WO2020189796A1 - 非水系二次電池用セパレータ及び非水系二次電池 - Google Patents

非水系二次電池用セパレータ及び非水系二次電池 Download PDF

Info

Publication number
WO2020189796A1
WO2020189796A1 PCT/JP2020/012705 JP2020012705W WO2020189796A1 WO 2020189796 A1 WO2020189796 A1 WO 2020189796A1 JP 2020012705 W JP2020012705 W JP 2020012705W WO 2020189796 A1 WO2020189796 A1 WO 2020189796A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
separator
porous layer
resistant porous
aqueous secondary
Prior art date
Application number
PCT/JP2020/012705
Other languages
English (en)
French (fr)
Inventor
恵美 佐藤
理佳 藏谷
優 長尾
岡崎 真人
西川 聡
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to CN202080021579.3A priority Critical patent/CN113574729B/zh
Priority to JP2020547162A priority patent/JP6984033B2/ja
Priority to KR1020217029858A priority patent/KR20210129132A/ko
Priority to EP20772919.5A priority patent/EP3920264B1/en
Priority to US17/439,610 priority patent/US20220149483A1/en
Publication of WO2020189796A1 publication Critical patent/WO2020189796A1/ja
Priority to JP2021190421A priority patent/JP7223104B2/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a separator for a non-aqueous secondary battery and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries represented by lithium-ion secondary batteries are widely used as a power source for portable electronic devices such as notebook computers, mobile phones, digital cameras, and camcorders.
  • non-aqueous secondary batteries represented by lithium ion secondary batteries are being studied for application as batteries for electric power storage and electric vehicles because of their high energy density. With the widespread use of such non-aqueous secondary batteries, it is increasingly required to improve the safety of the batteries.
  • the separator which is one of the members constituting the non-aqueous secondary battery, is required to have heat resistance that does not easily break the film even when the inside of the battery becomes high temperature.
  • a separator having improved heat resistance a separator having a porous layer containing inorganic particles on a porous substrate is known.
  • Patent Document 1 or 2 discloses a separator having a porous layer containing barium sulfate particles on a porous substrate.
  • Patent Document 1 Japanese Patent No. 5429811
  • Patent Document 2 International Publication No. 2014/148036
  • a separator having a porous layer containing barium sulfate particles on a porous substrate is a separator having a porous layer containing magnesium hydroxide or alumina on the porous substrate. It was found that gas generation due to decomposition of the electrolyte or electrolyte is less likely to occur. Therefore, if the heat resistance of the porous layer containing barium sulfate particles is further improved, it is possible to provide a separator that greatly contributes to the safety of the battery. It is also important to increase the productivity of the separator using barium sulfate particles.
  • a heat-resistant porous layer containing a binder resin and barium sulfate particles provided on one or both sides of the porous base material is provided, and is included in the heat-resistant porous layer.
  • Non-aqueous system in which the average primary particle size of the barium sulfate particles is 0.01 ⁇ m or more and less than 0.30 ⁇ m, and the volume ratio of the barium sulfate particles to the heat-resistant porous layer is 30% by volume or more and less than 50% by volume.
  • Separator for secondary batteries [2] The separator for a non-aqueous secondary battery according to [1], wherein the binder resin contains a polyvinylidene fluoride-based resin.
  • the binder resin contains at least one selected from the group consisting of total aromatic polyamide, polyamideimide, poly-N-vinylacetamide, polyacrylamide, copolymerized polyether polyamide, polyimide and polyetherimide.
  • the heat-resistant porous layer has a mass per unit area is 1.0g / m 2 ⁇ 30.0g / m 2 on both sides total, according to any one of [1] to [7] Separator for non-aqueous secondary batteries.
  • the positive electrode, the negative electrode, and the separator for a non-aqueous secondary battery according to any one of [1] to [9] arranged between the positive electrode and the negative electrode are provided, and lithium-doped. -A non-aqueous secondary battery that obtains electromotive force by dedoping.
  • a separator for a non-aqueous secondary battery that suppresses gas generation inside the battery, has excellent heat resistance, and is also excellent in productivity.
  • a non-aqueous secondary battery in which gas generation inside the battery is suppressed, heat resistance is excellent, and productivity is improved.
  • the numerical range indicated by using "-" in the present disclosure indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • process is included in this term as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes as well as an independent process.
  • the amount of each component in the composition in the present disclosure if a plurality of substances corresponding to each component are present in the composition, unless otherwise specified, the plurality of types present in the composition. It means the total amount of substances.
  • MD means a long direction (that is, a transport direction) in a porous base material and a separator manufactured in a long shape, and is also referred to as a "machine direction”.
  • TD means a direction orthogonal to "MD” and is also referred to as "transverse direction”.
  • (meth) acrylic means “acrylic” or “methacryl”.
  • the "monomer unit" of a resin means a structural unit of a resin, which is a structural unit formed by polymerizing a monomer.
  • the amount of each component in the composition or layer is the total amount of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means.
  • “% by mass” and “% by weight” are synonymous, and “parts by mass” and “parts by weight” are synonymous.
  • the heat-resistant resin refers to a resin having a melting point of 200 ° C. or higher, or a resin having no melting point and a decomposition temperature of 200 ° C. or higher. That is, the heat-resistant resin in the present disclosure is a resin that does not melt or decompose in a temperature range of less than 200 ° C.
  • the separator for a non-aqueous secondary battery of the present disclosure (also simply referred to as “separator” in the present disclosure) includes a porous base material, a heat-resistant porous layer provided on one side or both sides of the porous base material. To be equipped.
  • the heat-resistant porous layer contains a binder resin and barium sulfate particles, and the average primary particle size of the barium sulfate particles contained in the heat-resistant porous layer is 0.01 ⁇ m or more and less than 0.30 ⁇ m.
  • the volume ratio of the barium sulfate particles to the heat-resistant porous layer is 30% by volume or more and less than 50% by volume.
  • Barium sulfate particles are less likely to decompose the electrolyte or electrolyte than magnesium hydroxide or alumina, and therefore are less likely to generate gas. Therefore, by using the barium sulfate particles as the inorganic filler of the heat-resistant porous layer, it is possible to obtain a separator that is less likely to generate gas and is less likely to cause swelling or deformation of the battery.
  • the average primary particle size of the barium sulfate particles contained in the heat-resistant porous layer is less than 0.30 ⁇ m from the viewpoint of enhancing the heat resistance of the heat-resistant porous layer.
  • the heat resistance of the heat-resistant porous layer is enhanced.
  • the mechanism is that the small particle size of the barium sulfate particles increases the surface area (specific surface area) of the barium sulfate particles per unit volume, and therefore the contact points between the barium sulfate particles and the binder resin increase. It is considered that the shrinkage of the heat-resistant porous layer when exposed to high temperature is suppressed. Further, it is presumed that a large number of barium sulfate particles having a small particle size are connected to each other, so that the heat-resistant porous layer is less likely to break when exposed to a high temperature.
  • the average primary particle size of the barium sulfate particles is less than 0.30 ⁇ m, more preferably 0.28 ⁇ m or less, still more preferably 0.25 ⁇ m or less.
  • the average primary particle size of the barium sulfate particles contained in the heat-resistant porous layer is 0.01 ⁇ m or more from the viewpoint of suppressing aggregation of the particles and forming a highly uniform heat-resistant porous layer. It is more preferably 0.05 ⁇ m or more, and further preferably 0.10 ⁇ m or more.
  • the porous base material in the present disclosure means a base material having pores or voids inside.
  • a base material a microporous film; a porous sheet made of a fibrous material such as a non-woven fabric or paper; a composite porous structure in which one or more other porous layers are laminated on the microporous film or the porous sheet. Quality sheet; etc.
  • a microporous membrane is preferable from the viewpoint of thinning and strength of the separator.
  • a microporous membrane means a membrane that has a large number of micropores inside and has a structure in which these micropores are connected so that a gas or liquid can pass from one surface to the other. To do.
  • a material having electrical insulation is preferable, and either an organic material or an inorganic material may be used.
  • the porous base material contains a thermoplastic resin in order to impart a shutdown function to the porous base material.
  • the shutdown function is a function of blocking the movement of ions by melting the constituent materials and closing the pores of the porous base material when the battery temperature rises to prevent thermal runaway of the battery.
  • the thermoplastic resin a thermoplastic resin having a melting point of less than 200 ° C. is preferable.
  • the thermoplastic resin include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; and the like, among which polyolefins are preferable.
  • a microporous membrane containing polyolefin As the porous substrate, a microporous membrane containing polyolefin (referred to as "polyolefin microporous membrane” in the present disclosure) is preferable.
  • the polyolefin microporous membrane include polyolefin microporous membranes applied to conventional battery separators, and it is preferable to select one having sufficient mechanical properties and ion permeability.
  • a microporous membrane containing polyethylene is preferable from the viewpoint of exhibiting a shutdown function.
  • the content of polyethylene in the polyolefin microporous membrane is preferably 95% by mass or more with respect to the total mass of the polyolefin microporous membrane.
  • the polyolefin microporous film is preferably a microporous film containing polypropylene from the viewpoint of having heat resistance that does not easily break when exposed to a high temperature.
  • the polyolefin microporous film is preferably a polyolefin microporous film containing polyethylene and polypropylene from the viewpoint of having a shutdown function and heat resistance that does not easily break when exposed to a high temperature.
  • a polyolefin microporous membrane examples include a microporous membrane in which polyethylene and polypropylene are mixed in one layer.
  • the microporous membrane preferably contains 95% by mass or more of polyethylene and 0% by mass or more and 5% by mass or less of polypropylene.
  • a polyolefin having a weight average molecular weight (Mw) of 100,000 to 5,000,000 is preferable.
  • Mw weight average molecular weight
  • the Mw of the polyolefin is 100,000 or more, sufficient mechanical properties can be imparted to the microporous membrane.
  • the Mw of the polyolefin is 5 million or less, the shutdown property of the microporous film is good, and the microporous film can be easily formed.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC). The details of the measurement by GPC will be described later.
  • a method for producing a polyolefin microporous film a method in which a molten polyolefin resin is extruded from a T-die to form a sheet, which is crystallized and then stretched and then heat-treated to form a microporous film: liquid paraffin or the like.
  • porous sheet made of a fibrous material examples include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; heat resistant materials such as total aromatic polyamide, polyamideimide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide.
  • porous sheets such as non-woven fabrics and papers made of fibrous materials such as sex resins; fibrous materials of cellulose;
  • the composite porous sheet examples include a sheet in which a functional layer is laminated on a porous sheet made of a microporous membrane or a fibrous material. Such a composite porous sheet is preferable from the viewpoint that further functions can be added by the functional layer.
  • the functional layer examples include a porous layer made of a heat-resistant resin and a porous layer made of a heat-resistant resin and an inorganic filler from the viewpoint of imparting heat resistance.
  • the heat-resistant resin include one or more heat-resistant resins selected from all-aromatic polyamides, polyimides, polyethersulfones, polysulfones, polyetherketones and polyetherimides.
  • the inorganic filler examples include metal oxides such as alumina; metal hydroxides such as magnesium hydroxide; and the like.
  • a method of compounding a method of applying a functional layer to a microporous membrane or a porous sheet, a method of joining a microporous membrane or a porous sheet and a functional layer with an adhesive, a method of joining a microporous membrane or a porous sheet with an adhesive, and a microporous membrane or a porous sheet. Examples thereof include a method of thermocompression bonding with the functional layer.
  • the surface of the porous substrate is subjected to various surface treatments for the purpose of improving the wettability with the coating liquid for forming the heat-resistant porous layer, as long as the properties of the porous substrate are not impaired. You may.
  • the surface treatment include corona treatment, plasma treatment, flame treatment, and ultraviolet irradiation treatment.
  • the thickness of the porous base material is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less, from the viewpoint of increasing the energy density of the battery.
  • the thickness of the porous base material is preferably 4 ⁇ m or more, and more preferably 6 ⁇ m or more, from the viewpoint of the manufacturing yield of the separator and the manufacturing yield of the battery.
  • the gullet value (JIS P8117: 2009) of the porous substrate is preferably 50 seconds / 100 mL to 400 seconds / 100 mL from the viewpoint of ion permeability or suppression of short circuit of the battery.
  • the porosity of the porous substrate is preferably 20% to 60% from the viewpoint of obtaining appropriate film resistance and shutdown function.
  • the constituent materials of the porous base material are a, b, c, ..., N
  • the mass of each constituent material is Wa, Wb, Wc, ..., Wn (g / cm 2 ), and each constituent material.
  • the true density of is da, db, dc, ..., Dn (g / cm 3 ), and the thickness of the porous substrate is t (cm).
  • the average pore size of the porous substrate is preferably 20 nm to 100 nm from the viewpoint of ion permeability or suppression of short circuit of the battery.
  • the average pore size of the porous substrate is measured using a palm poromometer according to ASTM E1294-89.
  • the piercing strength of the porous base material is preferably 200 g or more from the viewpoint of the manufacturing yield of the separator and the manufacturing yield of the battery.
  • the puncture strength of the porous substrate is the maximum puncture measured by performing a puncture test using a KES-G5 handy compression tester manufactured by Kato Tech Co., Ltd. under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec. Refers to the load (g).
  • the heat-resistant porous layer in the separator of the present disclosure contains at least a binder resin and barium sulfate particles.
  • the heat-resistant porous layer is a layer that has a large number of micropores and allows gas or liquid to pass from one surface to the other.
  • the heat-resistant porous layer in the separator of the present disclosure may be on only one side of the porous base material, or may be on both sides of the porous base material.
  • the heat resistance of the separator is more excellent, and the safety of the battery can be further enhanced.
  • the separator is less likely to curl and is excellent in handleability during battery manufacturing.
  • the heat-resistant porous layer is provided on only one side of the porous substrate, the ion permeability of the separator is more excellent.
  • the thickness of the entire separator can be suppressed, and a battery having a higher energy density can be manufactured.
  • the heat-resistant porous layer in the present disclosure contains a binder resin.
  • the type of binder resin for the heat-resistant porous layer is not particularly limited as long as it can bind inorganic particles.
  • the binder resin of the heat-resistant porous layer is preferably a heat-resistant resin (a resin having a melting point of 200 ° C. or higher, or a resin having no melting point and a decomposition temperature of 200 ° C. or higher).
  • the binder resin of the heat-resistant porous layer is preferably a resin that is stable with respect to the electrolytic solution and is also electrochemically stable.
  • One type of binder resin may be used alone, or two or more types may be used in combination.
  • the binder resin of the heat-resistant porous layer preferably has adhesiveness to the electrodes of the battery, and the type of binder resin may be selected according to the composition of the positive electrode or the negative electrode.
  • the binder resin of the heat-resistant porous layer on one side and the binder resin of the heat-resistant porous layer on the other side may be the same or different. Good.
  • a polymer having a polar functional group or an atomic group for example, a hydroxyl group, a carboxy group, an amino group, an amide group, or a carbonyl group is preferable.
  • binder resin for the heat-resistant porous layer examples include polyvinylidene fluoride-based resin, total aromatic polyamide, polyamideimide, polyimide, polyethersulfone, polysulfone, polyetherketone, polyketone, polyetherimide, and poly-.
  • examples thereof include N-vinylacetamide, polyacrylamide, copolymerized polyether polyamide, fluororubber, acrylic resin, styrene-butadiene copolymer, cellulose and polyvinyl alcohol.
  • the binder resin of the heat-resistant porous layer may be a particulate resin, and examples thereof include resin particles such as polyvinylidene fluoride-based resin, fluororubber, and styrene-butadiene copolymer.
  • the binder resin of the heat-resistant porous layer may be a water-soluble resin such as cellulose or polyvinyl alcohol.
  • a coating solution is prepared by dispersing or dissolving the binder resin in water, and the coating solution is used by a dry coating method.
  • a heat-resistant porous layer can be formed on the porous substrate.
  • binder resin of the heat-resistant porous layer total aromatic polyamide, polyamideimide, poly-N-vinylacetamide, polyacrylamide, copolymerized polyether polyamide, polyimide, or polyetherimide is preferable from the viewpoint of excellent heat resistance. ..
  • resins are preferably heat-resistant resins (resins having a melting point of 200 ° C. or higher, or resins having no melting point and a decomposition temperature of 200 ° C. or higher).
  • total aromatic polyamide (aramid) is preferable from the viewpoint of durability.
  • the total aromatic polyamide may be a meta type or a para type.
  • the meta-type total aromatic polyamide is preferable from the viewpoint of easily forming a porous layer and having excellent oxidation-reduction resistance in the electrode reaction.
  • a small amount of an aliphatic monomer may be copolymerized with the total aromatic polyamide.
  • polymethphenylene isophthalamide or polyparaphenylene terephthalamide is preferable, and polymethphenylene isophthalamide is more preferable.
  • PVDF-based resin a polyvinylidene fluoride-based resin (PVDF-based resin) is preferable from the viewpoint of adhesiveness to electrodes.
  • the PVDF resin is suitable as a binder resin for a heat-resistant porous layer from the viewpoint of adhesiveness to electrodes.
  • the heat-resistant porous layer contains the PVDF resin, the adhesiveness between the heat-resistant porous layer and the electrode is improved, and as a result, the strength of the battery (cell strength) is improved.
  • PVDF resin a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride); a copolymer of vinylidene fluoride and another monomer (polyvinylidene fluoride copolymer); polyvinylidene fluoride and polyvinylidene fluoride A mixture of copolymers;
  • the monomer copolymerizable with vinylidene fluoride include tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, chlorotrifluoroethylene, trichloroethylene, vinyl fluoride, trifluoroperfluoropropyl ether, and ethylene (meth).
  • Acrylic acid methyl (meth) acrylic acid, (meth) acrylic acid ester, vinyl acetate, vinyl chloride, acrylonitrile and the like.
  • the PVDF-based resin contained in the heat-resistant porous layer contains a vinylidene fluoride monomer unit (VDF unit) and a hexafluoropropylene monomer unit (HFP unit) from the viewpoint of adhesion to the electrode.
  • a polymer (VDF-HFP copolymer) is more preferable.
  • VDF-HFP copolymer is used as the binder resin of the heat-resistant porous layer, it is easy to control the crystallinity and heat resistance of the binder resin within an appropriate range, and the heat resistance during the heat pressing process for adhering the separator to the electrode. It is possible to suppress the flow of the porous layer.
  • the VDF-HFP copolymer contained in the heat-resistant porous layer may be a copolymer consisting of only VDF units and HFP units, and VDF units, HFP units, VDF units and other monomer units other than HFP units.
  • the content of the VDF unit in the VDF-HFP copolymer is preferably 91 mol% or more from the viewpoint of controlling the crystallinity and heat resistance of the VDF-HFP copolymer in an appropriate range.
  • the content of the HFP unit in the VDF-HFP copolymer is preferably 1 mol% or more, preferably 2 mol, from the viewpoint of moderately swelling when impregnated with the electrolytic solution and excellent adhesiveness by wet heat pressing. It is more preferably 7 mol% or less, and more preferably 6 mol% or less from the viewpoint of being difficult to dissolve in the electrolytic solution.
  • the PVDF resin contained in the heat-resistant porous layer preferably has a weight average molecular weight (Mw) of 600,000 to 3,000,000.
  • Mw weight average molecular weight
  • the Mw of the PVDF resin is 600,000 or more, it is easy to obtain a heat-resistant porous layer having mechanical properties that can withstand the heat press treatment when the separator is adhered to the electrode, and the electrode and the heat-resistant porous layer are separated from each other. Adhesion between them is improved.
  • the Mw of the PVDF resin is more preferably 800,000 or more, further preferably 1 million or more.
  • the Mw of the PVDF resin is 3 million or less, the viscosity of the heat-resistant porous layer at the time of molding does not become too high, the moldability and crystal formation are improved, and the heat-resistant porous layer is likely to be porous. .. From this point of view, the Mw of the PVDF resin is more preferably 2.5 million or less, and further preferably 2 million or less.
  • the weight average molecular weight of the binder resin in the heat-resistant porous layer is measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a GPC device "GPC-900" manufactured by JASCO Corporation was used, two TSKgel SUPER AWM-H manufactured by Tosoh Corporation were used for the column, and dimethylformamide was used as the solvent, the temperature was 40 ° C., and the flow rate was 10 mL / min. It is carried out under the conditions and is obtained as a polystyrene-equivalent molecular weight.
  • the PVDF resin contained in the heat-resistant porous layer preferably has an acid value of 3 mgKOH / g to 20 mgKOH / g.
  • the acid value of the PVDF resin can be controlled, for example, by introducing a carboxy group into the PVDF resin.
  • the introduction and amount of the carboxy group into the PVDF resin is determined by the monomer having a carboxy group as a polymerization component of the PVDF resin (for example, (meth) acrylic acid, (meth) acrylic acid ester, maleic acid, maleic anhydride. , Maleic anhydride, and fluorine-substituted products thereof), and can be controlled by adjusting the polymerization ratio.
  • the fibril diameter of the PVDF resin contained in the heat-resistant porous layer is preferably 10 nm to 1000 nm from the viewpoint of battery cycle characteristics.
  • PVDF resin or total aromatic polyamide (aramid) can be used from the viewpoint that a dramatic effect can be obtained by combining with barium sulfate particles having an average primary particle size of less than 0.30 ⁇ m. Is preferable. PVDF resin or total aromatic polyamide (aramid) is used when barium sulfate particles having an average primary particle size of 0.30 ⁇ m or more are used by combining with barium sulfate particles having an average primary particle size of less than 0.30 ⁇ m. In comparison, the heat resistance of the heat-resistant porous layer is dramatically increased.
  • the content ratio of the binder resin in the heat-resistant porous layer is preferably 70% by volume or less, more preferably 65% by volume or less, further preferably 63% by volume or less, and further preferably 60% by volume. % Or less is particularly preferable. Further, the content ratio of the binder resin is preferably more than 50% by volume, more preferably 52% by volume or more, from the viewpoint of preventing the heat-resistant porous layer from peeling or falling off from the porous base material. preferable.
  • the heat-resistant porous layer in the separator of the present disclosure may contain a resin other than the binder resin.
  • resins are used for the purpose of improving the adhesiveness of the heat-resistant porous layer to the electrode, adjusting the ion permeability or film resistance of the heat-resistant porous layer, and the like.
  • other resins include fluororubber, styrene-butadiene copolymer, acrylic resin, styrene-acrylic resin, homopolymer or copolymer of vinylnitrile compound (acrylonitrile, methacrylonitrile, etc.), and carboxy. Examples thereof include methyl cellulose, hydroxyalkyl cellulose, polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone, and polyether (polyethylene oxide, polypropylene oxide, etc.).
  • the total content of the other resins other than the binder resin contained in the heat-resistant porous layer is that of the resin contained in the heat-resistant porous layer.
  • 50% by mass or less is preferable, 30% by mass or less is more preferable, and 10% by mass or less is further preferable.
  • the lower limit of the total content of other resins may be a value exceeding 0% by mass.
  • the separator of the present disclosure contains barium sulfate particles in a heat-resistant porous layer.
  • the heat-resistant porous layer selectively contains barium sulfate particles among the particles, gas generation due to decomposition of the electrolytic solution or the electrolyte is suppressed.
  • the average primary particle size of the barium sulfate particles contained in the heat-resistant porous layer is 0.01 ⁇ m or more and less than 0.30 ⁇ m.
  • the lower limit of the average primary particle size is preferably 0.05 ⁇ m or more, more preferably 0.10 ⁇ m or more.
  • the upper limit of the average primary particle size is preferably 0.28 ⁇ m or less, more preferably 0.25 ⁇ m or less.
  • the average primary particle size of the barium sulfate particles is 0.01 ⁇ m or more from the viewpoint of availability or the cohesiveness of the barium sulfate particles.
  • the average primary particle size of the barium sulfate particles is less than 0.30 ⁇ m, there are few protrusions protruding from the surface of the heat-resistant porous layer, and the heat-resistant porous layer shrinks when exposed to a high temperature. It can be suppressed and has excellent heat resistance.
  • the average primary particle size of the filler is determined by measuring the major axis of 100 filler particles randomly selected in observation with a scanning electron microscope (SEM) and averaging the major axis of 100 particles.
  • the sample to be used for SEM observation is the filler particles which are the material of the heat-resistant porous layer or the filler particles taken out from the separator.
  • There is no limitation on the method of taking out the filler particles from the separator for example, a method of heating the separator to about 800 ° C. to eliminate the binder resin and taking out the filler particles, a method of immersing the separator in an organic solvent and dissolving the binder resin with the organic solvent. Examples thereof include a method of extracting filler particles.
  • the specific surface area of the filler is measured by the BET method, and the filler is assumed to be a true sphere. Therefore, the particle size is calculated from the specific gravity and specific surface area of the filler.
  • Average primary particle size ( ⁇ m) 6 ⁇ [specific gravity (g / cm 3 ) x BET specific surface area (m 2 / g)]
  • an inert gas is used as an adsorbent and adsorbed on the surface of the filler particles at the boiling point temperature (-196 ° C.) of liquid nitrogen. The amount of gas adsorbed on the sample is measured as a function of the pressure of the adsorbent, and the specific surface area of the sample is obtained from the adsorbed amount.
  • the particle shape of the barium sulfate particles is not limited, and may be spherical, oval, plate-shaped, needle-shaped, or amorphous.
  • the barium sulfate particles contained in the heat-resistant porous layer are preferably plate-shaped or spherical particles or primary particles that are not agglomerated, from the viewpoint of suppressing short-circuiting of the battery and from the viewpoint that the filler is easily filled densely.
  • the volume ratio of the barium sulfate particles to the heat-resistant porous layer is 30% by volume or more, preferably 35% by volume or more, more preferably 37% by volume or more, still more preferably 40% by volume or more. ..
  • the volume ratio of the barium sulfate particles to the heat-resistant porous layer is too large, the heat-resistant porous layer may easily peel off from the porous substrate. If the heat-resistant porous layer falls off, it becomes a coating defect and the productivity of the separator may decrease.
  • the volume ratio of the barium sulfate particles increases, the surface area of the barium sulfate particles increases, so that the interaction with the binder resin increases, and the viscosity of the coating liquid for forming the heat-resistant porous layer may increase. is there.
  • the viscosity of the coating liquid is high, coating streaks, wrinkles, etc. are likely to occur, which tends to deteriorate the appearance of the coating, and the productivity of the separator may decrease.
  • the volume ratio of the barium sulfate particles to the heat-resistant porous layer is less than 50% by volume, preferably 48% by volume or less.
  • the content ratio of the barium sulfate particles contained in the heat-resistant porous layer to the binder resin is preferably 32/68 to 49/51, preferably 36/64 to 48/51 in terms of volume ratio. 52 is more preferable.
  • the heat-resistant porous layer may contain other inorganic particles other than barium sulfate particles.
  • the volume ratio of the other inorganic particles in the heat-resistant porous layer is preferably 20% by volume or less, more preferably 10% by volume or less, further preferably 5% by volume or less, and substantially not contained. Especially preferable.
  • Other inorganic particles include, for example, particles of a metal hydroxide such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, cerium hydroxide, nickel hydroxide, boron hydroxide; silica. , Alumina, titania, zirconia, magnesium oxide and other metal oxide particles; calcium carbonate, magnesium carbonate and other carbonate particles; calcium sulfate and other sulfate particles; calcium phosphate, apatite, calcium silicate, talc and other clays Minerals; etc.
  • metal hydroxide particles or metal oxide particles are preferable from the viewpoint of stability with respect to the electrolytic solution and electrochemical stability.
  • the other inorganic particles may be surface-modified with a silane coupling agent or the like.
  • the particle shape of other inorganic particles is not limited, and may be spherical, elliptical, plate-shaped, needle-shaped, or amorphous.
  • the other inorganic particles contained in the heat-resistant porous layer are preferably spherical or plate-shaped particles or non-aggregated primary particles from the viewpoint of suppressing a short circuit of the battery.
  • one type may be used alone, or two or more types may be used in combination.
  • the average primary particle size of the other inorganic particles is preferably 0.01 ⁇ m to 5.00 ⁇ m.
  • the lower limit value is more preferably 0.10 ⁇ m or more, and the upper limit value is more preferably 1.00 ⁇ m or less.
  • the heat-resistant porous layer in the separator of the present disclosure may contain an organic filler.
  • the organic filler include crosslinked poly (meth) acrylic acid, crosslinked poly (meth) acrylic acid ester, crosslinked polysilicone, crosslinked polystyrene, crosslinked polydivinylbenzene, styrene-divinylbenzene copolymer crosslinked product, melamine resin, and phenol.
  • examples thereof include particles made of crosslinked polymers such as resins and benzoguanamine-formaldehyde condensates; particles made of heat-resistant polymers such as polysulfone, polyacrylonitrile, aramid, and polyacetal. These organic fillers may be used alone or in combination of two or more.
  • the heat-resistant porous layer may contain additives such as a dispersant such as a surfactant, a wetting agent, a defoaming agent, and a pH adjuster.
  • the dispersant is added to the coating liquid for forming the heat-resistant porous layer for the purpose of improving dispersibility, coating property or storage stability.
