WO2020231158A2 - 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치 - Google Patents

다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치 Download PDF

Info

Publication number
WO2020231158A2
WO2020231158A2 PCT/KR2020/006251 KR2020006251W WO2020231158A2 WO 2020231158 A2 WO2020231158 A2 WO 2020231158A2 KR 2020006251 W KR2020006251 W KR 2020006251W WO 2020231158 A2 WO2020231158 A2 WO 2020231158A2
Authority
WO
WIPO (PCT)
Prior art keywords
reactant
detection
light
test strip
fluorescence
Prior art date
Application number
PCT/KR2020/006251
Other languages
English (en)
French (fr)
Other versions
WO2020231158A3 (ko
Inventor
황규연
박종면
Original Assignee
프리시젼바이오 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 프리시젼바이오 주식회사 filed Critical 프리시젼바이오 주식회사
Publication of WO2020231158A2 publication Critical patent/WO2020231158A2/ko
Publication of WO2020231158A3 publication Critical patent/WO2020231158A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • G01N33/54387Immunochromatographic test strips
    • G01N33/54388Immunochromatographic test strips based on lateral flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • G01N33/54387Immunochromatographic test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5023Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures with a sample being transported to, and subsequently stored in an absorbent for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label

Definitions

  • the present invention relates to a test strip for multiple immunoassay and a device for multiple immunoassay using the same.
  • Fluorescence detection and reflected light colorimetric detection are both possible to improve diagnostic accuracy, and depending on the needs of the user, it can be applied to a fluorescence-type immunoassay diagnostic device or selectively applied to a reflected-light colorimetric immunoassay diagnostic device, which makes it easy to use. It is possible to detect two target analytes through fluorescence and reflected light in one reaction region, and a simple and miniaturized structure with one reaction region enables multiple analysis. It relates to an immunoassay device.
  • the test method used for disease diagnosis is mainly based on color development and fluorescence by an enzymatic reaction, but recently, a method using an immunoassay using an immune reaction between an antigen and an antibody is also used.
  • This immunoassay method mainly uses a labeled biosensor that can detect the presence or absence of an antigen by labeling an antibody with a radioactive isotope or fluorescent substance, and quantify it by the intensity of radiation or fluorescence.
  • Existing immunoassay methods are a method of measuring a signal obtained by labeling an antigen or antibody with a radioactive substance, a luminescent substance, or a fluorescent substance, and ELISA (Enzyme Linked Immunosorbent Assay: ELISA), which combines a photolabel to the catalytic reaction of an enzyme, and Western blotting Optical measurement methods such as (Western blotting) were most used.
  • ELISA Enzyme Linked Immunosorbent Assay: ELISA
  • Western blotting such as (Western blotting) were most used.
  • the immune sensor Since antibodies, which are the target substances of the immune sensor, are present in very low concentrations in biological samples such as whole blood, serum, and urine, the immune sensor is more suitable than a biosensor technology that detects other substances. It is necessary to have a highly sensitive signaling technology that is far superior in the detection limit of In addition, since proteins such as antibodies and antigens easily change their structures due to changes in external environments, the recognition sites of antigens or antibodies are likely to deteriorate and lose their own biometric functions. Due to the conditions of the immune sensor that needs to be analyzed in solid form, the fabrication of a sensor surface suitable for biomaterials that can maintain the activity of these biomaterials, immobilization technology of biomaterials that can increase the detection limit, and biometric recognition reactions are converted into quantified signals. It is necessary to secure a conversion measurement method.
  • the rapid diagnostic test kit for immunoassay is a test tool for point-of-care that enables diagnostic tests using biological samples such as blood, urine, and saliva.
  • Examples of such rapid diagnostic test kits include pregnancy diagnostic kits and AIDS diagnostic kits.
  • Such a diagnostic device must establish a method capable of detecting a predetermined biological material (protein, DNA, antigen, etc.) for diagnosis.
  • a predetermined biological material protein, DNA, antigen, etc.
  • a conventional biomaterial detection method there are a fluorescent labeling method using an organic dye or the like, and a reflective labeling method using a reflective light substance or the like.
  • Such a rapid immunoassay diagnostic device operates on the same principle as a fluorescence method or a reflected light method, and uses a test strip capable of adsorbing and supplying a biological sample through a capillary phenomenon. Since the biological sample supplied from the outside flows laterally in the longitudinal direction within the test strip due to the capillary phenomenon, this method is also referred to as a lateral flow immunoassay.
  • a sample pad, a probe pad, a membrane, and an adsorption pad are sequentially disposed along a length direction.
  • the biological sample is supplied from the outside to the sample pad, and the supplied biological sample sequentially flows to the probe pad, the membrane, and the adsorption pad by capillary action.
  • a detection reactant is applied to the probe pad so that it can bind to a target analyte (antigen, etc.) in a biological sample, and the detection reactant and the target analyte eluted from the probe pad are combined to form a detection biological conjugate.
  • a reaction region to which a capture material is applied to capture the detection biocomposite is formed, and the detection biocomposite and the capture material are combined to form a detection biocomposite.
  • the adsorption pad is made of a porous material to enable adsorption and movement of biological samples.
  • test light When the test light is irradiated to the reaction area of the test strip, fluorescence is generated in the biocomposite for detection in the reaction area or the test light is reflected to generate reflected light, depending on the type of the reactant for detection. Perform a diagnosis for a specific disease factor.
  • the fluorescence-type immunoassay diagnostic device uses ultraviolet light as the type of test light, thereby generating fluorescence in the detection biocomposite to detect fluorescence, and the reflected light-type immunoassay diagnostic device uses visible light as the test light type.
  • the reflected light is detected by reflecting the test light from the biocomposite for detection. It is possible to diagnose whether there is a specific disease factor by analyzing the detection intensity of the detected fluorescence or reflected light.
  • fluorescence-type immunoassay diagnostic devices and reflected-light-type immunoassay diagnostic devices have different light sources for each applied test light as well as different compositions for the detection reactants of the test strip, making it impossible to perform a combination test. It has been researched and developed.
  • test strips are generally formed to have one response region, and accordingly, only one specific disease factor can be tested in one test, and it cannot be tested whether there are multiple specific disease factors.
  • the accuracy of the corresponding test cannot be determined. In order to determine the accuracy of the test, the test must be conducted once more and verified.
  • a method of increasing the number of reaction regions formed in the test strip has been proposed to test a number of specific disease factors through one test using one test strip or to verify test accuracy.
  • the length of the test strip is As a result, there was a problem such as an increase in the amount of a biological sample and an increase in reaction time.
  • the present invention has been invented to solve the problems of the prior art, and an object of the present invention is a first reactant combined with a fluorescent material and a second reactant combined with a reflected light material as a reactant for detection of a target analyte in a biological sample.
  • an object of the present invention is a first reactant combined with a fluorescent material and a second reactant combined with a reflected light material as a reactant for detection of a target analyte in a biological sample.
  • Another object of the present invention is a multi-immunoassay that can be applied to a fluorescence-type immunoassay diagnostic device or selectively applied to a reflected-light-type immunoassay diagnostic device according to the needs of the user, thereby increasing ease of use and further expanding the range of use It is to provide a test strip for use and a multiple immunoassay device using the same.
  • Another object of the present invention is to allow the first reactant and the second reactant to combine with different target analytes, so that two target analytes can be detected through fluorescence and reflected light in one reaction region. It is to provide a test strip for multiple immunoassays capable of diagnosing two specific disease factors in a single test with a simple and miniaturized structure having a response region of and a multiple immunoassay device using the same.
  • Another object of the present invention is to provide a multi-immunoassay diagnosis system capable of performing an immunological analysis diagnosis quickly and conveniently using a mobile terminal such as a smart phone without a separate detection sensor and an analysis device having a complex structure such as an electronic device. .
  • the present invention provides a sample pad to which a biological sample is supplied from the outside, a probe pad to which a detection reactant is applied so as to bind with a target analyte in a biological sample, and a detection biological conjugate in which a target analyte and a detection reactant are combined
  • the detection reactant includes a first reactant and a second reactant, and the first reactant is irradiated with test light
  • the first reactant is combined with a target analyte in a biological sample to form a bioconjugate for fluorescence detection
  • the second reactant is a target analyte of the same type as the target analyte to which the first reactant is bound.
  • the reaction region may be formed to capture both the biocombinant for detecting fluorescence and the biocombinant for detecting reflected light.
  • the first reactant is combined with a target analyte in a biological sample to form a bioconjugate for fluorescence detection
  • the second reactant is a target analyte different from the target analyte to which the first reactant is bound.
  • the reaction region may be formed to capture both the body for detecting the fluorescence and the body for detecting the reflected light.
  • reaction region may be formed in a line shape in a direction crossing the membrane in the width direction.
  • the present invention provides a sample pad to which a biological sample and a detection reactant capable of binding to a target analyte in the biological sample are supplied, and a reaction region to capture a detection biological conjugate in which the target analyte and the detection reactant are combined.
  • the immunoassay diagnostic method using a test strip for lateral flow immunoassay comprising a membrane formed, comprising the step of supplying a biological sample and a detection reactant to the sample pad, wherein the detection reactant is a first Including a reactant and a second reactant, wherein a first probe material that generates fluorescence by irradiation with inspection light is fixedly bonded to the first reactant, and a reflected light is generated by irradiation with inspection light to the second reactant
  • a method for diagnosing multiple immunoassays is provided, wherein a second probe material is fixedly bonded, and detection of fluorescence by the first reactant and detection of reflected light by the second reactant is possible.
  • the test strip An optical module selectively irradiating a first inspection light and a second inspection light onto the reaction region of the test strip; And a detection sensor for detecting fluorescence generated in the reaction region by irradiation of the first test light or reflected light reflected from the reaction region by irradiation of the second test light.
  • the multi-immunoassay diagnosis apparatus may further include a control unit for controlling the operation of the optical module so that the first test light and the second test light are sequentially irradiated.
  • the present invention the test strip; A case in which an accommodation space is formed inside, a strip insertion part is formed on a side surface of the test strip to be inserted into the inner space, and a photographing hole is formed on an upper surface to photograph the test strip inserted into the strip insertion part; An optical module for selectively irradiating a first test light and a second test light toward the test strip inserted in the strip insertion part; A mobile terminal equipped with a camera capable of photographing a test strip inserted into the strip insertion part through the photographing hole; And a calculating unit that receives the image captured through the camera of the mobile terminal, analyzes the received image, and calculates the intensity of fluorescence or reflected light generated in the reaction area of the test strip. System.
  • the optical module may be mounted on the case.
  • the optical module is provided with a separate light source communication unit to enable communication with the mobile terminal, and the operation to be controlled so that the first inspection light and the second inspection light are sequentially irradiated through the communication with the mobile terminal through the light source communication unit. I can.
  • the inner surface of the case may be formed of a light absorbing material that absorbs light.
  • the target analyte in one reaction region Since both fluorescence detection and reflected light detection are possible, not only can the diagnosis accuracy be improved by improving the hook effect, which is a chronic problem of the immune response, but also more accurate and various methods of diagnosis are possible without adding a response area. Accordingly, there is an effect that it is possible to downsize and simplify the structure while performing multiple diagnostic functions.
  • FIG. 1 is a view conceptually showing the structure of a test strip for multiple immunoassay according to an embodiment of the present invention
  • FIG. 2 is a diagram conceptually showing the form of a reactant for detection of a test strip for multiple immunoassay according to an embodiment of the present invention
  • 3 and 4 are diagrams conceptually showing the form of a detection biocombinant captured in a reaction region of a test strip for multiple immunoassay according to an embodiment of the present invention
  • FIG. 5 is a diagram conceptually showing the configuration of a multi-immunoassay diagnostic apparatus according to an embodiment of the present invention
  • FIG. 6 is a perspective view schematically showing the configuration of a multiple immunoassay diagnostic system according to an embodiment of the present invention.
  • FIG. 7 is a perspective view schematically showing the configuration of a case of a multiple immunoassay diagnostic system according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing the structure of a multiple immunoassay diagnostic system according to an embodiment of the present invention.
  • FIG. 9 is a functional block diagram showing the configuration of a multiple immunoassay diagnostic system according to an embodiment of the present invention.
  • FIG. 1 is a diagram conceptually showing the structure of a test strip for multiple immunoassay according to an embodiment of the present invention
  • FIG. 2 is a view of a reactant for detection of a test strip for multiple immunoassay according to an embodiment of the present invention
  • 3 and 4 are diagrams conceptually showing the form of a bioconjugate for detection captured in a reaction region of a test strip for multiple immunoassay according to an embodiment of the present invention.
  • the test strip for multiple immunoassay has a structure capable of detecting both fluorescence and reflected light, and the sample pad 101, the probe pad 102, the membrane 103 and the adsorption pad 104 are inspected. They are sequentially arranged along the length direction of the strip 100.
  • the configuration of the sample pad 101, the probe pad 102, the membrane 103, and the adsorption pad 104 is formed to perform the same function as that of a general test strip, as described in the background art.
  • a biological sample is supplied to the sample pad 101, and the supplied biological sample sequentially flows to the probe pad 102, the membrane 103, and the adsorption pad 104 by a capillary phenomenon.
  • the detection reactants (P1, P2) are applied to the probe pad 102 so as to bind to the target analyte (T1) in the biological sample, and the target analyte (T1) and the detection reactant are (P1, P2) is combined to form a detection biocombinant (M1, M2).
  • the membrane 103 is formed with a reaction region 110 to which a capture material (biomaterial) S is applied to capture the detection biocomposite (M1, M2), and the detection biocomposite (M1) is formed in the reaction region 110 ,M2) and the capture material (biomaterial) (S) are combined to form a detection biocomposite (V1, V2).
  • the adsorption pad 104 is made of a porous material to enable adsorption and movement of a biological sample.
  • the target analyte (T1) eg, antigen
