WO2020189756A1 - 形質転換植物の作製方法及び形質転換剤 - Google Patents

形質転換植物の作製方法及び形質転換剤 Download PDF

Info

Publication number
WO2020189756A1
WO2020189756A1 PCT/JP2020/012253 JP2020012253W WO2020189756A1 WO 2020189756 A1 WO2020189756 A1 WO 2020189756A1 JP 2020012253 W JP2020012253 W JP 2020012253W WO 2020189756 A1 WO2020189756 A1 WO 2020189756A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
strain
agrobacterium
quinoa
target gene
Prior art date
Application number
PCT/JP2020/012253
Other languages
English (en)
French (fr)
Inventor
正之 森
可奈子 西澤
智弘 今村
宏樹 高木
水越 裕治
Original Assignee
正之 森
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正之 森 filed Critical 正之 森
Priority to CN202080022876.XA priority Critical patent/CN113939187A/zh
Priority to JP2020542455A priority patent/JP6876877B2/ja
Priority to US17/440,239 priority patent/US20220090103A1/en
Priority to EP20773366.8A priority patent/EP3959967A4/en
Publication of WO2020189756A1 publication Critical patent/WO2020189756A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits

Definitions

  • the present invention relates to a method for producing a transformed plant and a transformant.
  • This application claims the priority of Japanese application Japanese Patent Application No. 2019-053945, which is incorporated herein by reference.
  • Quinoa (Chenopodium quinoa) is an allopolyploid plant originating in the Andes belonging to the genus Goosefoot in the subfamily Amaranthaceae. Quinoa seeds are rich in proteins, essential amino acids and minerals and are expected to be a substitute for rice (Non-Patent Documents 1 and 2). Furthermore, quinoa's excellent environmental stress resistance such as salt resistance and cold resistance can be expected to be cultivated in a poor environment (Non-Patent Document 3), and the Food and Agriculture Organization of the United Nations (FAO) is an important solution to the global food crisis. It was evaluated that it could be a means (Non-Patent Document 4).
  • the mainstream method for transforming plants is the Agrobacterium (Rhizobium radiobacter; formerly known as Agrobacterium tumefaciens) method, which utilizes the ability to incorporate bacterial DNA into plant cells.
  • the DNA that is integrated into plant cells by this Agrobacterium is called T-DNA (Transferred DNA), and the transfer of T-DNA is carried out by the action of the vir (virulence) gene group on the plasmid.
  • T-DNA Transferred DNA
  • vir virulence gene group on the plasmid.
  • virA which senses phenolic compounds, phosphorylates VirG and activates other vir genes.
  • Activated VirD1 / D2 cuts into the T-DNA region on the plasmid and VirD2 binds to its 5'end.
  • VirE2 which plays a protective role in the T complex, binds.
  • the complex of T chain, VirD2, and VirE2 is transported to plant cells by the action of VirB, translocates into the nucleus of plants, and finally integrated into chromosomes (Non-Patent Document 7).
  • Non-Patent Document 8 Transformation with Agrobacterium using a redifferentiation system has also been attempted in the genus Goosefoot including quinoa.
  • Non-Patent Document 9 Transformation of quinoa cultured cells using a binary vector (Non-Patent Document 9), transformation of goosefoot (Chenopodium rubrum) seedlings with Agrobacterium using an ultrasonic (SAAT) method (Non-Patent Document 10), and Hairy root induction by Rhizobium rhizogenes of goosefoot and quinopodium murale L has been reported (Non-Patent Document 11 and Non-Patent Document 12). In these studies, gene transfer was successful due to the use of Agrobacterium A281 strain with high transformation efficiency called super virulence or hyper virulence (Non-Patent Documents 9 and 13). However, the redifferentiation system of quinoa has not been established, and the transformation method of quinoa has not yet been established.
  • Non-Patent Document 14 Since the first transformed plant in tobacco was reported (Non-Patent Document 14 and Non-Patent Document 15), highly efficient and stable transformation systems have been established in various plants, mainly model plants, and plant science. It has become an indispensable method in. Quinoa has potentially excellent traits. Then, in order to elucidate the function of unknown genes and respond to environmental and social changes, it is desired to impart more excellent traits. It is considered essential to establish a transformation method for the progress of quinoa research.
  • Plant, Soil and Environment 49 255-260 Mitic N, Dmitrovic S, Djordjevic M, Zdravkovic-Korac S, Nikolic, Raspor M, Djordjevic T, Maksimovic V, Zivkovic S, Krstic-Milosevic D, Stanisic M, Ninkovic S, invitro culture system as a new tool for allelopathicassays. Journal of Plant Physiology 169: 1203-1211 Dmitrovic S, Mitic N, Zdravkovic-Korac S, Vinterhalter B, Ninkovic Sand Culafic L.J (2010) Hairy roots formation inrecalcitrant-to-transform plant Chenopodium rubrum.
  • the present inventors have found that the female organ of quinoa can be transformed by adding a sealing treatment to the floral dip method, and further, the gene introduced by the transformation. Completed the present invention after confirming that it can be inherited by posterity.
  • the present invention is as follows. 1. 1. Method for producing transformed plant, seed of the plant or callus of the plant including the following steps: (1-1) Inoculation of Agrobacterium by contacting the transformed Agrobacterium with an expression vector carrying the target gene under promoter control capable of inducing expression of the target gene in the plant. Process, (1-2) Step of cutting the plant body, and (1-3) The cut plant body containing the site where the target gene has been introduced is placed under humid and dark conditions to obtain a plant body into which the target gene has been introduced. Process, Or (2-1) Inoculate Agrobacterium by contacting the transformed Agrobacterium with an expression vector carrying the target gene under promoter control capable of inducing expression of the target gene in the plant.
  • Step of cutting plants (2-3) The step of putting the cut plant containing the site where the target gene was introduced under humid and dark conditions, and (2-4) the seeds that grew until the seeds could be harvested and the target gene was introduced.
  • Getting process, Or (3-1) Inoculate Agrobacterium by contacting the transformed Agrobacterium with an expression vector carrying the target gene under promoter control capable of inducing expression of the target gene in the plant.
  • the step (1-1) or the step (2-1) at the same time as the step (1-1) or the step (2-1), or in the step (1-1) and the step (1-2).
  • Agrobacterium MAFF301276 strain includes Ti plasmid derived from Agrobacterium MAFF301276 strain from which the T-DNA region has been removed, and Agrobacterium MAFF311303 strain transformed with an expression vector carrying the target gene under promoter control capable of inducing expression of the target gene in the plant. Transformant. 8. A female organ-specific transformant containing the Agrobacterium MAFF311303 strain. 9. A plant transformation aid using Agrobacterium containing abscisic acid. 10. A transformant for quinoa containing the Agrobacterium MAFF301276 strain. 11.
  • Method for producing transformed plant including the following steps: (1) Agrobacterium MAFF311303 transformed with Ti plasmid derived from Agrobacterium MAFF301276 strain from which the expression vector carrying the target gene and the T-DNA region have been removed under promoter control capable of inducing expression of the target gene in the plant. The step of inoculating Agrobacterium by bringing the strain into contact with the target plant. 12. Method for producing transformed plant including the following steps: (1) A step of inoculating Agrobacterium by contacting Agrobacterium transformed with an expression vector carrying the target gene under promoter control capable of inducing expression of the target gene in the target plant.
  • Method for producing transformed plant including the following steps: (1) Agrobacterium MAFF311303 transformed with Ti plasmid derived from Agrobacterium MAFF301276 strain from which the expression vector carrying the target gene and the T-DNA region have been removed under promoter control capable of inducing expression of the target gene in the plant. The step of inoculating Agrobacterium by contacting the strain with the target plant, and (2) before step (1), at the same time as step (1), or after step (1), target absidic acid. The process of contacting the plant body. 14.
  • Method for producing seeds of transformed plant including the following steps: (1) A step of inoculating Agrobacterium by contacting the transformed Agrobacterium with an expression vector carrying the target gene under promoter control capable of inducing expression of the target gene in the plant body. And (2) before step (1), at the same time as step (1), or after step (1), the step of contacting absidic acid with the target plant, and (3) growing until the seeds can be harvested. , The process of obtaining seeds into which the target gene has been introduced. 16. The method according to item 15 above, wherein the Agrobacterium is a MAFF301276 strain or a MAFF311303 strain. 17.
  • the present invention was able to provide a method for producing a transformed plant and a transformant.
  • GUS expression individual measurement method Kd strain grown in sowing soil.
  • A Total length of quinoa; (b) Ears; (c) True leaves.
  • the scale bar shows 1 cm. Mutant ghy grown in sowing soil.
  • A Total length of quinoa; (b) Ears; (c) True leaves.
  • the scale bar shows 1 cm. Mutant rebc grown in sowing soil.
  • A Total length of quinoa; (b) Ears; (c) True leaves.
  • the scale bar shows 1 cm. Mutant ghy / rebc grown in sowing soil.
  • A Total length of quinoa; (b) Ears; (c) True leaves.
  • the scale bar shows 1 cm. List of vectors used in this example.
  • A Kd lineage callus; (b) 85 lineage callus; (c) 108 lineage callus; (d) mutant rebc callus (hypocotyl section); (e) mutant ghy callus; (f) mutant ghy / rebc Callus (hypocotyl section).
  • the figure shows a callus (hypocotyl section) 6 weeks after infection treatment.
  • the scale bar shows 1 cm.
  • A 85 lineage callus; (b) mutant rebc callus; (c) mutant ghy callus. GUS staining was performed on callus 6 weeks after infection treatment.
  • the scale bar shows 1 cm. Transformed callus formation rate of 6 quinoa strains infected with Agrobacterium GV3101 strain. GUS staining was performed on callus 6 weeks after infection treatment.
  • A Kd lineage callus;
  • (f) mutant ghy / rebc callus (A) Kd lineage callus;
  • mutant rebc callus; (e) mutant ghy callus; (f) mutant ghy / rebc callus.
  • the figure shows a callus (hypocotyl section) 6 weeks after infection treatment.
  • the scale bar shows 1 cm.
  • A Kd lineage callus;
  • B 85 lineage callus;
  • c 108 lineage callus;
  • e mutant rebc callus;
  • e mutant ghy callus;
  • GUS staining was performed on callus 6 weeks after infection treatment.
  • the scale bar shows 1 cm. Transformed callus formation rate of 6 quinoa strains infected with Agrobacterium MAFF301276 strain.
  • GUS staining was performed on callus 6 weeks after infection treatment.
  • A Seedlings infected with a strain carrying the binary vector pCAMBIA1301;
  • b Seedlings infected with a strain carrying the binary vector pCAMBIA-CqCYP76AD1-1.
  • the figure shows seedlings 6 weeks after infection treatment.
  • the scale bar shows 1 cm. Mode of introduction of MAFF301276 pTi plasmid and pCAMBIA1301 -derived plasmid into the quinoa genome.
  • the Kinua genome is inserted in the form of a fusion of the T-DNA region of the binary vector pCAMBIA1301 and the T-DNA derived from the MAFF301276 strain.
  • A GUS expression was observed in the MAFF301276 strain;
  • (b) Female organs in which GUS expression was observed in the MAFF311303 strain.
  • the scale bars (a) and (b) indicate 1 cm, and (c) and (d) indicate 1 mm.
  • MAFF311303pTi MAFF301276 Percentage of individuals with GUS staining of female organs in floral dip experiments using T-DNA. Infection experiments were performed using 4 quinoa strains, and 10 individuals from each strain were subjected to GUS staining. The numbers on the quinoa systematic name or on the graph indicate the proportion of individuals with GUS expression in female organs. Mutant ghy / rebc in which a floral dip experiment was performed using MAFF311303pTi MAFF301276 ⁇ T-DNA and 500 mM ABA.
  • the upper row shows transformants (rebc mutation complementary individuals) that are wild-type phenotypes with bladder, and the lower row shows wild-type and rebc mutants. Blooder revived with the transformant.
  • Results of sequencing of the transformant REBC gene Results of analysis using the next-generation sequencer of transformants. The introduction of the gene of interest into the quinoa genome was confirmed.
  • the upper row shows transformants (progeny), and the lower row shows wild type and rebc mutants.
  • the transformed progeny on the upper left side was a wild type with a bladder (with a transgene), and the transformed progeny on the upper right side was a rebc mutant type (without a transgene). It was confirmed that the phenotype of the transformant was inherited.
  • the method for producing a transformed plant of the present invention is as follows: (1) cutting the plant to facilitate infection with Agrobacterium, (2) placing the plant in a closed container or the like. By keeping the humid condition, the growth and proliferation of Agrobacterium is enhanced by making it humid, and it is easy to infect the Agrobacterium. (3) The resistance of the plant to Agrobacterium by making it dark. It is a method aimed at reducing growth, making Agrobacterium more susceptible to infection, and suppressing damage to cut plants due to light. That is, the method / process is not particularly limited as long as any one, two, or all of (1) to (3) can be carried out.
  • the method for producing a transformed plant of the present invention targets any one or more of the following.
  • (Floral dip cutting and sealing method) Method for producing transformed plant, seed of the plant or callus of the plant including the following steps: (1-1) Agrobacterium transformed with a target gene or an expression vector carrying a target gene and a drug resistance gene under promoter control capable of inducing expression of the target gene in the plant is brought into contact with the target plant. By injecting Agrobacterium, (1-2) Step of cutting the plant body, and (1-3) The cut plant body containing the site where the target gene has been introduced is placed under humid and dark conditions to obtain a plant body into which the target gene has been introduced.
  • Process, Or (2-1) Contact the target plant with Agrobacterium transformed with the target gene or an expression vector carrying the target gene and drug resistance gene under promoter control capable of inducing expression of the target gene in the plant.
  • the process of inoculating Agrobacterium by letting (2-2) Step of cutting plants, (2-3) The step of putting the cut plant containing the site where the target gene was introduced under humid and dark conditions, and (2-4) the seeds that grew until the seeds could be harvested and the target gene was introduced. The process of obtaining.
  • the number of days after germination of the target plant in steps (1-1) and / or (2-1) is not particularly limited. Although it depends on the cultivation conditions, it may be 10 to 100 days or 30 to 60 days after germination, preferably 40 to 50 days after germination.
  • step (1-1) and / or (2-1) "inoculating Agrobacterium by contact", the Agrobacterium is introduced into the plant body by contacting the target plant body.
  • the contact method is not particularly limited, but for example, a bacterial suspension in which Agrobacterium is suspended in a liquid (for example, sterile water, a sucrose solution, and may contain any additive such as Silwet L-77) is used as a plant.
  • the female organs of the plant are brought into contact with each other by dropping into the female organs (for example, spikelets), immersing the female organs of the plant body, or spraying or applying the bacterial suspension to the female organs of the plant body.
  • Agrobacterium may be cultured in a liquid medium such as LB medium to an arbitrary OD (for example, OD 600 : about 2.0) before suspension and collected by centrifugation.
  • the Agrobacterium in step (1-1) and / or (2-1) may be further transformed with a Ti plasmid derived from the Agrobacterium MAFF301276 strain from which the T-DNA region has been removed.
  • the method for producing the transformed plant is further performed before the steps (1-1) and / or (2-1), at the same time as the steps (1-1) and / or (2-1), or at the step (1-).
  • a step of bringing abscisic acid into contact with the target plant may be included.
  • the plant body in contact with Agrobacterium can be made under the following humid / dark conditions. It may be left, installed or stirred under the following humid / dark conditions, and preferably left under the following humid / dark conditions.
  • the high humidity (high humidity condition) may be as long as the humidity is 50% or more, and the humidity is preferably 90% to 100%.
  • the dark condition is not particularly limited, and examples thereof include darkness such as 0 to 0.5 lux, 0 to 1 lux, and 0 to 2 lux in which the plant is not damaged and the resistance is lowered.
  • the method for achieving high humidity and dark conditions is not particularly limited, but it is preferable to place (leave) the plant and water in a container with low air permeability such as a closed container to make the conditions humid and dark, and the inside of the closed container. 5 mL-5000 mL, 10 mL-2000 mL, 50 mL-1000 mL, 100 mL-1000 mL or 500 mL-1000 are placed in a closed container with a plant (which may contain flower pots, soil, fertilizer, etc.). It is more preferable to fill with mL of water.
  • the closed container is not particularly limited as long as the humidity inside the container can be maintained at 90 to 100% and can be kept in a dark place, and examples thereof include a container sealed with rubber packing such as Mipale (Fuji System Pack).
  • the temperature under high humidity / dark conditions is not particularly limited as long as the plant can survive, but is preferably 15 ° C to 30 ° C, more preferably 20 ° C to 25 ° C, and most preferably about 22 ° C.
  • the period of high humidity / dark conditions is not particularly limited, but may be 1 hour to 2 weeks, 12 hours to 1 week, preferably 1 to 6 days, more preferably 1 to 5 days, and further 1 to 4 days. preferable.
  • the method for producing a transformed plant of the present invention is that "the plant is arbitrarily selected” between steps (1-1) and (1-2) and between steps (2-1) and (2-2).
  • the step of growing under the conditions of the above may be further included.
  • “Growth under arbitrary conditions” is not particularly limited as long as the plant can be grown until the target gene is expressed, but it is preferably grown until buds are formed.
  • the temperature condition for growth is not particularly limited as long as the plant can survive, but is preferably 15 ° C to 30 ° C, more preferably 20 ° C to 25 ° C, and most preferably about 22 ° C.
  • the light and dark conditions of growth are not particularly limited as long as the plant can survive.
  • it may be 8 to 16 hours bright condition (Light condition) / 16 to 8 hours dark condition (Dark condition), 9 to 13 hours bright condition (Light condition) / 15 to 11 hours dark condition (Dark condition). , 11 hours light condition / 13 hours dark condition is preferable.
  • the "step of cutting the plant" in steps (1-2) and / or (2-2) is not particularly limited, but cut so as to include the site into which the target gene has been introduced and / or the female organ (for example, ear). It is preferable to do so.
  • the plant may be cut near the center of the stem, preferably the tip of the stem (stem apex). ) To include 8 to 15 cm.
  • “Grow until seeds can be harvested” in step (2-4) is not particularly limited as long as the plants can be grown until seeds can be harvested, but includes a step of pollinating from the viewpoint of increasing the number of seeds obtained. Is desirable. Pollination includes self-pollination and cross-pollination, preferably cross-pollination.
  • the temperature condition for growth is not particularly limited as long as the plant can be grown until the seeds can be harvested, but is preferably 15 ° C to 30 ° C, more preferably 20 ° C to 25 ° C, and about 22 ° C. Most preferred.
  • the light and dark conditions for growth are not particularly limited as long as the plant can be grown until the seeds can be harvested.
  • the “seed into which the target gene has been introduced” in step (2-4) is not particularly limited as long as it has a nucleic acid molecule containing the base sequence of the target gene in the cell, preferably in the genome, but is a homozygote of the target gene. And / or includes heterozygotes.
  • the method for producing a transformed plant of the present invention may include, after step (2-4), "selecting a seed containing a homozygote of the target gene from the seed into which the target gene has been introduced.
  • Method for producing transformed plant including the following steps: (1) A Ti plasmid derived from the Agrobacterium MAFF301276 strain from which the target gene, the expression vector carrying the target gene and the drug resistance gene, and the T-DNA region have been removed under promoter control capable of inducing the expression of the target gene in the plant. A step of inoculating a bacterium by contacting a transformed Agrobacterium MAFF311303 strain with a target plant.
  • Floral dip uncut sealing method 2 Method for producing transformed plant including the following steps: (1) By contacting the target plant with Agrobacterium transformed with the target gene or an expression vector carrying the target gene and the drug resistance gene under the control of a promoter capable of inducing the expression of the target gene in the plant. A step of inoculating the fungus and (2) a step of bringing absidic acid into contact with the target plant before step (1), at the same time as step (1), or after step (1).