  • Wetting agents, defoaming agents, and pH adjusters are used in the coating liquid for forming a heat-resistant porous layer, for example, for the purpose of improving the compatibility with the porous base material, and for the purpose of air entrainment in the coating liquid. It is added for the purpose of suppressing or adjusting the pH.
  • the thickness of the heat-resistant porous layer is preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more on one side. Further, the thickness of the heat-resistant porous layer is preferably 5 ⁇ m or less, and more preferably 4 ⁇ m or less in terms of the thickness of one side from the viewpoint of the handleability of the separator or the energy density of the battery.
  • the thickness of the heat-resistant porous layer is the total thickness of the heat-resistant porous layers on both sides, both when the heat-resistant porous layer is on only one side of the porous substrate and when it is on both sides. 1 ⁇ m or more is preferable, and 2 ⁇ m or more is more preferable.
  • the total thickness is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less.
  • the mass of the heat-resistant porous layer per unit area is preferably 1.0 g / m 2 or more as the total mass of the heat-resistant porous layers on both sides from the viewpoint of heat resistance or handleability of the separator. 0 g / m 2 or more is more preferable, 3.5 g / m 2 or more is further preferable, 4.0 g / m 2 or more is further preferable, and 4.5 g / m 2 or more is further preferable.
  • the mass of the heat-resistant porous layer per unit area is 30.0 g / m 2 or less as the total mass of the heat-resistant porous layers on both sides from the viewpoint of the handleability of the separator or the energy density of the battery.
  • 20.0 g / m 2 or less is more preferable, 10.0 g / m 2 or less is further preferable, and 8.0 g / m 2 or less is further preferable.
  • the difference between the mass of one heat-resistant porous layer and the mass of the other heat-resistant porous layer is both sides from the viewpoint of suppressing curling of the separator. It is preferably 20% by mass or less based on the total.
  • the porosity of the heat-resistant porous layer is preferably 30% or more from the viewpoint of ion permeability of the separator, preferably 80% or less, more preferably 70% or less, and more preferably 60% or less from the viewpoint of thermal dimensional stability of the separator. % Or less is more preferable, and 50% or less is further preferable.
  • the constituent materials of the heat-resistant porous layer are a, b, c, ..., N, and the mass of each constituent material is Wa, Wb, Wc, ..., Wn (g / cm 2 ), and each constituent is The true density of the material is da, db, dc, ..., Dn (g / cm 3 ), and the thickness of the heat-resistant porous layer is t (cm).
  • the average pore size of the heat-resistant porous layer is preferably 10 nm to 200 nm.
  • the average pore diameter is 10 nm or more, when the heat-resistant porous layer is impregnated with the electrolytic solution, the pores are less likely to be closed even if the resin contained in the heat-resistant porous layer swells.
  • the average pore diameter is 200 nm or less, the uniformity of ion transfer is high, and the cycle characteristics and load characteristics of the battery are excellent.
  • the average pore size (nm) of the heat-resistant porous layer is calculated by the following formula, assuming that all the pores are columnar.
  • d 4V / S
  • d represents the average pore diameter (diameter) of the heat-resistant porous layer
  • V represents the pore volume per 1 m 2 of the heat-resistant porous layer
  • S represents the pore surface area per 1 m 2 of the heat-resistant porous layer.
  • the porosity V per 1 m 2 of the heat-resistant porous layer is calculated from the porosity of the heat-resistant porous layer.
  • the pore surface area S per 1 m 2 of the heat-resistant porous layer is determined by the following method.
  • the peel strength between the porous substrate and the heat-resistant porous layer is preferably 0.1 N / 10 mm or more, more preferably 0.2 N / 10 mm or more, and more preferably 0.3 N, from the viewpoint of the adhesive strength of the separator to the electrode. / 10 mm or more is more preferable. From the above viewpoint, the higher the peel strength between the porous substrate and the heat-resistant porous layer, the more preferable, but usually, the peel strength is preferably 2N / 10 mm or less.
  • the separator of the present disclosure has a heat-resistant porous layer on both sides of the porous base material, the peel strength between the porous base material and the heat-resistant porous layer is within the above range on both sides of the porous base material. It is preferable to have.
  • the thickness of the separator of the present disclosure is preferably 10 ⁇ m or more, more preferably 12 ⁇ m or more, from the viewpoint of the mechanical strength of the separator.
  • the thickness of the separator is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less, from the viewpoint of the energy density of the battery.
  • the puncture strength of the separator of the present disclosure is preferably 250 g to 1000 g, more preferably 300 g to 600 g, from the viewpoint of the mechanical strength of the separator or the short-circuit resistance of the battery.
  • the method for measuring the puncture strength of the separator is the same as the method for measuring the puncture strength of the porous substrate.
  • the porosity of the separator of the present disclosure is preferably 30% to 60% from the viewpoint of adhesiveness to the electrode, handleability of the separator, ion permeability or mechanical strength.
  • the galley value (JIS P8117: 2009) of the separator of the present disclosure is preferably 50 seconds / 100 mL to 800 seconds / 100 mL, preferably 100 seconds / 100 mL to 400 seconds / 100 mL, from the viewpoint of the balance between mechanical strength and ion permeability. More preferred.
  • the separator of the present disclosure preferably has a value obtained by subtracting the galley value of the porous substrate from the galley value of the separator, preferably 300 seconds / 100 mL or less, more preferably 150 seconds / 100 mL or less, and 100 seconds. / 100 mL or less is more preferable.
  • the lower limit of the value obtained by subtracting the Gale value of the porous substrate from the Gale value of the separator is not particularly limited, but is usually 10 seconds / 100 mL or more in the separator of the present disclosure.
  • the film resistance of the separator of the present disclosure in view of the load characteristics of the battery, preferably 1 ⁇ ⁇ cm 2 ⁇ 10 ⁇ ⁇ cm 2.
  • the film resistance of the separator is a resistance value in a state where the separator is impregnated with an electrolytic solution, and 1 mol / L LiBF 4 -propylene carbonate: ethylene carbonate (mass ratio 1: 1) is used as the electrolytic solution. It is a value measured by the AC method at 20 ° C. The lower the membrane resistance value of the separator, the better the ion permeability of the separator.
  • the bending ratio of the separator of the present disclosure is preferably 1.5 to 2.5 from the viewpoint of ion permeability.
  • the amount of water (mass basis) contained in the separator of the present disclosure is preferably 1000 ppm or less.
  • the smaller the water content of the separator the more the reaction between the electrolytic solution and water is suppressed when the battery is constructed, the generation of gas in the battery can be suppressed, and the cycle characteristics of the battery are improved. From this point of view, the amount of water contained in the separator is more preferably 800 ppm or less, further preferably 500 ppm or less.
  • the separator of the present disclosure has a shrinkage ratio in MD when heat-treated at 135 ° C. for 1 hour, preferably 30% or less, more preferably 20% or less, further preferably 15% or less, further preferably 10% or less, and 0. % Is particularly preferable.
  • the separator of the present disclosure has a shrinkage rate at TD of 30% or less, more preferably 20% or less, further preferably 15% or less, further preferably 10% or less, and 0, when heat-treated at 135 ° C. for 1 hour. % Is particularly preferable.
  • the separator of the present disclosure has an area shrinkage of 30% or less, more preferably 20% or less, further preferably 15% or less, further preferably 10% or less, and 0% when heat-treated at 135 ° C. for 1 hour. Especially preferable.
  • the separator of the present disclosure has a shrinkage rate in MD of 70% or less, more preferably 55% or less, further preferably 45% or less, still more preferably 20% or less when heat-treated at 150 ° C. for 1 hour. % Is more preferable.
  • the separator of the present disclosure has a shrinkage rate in TD of 70% or less, more preferably 55% or less, further preferably 45% or less, still more preferably 20% or less when heat-treated at 150 ° C. for 1 hour. % Is more preferable.
  • the separator of the present disclosure has an area shrinkage of 70% or less, more preferably 55% or less, further preferably 45% or less, further preferably 20% or less, still more preferably 10%, when heat-treated at 150 ° C. for 1 hour. More preferred.
  • the area shrinkage when the separator is heat-treated at 135 ° C. or 150 ° C. for 1 hour is determined by the following measuring method.
  • the separator is cut into a rectangle of MD 180 mm ⁇ TD 60 mm and used as a test piece.
  • This test piece is marked on the line that divides the length in TD into two equal parts and at 20 mm and 170 mm from one end (referred to as points A and B, respectively). Further, marks are made at points 10 mm and 50 mm from one end on the line that divides the length into two equal parts in the MD (referred to as points C and D, respectively).
  • a clip is attached to the marked test piece (the place where the clip is attached is between the end closest to the point A and the point A), and the temperature inside the oven is adjusted to 135 ° C. or 150 ° C. It is hung inside and heat-treated for 1 hour under no tension.
  • the length between AB and CD is measured before and after the heat treatment, and the area shrinkage rate is calculated by the following formula.
  • Area shrinkage rate (%) ⁇ 1- (length of AB after heat treatment ⁇ length of AB before heat treatment) ⁇ (length of CD after heat treatment ⁇ length of CD before heat treatment) ⁇ ⁇ 100
  • the shrinkage rate when the separator of the present disclosure is heat-treated is controlled by, for example, the content of inorganic particles in the heat-resistant porous layer, the thickness of the heat-resistant porous layer, the porosity of the heat-resistant porous layer, and the like. obtain.
  • the separator of the present disclosure may further have a porous base material and other layers other than the heat-resistant porous layer.
  • the other layer include an adhesive layer provided as an outermost layer mainly for the purpose of adhering to the electrode.
  • the separator of the present disclosure can be produced, for example, by forming a heat-resistant porous layer on a porous substrate by a wet coating method or a dry coating method.
  • the wet coating method is a method of solidifying the coating layer in a coagulating liquid
  • the dry coating method is a method of drying and solidifying the coating layer.
  • a coating liquid containing a binder resin and barium sulfate particles is applied onto a porous substrate, immersed in a coagulating liquid to solidify the coating layer, and then withdrawn from the coagulating liquid and washed with water and dried.
  • the method In the wet coating method, a coating liquid containing a binder resin and barium sulfate particles is applied onto a porous substrate, immersed in a coagulating liquid to solidify the coating layer, and then withdrawn from the coagulating liquid and washed with water and dried.
  • the coating liquid for forming the heat-resistant porous layer is prepared by dissolving or dispersing the binder resin and barium sulfate particles in a solvent. If necessary, the binder resin and other components other than barium sulfate particles are dissolved or dispersed in the coating liquid.
  • the solvent used for preparing the coating liquid contains a solvent that dissolves the binder resin (hereinafter, also referred to as "good solvent”).
  • good solvent include polar amide solvents such as N-methylpyrrolidone, dimethylacetamide, and dimethylformamide.
  • the solvent used for preparing the coating liquid preferably contains a phase separating agent that induces phase separation from the viewpoint of forming a porous layer having a good porous structure. Therefore, the solvent used for preparing the coating liquid is preferably a mixed solvent of a good solvent and a phase separating agent.
  • the phase separating agent is preferably mixed with a good solvent in an amount within a range that can secure an appropriate viscosity for coating. Examples of the phase separating agent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, tripropylene glycol and the like.
  • the solvent used for preparing the coating liquid is a mixed solvent of a good solvent and a phase separating agent from the viewpoint of forming a good porous structure, containing 60% by mass or more of the good solvent and 40% by mass of the phase separating agent.
  • a mixed solvent containing% or less is preferable.
  • the resin concentration of the coating liquid is preferably 1% by mass to 20% by mass from the viewpoint of forming a good porous structure.
  • the concentration of inorganic particles in the coating liquid is preferably 2% by mass to 50% by mass from the viewpoint of forming a good porous structure.
  • Examples of the means for applying the coating liquid to the porous substrate include a Meyer bar, a die coater, a reverse roll coater, a roll coater, and a gravure coater.
  • a Meyer bar a die coater, a reverse roll coater, a roll coater, and a gravure coater.
  • the solidification of the coating layer is performed by immersing the porous base material on which the coating layer is formed in a coagulating liquid and solidifying the binder resin while inducing phase separation in the coating layer. As a result, a laminate composed of a porous base material and a heat-resistant porous layer is obtained.
  • the coagulation liquid generally contains a good solvent and a phase separating agent used for preparing the coating liquid, and water. It is preferable in terms of production that the mixing ratio of the good solvent and the phase separating agent is adjusted to the mixing ratio of the mixed solvent used for preparing the coating liquid.
  • the content of water in the coagulation liquid is preferably 40% by mass to 90% by mass from the viewpoint of forming a porous structure and productivity.
  • the temperature of the coagulant is, for example, 20 ° C to 50 ° C.
  • the laminate After solidifying the coating layer in the coagulation liquid, the laminate is withdrawn from the coagulation liquid and washed with water.
  • the coagulant is removed from the laminate by washing with water. Further, by drying, water is removed from the laminate. Washing with water is performed, for example, by transporting the laminate in a water bath. Drying is performed, for example, by transporting the laminate in a high temperature environment, blowing air on the laminate, bringing the laminate into contact with a heat roll, and the like.
  • the drying temperature is preferably 40 ° C to 80 ° C.
  • the separator of the present disclosure can also be manufactured by a dry coating method.
  • the dry coating method is a method of forming a heat-resistant porous layer on a porous substrate by applying a coating liquid to a porous substrate and drying the coating layer to volatilize and remove a solvent. ..
  • the separator of the present disclosure can also be produced by producing a heat-resistant porous layer as an independent sheet, superimposing the heat-resistant porous layer on a porous base material, and compounding the heat-resistant porous layer by thermocompression bonding or an adhesive.
  • Examples of the method for producing the heat-resistant porous layer as an independent sheet include a method of forming the heat-resistant porous layer on the release sheet by applying the above-mentioned wet coating method or dry coating method.
  • the non-aqueous secondary battery of the present disclosure is a non-aqueous secondary battery that obtains an electromotive force by doping / dedoping lithium, and includes a positive electrode, a negative electrode, and a separator for the non-aqueous secondary battery of the present disclosure.
  • Dope means occlusion, support, adsorption, or insertion, and means a phenomenon in which lithium ions enter the active material of an electrode such as a positive electrode.
  • the non-aqueous secondary battery of the present disclosure has, for example, a structure in which a battery element in which a negative electrode and a positive electrode face each other via a separator is enclosed in an exterior material together with an electrolytic solution.
  • the non-aqueous secondary battery of the present disclosure is suitable for a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery.
  • the non-aqueous secondary battery of the present disclosure is excellent in safety because the separator of the present disclosure suppresses gas generation inside the battery and has excellent heat resistance.
  • Examples of the embodiment of the positive electrode include a structure in which an active material layer containing a positive electrode active material and a binder resin is formed on a current collector.
  • the active material layer may further contain a conductive additive.
  • Examples of the positive electrode active material include lithium-containing transition metal oxides, specifically, LiCoO 2 , LiNiO 2 , LiMn 1/2 Ni 1/2 O 2 , LiCo 1/3 Mn 1/3 Ni 1 /. Examples thereof include 3 O 2 , LiMn 2 O 4 , LiFePO 4 , LiCo 1/2 Ni 1/2 O 2 , LiAl 1/4 Ni 3/4 O 2 .
  • Examples of the binder resin include polyvinylidene fluoride-based resins and styrene-butadiene copolymers.
  • Examples of the conductive auxiliary agent include carbon materials such as acetylene black, ketjen black, and graphite powder.
  • Examples of the current collector include aluminum foil, titanium foil, stainless steel foil and the like having a thickness of 5 ⁇ m to 20 ⁇ m.
  • the vinylidene-fluorinated resin when the polyvinylidene-based resin is contained in the heat-resistant porous layer of the separator of the present disclosure, the vinylidene-fluorinated resin is excellent in oxidation resistance, so that the heat-resistant porous layer is excellent.
  • LiMn 1/2 Ni 1/2 O 2 and LiCo 1/3 that can operate at a high voltage of 4.2 V or higher as a positive electrode active material by arranging the quality layer in contact with the positive electrode of a non-aqueous secondary battery. It is easy to apply Mn 1/3 Ni 1/3 O 2 and the like.
  • An example of an embodiment of the negative electrode is a structure in which an active material layer containing a negative electrode active material and a binder resin is formed on a current collector.
  • the active material layer may further contain a conductive additive.
  • the negative electrode active material include materials capable of electrochemically occluding lithium, and specific examples thereof include carbon materials; alloys of silicon, tin, aluminum and the like with lithium; wood alloys; and the like.
  • the binder resin include polyvinylidene fluoride-based resins and styrene-butadiene copolymers.
  • the conductive auxiliary agent include carbon materials such as acetylene black, ketjen black, and graphite powder.
  • the current collector include copper foil, nickel foil, stainless steel foil and the like having a thickness of 5 ⁇ m to 20 ⁇ m. Further, instead of the above-mentioned negative electrode, a metallic lithium foil may be used as the negative electrode.
  • the electrolytic solution is a solution in which a lithium salt is dissolved in a non-aqueous solvent.
  • the lithium salt include LiPF 6 , LiBF 4 , LiClO 4, and the like.
  • the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, fluoroethylene carbonate, difluoroethylene carbonate, and vinylene carbonate; and chain carbonates such as dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, and fluorine-substituted products thereof; Cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; may be used alone or in combination.
  • cyclic carbonate and chain carbonate are mixed at a mass ratio (cyclic carbonate: chain carbonate) of 20:80 to 40:60, and the lithium salt is in the range of 0.5 mol / L to 1.5 mol / L.
  • the solution dissolved in is suitable.
  • Examples of the exterior material include metal cans and aluminum laminated film packs.
  • the shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, and the separator of the present disclosure is suitable for any shape.
  • the manufacturing method of the non-aqueous secondary battery of the present disclosure includes impregnating a separator with an electrolytic solution and performing a heat pressing treatment (referred to as “wet heat pressing” in the present disclosure) to adhere the separator to an electrode; Examples thereof include a manufacturing method including performing a heat pressing treatment (referred to as “dry heat pressing” in the present disclosure) without impregnating the separator with an electrolytic solution to adhere the separator to the electrode.
  • a separator of the present disclosure is arranged between a positive electrode and a negative electrode, and the wound body is wound in the length direction to manufacture a wound body. It can be manufactured by the manufacturing methods 1 to 3 of. The same applies to the case where an element manufactured by a method in which at least one layer of a positive electrode, a separator, and a negative electrode are laminated in this order (so-called stack method) is used instead of the wound body.
  • Manufacturing method 1 After dry heat pressing the wound body to bond the electrode and separator, it is housed in an exterior material (for example, a pack made of aluminum laminated film; the same applies hereinafter), and an electrolytic solution is injected therein to form the exterior material. The wound body is further wet-heat-pressed from above to bond the electrode and the separator and seal the exterior material.
  • an exterior material for example, a pack made of aluminum laminated film; the same applies hereinafter
  • Manufacturing method 2 The winding body is housed in an exterior material, an electrolytic solution is injected therein, and the winding body is wet-heat-pressed from above the exterior material to bond the electrode and the separator and seal the exterior material. I do. Before the wound body is housed in the exterior material, a normal temperature press (pressurization at room temperature) may be applied to temporarily bond the wound body.
  • a normal temperature press pressurization at room temperature
  • Manufacturing method 3 After dry heat pressing the wound body to bond the electrode and separator, the electrode and separator are housed in the exterior material, and the electrolytic solution is injected into the exterior material to seal the exterior material.
  • the press temperature is preferably 70 ° C. to 110 ° C.
  • the press pressure is preferably 0.5 MPa to 2 MPa.
  • the press temperature is preferably 20 ° C to 100 ° C, and the press pressure is preferably 0.5 MPa to 5 MPa.
  • the press time is preferably adjusted according to the press temperature and the press pressure, for example, in the range of 0.5 minutes to 60 minutes.
  • HFP content of polyvinylidene fluoride resin The ratio of hexafluoropropylene monomer units (HFP units) of the polyvinylidene fluoride resin was determined from the nuclear magnetic resonance (NMR) spectrum. Specifically, 20 mg of polyvinylidene fluoride resin was dissolved in 0.6 mL of deuterated dimethyl sulfoxide at 100 ° C., and a 19 F-NMR spectrum was measured at 100 ° C.
  • the weight average molecular weight (Mw) of the polyvinylidene fluoride-based resin was measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a GPC device "GPC-900" manufactured by JASCO Corporation was used, two TSKgel polystyrene AWM-H manufactured by Tosoh Corporation were used for the column, dimethylformamide was used as the solvent, the temperature was 40 ° C., and the flow rate was 10 mL. Measurement was performed under the condition of / minute to obtain a polystyrene-equivalent molecular weight.
  • the inorganic filler before being added to the coating liquid for forming the heat-resistant porous layer was used as a sample.
  • Barium sulfate particles with a small average primary particle size had difficulty in measuring the major axis of the primary particles with a scanning electron microscope (SEM), so the specific gravity (g / cm) of the barium sulfate particles. 3 ) and the BET specific surface area (m 2 / g) were measured, and the average primary particle size of the barium sulfate particles was determined according to the following formula, assuming that the barium sulfate particles were true spheres.
  • the average primary particle size of the other inorganic particles was determined by measuring the major axis of 100 randomly selected inorganic particles in the observation by SEM and averaging the major axis of 100 particles.
  • the barium sulfate particles are a
  • the other constituent materials are b, c, ..., N
  • the masses of the respective constituent materials are Xa, Xb, Xc, ..., Xn. (G)
  • the true densities of each constituent material are Da, Db, Dc, ..., Dn (g / cm 3 ).
  • the thickness of the heat-resistant porous layer (total on both sides, ⁇ m) was obtained by subtracting the thickness of the porous substrate ( ⁇ m) from the thickness of the separator ( ⁇ m).
  • the constituent materials of the heat-resistant porous layer are a, b, c, ..., N, and the masses of the constituent materials are Wa, Wb, Wc, ..., Wn (g / cm 2 ), and each constituent is The true density of the material is da, db, dc, ..., Dn (g / cm 3 ), and the thickness of the heat-resistant porous layer is t (cm).
  • the adhesive tape is used as a support for peeling the heat-resistant porous layer from the porous substrate.
  • the tensile speed of the T-shaped peeling test was set to 20 mm / min, and the load (N) from 10 mm to 40 mm was collected at 0.4 mm intervals after the start of measurement, the average was calculated, and the load per 10 mm width (N / 10 mm). Converted to. Further, the load (N / 10 mm) of 10 test pieces was averaged.
  • Area shrinkage rate (%) ⁇ 1- (length of AB after heat treatment ⁇ length of AB before heat treatment) ⁇ (length of CD after heat treatment ⁇ length of CD before heat treatment) ⁇ ⁇ 100
  • the separator was cut into MD50 mm ⁇ TD50 mm and used as a test piece.
  • the test piece was placed on a horizontal table, and a soldering iron having a tip diameter of 2 mm was heated to bring the tip temperature to 260 ° C., and the tip of the soldering iron was brought into point contact with the separator surface for 60 seconds.
  • the area of holes (mm 2 ) formed in the separator by point contact was measured, and the areas of holes of 10 test pieces were averaged. The higher the heat resistance of the separator, the smaller the area of holes formed in the separator.
  • the separator was cut into a size of 600 cm 2 and placed in a pack made of an aluminum laminated film, and an electrolytic solution was injected into the pack to impregnate the separator with the electrolytic solution, and the pack was sealed to obtain a test cell.
  • the test cell was placed in an environment at a temperature of 85 ° C. for 20 days, and the volume of the test cell before and after the heat treatment was measured.
  • the separator was cut out to a predetermined size (10 cm ⁇ 30 cm) and observed with transmitted light and reflected light using an optical microscope to observe the presence or absence of defects or foreign matter in the coating layer.
  • the defects or foreign substances include chips due to peeling of agglomerates, pinholes, agglomerates of fillers, coating streaks, and wrinkles.
  • the evaluation was performed when no defect or foreign matter was found in the separator as a pass, and when it was found, it was rejected. Specifically, for each separator, any 60 places were cut out to a predetermined size and evaluated, and the percentage (%) of the passed separators was calculated. Based on the pass rate, they were classified according to the following criteria. ⁇ Criteria> A: The pass rate is 100%. B: The pass rate is 95% or more and less than 100%. C: The pass rate is 90% or more and less than 95%. D: The pass rate is less than 90%.
  • Example 2 to 3 A separator was prepared in the same manner as in Example 1 except that the volume ratio of the barium sulfate particles was changed as shown in Table 1.
  • Example 4 A separator was prepared in the same manner as in Example 1 except that the barium sulfate particles were changed to other barium sulfate particles (average primary particle size 0.10 ⁇ m).
  • Example 5 A separator was prepared in the same manner as in Example 1 except that the barium sulfate particles were changed to other barium sulfate particles (average primary particle size of 0.25 ⁇ m).
  • Example 2 A separator was prepared in the same manner as in Example 1 except that the barium sulfate particles were changed to other barium sulfate particles (average primary particle size of 0.30 ⁇ m).
  • Example 3 A separator was prepared in the same manner as in Example 1 except that the barium sulfate particles were changed to other barium sulfate particles (average primary particle size 0.70 ⁇ m).
  • Example 5 A separator was prepared in the same manner as in Example 1 except that the barium sulfate particles were changed to other barium sulfate particles (average primary particle size 0.30 ⁇ m) and the volume ratio was changed as shown in Table 1.
  • Example 6 A separator was prepared in the same manner as in Example 1 except that the barium sulfate particles were changed to other barium sulfate particles (average primary particle size 0.70 ⁇ m) and the volume ratio was changed as shown in Table 1.
  • Example 7 A separator was prepared in the same manner as in Example 1 except that the barium sulfate particles were changed to magnesium hydroxide (average primary particle size 0.50 ⁇ m).
  • Example 8 A separator was prepared in the same manner as in Example 1 except that the barium sulfate particles were changed to magnesium hydroxide (average primary particle size 0.90 ⁇ m).
  • Example 9 A separator was prepared in the same manner as in Example 1 except that the barium sulfate particles were changed to alumina (average primary particle size of 0.60 ⁇ m).
  • the barium sulfate particle / binder resin ratio was 42/58 (volume ratio).
  • Example 7 A separator was prepared in the same manner as in Example 6 except that the thickness of the heat-resistant porous layer, the mass per unit area, and the porosity were changed as shown in Table 2.
  • Example 8 A separator was prepared in the same manner as in Example 6 except that the coating liquid was applied to both sides of the porous substrate.
  • Example 9 A separator was prepared in the same manner as in Example 6 except that the volume ratio of the barium sulfate particles, the thickness of the heat-resistant porous layer, the mass per unit area, and the porosity were changed as shown in Table 2. ..
  • Example 11 A separator was prepared in the same manner as in Example 6 except that the barium sulfate particles were changed to other barium sulfate particles (average primary particle size 0.10 ⁇ m).
  • Example 12 A separator was prepared in the same manner as in Example 6 except that the barium sulfate particles were changed to other barium sulfate particles (average primary particle size of 0.25 ⁇ m).
  • Example 11 A separator was prepared in the same manner as in Example 6 except that the barium sulfate particles were changed to other barium sulfate particles (average primary particle size of 0.30 ⁇ m).
  • Example 12 A separator was prepared in the same manner as in Example 6 except that the barium sulfate particles were changed to other barium sulfate particles (average primary particle size 0.70 ⁇ m).
  • Example 14 A separator was prepared in the same manner as in Example 6 except that the barium sulfate particles were changed to other barium sulfate particles (average primary particle size 0.30 ⁇ m) and the volume ratio was changed as shown in Table 2.
  • Example 15 A separator was prepared in the same manner as in Example 6 except that the barium sulfate particles were changed to other barium sulfate particles (average primary particle size 0.70 ⁇ m) and the volume ratio was changed as shown in Table 2.
  • Example 16 A separator was prepared in the same manner as in Example 6 except that the barium sulfate particles were changed to magnesium hydroxide (average primary particle size 0.50 ⁇ m).
  • Example 18 A separator was prepared in the same manner as in Example 6 except that the barium sulfate particles were changed to alumina (average primary particle size of 0.60 ⁇ m).
  • Tables 1 and 2 show the compositions, physical properties, and evaluation results of the separators of Examples 1 to 12 and Comparative Examples 1 to 18.
  • the PVDF-based resin is not limited to the above-mentioned VDF-HFP copolymer, and the same applies as long as the combination of the PVDF-based resin and specific barium sulfate particles is used. The effect is played.
  • aramid is used as the heat-resistant resin as an example of the binder
  • other heat-resistant resins such as amide-based resin or imide-based resin other than aramid (polyamideimide, poly-N-vinyl) Acetamide, polyacrylamide, copolymerized polyether polyamide, polyimide, polyetherimide, etc.) also have the same effect when combined with specific barium sulfate particles.
  • Comparative Examples 1 to 9 using the polyvinylidene fluoride-based resin (PVDF-based resin) and Comparative Examples 10 to 18 using the total aromatic polyamide (aramid), Comparative Examples 10 to 18 were more effective.
  • the area shrinkage at 135 ° C and 150 ° C is small. This is because aramid has higher heat resistance than PVDF resin.
  • Comparative Examples 1 to 6 Comparing Comparative Examples 1 to 6 using barium sulfate particles and Comparative Examples 7 to 9 using magnesium hydroxide or alumina, Comparative Examples 1 to 6 generate less gas. Further, when Comparative Examples 10 to 15 using barium sulfate particles and Comparative Examples 16 to 18 using magnesium hydroxide or alumina are compared, the amount of gas generated in Comparative Examples 10 to 15 is smaller. As described above, the effect of reducing gas by using barium sulfate particles was remarkably observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

