트(200)에서 발산하는 적외선을 측정하여 영상화된 자료를 외부의 단말기(400)에 제공하는 장치로, 하우징(310), 케이블(320), 컨트롤러(330) 등을 포함한다.
상기 하우징(310)은 상기 적외선 리더기(300)의 외형을 형성하는 구성으로, 상기 하우징(310)에는 상기 진단키트(200)가 끼워지는 삽입홈(311)이 위치하게 된다. 상기 케이블(320)은 상기 적외선 리더기(300)의 컨트롤러(330)와 단말기(400)를 연결하며, 상기 단말기(400)는 상기 컨트롤러(330)에서 전송된 정보를 디스플레이하는 장치로 스마트폰, 노트북, 태블릿 등이 사용될 수 있다.
상기 컨트롤러(330)는 상기 하우징(310)의 내부에 위치하며 상기 하우징(310)의 삽임홈(311)을 통해 끼워진 진단키트(200)에 적외선을 조사하고 상기 진단키트(200)에서 발산하는 적외선을 측정하여 영상화된 자료를 외부의 단말기(400)에 제공하는 구성으로, 상기 단말기(400)와 정보를 교환하는 인터페이스부(331)와, 상기 컨트롤러(330)의 작동에 필요한 전원을 공급하는 배터리(332)와, 상기 하우징(310) 내부에 위치한 진단키트(200)의 멤브레인(3)에 적외선을 조사하는 조사부(333)와, 상기 조사부(333)에 의해 상기 멤브레인(3)에 적외선이 조사된 후 상기 멤브레인(200)에서 발광하는 적외선을 촬영하는 광학부(334)와, 상기 광학부(334)에서 출력된 촬영영상을 디지털화하여 출력하는 영상처리부(335)와, 상기 컨트롤러(330)의 전체적인 작동을 제어하는 제어부(336) 등을 포함한다. 예컨대, 상기 조사부(333)는 980nm 파장의 적외선을 조사하며, 상기 광학부(334)는 가시광선 차단 필터 및 자외선 차단 필터를 포함하여 적외선을 촬영한다. 상기 적외선 리더기(300)의 삽입홈(311)에 검체가 분주된 진단키트(200)를 끼우고 상기 적외선 리더기(300)에 단말기(400)와 연결하면, 진단키트(200)에서의 항원 검출 결과를 단말기(400)에서 확인할 수 있다.
본 발명의 또 다른 실시예는 상술한 진단장치를 사용한 타겟 물질 진단방법을 제공할 수 있다.
상기 타겟 물질 진단방법은 타겟 물질을 포함하는 검체를 상기 진단키트의 샘플 패드에 주입하는 단계; 상기 주입된 검체가 상기 진단키트의 멤브라인에 포함된 테스트 라인 및 컨트롤 라인을 통과한 후, 상기 적외선리더기로 상기 진단키트의 멤브레인에 적외선을 조사하는 단계; 및 상기 적외선리더기로 상기 적외선을 조사한 멤브레인에서 발광되는 적외선을 촬영하여 영상화하는 단계를 포함할 수 있다.
상기 타겟 물질을 포함하는 검체를 상기 진단키트의 샘플 패드에 주입하는 단계는, 타겟물질을 포함하는 검체를 상기 진단키트의 샘플 패드에 주입하는 단계와; 상기 검체가 컨쥬게이션 패드로 이동하여, 상기 검체에 포함된 타겟물질이 상기 컨쥬게이션 패드에서 포획제-나노입자 복합체의 포획제와 특이적으로 결합시키는 단계와; 상기 포획제-나노입자 복합체와 결합한 타겟 물질이 상기 멤브레인으로 이동하여, 일부는 상기 제2포획제와 결합하여 상기 테스트 라인(5)에서 고정되고 일부는 상기 포획제-나노입자 복합체(100)의 포획제가 제3포획제와 반응하여 상기 컨트롤 라인(6)에 고정되는 단계와; 상기 멤브레인의 테스트 라인 또는 컨트롤 라인에 고정되지 않은 타겟물질은 멤브레인을 통과하여 흡수패드에 흡수되는 단계;를 포함할 수 있다.
상기 타겟 물질을 포함하는 검체를 상기 진단키트의 샘플 패드에 주입하는 단계는 검체를 샘플 패드에 주입한 후, 검체 전개액을 상기 진단 키트의 샘플 패드에 떨어뜨리는 단계를 더 포함함으로써 검체의 진단키트 내 이동을 더 용이하게 할 수 있다.
