WO2020189697A1 - 樹脂粒子、導電性粒子、導電材料及び接続構造体 - Google Patents

樹脂粒子、導電性粒子、導電材料及び接続構造体 Download PDF

Info

Publication number
WO2020189697A1
WO2020189697A1 PCT/JP2020/011870 JP2020011870W WO2020189697A1 WO 2020189697 A1 WO2020189697 A1 WO 2020189697A1 JP 2020011870 W JP2020011870 W JP 2020011870W WO 2020189697 A1 WO2020189697 A1 WO 2020189697A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
particles
resin particles
resin
conductive particles
Prior art date
Application number
PCT/JP2020/011870
Other languages
English (en)
French (fr)
Inventor
弘幸 森田
脇屋 武司
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020538868A priority Critical patent/JP7411553B2/ja
Priority to CN202080022618.1A priority patent/CN113614142A/zh
Priority to US17/440,023 priority patent/US11884782B2/en
Priority to KR1020217029565A priority patent/KR20210144695A/ko
Publication of WO2020189697A1 publication Critical patent/WO2020189697A1/ja
Priority to JP2023217633A priority patent/JP2024038074A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel

Definitions

  • the present invention relates to resin particles having good compression characteristics.
  • the present invention also relates to conductive particles, conductive materials and connecting structures using the above resin particles.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in the binder resin.
  • the anisotropic conductive material is used to electrically connect electrodes of various connection target members such as a flexible printed circuit board (FPC), a glass substrate, a glass epoxy substrate, and a semiconductor chip to obtain a connection structure.
  • connection target members such as a flexible printed circuit board (FPC), a glass substrate, a glass epoxy substrate, and a semiconductor chip to obtain a connection structure.
  • FPC flexible printed circuit board
  • conductive particles conductive particles having a base material particles and a conductive layer arranged on the surface of the base material particles may be used. Resin particles may be used as the base particles.
  • Patent Document 1 discloses resin particles that are present on the surface of conductive particles and that insulate the conductive particles.
  • the resin particles include a non-crosslinkable (meth) acrylic acid alkyl ester (A) having an alkyl group having 4 to 18 carbon atoms and a cross-linkable monomer (B) having two or more polymerizable groups in one molecule.
  • A non-crosslinkable acrylic acid alkyl ester
  • B cross-linkable monomer having two or more polymerizable groups in one molecule.
  • the content of the crosslinkable monomer (B) is 7% by mass or more in the polymerizable component.
  • Patent Document 2 discloses a method for producing softened particles of a thermosetting resin.
  • a monomer compound containing at least one bifunctional monomer and an aldehyde compound are reacted under basic conditions under suspension of colloidal silica having an average particle size of 5 nm to 70 nm, and are soluble in water. It includes a step of forming an aqueous solution of the initial condensate and a step of adding an acid catalyst to the aqueous solution to precipitate spherical thermocured resin softened particles.
  • the above bifunctional monomer is a monomer selected from 6-substituted guanamines and ureas.
  • a gap material is added to the adhesive in order to make the thickness of the adhesive layer formed by the adhesive uniform and to control the gap between the two members to be connected (adhesive).
  • Resin particles may be used as the gap material (spacer).
  • thermocompression bonding is performed at a high pressure and a high temperature when the flexible substrate is mounted, the flexible substrate may be distorted and display unevenness may occur. Therefore, when mounting a flexible substrate in the FOG method, it is desirable to perform thermocompression bonding at a relatively low pressure. In addition to the FOG method, it may be required to relatively reduce the pressure and temperature during thermocompression bonding.
  • connection resistance may increase.
  • the conductive particles do not sufficiently contact the electrode (adhesive body), the adhesion between the resin particles and the conductive portion arranged on the surface of the resin particles is low, and the conductive portion peels off.
  • a connection portion for electrically connecting the electrodes is formed by using conventional conductive particles, when an impact such as dropping is applied to the connection portion, the conductive portion arranged on the surface of the resin particles. The connection resistance may increase due to peeling of the particles.
  • the conventional resin particles when used as the gap material (spacer), the connecting target member or the like (adhesive body) may be damaged. Further, the conventional resin particles may not sufficiently contact the member to be connected (adhesive body), and a sufficient gap control effect may not be obtained.
  • An object of the present invention is that when the electrodes can be uniformly contacted with the adherend and the electrodes are electrically connected by using conductive particles having a conductive portion formed on the surface, the adhesion with the conductive portion and the adhesion with the conductive portion can be obtained. It is an object of the present invention to provide resin particles capable of effectively increasing impact resistance and effectively lowering connection resistance. Another object of the present invention is to provide conductive particles, a conductive material, and a connecting structure using the above resin particles.
  • an exothermic peak is observed when the resin particles are heated from 100 ° C. to 350 ° C. at a heating rate of 5 ° C./min and the differential scanning calorimetry is performed. , Resin particles are provided.
  • the calorific value at the exothermic peak having the largest peak area among the exothermic peaks is 2000 mJ / mg or more and 25000 mJ / mg or less.
  • the resin particles according to the present invention when the resin particles are heated from 100 ° C. to 350 ° C. in an air atmosphere at a heating rate of 5 ° C./min and differential scanning calorimetry is performed, 2000 mJ / No endothermic peak with an endothermic amount of mg or more is observed.
  • the compressive modulus when the resin particles are compressed by 10% and the compressive modulus when the resin particles heated at 200 ° C. and 10 minutes are compressed by 10%.
  • the absolute value of the difference is 180 N / mm 2 or more.
  • the resin particles are used as spacers, adhesives for electronic components, used to obtain conductive particles having conductive parts, or , Used as a material for laminated molding.
  • the resin particles are used as a spacer, or a conductive portion is formed on the surface of the resin particles in order to obtain conductive particles having the conductive portion. Used.
  • a conductive particle including the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles is provided.
  • the absolute value of the difference from the elastic modulus is 180 N / mm 2 or more.
  • the conductive particles further include an insulating substance disposed on the outer surface of the conductive portion.
  • the conductive particles have protrusions on the outer surface of the conductive portion.
  • a conductive material containing conductive particles and a binder resin wherein the conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member and the above. It is provided with a connecting portion connecting the second connection target member, and the connecting portion is formed of conductive particles or a conductive material containing the conductive particles and a binder resin.
  • the conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles, and the first electrode and the second electrode are electrically formed by the conductive particles.
  • a connected, connected structure is provided.
  • the resin particles according to the present invention a heat generation peak is observed when the resin particles are heated from 100 ° C. to 350 ° C. in an air atmosphere at a heating rate of 5 ° C./min and differential scanning calorimetry is performed. Since the resin particles according to the present invention have the above-mentioned structure, they can be uniformly contacted with the adherend, and the conductive particles having a conductive portion formed on the surface are used to electrically connect the electrodes. When connected, the adhesion to the conductive portion and the impact resistance can be effectively enhanced, and the connection resistance can be effectively reduced.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing conductive particles according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the conductive particles according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing an example of an electronic component device using the resin particles according to the present invention.
  • FIG. 6 is an enlarged cross-sectional view showing a joint portion in the electronic component device shown in FIG.
  • the resin particles according to the present invention have the above-mentioned structure, they can be uniformly contacted with the adherend, and the conductive particles having a conductive portion formed on the surface are used to electrically connect the electrodes. When connected, the adhesion to the conductive portion and the impact resistance can be effectively enhanced, and the connection resistance can be effectively reduced.
  • the resin particles according to the present invention can be thermoset by heating. Since the resin particles (resin particles before thermosetting) according to the present invention are not completely thermoset, they are easily deformed at a relatively low pressure and temperature. Therefore, when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface of the resin particles, the conductive particles are conductive particles even if the pressure and temperature at the time of thermal bonding are relatively low. Can be sufficiently contacted with the electrode, and further, scratches can be prevented from being formed on the electrode.
  • the resin particles are compressed during thermocompression bonding. Can be heat-cured with. Since the conductive particles in the connecting portion maintain the compressed shape, the peeling of the conductive portion can be effectively prevented, and the adhesion between the resin particles and the conductive portion can be effectively enhanced. .. Further, even if an impact such as dropping is applied to the connecting portion, the peeling of the conductive portion is effectively prevented, and the connection resistance between the electrodes can be effectively reduced.
  • the conductive particles using the resin particles according to the present invention can effectively enhance the impact resistance.
  • connection resistance between the electrodes can be effectively reduced, and the connection reliability between the electrodes can be effectively enhanced. For example, even if the connection structure in which the electrodes are electrically connected by the conductive particles using the resin particles according to the present invention is left for a long time under high temperature and high humidity conditions, the connection resistance is unlikely to increase further. , Continuity failure is less likely to occur.
  • the resin particles according to the present invention are used as a gap material (spacer), it is possible to effectively suppress damage to the members to be connected and the like. Further, it can be sufficiently brought into contact with the member to be connected and the like, and a sufficient gap control effect can be obtained.
  • a heat generation peak is observed when the resin particles are heated from 100 ° C. to 350 ° C. in an air atmosphere at a heating rate of 5 ° C./min and differential scanning calorimetry is performed.
  • the exothermic peak means a peak in which the calorific value is 1000 mJ / mg or more.
  • differential scanning calorimetry it is preferable to heat 10 mg of the resin particles in an air atmosphere from 100 ° C. to 350 ° C. at a heating rate of 5 ° C./min.
  • the adherend can be brought into more uniform contact. Further, when the resin particles satisfy the above-mentioned preferable aspects, when the electrodes are electrically connected to each other by using the conductive particles having the conductive portion formed on the surface, the adhesion and the impact resistance to the conductive portion are satisfied. Can be further effectively increased, and further, the connection resistance can be lowered even more effectively.
  • the curing reaction of a thermosetting resin or the like is an exothermic reaction, which is observed as an exothermic peak in differential scanning calorimetry.
  • the resin particles are preferably thermoset by heating.
  • the calorific value at the exothermic peak having the largest peak area is preferably 2000 mJ / mg or more, more preferably 10000 mJ / mg or more, and preferably 25000 mJ / mg or less. , More preferably 22000 mJ / mg or less.
  • the calorific value at the exothermic peak having the maximum peak area is equal to or more than the above lower limit and below the above upper limit
  • the electrodes are electrically connected using conductive particles having a conductive portion formed on the surface.
  • the adhesion to the conductive portion and the impact resistance can be further effectively enhanced, and the connection resistance can be further effectively reduced.
  • the resin particles have an endothermic amount of 2000 mJ / mg or more when the differential scanning calorimetry is performed by heating the resin particles in an air atmosphere from 100 ° C. to 350 ° C. at a heating rate of 5 ° C./min. It is preferable that no peak is observed. In the present specification, the endothermic peak means a peak having an endothermic amount of 2000 mJ / mg or more. In the differential scanning calorimetry, it is preferable to heat 10 mg of the resin particles in an air atmosphere from 100 ° C. to 350 ° C. at a heating rate of 5 ° C./min. When the resin particles satisfy the above-mentioned preferable aspects, they can be brought into more uniform contact with the adherend.
  • the resin particles satisfy the above-mentioned preferable aspects, when the electrodes are electrically connected to each other by using the conductive particles having the conductive portion formed on the surface, the adhesion and the impact resistance to the conductive portion are satisfied. Can be further effectively increased, and further, the connection resistance can be lowered even more effectively.
  • melting of a resin or the like is an endothermic reaction, and is observed as an endothermic peak in differential scanning calorimetry. It is preferable that the resin particles do not melt the resin or the like.
  • differential scanning calorimetry a differential scanning calorimetry device (“DSC6220” manufactured by Hitachi High-Tech Science Corporation) or the like is used.
  • the compressive elastic modulus when the resin particles are compressed by 10% is defined as a 10% K value (A).
  • the compressive elastic modulus when the resin particles heated under the conditions of 200 ° C. and 10 minutes is compressed by 10% is defined as a 10% K value (B).
  • Absolute value of the difference between the 10% K value (A) and the 10% K value (B) is preferably 180 N / mm 2 or more, more preferably 500 N / mm 2 or more, more preferably 800 N / mm 2 or more , Especially preferably 1000 N / mm 2 or more.
  • the absolute value of the difference between the 10% K value (A) and the 10% K value (B) is preferably 10000 N / mm 2 or less, more preferably 7500 N / mm 2 or less, and further preferably 5000 N / mm 2 or less. Is.
  • the resin particles are brought into contact with the adherend more uniformly. Can be done.
  • conductive particles having a conductive portion formed on the surface are used.
  • the absolute value of the difference between the 10% K value (A) and the 10% K value (B) is particularly preferably 200 N / mm 2 or more and 3000 N / mm 2 or less.
  • the absolute value of the difference between the 10% K value (A) and the 10% K value (B) satisfies the above preferable range, the damage to the adherend by the resin particles is more effectively suppressed. It is possible to bring the resin particles into contact with the adherend more uniformly.
  • the 10% K value (A) is preferably 500 N / mm 2 or more, more preferably 800 N / mm 2 or more, preferably 6000 N / mm 2 or less, more preferably less 4000 N / mm 2.
  • the 10% K value (A) is at least the above lower limit and at least the above upper limit, damage to the adherend by the resin particles can be more effectively suppressed, and the resin particles can be more effectively suppressed on the adherend. The contact can be made more evenly.
  • the 10% K value (A) is equal to or higher than the lower limit and lower than the upper limit, the connection resistance is increased when the electrodes are electrically connected using conductive particles having a conductive portion formed on the surface. It can be lowered more effectively, and the connection reliability can be further improved.
  • the compressive elastic modulus (10% K value (A) and 10% K value (B)) of the resin particles can be measured as follows.
  • resin particles (resin particles (A)) Further, resin particles (resin particles (B)) heated at 200 ° C. for 10 minutes are prepared.
  • the load value (N) and compressive displacement (mm) at this time are measured. From the obtained measured values, the compressive elastic modulus (10% K value (A) or 10% K value (B)) can be calculated by the following formula.
  • the microcompression tester for example, "Fisherscope H-100" manufactured by Fisher Co., Ltd.
  • the compressive elastic modulus (10% K value (A) or 10% K value (B)) of the resin particles (A) or (B) is 50 resin particles (A) or (B) arbitrarily selected. ), It is preferable to calculate by arithmetically averaging the compressive elastic modulus (10% K value (A) or 10% K value (B)).
  • 10% K value (A) or 10% K value (B) (N / mm 2 ) (3/2 1/2 ) ⁇ F ⁇ S -3/2 ⁇ R- 1 / 2
  • F Load value (N) when the resin particles (A) or (B) are compressed and deformed by 10%.
  • S Compressive displacement (mm) when the resin particles (A) or (B) are compressed and deformed by 10%.
  • R Radius (mm) of resin particles (A) or (B)
  • the compressive elastic modulus universally and quantitatively represents the hardness of the resin particles. By using the compressive elastic modulus, the hardness of the resin particles can be expressed quantitatively and uniquely.
  • the compression recovery rate of the resin particles is preferably 5% or more, more preferably 8% or more, preferably 60% or less, and more preferably 40% or less.
  • the compression recovery rate is equal to or higher than the lower limit and lower than the upper limit, damage to the adherend by the resin particles can be suppressed more effectively, and the resin particles come into contact with the adherend more uniformly. Can be made to.
  • the compression recovery rate is equal to or higher than the lower limit and lower than the upper limit, the connection resistance can be made even more effective when the electrodes are electrically connected using conductive particles having a conductive portion formed on the surface. It can be lowered and the connection reliability can be further improved.
  • the compression recovery rate of the resin particles can be measured as follows.
  • Compression recovery rate (%) [L2 / L1] x 100
  • L1 Compressive displacement from the origin load value to the origin load value when a load is applied
  • L2 Unload displacement from the origin load value to the origin load value when the load is released
  • the use of the above resin particles is not particularly limited.
  • the resin particles can be suitably used for various purposes.
  • the resin particles are preferably used for spacers, adhesives for electronic components, for obtaining conductive particles having conductive portions, or for laminated modeling materials. It is more preferable that the resin particles are used as spacers or are used to obtain conductive particles having the conductive portions by forming conductive portions on the surface. In the conductive particles, the conductive portion is formed on the surface of the resin particles.
  • the resin particles are preferably used to obtain conductive particles having the conductive portion by forming a conductive portion on the surface.
  • the conductive particles are preferably used to electrically connect the electrodes.
  • the conductive particles may be used as a gap material (spacer).
  • the resin particles are preferably used as a gap material (spacer) or as a gap material (spacer).
  • the gap material (spacer) include a spacer for a liquid crystal display element, a spacer for gap control, a spacer for stress relaxation, and a spacer for a dimming laminate.
  • the gap control spacer is used for gap control of laminated chips and electronic component devices for ensuring standoff height and flatness, and for optical components for ensuring the smoothness of the glass surface and the thickness of the adhesive layer. It can be used for gap control and the like.
  • the stress relaxation spacer can be used for stress relaxation of a sensor chip or the like, stress relaxation of a connecting portion connecting two members to be connected, and the like. Examples of the sensor chip include a semiconductor sensor chip and the like.
  • the resin particles are preferably used as a spacer for a liquid crystal display element or as a spacer for a liquid crystal display element, and preferably used as a peripheral sealant for a liquid crystal display element.
  • the resin particles preferably function as spacers. Since the resin particles have good compressive deformation characteristics and good compressive fracture characteristics, the resin particles can be arranged between substrates using the resin particles as spacers, or a conductive portion can be formed on the surface of the resin particles to be used as conductive particles for an electrode. Spacers or conductive particles are efficiently placed between the substrates or between the electrodes when the spaces are electrically connected. Further, since the resin particles can suppress damage to the liquid crystal display element member and the like, poor connection in the liquid crystal display element using the liquid crystal display element spacer and the connection structure using the conductive particles. And display defects are less likely to occur.
  • the resin particles are preferably used as an adhesive for electronic parts or as an adhesive for electronic parts.
  • the adhesive for electronic components include an adhesive for liquid crystal panels, an adhesive for laminated substrates, an adhesive for substrate circuits, and an adhesive for camera modules.
  • the laminated substrate include a semiconductor sensor chip and the like.
  • the resin particles used as the adhesive for electronic parts or the resin particles used as the adhesive for electronic parts are preferably adhesive resin particles having adhesive performance. When the resin particles are adhesive resin particles, the resin particles and the member to be laminated can be satisfactorily adhered to each other when the resin particles are cured by pressure bonding.
  • the resin particles can be used alone as an adhesive for electronic parts.
  • the resin particles can be used as an adhesive for electronic components without using other adhesive components.
  • the resin particles When the resin particles are used as an adhesive for electronic parts, they may not be used alone as an adhesive for electronic parts, or may be used together with other adhesive components. Further, when the resin particles are adhesive resin particles having adhesive performance, they can also be used as a spacer and an adhesive for electronic parts.
  • the above resin particles are used as a spacer and an adhesive for electronic parts, the physical properties required for the spacer such as gap controllability and stress relaxation property are as compared with the case where the spacer and the adhesive are made of different materials. It is possible to achieve a higher degree of compatibility with adhesiveness.
  • the resin particles are preferably used as a material for laminated modeling.
  • a three-dimensional model can be formed by three-dimensionally laminating the resin particles to form a specific shape and then curing the resin particles.
  • the resin particles are also suitably used as an inorganic filler, a toner additive, a shock absorber or a vibration absorber.
  • the resin particles can be used as an alternative to rubber, springs, and the like.
  • (meth) acrylate means one or both of “acrylate” and “methacrylate”
  • (meth) acrylic means one or both of “acrylic” and “methacrylic”. means.
  • the material of the resin particles is not particularly limited.
  • the material of the resin particles is preferably an organic material.
  • the resin particles may be particles having a porous structure or particles having a solid structure.
  • the porous structure means a structure having a plurality of pores.
  • the solid structure means a structure having no plurality of pores.
  • organic material examples include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonate, polyamide, phenolformaldehyde resin and melamine.
  • polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene
  • acrylic resins such as polymethylmethacrylate and polymethylacrylate
  • polycarbonate polyamide, phenolformaldehyde resin and melamine.
  • Formaldehyde resin benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, urethane resin, isocyanate resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal , Polyethylene, polyamideimide, polyether ether ketone, polyethersulfone, divinylbenzene polymer, divinylbenzene copolymer and the like.
  • the divinylbenzene copolymer and the like include a divinylbenzene-styrene copolymer and a divinylbenzene- (meth) acrylic acid ester copolymer.
  • the material of the resin particles is an epoxy resin, a melamine resin, a benzoguanamine resin, a urethane resin, an isocyanate resin, a polyimide resin, a polyamide resin, a polyamideimide resin, a phenol resin, or a polymerizable monomer having an ethylenically unsaturated group. It is preferably a seed or a polymer obtained by polymerizing two or more kinds.
  • the material of the resin particles is one or more polymerized epoxy resin, melamine resin, benzoguanamine resin, polyimide resin, polyamide resin, polyamideimide resin, phenol resin, or polymerizable monomer having an ethylenically unsaturated group.
  • the material of the resin particles is particularly preferably an epoxy resin.
  • the compression characteristics of the resin particles can be more easily controlled in a suitable range.
  • the epoxy resin is preferably a polyfunctional epoxy resin.
  • the epoxy resin include bifunctional epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, trifunctional epoxy resins such as triazine type epoxy resin and glycidylamine type epoxy resin, and tetrakisphenol ethane type epoxy. Examples thereof include resins and tetrafunctional epoxy resins such as glycidylamine type epoxy resins. Only one type of the epoxy resin may be used, or two or more types may be used in combination.
  • the curing agent heat-cures the epoxy resin.
  • the curing agent is not particularly limited. Examples of the curing agent include thiol curing agents such as imidazole curing agents, amine curing agents, phenol curing agents, and polythiol curing agents, and acid anhydride curing agents. Only one type of the thermosetting agent may be used, or two or more types may be used in combination. From the viewpoint of easily controlling the compression characteristics of the resin particles within a suitable range, the curing agent is preferably an amine curing agent.
  • the above imidazole curing agent is not particularly limited.
  • Examples of the imidazole curing agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimerite, and 2,4-diamino-6.
  • the above thiol curing agent is not particularly limited.
  • examples of the thiol curing agent include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate.
  • the amine curing agent is not particularly limited.
  • examples of the amine curing agent include ethylenediamine, hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5] undecane and bis.
  • the amine curing agent is preferably a diamine compound.
  • the diamine compound is preferably ethylenediamine, hexamethylenediamine, octamethylenediamine, metaphenylenediamine, diaminodiphenylsulfone, phenylenediamine, or 2,2-bis [4- (4-aminophenoxy) phenyl] propane.