本発明の一実施形態は、多孔質基材と、前記多孔質基材の片面又は両面に設けられた、バインダ樹脂及び硫酸バリウム粒子を含む耐熱性多孔質層と、を備え、前記耐熱性多孔質層に含まれる前記硫酸バリウム粒子の平均一次粒径が0.01μm以上0.30μm未満であり、前記耐熱性多孔質層に占める前記硫酸バリウム粒子の体積割合が30体積%以上50体積%未満である、非水系二次電池用セパレータを提供する。

Description

非水系二次電池用セパレータ及び非水系二次電池
 本開示は、非水系二次電池用セパレータ及び非水系二次電池に関する。
 リチウムイオン二次電池に代表される非水系二次電池は、ノートパソコン、携帯電話、デジタルカメラ、カムコーダ等の携帯型電子機器の電源として広く用いられている。また、リチウムイオン二次電池に代表される非水系二次電池は、エネルギー密度が高いという特徴から、電力貯蔵用や電動車両用の電池としての適用が検討されている。このような非水系二次電池の普及にともない、電池の安全性を高めることがますます求められている。
 非水系二次電池を構成する部材の一つであるセパレータには、電池の安全性を担保するために、電池内部が高温になっても容易に破膜しない耐熱性が要求される。耐熱性を高めたセパレータとして、無機粒子を含有する多孔質層を多孔質基材上に備えたセパレータが知られている。例えば、特許文献1又は2には、硫酸バリウム粒子を含有する多孔質層を多孔質基材上に備えたセパレータが開示されている。
   特許文献1:特許第5429811号公報
   特許文献2:国際公開第2014/148036号
 本発明者が検討したところ、硫酸バリウム粒子を含有する多孔質層を多孔質基材上に備えたセパレータは、水酸化マグネシウム又はアルミナを含有する多孔質層を多孔質基材上に備えたセパレータに比較して、電解液又は電解質の分解によるガス発生を起しにくいことが分かった。したがって、硫酸バリウム粒子を含有する多孔質層の耐熱性をより向上させれば、電池の安全性に大いに寄与するセパレータを提供することができる。また、硫酸バリウム粒子を使用したセパレータにおいて、生産性を高めることも重要である。
 本開示の実施形態は、上記状況のもとになされた。
 本開示の一実施形態は、電池内部におけるガス発生を抑制すると共に耐熱性に優れ、かつ生産性にも優れた非水系二次電池用セパレータを提供することを目的とする。
 また、本開示の他の実施形態は、電池内部におけるガス発生が抑制され、耐熱性に優れ、かつ、生産性が改善された非水系二次電池を提供することを目的とする。
 前記課題を解決するための具体的手段には、以下の態様が含まれる。
 [1] 多孔質基材と、前記多孔質基材の片面又は両面に設けられた、バインダ樹脂及び硫酸バリウム粒子を含む耐熱性多孔質層と、を備え、前記耐熱性多孔質層に含まれる前記硫酸バリウム粒子の平均一次粒径が0.01μm以上0.30μm未満であり、前記耐熱性多孔質層に占める前記硫酸バリウム粒子の体積割合が30体積%以上50体積%未満である、非水系二次電池用セパレータ。
 [2] 前記バインダ樹脂がポリフッ化ビニリデン系樹脂を含む、[1]に記載の非水系二次電池用セパレータ。
 [3] 前記ポリフッ化ビニリデン系樹脂の重量平均分子量が60万~300万である、[2]に記載の非水系二次電池用セパレータ。
 [4] 前記バインダ樹脂が、全芳香族ポリアミド、ポリアミドイミド、ポリ-N-ビニルアセトアミド、ポリアクリルアミド、共重合ポリエーテルポリアミド、ポリイミド及びポリエーテルイミドからなる群より選ばれる少なくとも1種を含む、[1]~[3]のいずれか1つに記載の非水系二次電池用セパレータ。
 