  • Method for producing transformed plant including the following steps: (1) A Ti plasmid derived from the Agrobacterium MAFF301276 strain from which the target gene, the expression vector carrying the target gene and the drug resistance gene, and the T-DNA region have been removed under promoter control capable of inducing the expression of the target gene in the plant. The step of inoculating the bacterium by contacting the transformed Agrobacterium MAFF311303 strain with the target plant, and (2) before step (1), at the same time as step (1), or in step (1). Later, the step of bringing absidiic acid into contact with the target plant.
  • the present invention targets the following transformants. Ti plasmid derived from Agrobacterium MAFF301276 strain from which the T-DNA region has been removed, and Agrobacterium transformed with an expression vector carrying the target gene and drug resistance gene under promoter control capable of inducing expression of the target gene in the plant. A transformant containing the MAFF311303 strain.
  • the present invention also covers plant transformation aids using Agrobacterium containing abscisic acid.
  • a plant transformation aid using Agrobacterium containing abscisic acid can be used in a plant transformation method using Agrobacterium (for example, the floral dip method).
  • the mode of use is not particularly limited, but before, at the same time, or after the step of inoculating the fungus by contacting Agrobacterium with the target plant, a plant transformation aid containing abscisic acid is applied to the target plant. It can be used by contacting it.
  • a suspension containing Agrobacterium having a target gene can be transformed by mixing a plant transformation aid containing abscisic acid and contacting, applying or spraying the mixed solution with the plant to be transformed. ..
  • the promoter capable of inducing the expression of the target gene in the plant is not particularly limited, but for example, a CaMV 35S promoter, an agrobacterium-derived promoter (for example, Nos (Nopaline synthase) promoter, etc.), a drug-inducing promoter (for example, alcohol dehydrogenase).
  • a CaMV 35S promoter for example, an agrobacterium-derived promoter (for example, Nos (Nopaline synthase) promoter, etc.), a drug-inducing promoter (for example, alcohol dehydrogenase).
  • AlcA agrobacterium-derived promoter
  • UAS promoter for example, UAS promoter, etc.
  • plant gene promoter for example, ubiquitin promoter, etc.
  • CaMV 35S promoter is preferable.
  • the target gene is not particularly limited as long as it is a gene that can be expressed in plant cells.
  • environmental stress resistance genes such as salt stress
  • useful secondary metabolite synthase genes such as betalein pigments
  • flowering induction genes plant height control genes
  • ethanol-activated transcription factor genes plant height control genes
  • estrogen-activated transcriptional activity Useful genes such as a transcription factor gene and a transcription factor gene activated by dexamethasone can be mentioned.
  • Useful genes can be isolated and used by genome editing, overexpression and / or suppression of expression of the target gene.
  • the drug resistance gene is not particularly limited as long as the seed into which the target gene has been introduced from the transformed plant can be selected.
  • a hygromycin resistance gene HPT
  • a bialaphos (bialaphos) resistance gene phosphinothricin N-acetyltransferase; Bar
  • Canamycin resistance gene ampicillin resistance gene, tetracycline resistance gene and the like.
  • the expression vector is not particularly limited as long as it carries a promoter capable of inducing expression of the target gene in the plant and a drug resistance gene.
  • a promoter capable of inducing expression of the target gene in the plant For example, pCAMBIA1301, pCAMBIA-CqCYP76AD1-1, pBIC35BP, pBI121, pER8, pTA70001, pBICERToMV and the like can be mentioned, but pCAMBIA1301 is preferable.
  • An expression vector in which the target gene and the drug resistance gene are carried under the promoter control capable of inducing the expression of the target gene in the plant by inserting the target gene under the promoter control capable of inducing the expression of the target gene in the plant of the expression vector. Can be produced.
  • Agrobacterium has the ability to integrate expression vectors into plant cells.
  • Agrobacterium has the ability to integrate the expression vector preferably into the nucleus, more preferably into the chromosome.
  • the Agrobacterium used in the present invention is not particularly limited, but for example, Rhizobium radiobacter (for example, GV3101 strain (see: Bioimpacts. 2017; 7 (4): 247-254.doi: 10.15171 / bi.2017.29. Epub 2017 Sep 18. ), MAFF301276 strain, MAFF212033 strain, MAFF311303 strain, etc.
  • Rhizobium rhizogenes eg ATCC15834
  • MAFF211729 strains, etc. available from the American Type Culture Collection
  • Rhizobium vitis eg, MAFF663001 strains, etc.
  • MAFF301276 strains and MAFF311303 strains are preferable in the floral dip cleavage sealing method and the floral dip uncut sealing method. ..
  • MAFF301276 has an extremely high transformation ability in quinoa plants compared to other strains, and that MAFF311303 can specifically infect only female organs despite being non-pathogenic.
  • two kinds of Agrobacterium strains may be mixed and used.
  • the combination of the two types of agrobacterium strains is not particularly limited, but in the floral dip cleavage sealing method, GV3301 strain x ATCC15834 strain, GV3301 strain x MAFF211729 strain, GV3301 strain x MAFF663001 strain, MAFF212033 strain x MAFF311303 strain in the Kd strain.
  • MAFF311303 strain ⁇ MAFF211729 strain is preferable, and in mutant ghy or mutant ghy / rebc, GV3301 strain ⁇ MAFF311303 strain, MAFF301276 strain ⁇ MAFF311303 strain, MAFF311303 strain ⁇ MAFF211729 strain, MAFF211729 strain ⁇ MAFF663001 strain are preferable.
  • the method for producing the transformed plant of the present invention and the target plant using the transformant of the present invention are not particularly limited.
  • Quinoa is not particularly limited, but Kd line, 85 line, 108 line, mutant green hypocotyl (ghy) (Imamura T, Takagi H, Miyazato A, OhkiS, Mizukoshi H, Mori M (2016) Biochemical and Biophysical Research Communications 496 (2016) 2): 280-286), mutant reducedepidermalbladder cells 1 (rebc: 1139 of REBC gene encoding protein (Acc.No.
  • XP_021715187 consisting of 482 amino acid residues in total length and having WD40 domain in region 139 to 432 A mutant in which the 380th amino acid Trp (tryptophan) is changed to STOP by changing the G (guanin) to A (adenin)), and ghy and the mutant rebc were crossed. It may be a mutant ghy / rebc, and a mutant ghy and a mutant ghy / rebc are preferable.
  • Ti plasmid derived from Agrobacterium MAFF301276 strain from which the T-DNA region has been removed The Ti plasmid derived from the Agrobacterium MAFF301276 strain from which the T-DNA region has been removed is not particularly limited as long as the T-DNA region has been removed.
  • the binary vector pBIC35BP (Mori M, Kaindo M, Okuno T, Frusawa I (1993) Federation BiochemicalSocieties336 (1): 171-174) is a bialaphos resistance gene (phosphinothricin) under the control of the 35S promoter of cauliflower mosaic virus (CaMV).
  • binary vector pCAMBIA1301 is an intron-gusA gene ( ⁇ -glucuronidase; GUS) under the control of the CaMV 35S promoter (Jefferson RA, Kavanagh TA, Bevan MW (1987) The EMBO Journal 6 (13): 3901- 3907), hygromycin phosphotransferase (HPT), and binary vector pCAMBIA-CqCYP76AD1-1 carry the betarain pigment synthesis-related gene CqCYP76AD1-1 under the control of the CaMV 35S promoter (Fig.
  • the strains used in the experiment were drawn on LB solid medium supplemented with 100 mg / L kanamycin and 100 mg / L hygromycin, and cultured at 26 ° C. for 24 hours under Dark conditions for 2 days (Table 3).
  • the grown bacteria were transplanted using a platinum loop into a 50 mL LB liquid medium (using a 300 mL Erlenmeyer flask) supplemented with 100 mg / L canamycin and 100 mg / L hyglomycin, and shaken in a constant temperature water tank BW201 (Yamato Scientific). , Tokyo, Japan) and cultured at 26 ° C. for about 24 hours at about 130 rpm (Table 2).
  • the co-cultured sections were placed in a plant culture test tube containing about 10 mL of a washing solution containing 100 mg / L carbenicillin in sterile water, and washed with P1000 Pipetman (Gilson, Manhattan, NY, USA) with stirring. .. It was replaced with a new cleaning solution, and the same cleaning operation was performed once more.
  • the washing liquid adhering to the sections was removed with a sterile filter paper and placed on a callus-induced selection medium (Table 2). Then, the cells were cultured under 20 ° C., 8 hours Light / 16 hours Dark conditions, and transplanted to a new medium every 3 weeks.
  • This method was carried out by partially modifying the method of transforming sweet potatoes by Otani described in the transformation protocol "Plants" (Yutaka Tabei (2012) Transformation Protocol. Kagaku-Dojin, pp.71-78). )
  • X-Gluc stain composition * 1 is 5-Bromo-4-chloro-3-indolyl- ⁇ -D-glucuronide, * 2 is N, N-dimethylformamide. (N, N-dimethylformamide), * 3 indicates potassium ferricyanide (potassiumferricyanide), * 4 indicates potassium ferrocyanide (Potassium ferrocyanide).
  • the bacteria used in the experiment were drawn on LB solid medium supplemented with 100 mg / L kanamycin and 100 mg / L hygromycin, and cultured at 26 ° C. for 24 hours under Dark conditions for 2 days (Table 3).
  • the grown bacteria were transplanted into a 50 mL LB liquid medium (in a 300 mL Erlenmeyer flask) supplemented with 100 mg / L canamycin and 100 mg / L hyglomycin, and used at 26 ° C. for about 24 using a shaking type constant temperature water bath BW201.
  • the cells were cultured under the condition of about 130 rpm for an hour.
  • quinoa was cut near the center of the hypocotyl. After cutting, quinoa was placed in a petri dish or tapper, the gap between the containers was closed with vinyl tape, and the container was placed under humid conditions for 3 days. After that, it was placed in a nursery polypot (6 cm) containing seedling cultivation soil (Takii seedlings) and grown under 22 ° C, 11 hours Light / 13 hours Dark conditions until the seeds could be harvested.
  • a nursery polypot (6 cm) containing seedling cultivation soil (Takii seedlings) and grown under 22 ° C, 11 hours Light / 13 hours Dark conditions until the seeds could be harvested.
  • One individual showing GUS expression is an individual having one or more GUS expression in ears and one or more female organs showing GUS expression in the whole organ in female organs, and GUS in ears and female organs.
  • the dyeing rate was measured (Fig. 1).
  • GUS expression in female organs was measured using a stereomicroscope Stemi2000-C (Carl Zeiss, Jena, Germany).
  • the grown bacteria were transplanted into a 50 mL LB liquid medium (using a 300 mL Erlenmeyer flask) supplemented with 100 mg / L canamycin and 100 mg / L hyglomycin, and used in a shaking-type constant temperature water bath BW201 at 26 ° C., about.
  • the cells were cultured for 24 hours at about 130 rpm.
  • DNA extraction of Agrobacterium MAFF301276 strain and carcinoma of quinoa DNA was extracted from the MAFF301276 strain and the carcinoma induced in the 3.5.1 experiment using the DNeasy Plant Mini Kit (QIAGEN, Valencia, CA, USA) according to the attached protocol.
  • the sample was purified using ethanol and formaldehyde, and the nucleotide sequence was analyzed using ABI PRISM 3130xl Genetic Analyzer (AppliedBiosystems, Foster City, CA, USA). Furthermore, the same DNA was commissioned to the Plant Genetic Function Laboratory of Ishikawa Prefectural University and analyzed by MinION (Oxford Nanopore Technologies, Oxford, UK) (Lu H, Giordano F, Ning Z (2016) Genomics ProteomicsBioinformatics14 (5). ): 265-279). Using these analysis results and Blast and Blastx (https://blast.ncbi.nlm.nih.gov/Blast.cgi), we analyzed the presence or absence of reads that carry both the introduced gene and the quinoa genome.
  • strains suitable for the floral dip method were prepared by the following procedure. (1) The T-DNA region was removed from the Ti plasmid (pTiMAFF301276 strain T-DNA) held by the MAFF301276 strain. (2) Ti plasmid from which T-DNA was removed (pTiMAFF301276 strain ⁇ T-DNA) was introduced into MAFF311303 strain. (3) The binary vector pCAMBIA1301 was introduced into the MAFF311303 strain (MAFF311303pTiMAFF301276 ⁇ T-DNA) bearing the pTiMAFF301276 strain ⁇ T-DNA.
  • T-DNA was inserted into the genome in a fused state.
  • the same analysis was performed on the genomic DNA of quinoa carcinoma infected with the MAFF301276 strain carrying the binary vector pCAMBIA-CqCYP76AD1-1.
  • the quinoa genome was fused with two types of T-DNA.
  • FIG. 25 Since these GUS expressions also occurred in gall and anther tissue, it was considered that GUS expression was non-specific to female organs. In previous experiments, cleavage / sealing treatment was required for gene transfer into quinoa by the floral dip method, but in infection experiments using MAFF15834, MAFF301276, MAFF311303, and MAFF663001 strains, cleavage / sealing treatment was required. In (-), GUS expression was observed in the ears, and the MAFF301276 strain having the highest transformation callus-forming ability (Fig. 14, Table 8) showed GUS expression in the ears of all the quinoa strains tested (Fig.). 26).
  • the thick frame shows the strains used in Example 3, and the other frames show the combination of strains in the co-inoculation experiment.
  • the MAFF301276 strain introduced T-DNA into quinoa curls and quinoa ears with high efficiency (FIGS. 14, Table 8, FIG. 26).
  • the MAFF301276 strain did not show gene transfer into female organs (Fig. 23).
  • GUS expression in female organs was not observed without cutting and sealing treatment (Tables 11 and 12). Therefore, MAFF311303pTi MAFF301276 ⁇ T-DNA having the characteristics of MAFF301276 strain and MAFF311303 strain was prepared.
  • Abscisic acid is antagonistic to salicylic acid (SA), which is involved in the induction of systemic acquired resistance (SAR) in plants (Durner J, Shah J, Klessig DF (1997) Trends in Plant Science.2 (7) ): 266-274: Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, ShinozakiK, Yoshida S, Nakashita H (2008) PlantCell 20 (6): 1678- 1692.).
  • Non-transformed callus was placed on a redifferentiation medium supplemented with 1 mg / L in the group with a GA concentration of 1 and 2 mg / L in the group with a GA concentration of 2 mg / L.
  • Redifferentiation was attempted by combining 2,4-dichlorophenoxyacetic acid (2,4-D) as a plant hormone with an auxin-like action and benzyladenine and kinetin as a plant hormone with a cytokinin-like action at various concentrations.
  • a binary in which the wild-type REBC gene (SEQ ID NO: 14) to which the REBC promoter (SEQ ID NO: 13) was linked was inserted into an individual about 2 months after sowing the M3 generation seed of the rebc mutant Kinua (flowering stage).
  • the improved bacterium (MAFF311303pTiMAFF301276 ⁇ T-DNA) into which the vector pCAMBIA1301 was introduced was transformed by the floral dip cleavage / sealing method of the present invention (Fig. 34).
  • a transformant in which bladder was restored was obtained (Fig. 35).
  • the obtained transformant was sequenced for the REBC gene, and it was confirmed that the base sequence of the REBC gene was a mutant type (FIG. 36, SEQ ID NO: 15). From this, it was considered that the recovery of bladder by transformation is highly likely to be due to the introduced gene. Therefore, for the transformed plants recovered by bladder, the genome sequence of the transformants was deciphered using a next-generation sequencer. As a result, it was confirmed that the REBC gene was introduced into the transformed plant genome (Fig. 37). At the same time, the introduction location was also specified (Chr16, 75355785bp).
  • the bladder of the plant can be expressed (the bladder expression function is restored), and the plant can be transformed (rebc). It was confirmed that it was a mutant complementary individual).
  • spot-like GUS expression was confirmed in all transformed calluses of the Kd line, spot-like GUS expression was confirmed in one individual in the mutant ghy transformed callus, and 2 mm 2 or more GUS expression was confirmed in three individuals. Spot-like transient GUS expression is not transformed and is considered to be transformed only in mutant ghy.
  • Betalain pigments with antibacterial activity against fungi and bacteria (Polturak G, Grossman N, Vela-Corcia D, Dong Y, Nudel A, PlinerM, Levy M, Rogachev I, Aharoni A (2017) Proceedings of the National Academy of Sciences of the United States of America 114 (34): 9062-9067; Canadanovic-BrunetJM, Savatovic SS, Cetkovic GS (2011) Czech Journal of Food Sciences 29 (6): 575-585), inhibitory in transformation of Kd lineage It was suggested that it may be working. The frequency of gene expression in both strains was similar (Table 14), and betalain probably had no effect on the approach of Agrobacterium to plants and gene transfer.
  • betalain dye affects the integration of T-DNA into the quinoa genome. It was suggested that betalain pigment acts inhibitoryly in the transformation of quinoa.
  • the quinoa 85 strain showed the highest transformation efficiency in the transformation experiment with the GV3101 strain and the MAFF301276 strain (FIGS. 17, FIG. 20, Table 9, Table 10). Therefore, 85 strains are considered to be useful quinoa strains for transformation with Agrobacterium.
  • the hypocotyls of the 85 strains (5 days after sowing) used in the transformed callus experiment are red, similar to the Kd strain and the 108 strain. However, the mature 85 strains of ears are orange in color.
  • the introduction of the gene into the quinoa genome by the MAFF301276 strain was proved by the results of gene analysis and PCR analysis using a next-generation sequencer (Fig. 22).
  • these analyzes revealed that the pTi plasmid derived from the MAFF301276 strain and a part of the binary vector pCAMBIA1301 were fused and integrated (Fig. 22). It is unclear whether the fusion of the two T-DNAs occurred in the cells or during the process of gene transfer into the host plant. However, it is possible that T-DNA fusion is involved in the excellent infectivity of the MAFF301276 strain.
  • the MAFF311303 strain lacks the vir gene group essential for gene transfer and is classified as non-pathogenic.
  • the non-pathogenic MAFF311303 strain introduces the GUS gene into plant cells.
  • the action of the host plant is also important for Agrobacterium infection, and acetosyringone secreted from the damaged site of the plant is involved in the activation of the vir gene (Bhattacharya A, Sood P, Citovsky V (2010). ) Molecular Plant Pathology 11 (5): 705-719).
  • the VIP1 protein of Arabidopsis thaliana is known to be involved in the transfer of T-DNA into the host nucleus (Tzfira T, Vaidya M, Citovsky V (2001) The EMBO Journal 20 (13): 3596-3607).
  • the strains in which GUS expression was observed in female organs were MAFF212033, MAFF311303 and MAFF211729, which are considered to be attenuated strains based on the results of tissue culture and gene transfer experiments by the floral dip method (FIGS. 14 and 26a, FIG. Table 8). These results suggest that there is no correlation between pathogenicity and ability to approach female organs.
  • the GUS expression rate in the ears of bladder cell-suppressing mutants (rebc, ghy / rebc) was high regardless of the presence or absence of cleavage / sealing treatment (Fig. 26). Therefore, it was suggested that the mutant rebc and the mutant ghy / rebc are effective for gene transfer by the floral dip method.
  • MAFF311303pTi MAFF301276 ⁇ T-DNA strain was produced using 2 Agrobacterium strains (MAFF301276 strain, MAFF311303 strain) selected by tissue culture and floral dip cleavage sealing method.
  • quinoa mutants and new Agrobacterium strains are important for the novel transformation method of quinoa constructed in this example.
  • a general-purpose quinoa transformation method will be established by proceeding with the analysis of the betalain pigment synthesized by the quinoa 85 strain and the excellent transformation ability of the MAFF301276 strain and the MAFF311303 strain to quinoa. With the establishment of a quinoa transformation method, further progress in quinoa research can be expected, and the production of quinoa with new characteristics can be expected.
  • quinoa contains a plant poison called saponin in its seeds, and quinoa cultivated in salt areas may have a high saponin content (Norio Yamamoto (2014) Central Andean Agricultural Culture Theory-especially in the highlands-. National Quinoa Museum Survey Report 117).
  • saponin Central Andean Agricultural Culture Theory-especially in the highlands-. National Quinoa Museum Survey Report 117.
  • it is difficult to mechanize for mass production due to its shedding habits Yuji Fujikura, Akio Motoe, Norio Yamamoto (2009) Plant Domestication: Is Quinoa a Cultivated Plant? -Cultivation of Andean Millets An essay on mechanization-. National Museum of Ethnology Survey Report 84: 225-244).
  • the excellent characteristics of quinoa can be fully exerted as a measure for improving the food crisis.
  • the results of this example can contribute to the progress of quinoa research at the gene level.
  • the gene introduced by the novel transformation method of quinoa constructed in this example can be inherited to progeny. That is, the seed into which the target gene has been introduced (seed in which the function of the target gene is expressed) can be obtained by the novel transformation method of quinoa constructed in this example.
  • the present invention has made it possible to provide a transformation method for quinoa.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】キヌアの形質転換法を提供する。 【解決手段】floraldip法に密閉処理を加えることにより、キヌアの雌性器官に形質転換できることを見出した。