  • the amine curing agent is ethylenediamine, diaminodiphenylmethane, phenylenediamine, or 2,2-bis [4- (4-aminophenoxy) phenyl]. More preferably, it is propane.
  • the resin particles according to the invention preferably have a chemical structure derived from a polyfunctional epoxy resin and a chemical structure derived from a diamine compound. Further, for the same reason, the resin particles according to the present invention are preferably particles obtained by reacting a polyfunctional epoxy resin with a diamine compound. By heating the polyfunctional epoxy resin and the diamine compound in a solvent, the epoxy group and the amino group react sequentially, and the precipitate insolubilized in the solvent is protected by the dispersion stabilizer to form particles. proceed.
  • the particles are in a state where the epoxy group and the amino group in the unreacted portion remain in the particle and on the particle surface. Can be transformed into.
  • the heat of reaction is observed as an exothermic peak.
  • the above-mentioned acid anhydride curing agent is not particularly limited, and any acid anhydride used as a curing agent for a thermosetting compound such as an epoxy compound can be widely used.
  • the acid anhydride curing agent include phthalic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and methylbutenyltetrahydrophthalic anhydride.
  • Bifunctional such as phthalic acid derivative anhydride, maleic anhydride, nadic acid anhydride, methylnadic anhydride, glutaric anhydride, succinic anhydride, glycerinbis trimellitic anhydride monoacetate, and ethylene glycolbis trimellitic anhydride.
  • Acid anhydride curing agent trifunctional acid anhydride curing agent such as trimellitic anhydride, and pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, methylcyclohexenetetracarboxylic acid anhydride, polyazelineic acid anhydride, etc. Examples thereof include an acid anhydride curing agent having four or more functions.
  • the polymerizable monomer having an ethylenically unsaturated group is a non-crosslinkable monomer.
  • examples thereof include crosslinkable monomers.
  • non-crosslinkable monomer examples include styrene monomers such as styrene, ⁇ -methylstyrene and chlorostyrene; vinyl ether compounds such as methylvinyl ether, ethylvinyl ether and propylvinyl ether; vinyl acetate, vinyl butyrate, etc.
  • Acid vinyl ester compounds such as vinyl laurate and vinyl stearate; halogen-containing monomers such as vinyl chloride and vinyl fluoride; as (meth) acrylic compounds, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) ) Acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and other alkyl ( Meta) acrylate compound; oxygen atom-containing (meth) acrylate compound such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate; (meth)
  • Nitrile-containing monomer Halogen-containing (meth) acrylate compound such as trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate; olefins such as diisobutylene, isobutylene, linearene, ethylene and propylene as ⁇ -olefin compounds Compound;
  • Examples of the conjugated diene compound include isoprene and butadiene.
  • crosslinkable monomer examples include vinyl monomers such as divinylbenzene, 1,4-dibinyloxybutane, and divinylsulfone as vinyl compounds; and tetramethylolmethanetetra (meth) acrylate as (meth) acrylic compounds.
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group.
  • the above-mentioned polymerization method is not particularly limited, and examples thereof include known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, polycondensation polymerization), addition condensation, living polymerization, and living radical polymerization. Further, as another polymerization method, suspension polymerization in the presence of a radical polymerization initiator can be mentioned.
  • the resin particles may be core-shell particles including a core and a shell arranged on the surface of the core.
  • the shell preferably has a chemical structure derived from a polyfunctional epoxy resin and a chemical structure derived from a diamine compound. Further, for the same reason, the shell is preferably a shell obtained by reacting a polyfunctional epoxy resin with a diamine compound.
  • the material of the core the same material as the preferable material of the resin particles can be used.
  • the core may have a chemical structure derived from a polyfunctional epoxy resin and a chemical structure derived from a diamine compound, and is particles obtained by reacting the polyfunctional epoxy resin with a diamine compound. May be good.
  • the particle size of the resin particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 100 ⁇ m or less, and more preferably 80 ⁇ m or less.
  • the resin particles can be used more preferably depending on the use of the conductive particles and the spacer.
  • the particle size of the resin particles is preferably 1 ⁇ m or more and 80 ⁇ m or less.
  • the average particle size of the resin particles is preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the particle diameter of the resin particles means the diameter when the resin particles are spherical, and when the resin particles have a shape other than the spherical shape, it is assumed that the resin particles have a true sphere corresponding to the volume. Means diameter.
  • the particle size of the resin particles is preferably an average particle size, and more preferably a number average particle size.
  • the particle size of the resin particles can be measured by any particle size distribution measuring device. For example, measurement can be performed using a particle size distribution measuring device or the like that uses principles such as laser light scattering, changes in electrical resistance, and image analysis after imaging.
  • the particle size of about 100,000 resin particles is measured using a particle size distribution measuring device (“Multisizer 4” manufactured by Beckman Coulter), and the average value is calculated. There is a way to do it.
  • the coefficient of variation (CV value) of the particle size of the resin particles is preferably 10% or less, more preferably 7% or less, still more preferably 5% or less.
  • the resin particles can be more preferably used depending on the use of the conductive particles and the spacer.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of the particle size of the resin particles Dn: Average value of the particle size of the resin particles
  • the aspect ratio of the resin particles is preferably 2 or less, more preferably 1.5 or less, still more preferably 1.2 or less.
  • the aspect ratio indicates a major axis / minor axis.
  • observe 10 arbitrary resin particles with an electron microscope or an optical microscope set the maximum diameter and the minimum diameter as the major axis and the minor axis, respectively, and calculate the average value of the major axis / minor axis of each resin particle. It is preferable to obtain by.
  • the conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • the conductive particle 1 shown in FIG. 1 has a resin particle 11 and a conductive portion 2 arranged on the surface of the resin particle 11.
  • the conductive portion 2 covers the surface of the resin particles 11.
  • the conductive particles 1 are coated particles in which the surface of the resin particles 11 is coated with the conductive portion 2.
  • FIG. 2 is a cross-sectional view showing the conductive particles according to the second embodiment of the present invention.
  • the conductive particles 21 shown in FIG. 2 have resin particles 11 and conductive portions 22 arranged on the surface of the resin particles 11. In the conductive particles 21 shown in FIG. 2, only the conductive portion 22 is different from the conductive particles 1 shown in FIG.
  • the conductive portion 22 has a first conductive portion 22A which is an inner layer and a second conductive portion 22B which is an outer layer.
  • the first conductive portion 22A is arranged on the surface of the resin particles 11.
  • the second conductive portion 22B is arranged on the surface of the first conductive portion 22A.
  • FIG. 3 is a cross-sectional view showing the conductive particles according to the third embodiment of the present invention.
  • the conductive particle 31 shown in FIG. 3 has a resin particle 11, a conductive portion 32, a plurality of core substances 33, and a plurality of insulating substances 34.
  • the conductive portion 32 is arranged on the surface of the resin particles 11.
  • the conductive particles 31 have a plurality of protrusions 31a on the conductive surface.
  • the conductive portion 32 has a plurality of protrusions 32a on the outer surface.
  • the conductive particles may have protrusions on the conductive surface of the conductive particles, or may have protrusions on the outer surface of the conductive portion.
  • a plurality of core substances 33 are arranged on the surface of the resin particles 11.
  • the plurality of core substances 33 are embedded in the conductive portion 32.
  • the core material 33 is arranged inside the protrusions 31a and 32a.
  • the conductive portion 32 covers a plurality of core substances 33.
  • the outer surface of the conductive portion 32 is raised by the plurality of core substances 33, and protrusions 31a and 32a are formed.
  • the conductive particles 31 have an insulating substance 34 arranged on the outer surface of the conductive portion 32. At least a part of the outer surface of the conductive portion 32 is covered with the insulating substance 34.
  • the insulating substance 34 is formed of a material having an insulating property and is an insulating particle. As described above, the conductive particles may have an insulating substance arranged on the outer surface of the conductive portion.
  • the metal for forming the conductive portion is not particularly limited.
  • the metals include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, silicon, tungsten and molybdenum. And these alloys and the like.
  • the metal include tin-doped indium oxide (ITO) and solder. From the viewpoint of further enhancing the connection reliability between the electrodes, the metal is preferably a tin-containing alloy, nickel, palladium, copper or gold, and preferably nickel or palladium.
  • the conductive portion may be formed by one layer, such as the conductive particles 1, 31. Like the conductive particles 21, the conductive portion may be formed of a plurality of layers. That is, the conductive portion may have a laminated structure of two or more layers.
  • the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer or an alloy layer containing tin and silver, and is preferably a gold layer. Is more preferable.
  • the outermost layer is these preferable conductive portions, the connection reliability between the electrodes can be further enhanced. Further, when the outermost layer is a gold layer, the corrosion resistance can be further improved.
  • the method of forming the conductive portion on the surface of the resin particles is not particularly limited.
  • Examples of the method for forming the conductive portion include a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating a metal powder or a paste containing a metal powder and a binder on the surface of resin particles. Can be mentioned. From the viewpoint of forming the conductive portion more easily, the method by electroless plating is preferable.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
  • the compressive elastic modulus when the conductive particles are compressed by 10% is defined as a 10% K value (C).
  • the compressive elastic modulus when the conductive particles heated at 200 ° C. and 10 minutes are compressed by 10% is defined as a 10% K value (D).
  • Absolute value of the difference between the 10% K value (C) above 10% K value (D) is preferably 180 N / mm 2 or more, more preferably 500 N / mm 2 or more, more preferably 800 N / mm 2 or more , Especially preferably 1000 N / mm 2 or more.
  • the absolute value of the difference between the 10% K value (C) and the 10% K value (D) is preferably 10000 N / mm 2 or less, more preferably 7500 N / mm 2 or less, and further preferably 5000 N / mm 2 or less. Is.
  • the absolute value of the difference between the 10% K value (C) and the 10% K value (D) is equal to or higher than the lower limit and lower than the upper limit, the conductive particles are brought into contact with the adherend more uniformly. be able to.
  • the absolute value of the difference between the 10% K value (C) and the 10% K value (D) is equal to or higher than the lower limit and lower than the upper limit, the conductive portion of the conductive portion is formed when the electrodes are electrically connected.
  • Adhesion and impact resistance can be further effectively enhanced, and connection resistance can be further effectively reduced.
  • the absolute value of the difference between the 10% K value (C) and the 10% K value (D) is particularly preferably 200 N / mm 2 or more and 3000 N / mm 2 or less.
  • the absolute value of the difference between the 10% K value (C) and the 10% K value (D) satisfies the above preferable range, the damage to the adherend by the conductive particles is more effectively suppressed.
  • the conductive particles can be brought into contact with the adherend more uniformly.
  • the connection resistance is further effective when the electrodes are electrically connected. It can be lowered and the connection reliability can be further improved.
  • the 10% K value (C) is preferably 3000N / mm 2 or more, more preferably 4000 N / mm 2 or more, preferably 11000N / mm 2 or less, more preferably less 9000 N / mm 2.
  • the 10% K value (C) is equal to or higher than the lower limit and lower than the upper limit, damage to the adherend by the conductive particles can be suppressed more effectively, and the conductive particles can be attached to the adherend. Can be contacted even more uniformly.
  • the 10% K value (C) is equal to or higher than the lower limit and lower than the upper limit, the connection resistance can be further effectively lowered when the electrodes are electrically connected, and the connection reliability can be improved. It can be enhanced even more effectively.
  • the compressive elastic modulus (10% K value (C) and 10% K value (D)) of the conductive particles can be measured as follows.
  • conductive particles conductive particles (C)).
  • conductive particles (conductive particles (D)) heated at 200 ° C. for 10 minutes are prepared.
  • One conductive particle (C) on a cylindrical (diamond 50 ⁇ m, diamond) smoothing indenter end face using a microcompression tester under the conditions of 25 ° C., compression rate 0.3 mN / sec, and maximum test load 20 mN. ) Or (D) is compressed.
  • the load value (N) and compressive displacement (mm) at this time are measured. From the obtained measured values, the compressive elastic modulus (10% K value (C) or 10% K value (D)) can be calculated by the following formula.
  • the compressive elastic modulus (10% K value (C) or 10% K value (D)) of the conductive particles (C) or (D) is 50 arbitrarily selected conductive particles (C) or It is preferable to calculate by arithmetically averaging the compressive elastic modulus (10% K value (C) or 10% K value (D)) of (D).
  • 10% K value (C) or 10% K value (D) (N / mm 2 ) (3/2 1/2 ) ⁇ F ⁇ S -3/2 ⁇ R- 1 / 2
  • F Load value (N) when the conductive particles (C) or (D) are compressed and deformed by 10%.
  • S Compressive displacement (mm) when the conductive particles (C) or (D) are compressed and deformed by 10%.
  • R Radius (mm) of conductive particles (C) or (D)
  • the compressive elastic modulus universally and quantitatively represents the hardness of conductive particles. By using the compressive elastic modulus, the hardness of the conductive particles can be expressed quantitatively and uniquely.
  • the compression recovery rate of the conductive particles is preferably 5% or more, more preferably 8% or more, preferably 60% or less, and more preferably 40% or less.
  • the compression recovery rate is at least the above lower limit and at least the above upper limit, damage to the adherend by the conductive particles can be suppressed more effectively, and the conductive particles are more uniformly formed on the adherend. Can be contacted with.
  • the compression recovery rate is equal to or higher than the lower limit and lower than the upper limit, the connection resistance can be further effectively lowered when the electrodes are electrically connected, and the connection reliability can be further improved. Can be enhanced to.
  • the compression recovery rate of the conductive particles can be measured as follows.
  • conductive particles on the sample table.
  • 30 conductive particles were formed in the center direction of the conductive particles at 25 ° C. on the smoothing indenter end face of a cylinder (diameter 50 ⁇ m, made of diamond) using a microcompression tester.
  • a load (reversal load value) is applied until% compression deformation. After that, the load is removed to the origin load value (0.40 mN).
  • the load-compressive displacement during this period can be measured, and the compression recovery rate can be calculated from the following formula.
  • the load speed is 0.33 mN / sec.
  • As the microcompression tester for example, "Fisherscope H-100" manufactured by Fisher Co., Ltd. is used.
  • Compression recovery rate (%) [L2 / L1] x 100
  • L1 Compressive displacement from the origin load value to the origin load value when a load is applied
  • L2 Unload displacement from the origin load value to the origin load value when the load is released
  • the particle size of the conductive particles is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 450 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less. Especially preferably, it is 20 ⁇ m or less.
  • the particle diameter of the conductive particles is equal to or greater than the above lower limit and equal to or less than the above upper limit, the contact area between the conductive particles and the electrodes becomes sufficiently large when the electrodes are connected using the conductive particles, and the conductivity is increased. It becomes difficult to form agglomerated conductive particles when forming the portion.
  • the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portion does not easily peel off from the surface of the resin particles.
  • the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be suitably used for the use of the conductive material.
  • the particle diameter of the conductive particles means the diameter when the conductive particles are spherical, and when the conductive particles have a shape other than spherical, it is assumed to be a true sphere corresponding to the volume. Means the diameter of.
  • the particle size of the conductive particles is preferably an average particle size, and more preferably a number average particle size.
  • the particle size of the conductive particles can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating an average value, or performing a laser diffraction type particle size distribution measurement. In observation with an electron microscope or an optical microscope, the particle size of each conductive particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 conductive particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the laser diffraction type particle size distribution measurement, the particle size of each conductive particle is determined as the particle size in the equivalent sphere diameter.
  • the particle size of the conductive particles is preferably calculated by laser diffraction type particle size distribution measurement.
  • the thickness of the conductive portion is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, still more preferably 0.3 ⁇ m or less.
  • the thickness of the conductive portion is the thickness of the entire conductive portion when the conductive portion has multiple layers. When the thickness of the conductive portion is at least the above lower limit and at least the above upper limit, sufficient conductivity is obtained, and the conductive particles are not too hard, and the conductive particles are sufficiently deformed at the time of connection between the electrodes. To do.
  • the thickness of the conductive portion of the outermost layer is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably. Is 0.1 ⁇ m or less.
  • the thickness of the conductive portion of the outermost layer is equal to or higher than the lower limit and lower than the upper limit, the coating by the conductive portion of the outermost layer becomes uniform, the corrosion resistance becomes sufficiently high, and the connection reliability between the electrodes is improved. It can be further enhanced. Further, when the outermost layer is a gold layer, the thinner the gold layer, the lower the cost.
  • the thickness of the conductive portion can be measured by observing the cross section of the conductive particles, for example, using a transmission electron microscope (TEM). Regarding the thickness of the conductive portion, it is preferable to calculate the average value of the thickness of any of the conductive portions at five points as the thickness of the conductive portion of one conductive particle, and the average value of the thickness of the entire conductive portion is one. It is more preferable to calculate as the thickness of the conductive portion of the conductive particles. The thickness of the conductive portion is preferably obtained by calculating the average value of the thickness of the conductive portion of each conductive particle for 20 arbitrary conductive particles.
  • TEM transmission electron microscope
  • the conductive particles preferably have protrusions on the outer surface of the conductive portion.
  • the conductive particles preferably have protrusions on the conductive surface. It is preferable that the number of the protrusions is plurality.
  • An oxide film is often formed on the surface of the conductive portion and the surface of the electrode connected by the conductive particles. When conductive particles having protrusions are used, the oxide film is effectively removed by the protrusions by arranging the conductive particles between the electrodes and crimping them. Therefore, the electrodes and the conductive portions of the conductive particles can be brought into contact with each other more reliably, and the connection resistance between the electrodes can be further reduced.
  • the conductive particles have an insulating substance on the surface, or when the conductive particles are dispersed in the binder resin and used as a conductive material, the protrusions of the conductive particles cause the conductive particles to be separated from the electrode.
  • the insulating substance or binder resin between them can be eliminated more effectively. Therefore, the connection reliability between the electrodes can be further improved.
  • a method of forming protrusions on the surface of the conductive particles As a method of forming protrusions on the surface of the conductive particles, a method of forming a conductive portion by electroless plating after adhering a core material to the surface of the resin particles, and a method of forming a conductive portion on the surface of the resin particles by electroless plating. Examples thereof include a method in which a core material is attached after forming the portion, and then a conductive portion is formed by electroless plating. Further, it is not necessary to use the core substance in order to form the protrusions.
  • Examples of the method for forming the protrusions include the following methods.
  • metal nuclei are generated by electroless plating, metal nuclei are attached to the surface of resin particles or conductive parts, and the conductive parts are further formed by electroless plating. how to.
  • the conductive particles further include an insulating substance arranged on the outer surface of the conductive portion.
  • an insulating substance arranged on the outer surface of the conductive portion.
  • the insulating substance is preferably an insulating resin layer or insulating particles, and more preferably insulating particles.
  • the insulating particles are preferably insulating resin particles.
  • the outer surface of the conductive portion and the surface of the insulating particles may each be coated with a compound having a reactive functional group.
  • the outer surface of the conductive portion and the surface of the insulating particles may not be directly chemically bonded, or may be indirectly chemically bonded by a compound having a reactive functional group.
  • the carboxyl group may be chemically bonded to a functional group on the surface of the insulating particles via a polymer electrolyte such as polyethyleneimine.
  • the conductive material includes the above-mentioned conductive particles and a binder resin.
  • the conductive particles are preferably dispersed in the binder resin and used as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection of electrodes.
  • the conductive material is preferably a circuit connection material.
  • the binder resin is not particularly limited.
  • the binder resin a known insulating resin is used.
  • the binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component.
  • the curable component include a photocurable component and a thermosetting component.
  • the photocurable component preferably contains a photocurable compound and a photopolymerization initiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. Only one kind of the binder resin may be used, or two or more kinds may be used in combination.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, styrene resin and the like.
  • the thermoplastic resin include polyolefin resins, ethylene-vinyl acetate copolymers, and polyamide resins.
  • Examples of the curable resin include epoxy resin, urethane resin, polyimide resin, unsaturated polyester resin and the like.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated additive of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene.
  • -Hydrogen additives for styrene block copolymers and the like can be mentioned.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, a bulking agent, a softening agent, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a photostabilizer. It may contain various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant.
  • the method for dispersing the conductive particles in the binder resin is not particularly limited as a conventionally known dispersion method can be used.
  • Examples of the method for dispersing the conductive particles in the binder resin include the following methods. A method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, added to the binder resin, and kneaded and dispersed by a planetary mixer or the like. A method in which the binder resin is diluted with water or an organic solvent, the conductive particles are added, and the binder resin is kneaded and dispersed with a planetary mixer or the like.
  • the viscosity ( ⁇ 25) of the conductive material at 25 ° C. is preferably 30 Pa ⁇ s or more, more preferably 50 Pa ⁇ s or more, preferably 400 Pa ⁇ s or less, and more preferably 300 Pa ⁇ s or less.
  • the viscosity ( ⁇ 25) can be appropriately adjusted depending on the type and amount of the compounding components.
  • the viscosity ( ⁇ 25) can be measured under the conditions of 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
  • the conductive material can be used as a conductive paste, a conductive film, or the like.
  • the conductive material according to the present invention is a conductive film, a film containing no conductive particles may be laminated on the conductive film containing the conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and particularly preferably 70% by weight or more. Is 99.99% by weight or less, more preferably 99.9% by weight or less.
  • the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connecting target member connected by the conductive material is further improved. ..
  • the content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. % Or less, still more preferably 40% by weight or less, still more preferably 20% by weight or less, and particularly preferably 10% by weight or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the connection reliability between the electrodes is further effective. Can be enhanced to.
  • connection structure can be obtained by connecting the members to be connected using the above-mentioned conductive particles or a conductive material containing the above-mentioned conductive particles and a binder resin.
  • connection structure includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the second connection target member. It is provided with a connecting portion that connects the member to be connected.