상기 진단 키트의 멤브레인에 적외선을 조사하는 단계는 타겟 물질을 포함하는 검체를 상기 진단 키트의 샘플 패드에 주입한 후 일정 시간이 경과한 후에 적외선을 조사하는 것일 수 있다. 상기 일정 시간은 타겟물질을 포함하는 검체가 상기 진단키트의 멤브라인에 포함된 테스트 라인 및 컨트롤 라인을 통과하는데 소요되는 시간을 의미하는 것으로, 이때 소요되는 시간은 한정되지 않으나, 예를 들어 약 5분 ~ 30분, 구체적으로 약 5분 ~ 20분 일 수 있다.
이하, 실시예를 통해서 본 발명을 보다 상세히 설명하기로 한다. 하지만, 이들은 본 발명을 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위가 이에 한정되는 것은 아니다.
<실시예 1> 적외선 흡·발광 나노입자의 제조
(1) Core 형성
1-옥타디신(1-octadecene), 올릭산(Oleic acid), 이트륨 아세테이트 하이드레이트(yttrium acetate hydrate), 이터븀 아세테이트 하이드레이트(ytterbium acetate hydrate) 및 튤륨 아세테이트 하이드레이트(thulium acetate hydrate)를 혼합한 후(구체적으로, 7mL 1-옥타디신과 3mL 올릭산에 란타나이드(50mol% Y, 48mol% Yb 및 2mol% Tm으로 이루어짐) 0.4mmol이 혼합됨), 150℃에서 가열하여 동질(homogeneous) 용액을 형성하고, 이를 50℃로 냉각하였다. 1mmol NaOH 및 1.6mmol NH4F를 함유하고 있는 5mL 메탄올을 상기 동질 용액에 첨가하고 30분간 교반하여 혼합용액을 형성하였다. 메탄올을 제거하기 위해서 혼합용액은 100℃에서 10분간 유지하였고 이후 290℃에서 1시간 30분 동안 알곤(Argon) 가스에서 유지하였다. 자연적으로 혼합용액이 냉각한 후의 나노입자들은 에탄올로 침전하였고 사이클로헥세인과 에탄올로 3회 세척하여 나노입자(core)를 수득하였다.
(2) Shell 형성(UCNPs 형성)
1-옥타디신, 올릭산, 이트륨 아세테이트 하이드레이트 및 칼슘 아세테이트 하이드레이트(Calcium acetate hydrate)를 혼합한 후(구체적으로, 7mL 1-옥타디신과 3mL 올릭산에 도펀트(85mol% 란타나이드(Y) 및 15mol% 이종 도펀트(Ca)로 이루어짐) 0.2mmol이 혼합됨), 150℃에서 가열하여 동질 용액을 형성하고, 이를 50℃로 냉각하였다. 1mmol NaOH 및 1.6mmol NH4F를 함유하고 있는 5mL 메탄올, 상기 동질 용액, 실시예 1의 (1)에서 제조된 나노입자(core)를 혼합하고 30분간 교반하여 혼합용액을 형성하였다. 메탄올을 제거하기 위해서 혼합용액은 100℃에서 10분간 유지하였고 이후 290℃에서 1시간 30분 동안 알곤 가스에서 유지하였다. 자연적으로 혼합용액이 냉각된 후의 나노입자들은 에탄올로 침전하였고 사이클로헥세인과 에탄올로 3회 세척하여 코어-쉘 구조를 갖는 나노입자(Core/Shell, UCNPs)를 수득하였다.
<실시예 2> 포획제(항체)-나노입자 복합체의 제조
(1) 코팅층 형성
리간드 엔지니어링 방법을 이용하여 상기 나노입자(core/shell)에 폴리머를 코팅하였다. 상기 실시예 1의 (2)에서 제조된 나노입자를 13.4mL 테트라하이드로푸란(Tetrahydrofuran)에 분산시켜 나노입자 용액을 준비하고, 600uL 증류수에 100mg 도파민 하이드로클로라이드(Dopamine hydrochloride)를 분산시킨 뒤 상기 나노입자 용액에 첨가하여 나노입자 혼합용액을 형성한 후, 알곤(Argon) 가스 하에서 5시간 동안 50℃로 유지하였다. 자연적으로 나노입자 혼합용액이 냉각된 후에 16uL 염산을 첨가한 후, 증류수로 2회 세척하여 아민그룹을 가지는 나노입자(NH2-UCNPs)를 수득하였다.