Description

形質転換植物の作製方法及び形質転換剤
 本発明は、形質転換植物の作製方法及び形質転換剤に関する。
 本出願は、参照によりここに援用されるところの日本出願特願2019-053945号優先権を請求する。
 キヌア(Chenopodium quinoa)は、ヒユ科アカザ亜科アカザ属に属するアンデス発祥の異質倍数性植物である。
 キヌアの種子は、タンパク質、必須アミノ酸およびミネラルを豊富に含み、米の代替的な存在になりうるとして期待されている(非特許文献1、非特許文献2)。
 さらに、キヌアの耐塩性、耐寒性といった優れた環境ストレス耐性は、劣悪環境下での栽培が期待でき(非特許文献3)、国際連合食糧農業機関(FAO)は世界の食料危機の重要な解決手段になり得ると評価した(非特許文献4)。アンデスの重要な食糧であったキヌアは、今や世界へと広がり、研究および商業用栽培が行われている。さらに、キヌアのゲノムが解読されたことを契機に(非特許文献5)、キヌアの優れた環境ストレス耐性に関与する遺伝子の研究が進められている(非特許文献6)。形質転換技術を用いることにより、キヌアにさらなる環境ストレス耐性能力を付与できると考えられる。
 現在、植物の形質転換法は、細菌のDNA を植物細胞へ組み込む能力を利用したアグロバクテリウム(Rhizobium radiobacter;旧称Agrobacteriumtumefaciens)法が主流となっている。このアグロバクテリウムにより植物細胞へ組み込まれるDNAは、T-DNA(Transferred DNA)と呼ばれ、T-DNAの移行はプラスミド上のvir(virulence)遺伝子群の働きにより行われる。宿主植物の損傷によりフェノール化合物が分泌されると、アグロバクテリウムは植物細胞に誘引され、植物表面に付着する。菌体内では、フェノール化合物を感知したVirAがVirGをリン酸化し、他のvir遺伝子群を活性化する。活性化されたVirD1/D2はプラスミド上のT-DNA領域に切り込みを入れ、その5’末端にVirD2が結合する。さらに、T複合体の保護の役割を担うVirE2が結合する。T鎖とVirD2、VirE2の複合体はVirBの働きにより、植物細胞へと輸送され、植物の核内へ移行し、最終的に染色体へと組み込まれる(非特許文献7)。
 アグロバクテリウム法による形質転換系の多くは、in vitroの無菌条件下で目的植物に遺伝子導入を行い、薬剤耐性遺伝子を用いて選抜を行う。そして、遺伝子導入細胞を組織培養技術により再分化する必要がある。再分化には、高度な技術や多くの時間を要すること、再分化の過程で遺伝子に変異が生じること、そして、適用できる植物種が制限されるといった欠点がある(非特許文献8)。
 キヌアを含むアカザ属においても再分化系を用いたアグロバクテリウムによる形質転換が試みられてきた。バイナリーベクターを用いたキヌア培養細胞への形質転換(非特許文献9)、アカバアカザ(Chenopodium rubrum)実生への超音波(SAAT)法を用いたアグロバクテリウムによる形質転換(非特許文献10)、そしてアカバアカザおよびミナトアカザ(Chenopodium murale L)のRhizobium rhizogenesによる毛状根誘導が報告されている(非特許文献11、非特許文献12)。これらの研究において、スーパービルレンスもしくはハイパービルレンスと呼ばれる形質転換効率が高いアグロバクテリウムA281株が用いられたことにより、遺伝子導入に成功している(非特許文献9、非特許文献13)。しかし、キヌアの再分化系が確立されておらず、キヌアの形質転換法は未だ確立されていない。
 タバコで初めての形質転換植物体が報告されて以降(非特許文献14、非特許文献15)、モデル植物を中心に、様々な植物で高効率かつ安定的な形質転換系が確立され、植物科学において不可欠な方法となっている。キヌアは潜在的に優れた形質を持つ。そして、未知遺伝子の機能解明や環境的、社会的変化に対応するため、一層優れた形質の付与が望まれる。キヌア研究の進展のために、形質転換法の確立が必須と考えられる。
Vega-Galvez A, Miranda M, Vergara J, Uribe E,Puente L, Martinez EA(2010) Nutrition facts and functional potential of quinoa(Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of theScience of Food and Agriculture 90: 2541-2547 Mota C, Santos M, Mauro R, Samman N, MatosAS, Torres D, Castanheira I (2016) Protein content and amino acids profile ofpseudocereals. Food Chemistry 193:55-61 Hinojosa L, Gonzalez JA, Barrios-Masias FH,Fuentes F, Murphy KM (2018)Quinoa Abiotic Stress Responses: A Review. Plants7(4) Food and Agriculture Organization of theUnited Nations (2013) State of the Art Report on Quinoa Around the World in 2013. Jarvis DE, Ho YS, Lightfoot DJ, Schmockel SM,Li B, Borm TJ, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, RupperRR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EG, Guo X, MominAA, Negrao S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold ST,Gojobori T, Linden CG, van Loo EN, Jellen EN, Maughan PJ, Tester M (2017) Thegenome of Chenopodium quinoa. Nature 542(7641):307-312 Morton MJL, Awlia M, Al-Tamimi N, Saade S,Pailles Y, Negrao S, Tester M (2019) Salt stress under the scalpel - dissectingthe genetics of salt tolerance. The Plant Journal 97(1):148-163 Zupan JR, Zambryski P (1995) Transfer ofT-DNA from Agrobacterium to the plant cell. Plant Physiol 107(4):1041-1047 清水碩, 久保田進, 藤森嶺, (1987) 植物バイオテクノロジー, オーム社 Komari T (1990) Transformation of culturedcells of Chenopodiumquinoa by binary vectors that carry a fragment of DNA fromthe virulenceregion of pTiBo542. Plant Cell Reports 9:303-306 Flores Solis J.I, Mlejnek P, Studena K,Prochazka S (2003)Application of sonication-assisted Agrobacterium-mediatedtransformation inChenopodium rubrum L. Plant, Soil and Environment 49:255-260 Mitic N, Dmitrovic S, Djordjevic M,Zdravkovic-Korac S, Nikolic, Raspor M, Djordjevic T, Maksimovic V, Zivkovic S,Krstic-Milosevic D, StanisicM, Ninkovic S, (2012) Use of Chenopodium murale L.transgenic hairy root invitro culture system as a new tool for allelopathicassays. Journal of Plant Physiology 169:1203-1211 Dmitrovic S, Mitic N, Zdravkovic-Korac S,Vinterhalter B, Ninkovic Sand Culafic L.J (2010) Hairy roots formation inrecalcitrant-to-transform plant Chenopodium rubrum. Biologia Plantarum 54(3):566-570 Jin SG, Komari T, Gordon MP, Nester EW(1987) Genes responsible for the supervirulence phenotype of Agrobacteriumtumefaciens A281. Journal of Bacteriology 169(10):4417-4425 Block MD, Herrera-Estrella L, Montagu MV,Schell J, Zambryski1 P(1984) Expression of foreign genes in regenerated plantsand in their progeny. The EMBO Journal 3(8): 1681-1689 Horsch RB, Fraley RT, Rogers SG, Sanders PR,Lloyd A, Hoffmann N(1984) Inheritance of functional foreign genes in plants.Science 223(4635):496-498
 上述したような従来の技術の問題を解消するために、本発明は、キヌアの形質転換法を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、floral dip法に密閉処理を加えることにより、キヌアの雌性器官に形質転換できることを見出し、さらに、該形質転換によって導入された遺伝子は後代に遺伝させることができることを確認して、本発明を完成した。
 すなわち、本発明は、以下の通りである。
 1.以下の工程を含む形質転換植物、該植物の種子又は該植物のカルスの作製方法:
 (1-1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムを対象の植物体に接触させることによりアグロバクテリウムを接種する工程、
 (1-2)植物体を切断する工程、及び
 (1-3)目的遺伝子が導入された部位を含む切断した植物体を多湿・暗条件下にして、目的遺伝子が導入された植物体を得る工程、
 又は、
 (2-1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムを対象の植物体に接触させることによりアグロバクテリウムを接種する工程、
 (2-2)植物体を切断する工程、
 (2-3)目的遺伝子が導入された部位を含む切断した植物体を多湿・暗条件下にする工程、及び
 (2-4)種子を収穫できるまで生育し、目的遺伝子が導入された種子を得る工程、
 又は、
 (3-1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムを対象の植物体に接触させることによりアグロバクテリウムを接種する工程、
 (3-2)接種した植物体を多湿・暗条件下にする工程、
 (3-3)植物体を切断する工程、
 (3-4)目的遺伝子が導入された部位を含む切断した植物体を多湿・暗条件下にする工程、及び
 (3-5)該植物体からカルスを作製する工程。
 2.前記アグロバクテリウムが、MAFF301276株又はMAFF311303株である、前項1に記載の方法。
 3.前記アグロバクテリウムが、さらにT-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミドを形質転換されたアグロバクテリウムである、前項1又は2に記載の方法。
 4.前記植物体がキヌアである、前項1~3のいずれか1に記載の方法。