  • the connection portion is formed of conductive particles or is formed of a conductive material containing the conductive particles and a binder resin.
  • the conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles.
  • the first electrode and the second electrode are electrically connected by the conductive particles.
  • the connecting portion itself is a conductive particle. That is, the first connection target member and the second connection target member are connected by the conductive particles.
  • the conductive material used to obtain the connection structure is preferably an anisotropic conductive material.
  • FIG. 4 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention.
  • connection structure 41 shown in FIG. 4 is a connection connecting the first connection target member 42, the second connection target member 43, the first connection target member 42, and the second connection target member 43.
  • a unit 44 is provided.
  • the connecting portion 44 is formed of a conductive material containing the conductive particles 1 and the binder resin.
  • the conductive particles 1 are shown schematically. Instead of the conductive particles 1, other conductive particles 21 and 31 may be used.
  • the first connection target member 42 has a plurality of first electrodes 42a on the surface (upper surface).
  • the second connection target member 43 has a plurality of second electrodes 43a on the surface (lower surface).
  • the first electrode 42a and the second electrode 43a are electrically connected by one or more conductive particles 1. Therefore, the first and second connection target members 42 and 43 are electrically connected by the conductive particles 1.
  • connection structure is not particularly limited.
  • a method for manufacturing a connection structure a method in which the conductive material is arranged between a first connection target member and a second connection target member, a laminate is obtained, and then the laminate is heated and pressurized. And so on.
  • the pressure at the time of pressurization is preferably 40 MPa or more, more preferably 60 MPa or more, preferably 90 MPa or less, and more preferably 70 MPa or less.
  • the temperature at the time of heating is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 140 ° C. or lower, and more preferably 120 ° C. or lower.
  • the first connection target member and the second connection target member are not particularly limited.
  • Specific examples of the first connection target member and the second connection target member include electronic components such as semiconductor chips, semiconductor packages, LED chips, LED packages, capacitors and diodes, resin films, printed circuit boards, and flexible devices. Examples thereof include electronic components such as printed circuit boards, flexible flat cables, rigid flexible boards, glass epoxy boards, and circuit boards such as glass boards.
  • the first connection target member and the second connection target member are preferably electronic components.
  • the conductive material is preferably a conductive material for connecting electronic components.
  • the conductive paste is a paste-like conductive material, and is preferably applied on the connection target member in the paste-like state.
  • connection target member is a flexible substrate or a connection target member in which electrodes are arranged on the surface of the resin film.
  • the connection target member is preferably a flexible substrate, and is preferably a connection target member in which electrodes are arranged on the surface of the resin film.
  • the flexible substrate is a flexible printed circuit board or the like, the flexible substrate generally has electrodes on its surface.
  • the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes.
  • the electrodes are preferably gold electrodes, nickel electrodes, tin electrodes, silver electrodes or copper electrodes.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode is an aluminum electrode, it may be an electrode formed only of aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer.
  • the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al and Ga.
  • the resin particles can be suitably used as a spacer for a liquid crystal display element.
  • the first connection target member may be a first liquid crystal display element member.
  • the second connection target member may be a second liquid crystal display element member.
  • the first liquid crystal display element member and the second liquid crystal display element member are in a state where the first liquid crystal display element member and the second liquid crystal display element member face each other. It may be a sealing portion that seals the outer periphery of and.
  • the resin particles can also be used as a peripheral sealant for a liquid crystal display element.
  • the liquid crystal display element includes a first liquid crystal display element member and a second liquid crystal display element member.
  • the first liquid crystal display element member and the second liquid crystal display element member are in a state where the first liquid crystal display element member and the second liquid crystal display element member face each other.
  • a seal portion that seals the outer periphery of the liquid crystal, and a liquid crystal that is arranged inside the seal portion between the first liquid crystal display element member and the second liquid crystal display element member. Be prepared.
  • the liquid crystal dropping method is applied, and the sealing portion is formed by thermosetting the sealing agent for the liquid crystal dropping method.
  • the arrangement density of the spacers for the liquid crystal display element per 1 mm 2 is preferably 10 pieces / mm 2 or more, and preferably 1000 pieces / mm 2 or less.
  • the arrangement density is 10 pieces / mm 2 or more, the cell gap becomes even more uniform.
  • the arrangement density is 1000 pieces / mm 2 or less, the contrast of the liquid crystal display element becomes even better.
  • the resin particles or conductive particles described above are arranged between the first ceramic member and the second ceramic member at the outer peripheral portion of the first ceramic member and the second ceramic member, and are a gap control material and a conductive material. It can also be used as a connecting material.
  • FIG. 5 is a cross-sectional view showing an example of an electronic component device using the resin particles according to the present invention.
  • FIG. 6 is an enlarged cross-sectional view showing a joint portion in the electronic component device shown in FIG.
  • the electronic component device 81 shown in FIGS. 5 and 6 includes a first ceramic member 82, a second ceramic member 83, a joint portion 84, an electronic component 85, and a lead frame 86.
  • the first and second ceramic members 82 and 83 are each made of a ceramic material.
  • the first and second ceramic members 82 and 83 are, for example, housings, respectively.
  • the first ceramic member 82 is, for example, a substrate.
  • the second ceramic member 83 is, for example, a lid.
  • the first ceramic member 82 has a convex portion protruding toward the second ceramic member 83 side (upper side) on the outer peripheral portion.
  • the first ceramic member 82 has a recess on the second ceramic member 83 side (upper side) that forms an internal space R for accommodating the electronic component 85.
  • the first ceramic member 82 does not have to have a convex portion.
  • the second ceramic member 83 has a convex portion protruding toward the first ceramic member 82 side (lower side) on the outer peripheral portion.
  • the second ceramic member 83 has a recess on the first ceramic member 82 side (lower side) that forms an internal space R for accommodating the electronic component 85.
  • the second ceramic member 83 does not have to have a convex portion.
  • the internal space R is formed by the first ceramic member 82 and the second ceramic member 83.
  • the joint portion 84 joins the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83. Specifically, the joint portion 84 joins the convex portion of the outer peripheral portion of the first ceramic member 82 and the convex portion of the outer peripheral portion of the second ceramic member 83.
  • the package is formed by the first and second ceramic members 82 and 83 joined by the joint portion 84.
  • the interior space R is formed by the package.
  • the joint portion 84 seals the internal space R in a liquid-tight and airtight manner.
  • the joint portion 84 is a sealing portion.
  • the electronic component 85 is arranged in the internal space R of the above package. Specifically, the electronic component 85 is arranged on the first ceramic member 82. In this embodiment, two electronic components 85 are used.
  • the joint portion 84 includes a plurality of resin particles 11 and glass 84B.
  • the bonding portion 84 is formed by using a bonding material containing a plurality of resin particles 11 different from the glass particles and the glass 84B.
  • This bonding material is a bonding material for ceramic packages.
  • the bonding material may contain the above-mentioned conductive particles instead of the above-mentioned resin particles.
  • the bonding material may contain a solvent or a resin.
  • glass 84B such as glass particles is melted and bonded and then solidified.
  • Examples of electronic components include sensor elements, MEMS, bare chips, and the like.
  • Examples of the sensor element include a pressure sensor element, an acceleration sensor element, a CMOS sensor element, a CCD sensor element, and a housing of the various sensor elements.
  • the lead frame 86 is arranged between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83.
  • the lead frame 86 extends to the internal space R side and the external space side of the package.
  • the terminal of the electronic component 85 and the lead frame 86 are electrically connected via a wire.
  • the joint portion 84 partially directly joins the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83, and partially indirectly joins them.
  • the joint portion 84 is the outer peripheral portion of the first ceramic member 82 at the portion where the lead frame 86 is located between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83.
  • the outer peripheral portion of the second ceramic member 83 are indirectly joined via the lead frame 86.
  • the first ceramic member 82 is in contact with the lead frame 86
  • the lead frame 86 is in contact with the lead frame 86.
  • the joint portion 84 is a portion between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83 where there is no lead frame 86, and the outer peripheral portion of the first ceramic member 82 and the second ceramic It is directly joined to the outer peripheral portion of the member 83.
  • the joint portion 84 is formed with the first ceramic member 82 and the second ceramic member 83. Is in contact with.
  • the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83 In the portion where the lead frame 86 is located between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83, the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83.
  • the distance between the ceramic particles and the ceramic particles 11 is controlled by the plurality of resin particles 11 contained in the joint portion 84.
  • the joint portion may be a direct or indirect joint between the outer peripheral portion of the first ceramic member and the outer peripheral portion of the second ceramic member.
  • An electrical connection method other than the lead frame may be adopted.
  • the electronic component device includes, for example, a first ceramic member formed of a ceramic material, a second ceramic member formed of a ceramic material, a joint portion, and an electronic component. May be provided.
  • the joint portion may directly or indirectly join the outer peripheral portion of the first ceramic member and the outer peripheral portion of the second ceramic member.
  • the package may be formed by the first and second ceramic members joined by the joining portion.
  • the electronic component may be arranged in the internal space of the package, and the joint may include a plurality of resin particles and glass.
  • the ceramic package bonding material is used in the electronic component device to form the bonding portion, and includes resin particles and glass.
  • An electrical connection method containing only resin particles and not glass may be adopted.
  • the joint portion may contain the above-mentioned conductive particles instead of the above-mentioned resin particles.
  • Example 1 Preparation of resin particles In a reaction vessel equipped with a thermometer, agitator, and a cooling tube, 15 parts by weight of 2,2-bis (4-glycidyloxyphenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd.) and a dispersion stabilizer 7.5 parts by weight of polyvinylpyrrolidone and 250 parts by weight of ethanol were added thereto, and the mixture was uniformly dissolved by stirring at 65 ° C. for 1 hour. Next, 4.37 parts by weight of 4,4'-diaminodiphenylmethane and 35 parts by weight of ethanol were uniformly dissolved, and then placed in a reaction vessel and reacted at 65 ° C. for 24 hours to produce a reaction product. Got The obtained reaction product was washed and dried to obtain resin particles.
  • 2,2-bis (4-glycidyloxyphenyl) propane manufactured by Tokyo Chemical Industry Co., Ltd.
  • a dispersion stabilizer 7.5 parts by weight of polyvinylpyrrol
  • a nickel plating solution (pH 8.5) containing nickel sulfate 0.35 mol / L, dimethylamine borane 1.38 mol / L and sodium citrate 0.5 mol / L was prepared.
  • the nickel plating solution was gradually added dropwise to the dispersion to perform electroless nickel plating. Then, the dispersion liquid was filtered to take out the particles, washed with water, and dried to form a nickel-boron conductive layer on the surface of the resin particles to obtain conductive particles having a conductive portion on the surface.
  • Conductive Material (Anisically Conductive Paste) 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and 30 parts by weight of phenol novolac type epoxy resin.
  • a conductive material anisotropic conductive paste
  • SI-60L manufactured by Sanshin Chemical Industry Co., Ltd.
  • connection target in which an IZO electrode pattern (first electrode, Vickers hardness of metal on the electrode surface 100 Hv) having an L / S of 10 ⁇ m / 10 ⁇ m is formed on the upper surface.
  • IZO electrode pattern first electrode, Vickers hardness of metal on the electrode surface 100 Hv
  • second connection target member having an Au electrode pattern (second electrode, Vickers hardness of metal on the electrode surface 50 Hv) having an L / S of 10 ⁇ m / 10 ⁇ m formed on the lower surface was prepared.
  • anisotropic conductive paste was applied onto the transparent glass substrate so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the semiconductor chips were laminated on the anisotropic conductive paste layer so that the electrodes face each other. After that, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 100 ° C., the pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 55 MPa is applied to form the anisotropic conductive paste layer. It was cured at 100 ° C. to obtain a connection structure.
  • Example 2 When producing the resin particles, glycidylamine type epoxy resin (“TETRAD-X” manufactured by Mitsubishi Gas Chemical Company, Inc.) was used instead of 2,2-bis (4-glycidyloxyphenyl) propane, and isopropyl alcohol was used instead of ethanol. Was used. In addition, the blending amount of 4,4'-diaminodiphenylmethane was changed from 4.37 parts by weight to 7.53 parts by weight. Except for the above changes, resin particles, conductive particles, conductive materials, and a connecting structure were obtained in the same manner as in Example 1.
  • TTRAD-X 2,2-bis (4-glycidyloxyphenyl) propane
  • isopropyl alcohol was used instead of ethanol.
  • the blending amount of 4,4'-diaminodiphenylmethane was changed from 4.37 parts by weight to 7.53 parts by weight. Except for the above changes, resin particles, conductive particles, conductive materials, and a connecting structure were obtained in the same manner as in Example 1.
  • Example 3 In the preparation of the resin particles, a triazine-type epoxy resin (“TEPIC-PAS” manufactured by Nissan Chemical Industries, Ltd.) was used instead of 2,2-bis (4-glycidyloxyphenyl) propane. Further, 1.63 parts by weight of ethylenediamine was used instead of 4.37 parts by weight of 4,4'-diaminodiphenylmethane. Except for the above changes, resin particles, conductive particles, conductive materials, and a connecting structure were obtained in the same manner as in Example 1.
  • TPIC-PAS triazine-type epoxy resin
  • Example 4 When producing the resin particles, a glycidylamine type epoxy resin (“JER-630” manufactured by Mitsubishi Chemical Corporation) was used instead of 2,2-bis (4-glycidyloxyphenyl) propane. In addition, the blending amount of 4,4'-diaminodiphenylmethane was changed from 4.37 parts by weight to 7.63 parts by weight. Except for the above changes, resin particles, conductive particles, conductive materials, and a connecting structure were obtained in the same manner as in Example 1.
  • Example 5 When producing resin particles, an alicyclic glycidylamine type epoxy resin (“TETRAD-C” manufactured by Mitsubishi Gas Chemical Company, Inc.) was used instead of 2,2-bis (4-glycidyloxyphenyl) propane, instead of ethanol. Isopropyl alcohol was used for this. In addition, the blending amount of 4,4'-diaminodiphenylmethane was changed from 4.37 parts by weight to 7.44 parts by weight. Except for the above changes, resin particles, conductive particles, conductive materials, and a connecting structure were obtained in the same manner as in Example 1.
  • TTRAD-C alicyclic glycidylamine type epoxy resin
  • 2,2-bis (4-glycidyloxyphenyl) propane instead of ethanol. Isopropyl alcohol was used for this.
  • the blending amount of 4,4'-diaminodiphenylmethane was changed from 4.37 parts by weight to 7.44 parts by weight. Except for the above changes, resin particles, conductive particles
  • Example 6 At the time of producing the conductive particles, 1 g of a nickel particle slurry (average particle diameter 100 nm) was added to the dispersion liquid over 3 minutes to obtain a suspension containing the resin particles to which the core substance was attached. Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the suspension was used instead of the dispersion.
  • Example 7 (1) Preparation of Insulating Particles After putting the following monomer composition in a 1000 mL separable flask equipped with a four-mouth separable cover, a stirring blade, a three-way cock, a cooling tube and a temperature probe, the following monomer composition Distilled water was added so that the solid content was 10% by weight, the mixture was stirred at 200 rpm, and polymerization was carried out at 60 ° C. for 24 hours under a nitrogen atmosphere.
  • the monomer composition comprises 360 mmol of methyl methacrylate, 45 mmol of glycidyl methacrylate, 20 mmol of parastyryldiethylphosphine, 13 mmol of ethylene glycol dimethacrylate, 0.5 mmol of polyvinylpyrrolidone, and 2,2'-azobis ⁇ 2- [N- (2). -Carboxyethyl) amidino] propane ⁇ 1 mmol. After completion of the reaction, the reaction was freeze-dried to obtain insulating particles (particle size 360 nm) having a phosphorus atom derived from parastilyl diethylphosphine on the surface.
  • Example 6 (2) Preparation of Conductive Particles with Insulating Particles
  • the conductive particles obtained in Example 6 were prepared.
  • the insulating particles obtained above were dispersed in distilled water under ultrasonic irradiation to obtain a 10% by weight aqueous dispersion of the insulating particles.
  • 10 g of the prepared conductive particles were dispersed in 500 mL of distilled water, 1 g of a 10 wt% aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 8 hours. After filtering with a 3 ⁇ m mesh filter, the mixture was further washed with methanol and dried to obtain conductive particles with insulating particles.
  • a conductive material and a connecting structure were obtained in the same manner as in Example 1 except that the conductive particles with insulating particles were used instead of the conductive particles.
  • Example 8 Preparation of Resin Particles Polystyrene particles having an average particle diameter of 0.93 ⁇ m were prepared as seed particles. A mixed solution was prepared by mixing 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion-exchanged water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution. After the above mixed solution was dispersed by ultrasonic waves, it was placed in a separable flask and stirred uniformly.
  • the monomer component contains 30 parts by weight of 1,6-hexanediol dimethacrylate and 120 parts by weight of styrene. Further, 9 parts by weight of triethanolamine lauryl sulfate, 30 parts by weight of ethanol (solvent), and 1100 parts by weight of ion-exchanged water were added to prepare an emulsion.
  • the emulsion was added to the mixed solution in the separable flask in several portions and stirred for 12 hours to allow the seed particles to absorb the monomer to obtain a suspension containing the seed particles in which the monomer was swollen. ..
  • Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the obtained resin particles were used.
  • Example 9 Examples except that 75 parts by weight of hexylethyl methacrylate and 75 parts by weight of glycidyl methacrylate were used instead of 30 parts by weight of 1,6-hexanediol dimethacrylate and 120 parts by weight of styrene when preparing the resin particles.
  • conductive particles, a conductive material, and a connecting structure were obtained.
  • Example 10 Example 8 and Example 8 except that 1,3-butylene glycol dimethacrylate was used in place of 30 parts by weight of 1,6-hexanediol dimethacrylate and 120 parts by weight of styrene when preparing the resin particles. Similarly, conductive particles, conductive materials, and connecting structures were obtained.
  • Example 11 In the preparation of the resin particles, 2.34 parts by weight of 1,4-phenylenediamine was used instead of 4.37 parts by weight of 4,4'-diaminodiphenylmethane. Except for the above changes, resin particles, conductive particles, conductive materials, and a connecting structure were obtained in the same manner as in Example 1.
  • Example 12 In the preparation of the resin particles, 8.90 parts by weight of 2,2-bis [4- (4-aminophenoxy) phenyl] propane was used instead of 4.37 parts by weight of 4,4'-diaminodiphenylmethane. Except for the above changes, resin particles, conductive particles, conductive materials, and a connecting structure were obtained in the same manner as in Example 1.
  • Comparative Example 1 As the resin particles, “Optobeads 3500M” (melamine-based resin, particle diameter 3.5 ⁇ m) manufactured by Nissan Chemical Industries, Ltd. was prepared. Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the prepared resin particles were used.
  • Example 13 In a reaction vessel equipped with a thermometer, agitator, and a cooling tube, 50 parts by weight of "Micropearl SP210" ((meth) acrylic resin, particle diameter 10 ⁇ m) manufactured by Sekisui Chemical Industry Co., Ltd. and water as base material core resin particles. 500 parts by weight and 125 parts by weight of polyallylamine as a dispersion stabilizer were added and mixed uniformly, and then reacted at 25 ° C. for 1 hour to obtain a reaction product. The obtained reaction product was washed and dried to obtain base material core resin particles.
  • "Micropearl SP210" (meth) acrylic resin, particle diameter 10 ⁇ m) manufactured by Sekisui Chemical Industry Co., Ltd. and water
  • base material core resin particles 500 parts by weight and 125 parts by weight of polyallylamine as a dispersion stabilizer were added and mixed uniformly, and then reacted at 25 ° C. for 1 hour to obtain a reaction product.
  • the obtained reaction product was washed
  • the obtained resin particles have a compressive elastic modulus (10% K value (A)) when the resin particles are compressed by 10%, and a resin heated at 200 ° C. for 10 minutes.
  • the compressive elastic modulus (10% K value (B)) when the particles were compressed by 10% was measured by a microcompression tester (“Fisherscope H-100” manufactured by Fisher Co., Ltd.) by the method described above. From the measurement results, the absolute value of the difference between the 10% K value (A) and the 10% K value (B) was calculated.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of the particle size of the resin particles Dn: Average value of the particle size of the resin particles
  • Thickness of Conductive Part The obtained conductive particles were added to "Technobit 4000” manufactured by Kulzer and dispersed so as to have a content of 30% by weight to prepare an embedded resin for inspection. A cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin for inspection.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • FE-TEM field emission transmission electron microscope
  • connection structure Adhesion between Resin Particles and Conductive Part
  • the conductive particles in the connection part were observed using a scanning electron microscope (“Regulus 8220” manufactured by Hitachi High-Technologies Corporation). With respect to the 100 conductive particles observed, it was confirmed whether or not the conductive portion arranged on the surface of the resin particles was peeled off. The adhesion between the resin particles and the conductive portion was judged according to the following criteria.
  • connection structure (9) Shape Maintaining Characteristics of Conductive Particles
  • the conductive particles in the connection portion were observed using a scanning electron microscope (“Regulus 8220” manufactured by Hitachi High-Technologies Corporation). It was confirmed whether or not the compressed shape of the 100 conductive particles observed was maintained. The shape-maintaining characteristics of the conductive particles were judged according to the following criteria.
  • ⁇ ⁇ ⁇ The number of conductive particles maintaining the compressed shape is 90 or more ⁇ ⁇ : The number of conductive particles maintaining the compressed shape is 70 or more and less than 90 ⁇ : Compressed The number of conductive particles maintaining the shape is 50 or more and less than 70 ⁇ : The number of conductive particles maintaining the compressed shape is 1 or more and less than 50 ⁇ : The conductive particles are compressed The shape is not maintained or the conductive particles are destroyed.
  • connection reliability between the upper and lower electrodes
  • the connection resistance between the upper and lower electrodes of the obtained 20 connection structures was measured by the 4-terminal method, respectively.
  • the connection reliability was judged according to the following criteria.
  • connection reliability after high temperature and high humidity conditions 100 connection structures obtained in the above evaluation of connection reliability (10) were left at 85 ° C. and 85% RH for 100 hours. For 100 connection structures after being left to stand, it was evaluated whether or not there was a conduction failure between the upper and lower electrodes. The connection reliability after high temperature and high humidity conditions was judged according to the following criteria.
  • Of the 100 connection structures, the number of poor continuity is 1 or less. ⁇ : Of the 100 connection structures, the number of poor continuity is 2 or more and 5 or less. ⁇ : 6 or more and 10 or less of the 100 connection structures have poor continuity. ⁇ : 11 or more of the 100 connection structures have poor continuity.
  • Example of use as a spacer for gap control Fabrication of bonding material for ceramic packages: In Examples 1 to 13, a joint for a ceramic package containing 30 parts by weight of the obtained resin particles and 70 parts by weight of glass (composition: Ag-V-Te-W-P-W-Ba-O, melting point 264 ° C.). Obtained the material.
  • the electronic component device shown in FIG. 5 was manufactured using the obtained bonding material. Specifically, the bonding material was applied to the outer peripheral portion of the first ceramic member by a screen printing method. After that, the second ceramic member was installed facing each other, the joint portion was irradiated with a semiconductor laser and fired, and the first ceramic member and the second ceramic member were joined.
  • the distance between the first ceramic member and the second ceramic member was well regulated. Moreover, the obtained electronic component device worked well. In addition, the airtightness inside the package was well maintained.