 [5] 前記非水系二次電池用セパレータを135℃で1時間熱処理したときの面積収縮率が30%以下である、[1]~[4]のいずれか1つに記載の非水系二次電池用セパレータ。
 [6] 前記非水系二次電池用セパレータを150℃で1時間熱処理したときの面積収縮率が45%以下である、[1]~[5]のいずれか1つに記載の非水系二次電池用セパレータ。
 [7] 前記耐熱性多孔質層の空孔率が30%~70%である、[1]~[6]のいずれか1つに記載の非水系二次電池用セパレータ。
 [8] 前記耐熱性多孔質層は、単位面積当たりの質量が両面合計で1.0g/m~30.0g/mである、[1]~[7]のいずれか1つに記載の非水系二次電池用セパレータ。
 [9] 前記耐熱性多孔質層が前記多孔質基材の片面に設けられた、[1]~[8]のいずれか1つに記載の非水系二次電池用セパレータ。
 [10] 正極と、負極と、前記正極及び前記負極の間に配置された[1]~[9]のいずれか1つに記載の非水系二次電池用セパレータと、を備え、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池。
 本開示の一実施形態によれば、電池内部におけるガス発生を抑制すると共に耐熱性に優れ、かつ生産性にも優れた非水系二次電池用セパレータが提供される。
 本開示の他の実施形態によれば、電池内部におけるガス発生が抑制され、耐熱性に優れ、かつ、生産性が改善された非水系二次電池が提供される。
 以下に、本開示の実施形態について説明する。これらの説明及び実施例は実施形態を例示するものであり、実施形態の範囲を制限するものではない。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数種存在する場合には、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。
 本開示において、「MD」とは、長尺状に製造される多孔質基材及びセパレータにおいて長尺方向(即ち、搬送方向)を意味し、「機械方向(machine direction)」ともいう。また、「TD」とは、「MD」に直交する方向を意味し、「幅方向(transverse direction)」ともいう。
 本開示において「(メタ)アクリル」との表記は「アクリル」又は「メタクリル」を意味する。
 本開示において、樹脂の「単量体単位」とは、樹脂の構成単位であって、単量体が重合してなる構成単位を意味する。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、組成物又は層中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 なお、本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 本開示において耐熱性樹脂とは、融点が200℃以上の樹脂、又は、融点を有さず分解温度が200℃以上の樹脂を指す。つまり、本開示における耐熱性樹脂とは、200℃未満の温度領域で溶融及び分解を起こさない樹脂である。
<非水系二次電池用セパレータ>
 本開示の非水系二次電池用セパレータ(本開示において、単に「セパレータ」ともいう。)は、多孔質基材と、多孔質基材の片面又は両面に設けられた耐熱性多孔質層と、を備える。
 本開示のセパレータにおいて、耐熱性多孔質層は、バインダ樹脂及び硫酸バリウム粒子を含み、耐熱性多孔質層に含まれる硫酸バリウム粒子の平均一次粒径が0.01μm以上0.30μm未満であり、前記耐熱性多孔質層に占める前記硫酸バリウム粒子の体積割合が30体積%以上50体積%未満である。
 硫酸バリウム粒子は、水酸化マグネシウム又はアルミナに比べて、電解液又は電解質を分解しにくく、したがって、ガス発生を起しにくい。それ故、硫酸バリウム粒子を耐熱性多孔質層の無機フィラーとして用いることにより、ガス発生を起しにくく、電池の膨らみや変形を起しにくいセパレータが得られる。
 本開示のセパレータにおいて、耐熱性多孔質層に含まれる硫酸バリウム粒子の平均一次粒径は、耐熱性多孔質層の耐熱性を高める観点から、0.30μm未満である。硫酸バリウム粒子の平均一次粒径が0.30μm未満であると、耐熱性多孔質層の耐熱性が高まる。この機序としては、硫酸バリウム粒子の粒径が小さいことにより、単位体積あたりの硫酸バリウム粒子の表面積(比表面積)が大きくなり、したがって、硫酸バリウム粒子とバインダ樹脂との接触点が多くなるので、高温に曝された際の耐熱性多孔質層の収縮が抑制されるものと考えられる。また、粒径の小さい硫酸バリウム粒子どうしが多数繋がることにより、高温に曝された際において、耐熱性多孔質層が破膜しにくくなると推測される。
 上記の観点から、硫酸バリウム粒子の平均一次粒径は、0.30μm未満であり、0.28μm以下がより好ましく、0.25μm以下が更に好ましい。
 本開示のセパレータにおいて、耐熱性多孔質層に含まれる硫酸バリウム粒子の平均一次粒径は、粒子どうしの凝集を抑制し均一性の高い耐熱性多孔質層を形成する観点から、0.01μm以上であり、0.05μm以上がより好ましく、0.10μm以上が更に好ましい。
 以下、本開示のセパレータが有する多孔質基材及び耐熱性多孔質層の詳細を説明する。
[多孔質基材]
 本開示における多孔質基材とは、内部に空孔ないし空隙を有する基材を意味する。
 このような基材としては、微多孔膜;繊維状物からなる、不織布、紙等の多孔性シート;これら微多孔膜や多孔性シートに他の多孔性の層を1層以上積層した複合多孔質シート;などが挙げられる。本開示においては、セパレータの薄膜化及び強度の観点から、微多孔膜が好ましい。
 微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
 多孔質基材の材料としては、電気絶縁性を有する材料が好ましく、有機材料又は無機材料のいずれでもよい。
 多孔質基材は、多孔質基材にシャットダウン機能を付与するため、熱可塑性樹脂を含むことが望ましい。シャットダウン機能とは、電池温度が高まった際に、構成材料が溶解して多孔質基材の孔を閉塞することによりイオンの移動を遮断し、電池の熱暴走を防止する機能をいう。熱可塑性樹脂としては、融点200℃未満の熱可塑性樹脂が好ましい。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;などが挙げられ、中でもポリオレフィンが好ましい。
 多孔質基材としては、ポリオレフィンを含む微多孔膜(本開示において、「ポリオレフィン微多孔膜」という。)が好ましい。ポリオレフィン微多孔膜としては、例えば、従来の電池セパレータに適用されているポリオレフィン微多孔膜が挙げられ、この中から十分な力学特性とイオン透過性を有するものを選択することが好ましい。
 ポリオレフィン微多孔膜は、シャットダウン機能を発現する観点から、ポリエチレンを含む微多孔膜が好ましい。ポリオレフィン微多孔膜におけるポリエチレンの含有量としては、ポリオレフィン微多孔膜全体の質量に対して、95質量%以上が好ましい。
 ポリオレフィン微多孔膜は、高温に曝されたときに容易に破膜しない耐熱性を備える観点から、ポリプロピレンを含む微多孔膜が好ましい。
 ポリオレフィン微多孔膜は、シャットダウン機能と、高温に曝されたときに容易に破膜しない耐熱性とを備える観点から、ポリエチレン及びポリプロピレンを含むポリオレフィン微多孔膜が好ましい。このようなポリオレフィン微多孔膜としては、ポリエチレンとポリプロピレンが1つの層において混在している微多孔膜が挙げられる。該微多孔膜においては、シャットダウン機能と耐熱性の両立という観点から、95質量%以上のポリエチレンと0質量%超5質量%以下のポリプロピレンとを含むことが好ましい。また、シャットダウン機能と耐熱性の両立という観点からは、2層以上の積層構造を備え、積層構造における、少なくとも1層はポリエチレンを含み、少なくとも1層はポリプロピレンを含む構造のポリオレフィン微多孔膜も好ましい。
 ポリオレフィン微多孔膜に含まれるポリオレフィンとしては、重量平均分子量(Mw)が10万~500万のポリオレフィンが好ましい。ポリオレフィンのMwが10万以上であると、微多孔膜に十分な力学特性を付与できる。一方、ポリオレフィンのMwが500万以下であると、微多孔膜のシャットダウン特性が良好であるし、微多孔膜の成形がしやすい。
 なお、重量平均分子量の測定は、ゲルパーミエーションクロマトグラフィー(GPC)により行える。GPCによる測定の詳細については後述する。
 ポリオレフィン微多孔膜の製造方法としては、溶融したポリオレフィン樹脂をT-ダイから押し出してシート化し、これを結晶化処理した後延伸し、次いで熱処理をして微多孔膜とする方法:流動パラフィンなどの可塑剤と一緒に溶融したポリオレフィン樹脂をT-ダイから押し出し、これを冷却してシート化し、延伸した後、可塑剤を抽出し熱処理をして微多孔膜とする方法;などが挙げられる。
 繊維状物からなる多孔性シートとしては、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱性樹脂;セルロースの繊維状物;などの繊維状物からなる、不織布、紙等の多孔性シートが挙げられる。
 複合多孔質シートとしては、例えば、微多孔膜又は繊維状物からなる多孔性シートに、機能層を積層したシートが挙げられる。このような複合多孔質シートは、機能層によってさらなる機能付加が可能となる観点から好ましい。機能層としては、例えば耐熱性を付与するという観点からは、耐熱性樹脂からなる多孔性の層、又は耐熱性樹脂及び無機フィラーからなる多孔性の層が挙げられる。
 耐熱性樹脂としては、全芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン及びポリエーテルイミドから選ばれる1種又は2種以上の耐熱性樹脂が挙げられる。
 無機フィラーとしては、アルミナ等の金属酸化物;水酸化マグネシウム等の金属水酸化物;などが挙げられる。
 複合化の手法としては、微多孔膜や多孔性シートに機能層を塗工する方法、微多孔膜や多孔性シートと機能層とを接着剤で接合する方法、微多孔膜や多孔性シートと機能層とを熱圧着する方法等が挙げられる。
 多孔質基材の表面には、耐熱性多孔質層を形成するための塗工液との濡れ性を向上させる目的で、多孔質基材の性質を損なわない範囲で、各種の表面処理を施してもよい。表面処理としては、コロナ処理、プラズマ処理、火炎処理、紫外線照射処理等が挙げられる。
~多孔質基材の特性~
 多孔質基材の厚さは、電池のエネルギー密度を高める観点から、15μm以下が好ましく、12μm以下がより好ましい。多孔質基材の厚さは、セパレータの製造歩留り及び電池の製造歩留りの観点から、4μm以上が好ましく、6μm以上がより好ましい。
 多孔質基材のガーレ値(JIS P8117:2009)は、イオン透過性又は電池の短絡抑制の観点から、50秒/100mL~400秒/100mLが好ましい。
 多孔質基材の空孔率は、適切な膜抵抗やシャットダウン機能を得る観点から、20%~60%が好ましい。多孔質基材の空孔率ε(%)は、下記の式により求められる。
 ε={1-(Wa/da+Wb/db+Wc/dc+…+Wn/dn)/t}×100
 ここに、多孔質基材の構成材料がa、b、c、…、nであり、各構成材料の質量がWa、Wb、Wc、…、Wn(g/cm)であり、各構成材料の真密度がda、db、dc、…、dn(g/cm)であり、多孔質基材の厚さがt(cm)である。
 多孔質基材の平均孔径は、イオン透過性又は電池の短絡抑制の観点から、20nm~100nmが好ましい。多孔質基材の平均孔径は、パームポロメーターを用いて、ASTM E1294-89に準拠して測定される。
 多孔質基材の突刺強度は、セパレータの製造歩留り及び電池の製造歩留りの観点から、200g以上が好ましい。多孔質基材の突刺強度は、カトーテック社KES-G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突刺速度2mm/秒の条件で突刺試験を行って測定される最大突刺荷重(g)を指す。
[耐熱性多孔質層]
 本開示のセパレータにおける耐熱性多孔質層は、少なくともバインダ樹脂及び硫酸バリウム粒子を含有する。耐熱性多孔質層は、多数の微細孔を有し、一方の面から他方の面へと気体あるいは液体が通過可能となった層である。
 本開示のセパレータにおける耐熱性多孔質層は、多孔質基材の片面のみにあってもよく、多孔質基材の両面にあってもよい。耐熱性多孔質層が多孔質基材の両面にあると、セパレータの耐熱性がより優れ、電池の安全性をより高めることができる。また、セパレータにカールが発生しにくく、電池製造時のハンドリング性に優れる。耐熱性多孔質層が多孔質基材の片面のみにあると、セパレータのイオン透過性がより優れる。また、セパレータ全体の厚さを抑えることができ、エネルギー密度のより高い電池を製造し得る。
-バインダ樹脂-
 本開示における耐熱性多孔質層は、バインダ樹脂を含有する。
 耐熱性多孔質層のバインダ樹脂の種類は、無機粒子を結着させ得るものであれば、特に制限されない。耐熱性多孔質層のバインダ樹脂は、耐熱性樹脂(融点が200℃以上の樹脂、又は、融点を有さず分解温度が200℃以上の樹脂)が好ましい。耐熱性多孔質層のバインダ樹脂は、電解液に対して安定で電気化学的にも安定な樹脂が好ましい。
 バインダ樹脂は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 耐熱性多孔質層のバインダ樹脂は、電池の電極に対して接着性を有することが好ましく、正極又は負極の組成に合せてバインダ樹脂の種類を選択してよい。耐熱性多孔質層が多孔質基材の両面にある場合、一方面の耐熱性多孔質層のバインダ樹脂と、他方面の耐熱性多孔質層のバインダ樹脂とは、同じでもよく異なっていてもよい。
 耐熱性多孔質層のバインダ樹脂としては、極性を有する官能基又は原子団(例えば、水酸基、カルボキシ基、アミノ基、アミド基、カルボニル基)を有するポリマーが好ましい。
 耐熱性多孔質層のバインダ樹脂としては、具体的には、ポリフッ化ビニリデン系樹脂、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリケトン、ポリエーテルイミド、ポリ-N-ビニルアセトアミド、ポリアクリルアミド、共重合ポリエーテルポリアミド、フッ素系ゴム、アクリル系樹脂、スチレン-ブタジエン共重合体、セルロース、ポリビニルアルコール等が挙げられる。
 耐熱性多孔質層のバインダ樹脂は、粒子状樹脂でもよく、例えば、ポリフッ化ビニリデン系樹脂、フッ素系ゴム、スチレン-ブタジエン共重合体等の樹脂の粒子が挙げられる。耐熱性多孔質層のバインダ樹脂は、セルロース、ポリビニルアルコール等の水溶性樹脂でもよい。耐熱性多孔質層のバインダ樹脂として粒子状樹脂又は水溶性樹脂を用いる場合は、バインダ樹脂を水に分散又は溶解させて塗工液を調製し、該塗工液を用いて乾式塗工法にて耐熱性多孔質層を多孔質基材上に形成することができる。
 耐熱性多孔質層のバインダ樹脂としては、耐熱性に優れる観点から、全芳香族ポリアミド、ポリアミドイミド、ポリ-N-ビニルアセトアミド、ポリアクリルアミド、共重合ポリエーテルポリアミド、ポリイミド、又はポリエーテルイミドが好ましい。これら樹脂は、耐熱性樹脂(融点が200℃以上の樹脂、又は、融点を有さず分解温度が200℃以上の樹脂)であることが好ましい。
 耐熱性樹脂の中でも、耐久性の観点から、全芳香族ポリアミド(アラミド)が好ましい。全芳香族ポリアミドは、メタ型でもパラ型でもよい。全芳香族ポリアミドの中でも、多孔質層を形成しやすい観点および電極反応において耐酸化還元性に優れる観点から、メタ型全芳香族ポリアミドが好ましい。全芳香族ポリアミドには、少量の脂肪族単量体が共重合されていてもよい。
 耐熱性多孔質層のバインダ樹脂として用いられる全芳香族ポリアミドとしては、具体的には、ポリメタフェニレンイソフタルアミド又はポリパラフェニレンテレフタルアミドが好ましく、ポリメタフェニレンイソフタルアミドがより好ましい。
 耐熱性多孔質層のバインダ樹脂としては、電極に対する接着性の観点から、ポリフッ化ビニリデン系樹脂(PVDF系樹脂)が好ましい。
 PVDF系樹脂は、電極との接着性の観点から、耐熱性多孔質層のバインダ樹脂に好適である。耐熱性多孔質層がPVDF系樹脂を含有することにより、耐熱性多孔質層と電極との接着性が向上し、その結果、電池の強度(セル強度)が向上する。
 PVDF系樹脂としては、フッ化ビニリデンの単独重合体(即ちポリフッ化ビニリデン);フッ化ビニリデンと他の単量体との共重合体(ポリフッ化ビニリデン共重合体);ポリフッ化ビニリデンとポリフッ化ビニリデン共重合体の混合物;が挙げられる。フッ化ビニリデンと共重合可能な単量体としては、例えば、テトラフルオロエチレン、ヘキサフルオロプロピレン、トリフルオロエチレン、クロロトリフルオロエチレン、トリクロロエチレン、フッ化ビニル、トリフルオロパーフルオロプロピルエーテル、エチレン、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エステル、酢酸ビニル、塩化ビニル、アクリロニトリル等が挙げられる。これら単量体は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 耐熱性多孔質層に含まれるPVDF系樹脂としては、電極との接着性の観点から、フッ化ビニリデン単量体単位(VDF単位)とヘキサフルオロプロピレン単量体単位(HFP単位)とを含む共重合体(VDF-HFP共重合体)がより好ましい。VDF-HFP共重合体を耐熱性多孔質層のバインダ樹脂として用いると、バインダ樹脂の結晶性及び耐熱性を適度な範囲に制御しやすく、セパレータを電極と接着させるための熱プレス処理時に耐熱性多孔質層が流動してしまうのを抑制できる。
 耐熱性多孔質層に含まれるVDF-HFP共重合体としては、VDF単位及びHFP単位のみからなる共重合体でもよく、VDF単位及びHFP単位とVDF単位及びHFP単位以外のその他の単量体単位とを含む共重合体でもよい。その他の単量体としては、例えば、テトラフルオロエチレン、トリフルオロエチレン、クロロトリフルオロエチレン、トリクロロエチレン、フッ化ビニル等が挙げられる。
 VDF-HFP共重合体におけるVDF単位の含有量は、VDF-HFP共重合体の結晶性及び耐熱性を適度な範囲に制御する観点から、91モル%以上であることが好ましい。
 VDF-HFP共重合体におけるHFP単位の含有量は、電解液が含浸された際に適度に膨潤し、ウェットヒートプレスによる接着性に優れる観点から、1モル%以上であることが好ましく、2モル%以上であることがより好ましく、電解液に溶解しにくい観点から、7モル%以下であることが好ましく、6モル%以下であることがより好ましい。
 耐熱性多孔質層に含まれるPVDF系樹脂は、重量平均分子量(Mw)が60万~300万であることが好ましい。PVDF系樹脂のMwが60万以上であると、セパレータを電極と接着させる際の熱プレス処理に耐え得る力学物性を有する耐熱性多孔質層が得られやすく、電極と耐熱性多孔質層との間の接着性が向上する。この観点からは、PVDF系樹脂のMwは、80万以上がより好ましく、100万以上が更に好ましい。一方、PVDF系樹脂のMwが300万以下であると、耐熱性多孔質層の成形時の粘度が高くなり過ぎず、成形性及び結晶形成が良好になり、耐熱性多孔質層が多孔化しやすい。この観点からは、PVDF系樹脂のMwは、250万以下がより好ましく、200万以下が更に好ましい。
 なお、耐熱性多孔質層のバインダ樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定される。測定は、日本分光社製のGPC装置「GPC-900」を用い、カラムに東ソー社製TSKgel SUPER AWM-Hを2本用い、溶媒にジメチルホルムアミドを用いて、温度40℃、流量10mL/分の条件で行い、ポリスチレン換算の分子量として得られる。
 耐熱性多孔質層に含まれるPVDF系樹脂は、酸価が3mgKOH/g~20mgKOH/gであることが好ましい。
 PVDF系樹脂の酸価は、例えば、PVDF系樹脂にカルボキシ基を導入することにより制御できる。PVDF系樹脂へのカルボキシ基の導入及び導入量は、PVDF系樹脂の重合成分としてカルボキシ基を有する単量体(例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル、マレイン酸、無水マレイン酸、マレイン酸エステル、及びこれらのフッ素置換体)を用い、その重合比を調整することにより制御できる。
 耐熱性多孔質層中に含まれるPVDF系樹脂のフィブリル径は、電池のサイクル特性の観点から、10nm~1000nmであることが好ましい。
 耐熱性多孔質層のバインダ樹脂としては、平均一次粒径が0.30μm未満の硫酸バリウム粒子と組み合せることにより飛躍的な効果が得られる観点から、PVDF系樹脂又は全芳香族ポリアミド(アラミド)が好ましい。PVDF系樹脂又は全芳香族ポリアミド(アラミド)は、平均一次粒径が0.30μm未満の硫酸バリウム粒子と組み合せることにより、平均一次粒径が0.30μm以上の硫酸バリウム粒子を使用した場合に比べて、耐熱性多孔質層の耐熱性が飛躍的に高まる。
 耐熱性多孔質層に占めるバインダ樹脂の含有割合としては、耐熱性付与の観点から、体積比率で70体積%以下が好ましく、65体積%以下がより好ましく、63体積%以下が更に好ましく、60体積%以下が特に好ましい。また、バインダ樹脂の含有割合は、耐熱性多孔質層の多孔質基材からの剥離または脱落防止の観点から、体積比率で50体積%を超えることが好ましく、52体積%以上であることがより好ましい。
 本開示のセパレータにおける耐熱性多孔質層は、バインダ樹脂以外のその他の樹脂を含んでもよい。
 その他の樹脂としては、電極に対する耐熱性多孔質層の接着性の向上、耐熱性多孔質層のイオン透過性又は膜抵抗の調整等の目的で用いられる。
 その他の樹脂としては、例えば、フッ素系ゴム、スチレン-ブタジエン共重合体、アクリル系樹脂、スチレン-アクリル系樹脂、ビニルニトリル化合物(アクリロニトリル、メタクリロニトリル等)の単独重合体又は共重合体、カルボキシメチルセルロース、ヒドロキシアルキルセルロース、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリエーテル(ポリエチレンオキサイド、ポリプロピレンオキサイド等)などが挙げられる。
 本開示のセパレータにおいて、耐熱性多孔質層がその他の樹脂を含む場合、耐熱性多孔質層に含まれるバインダ樹脂以外のその他の樹脂の総含有量は、耐熱性多孔質層に含まれる樹脂の全量に対して、50質量%以下が好ましく、30質量%以下がより好ましく、10質量%以下が更に好ましい。その他の樹脂の総含有量の下限は、0質量%を超える値であればよい。
-硫酸バリウム粒子-
 本開示のセパレータは、耐熱性多孔質層に硫酸バリウム粒子を含有する。
 耐熱性多孔質層が粒子のうち選択的に硫酸バリウム粒子を含有することで、電解液又は電解質の分解によるガス発生が抑えられる。
 耐熱性多孔質層に含まれる硫酸バリウム粒子の平均一次粒径は、0.01μm以上0.30μm未満である。平均一次粒径の下限としては、0.05μm以上が好ましく、0.10μm以上がより好ましい。平均一次粒径の上限としては、0.28μm以下が好ましく、0.25μm以下がより好ましい。
 硫酸バリウム粒子の平均一次粒径は、入手性の観点または硫酸バリウム粒子の凝集性の観点から0.01μm以上である。また、硫酸バリウム粒子の平均一次粒径が0.30μm未満であると、耐熱性多孔質層の表面に突出する凸部が少なく、また高温に暴露された際の耐熱性多孔質層の収縮を抑制でき耐熱性に優れたものとなる。
 フィラーの平均一次粒径は、走査型電子顕微鏡(SEM)による観察において無作為に選んだフィラー粒子100個の長径を計測し、100個の長径を平均することで求める。SEM観察に供する試料は、耐熱性多孔質層の材料であるフィラー粒子、又は、セパレータから取り出したフィラー粒子である。セパレータからフィラー粒子を取り出す方法に制限はなく、例えば、セパレータを800℃程度に加熱してバインダ樹脂を消失させフィラー粒子を取り出す方法、セパレータを有機溶剤に浸漬して有機溶剤でバインダ樹脂を溶解させフィラー粒子を取り出す方法などが挙げられる。
フィラーの平均一次粒径が小さい場合、又はフィラーの凝集が顕著でありフィラーの長径が測定できない場合、フィラーの比表面積をBET法にて測定し、フィラーを真球と仮定して、下記の式に従い、フィラーの比重と比表面積から粒子径を算出する。
 平均一次粒径(μm)=6÷[比重(g/cm)×BET比表面積(m/g)]
なお、BET法による比表面積測定においては、吸着質として不活性ガスを使用し、フィラー粒子表面に液体窒素の沸点温度(-196℃)で吸着させる。試料に吸着する気体量を吸着質の圧力の関数として測定し、吸着量から試料の比表面積を求める。
 硫酸バリウム粒子の粒子形状に限定はなく、球形、楕円形、板状、針状、不定形のいずれでもよい。耐熱性多孔質層に含まれる硫酸バリウム粒子は、電池の短絡抑制の観点やフィラーが緻密に充填されやすい点から、板状あるいは球形の粒子や、凝集していない一次粒子であることが好ましい。
 耐熱性多孔質層に占める硫酸バリウム粒子の体積割合は、耐熱性の観点から、30体積%以上であり、35体積%以上が好ましく、37体積%以上がより好ましく、40体積%以上が更に好ましい。
 一方、耐熱性多孔質層に占める硫酸バリウム粒子の体積割合が多すぎると、耐熱性多孔質層が多孔質基材から剥がれやすくなる場合がある。耐熱性多孔質層が脱落すると、塗工欠点となり、セパレータの生産性が低下する場合がある。また、硫酸バリウム粒子の体積割合が増えると、硫酸バリウム粒子の表面積が大きくなるため、バインダ樹脂との相互作用が大きくなり、耐熱性多孔質層形成用の塗工液の粘度が高くなる場合がある。塗工液の粘度が高い場合、塗工スジ、シワ等が発生して塗工外観の悪化を招きやすくなり、セパレータの生産性が低下する場合がある。このような観点からは、耐熱性多孔質層に占める硫酸バリウム粒子の体積割合は、50体積%未満であり、48体積%以下が好ましい。
 耐熱性多孔質層に含まれる硫酸バリウム粒子とバインダ樹脂との含有比率(硫酸バリウム粒子/バインダ樹脂比)としては、体積比で、32/68~49/51が好ましく、36/64~48/52がより好ましい。
 本開示のセパレータにおいて耐熱性多孔質層は、硫酸バリウム粒子以外のその他の無機粒子を含有していてもよい。ただし、耐熱性多孔質層に占めるその他の無機粒子の体積割合は、20体積%以下が好ましく、10体積%以下がより好ましく、5体積%以下が更に好ましく、実質的に含まれていないことが特に好ましい。
 その他の無機粒子としては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化クロム、水酸化ジルコニウム、水酸化セリウム、水酸化ニッケル、水酸化ホウ素等の金属水酸化物の粒子;シリカ、アルミナ、チタニア、ジルコニア、酸化マグネシウム等の金属酸化物の粒子;炭酸カルシウム、炭酸マグネシウム等の炭酸塩の粒子;硫酸カルシウム等の硫酸塩の粒子;リン酸カルシウム、アパタイト、ケイ酸カルシウム、タルク等の粘土鉱物;などが挙げられる。その他の無機粒子としては、電解液に対する安定性及び電気化学的な安定性の観点から、金属水酸化物の粒子又は金属酸化物の粒子が好ましい。その他の無機粒子は、シランカップリング剤等により表面修飾されたものでもよい。
 その他の無機粒子の粒子形状に限定はなく、球形、楕円形、板状、針状、不定形のいずれでもよい。耐熱性多孔質層に含まれるその他の無機粒子は、電池の短絡抑制の観点から、球状、板状の粒子や、凝集していない一次粒子であることが好ましい。
 その他の無機粒子は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 その他の無機粒子の平均一次粒径は、0.01μm~5.00μmであることが好ましい。その下限値としては0.10μm以上がより好ましく、上限値としては1.00μm以下がより好ましい。
 本開示のセパレータにおける耐熱性多孔質層は、有機フィラーを含有していてもよい。
 有機フィラーとしては、例えば、架橋ポリ(メタ)アクリル酸、架橋ポリ(メタ)アクリル酸エステル、架橋ポリシリコーン、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物等の架橋高分子からなる粒子;ポリスルホン、ポリアクリロニトリル、アラミド、ポリアセタール等の耐熱性高分子からなる粒子;などが挙げられる。これら有機フィラーは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 本開示のセパレータにおいて耐熱性多孔質層は、界面活性剤等の分散剤、湿潤剤、消泡剤、pH調整剤などの添加剤を含んでいてもよい。分散剤は、耐熱性多孔質層を形成するための塗工液に、分散性、塗工性又は保存安定性を向上させる目的で添加される。湿潤剤、消泡剤、pH調整剤は、耐熱性多孔質層を形成するための塗工液に、例えば、多孔質基材とのなじみをよくする目的、塗工液へのエア噛み込みを抑制する目的、又はpH調整の目的で添加される。
~耐熱性多孔質層の特性~
 耐熱性多孔質層の厚さは、セパレータの耐熱性又はハンドリング性の観点から、片面の厚さで0.5μm以上が好ましく、1μm以上がより好ましい。また、耐熱性多孔質層の厚さは、セパレータのハンドリング性又は電池のエネルギー密度の観点から、片面の厚さで5μm以下が好ましく、4μm以下がより好ましい。
 耐熱性多孔質層の厚さは、耐熱性多孔質層が多孔質基材の片面のみにある場合及び両面にある場合のいずれも、両面にある耐熱性多孔質層の厚さの合計として、1μm以上が好ましく、2μm以上がより好ましい。また、前記厚さの合計は、10μm以下が好ましく、8μm以下がより好ましい。
 単位面積当たりの耐熱性多孔質層の質量は、セパレータの耐熱性又はハンドリング性の観点から、両面にある耐熱性多孔質層の質量の合計として、1.0g/m以上が好ましく、2.0g/m以上がより好ましく、3.5g/m以上が更に好ましく、4.0g/m以上が更に好ましく、4.5g/m以上が更に好ましい。また、単位面積当たりの耐熱性多孔質層の質量は、セパレータのハンドリング性又は電池のエネルギー密度の観点から、両面にある耐熱性多孔質層の質量の合計として、30.0g/m以下が好ましく、20.0g/m以下がより好ましく、10.0g/m以下が更に好ましく、8.0g/m以下が更に好ましい。
 耐熱性多孔質層が多孔質基材の両面にある場合、一方の耐熱性多孔質層の質量と他方の耐熱性多孔質層の質量との差は、セパレータのカールを抑制する観点から、両面合計に対して20質量%以下であることが好ましい。
 耐熱性多孔質層の空孔率は、セパレータのイオン透過性の観点から、30%以上が好ましく、セパレータの熱寸法安定性の観点から、80%以下が好ましく、70%以下がより好ましく、60%以下が更に好ましく、50%以下が更に好ましい。耐熱性多孔質層の空孔率ε(%)は、下記の式により求める。
 ε={1-(Wa/da+Wb/db+Wc/dc+…+Wn/dn)/t}×100
ここで、耐熱性多孔質層の構成材料がa、b、c、…、nであり、各構成材料の質量がWa、Wb、Wc、…、Wn(g/cm)であり、各構成材料の真密度がda、db、dc、…、dn(g/cm)であり、耐熱性多孔質層の厚さがt(cm)である。
 耐熱性多孔質層の平均孔径は、10nm~200nmが好ましい。平均孔径が10nm以上であると、耐熱性多孔質層に電解液を含浸させたとき、耐熱性多孔質層に含まれる樹脂が膨潤しても孔の閉塞が起きにくい。平均孔径が200nm以下であると、イオン移動の均一性が高く、電池のサイクル特性及び負荷特性に優れる。
 耐熱性多孔質層の平均孔径(nm)は、すべての孔が円柱状であると仮定し、以下の式により算出する。
   d=4V/S