 5.前記植物体がキヌア変異体ghy又はキヌア変異体ghy/rebcである、前項1~4のいずれか1に記載の方法。
 6. さらに工程(1-1)若しくは工程(2-1)の前に、工程(1-1)若しくは工程(2-1)と同時に、又は、工程(1-1)及び工程(1-2)の間若しくは(2-1)及び工程(2-2)の間に、アブシジン酸を対象の植物体に接触させる工程を含む、前項1~5のいずれか1に記載の方法。
 7.T-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミド及び植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムMAFF311303株を含む形質転換剤。
 8.アグロバクテリウムMAFF311303株を含む雌性器官特異的形質転換剤。
 9.アブシジン酸を含むアグロバクテリウムを使用した植物用形質転換補助剤。
 10.アグロバクテリウムMAFF301276株を含むキヌア用形質転換剤。
 11.以下の工程を含む形質転換植物の作製方法:
 (1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクター及びT-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミドが形質転換されたアグロバクテリウムMAFF311303株を対象の植物体に接触させることによりアグロバクテリウムを接種する工程。
 12.以下の工程を含む形質転換植物の作製方法:
 (1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムを対象の植物体に接触させることによりアグロバクテリウムを接種する工程、及び
 (2)工程(1)の前に、工程(1)と同時に、又は工程(1)の後に、アブシジン酸を対象の植物体に接触させる工程。
 13.以下の工程を含む形質転換植物の作製方法:
 (1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクター及びT-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミドが形質転換されたアグロバクテリウムMAFF311303株を対象の植物体に接触させることによりアグロバクテリウムを接種する工程、及び
 (2)工程(1)の前に、工程(1)と同時に、又は工程(1)の後に、アブシジン酸を対象の植物体に接触させる工程。
 14.前記アグロバクテリウムが、MAFF301276株又はMAFF311303株である、前項12に記載の方法。
 15.以下の工程を含む形質転換植物の種子の作製方法:
 (1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムを対象の植物体に接触させることによりアグロバクテリウムを接種する工程、及び
 (2)工程(1)の前に、工程(1)と同時に、又は工程(1)の後に、アブシジン酸を対象の植物体に接触させる工程、及び
 (3)種子を収穫できるまで生育し、目的遺伝子が導入された種子を得る工程。
 16.前記アグロバクテリウムが、MAFF301276株又はMAFF311303株である、前項15に記載の方法。
 17.前記植物体がキヌアである、前項11~16のいずれか1に記載の方法。
 18.前記植物体がキヌア変異体ghy又はキヌア変異体ghy/rebcである、前項11~17のいずれか1に記載の方法。
 本発明は、形質転換植物の作製方法及び形質転換剤を提供することができた。
GUS発現個体計測方法。 種まき培土で生育したKd系統。(a)キヌア全長;(b)穂;(c)本葉。スケールバーは1cmを示している。 種まき培土で生育した変異体ghy。(a)キヌア全長;(b)穂;(c)本葉。スケールバーは1cmを示している。 種まき培土で生育した変異体rebc。(a)キヌア全長;(b)穂;(c)本葉。スケールバーは1 cmを示している。 種まき培土で生育した変異体ghy/rebc。(a)キヌア全長;(b)穂;(c)本葉。スケールバーは1cmを示している。 本実施例に用いたベクター一覧。Bar:ビアラホス耐性遺伝子、Gus:β-グルクロニダーゼ遺伝子、CqCYP76AD1-1:キヌアベタレイン合成関連遺伝子、HPT:ハイグロマイシン耐性遺伝子、35S-P:CaMV 35Sプロモーター、35S-T:CaMV 35Sターミネーター、NOS-T:NOSターミネーター、RB:rightborder、LB:left border。 設計したプライマーの位置。矢印(1-5)は、設計したプライマー(1-5)の位置を示している。 floral dip実験(切断・密閉処理-)を行ったキヌア穂のGUS非発現。 floral dip法(切断・密閉処理+)を行ったキヌア穂のGUS発現。 Kd系統の雌性器官におけるGUS発現。(a)非感染個体の雌性器官;(b)GUS発現が認められた雌性器官。 floral dip法を改良した「floraldip切断密閉法」の手順。切断・密閉処理(-)の区においては感染処理後2週目にGUS染色を実施した。切断・密閉処理(+)の区においては感染処理後2週間目に切断・密閉処理を行い、その後、GUS染色を実施した。 アグロバクテリウム7菌株を感染したKd系統胚軸切片より誘導したカルス。(a)GV3101株を感染したカルス;(b)ATCC15834株を感染したカルス;(c)MAFF301276株を感染したカルス;(d)MAFF212033株を感染したカルス;(e)MAFF311303株を感染したカルス;(f)MAFF211729株を感染したカルス;(g)MAFF663001株を感染したカルス。図は感染処理後6週目のカルスである。スケールバーは1cmを示している。 アグロバクテリウム7菌株を感染したKd系統胚軸切片より誘導したカルスのGUS発現。(a)GV3101株を感染したKd系統形質転換カルス;(b)MAFF301276株を感染したKd系統形質転換カルス。GUS染色は感染処理後6週目のカルスに実施した。スケールバーは1cmを示している。 アグロバクテリウム7菌株を感染したKd系統胚軸切片の形質転換カルス形成率。GUS染色は感染処理後6週目のカルスに実施した。**は、1%水準で統計的に有意な差があることを示している(T検定)。グラフは、キヌアの胚軸切片(n=30)を供試した3回の感染実験の平均値±標準偏差を示している。 アグロバクテリウムGV3101株を感染したキヌア胚軸切片より誘導したカルス。(a)Kd系統カルス;(b)85系統カルス;(c)108系統カルス;(d)変異体rebcカルス(胚軸切片);(e)変異体ghyカルス;(f)変異体ghy/rebcカルス(胚軸切片)。図は感染処理後6週目のカルス(胚軸切片)である。スケールバーは1cmを示している。 アグロバクテリウムGV3101株を感染したキヌア胚軸切片より誘導したカルスのGUS発現。(a)85系統カルス;(b)変異体rebcカルス;(c)変異体ghyカルス。GUS染色は感染処理後6週目のカルスに実施した。スケールバーは1 cmを示している。 アグロバクテリウムGV3101株を感染したキヌア6系統の形質転換カルス形成率。GUS染色は感染処理後6週目のカルスに実施した。グラフは、キヌアの胚軸切片(n=30)を供試した3回の感染実験の平均値±標準偏差を示している。 アグロバクテリウムMAFF301276株を感染したキヌア胚軸切片より誘導したカルス。(a)Kd系統カルス;(b)85系統カルス;(c)108系統カルス;(d)変異体rebcカルス;(e)変異体ghyカルス;(f)変異体ghy/rebcカルス。図は感染処理後6週目のカルス(胚軸切片)である。スケールバーは1cmを示している。 アグロバクテリウムMAFF301276株を感染したキヌア胚軸切片より誘導したカルスのGUS発現。(a)Kd系統カルス;(b)85系統カルス;(c)108系統カルス;(d)変異体rebcカルス;(e)変異体ghyカルス;(f)変異体ghy/rebcカルス。GUS染色は感染処理後6週目のカルスに実施した。スケールバーは1cmを示している。 アグロバクテリウムMAFF301276株を感染したキヌア6系統の形質転換カルス形成率。GUS染色は感染処理後6週目のカルスに実施した。グラフは、キヌアの胚軸切片(n=30)を供試した3回の感染実験の平均値±標準偏差を示している。 アグロバクテリウムMAFF301276株により変異体ghy/rebc実生に誘導された癌腫。(a)バイナリーベクターpCAMBIA1301を保有する菌株を感染した実生;(b)バイナリーベクターpCAMBIA-CqCYP76AD1-1を保有する菌株を感染した実生。図は感染処理後6週目の実生である。スケールバーは1 cmを示している。 MAFF301276pTiプラスミドおよびpCAMBIA1301由来プラスミドのキヌアゲノムへの導入様式。バイナリーベクターpCAMBIA1301のT-DNA領域とMAFF301276株由来のT-DNAが融合した形でキヌアゲノム挿入されている。 キヌア4系統および7菌株を用いたfloral dip切断密閉法により、雌性器官におけるGUS発現が認められた個体の割合。(a)切断・密閉処理(-)のGUS染色結果;(b)切断・密閉処理(+)のGUS染色結果。計測方法は図1に記す。 floral dip切断密閉実験を行ったKd系統キヌア。(a)MAFF301276株によりGUS発現が認められたがく;(b)MAFF311303株によりGUS発現が認められた雌性器官。矢印はキヌアの雌性器官を示している。 MAFF311303株を用いてfloral dip切断密閉実験を行ったKd系統。(a)GUS染色前のキヌア;(b)GUS染色後のキヌア;(c)GUS発現が認められた雌性器官。スケールバーは1cmを示している。矢印はキヌアの雌性器官を示している。 キヌア4系統および7菌株を用いたfloral dip切断密閉法により,穂におけるGUS発現が認められた個体の割合。(a)切断・密閉処理(-)のGUS染色結果;(b)切断・密閉処理(+)のGUS染色結果。計測方法は図 2に記す。 MAFF311303pTi301276ΔT-DNAを用いてfloral dip実験を行った変異体ghy。(a)GUS染色前のキヌア;(b)GUS染色後のキヌア;(c)GUS発現が認められた雌性器官。スケールバーは(a)及び(b)は1 cm、(c)は1 mmを示している。 MAFF311303pTi301276ΔT-DNAを用いてfloral dip実験を行った変異体ghy/rebc。(a)GUS染色前のキヌア;(b)GUS染色後のキヌア;(c)GUS非発現の雌性器官;(d)GUS発現が認められた雌性器官。スケールバーは(a)及び(b)は1 cm、(c)及び(d)は1 mmを示している。 MAFF311303pTiMAFF301276ΔT-DNAを用いたfloral dip実験により雌性器官のGUS染色が認められた個体の割合。キヌア4系統を用いて感染実験を行い、各系統10個体をGUS染色に供試した。キヌア系統名上もしくはグラフ上に示す数字は、雌性器官においてGUS発現が認められた個体の割合を示している。 MAFF311303pTiMAFF301276ΔT-DNAおよび500 mMのABA を用いたfloraldip実験を行った変異体ghy/rebc。(a)GUS染色前のキヌア;(b)GUS染色後のキヌア;(c)及び(d)GUS発現が認められた雌性器官。スケールバーは(a)及び(b)は1 cm、(c)及び(d)は1 mmを示している。 MAFF311303pTiMAFF301276ΔT-DNAおよび500 mMのABAを用いたfloraldip実験により雌性器官のGUS染色が認められた個体の割合。キヌア4系統を用いて感染実験を行い、各系統10個体をGUS染色に供試した。キヌア系統名上もしくはグラフ上に示す数字は、雌性器官においてGUS発現が認められた個体の割合を示している。 GV3101株を用いて感染したKd系統および変異体ghyの実生切片より誘導したカルス。(a)Kd系統カルス、(b)変異体ghyカルス、(c)Kd系統カルスのGUS発現、(d)変異体ghyカルスのGUS発現。GUS染色は感染処理後6週目に実施した。スケールバーは1 cmを示している。 アグロバクテリウム6菌株を感染したKd系統実生のGUS発現。(a)ATCC15834株を感染した実生;(b),(c)MAFF301276株を感染した実生;(d)MAFF212033株を感染した実生;(e)MAFF311303株を感染した実生;(f)MAFF211729株を感染した実生;(g)MAFF663001株を感染した実生。GUS染色は感染処理後5週目の実生に実施した。スケールバーは1 cmを示している。 floral dip切断・密閉法によるrebc変異体キヌアへの野生型REBC遺伝子の形質転換の概要。 floral dip切断・密閉法によるrebc変異体キヌアへの野生型REBC遺伝子の形質転換の結果。上段はブラッダーをもつ野生型の表現型である形質転換体(rebc変異相補個体)、下段は野生型及びrebc変異体を示す。形質転換体でブラッダーが復活した。 形質転換体のREBC遺伝子の配列決定の結果。 形質転換体の次世代シークエンサーを用いた解析の結果。目的遺伝子のキヌアゲノムへの導入を確認した。 形質転換体後代の表現型調査の結果。上段は形質転換体(後代)、下段は野生型及びrebc変異体を示す。上段左側の形質転換後代はブラッダーをもつ野生型(導入遺伝子あり)であり、上段右側の形質転換後代はrebc変異型(導入遺伝子なし)であった。形質転換体の表現型は遺伝することを確認した。
 本発明の形質転換植物の作製方法(floral dip切断密閉法)は、(1)植物体を切断することによりアグロバクテリウムが感染しやすくする、(2)植物体を密閉容器内等に設置することにより多湿条件を保ち、多湿にすることによりアグロバクテリウムの生育・増殖を高め、アグロバクテリウムを感染しやすくさせる、(3)暗条件にすることにより、植物体のアグロバクテリウムに対する抵抗性および生育を低下させ、アグロを感染しやすくさせると共に光による切断した植物体への損傷を抑える、ことを目的とする方法である。すなわち、(1)~(3)のいずれか1、2又は全部を実施することができれば方法・工程は特に限定できない。
[本発明の形質転換植物の作製方法]
 本発明の形質転換植物の作製方法は、以下のいずれか1以上を対象とする。
(floral dip切断密閉法)
 以下の工程を含む形質転換植物、該植物の種子又は該植物のカルスの作製方法:
 (1-1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子、又は目的遺伝子及び薬剤耐性遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムを対象の植物体に接触させることによりアグロバクテリウムを接種する工程、
 (1-2)植物体を切断する工程、及び
 (1-3)目的遺伝子が導入された部位を含む切断した植物体を多湿・暗条件下にして、目的遺伝子が導入された植物体を得る工程、
 又は
 (2-1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子、又は目的遺伝子及び薬剤耐性遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムを対象の植物体に接触させることによりアグロバクテリウムを接種する工程、
 (2-2)植物体を切断する工程、
 (2-3)目的遺伝子が導入された部位を含む切断した植物体を多湿・暗条件下にする工程、及び
 (2-4)種子を収穫できるまで生育し、目的遺伝子が導入された種子を得る工程。
 工程(1-1)及び/又は(2-1)の対象の植物体は、発芽後の日数は特に限定されない。栽培条件によっても異なるが、発芽後10~100日、30~60日でもよく、発芽後40~50日が好ましい。
 工程(1-1)及び/又は(2-1)の「接触させることによりアグロバクテリウムを接種」は、前記アグロバクテリウムを対象の植物体に接触することで植物体内に導入する。接触方法は、特に限定されないが、例えばアグロバクテリウムを液体(例えば滅菌水、スクロース溶液。例えばSilwet L-77等の任意の添加物を含んでもよい)に懸濁した菌懸濁液を植物体の雌性器官(例えば穂)に滴下する、植物体の雌性器官を浸漬する、あるいは該菌懸濁液を植物体の雌性器官に噴霧又は塗布することにより接触させる。
 アグロバクテリウムは、懸濁前に例えばLB培地等の液体培地で任意のOD(例えばOD600:約2.0)まで培養し、遠心分離により集菌したものを用いてもよい。
 工程(1-1)及び/又は(2-1)のアグロバクテリウムは、さらにT-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミドを形質転換されていてもよい。
 前記形質転換植物の作製方法は、さらに工程(1-1)及び/又は(2-1)の前に、工程(1-1)及び/又は(2-1)と同時に、又は工程(1-1)及び/又は(2-1)と工程(1-2)及び/又は(2-2)の間に、アブシジン酸を対象の植物体に接触させる工程を含んでもよい。
 工程(1-3)及び/又は(2-3)の「多湿・暗条件下にする」は、アグロバクテリウムを接触した植物体を以下のような多湿・暗条件下にできればよく、例えば以下のような多湿・暗条件下において放置、設置又は撹拌してもよく、好ましくは以下のような多湿・暗条件下において放置する。
 多湿(多湿条件)とは、湿度50%以上であればよく、湿度90%~100%が好ましい。
 暗条件とは、特に限定されないが、例えば0~0.5ルクス、0~1ルクス、0~2ルクス等の植物にダメージがなく抵抗性が低下する暗さが挙げられる。
 多湿・暗条件を実現する方法は特に限定されないが、密閉容器等の通気性の低い容器内に植物体と水を設置(放置)することにより多湿かつ暗条件にすることが好ましく、密閉容器内に植物体(植木鉢、土、肥料等を含んでもよい)を設置し、密閉容器内に5 mL~5000 mL、10 mL~2000 mL、50 mL~1000mL、100 mL~1000 mL又は500 mL~1000 mLの水を張ることがより好ましい。
 密閉容器は、容器内の湿度を90~100%に保持できかつ暗所にできれば特に限定されないが、例えばミッペール(富士システムパック)等のゴムパッキンにより密閉された容器が挙げられる。
 多湿・暗条件下にする温度は、植物が生存可能な温度であれば特に限定されないが、15℃~30℃が好ましく、20℃~25℃がより好ましく、約22℃が最も好ましい。
 多湿・暗条件下にする期間は、特に限定されないが、1時間~2週間、12時間~1週間でもよく、1~6日間が好ましく、1~5日間がより好ましく、1~4日間がさらに好ましい。
 本発明の形質転換植物の作製方法は、工程(1-1)と工程(1-2)の間、工程(2-1)と工程(2-2)の間に、「該植物体を任意の条件で生育する工程」をさらに含んでもよい。「任意の条件で生育」は、植物体を目的遺伝子が発現するまで生育させることができれば特に限定されないが、好ましくは蕾がつくまで生育する。
 生育の温度条件は、植物が生存可能な温度であれば特に限定されないが、15℃~30℃が好ましく、20℃~25℃がより好ましく、約22℃が最も好ましい。
 生育の明暗条件は、植物が生存可能であれば特に限定されない。例えば、8~16時間明条件(Light条件)/16~8時間暗条件(Dark条件)、9~13時間明条件(Light条件)/15~11時間暗条件(Dark条件)であってもよく、11時間明条件/13時間暗条件が好ましい。
 工程(1-2)及び/又は(2-2)の「植物体を切断する工程」は特に限定されないが、目的遺伝子を導入された部位及び/又は雌性器官(例えば穂)を含むように切断することが好ましい。目的遺伝子を導入された部位及び/又は雌性器官(例えば穂)を含むように切断する方法として、例えば植物体を茎中心付近で切断してもよく、好ましくは植物体を茎の先端(茎頂)から8~15cmを含むように切断する。
 工程(2-4)の「種子を収穫できるまで生育」は、植物体を、種子を収穫できるまで生育させることができれば特に限定されないが、得られる種子の数を増やす観点から受粉させる工程を含むことが望ましい。受粉は、自家受粉及び他家受粉を含み、好ましくは他家受粉である。
 生育の温度条件は、植物体を種子を収穫できるまで生育させることが可能な温度であれば特に限定されないが、15℃~30℃が好ましく、20℃~25℃がより好ましく、約22℃が最も好ましい。
 生育の明暗条件は、植物体を種子を収穫できるまで生育させることが可能であれば特に限定されない。例えば、8~16時間明条件(Light条件)/16~8時間暗条件(Dark条件)、9~13時間明条件(Light条件)/15~11時間暗条件(Dark条件)であってもよく、11時間明条件/13時間暗条件が好ましい。
 工程(2-4)の「目的遺伝子が導入された種子」は、細胞内、好ましくはゲノム内に目的遺伝子の塩基配列を含む核酸分子を有すれば特に限定されないが、目的遺伝子のホモ接合体及び/又はヘテロ接合体を含む。
 本発明の形質転換植物の作製方法は、工程(2-4)の後に、「目的遺伝子が導入された種子から目的遺伝子のホモ接合体を含む種子を選抜する工程を含んでもよい。
(floral dip非切断密閉法1)
 以下の工程を含む形質転換植物の作製方法:
 (1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子、又は目的遺伝子及び薬剤耐性遺伝子を担持した発現ベクター及びT-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミドが形質転換されたアグロバクテリウムMAFF311303株を対象の植物体に接触させることにより菌を接種する工程。
(floral dip非切断密閉法2)
 以下の工程を含む形質転換植物の作製方法:
 (1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子、又は目的遺伝子及び薬剤耐性遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムを対象の植物体に接触させることにより菌を接種する工程、及び
 (2)工程(1)の前に、工程(1)と同時に、又は工程(1)の後に、アブシジン酸を対象の植物体に接触させる工程。
(floral dip非切断密閉法3)
 以下の工程を含む形質転換植物の作製方法:
 (1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子、又は目的遺伝子及び薬剤耐性遺伝子を担持した発現ベクター及びT-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミドが形質転換されたアグロバクテリウムMAFF311303株を対象の植物体に接触させることにより菌を接種する工程、及び
 (2)工程(1)の前に、工程(1)と同時に、又は工程(1)の後に、アブシジン酸を対象の植物体に接触させる工程。
[本発明の形質転換剤、形質転換補助剤]
 本発明は、以下の形質転換剤を対象とする。
 T-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミド及び植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子及び薬剤耐性遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムMAFF311303株を含む形質転換剤。
 また、本発明は、アブシジン酸を含むアグロバクテリウムを使用した植物用形質転換補助剤も対象とする。
 アブシジン酸を含むアグロバクテリウムを使用した植物用形質転換補助剤は、アグロバクテリウムを用いた植物の形質転換法(例えばfloral dip法)に使用できる。使用態様は特に限定されないが、アグロバクテリウムを対象の植物体に接触させることにより菌を接種する工程の前、同時、又は後に、アブシジン酸を含む植物用形質転換補助剤を対象の植物体に接触させることにより使用できる。例えば、目的遺伝子を有するアグロバクテリウムを含む懸濁液に、アブシジン酸を含む植物用形質転換補助剤を混合し、混合液を形質転換する植物体に接触、塗布又は噴霧することにより形質転換できる。
(植物体内で目的遺伝子を発現誘導可能なプロモーター)
 植物体内で目的遺伝子を発現誘導可能なプロモーターは、特に限定されないが、例えば、CaMV 35Sプロモーター、アグロバクテリウム由来のプロモーター(例えばNos (Nopaline synthase) promoter等)、薬剤誘導プロモーター(例えばアルコール脱水素酵素(alcA)プロモーター、UASプロモーター等)、植物遺伝子のプロモーター(例えばユビキチンプロモーター等)等が挙げられ、好ましくはCaMV 35Sプロモーターである。
(目的遺伝子)
 目的遺伝子は、植物細胞内で発現可能な遺伝子であれば、特に限定されない。例えば、塩ストレス等の環境ストレス耐性遺伝子、ベタレイン色素等の有用2次代謝物質合成酵素遺伝子、開花誘導遺伝子、草丈を制御する遺伝子、エタノールで活性化される転写因子遺伝子、エストロジェンで転写活性される転写因子遺伝子、デキサメタゾンで活性化される転写因子遺伝子等の有用遺伝子が挙げられる。有用遺伝子は、ゲノム編集や目的遺伝子の過剰発現及び/又は発現抑制等を行うことにより単離・利用できる。
(薬剤耐性遺伝子)
 薬剤耐性遺伝子は、形質転換植物から目的遺伝子が導入された種子の選抜ができれば特に限定されないが、例えばハイグロマイシン耐性遺伝子(hygromycin phosphotransferase;HPT)、ビアラホス(ビアラフォス)耐性遺伝子(phosphinothricinN-acetyltransferase;Bar)、カナマイシン耐性遺伝子、アンピシリン耐性遺伝子、テトラサイクリン耐性遺伝子等が挙げられる。
(発現ベクター)
 発現ベクターは、植物体内で目的遺伝子を発現誘導可能なプロモーター及び薬剤耐性遺伝子を担持した発現ベクターであれば、特に限定されない。例えば、pCAMBIA1301、pCAMBIA-CqCYP76AD1-1、pBIC35BP、pBI121、pER8、pTA70001、pBICERToMV等が挙げられるが、pCAMBIA1301が好ましい。
 発現ベクターの植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を挿入することにより、植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子及び薬剤耐性遺伝子を担持した発現ベクターを作製できる。
(アグロバクテリウム)
 アグロバクテリウムは、発現ベクターを植物細胞内に組み込む能力を有する。アグロバクテリウムは、発現ベクターを好ましくは核内に、より好ましくは染色体に、組み込む能力を有する。
 本発明に使用するアグロバクテリウムは特に限定されないが、例えばRhizobium radiobacter(例えばGV3101株(参照:Bioimpacts. 2017;7(4):247-254.doi: 10.15171/bi.2017.29. Epub 2017 Sep 18.)、MAFF301276株、MAFF212033株、MAFF311303株等(農業生物資源ジーンバンクhttps://www.gene.affrc.go.jp/databases-micro_search.phpにてMAFF番号から検索可能))、Rhizobiumrhizogenes(例えばATCC15834株(アメリカ・タイプカルチャーコレクションから入手可能)、MAFF211729株等)およびRhizobium vitis(例えばMAFF663001株等)等が挙げられ、floral dip切断密閉法及びfloral dip非切断密閉法においてMAFF301276株、MAFF311303株が好ましい。後述する実施例において、MAFF301276はキヌア植物において他の菌株よりきわめて高い形質転換能力を持つこと、MAFF311303は非病原性にもかかわらず雌性器官にのみ特異的に感染できることを確認した。
 本発明の形質転換作製方法は、2種類のアグロバクテリウム株を混合して用いてもよい。