(2) 항체 결합(항체-나노입자 복합체 형성)
먼저, SATA(N-succinimidyl-S-acetyl-thioacetate) 2.1mg, Dimethyl sulfoxide61uL 및 10mM HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 182uL가 혼합되어 형성된 용액 1uL에조류 독감 바이러스(H5N6)의 nucleoprotein을 잡는 anti-nucleoprotein antibody(anti-human CRP antibody, 제1항체) 25ug을 첨가하여 30분간 상온에서 반응시키고, 0.5M 하이드록실아민 하이드로클로라이드 용액 12.5uL를 첨가하여 추가로 2시간 동안 반응시킨 후, 100k filter tube를사용하여 반응하고 남은 물질들을 제거하여 싸이올레이트된 항체를 얻었다. 상기 실시예 2의 (1)에서 제조된 아민그룹을 가지는 나노입자 1.875mg, 증류수 1mL 및 1M HEPES 완충 용액 12.5uL를 혼합하여 제1용액을 제조하고, 18.8mg의 Sulfo-SMCC(sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate)를 10mM HEPES 완충 용액 100uL에 첨가하여 제2용액을 제조하였다. 상기 제1용액에 제2용액 1uL를섞어서 2시간 반응시키고, 100k filter tube를사용하여 반응하고 남은 물질들을 제거하여 말레이마이드된 나노입자를 얻었다. 상기 싸이올레이트된 항체와 말레이마이드된 나노입자를 HEPES 완충용액에 첨가하여 4℃에서 24시간 동안 반응시킨 후 원심분리기를 통해 항체가 고정화된 나노입자(항체-나노입자 복합체)를 수득하였다.
<실시예 3> 항체-나노입자 복합체를 이용한 진단키트의 제조
(1) 0.3%(w/v) PVP(Polyvinylpyrrolidone)가 함유된 10mM HEPES 완충 용액에 샘플 패드를 충분히 적시고, 완전히 건조시킨 후 4mm×20mm 크기로 절단하여 준비하였다. 흡수 패드는 수분을 제거한 후 사용하였다. 라미네이터를 이용하여 니트로셀로로오스 멤브레인을 플라스틱 카드(지지체)에 라미네이션 한 후, 테스트 라인(T) 부위에는 검체에 포함된 항원에 반응하는 제2항체(제1항체와 epitope가 다른 anti-nucleoprotein)를, 컨트롤 라인(C)에는 항체-나노입자 복합체에 고정된 제1항체에 반응하는 제3항체(anti-goat antibody)를 자동 분주기를 이용하여 분주한 후 상온에서 48시간 동안 건조시켰다. 컨쥬게이션 패드는 2.0%(w/v) BSA(Bovine Serum Albumin), 2.0%(w/v) Tween 20, 2.5%(w/v) sucrose및 0.3%(w/v) PVP가 함유된 10mM HEPES 완충 용액으로 충분히 적셔 건조기에서 건조시킨 후 실시예 2에서 제조된 항체-나노입자 복합체 용액을 분주하고 건조기에서 완전히 건조시킨 후 사용하였다.
(2) 위에서 준비된 샘플 패드, 컨쥬게이션 패드, 지지체에 위치한 멤브레인 및 흡수패드를 도 1에 도시된 바와 같이 중첩시켜 고정시키고, 플라스틱 박스에 넣어 진단키트를 제조하였다.
<실험예 1> 나노입자의 크기, 형태 및 발광 스펙트럼 확인
(1) 실시예 1의 (1)에서 제조된 나노입자(core) 및 실시예 1의 (2)에서 제조된 나노입자(core/shell) 각각에 대하여 200kV의 가속전압을 갖는 Talos F200X TEM을 통해 확인하고, 각각의 나노입자가 분산된 용액에 980nm의 적외선을 조사하여 NIR spectrometer를 이용하여 발광 스펙트럼을 측정하여 도 4에 나타내었다.
(2) 도 4를 보면, 나노입자들(core, core/shell)은 전체적으로 구형의 형태를 가지고 수십 나노미터의 직경을 가짐을 알 수 있고, core와 core/shell은 발광도가 차이가 남을 알 수 있는데 core에 shell을 형성 시 표면결함을 감소시켜 표면이 균일성을 증가시키고 이종 도펀트에 의한 발광이 강화되었기 때문인 것으로 보인다.
<실험예 2> 이종 도펀트 양에 따른 나노입자의 크기, 형태 및 발광 스펙트럼 확인
(1) 실시예 1에서 도펀트의 총 몰 수를 유지하고 란타나이드(Y)와 이종 도펀트(Ca)의 비율을 조절한 것을 제외하고는 다른 조건을 실시예 1과 동일하게 하여 UCNPs를 제조하였다. 도 5 내지 8에서, 0% Ca는 100mol% 란타나이드(Y)로 도펀트가 이루어진 것을 의미하며, 5% Ca는 95mol% 란타나이드(Y) 및 5mol% 이종 도펀트(Ca)로 도펀트가 이루어진 것을 의미하고, 10% Ca는 90mol% 란타나이드(Y) 및 10mol% 이종 도펀트(Ca)로 도펀트가 이루어진 것을 의미하며, 15% Ca는 85mol% 란타나이드(Y) 및 15mol% 이종 도펀트(Ca)로 도펀트가 이루어진 것을 의미하고, 20% Ca는 80mol% 란타나이드(Y) 및 20mol% 이종 도펀트(Ca)로 도펀트가 이루어진 것을 의미한다.