 式中、dは耐熱性多孔質層の平均孔径(直径)、Vは耐熱性多孔質層1m当たりの空孔体積、Sは耐熱性多孔質層1m当たりの空孔表面積を表す。
 耐熱性多孔質層1m当たりの空孔体積Vは、耐熱性多孔質層の空孔率から算出する。
 耐熱性多孔質層1m当たりの空孔表面積Sは、以下の方法で求める。
 まず、多孔質基材の比表面積(m/g)とセパレータの比表面積(m/g)とを、窒素ガス吸着法にBET式を適用することにより、窒素ガス吸着量から算出する。これらの比表面積(m/g)にそれぞれの目付(g/m)を乗算して、それぞれの1m当たりの空孔表面積を算出する。そして、多孔質基材1m当たりの空孔表面積をセパレータ1m当たりの空孔表面積から減算して、耐熱性多孔質層1m当たりの空孔表面積Sを算出する。
 多孔質基材と耐熱性多孔質層との間の剥離強度は、電極に対するセパレータの接着強度の観点から、0.1N/10mm以上が好ましく、0.2N/10mm以上がより好ましく、0.3N/10mm以上が更に好ましい。上記の観点からは、多孔質基材と耐熱性多孔質層との間の剥離強度は高いほど好ましいが、通常、剥離強度は2N/10mm以下であることが好ましい。本開示のセパレータが多孔質基材の両面に耐熱性多孔質層を有する場合、多孔質基材と耐熱性多孔質層との間の剥離強度は、多孔質基材の両面において上記の範囲であることが好ましい。
~セパレータの特性~
 本開示のセパレータの厚さは、セパレータの機械的強度の観点から、10μm以上が好ましく、12μm以上がより好ましい。また、セパレータの厚さは、電池のエネルギー密度の観点から、25μm以下が好ましく、20μm以下がより好ましい。
 本開示のセパレータの突刺強度は、セパレータの機械的強度又は電池の耐短絡性の観点から、250g~1000gが好ましく、300g~600gがより好ましい。セパレータの突刺強度の測定方法は、多孔質基材の突刺強度の測定方法と同様である。
 本開示のセパレータの空孔率は、電極に対する接着性、セパレータのハンドリング性、イオン透過性又は機械的強度の観点から、30%~60%が好ましい。
 本開示のセパレータのガーレ値(JIS P8117:2009)は、機械的強度とイオン透過性のバランスの観点から、50秒/100mL~800秒/100mLが好ましく、100秒/100mL~400秒/100mLがより好ましい。
 本開示のセパレータは、イオン透過性の観点から、セパレータのガーレ値から多孔質基材のガーレ値を減算した値が、300秒/100mL以下が好ましく、150秒/100mL以下がより好ましく、100秒/100mL以下が更に好ましい。セパレータのガーレ値から多孔質基材のガーレ値を減算した値の下限は、特に限定されるものではないが、本開示のセパレータにおいては通常10秒/100mL以上である。
 本開示のセパレータの膜抵抗は、電池の負荷特性の観点から、1Ω・cm~10Ω・cmが好ましい。ここでセパレータの膜抵抗とは、セパレータに電解液を含浸させた状態での抵抗値であり、電解液として1mol/L LiBF-プロピレンカーボネート:エチレンカーボネート(質量比1:1)を用いて、20℃にて交流法にて測定される値である。セパレータの膜抵抗値が低いほど、セパレータのイオン透過性が優れる。
 本開示のセパレータの曲路率は、イオン透過性の観点から、1.5~2.5が好ましい。
 本開示のセパレータに含まれる水分量(質量基準)は、1000ppm以下が好ましい。セパレータの水分量が少ないほど、電池を構成した場合において、電解液と水との反応が抑えられ、電池内でのガス発生を抑えることができ、電池のサイクル特性が向上する。この観点から、セパレータに含まれる水分量は、800ppm以下がより好ましく、500ppm以下が更に好ましい。
 本開示のセパレータは、135℃で1時間熱処理したときのMDでの収縮率が、30%以下が好ましく、20%以下がより好ましく、15%以下が更に好ましく、10%以下が更に好ましく、0%が特に好ましい。
 本開示のセパレータは、135℃で1時間熱処理したときのTDでの収縮率が、30%以下が好ましく、20%以下がより好ましく、15%以下が更に好ましく、10%以下が更に好ましく、0%が特に好ましい。
 本開示のセパレータは、135℃で1時間熱処理したときの面積収縮率が、30%以下が好ましく、20%以下がより好ましく、15%以下が更に好ましく、10%以下が更に好ましく、0%が特に好ましい。
 本開示のセパレータは、150℃で1時間熱処理したときのMDでの収縮率が、70%以下が好ましく、55%以下がより好ましく、45%以下が更に好ましく、20%以下が更に好ましく、10%が更に好ましい。
 本開示のセパレータは、150℃で1時間熱処理したときのTDでの収縮率が、70%以下が好ましく、55%以下がより好ましく、45%以下が更に好ましく、20%以下が更に好ましく、10%が更に好ましい。
 本開示のセパレータは、150℃で1時間熱処理したときの面積収縮率が、70%以下が好ましく、55%以下がより好ましく、45%以下が更に好ましく、20%以下が更に好ましく、10%が更に好ましい。
 セパレータを135℃又は150℃で1時間熱処理したときの面積収縮率は、以下の測定方法によって求める。
 セパレータをMD180mm×TD60mmの長方形に切り出し、試験片とする。この試験片に、TDにおける長さを2等分する線上で且つ一方の端から20mm及び170mmの箇所に印を付ける(それぞれ点A、点Bという。)。さらに、MDにおける長さを2等分する線上で且つ一方の端から10mm及び50mmの箇所に印を付ける(それぞれ点C、点Dという。)。印を付けた試験片にクリップをつけて(クリップをつける場所は、点Aから最も近い端と点Aとの間である。)、庫内の温度を135℃又は150℃に調整したオーブンの中につるし、無張力下で1時間熱処理を施す。AB間及びCD間の長さを熱処理の前後で測定し、下記の式により面積収縮率を算出する。
  面積収縮率(%)={1-(熱処理後のABの長さ÷熱処理前のABの長さ)×(熱処理後のCDの長さ÷熱処理前のCDの長さ)}×100
 本開示のセパレータを熱処理したときの収縮率は、例えば、耐熱性多孔質層中の無機粒子の含有量、耐熱性多孔質層の厚さ、耐熱性多孔質層の空孔率等によって制御し得る。
 本開示のセパレータは、多孔質基材及び耐熱性多孔質層以外のその他の層をさらに有していてもよい。その他の層としては、電極との接着を主たる目的に最外層として設けられる接着層が挙げられる。
[セパレータの製造方法]
 本開示のセパレータは、例えば、多孔質基材上に耐熱性多孔質層を湿式塗工法又は乾式塗工法で形成することにより製造できる。本開示において、湿式塗工法とは、塗工層を凝固液中で固化させる方法であり、乾式塗工法とは、塗工層を乾燥させて固化させる方法である。以下に、湿式塗工法の実施形態例を説明する。
 湿式塗工法は、バインダ樹脂及び硫酸バリウム粒子を含有する塗工液を多孔質基材上に塗工し、凝固液に浸漬して塗工層を固化させ、凝固液から引き揚げ水洗及び乾燥を行う方法である。
 耐熱性多孔質層形成用の塗工液は、バインダ樹脂及び硫酸バリウム粒子を溶媒に溶解又は分散させて作製する。塗工液には、必要に応じて、バインダ樹脂及び硫酸バリウム粒子以外のその他の成分を溶解又は分散させる。
 塗工液の調製に用いる溶媒は、バインダ樹脂を溶解する溶媒(以下、「良溶媒」ともいう。)を含む。良溶媒としては、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド等の極性アミド溶媒が挙げられる。
 塗工液の調製に用いる溶媒は、良好な多孔構造を有する多孔質層を形成する観点から、相分離を誘発させる相分離剤を含むことが好ましい。したがって、塗工液の調製に用いる溶媒は、良溶媒と相分離剤との混合溶媒であることが好ましい。相分離剤は、塗工に適切な粘度が確保できる範囲の量で良溶媒と混合することが好ましい。相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、トリプロピレングリコール等が挙げられる
 塗工液の調製に用いる溶媒としては、良好な多孔構造を形成する観点から、良溶媒と相分離剤との混合溶媒であって、良溶媒を60質量%以上含み、相分離剤を40質量%以下含む混合溶媒が好ましい。
 塗工液の樹脂濃度は、良好な多孔構造を形成する観点から、1質量%~20質量%であることが好ましい。塗工液の無機粒子濃度は、良好な多孔構造を形成する観点から、2質量%~50質量%であることが好ましい。
 多孔質基材への塗工液の塗工手段としては、マイヤーバー、ダイコーター、リバースロールコーター、ロールコーター、グラビアコーター等が挙げられる。耐熱性多孔質層を多孔質基材の両面に形成する場合、塗工液を両面同時に多孔質基材へ塗工することが生産性の観点から好ましい。
 塗工層の固化は、塗工層を形成した多孔質基材を凝固液に浸漬し、塗工層において相分離を誘発しつつバインダ樹脂を固化させることで行われる。これにより、多孔質基材と耐熱性多孔質層とからなる積層体を得る。
 凝固液は、塗工液の調製に用いた良溶媒及び相分離剤と、水とを含むことが一般的である。良溶媒と相分離剤の混合比は、塗工液の調製に用いた混合溶媒の混合比に合わせるのが生産上好ましい。凝固液中の水の含有量は40質量%~90質量%であることが、多孔構造の形成および生産性の観点から好ましい。凝固液の温度は、例えば20℃~50℃である。
 凝固液中で塗工層を固化させた後、積層体を凝固液から引き揚げ、水洗する。水洗することによって、積層体から凝固液を除去する。さらに、乾燥することによって、積層体から水を除去する。水洗は、例えば、積層体を水浴中を搬送することによって行う。乾燥は、例えば、積層体を高温環境中を搬送すること、積層体に風をあてること、積層体をヒートロールに接触させること等によって行う。乾燥温度は40℃~80℃が好ましい。
 本開示のセパレータは、乾式塗工法でも製造し得る。乾式塗工法は、塗工液を多孔質基材に塗工し、塗工層を乾燥させて溶媒を揮発除去することにより、耐熱性多孔質層を多孔質基材上に形成する方法である。
 本開示のセパレータは、耐熱性多孔質層を独立したシートとして作製し、この耐熱性多孔質層を多孔質基材に重ねて、熱圧着や接着剤によって複合化する方法によっても製造し得る。耐熱性多孔質層を独立したシートとして作製する方法としては、上述した湿式塗工法又は乾式塗工法を適用して、剥離シート上に耐熱性多孔質層を形成する方法が挙げられる。
<非水系二次電池>
 本開示の非水系二次電池は、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池であり、正極と、負極と、本開示の非水系二次電池用セパレータとを備える。ドープとは、吸蔵、担持、吸着、又は挿入を意味し、正極等の電極の活物質にリチウムイオンが入る現象を意味する。
 本開示の非水系二次電池は、例えば、負極と正極とがセパレータを介して対向した電池素子が電解液と共に外装材内に封入された構造を有する。本開示の非水系二次電池は、非水電解質二次電池、特にリチウムイオン二次電池に好適である。
 本開示の非水系二次電池は、本開示のセパレータが電池内部におけるガス発生を抑制すると共に耐熱性に優れることにより、安全性に優れる。
 以下、本開示の非水系二次電池が備える正極、負極、電解液及び外装材の形態例を説明する。
 正極の実施形態例としては、正極活物質及びバインダ樹脂を含む活物質層が集電体上に成形された構造が挙げられる。活物質層は、さらに導電助剤を含んでもよい。正極活物質としては、例えば、リチウム含有遷移金属酸化物が挙げられ、具体的にはLiCoO、LiNiO、LiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3、LiMn、LiFePO、LiCo1/2Ni1/2、LiAl1/4Ni3/4等が挙げられる。バインダ樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、スチレン-ブタジエン共重合体等が挙げられる。導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、黒鉛粉末等の炭素材料が挙げられる。集電体としては、例えば厚さ5μm~20μmの、アルミ箔、チタン箔、ステンレス箔等が挙げられる。
 本開示の非水系二次電池においては、本開示のセパレータの耐熱性多孔質層にポリフッ化ビニリデン系樹脂を含有させた場合、ポリフッ化ビニリデン系樹脂が耐酸化性に優れることにより、耐熱性多孔質層を非水系二次電池の正極に接触させて配置することで、正極活物質として、4.2V以上の高電圧で作動可能なLiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3等を適用しやすい。
 負極の実施形態例としては、負極活物質及びバインダ樹脂を含む活物質層が集電体上に成形された構造が挙げられる。活物質層は、さらに導電助剤を含んでもよい。負極活物質としては、リチウムを電気化学的に吸蔵し得る材料が挙げられ、具体的には例えば、炭素材料;ケイ素、スズ、アルミニウム等とリチウムとの合金;ウッド合金;などが挙げられる。バインダ樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、スチレン-ブタジエン共重合体等が挙げられる。導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、黒鉛粉末等の炭素材料が挙げられる。集電体としては、例えば厚さ5μm~20μmの、銅箔、ニッケル箔、ステンレス箔等が挙げられる。また、上記の負極に代えて、金属リチウム箔を負極として用いてもよい。
 電解液は、リチウム塩を非水系溶媒に溶解した溶液である。リチウム塩としては、例えば、LiPF、LiBF、LiClO等が挙げられる。非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、ビニレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、及びそのフッ素置換体等の鎖状カーボネート;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル;などが挙げられ、これらは単独で用いても混合して用いてもよい。電解液としては、環状カーボネートと鎖状カーボネートとを質量比(環状カーボネート:鎖状カーボネート)20:80~40:60で混合し、リチウム塩を0.5mol/L~1.5mol/Lの範囲にて溶解した溶液が好適である。
 外装材としては、金属缶、アルミラミネートフィルム製パック等が挙げられる。電池の形状は角型、円筒型、コイン型等があるが、本開示のセパレータはいずれの形状にも好適である。
 本開示の非水系二次電池の製造方法としては、セパレータに電解液を含浸させて熱プレス処理(本開示において「ウェットヒートプレス」という。)を行って電極に接着させることを含む製造方法;セパレータに電解液を含浸させずに熱プレス処理(本開示において「ドライヒートプレス」という。)を行って電極に接着させることを含む製造方法;が挙げられる。
 本開示の非水系二次電池は、正極と負極との間に本開示のセパレータを配置し、長さ方向に巻き回して巻回体を製造した後、この巻回体を用いて、例えば下記の製造方法1~3により製造できる。巻回体の代わりに、正極、セパレータ、負極をこの順に少なくとも1層ずつ積層する方式(所謂スタック方式)によって製造した素子を用いる場合も同様である。
 製造方法1:巻回体にドライヒートプレスして電極とセパレータとを接着した後、外装材(例えばアルミラミネートフィルム製パック。以下同じ)に収容し、そこに電解液を注入し、外装材の上からさらに巻回体をウェットヒートプレスし、電極とセパレータとの接着と、外装材の封止とを行う。
 製造方法2:巻回体を外装材に収容し、そこに電解液を注入し、外装材の上から巻回体をウェットヒートプレスし、電極とセパレータとの接着と、外装材の封止とを行う。巻回体を外装材に収容する前に常温プレス(常温下での加圧)を施して、巻回体を仮接着してもよい。
 製造方法3:巻回体にドライヒートプレスして電極とセパレータとを接着した後、外装材に収容し、そこに電解液を注入し、外装材の封止を行う。
 ウェットヒートプレスの条件としては、プレス温度は70℃~110℃が好ましく、プレス圧は0.5MPa~2MPaが好ましい。ドライヒートプレスの条件としては、プレス温度は20℃~100℃が好ましく、プレス圧は0.5MPa~5MPaが好ましい。プレス時間は、プレス温度及びプレス圧に応じて調節することが好ましく、例えば0.5分間~60分間の範囲で調節する。
 以下に実施例を挙げて、本開示のセパレータ及び非水系二次電池をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理手順等は、本開示の趣旨を逸脱しない限り適宜変更することができる。したがって、本開示のセパレータ及び非水系二次電池の範囲は、以下に示す具体例により限定的に解釈されるべきではない。
<測定方法、評価方法>
 実施例及び比較例で適用した測定方法及び評価方法は、以下のとおりである。
[ポリフッ化ビニリデン系樹脂のHFP含有量]
 ポリフッ化ビニリデン系樹脂のヘキサフルオロプロピレン単量体単位(HFP単位)の割合は核磁気共鳴(NMR)スペクトルから求めた。具体的には、ポリフッ化ビニリデン系樹脂20mgを重ジメチルスルホキシド0.6mLに100℃にて溶解し、100℃で19F-NMRスペクトルを測定した。
[ポリフッ化ビニリデン系樹脂の重量平均分子量]
 ポリフッ化ビニリデン系樹脂の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した。GPCによる分子量測定は、日本分光社製のGPC装置「GPC-900」を用い、カラムに東ソー社製TSKgel SUPER AWM-Hを2本用い、溶媒にジメチルホルムアミドを使用し、温度40℃、流量10mL/分の条件で測定し、ポリスチレン換算の分子量を得た。
[無機粒子の平均一次粒径]
 耐熱性多孔質層を形成するための塗工液に添加する前の無機フィラーを試料とした。
 平均一次粒径が小さい硫酸バリウム粒子(平均一次粒径0.3μm未満)は、走査型電子顕微鏡(SEM)による一次粒子の長径の計測が困難だったので、硫酸バリウム粒子の比重(g/cm)とBET比表面積(m/g)とをそれぞれ測定し、硫酸バリウム粒子を真球と仮定して、下記の式に従い、硫酸バリウム粒子の平均一次粒径を求めた。BET比表面積の測定装置として、Micromeritics社のASAP2020を用いた。BET比表面積(m/g)は、窒素ガスを用いたガス吸着法であってBET多点法により求めた。窒素ガスは、粒子に液体窒素の沸点温度(-196℃)で吸着させた。
 平均一次粒径(μm)=6÷[比重(g/cm)×BET比表面積(m/g)]
 それ以外の無機粒子の平均一次粒径は、SEMによる観察において無作為に選んだ無機粒子100個の長径を計測し、100個の長径を平均することで求めた。
[耐熱性多孔質層に占める硫酸バリウム粒子の体積割合]
 耐熱性多孔質層に占める硫酸バリウム粒子の体積割合Va(%)は、下記の式により求めた。
Va={(Xa/Da)/(Xa/Da+Xb/Db+Xc/Dc+…+Xn/Dn)}×100
 ここに、耐熱性多孔質層の構成材料のうち、硫酸バリウム粒子がa、その他の構成材料がb、c、…、nであり、各構成材料の質量がXa、Xb、Xc、…、Xn(g)であり、各構成材料の真密度がDa、Db、Dc、…、Dn(g/cm)である。
[多孔質基材及びセパレータの厚さ]
 接触式の厚み計(ミツトヨ社、LITEMATIC VL-50)にて多孔質基材又はセパレータのそれぞれ20点を測定し、これを平均することで、多孔質基材及びセパレータの厚さ(μm)を求めた。測定端子は直径5mmの円柱状の端子を用い、測定中に0.01Nの荷重が印加されるように調整した。
[耐熱性多孔質層の厚さ]
 セパレータの厚さ(μm)から多孔質基材の厚さ(μm)を減算して耐熱性多孔質層の厚さ(両面合計、μm)を求めた。
[耐熱性多孔質層の質量(塗工量)]
 セパレータを10cm×10cmに切り出し質量を測定し、質量を面積で除することでセパレータの目付(g/m)を求めた。セパレータの製造に用いた多孔質基材を10cm×10cmに切り出し質量を測定し、質量を面積で除することで多孔質基材の目付(g/m)を求めた。セパレータの目付から多孔質基材の目付を減算することで、耐熱性多孔質層の単位面積当たりの質量(両面合計、g/m)を求めた。
[多孔質基材の空孔率]
 多孔質基材の空孔率ε(%)は、下記の式により求めた。
 ε={1-Ws/(ds・t)}×100
 Ws:多孔質基材の目付(g/m)、ds:多孔質基材の真密度(g/cm)、t:多孔質基材の厚さ(cm)。
[耐熱性多孔質層の空孔率]
 耐熱性多孔質層の空孔率ε(%)は、下記の式により求めた。
 ε={1-(Wa/da+Wb/db+Wc/dc+…+Wn/dn)/t}×100
 ここに、耐熱性多孔質層の構成材料がa、b、c、…、nであり、各構成材料の質量がWa、Wb、Wc、…、Wn(g/cm)であり、各構成材料の真密度がda、db、dc、…、dn(g/cm)であり、耐熱性多孔質層の厚さがt(cm)である。
[ガーレ値]
 ガーレ式デンソメータ(東洋精機社、G-B2C)を用いて、JIS P8117:2009に従い、多孔質基材及びセパレータのガーレ値(秒/100mL)を測定した。
[膜抵抗]
 セパレータに、電解液として1mol/L LiBF-プロピレンカーボネート:エチレンカーボネート(質量比1:1)を含浸させ、これをリードタブ付きのアルミ箔電極に挟みアルミパックに封入して試験セルを作製した。この試験セルの抵抗(Ω・cm)を、温度20℃下、交流インピーダンス法(測定周波数100kHz)により測定した。
[多孔質基材と耐熱性多孔質層との間の剥離強度]
 セパレータにT字剥離試験を行った。具体的には、セパレータの一方の表面に粘着テープ(3M製、12mm幅)を貼り(貼る際に、粘着テープの長さ方向をセパレータのMDに一致させた。)、セパレータを粘着テープごと、TDにおける長さ12mm、MDにおける長さ70mmのサイズに切り出した。粘着テープを直下の耐熱性多孔質層と共に少し剥がし、2つに分離した端部をテンシロン(オリエンテック社、RTC-1210A)に把持させてT字剥離試験を行った。なお、粘着テープは、耐熱性多孔質層を多孔質基材から剥がすための支持体として用いたものである。T字剥離試験の引張速度は20mm/分とし、測定開始後10mmから40mmまでの荷重(N)を0.4mm間隔で採取し、その平均を算出し、幅10mmあたりの荷重(N/10mm)に換算した。さらに試験片10枚の荷重(N/10mm)を平均した。
[熱処理による面積収縮率]
 セパレータをMDにおける長さ180mm×TDにおける長さ60mmのサイズに切り出し、試験片とした。この試験片に、TDにおける長さを2等分する線上で且つ一方の端から20mm及び170mmの箇所に印を付けた(それぞれ点A、点Bという)。さらに、MDにおける長さを2等分する線上で且つ一方の端から10mm及び50mmの箇所に印を付けた(それぞれ点C、点Dという)。これにクリップをつけて(クリップをつける場所は、点Aから最も近い端と点Aとの間)、庫内の温度を120℃、135℃又は150℃に調整したオーブンの中につるし、無張力下で1時間熱処理を施した。AB間及びCD間の長さを熱処理の前後で測定し、下記の式により面積収縮率を算出し、さらに試験片10枚の面積収縮率を平均した。
面積収縮率(%)={1-(熱処理後のABの長さ÷熱処理前のABの長さ)×(熱処理後のCDの長さ÷熱処理前のCDの長さ)}×100
[スポット加熱]
 セパレータをMD50mm×TD50mmに切り出し、試験片とした。試験片を水平な台に置き、先端直径2mmのハンダゴテを加熱して先端温度を260℃にした状態で該ハンダゴテの先端をセパレータ表面に60秒間、点接触させた。点接触によってセパレータに生じた穴の面積(mm)を測定し、さらに試験片10枚の穴の面積を平均した。セパレータの耐熱性が高いほど、セパレータに生じる穴の面積は小さい。
[ガス発生量]
 セパレータを600cmの大きさに切り出してアルミラミネートフィルム製パック中に入れ、パック中に電解液を注入してセパレータに電解液を含浸させ、パックを封止して試験セルを得た。電解液としては、LiPF-エチレンカーボネート及びエチルメチルカーボネートの1mol/L混合溶液(LiPF-エチレンカーボネート:エチルメチルカーボネート=3:7[質量比])を用いた。試験セルを温度85℃の環境下に20日間置き、熱処理前後の試験セルの体積を測定した。熱処理後の試験セルの体積V2から熱処理前の試験セルの体積V1を減算することでガス発生量V(=V2-V1、単位:mL)を求めた。さらに試験セル10個のガス発生量Vを平均した。
[塗工外観の評価試験]
 セパレータを所定のサイズ(10cm×30cm)に切り出し、光学顕微鏡を用いて透過光及び反射光により観察し、塗工層の欠点又は異物の有無を観察した。欠点又は異物としては、具体的には、凝集物の剥がれによる欠落、ピンホール、フィラーの凝集物、塗工スジ、シワが含まれる。
 評価は、観察に基づいて、セパレータに欠点又は異物が認められなかった場合を合格とし、認められた場合を不合格として行った。具体的には、各セパレータについて、それぞれ任意の60か所を所定のサイズに切り出して評価を行い、合格したセパレータの割合(%)を算出した。合格割合に基づいて、下記の基準にしたがって分類した。
 <基準>
A:合格割合が100%である。
B:合格割合が95%以上100%未満である。
C:合格割合が90%以上95%未満である。
D:合格割合が90%未満である。
<セパレータの作製>
[実施例1]
 ポリフッ化ビニリデン系樹脂(VDF-HFP共重合体、VDF:HFP(モル比)=97.6:2.4、重量平均分子量113万)を、樹脂濃度が4質量%となるように、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)の混合溶媒(DMAc:TPG=80:20[質量比])に溶解し、さらに硫酸バリウム粒子(BaSO;平均一次粒径0.05μm)を攪拌混合し、塗工液(P)を得た。なお、硫酸バリウム粒子/バインダ樹脂比は、48/52(体積比)とした。
 一対のマイヤーバーに塗工液(P)を適量のせ、ポリエチレン微多孔膜(厚さ9μm、空孔率36%、ガーレ値168秒/100mL)をマイヤーバー間に通して、塗工液(P)を両面に等量塗工した。これを、凝固液(DMAc:TPG:水=30:8:62[質量比]、液温40℃)に浸漬し塗工層を固化させ、次いで、水温40℃の水洗槽で洗浄し、乾燥した。こうして、ポリエチレン微多孔膜の両面に耐熱性多孔質層が形成されたセパレータを得た。
[実施例2~3]
 硫酸バリウム粒子の体積割合を表1に記載のとおりに変更した以外は、実施例1と同様にしてセパレータを作製した。
[実施例4]
 硫酸バリウム粒子を別の硫酸バリウム粒子(平均一次粒径0.10μm)に変更した以外は、実施例1と同様にしてセパレータを作製した。
[実施例5]
 硫酸バリウム粒子を別の硫酸バリウム粒子(平均一次粒径0.25μm)に変更した以外は、実施例1と同様にしてセパレータを作製した。
[比較例1、4]
 硫酸バリウム粒子の体積割合を表1に記載のとおりに変更した以外は、実施例1と同様にしてセパレータを作製した。
[比較例2]
 硫酸バリウム粒子を別の硫酸バリウム粒子(平均一次粒径0.30μm)に変更した以外は、実施例1と同様にしてセパレータを作製した。
[比較例3]
 硫酸バリウム粒子を別の硫酸バリウム粒子(平均一次粒径0.70μm)に変更した以外は、実施例1と同様にしてセパレータを作製した。
[比較例5]
 硫酸バリウム粒子を別の硫酸バリウム粒子(平均一次粒径0.30μm)に変更し、体積割合を表1に記載のとおりに変更した以外は、実施例1と同様にしてセパレータを作製した。
[比較例6]
 硫酸バリウム粒子を別の硫酸バリウム粒子(平均一次粒径0.70μm)に変更し、体積割合を表1に記載のとおりに変更した以外は、実施例1と同様にしてセパレータを作製した。
[比較例7]
 硫酸バリウム粒子を水酸化マグネシウム(平均一次粒径0.50μm)に変更した以外は、実施例1と同様にしてセパレータを作製した。
[比較例8]
 硫酸バリウム粒子を水酸化マグネシウム(平均一次粒径0.90μm)に変更した以外は、実施例1と同様にしてセパレータを作製した。
[比較例9]
 硫酸バリウム粒子をアルミナ(平均一次粒径0.60μm)に変更した以外は、実施例1と同様にしてセパレータを作製した。
[実施例6]
 メタ型全芳香族ポリアミド(表2では、アラミドと表記する)を、樹脂濃度が5質量%となるように、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)の混合溶媒(DMAc:TPG=80:20[質量比])に溶解し、さらに硫酸バリウム粒子(平均一次粒径0.05μm)を攪拌混合し、塗工液(A)を得た。なお、硫酸バリウム粒子/バインダ樹脂比は、42/58(体積比)とした。
 マイヤーバーに塗工液(A)を適量のせ、ポリエチレン微多孔膜(厚さ9μm、空孔率36%、ガーレ値168秒/100mL)の片面に塗工液(A)を塗工した。これを、凝固液(DMAc:TPG:水=30:8:62[質量比]、液温40℃)に浸漬し塗工層を固化させ、次いで、水温40℃の水洗槽で洗浄し、乾燥した。こうして、ポリエチレン微多孔膜の片面に耐熱性多孔質層が形成されたセパレータを得た。
[実施例7]
 耐熱性多孔質層の厚さ、単位面積当たりの質量及び空孔率を表2に記載のとおりに変更した以外は、実施例6と同様にしてセパレータを作製した。
[実施例8]
 多孔質基材の両面に塗工液を塗工した以外は、実施例6と同様にしてセパレータを作製した。
[実施例9~10]
 硫酸バリウム粒子の体積割合ならびに、耐熱性多孔質層の厚さ、単位面積当たりの質量及び空孔率を表2に記載のとおりに変更した以外は、実施例6と同様にしてセパレータを作製した。
[実施例11]
 硫酸バリウム粒子を別の硫酸バリウム粒子(平均一次粒径0.10μm)に変更した以外は、実施例6と同様にしてセパレータを作製した。
[実施例12]
 硫酸バリウム粒子を別の硫酸バリウム粒子(平均一次粒径0.25μm)に変更した以外は、実施例6と同様にしてセパレータを作製した。
[比較例10、13]
 硫酸バリウム粒子の体積割合を表2に記載のとおりに変更した以外は、実施例6と同様にしてセパレータを作製した。
[比較例11]
 硫酸バリウム粒子を別の硫酸バリウム粒子(平均一次粒径0.30μm)に変更した以外は、実施例6と同様にしてセパレータを作製した。
[比較例12]
 硫酸バリウム粒子を別の硫酸バリウム粒子(平均一次粒径0.70μm)に変更した以外は、実施例6と同様にしてセパレータを作製した。
[比較例14]
 硫酸バリウム粒子を別の硫酸バリウム粒子(平均一次粒径0.30μm)に変更し、体積割合を表2に記載のとおりに変更した以外は、実施例6と同様にしてセパレータを作製した。
[比較例15]
 硫酸バリウム粒子を別の硫酸バリウム粒子(平均一次粒径0.70μm)に変更し、体積割合を表2に記載のとおりに変更した以外は、実施例6と同様にしてセパレータを作製した。
[比較例16]
 硫酸バリウム粒子を水酸化マグネシウム(平均一次粒径0.50μm)に変更した以外は、実施例6と同様にしてセパレータを作製した。
[比較例17]
 硫酸バリウム粒子を水酸化マグネシウム(平均一次粒径0.90μm)に変更した以外は、実施例6と同様にしてセパレータを作製した。
[比較例18]
 硫酸バリウム粒子をアルミナ(平均一次粒径0.60μm)に変更した以外は、実施例6と同様にしてセパレータを作製した。
 実施例1~12及び比較例1~18の各セパレータの組成、物性及び評価結果を表1~表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