 2種類のアグロバクテリウム株の組み合わせは、特に限定されないが、floral dip切断密閉法では、Kd系統においてはGV3301株×ATCC15834株、GV3301株×MAFF211729株、GV3301株×MAFF663001株、MAFF212033株×MAFF311303株、MAFF311303株×MAFF211729株が好ましく、変異体ghy又は変異体ghy/rebcにおいてはGV3301株×MAFF311303株、MAFF301276株×MAFF311303株、MAFF311303株×MAFF211729株、MAFF211729株×MAFF663001株が好ましい。
(対象の植物体)
 本発明の形質転換植物の作製方法及び本発明の形質転換剤を使用する対象の植物体は、特に限定されない。例えば、被子植物、裸子植物、双子葉植物、単子葉植物、ヒユ科植物、イネ科植物、アカザ属植物、キヌア(Chenopodium quinoa)、イネ、オオムギ、コムギ、ホウレンソウ、ビート、シロイヌナズナ、アマランサス、シロザ、タルウマゴヤシ等が挙げられ、被子植物が好ましく、キヌアがより好ましい。
 キヌアは、特に限定されないが、Kd系統、85系統、108系統、変異体green hypocotyl(ghy)(Imamura T, Takagi H, Miyazato A, OhkiS, Mizukoshi H, Mori M (2018)Biochemical and Biophysical ResearchCommunications 496(2):280-286)、変異体reducedepidermalbladder cells 1(rebc:全長482アミノ酸残基からなり、139から432番目まで領域にWD40ドメインを持つタンパク質(Acc.No. XP_021715187)をコードするREBC遺伝子の1139番目のG(グアニン)がA(アデニン)に変化することにより380番目のアミノ酸であるTrp(トリプトファン)がSTOPに変化している変異体)、並びに、ghyおよび変異体rebcを交配して得た変異体ghy/rebcであってもよく、変異体ghy、変異体ghy/rebcが好ましい。
(T-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミド)
 T-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミドは、T-DNA領域が除去されていれば特に限定されない。
 以下に具体例を挙げて本発明を詳細に説明するが、本発明はこれらの例に限定されない。
[植物材料]
 本実施例で用いたキヌアKd系統は京都大学、85系統および108系統はU.S. Department of Agriculture(USDA)(Independence Avenue、 Washington DC、 USA)から入手した。また、108系統由来のEMS突然変異種子(M1)を、M3世代が得られるまで生育し、その中からgreen hypocotyl(ghy)(Imamura T, Takagi H, Miyazato A, OhkiS, Mizukoshi H, Mori M (2018) Biochemicaland Biophysical ResearchCommunications 496(2):280-286)およびreduced epidermal bladder cells(rebc)を得た。さらに変異体ghyおよび変異体rebcを交配しghy/rebcを作出した(図2~図5)。
[菌株およびプラスミド]
 実験に使用した菌株は、Rhizobium radiobacter(GV3101株、MAFF301276株、MAFF212033株、MAFF311303株)、Rhizobium rhizogenes(ATCC15834株、MAFF211729株)およびRhizobium vitis(MAFF663001株)の7菌株を使用した(表1)。本実施例で新たに使用したMAFF301276株、MAFF212033株、MAFF311303株、MAFF211729株、MAFF663001株は、農業生物資源ジーンバンク(つくば、日本)より入手した日本産の野生株である。
 バイナリーベクターpBIC35BP(Mori M,Kaindo M, Okuno T, Frusawa I (1993) Federation BiochemicalSocieties336(1):171-174)はカリフラワーモザイクウイルス(Cauliflower mosaic virus:CaMV)の35Sプロモーター制御下にビアラホス耐性遺伝子(phosphinothricin N-acetyltransferase;Bar)、バイナリーベクターpCAMBIA1301はCaMV 35Sプロモーター制御下にイントロン-gusA遺伝子(β-glucuronidase;GUS )(Jefferson RA,Kavanagh TA, Bevan MW(1987) The EMBO Journal 6(13):3901-3907)およびハイグロマイシン耐性遺伝子(hygromycinphosphotransferase;HPT)、バイナリーベクターpCAMBIA-CqCYP76AD1-1は、CaMV 35Sプロモーター制御下にベタレイン色素合成関連遺伝子CqCYP76AD1-1を保有する(図6)(Imamura T, Takagi H,Miyazato A, Ohki S, Mizukoshi H, Mori M (2018) Biochemicaland BiophysicalResearch Communications 496(2):280-286)。MAFF301276株にはバイナリーベクターpCAMBIA1301およびバイナリーベクターpCAMBIA-CqCYP76AD1-1、その他の6菌株にはバイナリーベクターpCAMBIA1301をtriparental mating法(Wise AA, Liu Z,Binns AN(2006) Methods in Molecular Biology 343:43-53)により形質転換し、感染実験に使用した。
Figure JPOXMLDOC01-appb-T000001
 本実施例に用いた菌株一覧。GV3101株およびATCC15834株を除く5菌株は日本産の野生株である。(Ti)はTiプラスミド、(Ri)はRiプラスミドを保持することを示している。また、(nonpasogenic)は非病原性であることを示している。
[組織培養技術を用いた実験]
(無菌キヌア植物体の育成)
 キヌア種子(約10粒)を、1 mLの滅菌溶液(20 ml/L Plant Preservative Mixture;PPM(Plant Cell Technology、 Jefferson、 Washington DC、 USA)、20 ml/L Tween20、1 ml/L 1 M MgCl2)に入れ、プチローター(ワケンビーテック、京都、日本)を用いて6時間攪拌した(1.5 mLエッペンチューブ使用)。その後、チューブ中の滅菌溶液を除去し、同じ組成の滅菌溶液を500 μL加え、ピペットを用いて攪拌し洗浄した。同様の操作を1回行った後、クリーンベンチ内で発芽培地へ置床した(表2)。そして20℃、8時間Light/16時間Dark条件下で生育した。 
Figure JPOXMLDOC01-appb-T000002
 培地組成。*1は2,4-ジクロロフェノキシ酢酸(2,4-dichlorophenoxyacetic acid)を示す。MS培地を基本として用いた。pHは5.9に調整した。液体培地はゲルライト無添加。
(アグロバクテリウムによる癌腫形成の誘導)
 実験に用いた菌株は、100 mg/Lカナマイシンおよび100mg/Lハイグロマイシンを添加したLB固形培地に画線を引き、26℃、24時間Dark条件下で2日間培養した(表3)。増殖した菌を、白金耳を用いて100 mg/Lカナマイシンおよび100 mg/Lハイグロマイシンを添加した50 mL LB液体培地(300 mL三角フラスコ使用)へ移植し、振とう式恒温水槽BW201(ヤマト科学、東京、日本)を用いて、26℃、約24時間、約130 rpmの条件で培養した(表2)。培養後、菌培養液(OD600=約2.0)を50 mL コニカルチューブに移し、Mx-301 Highspeed Refrigerated Micro Centrifuge(トミー精工、東京、日本)を用いて遠心分離した(10分間、60,000rpm)。上清を破棄後、10 mLの滅菌水を加えてVORTEX-GENIE2(Scientific Industries、 Bohemia、 NY、 USA)を用いて再懸濁し、菌懸濁液を作成した。1.6 mLの菌懸濁液とともに無菌状態で生育した播種後3日目のキヌアをプラスチックシャーレに入れ、菌懸濁液に浸しながらキヌアの胚軸中央部をメスで切断した。切断後、感染キヌアを共存培地へ置床し、20℃、24時間Dark条件下で4日間、共存培養を行った(表2)。共存培養を行ったキヌアを、滅菌水に100 mg/L カルベニシリンを添加した洗浄液の入った300 mL ビーカーへ入れ、軽く振盪させながら洗浄した。新しい洗浄液と交換し、同様の洗浄操作を、さらに2回行った。洗浄後、キヌアに付着した洗浄液を滅菌ろ紙で除去し、癌腫誘導培地へ置床した(表2)。その後、20℃、8時間Light/16時間Dark条件下で培養した。
Figure JPOXMLDOC01-appb-T000003
 LB培地組成一覧。液体培地は、アガロース無添加。
(形質転換カルス実験)
 実験に用いた菌株は、100 mg/Lの抗生物質(バイナリーベクターpBIC35BP を保有する菌株の培養にはカナマイシンおよびビアラホス、バイナリーベクターpCAMBIA1301を保有する菌株の培養にはカナマイシンおよびハイグロマイシン)を添加したLB固形培地に画線を引き、26℃、24時間Dark条件下で2日間培養した(表3)。増殖した菌を薬さじでかき取り、50 mL 共存培養液体培地(100 mL三角フラスコ内)へ移植した(表2)。移植後、振とう式恒温水槽BW201を用いて26℃、約30分間、約120 rpmの条件で培養した。植物培養試験管に、菌培養液(OD600=約0.2)を4 mL入れ、その中で無菌キヌア切片を2分間感染させた。滅菌ろ紙を用いて、胚軸切片に付着した過剰な菌培養液を除去し、共存培養固体培地へ置床した(表2)。置床後、20℃、24時間Dark条件下で2日間培養した。共存培養を行った切片を、滅菌水に100 mg/L カルベニシリンを添加した洗浄液が約10 mL入った植物培養試験管に入れ、P1000ピペットマン(Gilson、 Manhattan、NY、 USA)で攪拌しながら洗浄した。新しい洗浄液と交換し、同様の洗浄操作を、さらに1回行った。洗浄後、切片に付着した洗浄液を滅菌ろ紙で除去し、カルス誘導選抜培地へ置床した(表2)。その後、20℃、8時間Light/16時間Dark条件下で培養し、3週間ごとに新しい培地へ移植した。(本手法は、形質転換プロトコール「植物編」に記載の大谷によるサツマイモの形質転換法を一部改変して実施した(田部井豊 (2012) 形質転換プロトコール. 化学同人, pp.71-78)。)
(GUS染色によるgusAの確認)
 GUS遺伝子の発現を確認するため、感染したキヌア実生切片(「アグロバクテリウムによる癌腫形成の誘導」)、もしくは誘導したカルス(「形質転換カルス実験」参照)を5-Bromo-4-chloro-3-indolyl-β-D-glucuronidecyclohexylamine salt(X-Gluc)染色液へ浸漬した(Jefferson RA, Kavanagh TA,Bevan MW (1987) The EMBO Journal6(13):3901-3907)(表4)。この時、組織間へ染色液が入るようにvacuum infiltrationを行った。その後、37℃、24時間Dark条件下で培養した。培養後、染色液を除去し、70%エタノールへ浸漬した。
Figure JPOXMLDOC01-appb-T000004
 X-Gluc染色液組成。*1は5-ブロモ-4-クロロ-3-インドリルβ-D-グルクロニドシクロヘキシルアンモニウム(5-Bromo-4-chloro-3-indolyl-β-D-glucuronide)、*2はN,N-ジメチルホルムアミド (N,N-dimethylformamide)、*3はフェリシアン化カリウム(potassiumferricyanide)、*4はフェロシアン化カリウム(Potassium ferrocyanide)を示す。
[floral dip法を用いた実験]
(キヌアの育生)
 種まき培土(タキイ種苗、京都、日本)へ播種し(200穴トレイを使用)、22℃、11時間Light/13時間Dark条件下の植物培養室内で生育した。
(floral dip法を用いたキヌア穂への菌接種実験)
 実験に用いた菌は、100 mg/Lカナマイシンおよび100mg/Lハイグロマイシンを添加したLB固形培地に画線を引き、26℃、24時間Dark条件下で2日間培養した(表3)。増殖した菌を、100 mg/Lカナマイシンおよび100 mg/Lハイグロマイシンを添加した50 mL LB液体培地(300 mL三角フラスコ内)へ移植し、振とう式恒温水槽BW201を用いて26℃、約24時間、約130 rpmの条件で培養した。培養後、菌培養液(OD600=約2.0)を50 mL コニカルチューブに移し、Mx-301 Highspeed Refrigerated Micro Centrifugeを用いて遠心分離した(10分間、60,000rpm)。上清を破棄後、Silwet L-77を含む5%(w/v)スクロース溶液20 mLを加え、VORTEX-GENIE2を用いて再懸濁し、菌懸濁液を作成した(実施例1に示す結果は0.02%(v/v)、実施例3に示す結果は0.04%(v/v)のSilwet L-77を使用して接種実験を行った)。菌懸濁液の接種時、使用するキヌアを、水を張った密閉容器(ミッペール(富士システムパック、東京、日本))へ入れ、P200ピペットマン(Gilson、Manhattan、 NY、 USA)を用いて穂へ菌懸濁液を滴下した。接種後、密閉容器の蓋を閉じてDark条件とし、22℃の植物培養室内で2日間放置した。その後は、22℃、11時間Light/13時間Dark条件下の植物培養室内で育生した。
(菌を接種した穂の切断および密閉処理)
 菌接種後2週間目にキヌアを胚軸中心付近で切断した。切断後、キヌアをシャーレやタッパーの中に入れ、ビニールテープで容器の隙間を塞ぎ、3日間、多湿条件下に置いた。その後、育苗培土(タキイ種苗)の入った育苗用ポリポット(6cm)に挿し、22℃、11時間Light/13時間Dark条件下で種子が収穫できるまで生育した。
(GUS発現個体の計測)
 切断・密閉処理(-)の場合、接種処理後2週目のキヌアに、前述の「GUS染色によるgusAの確認」と同じ手順でGUS染色を行った。切断・密閉処理(+)の場合、接種処理後2週目のキヌアに、切断・密閉処理(「菌を接種した穂の切断および密閉処理」参照)を行い、その後、「GUS染色によるgusAの確認」と同じ手順でGUS染色を行った。GUS染色および脱色処理後、発現が認められる個体数を計測した。「GUS発現を示す1個体」は、穂においてはGUS発現を1か所以上、雌性器官においては器官全体的にGUS発現を示す雌性器官を1つ以上有する個体とし、穂および雌性器官において、GUS染色率を計測した(図1)。雌性器官におけるGUS発現の計測は、実体顕微鏡Stemi2000-C(Carl Zeiss、 Jena、 Germany)を用いて行った。
[菌および癌腫の解析]
(癌腫誘導)
 MAFF301276株にバイナリーベクターpCAMBIA1301又はバイナリーベクターpCAMBIA-CqCYP76AD1-1を導入した形質転換株を作成した(図6)。これらの菌は、100 mg/Lカナマイシンおよび100 mg/Lハイグロマイシンを添加したLB固形培地に画線を引き、26℃、24時間暗Dark条件下で2日間培養した(表3)。増殖した菌を、100 mg/Lカナマイシンおよび100 mg/Lハイグロマイシンを添加した50 mL LB液体培地(300 mL三角フラスコ使用)へ移植し、振とう式恒温水槽BW201を用いて、26 ℃、約24時間、約130 rpmの条件で培養した。そして菌培養液(OD600=約2.0)を50 mL コニカルチューブに移し、Mx-301 Highspeed Refrigerated Micro Centrifugeを用いて遠心分離した(10分間、60,000 rpm)。上清を破棄後、10 mLの共存液体培地を加えて、VORTEX-GENIE2を用いて再懸濁し、菌懸濁液を作成した(表2)。1.6 mLの菌懸濁液とともに無菌状態で生育した播種後7日目のキヌアをプラスチックシャーレに入れ、菌懸濁液に浸しながらキヌアの胚軸中央部をメスで切断した。切断後、「アグロバクテリウムによる癌腫形成の誘導」と同様の操作を行った。 
(アグロバクテリウムMAFF301276株およびキヌアに生じた癌腫のDNA抽出)
 MAFF301276株および3.5.1の実験で誘導した癌腫より、DNeasy Plant Mini Kit(QIAGEN、 Valencia、 CA、 USA)を用いて付属のプロトコールに従い、DNAを抽出した。
(MinIONおよびサンガーシーケンスによる塩基配列の解析)
 抽出したDNAをPCRにより増幅した。この増幅断片をExoSAP-IT Express PCR Cleanup Reagents(ThermoFisher Scientific、 Waltham、 MA、 USA)を用いて付属のプロトコールに従い精製した。精製断片を鋳型DNAとし、BigDye Terminator v3.1 Cycle Sequencing Kit(ThermoFisherScientific)を用いてサンプルを調整し、96℃・1 分間、続いて96℃・10秒間、50℃・10秒間、60℃・2.5分間を35サイクルの条件でPCRを行った。シーケンス反応後、エタノールおよびホルムアルデヒドを用いてサンプルを精製し、ABI PRISM 3130xl Genetic Analyzer(AppliedBiosystems、 Foster City、 CA、 USA)を用いて塩基配列の解析を行った。さらに、同じDNAを石川県立大学の植物遺伝子機能学研究室に依頼し、MinION(Oxford Nanopore Technologies、 Oxford、 UK)による解析を行った(Lu H, Giordano F, Ning Z (2016) Genomics ProteomicsBioinformatics14(5): 265-279)。これらの解析結果とBlastおよびBlastx (https://blast.ncbi.nlm.nih.gov/Blast.cgi)を用いて、導入した遺伝子とキヌアゲノムを共に保持するリードの有無を分析した。
(PCR解析)
 5種類のプライマーを設計し(図7、表5)、BlastによってT-DNAの挿入が予想されるキヌアゲノム領域(Quinoa genomedatabase Contig: Cqu_c08939)にMAFF301276株由来のTiプラスミドのT-DNA領域が導入されていることを調べるため、サーマルサイクラーBiometra TAdvanced(Analytik Jena, Jena、 Germany)を使用し、初期の熱変性は98.0℃・2分間、続いて98.0℃・10秒、51.6℃・30秒間、72.0℃・5分間を45サイクルの条件でPCRを行った。
Figure JPOXMLDOC01-appb-T000005
 ( )内の1-5の数字は,図7のプライマー(1-5)に対応している。
(キヌアにおけるfloral dip法に適した菌の作成および感染実験)
 MAFF301276株およびMAFF311303株の特性を利用して、floral dip法に適した菌株を以下の手順で作成した。(1)MAFF301276株が保持しているTiプラスミド(pTiMAFF301276株T-DNA)からT-DNA領域を除去。(2)T-DNAを除去したTiプラスミド(pTiMAFF301276株ΔT-DNA)をMAFF311303株に導入。(3)pTiMAFF301276株ΔT-DNAを保持したMAFF311303 株(MAFF311303pTiMAFF301276ΔT-DNA)に、バイナリーベクターpCAMBIA1301を導入。
 作成した菌株を使用し、「floral dip法を用いたキヌア穂への菌接種実験」の手順でキヌアへのfloral dip実験を行った。その後、「GUS発現個体の計測」の手順でGUS染色およびGUS発現個体の計測を行った。
[floral dip切断密閉法の構築]
 floral dip法を用いて遺伝子導入を試みた。
 バイナリーベクターpCAMBIA1301が導入されたGV3101株を用いて、従来のfloral dip法で播種後30、40、45、50、55日目のKd系統の穂にGUS遺伝子の形質転換を試みた。その結果、穂におけるGUS染色は認められなかった(図8)。そこで、GV3101株の接種処理後2週目に、菌を接種したキヌアの茎を切断し、3日間の多湿密閉処理を行った。その結果、播種後40、45、50日目に接種実験を行ったキヌアの穂で、GUS発現が認められた(図9、表6)。穂の染色部位を解体すると、雌性器官でGUS染色が認められた(図10)。MAFF301276株、MAFF212033株、MAFF311303株、ATCC15834株、MAFF211729株MAFF663001株においても同様の方法でGUS遺伝子の形質転換を試みた結果、同様の結果が得られた。
 floral dip法に多湿・暗所条件(密閉)処理を加えた本手法を、「floral dip切断密閉法」とした(図11)。
Figure JPOXMLDOC01-appb-T000006
 切断・密閉処理および供試する成長ステージの異なるキヌアのGUS染色による比較
[脱分化細胞(カルス)の形質転換実験]
(Kd系統におけるアグロバクテリウム7菌株の形質転換カルス形成能力の比較)
バイナリーベクターpCAMBIA1301を持つアグロバクテリウム7菌株(GV3101株、ATCC15834株、MAFF301276株、MAFF212033株、MAFF311303株、MAFF211729株、MAFF663001株)を、Kd系統の胚軸切片に感染し、形質転換カルスの誘導を試みた。その結果、GV3101株およびMAFF301276株により誘導したカルスで、GUS発現が認められた(図12、図13)。GV3101株およびMAFF301276株の形質転換効率は、それぞれ4.4 ± 7.7%および85.6 ± 1.9%であった(平均値 ± 標準偏差)(図14、表7)。
Figure JPOXMLDOC01-appb-T000007
 アグロバクテリウム7菌株を感染したKd系統の形質転換カルス形成率。GUS染色は感染処理後6週目のカルスに実施した。各値は、キヌアの胚軸切片(n=30)を供試した3回の感染実験の平均値±標準偏差を示している。
(アグロバクテリウムGV3101株およびMAFF301276株により感染実験を行ったキヌア6系統における形質転換カルス形成能力の比較)
 キヌアは、ストレス耐性に関与するブラッダー細胞を茎頂や葉表面に形成する。ブラッダー細胞によるキヌアの形質転換への影響も考慮し、これらの組織形成能力が低下した変異体(rebc)、およびベタレイン色素合成能力とブラッダー細胞形成能力がともに低下した変異体(ghy/rebc)も形質転換効率を調査した。GV3101株をキヌアKd系統、85系統、108系統、変異体ghy、変異体rebcおよび変異体ghy/rebcの6系統に感染した場合、変異体ghy/rebc以外の5系統でカルスが形成された(図15)。その中でGUS発現が確認できた系統は、85系統、変異体rebcおよび変異体ghyであり、GUS発現カルス形成率は、それぞれ21.1 ± 6.9%、6.7 ± 3.3%および1.1 ± 1.9%であった(平均値 ± 標準偏差)(図16、図17、表8)。一方、MAFF301276株をキヌア6系統に感染した場合、すべてのキヌア系統で形質転換カルスが形成され、GV3101株を用いた感染実験と比較して、GUS発現カルスの形成率は全系統で増加した(図18-図20、表9)。 Kd系統、85系統および変異体rebcは60%以上の形質転換効率が認められ、85系統は80.0±5.8%と最も高かった(平均値 ± 標準偏差)。
Figure JPOXMLDOC01-appb-T000008
 アグロバクテリウムGV3101株を感染したキヌア6系統の形質転換カルス形成率。GUS染色は感染処理後6週目のカルスに実施した。各値は、キヌアの胚軸切片(n=30)を供試した3回の感染実験の平均値±標準偏差を示している。
Figure JPOXMLDOC01-appb-T000009
 アグロバクテリウムMAFF301276株を感染したキヌア6系統の形質転換カルス形成率。GUS染色は感染処理後6週目のカルスに実施した。各値は、キヌアの胚軸切片(n=30)を供試した3回の感染実験の平均値±標準偏差を示している。
(次世代シーケンサーおよびPCRを用いたキヌア実生癌腫組織におけるT-DNA挿入部位の解析)
 MAFF301276株によるキヌアゲノムへの遺伝子導入部位を決定するために、MAFF301276株のゲノムDNAおよびMAFF301276株により誘導された癌腫(図21)のゲノムDNAを、石川県立大学の植物遺伝子機能学研究室へ委託し、次世代シーケンサーMinIONを用いた解析を行った。癌腫より抽出したゲノムDNAを解析した結果、300万リード(約8 Gbp)の中に、バイナリーベクターpCAMBIA1301とキヌアゲノムが融合したリードが1リード存在した(図22)。ゲノム挿入領域をBlastxで解析すると、バイナリーベクターpCAMBIA1301由来のハイグロマイシン遺伝子、MAFF301276株pTiプラスミド由来の2つオーキシン合成遺伝子(iaaH、iaaM)およびサイトカイニン合成酵素遺伝子(ipt)が存在しており、2種類のT-DNAが融合した状態でゲノムに挿入されていた。また、バイナリーベクターpCAMBIA-CqCYP76AD1-1を有するMAFF301276株を感染したキヌア癌腫のゲノムDNAで、同様の解析を行った結果、バイナリーベクターpCAMBIA1301と同様に、2種類のT-DNAが融合した状態でキヌアゲノムへ挿入されていた。MAFF301276株のT-DNAとキヌアゲノムが隣接する部分に5種類のプライマーを設計し、6つのペアでPCR解析を行った結果(図7、表5)、菌とキヌアのゲノムの連結部を示すプライマーセット1、2、4および5で、遺伝子の増幅が認められた。PCRおよび次世代シーケンサーを用いた解析の結果、MAFF301276株は、キヌアゲノムに遺伝子を導入できることが明らかとなった。
[floral dip切断密閉法による形質転換キヌアの作出]
(floral dip切断密閉法におけるキヌア4系統へのアグロバクテリウム7菌株のGUS遺伝子導入能力の比較)
 雌性器官への遺伝子導入が可能であるfloral dip切断密閉法に適したキヌア系統およびアグロバクテリウム株の評価を行った。播種後50~60日目のキヌア4系統(Kd、ghy、rebc、ghy/rebc)、およびバイナリーベクターpCAMBIA1301を導入したアグロバクテリウム7菌株(GV3101、ATCC15834、MAFF301276、MAFF212033、MAFF311303、MAFF211729、MAFF663001)を種々の組み合わせでfloral dip切断密閉法を行い、遺伝子の導入をGUS染色により評価した(表10)。その結果、MAFF212033株、MAFF311303株およびMAFF211729株を用いた個体で、雌性器官においてGUS発現が認められ、特にMAFF311303株を用いた場合に、高い割合でGUS発現が認められた(図23b、図24、図25)。これらの GUS発現は、がくや葯組織でも生じていたことから、雌性器官非特異的なGUS発現であると考えられた。これまでの実験では、切断・密閉処理が、floral dip法によるキヌアへの遺伝子導入に必要であったが、MAFF15834株、MAFF301276株、MAFF311303株、MAFF663001株を用いた感染実験では、切断・密閉処理(-)で、穂におけるGUS発現が認められ、形質転換カルス形成能力が最も高かったMAFF301276株は(図14、表8)、供試したキヌア全系統の穂でGUS発現が認められた(図26)。また、ブラッダー形成が抑制されているキヌア変異体2系統は、GUS発現個体の割合が高い傾向にあった。しかし、これらの切断・密閉処理(-)条件では、雌性器官におけるGUS発現は認められなかった(図23a)。
Figure JPOXMLDOC01-appb-T000010