  • the detection reactants (P1, P2) in the probe pad 102 and the detection biological conjugate (M1, M2), and the detection biocombines (M1, M2) are continuously developed along the membrane 103 toward the adsorption pad 104, and in the reaction region 110 formed on the membrane 103, the capture material (biomaterial ) Is captured and bound by (S) to form biocomplexes (V1, V2) for detection.
  • the reaction region 110 of the test strip 100 is formed in a line shape in a direction crossing the membrane 103 in the width direction, and may be formed to have one test line 110 and one control line 120. have. Of course, a plurality of test lines 110 may be formed to be spaced apart from each other as necessary. Fluorescence or reflected light is detected from the detection biocomplexes V1 and V2 formed on the test line 110 to diagnose whether there is a specific disease factor, and the validity of the test may be determined through the control line 120.
  • the detection reactants P1 and P2 applied to the probe pad 102 include a first reactant P1 and a second reactant P2.
  • the first reactant (P1) is a first probe material (R1) that generates fluorescence by irradiation of the inspection light is fixedly coupled, and the second reactant (P2) reflects the inspection light when irradiated with the inspection light to generate reflected light.
  • the second probe material R2 is fixedly coupled.
  • the probe pad 102 is coated with a first reactant P1 and a second reactant P2 as detection reactants P1 and P2.
  • Reactants (P1, P2) are biological substances (S) (for example, nucleic acids including DNA or RNA, amino acids, fats, glycoproteins, antibodies ), an antigen, or a combination thereof) may be formed in a structure in which probe substances (R1, R2) are fixedly bonded.
  • a first probe material R1 which generates fluorescence when irradiated with inspection light (ultraviolet light), is fixedly bonded to the biological material S.
  • inspection light ultraviolet light
  • a fluorescent dye, Quantum dots, lanthanides (Eu, Tb, Dy, Sm), etc. may be applied.
  • a second probe material R2 for generating reflected light by reflecting the test light when irradiated with the test light (visible light) is fixedly coupled to the biological material S, and the second probe material R2
  • Metal nanoparticles such as gold (Au), silver (Ag), copper (Cu), aluminum (Al), nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn) and manganese (Mn), etc. may be applied, and in addition, carbon particles, latex particles, etc. may be applied.
  • the first and second reactants P1 and P2 include a gas phase condensation method, a high frequency plasma chemical synthesis method, a conventional chemical precipitation, and a hydrothermal method.
  • Hydrothermal synthesis method, electric dispersion re-action method, combustive synthesis method, sol-gel synthesis method, thermochemical synthesis method, microfluidic It may be formed through a microfludizer process, microemulson technology, high energy mechanical milling, or a combination thereof.
  • the first reactant (P1) is specifically combined with the target analyte (T1), which is an infectious disease factor in a biological sample, to form a bioconjugate (M1) for fluorescence detection, and a second reaction
  • the body P2 is specifically combined with the target analyte T1, which is an infectious disease factor in a biological sample, to form a biological conjugate M2 for detecting reflected light.
  • both the first reactant P1 and the second reactant P2 may be configured to specifically bind to the same target analyte T1, and FIG. 2 As shown in (b) of, the first reactant P1 and the second reactant P2 may be configured to specifically bind to different target analytes T1 and T2.
  • the first reactant (P1) and the second reactant (P2) are both specifically combined with the same target analyte (T1) in the biological sample, respectively, fluorescence A biological assembly for detection (M1) and a biological assembly for detection of reflected light (M2) are formed.
  • the fluorescence detection biocomposite (M1) and the reflected light detection biocomposite (M2) formed as described above are deployed from the membrane 103 toward the adsorption pad 104, and in this process, FIGS. 3A and 4A As shown in ), it is captured by the biomaterial S applied to the reaction region 110.
  • the biological material (S) applied to the reaction region 110 is a material capable of specifically binding to the target analyte (T1) in the biological sample, and a nucleic acid including DNA or RNA, an amino acid ( amino acid), fat, glycoprotein, antibody, antigen, or a combination thereof.
  • a fluorescence detection biocomposite (M1) and a reflected light detection biocomposite (M2) are combined with a biomaterial (S), respectively, and a fluorescence detection biocomposite (V1) and a reflected light detection biocomposite (V2). To form.
  • the fluorescence detection biocomposite (M1) and the reflected light detection biocomposite (M2) are captured in the reaction region 110 to form the fluorescence detection biocomposite (V1) and the reflected light detection biocomposite (V2), thereby reacting
  • the inspection light ultraviolet light
  • fluorescence is generated by the first probe material R1 of the biocomposite V1 for fluorescence detection, so that fluorescence can be detected.
  • the reaction region 110 When the inspection light (visible light) is irradiated to the inspection light, reflected light is generated for the inspection light by the second probe material R2 of the biological assembly M2 for detecting the reflected light, so that the reflected light can be detected.
  • illumination light of an ultraviolet (UV) wavelength band for example, illumination light of a wavelength of 400 nm or less may be applied, and UV LED may be applied as a light source for this.
  • UV LED ultraviolet LED
  • visible light-based illumination light can be applied, and various light sources such as red light LED, green light LED, blue light LED, and white light LED can be applied as a light source for this.
  • the test strip 100 sequentially irradiates the first test light (ultraviolet wavelength band illumination light) and the second test light (visible light series illumination light) to the reaction region 110 By doing so, fluorescence and reflected light can be detected respectively. Therefore, there is an effect of performing two tests substantially simultaneously through fluorescence detection and reflected light detection in the test process for one target analyte (T1), which is a specific disease factor, through which the mutual verification effect of the test results Can be exerted to improve diagnostic accuracy.
  • T1 target analyte
  • the low concentration section uses fluorescence to measure the concentration
  • the high concentration section uses reflected light to measure the concentration, thereby improving measurement accuracy.
  • it may be selectively applied to a fluorescence-type immunoassay diagnostic device or a reflected light-type immunoassay diagnostic device.
  • the first reactant (P1) and the second reactant (P2) are specifically combined with different target analytes (T1, T2) in the biological sample, respectively, fluorescence A biological assembly for detection (M1) and a biological assembly for detection of reflected light (M2) are formed.
  • the fluorescence detection biocomposite (M1) and the reflected light detection biocomposite (M2) formed as described above are developed from the membrane 103 toward the adsorption pad 104 as described in FIG. 2A, and in this process, FIG. It is captured by the biomaterial (S) applied to the reaction region 110 as shown in (b) and (b) of FIG. 4, and in the reaction region 110, a biocombinant for fluorescence detection (M1) and reflected light
  • the detection biocomposite (M2) is combined with the biomaterial (S) to form a fluorescence detection biocomposite (V1) and a reflected light detection biocomposite (V2), respectively.
  • the biocomposite V1 for fluorescence detection and the biocomposite V2 for detection of reflected light are formed in the reaction region 110, so that the first inspection light (When irradiation of the ultraviolet wavelength band illumination light), fluorescence is generated by the first probe material R1 of the fluorescence detection biocomposite V1 to detect fluorescence, and similarly, the second inspection light ( When irradiated with visible light (illumination light), reflected light is generated with respect to the inspection light by the second probe material R2 of the biological assembly M2 for detecting the reflected light, thereby detecting the reflected light.
  • the first inspection light When irradiation of the ultraviolet wavelength band illumination light), fluorescence is generated by the first probe material R1 of the fluorescence detection biocomposite V1 to detect fluorescence
  • the second inspection light When irradiated with visible light (illumination light), reflected light is generated with respect to the inspection light by the second probe material R2 of the biological assembly M2 for detecting the reflected light, thereby
  • the target analyte T1 which is two specific disease factors
  • the target analyte T1 is 1 It can be diagnosed through a meeting inspection process. That is, it is possible to diagnose whether the first target analyte T1, which is a first specific disease factor, is present in the biological sample through fluorescence detection by irradiation of the first test light, and detection of reflected light by irradiation of the second test light is performed. Through this, it can be diagnosed whether the second target analyte T2, which is a second specific disease factor, is present in the biological sample. Therefore, simply by sequentially irradiating the first and second test light onto the test strip 100, two specific disease factors can be simultaneously diagnosed through a single test process, thereby enabling multiple analysis.
  • the test strip 100 is a detection reactant (P1, P2), a first reactant (P1) combined with a fluorescent material and a second reactant ( P2) is applied to enable detection of both fluorescence and reflected light for the target analyte (T1) in the biological sample, so that the test function is practically performed twice through one test, and accordingly, the test result is mutually verified.
  • P1, P2 a detection reactant
  • P1 first reactant
  • P2 a second reactant
  • FIG. 5 is a diagram conceptually showing the configuration of a multi-immunoassay diagnosis apparatus according to an embodiment of the present invention.
  • the multi-immunoassay diagnostic apparatus selectively irradiates the first test light and the second test light to the test strip 100 and the reaction region 110 of the test strip 100 described above.
  • the optical module 200 to detect the fluorescence generated from the biocomposite V1 for fluorescence detection of the reaction region 110 by irradiation of the first inspection light or the reflected light of the reaction region 110 by irradiation of the second inspection light It is configured to include a detection sensor 300 for detecting the reflected light reflected from the detection biological complex (V2).
  • the optical module 200 may include a first light source unit 210 that irradiates a first inspection light (illumination light of an ultraviolet ray wavelength band), and a second light source unit 220 that irradiates a second inspection light (illumination light of a visible light series). And, it may include a lens module in which a plurality of lenses are combined so that the inspection light passes.
  • a separate control unit 400 is configured to operate and control the optical module 200, and the control unit 400 may control the operation so that the first inspection light and the second inspection light are sequentially irradiated.
  • the detection sensor 300 may be disposed behind the lens module of the optical module 200, and may be configured to receive and detect fluorescence or reflected light generated in the reaction region 110 of the test strip 100.
  • FIG. 6 is a perspective view schematically showing the configuration of a multi-immunoassay diagnosis system according to an embodiment of the present invention
  • FIG. 7 is a schematic view of a case of a multi-immunoassay diagnosis system according to an embodiment of the present invention
  • Fig. 8 is a schematic cross-sectional view showing the structure of a multi-immunoassay diagnosis system according to an embodiment of the present invention
  • Fig. 9 is a schematic view showing the structure of a multi-immunity analysis diagnosis system according to an embodiment of the present invention. It is a functional block diagram functionally shown.
  • the multiple immunoassay diagnostic system includes the test strip 100 described above, and a receiving space is formed therein, and the test strip 100 is inserted into the inner space on the side surface.
  • a photographing hole 420 is formed so that the test strip 100 inserted into the strip insertion part 410 can be photographed on the upper surface, and a test strip inserted into the strip insertion part 410
  • the optical module 200 for selectively irradiating the first and second inspection light toward 100) and the test strip 100 inserted into the strip insertion unit 410 can be photographed through the photographing hole 420 Fluorescence generated in the reaction area of the test strip 100 by analyzing the image captured by the mobile terminal 500 equipped with the camera 510 and the camera 510 of the mobile terminal 500 and Alternatively, it is configured to include an operation unit 530 that calculates the intensity of the reflected light.
  • the test strip 100 may be inserted into the strip insertion part 410 of the case 400 as a unit of a kit in a form accommodated in a separate strip case 130, and an inspection at one side of the strip case 130
  • An external display window 131 made of a transparent material may be formed so that the reaction region 110 of the strip 100 is exposed to the outside.
  • the optical module 200 may include a first light source unit 210 that irradiates a first inspection light (illumination light of an ultraviolet ray wavelength band), and a second light source unit 220 that irradiates a second inspection light (illumination light of a visible light series). And, it may be fixedly mounted on one side of the inner wall surface of the case 400.
  • the strip insertion portion 410 of the case 400 supports the test strip 100 by extending from the insertion hole 411 to the insertion hole 411 formed on one side of the case 400 and the case 400 It may be configured to include a strip support portion 412 and a guide portion 413 protruding upward from the inner end of the strip support portion 412 to limit the insertion range of the test strip 100 and guide the insertion position.
  • the test strip 100 is inserted into the strip insertion portion 410 of the case 400, and the mobile terminal 500 is mounted on the upper surface of the case 400, and in this state, the camera 510 of the mobile terminal 500 ) Through the reaction area 110 of the test strip 100 may be photographed.
  • the mobile terminal 500 is seated so as to be in contact with the upper surface of the case 400, and the camera 510 must be seated to be positioned in the photographing hole 420.
  • a separate terminal guide part may be formed on the upper surface of the case 400 to protrude upward so as to guide the seating position of the mobile terminal 500.
  • the optical module 200 Before photographing the reaction region 110 through the camera 510 of the mobile terminal 500, the optical module 200 must be operated to irradiate the inspection light.
  • the first light source unit 210 is operated to The reaction region 110 is photographed through the camera 510 in a state of irradiation, and thereafter, the reaction region 110 through the camera 510 is irradiated with the second inspection light by operating the second light source unit 220. Shoot again. These two photographed images represent a fluorescence generation state and a reflected light generation state, respectively.
  • the two captured images are applied to the operation unit 530, and the operation unit 530 analyzes the two captured images to calculate the intensity of fluorescence and reflected light generated in the reaction region 110 of the test strip 100, respectively.
  • the mobile terminal 500 may be applied with a smartphone, and the operation unit 530 may be configured in an application program method through an internal pro sensor of the mobile terminal 500 or the like.
  • the optical module 200 is provided with a separate light source communication unit 230 to enable communication with the mobile terminal 500, the mobile terminal 500 can communicate with the light source communication unit 230 through the mobile communication unit 520. have.
  • the optical module 200 can be operated and controlled through the mobile terminal 500, and the operation can be controlled so that the first inspection light and the second inspection light are sequentially irradiated. That is, when a user manipulates an application program of the mobile terminal 500 to transmit an operation signal for the optical module 200, the optical module 200 receives such an operation signal and performs a first inspection according to the applied operation signal. It can be operated so that the light and the second inspection light are sequentially irradiated.
  • the inner wall surface of the case 400 may be formed of a light absorbing material that absorbs light, and the upper surface of the case 400 is provided to prevent the inflow of external light through the photographing hole 420.
  • a separate contact guide unit (not shown) for guiding the mobile terminal 500 to be in close contact may be formed.
  • the multiple immunoassay system enables both fluorescence detection and reflected light detection during a single test of one test strip 100 to enable multiple diagnosis.
  • an analysis device equipped with a detection sensor, a control unit, and an electronic device, it is possible to perform immunological analysis and diagnosis work quickly and conveniently using a mobile terminal such as a smart phone.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