(2) 실시예 1의 (2) 및 실험예 2의 (1)에서 제조된 UCNPs 각각에 대하여, 200kV의 가속전압을 갖는 Talos F200X TEM을 통해 확인하여 도 5에 나타내었고, 각각의 나노입자가 분산된 용액에 980nm의 적외선을 조사하여 NIR spectrometer를 이용하여 발광 스펙트럼을 측정하여 도 6에 나타내었다.
(3) 도 5를 보면, UNCPs는 전체적으로 구형의 형태를 가지고 수십 나노 미터의 직경을 가지며, 이종 도펀트의 첨가되어도 직경이 크게 변하지 않음을 알 수 있다. 또한, 도 6을 보면, 첨가되는 이종 도펀트의 농도가 발광 강도에 영향을 미침을 알 수 있다.
<실험예 3> 나노입자의 결정 구조 분석과 원소 분석 결과 확인
(1) 실시예 1의 (1), 실시예 1의 (2) 및 실험예 2의 (1)에서 제조된 나노입자 각각이 분산된 용액을 실리콘 웨이퍼 위에 분주하여 XRD-7000를 통해 나노입자의 결정 구조를 분석하여 도 7에 나타내었고, 실시예 1의 (2)에서 제조된 나노입자에 대하여 200kV 가속전압을 갖는 Talos F200X TEM를 사용하여 원소 분석을 하여 도 8에 나타내었다. 구체적으로, 상기 원소 분석은 TEM에서 dark field image를 얻기 위해 촬영 모드를 바꾸고, 그 상태에서 energy dispersive x-ray spectroscopy mapping 원소 분석 방법을 사용하여 수행되었다.
(2) 도 7의 (a)를 보면 core와, 란타나이드(Y)와 이종 도펀트(Ca)의 비율을 달리한 UCNPs의 결정 구조가 어느 정도는 유사함을 확인할 수 있고, 도 7의 (a)의 이미지에서 2 theta의 15~20도 부분을 확대한 도 7의 (b)를 보면 (100) 결정 방향에서 peak 값이 왼쪽으로 조금씩 이동함을 확인할 수 있다. 따라서, 첨가되는 이종 도펀트의 농도가 결정 구조에 어느 정도의 영향을 미침을 알 수 있다.
(3) 도 8을 보면, Na, Y, F가 나노입자 전체에 분포함을 확인할 수 있고, Yb, Tm은 코어층에 Ca는 쉘층에 분포함을 확인할 수 있어, 쉘층에 이종 도펀트를 포함하는 UCNPs가 잘 합성되었음을 알 수 있다.
<실험예 4> 나노입자에 항체 결합의 확인
(1) 실시예 1의 (2)에서 제조된 UCNPs, 실시예 2의 (1)에서 제조된 NH2-UCNPs 및 실시예 2의 (2)에서 제조된 항체가 고정화된 나노입자(Ab-UCNPs) 각각에 대하여, iS10 Fourier transform infrared spectrophotometer를 사용하여 푸리에 변환 적외선 분광학 분석을 수행하여, 그 결과를 도 9에 나타내었다. 또한, 상기 NH2-UCNPs 및 실시예 2의 (2)에서 제조된 항체-나노입자 복합체(Ab-UCNPs) 각각에 대하여, Zetasizer(Zetasizer Nano ZS90, Malvern)를 사용하여 표면 전하(zeta potential)를 측정하여, 그 결과를 도 10에 나타내었다.
(2) 도 9를 보면, UNCPs는 COO- 그룹의 각각 비대칭 및 대칭 진동에 부합하는 1457 및 1558cm-1에서의 피크가 확인되고 올산의 알킬 체인(alkyl chain)에서 -CH2의 비대칭 및 대칭 진동에 부합하는 2853 및 2924cm-1에서의 transmission band가 확인되며, NH2-UCNPs는 아민그룹의 각각 C-N 진동과 N-H 진동에 부합하는 1635 및 3289cm-1에서의 band가 확인되고, Ab-UCNPs에서는 아마이드 결합(amide bond)에 부합하는 1540 및 1653cm-1에서 피크를 통해 항체가 나노입자에 결합되었음을 확인할 수 있다.
(3) 도 10을 보면, NH2-UCNPs와 Ab-UCNPs의 제타 전위가 38.3mV에서 8.06mV로 변화하였음을 알 수 있고, 나노입자에 항체가 고정되었음을 확인할 수 있다.