Abstract

被着体に均一に接触させることができ、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性及び耐衝撃性を効果的に高めることができ、さらに、接続抵抗を効果的に低くすることができる樹脂粒子を提供する。 本発明に係る樹脂粒子は、5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で樹脂粒子を加熱して示差走査熱量測定を行ったときに、発熱ピークが観察される。

Description

樹脂粒子、導電性粒子、導電材料及び接続構造体
 本発明は、良好な圧縮特性を有する樹脂粒子に関する。また、本発明は、上記樹脂粒子を用いた導電性粒子、導電材料及び接続構造体に関する。
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。
 上記異方性導電材料は、フレキシブルプリント基板(FPC)、ガラス基板、ガラスエポキシ基板及び半導体チップなどの様々な接続対象部材の電極間を電気的に接続し、接続構造体を得るために用いられている。また、上記導電性粒子として、基材粒子と、該基材粒子の表面上に配置された導電層とを有する導電性粒子が用いられることがある。上記基材粒子として、樹脂粒子が用いられることがある。
 下記の特許文献1では、導電性粒子の表面に存在して、該導電性粒子を絶縁するための樹脂粒子が開示されている。上記樹脂粒子は、炭素数4~18のアルキル基を有する非架橋性(メタ)アクリル酸アルキルエステル(A)と重合性基を1分子中に2個以上有する架橋性単量体(B)とを含む重合性成分を共重合させたアクリル系架橋重合体を含む。上記樹脂粒子では、上記架橋性単量体(B)の含有量が重合性成分中7質量%以上である。
 下記の特許文献2では、熱硬化樹脂軟質化粒子の製造方法が開示されている。上記製造方法は、5nm~70nmの平均粒子径を有するコロイダルシリカの懸濁下で少なくとも一種の二官能性モノマーを含むモノマー化合物とアルデヒド化合物とを塩基性条件下で反応させ、水に可溶な初期縮合物の水溶液を生成させる段階と、該水溶液に酸触媒を加えて球状の熱硬化樹脂軟質化粒子を析出させる段階とを含む。上記製造方法では、上記二官能性モノマーが、6-置換グアナミン類及び尿素類から選ばれるモノマーである。
 また、2つの接続対象部材等(被着体)を接着するために、様々な接着剤が用いられている。該接着剤により形成される接着層の厚みを均一にし、2つの接続対象部材等(被着体)の間隔(ギャップ)を制御するために、接着剤にギャップ材(スペーサ)が配合されることがある。上記ギャップ材(スペーサ)として、樹脂粒子が用いられることがある。
特開2012-124035号公報 WO2012/067072A1
 近年、導電性粒子を含む導電材料や接続材料を用いて電極間を電気的に接続する際に、比較的低い圧力であっても、電極間を電気的に確実に接続し、接続抵抗を低くすることが望まれている。例えば、液晶表示装置の製造方法において、FOG(Film on Glass)工法におけるフレキシブル基板の実装時には、ガラス基板上に異方性導電材料を配置し、フレキシブル基板を積層し、熱圧着が行われている。近年、液晶パネルの狭額縁化やガラス基板の薄型化が進行している。この場合に、フレキシブル基板の実装時に、高い圧力及び高い温度で熱圧着を行うと、フレキシブル基板に歪みが生じ、表示むらが発生することがある。従って、FOG工法におけるフレキシブル基板の実装時には、比較的低い圧力で熱圧着を行うことが望ましい。また、FOG工法以外でも、熱圧着時の圧力や温度を比較的低くすることが求められることがある。
 従来の樹脂粒子を導電性粒子として用いる場合には、比較的低い圧力で電極間を電気的に接続すると、接続抵抗が高くなることがある。この原因としては、導電性粒子が電極(被着体)に十分に接触しないことや、樹脂粒子と該樹脂粒子の表面上に配置された導電部との密着性が低く、導電部が剥離することが挙げられる。さらに、従来の導電性粒子を用いて電極間を電気的に接続する接続部を形成した場合に、該接続部に落下等による衝撃が加えられると、樹脂粒子の表面上に配置された導電部の剥離等によって、接続抵抗が高くなることがある。
 また、従来の導電性粒子では、接続時の圧力だけでなく、電極(被着体)の硬さ(材質)によって、導電性粒子が電極(被着体)に十分に接触せず、接続抵抗が高くなることがある。また、電極(被着体)表面に傷が形成され、接続抵抗が高くなることがある。
 また、従来の樹脂粒子をギャップ材(スペーサ)として用いる場合には、接続対象部材等(被着体)を傷つけることがある。また、従来の樹脂粒子では、接続対象部材等(被着体)に十分に接触せず、十分なギャップ制御効果が得られないことがある。
 本発明の目的は、被着体に均一に接触させることができ、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性及び耐衝撃性を効果的に高めることができ、さらに、接続抵抗を効果的に低くすることができる樹脂粒子を提供することである。また、本発明の目的は、上記樹脂粒子を用いた導電性粒子、導電材料及び接続構造体を提供することである。
 本発明の広い局面によれば、5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で樹脂粒子を加熱して示差走査熱量測定を行ったときに、発熱ピークが観察される、樹脂粒子が提供される。
 本発明に係る樹脂粒子のある特定の局面では、前記発熱ピークのうち、最大のピーク面積を有する発熱ピークにおける発熱量が、2000mJ/mg以上25000mJ/mg以下である。
 本発明に係る樹脂粒子のある特定の局面では、5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で樹脂粒子を加熱して示差走査熱量測定を行ったときに、2000mJ/mg以上の吸熱量を有する吸熱ピークが観察されない。
 本発明に係る樹脂粒子のある特定の局面では、樹脂粒子を10%圧縮したときの圧縮弾性率と、200℃及び10分間の条件で加熱した樹脂粒子を10%圧縮したときの圧縮弾性率との差の絶対値が、180N/mm以上である。
 本発明に係る樹脂粒子のある特定の局面では、前記樹脂粒子は、スペーサに用いられるか、電子部品用接着剤に用いられるか、導電部を有する導電性粒子を得るために用いられるか、又は、積層造形用材料に用いられる。
 本発明に係る樹脂粒子のある特定の局面では、前記樹脂粒子は、スペーサとして用いられるか、又は、表面上に導電部が形成されることで、前記導電部を有する導電性粒子を得るために用いられる。
 本発明の広い局面によれば、上述した樹脂粒子と、前記樹脂粒子の表面上に配置された導電部とを備える、導電性粒子が提供される。
 本発明に係る導電性粒子のある特定の局面では、導電性粒子を10%圧縮したときの圧縮弾性率と、200℃及び10分間の条件で加熱した導電性粒子を10%圧縮したときの圧縮弾性率との差の絶対値が、180N/mm以上である。
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記導電部の外表面上に配置された絶縁性物質をさらに備える。
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記導電部の外表面に突起を有する。
 本発明の広い局面によれば、導電性粒子と、バインダー樹脂とを含み、前記導電性粒子が、上述した樹脂粒子と、前記樹脂粒子の表面上に配置された導電部とを備える、導電材料が提供される。
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、前記導電性粒子が、上述した樹脂粒子と、前記樹脂粒子の表面上に配置された導電部とを備え、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。
 本発明に係る樹脂粒子では、5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で樹脂粒子を加熱して示差走査熱量測定を行ったときに、発熱ピークが観察される。本発明に係る樹脂粒子では、上記の構成が備えられているので、被着体に均一に接触させることができ、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性及び耐衝撃性を効果的に高めることができ、さらに、接続抵抗を効果的に低くすることができる。
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。 図4は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体の一例を示す断面図である。 図5は、本発明に係る樹脂粒子を用いた電子部品装置の一例を示す断面図である。 図6は、図5に示す電子部品装置における接合部部分を拡大して示す断面図である。
 以下、本発明の詳細を説明する。
 (樹脂粒子)
 本発明に係る樹脂粒子では、5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で樹脂粒子を加熱して示差走査熱量測定を行ったときに、発熱ピークが観察される。
 本発明に係る樹脂粒子では、上記の構成が備えられているので、被着体に均一に接触させることができ、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性及び耐衝撃性を効果的に高めることができ、さらに、接続抵抗を効果的に低くすることができる。
 本発明に係る樹脂粒子は、示差走査熱量測定により発熱ピークが観察されるので、加熱により熱硬化させることができる。本発明に係る樹脂粒子(熱硬化前の樹脂粒子)は、完全に熱硬化していないので、比較的低い圧力及び温度で容易に変形する。このため、樹脂粒子の表面上に導電部が形成された導電性粒子を用いて電極間を電気的に接続する場合に、熱圧着時の圧力や温度を比較的低くしても、導電性粒子を電極に十分に接触させることができ、さらに、電極に傷が形成されることを防止することができる。また、本発明に係る樹脂粒子の表面上に導電部が形成された導電性粒子を用いて電極間を電気的に接続する接続部を形成する場合には、熱圧着時に樹脂粒子を圧縮した状態で熱硬化させることができる。接続部中の導電性粒子では、圧縮された形状が維持されるので、導電部の剥離を効果的に防止することができ、樹脂粒子と導電部との密着性を効果的に高めることができる。さらに、接続部に落下等による衝撃が加えられても、導電部の剥離が効果的に防止され、電極間の接続抵抗を効果的に低くすることができる。本発明に係る樹脂粒子を用いた導電性粒子では、耐衝撃性を効果的に高めることができる。また、本発明に係る樹脂粒子を用いた導電性粒子では、電極間の接続抵抗を効果的に低くすることができ、電極間の接続信頼性を効果的に高めることができる。例えば、本発明に係る樹脂粒子を用いた導電性粒子により電極間が電気的に接続された接続構造体を高温及び高湿条件下で長時間放置しても、接続抵抗がより一層高くなり難く、導通不良がより一層生じ難くなる。
 また、本発明に係る樹脂粒子をギャップ材(スペーサ)として用いる場合には、接続対象部材等の傷付きを効果的に抑制することができる。さらに、接続対象部材等に十分に接触させることができ、十分なギャップ制御効果を得ることができる。
 本発明に係る樹脂粒子では、5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で樹脂粒子を加熱して示差走査熱量測定を行ったときに、発熱ピークが観察される。なお、本明細書において、発熱ピークとは、発熱量が1000mJ/mg以上のピークを意味する。上記示差走査熱量測定では、上記樹脂粒子10mgを、5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で加熱することが好ましい。
 上記樹脂粒子が、上記の好ましい態様を満足すると、被着体により一層均一に接触させることができる。また、上記樹脂粒子が、上記の好ましい態様を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性及び耐衝撃性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。一般に、熱硬化性樹脂等の硬化反応は発熱反応であり、示差走査熱量測定では発熱ピークとして観察される。上記樹脂粒子は、加熱により熱硬化することが好ましい。
 上記示差走査熱量測定において、1個の発熱ピークのみが観察されてもよく、2個以上の複数個の発熱ピークが観察されてもよい。上記示差走査熱量測定において観察された発熱ピークのうち、最大のピーク面積を有する発熱ピークにおける発熱量は、好ましくは2000mJ/mg以上、より好ましくは10000mJ/mg以上であり、好ましくは25000mJ/mg以下、より好ましくは22000mJ/mg以下である。最大のピーク面積を有する発熱ピークにおける発熱量が、上記下限以上及び上記上限以下であると、被着体に樹脂粒子をより一層均一に接触させることができる。また、最大のピーク面積を有する発熱ピークにおける発熱量が、上記下限以上及び上記上限以下であると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性及び耐衝撃性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。
 上記樹脂粒子では、5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で樹脂粒子を加熱して示差走査熱量測定を行ったときに、2000mJ/mg以上の吸熱量を有する吸熱ピークが観察されないことが好ましい。なお、本明細書において、吸熱ピークとは、吸熱量が2000mJ/mg以上のピークを意味する。上記示差走査熱量測定では、上記樹脂粒子10mgを、5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で加熱することが好ましい。上記樹脂粒子が、上記の好ましい態様を満足すると、被着体により一層均一に接触させることができる。また、上記樹脂粒子が、上記の好ましい態様を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性及び耐衝撃性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。一般に、樹脂等の融解は吸熱反応であり、示差走査熱量測定では吸熱ピークとして観察される。上記樹脂粒子は、樹脂等の融解が起こらないことが好ましい。
 上記示差走査熱量測定には、示差走査熱量測定装置(日立ハイテクサイエンス社製「DSC6220」)等が用いられる。
 上記樹脂粒子を10%圧縮したときの圧縮弾性率を10%K値(A)とする。200℃及び10分間の条件で加熱した上記樹脂粒子を10%圧縮したときの圧縮弾性率を10%K値(B)とする。上記10%K値(A)と上記10%K値(B)との差の絶対値は、好ましくは180N/mm以上、より好ましくは500N/mm以上、さらに好ましくは800N/mm以上、特に好ましくは1000N/mm以上である。上記10%K値(A)と上記10%K値(B)との差の絶対値は、好ましくは10000N/mm以下、より好ましくは7500N/mm以下、さらに好ましくは5000N/mm以下である。上記10%K値(A)と上記10%K値(B)との差の絶対値が、上記下限以上及び上記上限以下であると、被着体に樹脂粒子をより一層均一に接触させることができる。上記10%K値(A)と上記10%K値(B)との差の絶対値が、上記下限以上及び上記上限以下であると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性及び耐衝撃性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。上記10%K値(A)と上記10%K値(B)との差の絶対値は、200N/mm以上3000N/mm以下であることが特に好ましい。上記10%K値(A)と上記10%K値(B)との差の絶対値が、上記の好ましい範囲を満足すると、樹脂粒子による被着体の傷付きをより一層効果的に抑制することができ、被着体に樹脂粒子をより一層均一に接触させることができる。上記10%K値(A)と上記10%K値(B)との差の絶対値が、上記の好ましい範囲を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、接続信頼性をより一層効果的に高めることができる。
 上記10%K値(A)は、好ましくは500N/mm以上、より好ましくは800N/mm以上であり、好ましくは6000N/mm以下、より好ましくは4000N/mm以下である。上記10%K値(A)が、上記下限以上及び上記上限以下であると、樹脂粒子による被着体の傷付きをより一層効果的に抑制することができ、被着体に樹脂粒子をより一層均一に接触させることができる。上記10%K値(A)が、上記下限以上及び上記上限以下であると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、接続信頼性をより一層効果的に高めることができる。
 上記樹脂粒子における上記圧縮弾性率(10%K値(A)及び10%K値(B))は、以下のようにして測定できる。
 樹脂粒子(樹脂粒子(A))を用意する。また、200℃及び10分間の条件で加熱した樹脂粒子(樹脂粒子(B))を用意する。微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で1個の樹脂粒子(A)又は(B)を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率(10%K値(A)又は10%K値(B))を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記樹脂粒子(A)又は(B)における上記圧縮弾性率(10%K値(A)又は10%K値(B))は、任意に選択された50個の樹脂粒子(A)又は(B)の上記圧縮弾性率(10%K値(A)又は10%K値(B))を算術平均することにより、算出することが好ましい。
 10%K値(A)又は10%K値(B)(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:樹脂粒子(A)又は(B)が10%圧縮変形したときの荷重値(N)
 S:樹脂粒子(A)又は(B)が10%圧縮変形したときの圧縮変位(mm)
 R:樹脂粒子(A)又は(B)の半径(mm)
 上記圧縮弾性率は、樹脂粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、樹脂粒子の硬さを定量的かつ一義的に表すことができる。
 上記樹脂粒子の圧縮回復率は、好ましくは5%以上、より好ましくは8%以上であり、好ましくは60%以下、より好ましくは40%以下である。上記圧縮回復率が、上記下限以上及び上記上限以下であると、樹脂粒子による被着体の傷付きをより一層効果的に抑制することができ、被着体に樹脂粒子をより一層均一に接触させることができる。上記圧縮回復率が、上記下限以上及び上記上限以下であると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、接続信頼性をより一層効果的に高めることができる。
 上記樹脂粒子における上記圧縮回復率は、以下のようにして測定できる。
 試料台上に樹脂粒子を散布する。散布された1個の樹脂粒子について、微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃で、樹脂粒子の中心方向に、樹脂粒子が30%圧縮変形するまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。
 圧縮回復率(%)=[L2/L1]×100
 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでの圧縮変位
 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
 上記樹脂粒子の用途は特に限定されない。上記樹脂粒子は、様々な用途に好適に用いることができる。上記樹脂粒子は、スペーサに用いられるか、電子部品用接着剤に用いられるか、導電部を有する導電性粒子を得るために用いられるか、又は、積層造形用材料に用いられることが好ましい。上記樹脂粒子は、スペーサとして用いられるか、又は、表面上に導電部が形成されることで、上記導電部を有する導電性粒子を得るために用いられることがより好ましい。上記導電性粒子において、上記導電部は、上記樹脂粒子の表面上に形成される。上記樹脂粒子は、表面上に導電部が形成されることで、上記導電部を有する導電性粒子を得るために用いられることが好ましい。上記導電性粒子は、電極間を電気的に接続するために用いられることが好ましい。上記導電性粒子は、ギャップ材(スペーサ)として用いられてもよい。
 上記樹脂粒子は、ギャップ材(スペーサ)に用いられるか又はギャップ材(スペーサ)として用いられることが好ましい。上記ギャップ材(スペーサ)としては、液晶表示素子用スペーサ、ギャップ制御用スペーサ、応力緩和用スペーサ、及び調光積層体用スペーサ等が挙げられる。上記ギャップ制御用スペーサは、スタンドオフ高さ及び平坦性を確保するための積層チップや電子部品装置のギャップ制御、並びに、ガラス面の平滑性及び接着剤層の厚みを確保するための光学部品のギャップ制御等に用いることができる。上記応力緩和用スペーサは、センサチップ等の応力緩和、及び2つの接続対象部材を接続している接続部の応力緩和等に用いることができる。上記センサチップとしては、例えば、半導体センサチップ等が挙げられる。また、上記樹脂粒子をギャップ材(スペーサ)として用いる場合には、接続対象部材等の傷付きを効果的に抑制することができる。さらに、接続対象部材等に十分に接触させることができ、十分なギャップ制御効果を得ることができる。