본 발명은 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치에 관한 것으로, 생체 시료 내의 타겟 분석체에 대한 탐지용 반응체로서 형광 물질이 결합된 제 1 반응체와 반사광 물질이 결합된 제 2 반응체를 적용함으로써, 하나의 반응 영역에서 타겟 분석체에 대한 형광 검출 및 반사광 검출이 모두 가능하여 진단 정확도를 향상시킬 수 있고, 사용자의 필요에 따라 형광 방식 면역 분석 진단 장치에 적용하거나 또는 반사광 방식 면역 분석 진단 장치에 선택적으로 적용할 수 있어 사용 편의성이 증가하고, 하나의 반응 영역에서 형광 및 반사광을 통해 2개의 타겟 분석체를 검출할 수 있으며, 하나의 반응 영역을 갖는 단순하고 소형화된 구조로 다중 분석이 가능한 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치를 제공한다.

Description

[규칙 제26조에 의한 보정 28.05.2020] 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치
본 발명은 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치에 관한 것이다. 보다 상세하게는 생체 시료 내의 타겟 분석체에 대한 탐지용 반응체로서 형광 물질이 결합된 제 1 반응체와 반사광 물질이 결합된 제 2 반응체를 적용함으로써, 하나의 반응 영역에서 타겟 분석체에 대한 형광 검출 및 반사광 비색 검출이 모두 가능하여 진단 정확도를 향상시킬 수 있고, 사용자의 필요에 따라 형광 방식 면역 분석 진단 장치에 적용하거나 또는 반사광 비색 방식 면역 분석 진단 장치에 선택적으로 적용할 수 있어 사용 편의성이 증가하고, 하나의 반응 영역에서 형광 및 반사광을 통해 2개의 타겟 분석체를 검출할 수 있으며, 하나의 반응 영역을 갖는 단순하고 소형화된 구조로 다중 분석이 가능한 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치에 관한 것이다.
질병 진단에 사용되는 검사 방법은 주로 효소 반응에 의한 발색, 형광 등에 기반을 두고 있으나, 최근 항원과 항체 사이의 면역 반응을 이용한 면역검사(Immunoassay)를 이용하는 방법도 사용되고 있다. 이러한 면역검사 방법은 주로 항체에 방사성 동위 원소나 형광 물질 등으로 표지를 해서 항원의 유무를 판별하고, 방사선이나 형광 등의 세기에 의해 정량화할 수 있는 표지식 바이오센서(biosensor)를 이용한다.
기존의 면역분석법은 항원이나 항체에 방사선 물질, 발광 물질 또는 형광 물질을 표지하여 얻어지는 신호를 측정하는 방법과, 효소의 촉매 반응에 광 표지를 결합한 엘리사(Enzyme Linked Immunosorbent Assay : ELISA), 웨스턴 블로팅(Western blotting) 등과 같은 광학적 측정 방법이 가장 많이 이용되었다. 이러한 방법들은 주로 실험실 위주의 숙련된 연구원에 의해 수행될 수 있는 복잡한 절차가 필요하고, 분석을 위한 장치가 고가의 대형 장치이며, 분석 시간이 오래 소요되는 단점이 있다.
면역 센서의 목적 물질인 항체 등은 전혈(whole blood), 혈청(serum), 소변(urine) 등과 같은 생체시료에서 매우 낮은 농도로 존재하기 때문에, 면역 센서는 여타 물질을 검출하는 바이오센서 기술보다 센서의 검출 한도 면에서 훨씬 뛰어난 고감도의 신호화 기술을 갖추어야 한다. 또한, 항체나 항원 등과 같은 단백질은 외부 환경의 변화에 의해 쉽게 구조가 변화되기 때문에, 항원이나 항체의 인식 부위가 변질하여 고유의 생체 인식 기능을 잃어버리기 쉽다. 고체 형태에서 분석을 해야하는 면역 센서의 여건상 이러한 생체물질들의 활성을 유지할 수 있는 생체 물질에 적합한 센서 표면의 제작, 검출 한계를 높일 수 있는 생체물질의 고정화 기술, 그리고 생체 인식반응을 정량화된 신호로 전환하는 측정 방법의 확보가 필요하다.
면역분석용 신속 진단 검사 키트(rapid diagnostic test kit for immunoassay)는 혈액, 소변, 타액 등과 같은 생체시료를 이용하여 진단검사가 가능한 현장검사(point-of-care)를 위한 검사 도구이다. 이러한 신속 진단 검사 키트의 예로서 임신 진단 키트, 에이즈 진단 키트 등이 있다.
이러한 진단 장치는 진단을 위해 소정의 생체물질(단백질, DNA, 항원 등)을 검출할 수 있는 방법을 확립해야 한다. 종래의 생체물질 검출 방법으로, 유기 염료 등을 이용하는 형광 표지 방법과, 반사광 물질 등을 이용하는 반사광 표지 방법이 있다.
이러한 신속 면역 분석 진단 장치는 형광 방식이나 반사광 방식이나 동일한 작동 원리로 작동하며, 생체 시료를 모세관 현상을 통해 흡착 공급할 수 있는 검사 스트립을 이용한다. 외부에서 공급된 생체 시료가 모세관 현상에 의해 검사 스트립 내에서 길이 방향으로 측방 유동하므로, 이러한 방식을 측방 유동 면역 분석법이라고도 한다.
검사 스트립은 일반적으로 샘플 패드와, 프로브 패드와, 멤브레인과, 흡착 패드가 길이 방향을 따라 순차적으로 배치된다. 샘플 패드에는 외부로부터 생체 시료가 공급되고, 공급된 생체 시료는 모세관 현상에 의해 프로브 패드, 멤브레인, 흡착 패드로 순차적으로 유동한다. 프로브 패드에는 생체 시료 중의 타겟 분석체(항원 등)와 결합할 수 있도록 탐지용 반응체가 도포되며, 프로브 패드에서 용출된 탐지용 반응체와 타겟 분석체가 결합하여 탐지용 생체 결합체가 형성된다. 멤브레인에는 탐지용 생체 결합체를 포획하도록 포획 물질이 도포되는 반응 영역이 형성되며, 반응 영역에서 탐지용 생체 결합체와 포획 물질이 결합되어 탐지용 생체 복합체가 형성된다. 흡착 패드는 생체 시료의 흡착 이동이 가능하도록 다공성 물질로 구성된다.
검사 스트립의 반응 영역에 검사광을 조사하면, 탐지용 반응체의 종류에 따라 반응 영역의 탐지용 생체 복합체에서 형광이 발생되거나 또는 검사광이 반사되어 반사광이 발생되며, 이러한 형광 또는 반사광을 검출하여 특정 질환 인자에 대한 진단을 수행한다.
이러한 구조에 따라 형광 방식 면역 분석 진단 장치에서는 검사광 종류로 자외선 광을 사용함으로써, 탐지용 생체 복합체에서 형광을 발생시켜 형광을 검출하고, 반사광 방식 면역 분석 진단 장치에서는 검사광 종류로 가시광을 사용함으로써, 탐지용 생체 복합체로부터 검사광을 반사시켜 반사광을 검출한다. 검출된 형광 또는 반사광의 검출 강도 등을 분석하여 특정 질환 인자가 있는지 진단할 수 있다.
이러한 형광 방식 면역 분석 진단 장치와 반사광 방식 면역 분석 진단 장치는 각각 적용되는 검사광의 광원이 서로 다를 뿐만 아니라 검사 스트립의 탐지용 반응체에 대한 조성이 서로 달라 병용 검사가 불가능하여 현재까지 각각 독립적인 방식으로 연구 개발되어 오고 있다.
또한, 검사 스트립은 일반적으로 하나의 반응 영역을 갖도록 형성되는데, 이에 따라 1회 검사시 어느 하나의 특정 질환 인자가 있는지만을 검사할 수 있을 뿐 다수의 특정 질환 인자가 있는지 여부를 검사할 수 없고, 해당 검사 정확도를 판단할 수 없어 1회 검사에 대한 정확도를 판단하기 위해서는 검사를 한번 더 진행하여 이를 검증해야 한다.
하나의 검사 스트립을 이용한 1회 검사를 통해 다수의 특정 질환 인자를 검사하거나 또는 검사 정확도 검증을 위해, 검사 스트립에 형성된 반응 영역의 개수를 증가시키는 방식 등이 제안되었는데, 이 경우 검사 스트립의 길이가 증가하게 되고, 그에 따른 생체 시료 검체량 및 반응 시간이 증가하는 등의 문제가 있었다.
특히, 질병은 복잡한 생물학적 상호 작용과 연계되어 다양한 단백질이 질병과 복잡하게 연관돼 있으므로, 정확한 진단을 위해서는 1회 검사시 다중 분석이 가능한 진단 방식에 대해 임상적 요구가 높아지고 있으나, 현재 사용되고 있는 면역 분석 진단 장치에서는 이에 대한 해결책이 마련되고 있지 않다.
본 발명은 종래 기술의 문제점을 해결하기 위해 발명한 것으로서, 본 발명의 목적은 생체 시료 내의 타겟 분석체에 대한 탐지용 반응체로서 형광 물질이 결합된 제 1 반응체와 반사광 물질이 결합된 제 2 반응체를 적용함으로써, 하나의 반응 영역에서 타겟 분석체에 대한 형광 검출 및 반사광 검출이 모두 가능하여, 면역 반응의 고질적인 문제인 후크 효과(Hook effect)를 개선하여 진단 정확도를 향상시킬 수 있을 뿐만 아니라 반응 영역을 추가하지 않더라도 더욱 정확하고 다양한 방식의 진단이 가능하며, 이에 따라 다중 진단 기능을 수행함과 동시에 소형화 및 구조 단순화가 가능한 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치를 제공하는 것이다.
본 발명의 다른 목적은 사용자의 필요에 따라 형광 방식 면역 분석 진단 장치에 적용하거나 또는 반사광 방식 면역 분석 진단 장치에 선택적으로 적용할 수 있어 사용 편의성이 증가하고 사용 범위를 더욱 확장할 수 있는 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치를 제공하는 것이다.
본 발명의 또 다른 목적은 제 1 반응체 및 제 2 반응체가 서로 다른 타겟 분석체와 결합하도록 함으로써, 하나의 반응 영역에서 형광 및 반사광을 통해 2개의 타겟 분석체를 검출할 수 있고, 이에 따라 하나의 반응 영역을 갖는 단순하고 소형화된 구조로 1회 검사시 2개 특정 질환 인자를 진단할 수 있는 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치를 제공하는 것이다.