<실험예 5> 나노입자의 적외선 발광능 확인
(1) 금 나노입자(GNPs)를 완충 용액, 오리 분뇨가 포함된 완충 용액 각각에 분산시키고 일반 카메라로 촬영하여 그 결과를 도 11의 (a)에 나타내었고, 실시예 1의 (2)에서 제조된 나노입자(UCNPs)를 완충 용액, 오리 분뇨가 포함된 완충 용액 각각에 분산시키고, 일반 카메라로 촬영하고, 980nm 파장의 적외선을 조사하고 800nm의 적외선 영상을 촬영할 수 있는 적외선 카메라로 촬영하여, 그 결과를 도 11의 (b)에 나타내었다. 또한, 오리 분뇨가 포함된 완충 용액(stool), 금 나노입자가 분산된 완충 용액(GNPs in buffer)및 금 나노입자가 분산된 오리 분뇨를 포함하는 완충 용액(GNPs in stool) 각각에 대하여 UV/VIS/NIR spectrometer를 이용하여 흡광 스펙트럼을 측정하여 도 12에 나타내었고, 오리 분뇨가 포함된 완충 용액(stool), UCNPs가 분산된 완충 용액(UCNPs in buffer)및 UCNPs가 분산된 오리 분뇨를 포함하는 완충 용액(UCNPs in stool) 각각에 대하여 980nm 파장의 적외선을 조사하고 NIR spectrometer를 이용하여 발광 스펙트럼을 측정하여 도 13에 나타내었다. 상기 금 나노입자는 1mM HAuCl4 20mL 용액에 1% trisodium citrate dihydrate 2mL 용액을 첨가하여 10분간 반응시킨 후 원심분리기를 통해 수득하였다.
(2) 도 11의 (a)를 보면, 금 나노입자가 완충 용액(buffer)에 분산되어 있을 경우에는 붉은색을 관찰할 수 있지만, 불투명한 분뇨가 포함된 완충 용액(stool)에 분산되어 있을 경우에는 붉은색을 확인할 수 없다. 또한, 도 11의 (b)를 보면, 실시예 1의 (2)에서 제조된 나노입자는 980nm 파장의 적외선을 쬐어주면 완충 용액(buffer)에 분산되어 있을 경우와 분변이 포함된 완충 용액(stool)에 분산되어 있을 경우 모두 약 800nm 파장의 적외선 발광을 보임이 확인할 수 있다(Laser on이 표기된 도면 참조).
(3) 도 12를 보면 불투명한 분뇨가 포함된 완충 용액에 금 나노입자가 분산되어 있는 경우 550nm의 파장에서 흡광 피크를 확인할 수 없으나, 도 13을 보면 UCNPs가 분산된 완충 용액 및 UCNPs가 분산된 불투명한 분뇨를 포함하는 완충용액에서 모두 800nm 파장의 적외선 발광됨을 확인할 수 있다.
<실험예 6> 진단 키트를 이용한 검체의 분석
(1) 조류 독감 바이러스(H5N6)의 nucleoprotein(C-reactiveprotein(CRP))의 농도를 달리하는 검체 전개액(H5N6 항원과 투명한 완충 용액으로 이루어짐)을 실시예 3에서 제조된 진단키트의 샘플 패드에 떨어뜨리고 20분 후에 980nm 파장의 적외선을 조사하여 적외선 카메라로 촬영하여 그 결과를 도 14의 (a)에 나타내었다.
(2) 투명한 완충 용액 대신에 분뇨가 포함되어 있는 완충용액을 사용한 것을 제외하고는 실험예 5의 (1)과 동일한 방법으로 실험을 진행하여 그 결과를 도 14의 (b)에 나타내고, 이때 두 라인(C, T)의 발광 강도를 도 14의 (c)에 나타냈었다.
(3) 도 14을 보면, 바이러스의 검출 한계가 103. 5EID50/mL이고, 바이러스 농도가 높아질수록 테스트 라인의 발광 강도는 커짐을 확인할 수 있어, 상기 진단 키트를 통해 목적하는 타겟 물질을 용이하게 검출할 수 있음을 알 수 있다. 또한, 검체 전개액에서 투명한 완충 용액을 사용하거나 분뇨가 포함된 완충 용액(불투명함)을 사용하는 것에 상관없이, 테스트 라인에서 바이러스의 검출 결과를 확인하는데 어려움이 없어, 상기 진단키트를 사용하여 현장에서 안정적으로 바이러스를 검출할 수 있음을 알 수 있다.