 
 バインダ樹脂と所定のサイズ及び体積割合である硫酸バリウム粒子を含む実施例では、ガスの発生が抑制されるとともに面積収縮率が小さく耐熱性に優れており、生産性も良好であった。
 なお、上記の実施例では、バインダの一例であるポリフッ化ビニリデン系樹脂(PVDF系樹脂)として、VDF-HFP共重合体(VDF:HFP(モル比)=97.6:2.4、重量平均分子量113万)を用いた場合を中心に説明したが、PVDF系樹脂は上記VDF-HFP共重合体に限られるものではなく、PVDF系樹脂と特定の硫酸バリウム粒子との組み合わせであれば同様の効果が奏される。また、バインダの一例である耐熱性樹脂として、アラミドを用いた場合を中心に説明したが、アラミド以外のアミド系樹脂又はイミド系樹脂等の他の耐熱性樹脂(ポリアミドイミド、ポリ-N-ビニルアセトアミド、ポリアクリルアミド、共重合ポリエーテルポリアミド、ポリイミド、ポリエーテルイミド等)も特定の硫酸バリウム粒子との組み合わせにより同様の効果が奏される。
 また、ポリフッ化ビニリデン系樹脂(PVDF系樹脂)を使用した比較例1~9と、全芳香族ポリアミド(アラミド)を使用した比較例10~18とを比べると、比較例10~18の方が135℃及び150℃における面積収縮率が小さい。これは、アラミドの方がPVDF系樹脂よりも耐熱性が高いことによる。
 硫酸バリウム粒子を使用した比較例1~6と、水酸化マグネシウム又はアルミナを使用した比較例7~9とを比べると、比較例1~6の方がガス発生量が少ない。また、硫酸バリウム粒子を使用した比較例10~15と、水酸化マグネシウム又はアルミナを使用した比較例16~18とを比べると、比較例10~15の方がガス発生量が少ない。このように、硫酸バリウム粒子を用いることによるガスの低減効果が顕著にみられた。
 2019年3月20日に出願された日本出願特願2019-052384の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (10)