본 발명의 또 다른 목적은 별도의 검출 센서 및 전자 장치와 같은 복잡한 구조의 분석 장치 없이도 스마트 폰과 같은 모바일 단말기를 이용하여 신속하고 편리하게 면역 분석 진단 작업이 가능한 다중 면역 분석 진단 시스템을 제공하는 것이다.
본 발명은, 외부로부터 생체 시료가 공급되는 샘플 패드와, 생체 시료 중의 타겟 분석체와 결합할 수 있도록 탐지용 반응체가 도포되는 프로브 패드와, 타겟 분석체와 탐지용 반응체가 결합된 탐지용 생체 결합체를 포획하도록 반응 영역이 형성되는 멤브레인을 포함하는 측방 유동 면역 분석용 검사 스트립에 있어서, 상기 탐지용 반응체는 제 1 반응체 및 제 2 반응체를 포함하고, 상기 제 1 반응체에는 검사광 조사에 의해 형광을 발생시키는 제 1 프로브 물질이 고정 결합되고, 상기 제 2 반응체에는 검사광 조사에 의해 반사광을 발생시키는 제 2 프로브 물질이 고정 결합되며, 상기 제 1 반응체에 의한 형광 검출 및 상기 제 2 반응체에 의한 반사광 검출이 모두 가능한 것을 특징으로 하는 다중 면역 분석용 검사 스트립을 제공한다.
이때, 상기 제 1 반응체는 생체 시료 중의 타겟 분석체와 결합하여 형광 탐지용 생체 결합체를 형성하고, 상기 제 2 반응체는 상기 제 1 반응체가 결합하는 타겟 분석체와 동일한 종류의 타겟 분석체와 결합하여 반사광 탐지용 생체 결합체를 형성하며, 상기 반응 영역은 상기 형광 탐지용 생체 결합체 및 반사광 탐지용 생체 결합체를 모두 포획할 수 있도록 형성될 수 있다.
또한, 상기 제 1 반응체는 생체 시료 중의 타겟 분석체와 결합하여 형광 탐지용 생체 결합체를 형성하고, 상기 제 2 반응체는 상기 제 1 반응체가 결합하는 타겟 분석체와 서로 다른 종류의 타겟 분석체와 결합하여 반사광 탐지용 생체 결합체를 형성하며, 상기 반응 영역은 상기 형광 탐지용 생체 결합체 및 반사광 탐지용 생체 결합체를 모두 포획할 수 있도록 형성될 수 있다.
또한, 상기 반응 영역은 상기 멤브레인을 폭 방향으로 가로지르는 방향의 라인 형태로 형성될 수 있다.
한편, 본 발명은, 생체 시료 및 상기 생체 시료 중의 타겟 분석체와 결합할 수 있는 탐지용 반응체가 공급되는 샘플 패드와, 타겟 분석체와 탐지용 반응체가 결합된 탐지용 생체 결합체를 포획하도록 반응 영역이 형성되는 멤브레인을 포함하는 측방 유동 면역 분석용 검사 스트립을 이용한 면역 분석 진단 방법에 있어서, 상기 샘플 패드에 생체 시료 및 탐지용 반응체를 공급하는 단계를 포함하고, 상기 탐지용 반응체는 제 1 반응체 및 제 2 반응체를 포함하고, 상기 제 1 반응체에는 검사광 조사에 의해 형광을 발생시키는 제 1 프로브 물질이 고정 결합되고, 상기 제 2 반응체에는 검사광 조사에 의해 반사광을 발생시키는 제 2 프로브 물질이 고정 결합되며, 상기 제 1 반응체에 의한 형광 검출 및 상기 제 2 반응체에 의한 반사광 검출이 모두 가능한 것을 특징으로 하는 다중 면역 분석 진단 방법을 제공한다.
또한, 본 발명은, 상기 검사 스트립; 상기 검사 스트립의 반응 영역에 제 1 검사광 및 제 2 검사광을 선택적으로 조사하는 광학 모듈; 및 상기 제 1 검사광의 조사에 의해 상기 반응 영역에서 발생한 형광을 검출하거나 또는 상기 제 2 검사광의 조사에 의해 상기 반응 영역에서 반사되는 반사광을 검출하는 검출 센서를 포함하는 것을 특징으로 다중 면역 분석 진단 장치를 제공한다.
이때, 상기 다중 면역 분석 진단 장치는, 상기 제 1 검사광 및 제 2 검사광이 순차적으로 각각 조사되도록 상기 광학 모듈을 동작 제어하는 제어부를 더 포함하여 구성될 수 있다.
한편, 본 발명은, 상기 검사 스트립; 내부에 수용 공간이 형성되며, 측면에는 상기 검사 스트립이 내부 공간에 삽입되도록 스트립 삽입부가 형성되고 상면에는 상기 스트립 삽입부에 삽입된 상기 검사 스트립을 촬영할 수 있도록 촬영홀이 형성되는 케이스; 상기 스트립 삽입부에 삽입된 상기 검사 스트립을 향해 제 1 검사광 및 제 2 검사광을 선택적으로 조사하는 광학 모듈; 상기 촬영홀을 통해 상기 스트립 삽입부에 삽입된 검사 스트립을 촬영할 수 있는 카메라가 장착된 모바일 단말기; 및 상기 모바일 단말기의 카메라를 통해 촬영된 영상을 인가받고, 인가받은 영상을 분석하여 상기 검사 스트립의 반응 영역에서 발생된 형광 또는 반사광의 강도를 산출하는 연산부를 포함하는 것을 특징으로 하는 다중 면역 분석 진단 시스템을 제공한다.
이때, 상기 광학 모듈은 상기 케이스에 장착될 수 있다.
또한, 상기 광학 모듈은 상기 모바일 단말기와 통신 가능하도록 별도의 광원 통신부가 구비되며, 상기 광원 통신부를 통해 상기 모바일 단말기와 통신하며 상기 제 1 검사광 및 제 2 검사광이 순차적으로 조사되도록 동작 제어될 수 있다.
또한, 상기 케이스의 내측면은 빛을 흡수하는 흡광 재질로 형성될 수 있다.
본 발명에 의하면, 생체 시료 내의 타겟 분석체에 대한 탐지용 반응체로서 형광 물질이 결합된 제 1 반응체와 반사광 물질이 결합된 제 2 반응체를 적용함으로써, 하나의 반응 영역에서 타겟 분석체에 대한 형광 검출 및 반사광 검출이 모두 가능하여, 면역 반응의 고질적인 문제인 후크 효과(Hook effect)를 개선하여 진단 정확도를 향상시킬 수 있을 뿐만 아니라 반응 영역을 추가하지 않더라도 더욱 정확하고 다양한 방식의 진단이 가능하며, 이에 따라 다중 진단 기능을 수행함과 동시에 소형화 및 구조 단순화가 가능한 효과가 있다.
또한, 사용자의 필요에 따라 형광 방식 면역 분석 진단 장치에 적용하거나 또는 반사광 방식 면역 분석 진단 장치에 선택적으로 적용할 수 있어 사용 편의성이 증가하고 사용 범위를 더욱 확장할 수 있는 효과가 있다.
또한, 제 1 반응체 및 제 2 반응체가 서로 다른 타겟 분석체와 결합하도록 함으로써, 하나의 반응 영역에서 형광 및 반사광을 통해 2개의 타겟 분석체를 검출할 수 있고, 이에 따라 하나의 반응 영역을 갖는 단순하고 소형화된 구조로 1회 검사시 2개 특정 질환 인자를 진단할 수 있는 효과가 있다.
또한, 별도의 검출 센서 및 전자 장치와 같은 복잡한 구조의 분석 장치 없이도 스마트 폰과 같은 모바일 단말기를 이용하여 신속하고 편리하게 면역 분석 진단 작업이 가능한 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 다중 면역 분석용 검사 스트립의 구조를 개념적으로 도시한 도면,
도 2는 본 발명의 일 실시예에 따른 다중 면역 분석용 검사 스트립의 탐지용 반응체의 형태를 개념적으로 도시한 도면,
도 3 및 도 4는 본 발명의 일 실시예에 따른 다중 면역 분석용 검사 스트립의 반응 영역에 포획된 탐지용 생체 결합체의 형태를 개념적으로 도시한 도면,
도 5는 본 발명의 일 실시예에 따른 다중 면역 분석 진단 장치의 구성을 개념적으로 도시한 도면,
도 6은 본 발명의 일 실시예에 따른 다중 면역 분석 진단 시스템의 구성을 개략적으로 도시한 사시도,
도 7은 본 발명의 일 실시예에 따른 다중 면역 분석 진단 시스템의 케이스에 대한 구성을 개략적으로 도시한 사시도,
도 8은 본 발명의 일 실시예에 따른 다중 면역 분석 진단 시스템의 구조를 개략적으로 도시한 단면도,
도 9는 본 발명의 일 실시예에 따른 다중 면역 분석 진단 시스템의 구성을 기능적으로 도시한 기능 블록도이다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1은 본 발명의 일 실시예에 따른 다중 면역 분석용 검사 스트립의 구조를 개념적으로 도시한 도면이고, 도 2는 본 발명의 일 실시예에 따른 다중 면역 분석용 검사 스트립의 탐지용 반응체의 형태를 개념적으로 도시한 도면이고, 도 3 및 도 4는 본 발명의 일 실시예에 따른 다중 면역 분석용 검사 스트립의 반응 영역에 포획된 탐지용 생체 결합체의 형태를 개념적으로 도시한 도면이다.
본 발명의 일 실시예에 따른 다중 면역 분석용 검사 스트립은 형광 검출 및 반사광 검출이 모두 가능한 구조로서, 샘플 패드(101), 프로브 패드(102), 멤브레인(103) 및 흡착 패드(104)가 검사 스트립(100)의 길이 방향을 따라 순차적으로 배치된다.
이러한 샘플 패드(101), 프로브 패드(102), 멤브레인(103) 및 흡착 패드(104)의 구성은 배경 기술에서 설명한 바와 같이 일반적인 검사 스트립에서의 기능과 동일한 기능을 수행하도록 형성된다.
즉, 샘플 패드(101)에는 생체 시료가 공급되고, 공급된 생체 시료는 모세관 현상에 의해 프로브 패드(102), 멤브레인(103), 흡착 패드(104)로 순차적으로 유동한다. 프로브 패드(102)에는 생체 시료 중의 타겟 분석체(T1)와 결합할 수 있도록 탐지용 반응체(P1,P2)가 도포되며, 프로브 패드(102)에서 타겟 분석체(T1)와 탐지용 반응체(P1,P2)가 결합하여 탐지용 생체 결합체(M1,M2)가 형성된다. 멤브레인(103)에는 탐지용 생체 결합체(M1,M2)를 포획하도록 포획 물질(생체 물질)(S)이 도포되는 반응 영역(110)이 형성되며, 반응 영역(110)에서 탐지용 생체 결합체(M1,M2)와 포획 물질(생체 물질)(S)이 결합되어 탐지용 생체 복합체(V1,V2)가 형성된다. 흡착 패드(104)는 생체 시료의 흡착 이동이 가능하도록 다공성 물질로 구성된다.
샘플 패드(101)에 공급된 생체 시료 중 타겟 분석체(T1)(예를 들면, 항원)는 프로브 패드(102)에서 탐지용 반응체(P1,P2)와 결합하여 탐지용 생체 결합체(M1,M2)를 형성하고, 탐지용 생체 결합체(M1,M2)는 멤브레인(103)을 따라 흡착 패드(104) 측으로 계속 전개되는 과정에서 멤브레인(103)에 형성된 반응 영역(110)에서 포획 물질(생체 물질)(S)에 의해 포획 결합되어 탐지용 생체 복합체(V1,V2)를 형성하게 된다.