이상에서, 출원인은 본 발명의 바람직한 실시예들을 설명하였지만, 이와 같은 실시예들은 본 발명의 기술적 사상을 구현하는 일 실시예일 뿐이며 본 발명의 기술적 사상을 구현하는 한 어떠한 변경예 또는 수정예도 본 발명의 범위에 속하는 것으로 해석되어야 한다.

Claims (20)

  1. 희토류 및 이종 도펀트가 도핑되어 적외선을 흡광하여 적외선을 발광하는 나노입자.
  2. 희토류가 도핑되어 적외선을 흡광하여 적외선을 발광하는 나노입자에 있어서,
    상기 나노입자는 나노입자 내의 결정 구조의 왜곡을 증가시켜 민감한 전자 이동을 가능하도록 이종 도펀트가 추가로 도핑되는 것을 특징으로 하는 나노입자.
  3. 제1항 또는 제2항에 있어서,
    상기 이종 도펀트의 종류 또는 농도의 조절을 통해 상기 나노입자의 발광 강도를 조절할 수 있는 것을 특징으로 하는 나노입자.
  4. 제1항 또는 제2항에 있어서, 상기 희토류는
    Y, Er, Yb, Tm 및 Nd로 이루어진 군으로부터 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는 나노입자.
  5. 제1항 또는 제2항에 있어서, 상기 희토류는
    Y 50mol%, Yb 48mol% 및 Tm 2mol%를 포함하는 것을 특징으로 하는 특징으로 하는 나노입자.
  6. 제1항 또는 제2항에 있어서, 상기 이종 도펀트는
    Ca, Si, Ni 및 Ti로 이루어진 군으로부터 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는 나노입자.
  7. 제1항 또는 제2항에 있어서, 상기 나노입자는
    흡·발광하는 적외선 사이의 간섭이 없도록 흡광하는 적외선의 파장과 발광하는 적외선의 파장이 동일하지 않은 것을 특징으로 하는 나노입자.
  8. 제1항 또는 제2항에 있어서, 상기 나노입자는
    960 ~ 980nm의 파장을 가지는 적외선을 흡광하여 750 ~ 850nm의 파장을 가지는 적외선을 발광하는 것을 특징으로 하는 나노입자.
  9. 제1항 또는 제2항에 있어서, 상기 나노입자는
    희토류가 도핑된 입자로 이루어진 코어층과, 상기 코어층을 에워싸 표면 결함을 감소시켜 표면의 균일성을 향상시키며 이종 도펀트가 추가로 도핑된 쉘층을 포함하는 것을 특징으로 하는 나노입자.
  10. 제9항에 있어서, 상기 나노입자는
    상기 셀층의 외면에 모노머 또는 폴리머를 코팅하여 형성된 코팅층을 추가로 포함하여, 나노입자의 유체에 대한 분산성을 증가시키고 포획제의 고정을 용이하게 하도록 하는 것을 특징으로 하는 나노입자.
  11. 제10항에 있어서,
    상기 코어층은 1-옥타디신, 올릭산 및 희토류를 혼합하여 동질 용액을 형성하고, 수산화나트륨, 플루오르화 암모늄을 함유하는 메탄올을 상기 동질 용액에 혼합하고 교반한 후, 일정 온도에 일정 시간 반응시켜 나노입자 형태로 형성되며,
    상기 쉘층은 1-옥타디신, 올릭산, 희토류 및 이종 도펀트를 혼합하여 동질 용액을 형성하고 수산화나트륨, 플루오르화 암모늄을 함유하는 메탄올을 코어층과 함께 상기 동질 용액에 혼합하고 교반한 후, 일정 온도에 일정 시간 반응시켜 상기 코어층에 일정 두께로 형성되는 것을 특징으로 하는 나노입자.
  12. 적외선을 흡광하여 적외선을 발광하는 나노입자와; 상기 나노입자에 결합하여 타겟물질과 특이적으로 결합하는 포획제;를 포함하며,
    상기 나노입자는 제10항의 나노입자가 사용되며, 상기 포획제는 상기 코팅층에 결합하는 것을 특징으로 하는 포획제-나노입자 복합체.
  13. 제12항에 있어서,
    상기 포획제는 항체 또는 압타머를 포함하는 것을 특징으로 하는 포획제-나노입자 복합체.
  14. 타겟 물질을 포함하는 검체를 일 방향으로 이동시켜 상기 타겟 물질과 반응하는 진단 키트에 있어서,
    상기 진단 키트는 타겟물질에 특이적으로 결합하며 적외선을 흡광하여 적외선을 발광하는 포획제-나노입자 복합체와; 상기 타겟물질과 특이적으로 결합하는 제2포획제;를 포함하여, 검체의 이동 과정 중에 포획제-나노입자 복합체와 결합한 타겟 물질이 제2포획제와 결합하며,
    상기 포획제-나노입자 복합체는 제12항의 포획제-나노입자 복합체가 사용되는 것을 특징으로 하는 진단키트.