 floral dip切断密閉実験で用いた感染溶液一覧。太枠は実施例3で使用した菌株を示し、その他の枠には共接種実験における菌株の組合せを示している。
(floral dip切断密閉法におけるアグロバクテリウム2菌株の共接種による形質転換効率への影響)
 抗菌物質を生産するPseudomonas fluorescens LRB3W1株と、細胞壁溶解酵素を生産するSerratia marcescensstrain B2株の共接種により、糸状菌の生育抑止効果が増加したことが報告されている(Someya N, Tsuchiya K, Yoshida T, T. Noguchi M, Akuthu K, SawadaH(2007) Biocontrol Science. 12(1):1-6;吉田重信 (2009) 異種微生物間の相互作用およびその生物防除への活用の可能性. 植物防疫 63(10):619-623)。このような相互作用が、アグロバクテリウム株間に存在していれば、アグロバクテリウム2菌株の共接種により、雌性器官への遺伝子導入効率の向上が期待できる。そこで、実施例3で用いたアグロバクテリウム7菌株のうち、2菌株の菌懸濁液を、1:1で混合した21の組合せで、播種後50~60日目のKd系統および変異体ghyへの接種実験を行った(表10)。その結果、雌性器官で染色を確認した組合せは、Kd系統においては、GV3301株×ATCC15834株、GV3301株×MAFF211729株、GV3301株×MAFF663001株、MAFF212033株×MAFF311303株、MAFF311303株×MAFF211729株の5試験区であり(表11)、変異体ghyにおいては、GV3301株×MAFF311303株、MAFF301276株×MAFF311303株、MAFF311303株×MAFF211729株、MAFF211729株×MAFF663001株の4試験区であった(表12)。これらの雌性器官のGUS染色は、実施例3の結果と同様、がくや葯組織でも生じていたことから、雌性器官非特異的な発現であると考えられた。一方、切断・密閉処理(-)で、穂におけるGUS発現を確認した組合せは、Kd系統においてはGV3301株×MAFF301276株、GV3301株×MAFF663001株、ATCC15834株×MAFF211729株、MAFF301276株×MAFF211729株、MAFF301276株×MAFF663001株の5試験区であり(表11)、変異体ghyにおいては、GV3301株×MAFF301276株、ATCC15834株×MAFF301276株、ATCC15834株×MAFF211729株、MAFF301276株×MAFF212033株、MAFF301276株×MAFF311303株、MAFF301276株×MAFF211729株、MAFF301276株×MAFF663001株の7試験区であった(表12)。2菌株の共接種実験においても切断・密閉処理(-)条件における雌性器官のGUS発現は認めらなかった。
Figure JPOXMLDOC01-appb-T000011
 Kd系統へのfloral dip切断・密閉法による2菌株の共接種実験の結果。*切断・密閉処理において、-:切断・密閉処理無し、切断・密閉処理+:切断・密閉処理有りを示す。枠で示した行は雌性器官でGUS染色が認められた区を示している.計測方法は「GUS発現個体の計測」(図1)に示す。
Figure JPOXMLDOC01-appb-T000012
 変異体ghyへのfloral dip切断・密閉法による2菌株の共接種実験の結果。*切断・密閉処理において、-:切断・密閉処理無し、切断・密閉処理+:切断・密閉処理有りを示す。枠で示した行は雌性器官でGUS染色が認められた区を示している.計測方法は「GUS発現個体の計測」(図1)に示す.
[改良菌(MAFF311303pTiMAFF301276ΔT-DNA)を用いたfloral dip非切断・密閉法による形質転換キヌアの作出]
(改良菌(MAFF311303pTiMAFF301276ΔT-DNA)を用いたfloral dip非切断・密閉法によるキヌア4系統へのgusA遺伝子の導入)
 MAFF311303株は、floral dip切断密閉法により、雌性器官におけるGUS発現が、高い割合で認められた(図23b)。しかし、MAFF311303株は非病原性のため、vir遺伝子を保持しておらず、遺伝子導入能力は低いと考えられる。一方、MAFF301276株は、キヌアカルスおよびキヌアの穂に、高効率でT-DNAを導入した(図14、表8、図26)。しかしMAFF301276株は、雌性器官への遺伝子導入が認められなかった(図23)。さらに、MAFF301276株とMAFF311303株の共接種を行った場合においても、切断・密閉処理を行わない場合には、雌性器官のGUS発現が認められなかった(表11、表12)。そこで、MAFF301276株とMAFF311303株の特性を併せ持つMAFF311303pTiMAFF301276ΔT-DNAを作成した。この菌株にバイナリーベクターpCAMBIA1301を導入した後、従来のfloral dip法(切断・密閉処理無し)によりキヌア4系統(Kd、ghy、rebc、ghy/rebc)へ接種した。その結果、変異体ghyおよび変異体ghy/rebcにおいて、雌性器官特異的なGUS発現を確認した(図27~図29)。
(改良菌(MAFF311303pTiMAFF301276ΔT-DNA)を用いたfloral dip非切断・密閉法におけるアブシジン酸による形質転換効率への影響)
 アブシジン酸(abscisic acid;ABA)は、植物の全身抵抗性(SAR)の誘導に関与するサリチル酸(SA)と拮抗関係にある(Durner J, Shah J, Klessig DF (1997) Trends inPlantScience.2(7):266-274:Yasuda M, Ishikawa A,Jikumaru Y, Seki M, Umezawa T, Asami T,Maruyama-Nakashita A, Kudo T, ShinozakiK, Yoshida S, Nakashita H (2008) PlantCell 20(6): 1678-1692.)。したがって、ABAを添加することにより、SARを抑制し、キヌアのfloral dip実験における形質転換効率が増加するのではないかと考えた。バイナリーベクターpCAMBIA1301を保有するMAFF311303pTiMAFF301276ΔT-DNAの菌懸濁液に500 mMのABAを添加し、従来のfloraldip法(切断・密閉処理無し)によりキヌア4系統(Kd、ghy、rebc、ghy/rebc)へ接種した。その結果、変異体ghy/rebcは、ABA無添加の場合と比較して6倍である、60%の個体で、雌性器官特異的なGUS発現を確認した(図30、図31)。
(変異体ghyにおける再分化条件の評価)
 文献(包 金花 (2009) アグロバクテリウム法によるホウレンソウの形質転換系の確立と有用遺伝子の導入、千葉大学大学院博士論文)により報告されたホウレンソウの再分化培地組成を一部改変した培地を作成し、実験に用いた(表2)。Kd系統実生切片から誘導した非形質転換カルスを、設定した表13の条件下で培養した。再分化誘導光条件が+の区は20℃、8時間Light/16時間Dark条件のインキュベーター中で培養し、-の区は同条件のインキュベーター中で、スチール缶に入れ、遮光した状態で培養した。GA濃度が1の区は1 mg/L、2の区は2 mg/Lのジベレリンを添加した再分化培地上に非形質転換カルスを置床した。
 ベタレイン色素を合成しない変異体ghy系統で形質転換カルスの形成に成功した。そこで、変異体ghyのカルスより、再分化の誘導を試みた。オーキシン様の作用を持つ植物ホルモンとして2,4-ジクロロフェノキシ酢酸(2,4-D)、サイトカイニン様の作用を持つ植物ホルモンとしてベンジルアデニンおよびカイネチンを種々の濃度で組み合わせ、再分化を試みた。サイトカイニン様の植物ホルモンを含む培地に置床したカルスは緑色となり、ベンジルアデニンを含む培地に置床したカルスはより濃い緑色を呈した。また、2,4-Dとサイトカイニン様の植物ホルモン(ベンジルアデニン、カイネチン)の濃度を共に高めると、硬く丸みを帯びたカルスとなった。さらに0.01 mg/Lもしくは0.1 mg/Lの2,4-Dのみ、0 mg/L-0.1mg/Lの2,4-Dとカイネチン、1 mg/Lもしくは2 mg/Lのベンジルアデニンのみを含む培地では不定根が再分化した。特に、1 mg/Lカイネチンと0.01mg/L 2,4-D、1 mg/L カイネチンのみを含む培地に置床したカルスは、不定根の伸長が顕著であった。しかし、その他の器官の再分化は認められなかった。
Figure JPOXMLDOC01-appb-T000013
 カルス誘導設定条件。光条件+:20℃、8時間Light /16時間Dark条件、光条件-:20℃、8時間Light /16時間Dark条件のインキュベーター中でスチール缶に入れて遮光。菌感染処理+:感染処理(「形質転換カルス実験」参照)を実施、菌感染処理-:感染処理無実施。ビアラホス+:5 mg/Lのビアラホスを添加したカルス誘導培地を使用、ビアラホス-:ビアラホス無添加のカルス誘導培地を使用。
[floral dip切断・密閉法によるrebc変異体キヌアへの野生型REBC遺伝子の形質転換]
 形質転換に用いる植物体として、本発明者らがキヌア種子の0.2%EMS(Ethylmethanesulfonate)処理により作出した、ブラッダー細胞が著しく減少した形質を有するrebc変異体キヌア(ブラッダー形成制御に関与するREBC遺伝子(Acc.No.XP_021715187をコードする遺伝子)にc.1139G>A(p.Trp380*)の変異を有することが確認された個体)を用いた。
 rebc変異体キヌアのM3世代の種子を播種して、約2ヶ月後(開花期)の個体に、REBCプロモーター(配列番号13)を接続した野生型REBC遺伝子を(配列番号14)を挿入したバイナリーベクターpCAMBIA1301が導入された改良菌(MAFF311303pTiMAFF301276ΔT-DNA)を用いて、本発明のfloral dip切断・密閉法により、形質転換した(図34)。
 形質転換の結果、ブラッダーが回復している形質転換体を得られた(図35)。
 得られた形質転換体について、REBC遺伝子の配列決定を行い、REBC遺伝子の塩基配列が変異型であることを確認した(図36、配列番号15)。
 このことから、形質転換によるブラッダーの回復は、導入された遺伝子による可能性が高いことが考えられた。
 そこでブラッダーが回復した形質転換植物について、次世代シークエンサーを利用して形質転換体のゲノム配列を解読した。
 その結果、形質転換植物ゲノム内に、REBC遺伝子が導入されたことを確認することができた(図37)。同時に導入箇所も特定(Chr16, 75355785bp)した。
 以上の結果より、本発明のfloral dip切断・密閉法を用いた形質転換では、植物体のブラッダーを発現させる(ブラッダー発現機能を回復させる)ことができ、該植物体は、形質転換体(rebc変異相補個体)であることを確認した。
 得られた形質転換体同士を受粉(交配)させた後、該形質転換体から収穫された種子(形質転換後代)を播種し、育成した。
 その結果、後代の表現型は、ブラッダーをもつ野生型(導入遺伝子あり)と、rebc変異型(導入遺伝子なし)に分離した(図38)。
 この結果から、本発明のfloral dip切断・密閉法を用いた形質転換では、形質転換によって導入された遺伝子(例、ブラッダー発現機能遺伝子)は後代に遺伝させることができることを確認した。
[総論]
 本実施例では当初、キヌアKd系統およびアグロバクテリウム(Rhizobiumradiobacter)GV3101株を用いて、組織培養による形質転換植物の作出を試みたが、再分化系の構築および遺伝子導入に成功しなかった。
 キヌアの再分化系が未確立のため、floral dip法による形質転換実験を実施した。しかし、シロイヌナズナで汎用されているfloral dip法では(Clough SJ and Bent AF (1998)The Plant Journal 16(6):735-743)、穂のGUS発現は認められなかった(図8)。そこで、GV3101株を感染した穂に、切断・多湿密閉処理を行った。その結果、キヌアの穂でGUS発現を確認した(図9)。この結果から、切断・密閉処理により、キヌアへの遺伝子導入が可能となることが明らかとなった。さらに、雌性器官におけるGUS発現を確認した(図10)。シロイヌナズナのfloral dip法において、アグロバクテリウムは雌性生殖器官を標的とすることが報告されている(Desfeux C, Clough SJ, Bent AF (2000) Plant physiology 123(3):895-904)。したがって、floral dip切断密閉法の適用により(図11)、キヌアにおいても形質転換種子が得られる。
 Kogaらは、イネ(Oryza sativa L.)葉鞘の切断により、イネいもち病原菌Magnaporthe griseaの感染に対する抵抗性WPSR(whole plant specific resistance)が低下することを明らかにしている(Koga H, Dohi H, Nakayachi O, Mori M (2004) PhysiologicalandMolecular Plant Pathology 64(2):67-72)。この現象は、切断処理により植物体内で合成されるアブシジン酸(ABA)が関与しており(Koga H, Dohia K, Mori M (2004)Physiological and Molecular PlantPathology 65(1):3-9)、ABAは植物の全身抵抗性(SAR)を誘導するサリチル酸と拮抗的に作用する(Yasuda M, IshikawaA, Jikumaru Y, Seki M, Umezawa T, Asami T,Maruyama-Nakashita A, Kudo T,Shinozaki K, Yoshida S, Nakashita H (2008) PlantCell 20(6): 1678-1692.)。すなわち、切断処理により、サリチル酸を介した植物の抵抗性が抑制され、GV3101株による遺伝子導入が可能になったと考えられる。
 floral dip切断密閉法を行った穂のGUS発現は、播種後40~50日目のキヌアでのみ認められた(表6)。シロイヌナズナのfloral dip実験では、形質転換種子が得られるのは開花の5日以上前に感染処理を行った場合に限られ、遺伝子導入が可能な時期は限定されることが明らかとなっている(Desfeux C,Clough SJ, Bent AF (2000) Plant physiology 123(3):895-904)。これは、開花3日前に、シロイヌナズナ雌性器官の柱頭に生じるキャップ構造が、アグロバクテリウムが胚珠へアクセスすることを妨害していることによると考えられている(Smyth DR, Bowman JL, Meyerowitz EM (1990) The Plant Cell 2:755-767)。キヌアのfloral dip実験においても同様に遺伝子導入時期が限られていたことから(表6)、シロイヌナズナとキヌアにおける植物体への遺伝子導入様式は類似していると考えられる。
 形質転換カルスの形成率を指標に、キヌアの形質転換に適したキヌア系統およびアグロバクテリウム株の選抜を行った。GV3101株を用いて、Kd系統実生切片および変異体ghy実生切片への感染実験の結果、Kd系統では6.98%および変異体ghyでは6.78%のカルスでGUS発現を確認した(図32、表14)。そして、Kd系統の全ての形質転換カルスにおいてスポット状のGUS発現、変異体ghy形質転換カルスにおいて1個体でスポット状のGUS発現、3個体で2 mm2以上のGUS発現を確認した。スポット状の一過性のGUS発現は形質転換されておらず、変異体ghyにおいてのみ形質転換されていると考えられる。真菌類および細菌類への抗菌活性をもつベタレイン色素は(Polturak G, Grossman N, Vela-Corcia D, Dong Y, Nudel A, PlinerM,Levy M, Rogachev I, Aharoni A (2017) Proceedings of the National AcademyofSciences of the United States of America 114(34):9062-9067;Canadanovic-BrunetJM, Savatovic SS, Cetkovic GS (2011) Czech Journalof Food Sciences29(6):575-585)、Kd系統の形質転換において、阻害的に作用している可能性が示唆された。両系統の遺伝子発現頻度は同程度であり(表14)、ベタレインはアグロバクテリウムの植物体への接近、および遺伝子導入におそらく影響はないと考えられる。これらのことから、ベタレイン色素はキヌアゲノムへのT-DNAの組込みに影響していることが考えられる。
 キヌアの形質転換において、ベタレイン色素が阻害的に働くことが示唆された。一方で、キヌア85系統は、GV3101株およびMAFF301276株による形質転換実験で、最も高い形質転換効率を示した(図17、図20、表9、表10)。したがって、85系統は、アグロバクテリウムによる形質転換に、有用なキヌア系統であると考えられる。形質転換カルス実験に供試した85系統の胚軸(播種後5日目)は、Kd系統や108系統と同様に赤色を呈している。しかし、成熟した85系統の穂は、オレンジ色を呈する。キヌアは、系統によって合成するフェノール化合物の量が異なると報告されている(Tang Y, Li X, Zhang B, Chen PX, Liu R, Tsao R6 (2015) FoodChemistry166:380-388)。フェノール類は、一般的にストレス耐性や抗菌活性を有するが、アセトシリンゴンを含む複数のフェノール化合物は、アグロバクテリウムのvir遺伝子を誘導することが報告されている(Bhattacharya A, SoodP, Citovsky V (2010) Molecular Plant Pathology11(5):705-719)。85系統の合成するフェノール化合物の詳しい機能は未解明であるが、85系統がGV3101株およびMAFF301276株のvir遺伝子を活性化するような物質を含む可能性が考えられる。
 MAFF301276株およびMAFF311303株をキヌア実生に接種した場合に、茎頂付近で遺伝子導入が認められた(図33)。この2菌株は、遺伝的な性質による分類(genomovar)では、G1に属する。このグループに属する菌株は、植物に生じた癌腫から頻繁に分離され(PortierP, Saux ML, Mougel C, Lerondelle C, Chapulliot D, ThioulouseJ, Nesme X (2006)Applied and Environmental Microbiology 72(11):7123-7131)、広い宿主範囲を持つと予測される。特にMAFF301276株は、Kd系統の胚軸切片への感染実験において、高い形質転換効率(85.6 ± 1.1%)を示した(図14、表8)。また、キヌア6系統の胚軸切片への感染実験では、供試した全系統で形質転換カルスを形成した(図20、表10)。これらの結果は、MAFF301276株がキヌアへの強い感染能力および広域な宿主範囲を有することを示している。Jinらは、アグロバクテリウムの病原性および宿主範囲の拡大に、vir遺伝子の発現増加が関与していることを示唆している(Jin SG, Komari T, Gordon MP, Nester EW (1987) Journal ofBacteriology169(10):4417-4425)。したがって、MAFF301276株の優れた特性には、Tiプラスミド上のvir遺伝子が関与していると推測した。MAFF301276株によるキヌアゲノムへの遺伝子の導入は、次世代シーケンサーを用いた遺伝子解析およびPCR解析の結果により証明された(図22)。また、これらの解析により、MAFF301276株由来のpTiプラスミドとバイナリーべクターpCAMBIA1301の一部が、融合して組み込まれていることが明らかとなった(図22)。2つのT-DNAの融合が、菌体内で生じたのか、あるいは宿主植物への遺伝子導入の過程で生じたのかは不明である。しかし、T-DNAの融合が、MAFF301276株の優れた感染能力に関与している可能性が考えられる。
 一方、MAFF311303株は遺伝子導入に不可欠なvir遺伝子群を欠損しており非病原性に分類されている。非病原性とされるMAFF311303株が、GUS遺伝子をどのようにして植物細胞内へ導入しているかは興味深い。アグロバクテリウムの感染には、宿主植物側の作用も重要であり、植物の損傷部位から分泌されるアセトシリンゴンは、vir遺伝子の活性化に関与する(Bhattacharya A, Sood P,Citovsky V (2010) Molecular Plant Pathology11(5):705-719)。また、シロイヌナズナのVIP1タンパク質は、宿主核内へのT-DNA移行に関与することが知られている(Tzfira T, Vaidya M, Citovsky V (2001) The EMBO Journal20(13):3596-3607)。しかし、アグロバクテリウムの感染における、宿主植物側の働きは完全に解明されていない。したがって、非病原性MAFF311303株によるGUS遺伝子の導入は、植物側の新規作用により生じたと推測した。また、Kd系統胚軸切片への感染実験において、MAFF311303株は形質転換カルスを形成できなかったことから(図14、表8)、この作用は、茎頂付近の組織特異的に起こると推測した。MAFF301276株およびMAFF311303株は野生株であり、研究報告が少ない(太田光輝, 西山 幸司(1984) 花き類の根頭がんしゅ病に関する研究.病害の発生ならびに病原細菌の細菌学的性質. 日本植物病理学会報 (日植病報) 50: 197-204)。次世代シーケンサー技術の進展が著しい現在、未知のゲノム情報を、短時間かつ容易に入手できるようになった。各菌株のゲノム解析やRNA解析により、MAFF301276株の持つ優れた形質転換能力、およびMAFF311303株の遺伝子導入のメカニズムが解明され、形質転換効率の高い新規アグロバクテリウム菌株の構築に寄与できると考えている。そして、アグロバクテリウムによる遺伝子導入が困難な植物種において、強力な遺伝子導入ツールとしての利用が期待される。
 MAFF301276株による形質転換カルスの作出により、残された課題は再分化系の確立である。そこで、再分化への影響が考えられるベタレイン色素を合成しない変異体ghyを用いて再分化培地の検討を行った。その結果、Kd系統の再分化検討では認められなかった、不定根の再分化が確認できた。このことから、ベタレイン色素が根の形成に関与していると考えられる。カルス誘導の期間や、再分化培地の植物ホルモンの種類および濃度、光や温度といった培養条件、そして供試する組織などの検討により、ghyカルスの再分化を誘導できる可能性が示唆された。
 キヌア4系統およびアグロバクテリウム7菌株を用いたfloral dip切断密閉法において、MAFF301276株は、切断・密閉処理の有無に関わらず、供試したキヌア全系統の穂でGUS発現が認められた(図26)。この結果は、形質転換カルス形成実験の結果と一致する(図20、表10)。したがって、MAFF301276株は、キヌアの系統を問わず、SARを打破する強い病原性を有すると考えられる。一方で、floral dip切断密閉法による、雌性器官へのGUS遺伝子導入は認められなかった(図23)。雌性器官へのGUS発現が認められた菌株は、MAFF212033、MAFF311303およびMAFF211729であり、組織培養およびfloral dip法による遺伝子導入実験の結果から、弱毒性菌株であると考えられる(図14、図26a、表8)。これらの結果は、病原性の強さと雌性器官へのアプローチ能力に相関関係が存在しないということを示唆している。
 切断・密閉処理の有無に関わらず、ブラッダー細胞抑制変異体(rebc、ghy/rebc)の穂におけるGUS発現率が高かった(図26)。したがって、変異体rebcおよび変異体ghy/rebcはfloral dip法による遺伝子導入に有効であることが示唆された。この2つの変異体が欠損しているブラッダー細胞はキヌアの穂を覆うように存在している(図2~図5)。そのため、アグロバクテリウムの植物表面への接近に、物理的障害となっているのではないかと推測した。この推測は、GUS遺伝子や緑色蛍光タンパク質(green fluorescent protein;GFP)を使用し、アグロバクテリウムの挙動を可視化することで明らかにできるのではないかと推測した。
 組織培養およびfloral dip切断密閉法により選抜したアグロバクテリウム2菌株(MAFF301276株、MAFF311303株)を用いて、MAFF311303pTiMAFF301276ΔT-DNA株を作出した。この菌株を、floraldip法(切断・密閉処理無し)により、変異体ghyおよび変異体ghy/rebcへ接種した結果、雌性器官特異的なGUS発現が認められた(図27~図29)。この結果は、MAFF311303株が、MAFF301276株の強い病原性を獲得したことにより、SARを打破し、雌性器官への遺伝子導入が可能になったということを示唆している。すなわち、MAFF311303pTiMAFF301276ΔT-DNA株およびキヌア変異体を用いることにより、切断・密閉処理を行わない、汎用的なfloral dip法が適用でき、キヌアの形質転換種子が得られる。そして、SARを抑制するABAの適用により(Koga H, Dohia K, Mori M (2004)Physiological and Molecular PlantPathology 65(1):3-9;YasudaM, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T,Maruyama-Nakashita A, KudoT, Shinozaki K, Yoshida S, Nakashita H (2008) PlantCell 20(6): 1678-1692.)、変異体ghy/rebcで形質転換効率の増加が認められた(図30、図31)。したがって、本手法による、キヌア雌性器官の形質転換効率の向上に、ABAの使用は有効である可能性がある。種子の選抜という最終段階まで到達した。
 本実施例で構築したキヌアの新規形質転換法には、キヌア変異体および新しいアグロバクテリウム菌株の存在が重要である。しかし、キヌア85系統が合成するベタレイン色素や、MAFF301276株およびMAFF311303株のキヌアへの優れた形質転換能力の解析を進めることにより、汎用的なキヌア形質転換法の確立が期待できる。そして、キヌアの形質転換法の確立により、キヌア研究が一層進展し、新しい特性を持つキヌアの作出が期待できる。例えば、キヌアはサポニンという植物毒を種子に含み、塩地で栽培したキヌアはサポニン含有量が高くなる場合がある(山本紀夫(2014)中央アンデス農耕文化論―とくに高地部を中心として―. 国立民族学博物館調査報告117)。加えて、脱粒性を有するため、大量生産を目指した機械化が困難である(藤倉雄司,本江昭夫,山本紀夫 (2009) 植物のドメスティケーション:キヌアは栽培植物か? ―アンデス産雑穀の栽培化に関する一試論―. 国立民族学博物館調査報告 84:225-244)。そこで、これらの形質を欠損させることにより、キヌアの優れた特性を食料危機の改善策として十分に発揮できる。本実施例の成果により遺伝子レベルのキヌア研究の進展に貢献できる。
 加えて、本実施例で構築したキヌアの新規形質転換法によって導入された遺伝子は後代に遺伝させることができることを確認した。すなわち、本実施例で構築したキヌアの新規形質転換法により、目的遺伝子が導入された種子(目的遺伝子の機能が発現する種子)を得ることができる。
Figure JPOXMLDOC01-appb-T000014
 GV3101株を用いたKd系統およびghyへの感染実験結果。
 本発明により、キヌアの形質転換法を提供することが可能になった。