검사 스트립(100)의 반응 영역(110)은 멤브레인(103)을 폭 방향으로 가로지르는 방향의 라인 형태로 형성되며, 하나의 테스트 라인(110)과 하나의 컨트롤 라인(120)을 갖도록 형성될 수 있다. 물론, 테스트 라인(110)은 필요에 따라 서로 이격되게 복수개 형성될 수 있다. 테스트 라인(110)에 형성된 탐지용 생체 복합체(V1,V2)로부터 형광 또는 반사광을 검출하여 특정 질환 인자가 있는지 진단하고, 컨트롤 라인(120)을 통해서는 테스트의 유효성을 판단할 수 있다.
본 발명의 일 실시예에 따라 프로브 패드(102)에 도포된 탐지용 반응체(P1,P2)는 제 1 반응체(P1) 및 제 2 반응체(P2)를 포함한다.
제 1 반응체(P1)는 검사광 조사에 의해 형광을 발생시키는 제 1 프로브 물질(R1)이 고정 결합되고, 제 2 반응체(P2)는 검사광 조사시 검사광을 반사시켜 반사광을 발생시키는 제 2 프로브 물질(R2)이 고정 결합된다.
좀더 자세히 살펴보면, 도 1에 도시된 바와 같이 프로브 패드(102)에는 탐지용 반응체(P1,P2)로서 제 1 반응체(P1)와 제 2 반응체(P2)가 함께 도포되는데, 이러한 탐지용 반응체(P1,P2)는 생체 물질(S)(예를 들어, DNA 또는 RNA를 포함하는 핵산(nucleic acid), 아미노산(amino acid), 지방(fat), 당단백질 (glycoprotein), 항체(antibody), 항원, 또는 이들의 조합)에 프로브 물질(R1,R2)이 고정 결합된 구조로 형성될 수 있다.
제 1 반응체(P1)는 검사광(자외선 광)의 조사시 형광을 발생시키는 제 1 프로브 물질(R1)이 생체 물질(S)에 고정 결합되는데, 제 1 프로브 물질(R1)로는 형광 염료, 퀀텀닷(quantum dot), 란탄계 물질(lanthanides: Eu, Tb, Dy, Sm) 등이 적용될 수 있다.
제 2 반응체(P2)는 검사광(가시광)의 조사시 검사광을 반사시켜 반사광을 발생시키는 제 2 프로브 물질(R2)이 생체 물질(S)에 고정 결합되는데, 제 2 프로브 물질(R2)로는 금속 나노 입자, 예를 들면, 금(Au), 은(Ag), 구리(Cu), 알루미늄(Al), 니켈(Ni), 코발트(Co), 철(Fe), 아연(Zn) 및 망간(Mn) 등이 적용될 수 있고, 이외에도 탄소(carbon) 입자, 라텍스(latex) 입자 등이 적용될 수 있다.
이러한 제 1 반응체(P1) 및 제 2 반응체(P2)는 기상 응축법(gas phase condensation method), 고주파 플라즈마 화학적 합성법(high frequency plasma chemical synthesis method), 화학 침전법(conventional chemical precipitation), 수열 합성법(hydrothermal synthesis method), 전기적 분산 반응법(electric dispersion re-action method), 연소 합성법(combustive synthesis method), 졸-겔 합성법(sol-gel synthesis method), 열화학 합성법(thermochemical synthesis method), 마이크로플루다이저 공정(microfludizer process), 마이크로에멀션 기술(microemulson technology), 고에너지 기계적 밀링(high energy mechanical milling), 또는 이들의 조합을 통해 형성될 수 있다.
도 2에 도시된 바와 같이, 제 1 반응체(P1)는 생체 시료 내의 감염성 질환 인자인 타겟 분석체(T1)와 특이적으로 결합되어 형광 탐지용 생체 결합체(M1)를 형성하고, 제 2 반응체(P2)는 생체 시료 내의 감염성 질환 인자인 타겟 분석체(T1)와 특이적으로 결합되어 반사광 탐지용 생체 결합체(M2)를 형성한다.
이때, 도 2의 (a)에 도시된 바와 같이 제 1 반응체(P1)와 제 2 반응체(P2)는 모두 동일한 타겟 분석체(T1)와 특이적으로 결합되도록 구성될 수도 있고, 도 2의 (b)에 도시된 바와 같이 제 1 반응체(P1)와 제 2 반응체(P2)가 서로 다른 타겟 분석체(T1,T2)와 특이적으로 결합되도록 구성될 수도 있다.
먼저, 도 2의 (a)에 도시된 경우를 살펴보면, 제 1 반응체(P1)와 제 2 반응체(P2)는 생체 시료 중 모두 동일한 타겟 분석체(T1)와 특이적으로 결합되어 각각 형광 탐지용 생체 결합체(M1) 및 반사광 탐지용 생체 결합체(M2)를 형성한다.
이와 같이 형성된 형광 탐지용 생체 결합체(M1) 및 반사광 탐지용 생체 결합체(M2)는 멤브레인(103)에서 흡착 패드(104) 측으로 전개되며, 이 과정에서 도 3의 (a) 및 도 4의 (a)에 도시된 바와 같이 반응 영역(110)에 도포된 생체 물질(S)에 의해 포획된다. 여기서, 반응 영역(110)에 도포된 생체 물질(S)은 생체 시료 내의 타겟 분석체(T1)와 특이적으로 결합할 수 있는 물질로, DNA 또는 RNA를 포함하는 핵산(nucleic acid), 아미노산(amino acid), 지방(fat), 당단백질 (glycoprotein), 항체(antibody), 항원, 또는 이들의 조합이 될 수 있다. 반응 영역(110)에서는 형광 탐지용 생체 결합체(M1) 및 반사광 탐지용 생체 결합체(M2)가 생체 물질(S)에 결합되어 각각 형광 탐지용 생체 복합체(V1) 및 반사광 탐지용 생체 복합체(V2)를 형성한다.
이와 같이 형광 탐지용 생체 결합체(M1) 및 반사광 탐지용 생체 결합체(M2)가 반응 영역(110)에서 포획되어 형광 탐지용 생체 복합체(V1) 및 반사광 탐지용 생체 복합체(V2)를 형성함으로써, 반응 영역(110)에 검사광(자외선 광)을 조사하면, 형광 탐지용 생체 복합체(V1)의 제 1 프로브 물질(R1)에 의해 형광이 발생하여 형광을 검출할 수 있고, 마찬가지로 반응 영역(110)에 검사광(가시광)을 조사하면, 반사광 탐지용 생체 결합체(M2)의 제 2 프로브 물질(R2)에 의해 검사광에 대한 반사광이 발생하여 반사광을 검출할 수 있다.
형광 검출을 위한 검사광은 자외선(UV) 파장대의 조명광, 예를 들면, 400nm 이하 파장의 조명광을 적용할 수 있으며, 이를 위한 광원으로 UV LED를 적용할 수 있다. 반사광 검출을 위한 검사광은 가시광 계열의 조명광을 적용할 수 있으며, 이를 위한 광원으로, 적색광 LED, 녹색광 LED, 청색광 LED, 백색광 LED 등 다양한 광원이 적용될 수 있다.
이와 같은 구조에 따라 본 발명의 일 실시예에 따른 검사 스트립(100)은 제 1 검사광(자외선 파장대의 조명광)과 제 2 검사광(가시광 계열의 조명광)을 반응 영역(110)에 순차적으로 조사함으로써, 형광 및 반사광을 각각 검출할 수 있다. 따라서, 특정 질환 인자인 하나의 타겟 분석체(T1)에 대한 검사 과정에서 형광 검출 및 반사광 검출을 통해 실질적으로 동시에 2회의 검사를 수행하게 되는 효과가 있으며, 이를 통해 검사 결과에 대한 상호 검증 효과가 발휘되어 진단 정확도를 향상시킬 수 있다. 또한, 인체내 존재하는 타겟 분석체의 농도 범위가 큰 경우, 저농도 구간은 형광을 이용해서 농도를 측정하고, 고농도 구간은 반사광을 이용해서 농도를 측정함으로써 측정 정확도를 향상시킬 수 있다. 그리고, 필요에 따라 형광 방식 면역 분석 진단 장치 또는 반사광 방식 면역 분석 진단 장치에 선택적으로 적용할 수 있다.
도 2의 (b)에 도시된 경우를 살펴보면, 제 1 반응체(P1)와 제 2 반응체(P2)는 생체 시료 중 서로 다른 타겟 분석체(T1,T2)와 특이적으로 결합되어 각각 형광 탐지용 생체 결합체(M1) 및 반사광 탐지용 생체 결합체(M2)를 형성한다.
이와 같이 형성된 형광 탐지용 생체 결합체(M1) 및 반사광 탐지용 생체 결합체(M2)는 도 2의 (a)에서 설명한 바와 마찬가지로 멤브레인(103)에서 흡착 패드(104) 측으로 전개되며, 이 과정에서 도 3의 (b) 및 도 4의 (b)에 도시된 바와 같이 반응 영역(110)에 도포된 생체 물질(S)에 의해 포획되고, 반응 영역(110)에서는 형광 탐지용 생체 결합체(M1) 및 반사광 탐지용 생체 결합체(M2)가 생체 물질(S)에 결합되어 각각 형광 탐지용 생체 복합체(V1) 및 반사광 탐지용 생체 복합체(V2)를 형성한다.
이와 같이 반응 영역(110)에 형광 탐지용 생체 복합체(V1) 및 반사광 탐지용 생체 복합체(V2)가 형성됨으로써, 도 2의 (a)에서 설명한 바와 마찬가지로 반응 영역(110)에 제 1 검사광(자외선 파장대의 조명광)을 조사하면, 형광 탐지용 생체 복합체(V1)의 제 1 프로브 물질(R1)에 의해 형광이 발생하여 형광을 검출할 수 있고, 마찬가지로 반응 영역(110)에 제 2 검사광(가시광 계열의 조명광)을 조사하면, 반사광 탐지용 생체 결합체(M2)의 제 2 프로브 물질(R2)에 의해 검사광에 대한 반사광이 발생하여 반사광을 검출할 수 있다.
이 경우에는, 제 1 반응체(P1)와 제 2 반응체(P2)에 결합되는 타겟 분석체(T1,T2)가 서로 다르므로, 2가지의 특정 질환 인자인 타겟 분석체(T1)를 1회의 검사 과정을 통해 진단할 수 있다. 즉, 제 1 검사광 조사에 의한 형광 검출을 통해 제 1 특정 질환 인자인 제 1 타겟 분석체(T1)가 생체 시료 내에 존재하는지 여부를 진단할 수 있고, 제 2 검사광 조사에 의한 반사광 검출을 통해 제 2 특정 질환 인자인 제 2 타겟 분석체(T2)가 생체 시료 내에 존재하는지 여부를 진단할 수 있다. 따라서, 단순히 제 1 및 제 2 검사광을 검사 스트립(100)에 순차적으로 조사함으로써, 1회의 검사 과정을 통해 2개의 특정 질환 인자를 동시에 진단할 수 있어 다중 분석이 가능하다는 장점이 있다.
