WO2020189655A1 - 培養システム、培養装置、および多層培養容器操作装置 - Google Patents

培養システム、培養装置、および多層培養容器操作装置 Download PDF

Info

Publication number
WO2020189655A1
WO2020189655A1 PCT/JP2020/011606 JP2020011606W WO2020189655A1 WO 2020189655 A1 WO2020189655 A1 WO 2020189655A1 JP 2020011606 W JP2020011606 W JP 2020011606W WO 2020189655 A1 WO2020189655 A1 WO 2020189655A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
layer
culture vessel
multilayer
layer culture
Prior art date
Application number
PCT/JP2020/011606
Other languages
English (en)
French (fr)
Inventor
忠 片岡
孝文 中西
俊彰 森
田中 利明
松村 嘉之
Original Assignee
四国計測工業株式会社
大成建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020022171A external-priority patent/JP7478546B2/ja
Application filed by 四国計測工業株式会社, 大成建設株式会社 filed Critical 四国計測工業株式会社
Priority to EP20773518.4A priority Critical patent/EP3943587A4/en
Priority to SG11202110211SA priority patent/SG11202110211SA/en
Priority to KR1020217033532A priority patent/KR20210142682A/ko
Priority to CN202080022335.7A priority patent/CN113614218A/zh
Priority to CA3134092A priority patent/CA3134092A1/en
Priority to US17/440,542 priority patent/US20220154122A1/en
Publication of WO2020189655A1 publication Critical patent/WO2020189655A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/10Rotating vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • C12M37/02Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/44Means for regulation, monitoring, measurement or control, e.g. flow regulation of volume or liquid level
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Definitions

  • the present invention provides a culture system, a culture method, and a culture method, in which cells can be cultured using a multi-layer culture container containing a plurality of trays, and the multi-layer culture container can be operated in the same space as the cell culture.
  • the present invention relates to a multi-layer culture vessel operating device.
  • the multi-layer culture vessel When cell culture is performed using a multi-layer culture vessel, the multi-layer culture vessel is operated to fill the multi-layer culture vessel with a culture solution, the multi-layer culture vessel is placed in the incubator to perform cell culture, and after the cell culture, the multi-layer culture is performed. An operation of operating the container to discharge the culture solution from the multi-layer culture container, further operating the multi-layer culture container to fill the multi-layer culture container with a release solution such as trypsin, and shaking the multi-layer culture container. After the cells are detached, the multi-layer culture vessel is operated to recover the exfoliating solution such as trypsin containing cells from the multi-layer culture vessel.
  • the present invention by performing the operation of the multi-layer culture vessel, the cell observation, and the cell culture in a series in the same space, the burden on the operator can be suppressed, the adverse effect due to the temperature change can be prevented, and the contamination can be prevented. It is an object of the present invention to provide a culture system, a culture apparatus, and a multi-layer culture vessel operating apparatus capable of effectively preventing the above.
  • the culture system has a housing for accommodating a multi-layer culture container containing a plurality of trays in an internal space, and an operation unit for operating the multi-layer culture container while being contained in the internal space.
  • the multi-layer culture vessel communicates with the liquid feed pipe, and a fluid material is introduced into the multi-layer culture vessel from the outside of the housing via the liquid feed pipe, or the multi-layer culture vessel is introduced through the liquid feed pipe.
  • the fluid can be discharged from the inside to the outside of the housing.
  • the operation unit can be configured to have a rotating unit that rotates or swings the multilayer culture vessel.
  • the operation unit can be configured to have an opening / closing unit that opens / closes a communication passage between the liquid feeding pipe and the multilayer culture container.
  • an air filter is provided between the inside and the outside of the multi-layer culture container, and the operation unit has an opening / closing unit for opening / closing a communication passage between the air filter and the multi-layer culture container.
  • the housing has an insertion portion through which the liquid feeding pipe penetrates the housing, and a fluid material is introduced from the outside of the housing into the multilayer culture vessel via the insertion portion and the liquid feeding pipe. It can be configured to be introduced into the culture vessel or to discharge the fluid from the inside of the multilayer culture vessel to the outside of the housing.
  • the liquid delivery tube can be configured to be switchably connected to a plurality of containers or devices existing outside the housing.
  • a plurality of individual liquid delivery tubes communicating with the plurality of containers communicate with a common liquid delivery tube communicating with the multi-layer culture container, and the individual liquid delivery pipes or the individual feed tubes communicate with each other.
  • a valve is installed at the confluence of the liquid pipe and the common liquid feed pipe, and by controlling the valve, the communication state between the individual liquid feed pipe and the common liquid feed pipe can be controlled.
  • an observation device for imaging the inside of the multi-layer culture container can be further provided under the multi-layer culture container.
  • the culture apparatus includes a housing for accommodating a multi-layer culture container containing a plurality of trays in an internal space, and an operation unit for operating the multi-layer culture container while being contained in the internal space.