 上記樹脂粒子は、液晶表示素子用スペーサに用いられるか又は液晶表示素子用スペーサとして用いられることが好ましく、液晶表示素子用周辺シール剤に用いられることが好ましい。上記液晶表示素子用周辺シール剤において、上記樹脂粒子は、スペーサとして機能することが好ましい。上記樹脂粒子は、良好な圧縮変形特性及び良好な圧縮破壊特性を有するので、上記樹脂粒子をスペーサとして用いて基板間に配置したり、表面に導電部を形成して導電性粒子として用いて電極間を電気的に接続したりした場合に、スペーサ又は導電性粒子が、基板間又は電極間に効率的に配置される。さらに、上記樹脂粒子では、液晶表示素子用部材等の傷付きを抑えることができるので、上記液晶表示素子用スペーサを用いた液晶表示素子及び上記導電性粒子を用いた接続構造体において、接続不良及び表示不良が生じ難くなる。
 上記樹脂粒子は、電子部品用接着剤に用いられるか又は電子部品用接着剤として用いられることが好ましい。上記電子部品用接着剤としては、液晶パネル用接着剤、積層基板用接着剤、基板回路用接着剤、及びカメラモジュール用接着剤等が挙げられる。上記積層基板としては、例えば、半導体センサチップ等が挙げられる。上記電子部品用接着剤に用いられる樹脂粒子又は上記電子部品用接着剤として用いられる樹脂粒子は、接着性能を有する接着性樹脂粒子であることが好ましい。上記樹脂粒子が接着性樹脂粒子であると、圧着して樹脂粒子が硬化する際に、樹脂粒子と積層対象部材とを良好に接着することができる。上記樹脂粒子は単体で、電子部品用接着剤として用いることができる。他の接着成分を用いずに、上記樹脂粒子は、電子部品用接着剤として用いることができる。上記樹脂粒子を電子部品用接着剤に用いる場合、単体で電子部品用接着剤として用いなくてもよく、他の接着成分と共に用いられてもよい。また、上記樹脂粒子が接着性能を有する接着性樹脂粒子である場合は、スペーサ兼電子部品用接着剤として用いることもできる。上記樹脂粒子をスペーサ兼電子部品用接着剤として用いる場合、スペーサと接着剤とが別の材料によって構成される場合と比較して、ギャップ制御性や応力緩和性等のスペーサに求められる物性と、接着性との両立をより一層高度に実現することができる。
 上記樹脂粒子は、積層造形用材料に用いられることが好ましい。上記樹脂粒子を上記積層造形用材料に用いる場合、例えば、上記樹脂粒子を立体的に積層して特定の形状を形成した後に、硬化させることによって立体的な造形物を形成することができる。
 さらに、上記樹脂粒子は、無機充填材、トナーの添加剤、衝撃吸収剤又は振動吸収剤としても好適に用いられる。例えば、ゴム又はバネ等の代替品として、上記樹脂粒子を用いることができる。
 以下、樹脂粒子の他の詳細を説明する。なお、本明細書において、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味し、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味する。
 (樹脂粒子の他の詳細)
 上記樹脂粒子の材料は特に限定されない。上記樹脂粒子の材料は、有機材料であることが好ましい。上記樹脂粒子は、多孔構造を有する粒子であってもよく、中実構造を有する粒子であってもよい。上記多孔構造は、複数の細孔を有する構造を意味している。上記中実構造は、複数の細孔を有しない構造を意味している。
 上記有機材料としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、ウレタン樹脂、イソシアネート樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン共重合体等が挙げられる。上記ジビニルベンゼン共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。
 上記樹脂粒子の材料は、エポキシ樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ウレタン樹脂、イソシアネート樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、フェノール樹脂、又はエチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。上記樹脂粒子の材料は、エポキシ樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、フェノール樹脂、又はエチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることがより好ましい。上記樹脂粒子の材料は、エポキシ樹脂であることが特に好ましい。上記樹脂粒子の材料が、上記の好ましい態様を満足すると、樹脂粒子の圧縮特性を好適な範囲により一層容易に制御することができる。
 上記樹脂粒子の材料としてエポキシ樹脂を用いる場合には、上記エポキシ樹脂は多官能エポキシ樹脂であることが好ましい。上記エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂等の2官能エポキシ樹脂、トリアジン型エポキシ樹脂、及びグリシジルアミン型エポキシ樹脂等の3官能エポキシ樹脂、並びに、テトラキスフェノールエタン型エポキシ樹脂、及びグリシジルアミン型エポキシ樹脂等の4官能エポキシ樹脂等が挙げられる。上記エポキシ樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。
 また、上記樹脂粒子の材料としてエポキシ樹脂を用いる場合には、エポキシ樹脂とともに硬化剤を用いることが好ましい。上記硬化剤は、上記エポキシ樹脂を熱硬化させる。上記硬化剤は特に限定されない。上記硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤等のチオール硬化剤、及び酸無水物硬化剤等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。上記樹脂粒子の圧縮特性を好適な範囲に容易に制御する観点からは、上記硬化剤は、アミン硬化剤であることが好ましい。
 上記イミダゾール硬化剤は特に限定されない。上記イミダゾール硬化剤としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン及び2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4-ベンジル-5-ヒドロキシメチルイミダゾール、2-パラトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4,5-ジヒドロキシメチルイミダゾール、2-パラトルイル-4,5-ジヒドロキシメチルイミダゾール等における1H-イミダゾールの5位の水素をヒドロキシメチル基で、かつ、2位の水素をフェニル基またはトルイル基で置換したイミダゾール化合物等が挙げられる。
 上記チオール硬化剤は特に限定されない。上記チオール硬化剤としては、トリメチロールプロパントリス-3-メルカプトプロピオネート、ペンタエリスリトールテトラキス-3-メルカプトプロピオネート及びジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等が挙げられる。
 上記アミン硬化剤は特に限定されない。上記アミン硬化剤としては、エチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、フェニレンジアミン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノフェニルエーテル、メタキシレンジアミン、ジアミノナフタレン、ビスアミノメチルシクロヘキサン、及びジアミノジフェニルスルホン等が挙げられる。上記樹脂粒子の圧縮特性を好適な範囲に容易に制御する観点からは、上記アミン硬化剤は、ジアミン化合物であることが好ましい。上記ジアミン化合物は、エチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、メタフェニレンジアミン、ジアミノジフェニルスルホン、フェニレンジアミン、又は2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンであることが好ましい。上記樹脂粒子の圧縮特性を好適な範囲に容易に制御する観点からは、上記アミン硬化剤は、エチレンジアミン、ジアミノジフェニルメタン、フェニレンジアミン、又は2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンであることがより好ましい。
 5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で樹脂粒子を加熱して示差走査熱量測定を行ったときに、発熱ピークが観察されることを容易に制御できることから、本発明に係る樹脂粒子は、多官能エポキシ樹脂に由来する化学構造及びジアミン化合物に由来する化学構造を有することが好ましい。また、同様の理由により、本発明に係る樹脂粒子は、多官能エポキシ樹脂と、ジアミン化合物とを反応させることによって得られる粒子であることが好ましい。多官能エポキシ樹脂と、ジアミン化合物とを溶媒中で加熱することによって、エポキシ基とアミノ基とが逐次的に反応し、溶媒中で不溶化された析出物が分散安定剤によって保護されながら粒子化が進行する。該粒子化の過程において、エポキシ基とアミノ基とを反応させる温度や濃度などの条件を調整することによって、粒子中及び粒子表面に未反応部分のエポキシ基とアミノ基とが残存した状態で粒子化することができる。この残存したエポキシ基とアミノ基とが加熱によって反応することによって、その反応熱が発熱ピークとして観察される。
 上記酸無水物硬化剤は特に限定されず、エポキシ化合物等の熱硬化性化合物の硬化剤として用いられる酸無水物であれば広く用いることができる。上記酸無水物硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、フタル酸誘導体の無水物、無水マレイン酸、無水ナジック酸、無水メチルナジック酸、無水グルタル酸、無水コハク酸、グリセリンビス無水トリメリット酸モノアセテート、及びエチレングリコールビス無水トリメリット酸等の2官能の酸無水物硬化剤、無水トリメリット酸等の3官能の酸無水物硬化剤、並びに、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、メチルシクロヘキセンテトラカルボン酸無水物、及びポリアゼライン酸無水物等の4官能以上の酸無水物硬化剤等が挙げられる。
 上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、上記エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
 上記非架橋性の単量体としては、ビニル化合物として、スチレン、α-メチルスチレン、クロルスチレン等のスチレン単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;塩化ビニル、フッ化ビニル等のハロゲン含有単量体;(メタ)アクリル化合物として、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等のハロゲン含有(メタ)アクリレート化合物;α-オレフィン化合物として、ジイソブチレン、イソブチレン、リニアレン、エチレン、プロピレン等のオレフィン化合物;共役ジエン化合物として、イソプレン、ブタジエン等が挙げられる。
 上記架橋性の単量体としては、ビニル化合物として、ジビニルベンゼン、1,4-ジビニロキシブタン、ジビニルスルホン等のビニル単量体;(メタ)アクリル化合物として、テトラメチロールメタンテトラ(メタ)アクリレート、ポリテトラメチレングリコールジアクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;アリル化合物として、トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル;シラン化合物として、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、トリメトキシシリルスチレン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、1,3-ジビニルテトラメチルジシロキサン、メチルフェニルジメトキシシラン、ジフェニルジメトキシシラン等のシランアルコキシド化合物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシシラン、ジメトキシエチルビニルシラン、ジエトキシメチルビニルシラン、ジエトキシエチルビニルシラン、エチルメチルジビニルシラン、メチルビニルジメトキシシラン、エチルビニルジメトキシシラン、メチルビニルジエトキシシラン、エチルビニルジエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の重合性二重結合含有シランアルコキシド;デカメチルシクロペンタシロキサン等の環状シロキサン;片末端変性シリコーンオイル、両末端シリコーンオイル、側鎖型シリコーンオイル等の変性(反応性)シリコーンオイル;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体等が挙げられる。
 上記樹脂粒子は、上記エチレン性不飽和基を有する重合性単量体を重合させることによって得ることができる。上記の重合方法としては特に限定されず、ラジカル重合、イオン重合、重縮合(縮合重合、縮重合)、付加縮合、リビング重合、及びリビングラジカル重合等の公知の方法が挙げられる。また、他の重合方法としては、ラジカル重合開始剤の存在下での懸濁重合が挙げられる。
 上記樹脂粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子であってもよい。5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で樹脂粒子を加熱して示差走査熱量測定を行ったときに、発熱ピークが観察されることを容易に制御できることから、上記シェルは、多官能エポキシ樹脂に由来する化学構造及びジアミン化合物に由来する化学構造を有することが好ましい。また、同様の理由により、上記シェルは、多官能エポキシ樹脂と、ジアミン化合物とを反応させることによって得られるシェルであることが好ましい。上記コアの材料としては、上記樹脂粒子の好ましい材料と同様の材料を用いることができる。また、上記コアが多官能エポキシ樹脂に由来する化学構造及びジアミン化合物に由来する化学構造を有していてもよく、多官能エポキシ樹脂と、ジアミン化合物とを反応させることによって得られる粒子であってもよい。
 上記樹脂粒子の粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。上記樹脂粒子の粒子径が、上記下限以上及び上記上限以下であると、樹脂粒子を導電性粒子及びスペーサの用途により一層好適に使用可能になる。スペーサとして用いる観点からは、上記樹脂粒子の粒子径は、1μm以上80μm以下であることが好ましい。導電性粒子として用いる観点からは、上記樹脂粒子の平均粒子径は、1μm以上20μm以下であることが好ましい。
 上記樹脂粒子の粒子径は、上記樹脂粒子が真球状である場合には直径を意味し、上記樹脂粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。上記樹脂粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。上記樹脂粒子の粒子径は、任意の粒度分布測定装置により測定することができる。例えば、レーザー光散乱、電気抵抗値変化、撮像後の画像解析等の原理を用いた粒度分布測定装置等を用いて測定することができる。さらに具体的には、樹脂粒子の粒子径の測定方法として、粒度分布測定装置(ベックマンコールター社製「Multisizer4」)を用いて、約100000個の樹脂粒子の粒子径を測定し、平均値を算出する方法が挙げられる。
 上記樹脂粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは7%以下、さらに好ましくは5%以下である。上記CV値が、上記上限以下であると、樹脂粒子を導電性粒子及びスペーサの用途により一層好適に使用可能になる。
 上記CV値は、下記式で表される。
 CV値(%)=(ρ/Dn)×100
 ρ:樹脂粒子の粒子径の標準偏差
 Dn:樹脂粒子の粒子径の平均値
 上記樹脂粒子のアスペクト比は、好ましくは2以下、より好ましくは1.5以下、さらに好ましくは1.2以下である。上記アスペクト比は、長径/短径を示す。上記アスペクト比は、任意の樹脂粒子10個を電子顕微鏡又は光学顕微鏡にて観察し、最大径と最小径をそれぞれ長径、短径とし、各樹脂粒子の長径/短径の平均値を算出することにより求めることが好ましい。
 (導電性粒子)
 上記導電性粒子は、上述した樹脂粒子と、上記樹脂粒子の表面上に配置された導電部とを備える。
 図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。
 図1に示す導電性粒子1は、樹脂粒子11と、樹脂粒子11の表面上に配置された導電部2とを有する。導電部2は、樹脂粒子11の表面を被覆している。導電性粒子1は、樹脂粒子11の表面が導電部2により被覆された被覆粒子である。
 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。
 図2に示す導電性粒子21は、樹脂粒子11と、樹脂粒子11の表面上に配置された導電部22とを有する。図2に示す導電性粒子21では、導電部22のみが、図1に示す導電性粒子1と異なる。導電部22は、内層である第1の導電部22Aと外層である第2の導電部22Bとを有する。樹脂粒子11の表面上に、第1の導電部22Aが配置されている。第1の導電部22Aの表面上に、第2の導電部22Bが配置されている。
 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。
 図3に示す導電性粒子31は、樹脂粒子11と、導電部32と、複数の芯物質33と、複数の絶縁性物質34とを有する。
 導電部32は、樹脂粒子11の表面上に配置されている。導電性粒子31は導電性の表面に、複数の突起31aを有する。導電部32は外表面に、複数の突起32aを有する。このように、上記導電性粒子は、導電性粒子の導電性の表面に突起を有していてもよく、導電部の外表面に突起を有していてもよい。複数の芯物質33が、樹脂粒子11の表面上に配置されている。複数の芯物質33は導電部32内に埋め込まれている。芯物質33は、突起31a,32aの内側に配置されている。導電部32は、複数の芯物質33を被覆している。複数の芯物質33により導電部32の外表面が隆起されており、突起31a,32aが形成されている。
 導電性粒子31は、導電部32の外表面上に配置された絶縁性物質34を有する。導電部32の外表面の少なくとも一部の領域が、絶縁性物質34により被覆されている。絶縁性物質34は絶縁性を有する材料により形成されており、絶縁性粒子である。このように、上記導電性粒子は、導電部の外表面上に配置された絶縁性物質を有していてもよい。
 上記導電部を形成するための金属は特に限定されない。上記金属としては、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。電極間の接続信頼性をより一層高める観点からは、上記金属は、錫を含む合金、ニッケル、パラジウム、銅又は金であることが好ましく、ニッケル又はパラジウムであることが好ましい。
 導電性粒子1,31のように、上記導電部は、1つの層により形成されていてもよい。導電性粒子21のように、上記導電部は、複数の層により形成されていてもよい。すなわち、上記導電部は、2層以上の積層構造を有していてもよい。導電部が複数の層により形成されている場合には、最外層は、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層であることがより好ましい。最外層がこれらの好ましい導電部である場合には、電極間の接続信頼性をより一層高めることができる。また、最外層が金層である場合には、耐腐食性をより一層高めることができる。
 上記樹脂粒子の表面上に導電部を形成する方法は特に限定されない。上記導電部を形成する方法としては、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを樹脂粒子の表面にコーティングする方法等が挙げられる。導電部をより一層容易に形成する観点からは、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。
 上記導電性粒子を10%圧縮したときの圧縮弾性率を10%K値(C)とする。200℃及び10分間の条件で加熱した上記導電性粒子を10%圧縮したときの圧縮弾性率を10%K値(D)とする。上記10%K値(C)と上記10%K値(D)との差の絶対値は、好ましくは180N/mm以上、より好ましくは500N/mm以上、さらに好ましくは800N/mm以上、特に好ましくは1000N/mm以上である。上記10%K値(C)と上記10%K値(D)との差の絶対値は、好ましくは10000N/mm以下、より好ましくは7500N/mm以下、さらに好ましくは5000N/mm以下である。上記10%K値(C)と上記10%K値(D)との差の絶対値が、上記下限以上及び上記上限以下であると、被着体に導電性粒子をより一層均一に接触させることができる。上記10%K値(C)と上記10%K値(D)との差の絶対値が、上記下限以上及び上記上限以下であると、電極間を電気的に接続した場合に、導電部の密着性及び耐衝撃性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。上記10%K値(C)と上記10%K値(D)との差の絶対値は、200N/mm以上3000N/mm以下であることが特に好ましい。上記10%K値(C)と上記10%K値(D)との差の絶対値が、上記の好ましい範囲を満足すると、導電性粒子による被着体の傷付きをより一層効果的に抑制することができ、被着体に導電性粒子をより一層均一に接触させることができる。上記10%K値(C)と上記10%K値(D)との差の絶対値が、上記の好ましい範囲を満足すると、電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、接続信頼性をより一層効果的に高めることができる。