정리하면, 본 발명의 일 실시예에 따른 검사 스트립(100)은 탐지용 반응체(P1,P2)로서 형광 물질이 결합된 제 1 반응체(P1)와 반사광 물질이 결합된 제 2 반응체(P2)가 적용되어 생체 시료 내의 타겟 분석체(T1)에 대한 형광 검출 및 반사광 검출이 모두 가능하므로, 1회 검사를 통해 실질적으로 2회 검사 기능을 발휘하게 되고, 이에 따라 검사 결과에 대한 상호 검증이 가능하고, 측정 가능 농도 범위를 증가시켜 진단 정확도를 향상시킬 수 있으며, 특히, 동일한 반응 영역(110)에 대해 형광 검출 및 반사광 검출이 가능하므로, 반응 영역(110)을 추가하지 않더라도 반응 영역(110)를 추가한 효과가 발휘되고, 이에 따라 검사 스트립(100)의 길이를 길게 증가시키지 않고도 더욱 정확하고 다양한 진단이 가능하다.
또한, 사용자의 필요에 따라 형광 방식 면역 분석 진단 장치에 적용하거나 또는 반사광 방식 면역 분석 진단 장치에 선택적으로 적용할 수 있으므로, 사용 편의성이 증가하고 사용 범위가 더욱 확장될 수 있다.
아울러, 제 1 반응체(P1)와 제 2 반응체(P2)가 서로 다른 종류의 타겟 분석체(T1,T2)와 결합하도록 함으로써, 1회 검사를 통해 2개의 타겟 분석체(T1,T2)를 동시에 검출할 수 있다.
도 5는 본 발명의 일 실시예에 따른 다중 면역 분석 진단 장치의 구성을 개념적으로 도시한 도면이다.
본 발명의 일 실시예에 따른 다중 면역 분석 진단 장치는, 이상에서 설명한 검사 스트립(100)과, 검사 스트립(100)의 반응 영역(110)에 제 1 검사광 및 제 2 검사광을 선택적으로 조사하는 광학 모듈(200)과, 제 1 검사광의 조사에 의해 반응 영역(110)의 형광 탐지용 생체 복합체(V1)로부터 발생한 형광을 검출하거나 또는 제 2 검사광의 조사에 의해 반응 영역(110)의 반사광 탐지용 생체 복합체(V2)로부터 반사되는 반사광을 검출하는 검출 센서(300)를 포함하여 구성된다.
광학 모듈(200)은 제 1 검사광(자외선 파장대의 조명광)을 조사하는 제 1 광원부(210)와, 제 2 검사광(가시광 계열의 조명광)을 조사하는 제 2 광원부(220)를 포함할 수 있으며, 이러한 검사광이 통과하도록 복수개의 렌즈가 조합된 렌즈 모듈을 포함할 수 있다.
이때, 별도의 제어부(400)가 광학 모듈(200)을 동작 제어하도록 구성되며, 제어부(400)는 제 1 검사광 및 제 2 검사광이 순차적으로 각각 조사되도록 동작 제어할 수 있다.
검출 센서(300)는 광학 모듈(200)의 렌즈 모듈 후방에 배치될 수 있으며, 검사 스트립(100)의 반응 영역(110)에서 발생한 형광 또는 반사광을 수광하여 검출하도록 구성될 수 있다.
이러한 구성에 따라 제 1 광원부(210)를 통해 제 1 검사광을 조사하면, 반응 영역(110)으로부터 형광이 발생하고, 발생한 형광이 검출 센서(300)에서 검출되는 방식으로 형광 검출이 가능하고, 이후, 제 2 광원부(220)를 통해 제 2 검사광을 조사하면, 반응 영역(110)으로부터 반사광이 발생하고, 발생한 반사광이 검출 센서(300)에서 검출되는 방식으로 반사광 검출이 가능하다.
따라서, 검사 스트립(100)의 동일한 반응 영역(110)에 대해 형광 검출 및 반사광 검출이 모두 가능하다.
도 6은 본 발명의 일 실시예에 따른 다중 면역 분석 진단 시스템의 구성을 개략적으로 도시한 사시도이고, 도 7은 본 발명의 일 실시예에 따른 다중 면역 분석 진단 시스템의 케이스에 대한 구성을 개략적으로 도시한 사시도이고, 도 8은 본 발명의 일 실시예에 따른 다중 면역 분석 진단 시스템의 구조를 개략적으로 도시한 단면도이고, 도 9는 본 발명의 일 실시예에 따른 다중 면역 분석 진단 시스템의 구성을 기능적으로 도시한 기능 블록도이다.
본 발명의 일 실시예에 따른 다중 면역 분석 진단 시스템은, 이상에서 설명한 검사 스트립(100)과, 내부에 수용 공간이 형성되며 측면에는 검사 스트립(100)이 내부 공간에 삽입되도록 스트립 삽입부(410)가 형성되고 상면에는 스트립 삽입부(410)에 삽입된 검사 스트립(100)을 촬영할 수 있도록 촬영홀(420)이 형성되는 케이스(400)와, 스트립 삽입부(410)에 삽입된 검사 스트립(100)을 향해 제 1 검사광 및 제 2 검사광을 선택적으로 조사하는 광학 모듈(200)과, 스트립 삽입부(410)에 삽입된 검사 스트립(100)을 촬영홀(420)을 통해 촬영할 수 있는 카메라(510)가 장착된 모바일 단말기(500)와, 모바일 단말기(500)의 카메라(510)를 통해 촬영된 영상을 인가받고 인가받은 영상을 분석하여 검사 스트립(100)의 반응 영역에서 발생된 형광 또는 반사광의 강도를 산출하는 연산부(530)를 포함하여 구성된다.
검사 스트립(100)은 별도의 스트립 케이스(130) 내부에 수용되는 형태로 하나의 키트 단위로 케이스(400)의 스트립 삽입부(410)에 삽입될 수 있으며, 스트립 케이스(130)의 일측에는 검사 스트립(100)의 반응 영역(110)이 외부 노출되도록 투명한 재질의 외부 표시창(131)이 형성될 수 있다.
광학 모듈(200)은 제 1 검사광(자외선 파장대의 조명광)을 조사하는 제 1 광원부(210)와, 제 2 검사광(가시광 계열의 조명광)을 조사하는 제 2 광원부(220)를 포함할 수 있으며, 케이스(400)의 내측 벽면 일측에 고정 장착될 수 있다.
케이스(400)의 스트립 삽입부(410)는 케이스(400)의 일측면에 형성되는 삽입홀(411)과, 삽입홀(411)로부터 케이스(400) 내측으로 연장되어 검사 스트립(100)을 지지하는 스트립 지지부(412)와, 스트립 지지부(412)의 내측 끝단에 상향 돌출되어 검사 스트립(100)의 삽입 범위를 제한하고 삽입 위치를 가이드하는 가이드부(413)를 포함하여 구성될 수 있다.
이러한 케이스(400)의 스트립 삽입부(410)에 검사 스트립(100)을 삽입하고, 케이스(400)의 상면에 모바일 단말기(500)를 안착시키며, 이 상태에서 모바일 단말기(500)의 카메라(510)를 통해 검사 스트립(100)의 반응 영역(110)을 촬영할 수 있다.
이때, 모바일 단말기(500)는 케이스(400)의 상면에 접촉되게 안착되며, 카메라(510)가 촬영홀(420)에 위치하도록 안착되어야 한다. 도시되지는 않았으나, 케이스(400)의 상면에는 모바일 단말기(500)의 안착 위치를 가이드하도록 별도의 단말기 가이드부(미도시)가 상향 돌출되는 형태로 형성될 수 있다.
모바일 단말기(500)의 카메라(510)를 통해 반응 영역(110)을 촬영하기 이전에 광학 모듈(200)을 작동시켜 검사광을 조사해야 하는데, 제 1 광원부(210)를 작동시켜 제 1 검사광을 조사한 상태에서 카메라(510)를 통해 반응 영역(110)을 촬영하고, 이후, 제 2 광원부(220)를 작동시켜 제 2 검사광을 조사한 상태에서 카메라(510)를 통해 반응 영역(110)을 다시 촬영한다. 이러한 2회의 촬영 영상은 각각 형광 발생 상태 및 반사광 발생 상태를 나타낸다.
2개의 촬영 영상은 연산부(530)로 인가되고, 연산부(530)에서는 2개의 촬영 영상을 분석하여 검사 스트립(100)의 반응 영역(110)에서 발생한 형광 및 반사광의 강도를 각각 산출한다.
이때, 모바일 단말기(500)는 스마트폰이 적용될 수 있으며, 연산부(530)는 모바일 단말기(500)의 내부 프로센서 등을 통한 어플리케이션 프로그램 방식으로 구성될 수 있다.
한편, 광학 모듈(200)은 모바일 단말기(500)와 통신 가능하도록 별도의 광원 통신부(230)가 구비되고, 모바일 단말기(500)는 모바일 통신부(520)를 통해 광원 통신부(230)와 통신할 수 있다. 이러한 구조에 따라 모바일 단말기(500)를 통해 광학 모듈(200)을 동작 제어할 수 있으며, 제 1 검사광 및 제 2 검사광이 순차적으로 조사되도록 동작 제어할 수 있다. 즉, 모바일 단말기(500)의 어플리케이션 프로그램을 사용자가 조작하여 광학 모듈(200)에 대한 작동 신호를 송신하면, 광학 모듈(200)은 이러한 작동 신호를 인가받고, 인가된 작동 신호에 따라 제 1 검사광 및 제 2 검사광이 순차적으로 조사되도록 작동할 수 있다.
이와 같이 광학 모듈(200)에 의해 반응 영역(110)에 검사광이 조사된 상태에서 카메라(510)에 의해 반응 영역(110)이 촬영되므로, 카메라 촬영 영상의 정확도를 위해서는 촬영시 외부 광에 의한 간섭이 방지되는 것이 바람직하다. 이를 위해 본 발명의 일 실시예에서는 케이스(400)의 내측 벽면이 빛을 흡수하는 흡광 재질로 형성될 수 있으며, 촬영홀(420)을 통한 외부 광의 유입을 방지하기 위해 케이스(400)의 상면에 모바일 단말기(500)가 밀착 접촉될 수 있도록 가이드하는 별도의 밀착 가이드부(미도시)가 형성될 수 있다.
이와 같은 구조에 따라 본 발명의 일 실시예에 따른 다중 면역 분석 시스템은, 하나의 검사 스트립(100)에 대한 1회 검사시 형광 검출 및 반사광 검출이 모두 가능하여 다중 진단이 가능하고, 특히, 별도의 검출 센서, 제어부, 전자 장치 등이 구비된 분석 장치 없이도 스마트 폰과 같은 모바일 단말기를 이용하여 신속하고 편리하게 면역 분석 진단 작업이 가능하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (11)