  1.  多孔質基材と、
     前記多孔質基材の片面又は両面に設けられた、バインダ樹脂及び硫酸バリウム粒子を含む耐熱性多孔質層と、を備え、
     前記耐熱性多孔質層に含まれる前記硫酸バリウム粒子の平均一次粒径が0.01μm以上0.30μm未満であり、前記耐熱性多孔質層に占める前記硫酸バリウム粒子の体積割合が30体積%以上50体積%未満である、非水系二次電池用セパレータ。
  2.  前記バインダ樹脂がポリフッ化ビニリデン系樹脂を含む、請求項1に記載の非水系二次電池用セパレータ。
  3.  前記ポリフッ化ビニリデン系樹脂の重量平均分子量が60万~300万である、請求項2に記載の非水系二次電池用セパレータ。
  4.  前記バインダ樹脂が、全芳香族ポリアミド、ポリアミドイミド、ポリ-N-ビニルアセトアミド、ポリアクリルアミド、共重合ポリエーテルポリアミド、ポリイミド及びポリエーテルイミドからなる群より選ばれる少なくとも1種を含む、請求項1に記載の非水系二次電池用セパレータ。
  5.  前記非水系二次電池用セパレータを135℃で1時間熱処理したときの面積収縮率が30%以下である、請求項1~請求項4のいずれか1項に記載の非水系二次電池用セパレータ。
  6.  前記非水系二次電池用セパレータを150℃で1時間熱処理したときの面積収縮率が45%以下である、請求項1~請求項5のいずれか1項に記載の非水系二次電池用セパレータ。
  7.  前記耐熱性多孔質層の空孔率が30%~70%である、請求項1~請求項6のいずれか1項に記載の非水系二次電池用セパレータ。
  8.  前記耐熱性多孔質層は、単位面積当たりの質量が両面合計で1.0g/m~30.0g/mである、請求項1~請求項7のいずれか1項に記載の非水系二次電池用セパレータ。
  9.  前記耐熱性多孔質層が前記多孔質基材の片面に設けられた、請求項1~請求項8のいずれか1項に記載の非水系二次電池用セパレータ。
  10.  正極と、負極と、前記正極及び前記負極の間に配置された請求項1~請求項9のいずれか1項に記載の非水系二次電池用セパレータと、を備え、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池。
PCT/JP2020/012705 2019-03-20 2020-03-23 非水系二次電池用セパレータ及び非水系二次電池 WO2020189796A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080021579.3A CN113574729B (zh) 2019-03-20 2020-03-23 非水系二次电池用隔膜及非水系二次电池
JP2020547162A JP6984033B2 (ja) 2019-03-20 2020-03-23 非水系二次電池用セパレータ及び非水系二次電池
KR1020217029858A KR20210129132A (ko) 2019-03-20 2020-03-23 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
EP20772919.5A EP3920264B1 (en) 2019-03-20 2020-03-23 Non-aqueous secondary battery separator and non-aqueous secondary battery
US17/439,610 US20220149483A1 (en) 2019-03-20 2020-03-23 Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP2021190421A JP7223104B2 (ja) 2019-03-20 2021-11-24 非水系二次電池用セパレータ及び非水系二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019052384 2019-03-20
JP2019-052384 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020189796A1 true WO2020189796A1 (ja) 2020-09-24