 上記10%K値(C)は、好ましくは3000N/mm以上、より好ましくは4000N/mm以上であり、好ましくは11000N/mm以下、より好ましくは9000N/mm以下である。上記10%K値(C)が、上記下限以上及び上記上限以下であると、導電性粒子による被着体の傷付きをより一層効果的に抑制することができ、被着体に導電性粒子をより一層均一に接触させることができる。上記10%K値(C)が、上記下限以上及び上記上限以下であると、電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、接続信頼性をより一層効果的に高めることができる。
 上記導電性粒子における上記圧縮弾性率(10%K値(C)及び10%K値(D))は、以下のようにして測定できる。
 導電性粒子(導電性粒子(C))を用意する。また、200℃及び10分間の条件で加熱した導電性粒子(導電性粒子(D))を用意する。微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で1個の導電性粒子(C)又は(D)を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率(10%K値(C)又は10%K値(D))を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記導電性粒子(C)又は(D)における上記圧縮弾性率(10%K値(C)又は10%K値(D))は、任意に選択された50個の導電性粒子(C)又は(D)の上記圧縮弾性率(10%K値(C)又は10%K値(D))を算術平均することにより、算出することが好ましい。
 10%K値(C)又は10%K値(D)(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:導電性粒子(C)又は(D)が10%圧縮変形したときの荷重値(N)
 S:導電性粒子(C)又は(D)が10%圧縮変形したときの圧縮変位(mm)
 R:導電性粒子(C)又は(D)の半径(mm)
 上記圧縮弾性率は、導電性粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、導電性粒子の硬さを定量的かつ一義的に表すことができる。
 上記導電性粒子の圧縮回復率は、好ましくは5%以上、より好ましくは8%以上であり、好ましくは60%以下、より好ましくは40%以下である。上記圧縮回復率が、上記下限以上及び上記上限以下であると、導電性粒子による被着体の傷付きをより一層効果的に抑制することができ、被着体に導電性粒子をより一層均一に接触させることができる。上記圧縮回復率が、上記下限以上及び上記上限以下であると、電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、接続信頼性をより一層効果的に高めることができる。
 上記導電性粒子の圧縮回復率は、以下のようにして測定できる。
 試料台上に導電性粒子を散布する。散布された1個の導電性粒子について、微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃で、導電性粒子の中心方向に、導電性粒子が30%圧縮変形するまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。
 圧縮回復率(%)=[L2/L1]×100
 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでの圧縮変位
 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
 上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは500μm以下、より好ましくは450μm以下、より一層好ましくは100μm以下、さらに好ましくは50μm以下、特に好ましくは20μm以下である。導電性粒子の粒子径が、上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電部を形成する際に凝集した導電性粒子が形成され難くなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電部が樹脂粒子の表面から剥離し難くなる。また、導電性粒子の粒子径が、上記下限以上及び上記上限以下であると、導電性粒子を導電材料の用途に好適に用いることができる。
 上記導電性粒子の粒子径は、導電性粒子が真球状である場合には直径を意味し、導電性粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。
 上記導電性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。上記導電性粒子の粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの導電性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の導電性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの導電性粒子の粒子径は、球相当径での粒子径として求められる。上記導電性粒子の粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。
 上記導電部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、さらに好ましくは0.3μm以下である。上記導電部の厚みは、導電部が多層である場合には導電部全体の厚みである。導電部の厚みが、上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が十分に変形する。
 上記導電部が複数の層により形成されている場合に、最外層の導電部の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上であり、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電部の厚みが、上記下限以上及び上記上限以下であると、最外層の導電部による被覆が均一になり、耐腐食性が十分に高くなり、かつ電極間の接続信頼性をより一層高めることができる。また、上記最外層が金層である場合に、金層の厚みが薄いほど、コストが低くなる。
 上記導電部の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。上記導電部の厚みについては、任意の導電部の厚み5箇所の平均値を1個の導電性粒子の導電部の厚みとして算出することが好ましく、導電部全体の厚みの平均値を1個の導電性粒子の導電部の厚みとして算出することがより好ましい。上記導電部の厚みは、任意の導電性粒子20個について、各導電性粒子の導電部の厚みの平均値を算出することにより求めることが好ましい。
 上記導電性粒子は、導電部の外表面に突起を有することが好ましい。上記導電性粒子は、導電性の表面に突起を有することが好ましい。上記突起は複数であることが好ましい。導電部の表面並びに導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。突起を有する導電性粒子を用いた場合には、電極間に導電性粒子を配置して圧着させることにより、突起により上記酸化被膜が効果的に排除される。このため、電極と導電性粒子の導電部とをより一層確実に接触させることができ、電極間の接続抵抗をより一層低くすることができる。さらに、導電性粒子が表面に絶縁性物質を備える場合に、又は導電性粒子がバインダー樹脂中に分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性物質又はバインダー樹脂をより一層効果的に排除できる。このため、電極間の接続信頼性をより一層高めることができる。
 上記導電性粒子の表面に突起を形成する方法としては、樹脂粒子の表面に芯物質を付着させた後、無電解めっきにより導電部を形成する方法、及び樹脂粒子の表面に無電解めっきにより導電部を形成した後、芯物質を付着させ、さらに無電解めっきにより導電部を形成する方法等が挙げられる。また、突起を形成するために、上記芯物質を用いなくてもよい。
 上記突起を形成する方法としては、以下の方法等も挙げられる。樹脂粒子の表面に無電解めっきにより導電部を形成する途中段階で芯物質を添加する方法。無電解めっきにより芯物質を用いずに突起を形成する方法として、無電解めっきにより金属核を発生させ、樹脂粒子又は導電部の表面に金属核を付着させ、さらに無電解めっきにより導電部を形成する方法。
 上記導電性粒子は、上記導電部の外表面上に配置された絶縁性物質をさらに備えることが好ましい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止することができる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電部と電極との間の絶縁性物質を容易に排除できる。導電性粒子が上記導電部の表面に突起を有する場合には、導電性粒子の導電部と電極との間の絶縁性物質をより一層容易に排除できる。上記絶縁性物質は、絶縁性樹脂層又は絶縁性粒子であることが好ましく、絶縁性粒子であることがより好ましい。上記絶縁性粒子は、絶縁性樹脂粒子であることが好ましい。
 上記導電部の外表面、及び絶縁性粒子の表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。導電部の外表面と絶縁性粒子の表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。導電部の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミン等の高分子電解質を介して絶縁性粒子の表面の官能基と化学結合していてもよい。
 (導電材料)
 上記導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。
 上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
 上記バインダー樹脂中に上記導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ特に限定されない。上記バインダー樹脂中に上記導電性粒子を分散させる方法としては、例えば、以下の方法等が挙げられる。上記バインダー樹脂中に上記導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法。上記導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法。上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法。
 上記導電材料の25℃での粘度(η25)は、好ましくは30Pa・s以上、より好ましくは50Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記導電材料の25℃での粘度が、上記下限以上及び上記上限以下であると、電極間の接続信頼性をより一層効果的に高めることができる。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。
 上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。
 上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電フィルムは異方性導電フィルムであることが好ましい。
 上記導電材料100重量%中、上記バインダー樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、さらに好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が、上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。
 上記導電材料100重量%中、上記導電性粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、より一層好ましくは40重量%以下、さらに好ましくは20重量%以下、特に好ましくは10重量%以下である。上記導電性粒子の含有量が、上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、電極間の接続信頼性をより一層効果的に高めることができる。
 (接続構造体)
 上述した導電性粒子、又は上述した導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
 上記接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部とを備える。上記接続構造体では、上記接続部が、導電性粒子により形成されているか、又は上記導電性粒子とバインダー樹脂とを含む導電材料により形成されている。上記導電性粒子は、上述した樹脂粒子と、上記樹脂粒子の表面上に配置された導電部とを備える。上記接続構造体では、上記第1の電極と上記第2の電極とが上記導電性粒子により電気的に接続されている。
 上記導電性粒子が単独で用いられた場合には、接続部自体が導電性粒子である。即ち、上記第1の接続対象部材と上記第2の接続対象部材とが上記導電性粒子により接続される。上記接続構造体を得るために用いられる上記導電材料は、異方性導電材料であることが好ましい。
 図4は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体の一例を示す断面図である。
 図4に示す接続構造体41は、第1の接続対象部材42と、第2の接続対象部材43と、第1の接続対象部材42と第2の接続対象部材43とを接続している接続部44とを備える。接続部44は、導電性粒子1とバインダー樹脂とを含む導電材料により形成されている。図4では、図示の便宜上、導電性粒子1は略図的に示されている。導電性粒子1にかえて、導電性粒子21,31の他の導電性粒子を用いてもよい。
 第1の接続対象部材42は表面(上面)に、複数の第1の電極42aを有する。第2の接続対象部材43は表面(下面)に、複数の第2の電極43aを有する。第1の電極42aと第2の電極43aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材42,43が導電性粒子1により電気的に接続されている。
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例として、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧時の圧力は、好ましくは40MPa以上、より好ましくは60MPa以上であり、好ましくは90MPa以下、より好ましくは70MPa以下である。上記加熱時の温度は、好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは140℃以下、より好ましくは120℃以下である。
 上記第1の接続対象部材及び第2の接続対象部材は、特に限定されない。上記第1の接続対象部材及び第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1の接続対象部材及び第2の接続対象部材は、電子部品であることが好ましい。
 上記導電材料は、電子部品を接続するための導電材料であることが好ましい。上記導電ペーストはペースト状の導電材料であり、ペースト状の状態で接続対象部材上に塗工されることが好ましい。
 上記導電性粒子、上記導電材料及び上記接続材料は、タッチパネルにも好適に用いられる。従って、上記接続対象部材は、フレキシブル基板であるか、又は樹脂フィルムの表面上に電極が配置された接続対象部材であることも好ましい。上記接続対象部材は、フレキシブル基板であることが好ましく、樹脂フィルムの表面上に電極が配置された接続対象部材であることが好ましい。上記フレキシブル基板がフレキシブルプリント基板等である場合に、フレキシブル基板は一般に電極を表面に有する。
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
 また、上記樹脂粒子は、液晶表示素子用スペーサとして好適に用いることができる。上記第1の接続対象部材は、第1の液晶表示素子用部材であってもよい。上記第2の接続対象部材は、第2の液晶表示素子用部材であってもよい。上記接続部は、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材とが対向した状態で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との外周をシールしているシール部であってもよい。
 上記樹脂粒子は、液晶表示素子用周辺シール剤に用いることもできる。液晶表示素子は、第1の液晶表示素子用部材と、第2の液晶表示素子用部材とを備える。液晶表示素子は、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材とが対向した状態で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との外周をシールしているシール部と、上記シール部の内側で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との間に配置されている液晶とをさらに備える。この液晶表示素子では、液晶滴下工法が適用され、かつ上記シール部が、液晶滴下工法用シール剤を熱硬化させることにより形成されている。
 上記液晶表示素子において1mmあたりの液晶表示素子用スペーサの配置密度は、好ましくは10個/mm以上であり、好ましくは1000個/mm以下である。上記配置密度が10個/mm以上であると、セルギャップがより一層均一になる。上記配置密度が1000個/mm以下であると、液晶表示素子のコントラストがより一層良好になる。
 (電子部品装置)
 上述した樹脂粒子又は導電性粒子は、第1のセラミック部材と第2のセラミック部材との外周部において、第1のセラミック部材と第2のセラミック部材との間に配置され、ギャップ制御材及び導電接続材として用いることもできる。
 図5は、本発明に係る樹脂粒子を用いた電子部品装置の一例を示す断面図である。図6は、図5に示す電子部品装置における接合部部分を拡大して示す断面図である。
 図5,6に示す電子部品装置81は、第1のセラミック部材82と、第2のセラミック部材83と、接合部84と、電子部品85と、リードフレーム86とを備える。
 第1,第2のセラミック部材82,83はそれぞれ、セラミック材料により形成されている。第1,第2のセラミック部材82,83はそれぞれ、例えば、筐体である。第1のセラミック部材82は、例えば、基板である。第2のセラミック部材83は、例えば蓋である。第1のセラミック部材82は、外周部に、第2のセラミック部材83側(上側)に突出した凸部を有する。第1のセラミック部材82は、第2のセラミック部材83側(上側)に、電子部品85を収納するための内部空間Rを形成する凹部を有する。なお、第1のセラミック部材82は、凸部を有していなくてもよい。第2のセラミック部材83は、外周部に、第1のセラミック部材82側(下側)に突出した凸部を有する。第2のセラミック部材83は、第1のセラミック部材82側(下側)に、電子部品85を収納するための内部空間Rを形成する凹部を有する。なお、第2のセラミック部材83は、凸部を有していなくてもよい。第1のセラミック部材82と第2のセラミック部材83とによって、内部空間Rが形成されている。
 接合部84は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部とを接合している。具体的には、接合部84は、第1のセラミック部材82の外周部の凸部と、第2のセラミック部材83の外周部の凸部とを接合している。
 接合部84により接合された第1,第2のセラミック部材82,83によってパッケージが形成されている。パッケージによって、内部空間Rが形成されている。接合部84は、内部空間Rを液密的及び気密的に封止している。接合部84は、封止部である。
 電子部品85は、上記パッケージの内部空間R内に配置されている。具体的には、第1のセラミック部材82上に、電子部品85が配置されている。本実施形態では、2つの電子部品85が用いられている。
 接合部84は、複数の樹脂粒子11とガラス84Bとを含む。接合部84は、ガラス粒子とは異なる複数の樹脂粒子11とガラス84Bとを含む接合材料を用いて形成されている。この接合材料は、セラミックパッケージ用接合材料である。上記接合材料は、上記樹脂粒子の代わりに、上述した導電性粒子を含んでいてもよい。
 接合材料は、溶剤を含んでいてもよく、樹脂を含んでいてもよい。接合部84では、ガラス粒子等のガラス84Bが溶融及び結合した後に固化している。
 電子部品としては、センサ素子、MEMS及びベアチップ等が挙げられる。上記センサ素子としては、圧力センサ素子、加速度センサ素子、CMOSセンサ素子、CCDセンサ素子及び上記各種センサ素子の筐体等が挙げられる。
 リードフレーム86は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間に配置されている。リードフレーム86は、パッケージの内部空間R側と外部空間側とに延びている。電子部品85の端子とリードフレーム86とがワイヤーを介して、電気的に接続されている。