Claims (18)

  1.  以下の工程を含む形質転換植物、該植物の種子又は該植物のカルスの作製方法:
     (1-1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムを対象の植物体に接触させることによりアグロバクテリウムを接種する工程、
     (1-2)植物体を切断する工程、及び
     (1-3)目的遺伝子が導入された部位を含む切断した植物体を多湿・暗条件下にして、目的遺伝子が導入された植物体を得る工程、
     又は、
     (2-1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムを対象の植物体に接触させることによりアグロバクテリウムを接種する工程、
     (2-2)植物体を切断する工程、
     (2-3)目的遺伝子が導入された部位を含む切断した植物体を多湿・暗条件下にする工程、及び
     (2-4)種子を収穫できるまで生育し、目的遺伝子が導入された種子を得る工程、
     又は、
     (3-1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムを対象の植物体に接触させることによりアグロバクテリウムを接種する工程、
     (3-2)接種した植物体を多湿・暗条件下にする工程、
     (3-3)植物体を切断する工程、
     (3-4)目的遺伝子が導入された部位を含む切断した植物体を多湿・暗条件下にする工程、及び
     (3-5)該植物体からカルスを作製する工程。
  2.  前記アグロバクテリウムが、MAFF301276株又はMAFF311303株である、請求項1に記載の方法。
  3.  前記アグロバクテリウムが、さらにT-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミドを形質転換されたアグロバクテリウムである、請求項1又は2に記載の方法。
  4.  前記植物体がキヌアである、請求項1~3のいずれか1に記載の方法。
  5.  前記植物体がキヌア変異体ghy又はキヌア変異体ghy/rebcである、請求項1~4のいずれか1に記載の方法。
  6.  さらに工程(1-1)若しくは工程(2-1)の前に、工程(1-1)若しくは工程(2-1)と同時に、又は、工程(1-1)及び工程(1-2)の間若しくは(2-1)及び工程(2-2)の間に、アブシジン酸を対象の植物体に接触させる工程を含む、請求項1~5のいずれか1に記載の方法。
  7.  T-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミド及び植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムMAFF311303株を含む形質転換剤。
  8.  アグロバクテリウムMAFF311303株を含む雌性器官特異的形質転換剤。
  9.  アブシジン酸を含むアグロバクテリウムを使用した植物用形質転換補助剤。
  10.  アグロバクテリウムMAFF301276株を含むキヌア用形質転換剤。
  11.  以下の工程を含む形質転換植物の作製方法:
     (1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクター及びT-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミドが形質転換されたアグロバクテリウムMAFF311303株を対象の植物体に接触させることによりアグロバクテリウムを接種する工程。
  12.  以下の工程を含む形質転換植物の作製方法:
     (1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムを対象の植物体に接触させることによりアグロバクテリウムを接種する工程、及び
     (2)工程(1)の前に、工程(1)と同時に、又は工程(1)の後に、アブシジン酸を対象の植物体に接触させる工程。
  13.  以下の工程を含む形質転換植物の作製方法:
     (1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクター及びT-DNA領域を除去したアグロバクテリウムMAFF301276株由来のTiプラスミドが形質転換されたアグロバクテリウムMAFF311303株を対象の植物体に接触させることによりアグロバクテリウムを接種する工程、及び
     (2)工程(1)の前に、工程(1)と同時に、又は工程(1)の後に、アブシジン酸を対象の植物体に接触させる工程。
  14.  前記アグロバクテリウムが、MAFF301276株又はMAFF311303株である、請求項12に記載の方法。
  15.  以下の工程を含む形質転換植物の種子の作製方法:
     (1)植物体内で目的遺伝子を発現誘導可能なプロモーター制御下に目的遺伝子を担持した発現ベクターが形質転換されたアグロバクテリウムを対象の植物体に接触させることによりアグロバクテリウムを接種する工程、及び
     (2)工程(1)の前に、工程(1)と同時に、又は工程(1)の後に、アブシジン酸を対象の植物体に接触させる工程、及び
     (3)種子を収穫できるまで生育し、目的遺伝子が導入された種子を得る工程。
  16.  前記アグロバクテリウムが、MAFF301276株又はMAFF311303株である、請求項15に記載の方法。
  17.  前記植物体がキヌアである、請求項11~16のいずれか1に記載の方法。
  18.  前記植物体がキヌア変異体ghy又はキヌア変異体ghy/rebcである、請求項11~17のいずれか1に記載の方法。
PCT/JP2020/012253 2019-03-21 2020-03-19 形質転換植物の作製方法及び形質転換剤 WO2020189756A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080022876.XA CN113939187A (zh) 2019-03-21 2020-03-19 一种转化植物的制备方法及转化剂
JP2020542455A JP6876877B2 (ja) 2019-03-21 2020-03-19 形質転換植物の作製方法及び形質転換剤
US17/440,239 US20220090103A1 (en) 2019-03-21 2020-03-19 Method for producing transformed plant and transformation agent
EP20773366.8A EP3959967A4 (en) 2019-03-21 2020-03-19 Method for producing transformed plant and transformation agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-053945 2019-03-21
JP2019053945 2019-03-21