Family

ID=72520944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012705 WO2020189796A1 (ja) 2019-03-20 2020-03-23 非水系二次電池用セパレータ及び非水系二次電池

Country Status (7)

Country Link
US (1) US20220149483A1 (ja)
EP (1) EP3920264B1 (ja)
JP (2) JP6984033B2 (ja)
KR (1) KR20210129132A (ja)
CN (1) CN113574729B (ja)
HU (1) HUE061947T2 (ja)
WO (1) WO2020189796A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4190550A4 (en) * 2020-07-31 2024-01-10 Teijin Ltd SEPARATOR FOR NON-AQUEOUS SECONDARY BATTERY, AND NON-AQUEOUS SECONDARY BATTERY

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7178949B2 (ja) * 2019-04-16 2022-11-28 住友化学株式会社 非水電解液二次電池用多孔質層
KR20210133269A (ko) * 2019-05-17 2021-11-05 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 그 제조 방법 그리고 비수계 이차전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429811B2 (ja) 1977-06-10 1979-09-26
JP2010244875A (ja) * 2009-04-07 2010-10-28 Panasonic Corp リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池
CN102437303A (zh) * 2011-12-01 2012-05-02 北京师范大学 复合多孔膜及其制备方法
US20130224552A1 (en) * 2012-02-29 2013-08-29 Ki Chul HONG Separator including coating layer and battery including the same
CN103545475A (zh) * 2013-10-29 2014-01-29 淄博众品鑫化学膜应用技术有限公司 锂离子电池硫酸钡隔膜及其制备方法
JP2017152268A (ja) * 2016-02-25 2017-08-31 東レバッテリーセパレータフィルム株式会社 電池用セパレータ
US20170338457A1 (en) * 2015-02-12 2017-11-23 Jiangsu Huadong Institute Of Li-Ion Battery Co., Ltd. Composite barium sulfate diaphragm and preparation method therefor, and lithium-ion battery
JP2019052384A (ja) 2017-09-13 2019-04-04 凸版印刷株式会社 蓄光紙及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077974B2 (ja) * 2004-05-31 2012-11-21 三菱樹脂株式会社 多孔性フィルム、非水電解質電池用セパレーターおよび非水電解質電池
EP1784876B1 (en) * 2004-09-02 2018-01-24 LG Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2013022876A (ja) * 2011-07-22 2013-02-04 Sumitomo Chemical Co Ltd 積層多孔質フィルム及び非水電解液二次電池
JP5978014B2 (ja) * 2012-06-07 2016-08-24 日立マクセル株式会社 非水二次電池
EP3573137B1 (en) 2013-03-19 2020-12-23 Murata Manufacturing Co., Ltd. Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
JP6035387B2 (ja) * 2014-08-05 2016-11-30 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、非水電解液二次電池、スラリー、及び塗工液
JP6371905B2 (ja) * 2015-11-11 2018-08-08 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP6012838B1 (ja) * 2015-11-30 2016-10-25 住友化学株式会社 非水電解液二次電池用セパレータの製造方法
JP6019205B1 (ja) * 2015-11-30 2016-11-02 住友化学株式会社 非水電解液二次電池用積層セパレータ
JP6367453B2 (ja) * 2016-12-20 2018-08-01 旭化成株式会社 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429811B2 (ja) 1977-06-10 1979-09-26
JP2010244875A (ja) * 2009-04-07 2010-10-28 Panasonic Corp リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池
CN102437303A (zh) * 2011-12-01 2012-05-02 北京师范大学 复合多孔膜及其制备方法
US20130224552A1 (en) * 2012-02-29 2013-08-29 Ki Chul HONG Separator including coating layer and battery including the same
CN103545475A (zh) * 2013-10-29 2014-01-29 淄博众品鑫化学膜应用技术有限公司 锂离子电池硫酸钡隔膜及其制备方法
US20170338457A1 (en) * 2015-02-12 2017-11-23 Jiangsu Huadong Institute Of Li-Ion Battery Co., Ltd. Composite barium sulfate diaphragm and preparation method therefor, and lithium-ion battery
JP2017152268A (ja) * 2016-02-25 2017-08-31 東レバッテリーセパレータフィルム株式会社 電池用セパレータ
JP2019052384A (ja) 2017-09-13 2019-04-04 凸版印刷株式会社 蓄光紙及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4190550A4 (en) * 2020-07-31 2024-01-10 Teijin Ltd SEPARATOR FOR NON-AQUEOUS SECONDARY BATTERY, AND NON-AQUEOUS SECONDARY BATTERY

Also Published As

Publication number Publication date
US20220149483A1 (en) 2022-05-12
HUE061947T2 (hu) 2023-09-28
EP3920264A1 (en) 2021-12-08
JP2022020843A (ja) 2022-02-01
JPWO2020189796A1 (ja) 2021-04-01
CN113574729A (zh) 2021-10-29
EP3920264A4 (en) 2022-04-27
JP7223104B2 (ja) 2023-02-15
JP6984033B2 (ja) 2021-12-17
CN113574729B (zh) 2023-06-02
EP3920264B1 (en) 2023-04-05
KR20210129132A (ko) 2021-10-27

Similar Documents

Publication Publication Date Title
EP3745492B1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP6986640B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP6526359B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7223104B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2019216033A (ja) 非水系二次電池用セパレータ及び非水系二次電池
CN113574732B (zh) 非水系二次电池用隔膜及非水系二次电池
WO2020189795A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7324173B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7483154B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7482935B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7411005B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7041195B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7474115B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7416522B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2023210787A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2021190269A (ja) 非水系二次電池用セパレータ及び非水系二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020547162

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217029858

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020772919

Country of ref document: EP

Effective date: 20210831

NENP Non-entry into the national phase

Ref country code: DE