 接合部84は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部とを部分的に直接に接合しており、部分的に間接に接合している。具体的には、接合部84は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がある部分において、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部とをリードフレーム86を介して間接に接合している。第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がある部分において、第1のセラミック部材82がリードフレーム86と接しており、リードフレーム86が第1のセラミック部材82と接合部84とに接している。さらに、接合部84がリードフレーム86と第2のセラミック部材83とに接しており、第2のセラミック部材83が接合部84と接している。接合部84は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がない部分において、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部とを直接に接合している。第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がない部分において、接合部84が、第1のセラミック部材82と第2のセラミック部材83とに接している。
 第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がある部分において、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との隙間の距離は、接合部84に含まれる複数の樹脂粒子11により制御されている。
 接合部は、第1のセラミック部材の外周部と第2のセラミック部材の外周部とを直接又は間接に接合していればよい。なお、リードフレーム以外の電気的接続方法を採用してもよい。
 電子部品装置81のように、電子部品装置は、例えば、セラミック材料により形成されている第1のセラミック部材と、セラミック材料により形成されている第2のセラミック部材と、接合部と、電子部品とを備えていてもよい。上記電子部品装置では、上記接合部が、上記第1のセラミック部材の外周部と上記第2のセラミック部材の外周部とを直接又は間接に接合していてもよい。上記電子部品装置では、上記接合部により接合された上記第1,第2のセラミック部材によってパッケージが形成されていてもよい。上記電子部品装置では、上記電子部品が、上記パッケージの内部空間内に配置されており、上記接合部が、複数の樹脂粒子とガラスとを含んでいてもよい。
 また、電子部品装置81で用いた接合材料のように、上記セラミックパッケージ用接合材料は、上記電子部品装置において、上記接合部を形成するために用いられ、樹脂粒子と、ガラスとを含む。なお、樹脂粒子のみを含み、ガラスを含まない電気的接続方法を採用してもよい。また、上記接合部は、上記樹脂粒子の代わりに、上述した導電性粒子を含んでいてもよい。
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
 (実施例1)
 (1)樹脂粒子の作製
 温度計、撹拌機、冷却管を備えた反応容器に、2,2-ビス(4-グリシジルオキシフェニル)プロパン(東京化成工業社製)15重量部と、分散安定剤としてポリビニルピロリドン7.5重量部と、エタノール250重量部とを入れて、65℃で1時間撹拌することで均一に溶解させた。次に、4,4’-ジアミノジフェニルメタン4.37重量部と、エタノール35重量部とを均一に溶解させた後、反応容器内に入れて65℃及び24時間の条件で反応させ、反応生成物を得た。得られた反応生成物を洗浄し、乾燥させて、樹脂粒子を得た。
 (2)導電性粒子の作製
 パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、得られた樹脂粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、樹脂粒子を取り出した。次いで、樹脂粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、樹脂粒子の表面を活性化させた。表面が活性化された樹脂粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。
 また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。
 得られた分散液を60℃にて攪拌しながら、上記ニッケルめっき液を分散液に徐々に滴下し、無電解ニッケルめっきを行った。その後、分散液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル-ボロン導電層が形成され、導電部を表面に有する導電性粒子を得た。
 (3)導電材料(異方性導電ペースト)の作製
 得られた導電性粒子7重量部と、ビスフェノールA型フェノキシ樹脂25重量部と、フルオレン型エポキシ樹脂4重量部と、フェノールノボラック型エポキシ樹脂30重量部と、SI-60L(三新化学工業社製)とを配合して、3分間脱泡及び攪拌することで、導電材料(異方性導電ペースト)を得た。
 (4)接続構造体の作製
 L/Sが10μm/10μmであるIZO電極パターン(第1の電極、電極表面の金属のビッカース硬度100Hv)が上面に形成された透明ガラス基板(第1の接続対象部材)を用意した。また、L/Sが10μm/10μmであるAu電極パターン(第2の電極、電極表面の金属のビッカース硬度50Hv)が下面に形成された半導体チップ(第2の接続対象部材)を用意した。上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が100℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、55MPaの圧力をかけて異方性導電ペースト層を100℃で硬化させ、接続構造体を得た。
 (実施例2)
 樹脂粒子の作製の際に、2,2-ビス(4-グリシジルオキシフェニル)プロパンの代わりにグリシジルアミン型エポキシ樹脂(三菱ガス化学社製「TETRAD-X」)を用い、エタノールの代わりにイソプロピルアルコールを用いた。また、4,4’-ジアミノジフェニルメタンの配合量を4.37重量部から7.53重量部に変更した。上記の変更以外は、実施例1と同様にして、樹脂粒子、導電性粒子、導電材料、及び接続構造体を得た。
 (実施例3)
 樹脂粒子の作製の際に、2,2-ビス(4-グリシジルオキシフェニル)プロパンの代わりにトリアジン型エポキシ樹脂(日産化学社製「TEPIC-PAS」)を用いた。また、4,4’-ジアミノジフェニルメタン4.37重量部の代わりにエチレンジアミン1.63重量部を用いた。上記の変更以外は、実施例1と同様にして、樹脂粒子、導電性粒子、導電材料、及び接続構造体を得た。
 (実施例4)
 樹脂粒子の作製の際に、2,2-ビス(4-グリシジルオキシフェニル)プロパンの代わりにグリシジルアミン型エポキシ樹脂(三菱ケミカル社製「JER-630」)を用いた。また、4,4’-ジアミノジフェニルメタンの配合量を4.37重量部から7.63重量部に変更した。上記の変更以外は、実施例1と同様にして、樹脂粒子、導電性粒子、導電材料、及び接続構造体を得た。
 (実施例5)
 樹脂粒子の作製の際に、2,2-ビス(4-グリシジルオキシフェニル)プロパンの代わりに脂環式グリシジルアミン型エポキシ樹脂(三菱ガス化学社製「TETRAD-C」)を用い、エタノールの代わりにイソプロピルアルコールを用いた。また、4,4’-ジアミノジフェニルメタンの配合量を4.37重量部から7.44重量部に変更した。上記の変更以外は、実施例1と同様にして、樹脂粒子、導電性粒子、導電材料、及び接続構造体を得た。
 (実施例6)
 導電性粒子の作製の際に、分散液中に、ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて添加し、芯物質が付着した樹脂粒子を含む懸濁液を得た。上記分散液の代わりに上記懸濁液を用いたこと以外は、実施例1と同様にして、導電性粒子、導電材料、及び接続構造体を得た。
 (実施例7)
 (1)絶縁性粒子の作製
 4つ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、下記のモノマー組成物を入れた後、下記モノマー組成物の固形分が10重量%となるように蒸留水を入れ、200rpmで攪拌し、窒素雰囲気下60℃で24時間重合を行った。上記モノマー組成物は、メタクリル酸メチル360mmol、メタクリル酸グリシジル45mmol、パラスチリルジエチルホスフィン20mmol、ジメタクリル酸エチレングリコール13mmol、ポリビニルピロリドン0.5mmol、及び2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}1mmolを含む。反応終了後、凍結乾燥して、パラスチリルジエチルホスフィンに由来するリン原子を表面に有する絶縁性粒子(粒子径360nm)を得た。
 (2)絶縁性粒子付き導電性粒子の作製
 実施例6で得られた導電性粒子を用意した。上記で得られた絶縁性粒子を超音波照射下で蒸留水に分散させ、絶縁性粒子の10重量%水分散液を得た。用意した導電性粒子10gを蒸留水500mLに分散させ、絶縁性粒子の10重量%水分散液1gを添加し、室温で8時間攪拌した。3μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、絶縁性粒子付き導電性粒子を得た。上記導電性粒子の代わりに上記絶縁性粒子付き導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料、及び接続構造体を得た。
 (実施例8)
 (1)樹脂粒子の作製
 種粒子として平均粒子径0.93μmのポリスチレン粒子を用意した。上記ポリスチレン粒子3.9重量部と、イオン交換水500重量部と、5重量%ポリビニルアルコール水溶液120重量部とを混合し、混合液を調製した。上記混合液を超音波により分散させた後、セパラブルフラスコに入れて、均一に撹拌した。
 次に、以下のモノマー成分と、2,2’-アゾビス(イソ酪酸メチル)(和光純薬工業社製「V-601」)2重量部と、過酸化ベンゾイル(日油社製「ナイパーBW」)2重量部と、2,2-ビス(4,4-ジ-ターシャリーブチルパーオキシシクロヘキシル)プロパン(日油社製「パーテトラA」)4重量部とを混合した。上記モノマー成分は、1,6-ヘキサンジオールジメタクリレート30重量部とスチレン120重量部とを含む。さらに、ラウリル硫酸トリエタノールアミン9重量部と、エタノール(溶媒)30重量部と、イオン交換水1100重量部とを添加し、乳化液を調製した。
 セパラブルフラスコ中の上記混合液に、上記乳化液を数回に分けて添加し、12時間撹拌し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得た。
 その後、5重量%ポリビニルアルコール水溶液490重量部を添加し、加熱を開始して85℃で9時間反応させ、樹脂粒子を得た。
 得られた樹脂粒子を用いたこと以外は、実施例1と同様にして、導電性粒子、導電材料、及び接続構造体を得た。
 (実施例9)
 樹脂粒子の作製の際に、1,6-ヘキサンジオールジメタクリレート30重量部とスチレン120重量部との代わりにヘキシルエチルメタクリレート75重量部とグリシジルメタクリレート75重量部とを用いたこと以外は、実施例8と同様にして、導電性粒子、導電材料、及び接続構造体を得た。
 (実施例10)
 樹脂粒子の作製の際に、1,6-ヘキサンジオールジメタクリレート30重量部とスチレン120重量部との代わりに1,3-ブチレングリコールジメタクリレート150重量部を用いたこと以外は、実施例8と同様にして、導電性粒子、導電材料、及び接続構造体を得た。
 (実施例11)
 樹脂粒子の作製の際に、4,4’-ジアミノジフェニルメタン4.37重量部の代わりに1,4-フェニレンジアミン2.34重量部を用いた。上記の変更以外は、実施例1と同様にして、樹脂粒子、導電性粒子、導電材料、及び接続構造体を得た。
 (実施例12)
 樹脂粒子の作製の際に、4,4’-ジアミノジフェニルメタン4.37重量部の代わりに2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン8.90重量部を用いた。上記の変更以外は、実施例1と同様にして、樹脂粒子、導電性粒子、導電材料、及び接続構造体を得た。
 (比較例1)
 樹脂粒子として、日産化学社製「オプトビーズ3500M」(メラミン系樹脂、粒子径3.5μm)を用意した。用意した樹脂粒子を用いたこと以外は、実施例1と同様にして、導電性粒子、導電材料、及び接続構造体を得た。
 (実施例13)
 温度計、撹拌機、冷却管を備えた反応容器に、基材コア樹脂粒子として、積水化学工業社製「ミクロパールSP210」((メタ)アクリル系樹脂、粒子径10μm)50重量部と、水500重量部と、分散安定剤としてポリアリルアミン125重量部とを入れて、均一に混合させた後に、25℃及び1時間の条件で反応させ、反応生成物を得た。得られた反応生成物を洗浄し、乾燥させて、基材コア樹脂粒子を得た。
 得られた基材コア樹脂粒子30重量部と、シェル形成材として、2,2-ビス(4-グリシジルオキシフェニル)プロパン23重量部と、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン13.5重量部と、分散安定剤としてポリビニルピロリドン6.8重量部と、エタノール250重量部とを反応容器に入れて、均一に混合した。次いで、65℃及び24時間の条件で反応させ、反応生成物を得た。得られた反応生成物を洗浄し、乾燥させて、コアシェル粒子を得た。得られたコアシェル粒子を樹脂粒子として用いたこと以外は、実施例1と同様にして、導電性粒子、導電材料、及び接続構造体を得た。
 (評価)
 (1)示差走査熱量測定
 得られた樹脂粒子10mgを、5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で加熱して示差走査熱量測定を行った。示差走査熱量測定には、日立ハイテクサイエンス社製「DSC6220」を用いた。得られた測定結果から、発熱ピークが観察されるか否か、及び、吸熱ピークが観察されるか否かを確認した。なお、発熱ピークは、発熱量が1000mJ/mg以上のピークとし、吸熱ピークは、吸熱量が2000mJ/mg以上のピークとした。
 また、発熱ピークが観察された場合には、観察された発熱ピークのうち、最大のピーク面積を有する発熱ピークにおけるピーク温度及び発熱量を算出した。
 (2)樹脂粒子の圧縮弾性率
 得られた樹脂粒子について、樹脂粒子を10%圧縮したときの圧縮弾性率(10%K値(A))と、200℃及び10分間の条件で加熱した樹脂粒子を10%圧縮したときの圧縮弾性率(10%K値(B))とを、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。測定結果から、上記10%K値(A)と上記10%K値(B)との差の絶対値を算出した。
 (3)樹脂粒子の圧縮回復率
 得られた樹脂粒子について、樹脂粒子の圧縮回復率を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
 (4)樹脂粒子の粒子径及び樹脂粒子の粒子径のCV値
 得られた樹脂粒子について、粒度分布測定装置(ベックマンコールター社製「Multisizer4」)を用いて、約100000個の樹脂粒子の粒子径を測定し、平均値を算出した。また、樹脂粒子の粒子径の測定結果から、樹脂粒子の粒子径のCV値を下記式から算出した。
 CV値(%)=(ρ/Dn)×100
 ρ:樹脂粒子の粒子径の標準偏差
 Dn:樹脂粒子の粒子径の平均値
 (5)導電部の厚み
 得られた導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、検査用埋め込み樹脂を作製した。その検査用埋め込み樹脂中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出した。
 そして、電界放射型透過電子顕微鏡(FE-TEM)(日本電子社製「JEM-ARM200F」)を用いて、画像倍率5万倍に設定し、20個の導電性粒子を無作為に選択し、それぞれの導電性粒子の導電部を観察した。各導電性粒子における導電部の厚みを計測し、それを算術平均して導電部の厚みとした。
 (6)導電性粒子の圧縮弾性率
 得られた導電性粒子について、導電性粒子を10%圧縮したときの圧縮弾性率(10%K値(C))と、200℃及び10分間の条件で加熱した導電性粒子を10%圧縮したときの圧縮弾性率(10%K値(D))とを、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。測定結果から、上記10%K値(C)と上記10%K値(D)との差の絶対値を算出した。
 (7)導電性粒子の圧縮回復率
 得られた導電性粒子について、導電性粒子の圧縮回復率を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
 (8)樹脂粒子と導電部との密着性
 得られた接続構造体について、接続部中の導電性粒子を走査型電子顕微鏡(日立ハイテクノロジーズ社製「Regulus8220」)を用いて観察した。観察した導電性粒子100個について、樹脂粒子の表面上に配置された導電部が剥離しているか否かを確認した。樹脂粒子と導電部との密着性を以下の基準で判定した。
 [樹脂粒子と導電部との密着性の判定基準]
 ○○○:導電部の剥離した導電性粒子が0個
 ○○:導電部の剥離した導電性粒子が0個を超え15個以下
 ○:導電部の剥離した導電性粒子が15個を超え30個以下
 △:導電部の剥離した導電性粒子が30個を超え50個以下
 ×:導電部の剥離した導電性粒子が50個を超える
 (9)導電性粒子の形状維持特性
 得られた接続構造体について、接続部中の導電性粒子を走査型電子顕微鏡(日立ハイテクノロジーズ社製「Regulus8220」)を用いて観察した。観察した導電性粒子100個について、圧縮された形状が維持されているか否かを確認した。導電性粒子の形状維持特性を以下の基準で判定した。
 [導電性粒子の形状維持特性の判定基準]
 ○○○:圧縮された形状を維持している導電性粒子の個数が90個以上
 ○○:圧縮された形状を維持している導電性粒子の個数が70個以上90個未満
 ○:圧縮された形状を維持している導電性粒子の個数が50個以上70個未満
 △:圧縮された形状を維持している導電性粒子の個数が1個以上50個未満
 ×:導電性粒子が圧縮された形状を維持していないか、又は、導電性粒子が破壊されている
 (10)接続信頼性(上下の電極間)
 得られた20個の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。接続信頼性を以下の基準で判定した。
 [接続信頼性の判定基準]
 ○○○:接続抵抗の平均値が1.5Ω以下
 ○○:接続抵抗の平均値が1.5Ωを超え2.0Ω以下
 ○:接続抵抗の平均値が2.0Ωを超え5.0Ω以下
 △:接続抵抗の平均値が5.0Ωを超え10Ω以下
 ×:接続抵抗の平均値が10Ωを超える
 (11)耐衝撃性
 上記(10)接続信頼性の評価で得られた接続構造体を高さ70cmの位置から落下させて、上記(10)の評価と同様にして、接続抵抗を確認することで耐衝撃性の評価を行った。上記(10)の評価で得られた接続抵抗の平均値からの抵抗値の上昇率により耐衝撃性を以下の基準で判定した。
 [耐衝撃性の判定基準]
 ○:接続抵抗の平均値からの抵抗値の上昇率が30%以下
 △:接続抵抗の平均値からの抵抗値の上昇率が30%を超え50%以下
 ×:接続抵抗の平均値からの抵抗値の上昇率が50%を超える
 (12)高温及び高湿条件後の接続信頼性
 上記(10)接続信頼性の評価で得られた接続構造体100個を、85℃、85%RHにて100時間放置した。放置後の100個の接続構造体について、上下の電極間の導通不良が生じているか否かを評価した。高温及び高湿条件後の接続信頼性を以下の基準で判定した。
 [高温及び高湿条件後の接続信頼性の判定基準]
 ○○:接続構造体100個の内、導通不良が生じている個数が1個以下である
 ○:接続構造体100個の内、導通不良が生じている個数が2個以上5個以下である
 △:接続構造体100個の内、導通不良が生じている個数が6個以上10個以下である
 ×:接続構造体100個の内、導通不良が生じている個数が11個以上である
 材料の組成及び結果を表1~5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 (13)ギャップ制御用スペーサとしての使用例
 セラミックパッケージ用接合材料の作製:
 実施例1~13において、得られた樹脂粒子30重量部とガラス(組成:Ag-V-Te-W-P-W-Ba-O、融点264℃)70重量部とを含むセラミックパッケージ用接合材料を得た。
 電子部品装置の作製:
 得られた接合材料を用いて、図5に示す電子部品装置を作製した。具体的には、接合材料を第1のセラミック部材の外周部にスクリーン印刷法によって塗布した。その後、第2のセラミック部材を対向して設置し、接合部に半導体レーザーを照射して焼成し、第1のセラミック部材と第2のセラミック部材とを接合した。
 得られた電子部品装置では、第1のセラミック部材と第2のセラミック部材との間隔が良好に規制されていた。また、得られた電子部品装置は良好に作動した。また、パッケージ内部の気密性も良好に保たれていた。
 1…導電性粒子
 2…導電部
 11…樹脂粒子
 21…導電性粒子
 22…導電部
 22A…第1の導電部
 22B…第2の導電部
 31…導電性粒子
 31a…突起
 32…導電部
 32a…突起
 33…芯物質
 34…絶縁性物質
 41…接続構造体
 42…第1の接続対象部材
 42a…第1の電極
 43…第2の接続対象部材
 43a…第2の電極
 44…接続部
 81…電子部品装置
 82…第1のセラミック部材
 83…第2のセラミック部材
 84…接合部
 84B…ガラス
 85…電子部品
 86…リードフレーム
 R…内部空間