Publications (1)

Publication Number Publication Date
WO2020189756A1 true WO2020189756A1 (ja) 2020-09-24

Family

ID=72520215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012253 WO2020189756A1 (ja) 2019-03-21 2020-03-19 形質転換植物の作製方法及び形質転換剤

Country Status (5)

Country Link
US (1) US20220090103A1 (ja)
EP (1) EP3959967A4 (ja)
JP (1) JP6876877B2 (ja)
CN (1) CN113939187A (ja)
WO (1) WO2020189756A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272682A (ja) * 1990-03-20 1991-12-04 Q P Corp ゴマ毛状根の培養方法
JP2007300903A (ja) * 2006-05-15 2007-11-22 Hiroshima Univ 根頭がんしゅ病菌の増殖を阻害する細菌含有組成物およびその利用
JP2010161989A (ja) * 2009-01-16 2010-07-29 Bridgestone Corp ラテックス産生植物の形質転換細胞の作成方法、形質転換植物、及び形質転換植物の作成方法
JP2014003976A (ja) * 2012-05-31 2014-01-16 National Agriculture & Food Research Organization 植物成長阻害ホルモンを用いた植物形質転換方法
JP2016111926A (ja) * 2013-03-29 2016-06-23 日本たばこ産業株式会社 植物の形質転換方法に使用するためのアグロバクテリウム細菌
JP2019053945A (ja) 2017-09-19 2019-04-04 株式会社東芝 活物質、電極、二次電池、電池パック、及び車両

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100575494C (zh) * 2007-01-22 2009-12-30 大连理工大学 一种用于植物直接基因转化的组合物
US9738902B2 (en) * 2013-03-14 2017-08-22 The Regents Of The University Of California Modified PYR/PYL receptors activated by ligands
WO2019124297A1 (ja) * 2017-12-18 2019-06-27 株式会社アクトリー ブラッダー細胞形成制御作用剤、並びに、該作用剤を導入した植物体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272682A (ja) * 1990-03-20 1991-12-04 Q P Corp ゴマ毛状根の培養方法
JP2007300903A (ja) * 2006-05-15 2007-11-22 Hiroshima Univ 根頭がんしゅ病菌の増殖を阻害する細菌含有組成物およびその利用
JP2010161989A (ja) * 2009-01-16 2010-07-29 Bridgestone Corp ラテックス産生植物の形質転換細胞の作成方法、形質転換植物、及び形質転換植物の作成方法
JP2014003976A (ja) * 2012-05-31 2014-01-16 National Agriculture & Food Research Organization 植物成長阻害ホルモンを用いた植物形質転換方法
JP2016111926A (ja) * 2013-03-29 2016-06-23 日本たばこ産業株式会社 植物の形質転換方法に使用するためのアグロバクテリウム細菌
JP2019053945A (ja) 2017-09-19 2019-04-04 株式会社東芝 活物質、電極、二次電池、電池パック、及び車両

Non-Patent Citations (46)

* Cited by examiner, † Cited by third party
Title
BHATTACHARYA ASOOD PCITOVSKY V, MOLECULAR PLANT PATHOLOGY, vol. 11, no. 5, 2010, pages 705 - 719
BIOIMPACTS, vol. 7, no. 4, 18 September 2017 (2017-09-18), pages 247 - 254
BLOCK MDHERRERA-ESTRELLA LMONTAGU MVSCHELL JZAMBRYSKIL P: "Expression of foreign genes in regenerated plantsand in their progeny", THE EMBO JOURNAL, vol. 3, no. 8, 1984, pages 1681 - 1689, XP008045372
CANADANOVIC-BRUNET JMSAVATOVIC SSCETKOVIC GS, CZECH JOURNAL OF FOOD SCIENCES, vol. 29, no. 6, 2011, pages 575 - 585
CLOUGH SJBENT AF, THE PLANT JOURNAL, vol. 16, no. 6, 1998, pages 735 - 743
DESFEUX CCLOUGH SJBENT AF, PLANT PHYSIOLOGY, vol. 123, no. 3, 2000, pages 895 - 904
DMITROVIC SMITIC NZDRAVKOVIC-KORAC SVINTERHALTER BNINKOVIC SANDCULAFIC L.J: "Hairy roots formation inrecalcitrant-to-transform plant Chenopodium rubrum", BIOLOGIA PLANTARUM, vol. 54, no. 3, 2010, pages 566 - 570, XP019814012
DURNER JSHAH JKLESSIG DF, TRENDS IN PLANT SCIENCE, vol. 2, no. 7, 1997, pages 266 - 274
EZURA HIROSHI: "Factors affecting the Agrobacterium-mediated transformation of melon (Cucumis melo L)", BREEDING SCIENCE, vol. 46, no. Suppl. 1, 1996, pages 263, XP009531385, ISSN: 1344-7610 *
FLORES SOLIS J.IMLEJNEK PSTUDENA KPROCHAZKA S: "Application of sonication-assisted Agrobacterium-mediated transformation", CHENOPODIUM RUBRUM L. PLANT, SOIL AND ENVIRONMENT, vol. 49, 2003, pages 255 - 260
FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (2013) STATE OF THE ART REPORT ON QUINOA AROUND THE WORLD IN, 2013
HINOJOSA LGONZALEZ JABARRIOS-MASIAS FHFUENTES FMURPHY KM: "Quinoa Abiotic Stress Responses: A Review", PLANTS, vol. 7, no. 4, 2018
HORSCH RBFRALEY RTROGERS SGSANDERS PRLLOYD AHOFFMANN N: "Inheritance of functional foreign genes in plants", SCIENCE, vol. 223, no. 4635, 1984, pages 496 - 498, XP008028850, DOI: 10.1126/science.223.4635.496
IMAMURA TTAKAGI HMIYAZATO AOHKI SMIZUKOSHI HMORI M, BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 496, no. 2, 2018, pages 280 - 286
IMAMURA, T. ET AL.: "Isolation and characterization of the betalain biosynthesis gene involved in hypocotyl pigmentation of the allotetraploid Chenopodium quinoa", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 496, 2018, pages 280 - 286, XP085567456 *
JARVIS DEHO YSLIGHTFOOT DJSCHMOCKEL SMLI BBORM TJOHYANAGI HMINETA KMICHELL CTSABER N: "Thegenome of Chenopodium quinoa", NATURE, vol. 542, no. 7641, 2017, pages 307 - 312
JEFFERSON RAKAVANAGH TABEVAN MW, EMBO JOURNAL, vol. 6, no. 13, 1987, pages 3901 - 3907
JEFFERSON RAKAVANAGH TABEVAN MW, THE EMBO JOURNAL, vol. 6, no. 13, 1987, pages 3901 - 3907
JIN SGKOMARI TGORDON MPNESTER EW, JOURNAL OF BACTERIOLOGY, vol. 169, no. 10, 1987, pages 4417 - 4425
JIN SGKOMARI TGORDON MPNESTER EW: "Genes responsible for the super-virulence phenotype of Agrobacterium tumefaciens A281", JOURNAL OF BACTERIOLOGY, vol. 169, no. 10, 1987, pages 4417 - 4425
JINHUA BAO: "Chiba University Graduate School doctoral dissertation", 2009, article "Establishment of Transformation System for Spinach based on Agrobacterium Method and Introduction of Useful Gene"
KOGA HDOHI HNAKAYACHI 0MORI M, PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, vol. 65, no. 1, 2004, pages 67 - 72
KOMARI T: "Transformation of cultured cells of Chenopodiumquinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542", PLANT CELL REPORTS, vol. 9, 1990, pages 303 - 306
KOMARI, T.: "Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542", PLANT CELL REPORTS, vol. 9, 1990, pages 303 - 306, XP000918219, DOI: 10.1007/BF00232856 *
KOUKI OTAKOUSHI NISHIYAMA: "Studies on the Crown Gall Diseases of Flower Crops. Occurrence of the Disease and the Characterization of the Causal Bacterium", THE JOURNAL OF GENERAL PLANT PATHOLOGY (ANN. PHYTOPATH. SOC. JAPAN, vol. 50, 1984, pages 197 - 204
LU HGIORDANO FNING Z, GENOMICS PROTEOMICS BIOINFORMATICS, vol. 14, no. 5, 2016, pages 265 - 279
MITIC NDMITROVIC SDJORDJEVIC MZDRAVKOVIC-KORAC SNIKOLIC, RASPOR MDJORDJEVIC TMAKSIMOVIC VZIVKOVIC SKRSTIC-MILOSEVIC DSTANISIC M: "Use of Chenopodium murale L. transgenic hairy root invitro culture system as a new tool for allelopathic assays", JOURNAL OF PLANT PHYSIOLOGY, vol. 169, 2012, pages 1203 - 1211
MORI MKAINDO MOKUNO TFRUSAWA I, FEDERATION BIOCHEMICAL SOCIETIES, vol. 336, no. 1, 1993, pages 171 - 174
MORTON MJLAWLIA MAL-TAMIMI NSAADE SPAILLES YNEGRAO STESTER M: "Salt stress under the scalpel-dissecting the genetics of salt tolerance", THE PLANT JOURNAL, vol. 97, no. 1, 2019, pages 148 - 163
MOTA CSANTOS MMAURO RSAMMAN NMATOS ASTORRES DCASTANHEIRA I: "Protein content and amino acids profile of pseudocereals", FOOD CHEMISTRY, vol. 193, 2016, pages 55 - 61, XP029286000, DOI: 10.1016/j.foodchem.2014.11.043
POLTURAK GGROSSMAN NVELA-CORCIA DDONG YNUDEL APLINER MLEVY MROGACHEV IAHARONI A, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 114, no. 34, 2017, pages 9062 - 9067
PORTIER P, SAUX ML, MOUGEL C, LERONDELLE C, CHAPULLIOT D, THIOULOUSE J, AND NESME X, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 72, no. 11, 2006, pages 7123 - 7131
SAWADA , HIROYUKI: "Simultaneous identification of phytopathogenic Rhizobium species (former Agrobacterium species) using multiplex colony- direct PCR", JAPANESE JOURNAL OF PHYTOPATHOLOGY, vol. 81, 2015, pages 332 - 340, XP055741871 *
SAWADA, HIROYUKI; YAMASAKI, F.; TAKEYA, M.; AOKI, T. : "Changing situation relevant to the taxonomy of phytopathogenic Rhizobium species and their re-identification in NIAS Genebank", MICROBIOLOGY AND CULTURE COLLECTIONS, vol. 30, no. 1, 30 November 2013 (2013-11-30), JP , pages 13 - 27, XP009531383, ISSN: 1342-4041 *
See also references of EP3959967A4
SHIGENOBU YOSHIDA: "Interactions among Different Microbial Species and Their Possible Roles on Biological Control", PLANT PROTECTION, vol. 63, no. 10, 2009, pages 619 - 623
SMYTH DRBOWMAN JLMEYEROWITZ EM, THE PLANT CELL, vol. 2, 1990, pages 755 - 767
SOMEYA NTSUCHIYA KYOSHIDA TT. NOGUCHI MAKUTHU KSAWADA H, BIOCONTROL SCIENCE, vol. 12, no. 1, 2007, pages 1 - 6
TANG YLI XZHANG BCHEN PXLIU RTSAO R6, FOOD CHEMISTRY, vol. 166, 2015, pages 380 - 388
TZFIRA TVAIDYA MCITOVSKY V, THE EMBO JOURNAL, vol. 20, no. 13, 2001, pages 3596 - 3607
VEGA-GALVEZ AMIRANDA MVERGARA JURIBE EPUENTE LMARTINEZ EA: "Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review", JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, vol. 90, 2010, pages 2541 - 2547
WISE AALIU ZBINNS AN, METHODS IN MOLECULAR BIOLOGY, vol. 343, 2006, pages 43 - 53
YASUDA M, ISHIKAWA A, JIKUMARU Y, SEKI M, UMEZAWA T, ASAMI T, MARUYAMA-NAKASHITA A, KUDO T, SHINOZAKI K, YOSHIDA S, NAKASHITA H, PLANT CELL, vol. 20, no. 6, 2008, pages 1678 - 1692
YUJI FUJIKURAAKIO HONGONORIO YAMAMOTO: "Domestication of Plants: Is quinoa a cultivated plant? -An Essay on Cultivation of Minor Grain from the Andes", SENRI ETHNOLOGICAL REPORTS, vol. 84, 2009, pages 225 - 244
YUTAKA TABEI: "Transformation Protocols", 2012, KAGAKU-DOJIN PUBLISHING COMPANY, INC., pages: 71 - 78
ZUPAN JRZAMBRYSKI P: "Transfer of T-DNA from Agrobacterium to the plant cell", PLANT PHYSIOL, vol. 107, no. 4, 1995, pages 1041 - 1047, XP002024328, DOI: 10.1104/pp.107.4.1041

Also Published As

Publication number Publication date
CN113939187A (zh) 2022-01-14
US20220090103A1 (en) 2022-03-24
JP6876877B2 (ja) 2021-05-26
EP3959967A4 (en) 2023-06-28
JPWO2020189756A1 (ja) 2021-04-01
EP3959967A1 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
JP6990653B2 (ja) 迅速な植物形質転換のための方法および組成物
JP5329412B2 (ja) 選択を含まない植物形質転換
US20080229447A1 (en) Transformation of immature soybean seeds through organogenesis
JP2008511294A (ja) 非病害性アグロバクテリウム株、Riプラスミド、およびそれらに基づく形質転換方法
CN102599052A (zh) 一种植物原位再生的方法及其在遗传转化中的应用
JP2023544016A (ja) 単子葉外植片の迅速な形質転換
CN108624596B (zh) 一种调控豆科根瘤生长的基因GmSPX5及其应用
CN115058449A (zh) 一种利用CsWRKY43干扰以提高柑橘溃疡病抗性的方法
US20090023212A1 (en) Method for transforming soybean (Glycine max)
Gherbi et al. Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata
CN101831459B (zh) 一种获得转基因棉花的方法
CN106916818B (zh) 一种干旱诱导型启动子、其制备方法、重组表达载体及转化子
CN115960189B (zh) 一种文冠果蛋白及其编码基因在提高植物花瓣中花青素的含量中的应用
CN116732047A (zh) 基因OsMADS5在调控植物根系伸长中的应用
JP6876877B2 (ja) 形質転換植物の作製方法及び形質転換剤
Solís-Ramos et al. Endogenous GUS-like activity in Capsicum chinense Jacq
CN107164373B (zh) 大豆低温诱导人工合成启动子sp5及应用
CN112430604A (zh) 基因OsPIN10b的基因工程应用
US7202083B1 (en) Plant promoters and plant terminators
Burza et al. Cucumber (Cucumis sativus L.)
KR102103189B1 (ko) 염분 저항성을 가지는 형질전환 식물체의 조기 검정 방법
CN113416735B (zh) 一种烟草生殖细胞特异高表达基因及应用
CN116515857B (zh) 一种仁用杏PaPIP1-2基因及其在提高植物抗寒性中的应用
JP2000023675A (ja) 広範な品種に適応可能なアグロバクテリウムによるトウモロコシの形質転換方法
WO2016094029A1 (en) Methods of embryogenic tissue preparation for sugar cane transformation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020542455

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020773366

Country of ref document: EP

Effective date: 20211021