  • the multi-layer culture vessel is communicated with the liquid feed pipe, and the fluid material is introduced into the multi-layer culture container from the outside of the housing via the liquid feed pipe, or the multi-layer culture is carried out through the liquid feed pipe.
  • the fluid can be discharged from the inside of the container to the outside of the housing.
  • the operation unit can be configured to have a rotating unit that rotates or swings the multilayer culture vessel.
  • the operation unit can be configured to have an opening / closing unit for opening / closing a communication passage between the liquid feeding tube and the multi-layer culture container.
  • the multi-layer culture container operating device is a multi-layer culture container operating device that has an operating unit for operating a multi-layer culture container having a plurality of trays and is housed in a housing. It communicates with the liquid feed pipe in the housing, and the operation unit can operate the multi-layer culture container while the multi-layer culture container is housed in the housing, and the operation unit can operate the multi-layer culture container.
  • a fluid material is introduced into the multilayer culture vessel from the outside of the housing via the liquid feed pipe, or a fluid is introduced from the inside of the multilayer culture vessel via the liquid feed pipe to the outside of the housing. Can be discharged to.
  • the operating unit can be configured to have a rotating unit that rotates or swings the multi-layer culture container.
  • the rotating portion has a first rotation axis and a second rotation axis as rotation axes for rotating or swinging the multi-layer culture container, and the first rotation axis and the second rotation.
  • the rotating portion can be configured to be configured such that the shaft is a rotating shaft that passes through the multilayer culture vessel.
  • the operating unit can be configured to have an opening / closing unit for opening / closing a communication passage between the liquid feeding pipe and the multi-layer culture container.
  • a liquid level sensor that detects the liquid level of the fluid material in the multi-layer culture container when the fluid material is introduced into the multi-layer culture container from the outside of the housing via the liquid feed pipe.
  • the liquid level sensor is a first liquid level sensor that detects whether or not the first water level indicating that a predetermined amount of the fluid material has been introduced in the multi-layer culture container has been reached. Having a second liquid level sensor that detects whether the fluid material has reached a second water level, which is a water level below the first water level and indicates that the volume of the fluid material is approaching a predetermined amount.
  • a second liquid level sensor that detects whether the fluid material has reached a second water level, which is a water level below the first water level and indicates that the volume of the fluid material is approaching a predetermined amount.
  • the burden on the operator can be suppressed, the adverse effect due to the temperature change can be prevented, and the adverse effect due to the temperature change can be prevented. Contamination can be effectively prevented.
  • FIG. 1 It is a block diagram which shows the structure of the culture system which concerns on 1st Embodiment. It is a perspective view which shows the culture apparatus which concerns on 1st Embodiment. It is a figure for demonstrating the multilayer culture container which concerns on 1st Embodiment. It is a figure for demonstrating the method of distributing a fluid material to each tray in a multi-layer culture vessel. It is a figure for demonstrating an example of the structure of an opening / closing part and a clamp. It is a flowchart which shows the method of cell culture which concerns on 1st Embodiment. It is a figure for demonstrating the rotation operation of the multilayer culture container which concerns on 1st Embodiment.
  • FIG. 1 is a block diagram showing the configuration of the culture system 1 according to the first embodiment
  • FIG. 2 is a perspective view showing the culture apparatus 10 according to the first embodiment
  • the culture system 1 according to the first embodiment includes a culture device 10 that houses a multi-layer culture container 12, and liquid feed pumps 20 and 70 that feed a culture solution or a stripping solution such as trypsin. It has a flow meter 30 for measuring the flow rate of a stripping solution such as a culture solution or trypsin, containers 40, 50, 80 for supplying or collecting a stripping solution such as a culture solution or trypsin, and a centrifuge device 60. There is.
  • each configuration is communicated via the liquid feeding tubes 3a to 3g, and the culture solution or the stripping solution such as trypsin is fed by the valves 2a to 2d.
  • the flow path (liquid supply pipe 3a to 3g) can be switched.
  • the valves 2a to 2d may be switched manually by the operator or automatically by a machine.
  • the culture apparatus 10 includes a housing 11, a multi-layer culture container 12, a liquid feed pipe 13, an operation unit 14, an insertion unit 15, a temperature control unit 16, and a gas concentration. It has an adjusting unit 171, a pH adjusting unit 172, a control unit 18, and an input unit 19.
  • the culture apparatus 10 houses the multilayer culture container 12 in the internal space S of the housing 11.
  • the housing 11 can be opened and closed, but is used in a closed state when culturing cells.
  • the size of the internal space S of the housing 11 is not particularly limited, but as will be described later, the size of the multilayer culture vessel 12 is set so that the multilayer culture vessel 12 can be rotated or swung by the operation unit 14. Designed accordingly.