Claims (12)

  1.  5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で樹脂粒子を加熱して示差走査熱量測定を行ったときに、発熱ピークが観察される、樹脂粒子。
  2.  前記発熱ピークのうち、最大のピーク面積を有する発熱ピークにおける発熱量が、2000mJ/mg以上25000mJ/mg以下である、請求項1に記載の樹脂粒子。
  3.  5℃/分の昇温速度で100℃から350℃まで大気雰囲気下で樹脂粒子を加熱して示差走査熱量測定を行ったときに、2000mJ/mg以上の吸熱量を有する吸熱ピークが観察されない、請求項1又は2に記載の樹脂粒子。
  4.  樹脂粒子を10%圧縮したときの圧縮弾性率と、200℃及び10分間の条件で加熱した樹脂粒子を10%圧縮したときの圧縮弾性率との差の絶対値が、180N/mm以上である、請求項1~3のいずれか1項に記載の樹脂粒子。
  5.  スペーサに用いられるか、電子部品用接着剤に用いられるか、導電部を有する導電性粒子を得るために用いられるか、又は、積層造形用材料に用いられる、請求項1~4のいずれか1項に記載の樹脂粒子。
  6.  スペーサとして用いられるか、又は、表面上に導電部が形成されることで、前記導電部を有する導電性粒子を得るために用いられる、請求項1~5のいずれか1項に記載の樹脂粒子。
  7.  請求項1~6のいずれか1項に記載の樹脂粒子と、
     前記樹脂粒子の表面上に配置された導電部とを備える、導電性粒子。
  8.  導電性粒子を10%圧縮したときの圧縮弾性率と、200℃及び10分間の条件で加熱した導電性粒子を10%圧縮したときの圧縮弾性率との差の絶対値が、180N/mm以上である、請求項7に記載の導電性粒子。
  9.  前記導電部の外表面上に配置された絶縁性物質をさらに備える、請求項7又は8に記載の導電性粒子。
  10.  前記導電部の外表面に突起を有する、請求項7~9のいずれか1項に記載の導電性粒子。
  11.  導電性粒子と、バインダー樹脂とを含み、
     前記導電性粒子が、請求項1~6のいずれか1項に記載の樹脂粒子と、前記樹脂粒子の表面上に配置された導電部とを備える、導電材料。
  12.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、
     前記導電性粒子が、請求項1~6のいずれか1項に記載の樹脂粒子と、前記樹脂粒子の表面上に配置された導電部とを備え、
     前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。
PCT/JP2020/011870 2019-03-19 2020-03-18 樹脂粒子、導電性粒子、導電材料及び接続構造体 WO2020189697A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020538868A JP7411553B2 (ja) 2019-03-19 2020-03-18 樹脂粒子、導電性粒子、導電材料及び接続構造体
CN202080022618.1A CN113614142A (zh) 2019-03-19 2020-03-18 树脂粒子、导电性粒子、导电材料及连接结构体
US17/440,023 US11884782B2 (en) 2019-03-19 2020-03-18 Resin particles, conductive particles, conductive material and connection structure
KR1020217029565A KR20210144695A (ko) 2019-03-19 2020-03-18 수지 입자, 도전성 입자, 도전 재료 및 접속 구조체
JP2023217633A JP2024038074A (ja) 2019-03-19 2023-12-25 樹脂粒子、導電性粒子、導電材料及び接続構造体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019050770 2019-03-19
JP2019-050770 2019-03-19
JP2019224683 2019-12-12
JP2019-224683 2019-12-12

Publications (1)

Publication Number Publication Date
WO2020189697A1 true WO2020189697A1 (ja) 2020-09-24

Family

ID=72520160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011870 WO2020189697A1 (ja) 2019-03-19 2020-03-18 樹脂粒子、導電性粒子、導電材料及び接続構造体

Country Status (6)

Country Link
US (1) US11884782B2 (ja)
JP (2) JP7411553B2 (ja)
KR (1) KR20210144695A (ja)
CN (1) CN113614142A (ja)
TW (1) TW202045626A (ja)
WO (1) WO2020189697A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025114A1 (ja) * 2019-08-08 2021-02-11 積水化学工業株式会社 樹脂粒子、導電性粒子、導電材料及び接続構造体
KR102535911B1 (ko) 2022-08-12 2023-05-30 오컴퍼니 주식회사 활성도막이 형성된 솔더 입자, 이를 포함한 접속용 필름을 제조하기 위한 혼합물 및 접속용 필름

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347877A (ja) * 1990-05-31 1991-02-28 Toray Ind Inc エポキシ系球状粒子状接着剤及びその製造方法
WO2006080247A1 (ja) * 2005-01-25 2006-08-03 Fujikura Kasei Co., Ltd. 導電性ペースト
JP2011063761A (ja) * 2009-09-18 2011-03-31 Sekisui Chem Co Ltd 発泡粒子、発泡性組成物、及び、発泡成形体の製造方法
JP2012124035A (ja) * 2010-12-08 2012-06-28 Nippon Shokubai Co Ltd 樹脂粒子およびこれを用いた絶縁化導電性粒子並びに異方性導電材料
WO2014189028A1 (ja) * 2013-05-23 2014-11-27 積水化学工業株式会社 導電材料及び接続構造体
JP2016183300A (ja) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 熱硬化性粉体塗料、熱硬化性粉体塗料の製造方法、塗装品、及び塗装品の製造方法
WO2018016138A1 (ja) * 2016-07-19 2018-01-25 ダイセル・エボニック株式会社 ポリアミド粒子及びその製造方法、樹脂組成物並びに成形品
JP2018142552A (ja) * 2018-06-07 2018-09-13 デクセリアルズ株式会社 異方性導電フィルム、接続方法、接合体、及び接合体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6040773B2 (ja) 2010-11-15 2016-12-07 日産化学工業株式会社 熱硬化樹脂軟質化粒子
EP2744860B1 (en) * 2011-08-18 2021-02-24 Blue Cube IP LLC Curable resin compositions
US8802989B2 (en) 2012-03-26 2014-08-12 Sekisui Chemical Co., Ltd. Conductive material and connection structure
JP5854248B1 (ja) * 2015-05-27 2016-02-09 東洋インキScホールディングス株式会社 導電性接着剤、ならびにそれを用いた導電性接着シートおよび電磁波シールドシート
JP2019019248A (ja) * 2017-07-19 2019-02-07 住友ベークライト株式会社 熱硬化性樹脂組成物
WO2021025114A1 (ja) 2019-08-08 2021-02-11 積水化学工業株式会社 樹脂粒子、導電性粒子、導電材料及び接続構造体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347877A (ja) * 1990-05-31 1991-02-28 Toray Ind Inc エポキシ系球状粒子状接着剤及びその製造方法
WO2006080247A1 (ja) * 2005-01-25 2006-08-03 Fujikura Kasei Co., Ltd. 導電性ペースト
JP2011063761A (ja) * 2009-09-18 2011-03-31 Sekisui Chem Co Ltd 発泡粒子、発泡性組成物、及び、発泡成形体の製造方法
JP2012124035A (ja) * 2010-12-08 2012-06-28 Nippon Shokubai Co Ltd 樹脂粒子およびこれを用いた絶縁化導電性粒子並びに異方性導電材料
WO2014189028A1 (ja) * 2013-05-23 2014-11-27 積水化学工業株式会社 導電材料及び接続構造体
JP2016183300A (ja) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 熱硬化性粉体塗料、熱硬化性粉体塗料の製造方法、塗装品、及び塗装品の製造方法
WO2018016138A1 (ja) * 2016-07-19 2018-01-25 ダイセル・エボニック株式会社 ポリアミド粒子及びその製造方法、樹脂組成物並びに成形品
JP2018142552A (ja) * 2018-06-07 2018-09-13 デクセリアルズ株式会社 異方性導電フィルム、接続方法、接合体、及び接合体の製造方法

Also Published As

Publication number Publication date
JPWO2020189697A1 (ja) 2020-09-24
US20220213279A1 (en) 2022-07-07
TW202045626A (zh) 2020-12-16
US11884782B2 (en) 2024-01-30
CN113614142A (zh) 2021-11-05
KR20210144695A (ko) 2021-11-30
JP2024038074A (ja) 2024-03-19
JP7411553B2 (ja) 2024-01-11

Similar Documents

Publication Publication Date Title
JP5559947B1 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP2024038074A (ja) 樹脂粒子、導電性粒子、導電材料及び接続構造体
JPWO2019194135A1 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
WO2021025114A1 (ja) 樹脂粒子、導電性粒子、導電材料及び接続構造体
JP2015187983A (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP2014026971A (ja) 導電性粒子、導電材料及び接続構造体
WO2021025112A1 (ja) 樹脂粒子、導電性粒子、導電材料及び接続構造体
WO2021025113A1 (ja) 樹脂粒子、導電性粒子、導電材料及び接続構造体
JP5996806B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2017063033A (ja) 導電性粒子、導電フィルム、接続構造体及び接続構造体の製造方法
JP2022022293A (ja) 導電性粒子、導電材料及び接続構造体
JP2015187984A (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP7348839B2 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JP2021055034A (ja) 樹脂粒子、導電性粒子、導電材料及び接続構造体
JP6357413B2 (ja) 導電材料及び接続構造体
JP2020200458A (ja) 粒子、導電性粒子、導電材料及び接続構造体
TWI804485B (zh) 絕緣被覆導電粒子、各向異性導電膜、各向異性導電膜的製造方法、連接結構體及連接結構體的製造方法
WO2021182617A1 (ja) 導電性粒子、導電材料及び接続構造体
WO2023136204A1 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JPWO2019194134A1 (ja) 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
JP2023007156A (ja) 樹脂粒子、導電性粒子、導電材料及び接続構造体
JPWO2019194133A1 (ja) 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
JPWO2020009238A1 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP6333610B2 (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP2019114510A (ja) 異方性導電フィルム、その硬化物およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020538868

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774540

Country of ref document: EP

Kind code of ref document: A1