  15. 제14항에 있어서,
    상기 진단키트는 상기 포획제에 특이적으로 결합하는 제3포획제를 추가로 포함하는 것을 특징으로 하는 진단키트.
  16. 제15항에 있어서,
    상기 포획제-나노입자 복합체는 검체와 함께 이동하며, 상기 제2포획제와 제3포획제는 일정 간격을 두고 상기 진단키트에 고정되어, 상기 진단키트에 적외선을 조사하면 제2포획제와 결합한 포획제-나노입자 복합체 및 제3포획제와 결합한 포획제-나노입자 복합체가 적외선을 발광을 하는 것을 특징으로 하는 진단키트.
  17. 제16항에 있어서,
    상기 제2포획제는 진단키트의 테스트 라인에 고정되고, 상기 제3포획제는 진단키트의 컨트롤 라인에 고정되며, 테스트 라인은 컨트롤 라인의 전측에 위치하는 것을 특징으로 하는 진단키트.
  18. 진단키트와, 상기 진단키트를 수용하여 상기 진단키트에 적외선을 조사하고 상기 진단키트에서 발산하는 적외선을 측정하여 영상화된 자료를 외부의 단말기에 제공하는 적외선 리더기를 포함하며,
    상기 진단키트는 제16항의 진단키트가 사용되는 것을 특징으로 하는 진단장치.
  19. 제18항에 있어서,
    상기 적외선 리더기는 적외선 리더기의 외형을 형성하는 하우징과; 상기 하우징의 내부에 위치하며, 상기 하우징의 삽임홈을 통해 끼워진 진단키트에 적외선을 조사하고 상기 진단키트에서 발산하는 적외선을 측정하여 영상화된 자료를 외부의 단말기에 제공하는 컨트롤러를 포함하는 것을 특징으로 하는 진단장치.
  20. 제19항에 있어서, 상기 컨트롤러는
    상기 단말기와 정보를 교환하는 인터페이스부와, 상기 컨트롤러의 작동에 필요한 전원을 공급하는 배터리와, 상기 하우징 내부에 위치한 진단키트의 멤브레인에 적외선을 조사하는 조사부와, 상기 조사부에 의해 상기 멤브레인에 적외선이 조사된 후 상기 멤브레인에서 발광하는 적외선을 촬영하는 광학부와, 상기 광학부에서 출력된 촬영 영상을 디지털화하여 출력하는 영상처리부를 포함하는 것을 특징으로 하는 진단장치.
PCT/KR2018/002616 2017-07-07 2018-03-06 강화된 적외선 흡·발광 나노입자 및 이를 이용하는 현장용 진단키트 WO2019009495A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/341,852 US11320425B2 (en) 2017-07-07 2018-03-06 Enhanced infrared ray absorbing/emitting nanoparticles and on-site diagnosis kit using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0086300 2017-07-07
KR1020170086300A KR101996815B1 (ko) 2017-07-07 2017-07-07 적외선을 흡광 및 발광하는 진단용 포획제-나노입자 복합체 및 이를 이용하는 현장용 진단키트
KR1020180009062A KR102049946B1 (ko) 2018-01-25 2018-01-25 강화된 적외선 흡·발광 나노입자 및 이를 이용하는 현장용 진단키트
KR10-2018-0009062 2018-01-25

Publications (1)

Publication Number Publication Date
WO2019009495A1 true WO2019009495A1 (ko) 2019-01-10

Family

ID=64951075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002616 WO2019009495A1 (ko) 2017-07-07 2018-03-06 강화된 적외선 흡·발광 나노입자 및 이를 이용하는 현장용 진단키트

Country Status (2)

Country Link
US (1) US11320425B2 (ko)
WO (1) WO2019009495A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220333005A1 (en) * 2019-09-27 2022-10-20 Thomas Jefferson University Persistent Luminescent Nanoparticle and Articles Comprising the Same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046022A (ja) * 2005-08-12 2007-02-22 National Institute Of Advanced Industrial & Technology 燐光体ナノ粒子およびその製造方法
KR20080031996A (ko) * 1999-03-19 2008-04-11 루트거스, 더스테이트 유니버시티 희토류로 도핑된 호스트 물질
JP2009249507A (ja) * 2008-04-07 2009-10-29 Konica Minolta Medical & Graphic Inc 希土類元素ドープ蛍光体ナノ粒子、それを用いた生体物質標識剤
KR20130093301A (ko) * 2012-02-14 2013-08-22 한국화학연구원 희토류 이온이 도핑된 나노입자의 환원방법 및 이를 이용하여 제조되는 환원된 희토류 이온이 도핑된 나노입자
KR20170017266A (ko) * 2015-08-06 2017-02-15 광주과학기술원 타겟 물질 검출용 복합체 및 이를 이용한 타겟 물질 검출방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080031996A (ko) * 1999-03-19 2008-04-11 루트거스, 더스테이트 유니버시티 희토류로 도핑된 호스트 물질
JP2007046022A (ja) * 2005-08-12 2007-02-22 National Institute Of Advanced Industrial & Technology 燐光体ナノ粒子およびその製造方法