  1. 생체 시료가 공급되는 샘플 패드와, 생체 시료 중의 타겟 분석체와 결합할 수 있도록 탐지용 반응체가 도포되는 프로브 패드와, 타겟 분석체와 탐지용 반응체가 결합된 탐지용 생체 결합체를 포획하도록 반응 영역이 형성되는 멤브레인을 포함하는 측방 유동 면역 분석용 검사 스트립에 있어서,
    상기 탐지용 반응체는 제 1 반응체 및 제 2 반응체를 포함하고,
    상기 제 1 반응체에는 검사광 조사에 의해 형광을 발생시키는 제 1 프로브 물질이 고정 결합되고, 상기 제 2 반응체에는 검사광 조사에 의해 반사광을 발생시키는 제 2 프로브 물질이 고정 결합되며,
    상기 제 1 반응체에 의한 형광 검출 및 상기 제 2 반응체에 의한 반사광 검출이 모두 가능한 것을 특징으로 하는 다중 면역 분석용 검사 스트립.
  2. 제 1 항에 있어서,
    상기 제 1 반응체는 생체 시료 중의 타겟 분석체와 결합하여 형광 탐지용 생체 결합체를 형성하고, 상기 제 2 반응체는 상기 제 1 반응체가 결합하는 타겟 분석체와 동일한 종류의 타겟 분석체와 결합하여 반사광 탐지용 생체 결합체를 형성하며,
    상기 반응 영역은 상기 형광 탐지용 생체 결합체 및 반사광 탐지용 생체 결합체를 모두 포획할 수 있도록 형성되는 것을 특징으로 하는 다중 면역 분석용 검사 스트립.
  3. 제 1 항에 있어서,
    상기 제 1 반응체는 생체 시료 중의 타겟 분석체와 결합하여 형광 탐지용 생체 결합체를 형성하고, 상기 제 2 반응체는 상기 제 1 반응체가 결합하는 타겟 분석체와 서로 다른 종류의 타겟 분석체와 결합하여 반사광 탐지용 생체 결합체를 형성하며,
    상기 반응 영역은 상기 형광 탐지용 생체 결합체 및 반사광 탐지용 생체 결합체를 모두 포획할 수 있도록 형성되는 것을 특징으로 하는 다중 면역 분석용 검사 스트립.
  4. 제 1 항에 있어서,
    상기 반응 영역은 상기 멤브레인을 폭 방향으로 가로지르는 방향의 라인 형태로 형성되는 것을 특징으로 하는 다중 면역 분석용 검사 스트립.
  5. 생체 시료 및 상기 생체 시료 중의 타겟 분석체와 결합할 수 있는 탐지용 반응체가 공급되는 샘플 패드와, 타겟 분석체와 탐지용 반응체가 결합된 탐지용 생체 결합체를 포획하도록 반응 영역이 형성되는 멤브레인을 포함하는 측방 유동 면역 분석용 검사 스트립을 이용한 면역 분석 진단 방법에 있어서,
    상기 샘플 패드에 생체 시료 및 탐지용 반응체를 공급하는 단계를 포함하고,
    상기 탐지용 반응체는 제 1 반응체 및 제 2 반응체를 포함하고,
    상기 제 1 반응체에는 검사광 조사에 의해 형광을 발생시키는 제 1 프로브 물질이 고정 결합되고, 상기 제 2 반응체에는 검사광 조사에 의해 반사광을 발생시키는 제 2 프로브 물질이 고정 결합되며,
    상기 제 1 반응체에 의한 형광 검출 및 상기 제 2 반응체에 의한 반사광 검출이 모두 가능한 것을 특징으로 하는 다중 면역 분석 진단 방법.
  6. 제 1 항에 기재된 검사 스트립;
    상기 검사 스트립의 반응 영역에 제 1 검사광 및 제 2 검사광을 선택적으로 조사하는 광학 모듈; 및
    상기 제 1 검사광의 조사에 의해 상기 반응 영역에서 발생한 형광을 검출하거나 또는 상기 제 2 검사광의 조사에 의해 상기 반응 영역에서 반사되는 반사광을 검출하는 검출 센서
    를 포함하는 것을 특징으로 다중 면역 분석 진단 장치.
  7. 제 6 항에 있어서,
    상기 제 1 검사광 및 제 2 검사광이 순차적으로 각각 조사되도록 상기 광학 모듈을 동작 제어하는 제어부
    를 더 포함하는 것을 특징으로 하는 다중 면역 분석 진단 장치.
  8. 제 1 항에 기재된 검사 스트립;
    내부에 수용 공간이 형성되며, 측면에는 상기 검사 스트립이 내부 공간에 삽입되도록 스트립 삽입부가 형성되고 상면에는 상기 스트립 삽입부에 삽입된 상기 검사 스트립을 촬영할 수 있도록 촬영홀이 형성되는 케이스;
    상기 스트립 삽입부에 삽입된 상기 검사 스트립을 향해 제 1 검사광 및 제 2 검사광을 선택적으로 조사하는 광학 모듈;
    상기 촬영홀을 통해 상기 스트립 삽입부에 삽입된 검사 스트립을 촬영할 수 있는 카메라가 장착된 모바일 단말기; 및
    상기 모바일 단말기의 카메라를 통해 촬영된 영상을 인가받고, 인가받은 영상을 분석하여 상기 검사 스트립의 반응 영역에서 발생된 형광 또는 반사광의 강도를 산출하는 연산부
    를 포함하는 것을 특징으로 하는 다중 면역 분석 진단 시스템.
  9. 제 8 항에 있어서,
    상기 광학 모듈은 상기 케이스에 장착되는 것을 특징으로 하는 다중 면역 분석 진단 시스템.
  10. 제 8 항에 있어서,
    상기 광학 모듈은 상기 모바일 단말기와 통신 가능하도록 별도의 광원 통신부가 구비되며, 상기 광원 통신부를 통해 상기 모바일 단말기와 통신하며 상기 제 1 검사광 및 제 2 검사광이 순차적으로 조사되도록 동작 제어되는 것을 특징으로 하는 다중 면역 분석 진단 시스템.
  11. 제 8 항에 있어서,
    상기 케이스의 내측면은 빛을 흡수하는 흡광 재질로 형성되는 것을 특징으로 하는 다중 면역 분석 진단 시스템.
PCT/KR2020/006251 2019-05-14 2020-05-13 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치 WO2020231158A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190056279A KR20200131531A (ko) 2019-05-14 2019-05-14 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치
KR10-2019-0056279 2019-05-14

Publications (2)

Publication Number Publication Date
WO2020231158A2 true WO2020231158A2 (ko) 2020-11-19
WO2020231158A3 WO2020231158A3 (ko) 2021-01-07

Family

ID=73289041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006251 WO2020231158A2 (ko) 2019-05-14 2020-05-13 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치

Country Status (2)

Country Link
KR (1) KR20200131531A (ko)
WO (1) WO2020231158A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102352617B1 (ko) * 2019-12-26 2022-01-19 프리시젼바이오 주식회사 다중 면역 분석용 검사 스트립 제조 방법 및 이를 이용하여 제조된 검사 스트립

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455298B1 (ko) 2001-06-15 2004-11-09 주)녹십자 투명한 플라스틱 지지체를 가진 면역크로마토그래피 분석 디바이스 및 그의 제조 방법
JP5100541B2 (ja) * 2008-07-04 2012-12-19 古河電気工業株式会社 標識粒子として、蛍光粒子と着色粒子とを含有するイムノクロマト法用コンジュゲートパッド、それを用いたイムノクロマト法用テストストリップおよび検査方法
EP2927688A4 (en) * 2012-11-28 2016-07-27 Furukawa Electric Co Ltd IMMUNOCHROMATOGRAPHY AND DETECTOR AND REAGENT FOR USE THEREIN
KR101718485B1 (ko) * 2015-04-27 2017-03-22 주식회사 수젠텍 면역크로마토그래피의 형광반응 또는 유색반응을 측정하기 위한 디바이스
KR101773416B1 (ko) * 2015-08-17 2017-09-01 원광대학교산학협력단 단말기 카메라를 이용한 휴대용 바이러스 감염 진단 시스템
KR20180064705A (ko) * 2016-12-06 2018-06-15 전자부품연구원 휴대폰을 이용한 휴대용 바이러스 검출 장치

Also Published As

Publication number Publication date
KR20200131531A (ko) 2020-11-24
WO2020231158A3 (ko) 2021-01-07

Similar Documents

Publication Publication Date Title
US7192777B2 (en) Apparatus and method for process monitoring
JP6231999B2 (ja) 調時機構を有する相互作用的試験デバイスおよび装置
US9488585B2 (en) Reader devices for optical and electrochemical test devices
US9335290B2 (en) Integrated test device for optical and electrochemical assays
WO2020138614A1 (ko) 다수 개의 검사선을 구비한 임신진단용 면역크로마토그래피 스트립 및 이를 포함하는 임신진단키트
US9075048B2 (en) Assay apparatus and its control method and reaction container for assay
US10799861B2 (en) Biochemical-immunological hybrid biosensor and sensor system including the same
US20030119030A1 (en) Immunoassay diagnostic probe and a method for use thereof
US11154857B2 (en) Single-channel, hybrid biosensor and sensor system including the same
WO2020231158A2 (ko) 다중 면역 분석용 검사 스트립 및 이를 이용한 다중 면역 분석 장치
WO2020231159A1 (ko) 면역분석 장치
WO2021132847A1 (ko) 다중 면역 분석용 검사 스트립 제조 방법 및 이를 이용하여 제조된 검사 스트립
CN108535241A (zh) 一种快速免疫检测装置及其应用
KR102273587B1 (ko) 이동식 슬릿을 이용한 면역 분석 진단 장치
CN208350646U (zh) 一种微流控装置及包含其的检测仪、检测系统
WO2021137387A1 (ko) 정전 용량 센서를 이용한 면역 분석 검사 스트립
WO2017196139A1 (ko) 진단용 키트
KR20200029677A (ko) 체외 진단 스트립 측정용 형광 리더기
KR102273588B1 (ko) 액정을 이용한 광학 스캔식 면역 분석 진단 장치
WO2022182023A1 (ko) 재귀반사 신호 측정용 가젯
WO2020138764A1 (ko) 형광 방식 면역 분석 진단 장치용 기준 카세트
WO2018143684A1 (ko) 급성 열성 질환을 진단하기 위한 현장 진단 시스템 및 방법
Yang et al. A Highly Sensitive Dual-Drive Microfluidic Device for Multiplexed Detection of Respiratory Virus Antigens
KR20200134681A (ko) 액정 제어형 면역 분석 진단 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805782

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805782

Country of ref document: EP

Kind code of ref document: A2