JP2009249507A (ja) * 2008-04-07 2009-10-29 Konica Minolta Medical & Graphic Inc 希土類元素ドープ蛍光体ナノ粒子、それを用いた生体物質標識剤
KR20130093301A (ko) * 2012-02-14 2013-08-22 한국화학연구원 희토류 이온이 도핑된 나노입자의 환원방법 및 이를 이용하여 제조되는 환원된 희토류 이온이 도핑된 나노입자
KR20170017266A (ko) * 2015-08-06 2017-02-15 광주과학기술원 타겟 물질 검출용 복합체 및 이를 이용한 타겟 물질 검출방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, G.: "alpha-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging", ACS NANO, vol. 6, no. 9, 28 August 2012 (2012-08-28), pages 8280 - 8287, XP055564487, Retrieved from the Internet <URL:DOI:10.1021/nn302972r> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220333005A1 (en) * 2019-09-27 2022-10-20 Thomas Jefferson University Persistent Luminescent Nanoparticle and Articles Comprising the Same
US11873431B2 (en) * 2019-09-27 2024-01-16 Thomas Jefferson University Persistent luminescent nanoparticle and articles comprising the same

Also Published As

Publication number Publication date
US20190324027A1 (en) 2019-10-24
US11320425B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
US8084001B2 (en) Photoluminescent silica-based sensors and methods of use
US20080113384A1 (en) Methods and apparatus and assays of bacterial spores
US20100196914A1 (en) Rare cell detection using flat-panel imager and chemiluminescent or radioisotopic tags
WO2014014309A1 (ko) 표적 물질의 검출 또는 정량 방법, 및 키트
WO2017111194A1 (ko) 바이오 센서용 광학 표지자, 이를 포함하는 광학 바이오센서 및 상기 바이오 센서용 광학 표지자의 제조방법
KR102049946B1 (ko) 강화된 적외선 흡·발광 나노입자 및 이를 이용하는 현장용 진단키트
WO2014030985A1 (ko) 생체 분자 분석용 미소 입자 및 이의 제조방법, 생체 분자 분석용 키트, 및 이를 이용한 생체 분자 분석 방법.
JP6520961B2 (ja) 生体物質定量方法、病理診断支援システム及びプログラム
WO2017052285A1 (ko) 표면-증강 라만 산란 기반의 고감도 측면유동 면역분석용 스트립 및 이를 이용한 검출방법
WO2019009495A1 (ko) 강화된 적외선 흡·발광 나노입자 및 이를 이용하는 현장용 진단키트
KR101996815B1 (ko) 적외선을 흡광 및 발광하는 진단용 포획제-나노입자 복합체 및 이를 이용하는 현장용 진단키트
WO2022072526A1 (en) Methods, devices, and related aspects for detecting ebola virus
WO2011014042A2 (en) Method and apparatus for detecting metal ions, probe used for the same and preparation method thereof
US20220088585A1 (en) Test strip, and microbial sensor device and sensing method
JP7462615B2 (ja) アナライトの定量
CN113884672B (zh) 一种荧光与长余辉联合检测的免疫层析方法及系统
WO2016186412A1 (ko) 선형 업컨버전 형광 특성을 이용한 생체물질 검출 방법
KR101592499B1 (ko) 초미량의 형광 검출 방법
WO2020231158A2 (ko) 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치
WO2019117585A2 (ko) 결핵진단용 조성물 및 광학적 특성 변화에 기반한 결핵 진단방법
WO2019093542A1 (ko) 항원의 정량 분석용 마이크로 칩 및 항원의 정량 분석용 디바이스, 및 이를 이용한 항원의 정량 분석 방법
WO2022182023A1 (ko) 재귀반사 신호 측정용 가젯
CN111465856A (zh) 结核诊断用组合物以及基于光学特性变化的结核诊断方法
CN116626288A (zh) 一种基于钙钛矿纳米晶的快速检测癌胚抗原免疫层析试纸条及其制备方法
EP4137796A1 (en) Detection particle suitable for multiplex detection of biomolecules, and preparation method therefor and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828445

Country of ref document: EP

Kind code of ref document: A1