  • FIG. 3A is a perspective view for explaining the multilayer culture vessel 12 according to the first embodiment, and is a schematic view of the multilayer culture vessel 12 as viewed from the left side to the right side shown in FIG. Further, FIG. 3 (B) is a cross-sectional schematic view of the multilayer culture vessel 12 along IIIB-IIIB of FIG. 3 (A), and FIG. 3 (C) is a multilayer view of the multilayer culture vessel 12 along IIIC-IIIC of FIG. 3 (A). It is sectional drawing of the culture container 12. In FIG. 3A, the description of the wall portion 1211 of the tray 121 is omitted for convenience of explanation. As shown in FIGS.
  • the multilayer culture vessel 12 has a configuration in which a plurality of trays 121 are stacked in order to efficiently culture cells. Further, as shown in FIG. 3A, each tray 121 of the multilayer culture container 12 has holes at two of the four corners. As a result, in the multilayer culture vessel 12, as shown in FIG. 3A, the plurality of trays 121 are spatially communicated with each other, and the liquid feeding pipe 13 and the connecting portion 123 are connected via the connecting portion 122. It communicates spatially with the air filter 133 via the air filter 133.
  • a clamp 131 is provided in the portion of the liquid feed tube 13 near the connection portion 122 of the multi-layer culture vessel 12, and by opening the clamp 131, the inside of the multi-layer culture vessel 12 is provided via the liquid feed pipe 13.
  • a stripping solution such as a culture solution or trypsin can be introduced, or a stripping solution such as a culture solution or trypsin can be discharged from the multilayer culture vessel 12.
  • the multilayer culture vessel 12 communicates with the air filter 133 via the connecting portion 123.
  • the air filter 133 is a filter that allows air to pass through but blocks the contamination of bacteria into the multilayer culture vessel 12, and is arranged between the inside and the outside of the multilayer culture vessel 12.
  • the clamp 132 also exists between the air filter 133 and the connection portion 123, and by controlling the opening and closing of the clamp 132, it is possible to take in and discharge air into the multilayer culture vessel 12. ..
  • the multi-layer culture container 12 When cell culture is performed using the multi-layer culture container 12, for example, the multi-layer culture container 12 is counterclockwise so that the multi-layer culture container 12 changes from the state shown in FIG. 3 (C) to the state shown in FIG. 4 (A). Rotate it about 90 °. Then, the clamp 131 and the clamp 132 were opened, and the cells were suspended in the multilayer culture vessel 12 via the liquid feed pipe 13 in a state where the air in the multilayer culture vessel 12 could be discharged to the outside from the air filter 133. Introduce the culture medium. Next, after closing the clamp 132 and rotating the multilayer culture vessel 12 clockwise by about 180 °, when the multilayer culture vessel 12 is returned upright as shown in FIG. 4 (B), each tray of the multilayer culture vessel 12 is returned.
  • FIG. 4 is a diagram for explaining a method of distributing the fluid material to each tray 121 in the multilayer culture vessel 12.
  • FIG. 4 (A) is a cross-sectional schematic view of the multilayer culture vessel 12 along IIIC-IIIC of FIG. 3 (A), similarly to FIG. 3 (C), and FIG. 4 (B) is FIG. 3 (B). Similar to B), it is a cross-sectional schematic view of the multilayer culture vessel 12 along IIIB-IIIB of FIG. 3 (A).
  • the culture solution is discharged from the multi-layer culture container 12, and a stripping solution such as trypsin is applied to the multi-layer culture container in order to detach the cells adhering to the bottom surface of each tray 121 of the multi-layer culture container 12.
  • a stripping solution introduction treatment such as trypsin to be introduced into 12
  • a stripping solution recovery treatment such as trypsin for recovering the stripping solution such as trypsin containing the stripped cells from the multilayer culture vessel 12 are performed.
  • Multi-layer culture is also used in the treatment of these fluid materials (including exfoliation solutions such as pre-culture solution and lipsin solution; the same applies hereinafter) and fluids (post-culture solution and exfoliation solutions such as trypsin containing exfoliated cells). It is necessary to perform work of introducing or discharging the fluid material by rotating or rocking the container 12 and work of opening and closing the clamps 131 and 132.
  • the multilayer culture vessel 12 containing the culture solution and the stripping solution such as trypsin is heavy, and the burden on the operator increases.
  • the multi-layer culture container 12 is damaged and cell culture cannot be continued.
  • a liquid feeding tube is attached to the multi-layer culture container 12 outside the culture device (for example, a commercially available dedicated culture device) to form a multi-layer.
  • the multilayer culture vessel 12 After operating the culture vessel 12 to fill the multilayer culture vessel 12 with the culture solution, the multilayer culture vessel 12 is put into the culture apparatus, and the multilayer culture vessel 12 is taken out from the culture apparatus and attached to the multilayer culture vessel 12. Work was being carried out to replace the tube and operate the multilayer culture vessel 12. However, by attaching or replacing the liquid feed tube to the multilayer culture vessel 12 outside the culture apparatus, the temperature inside the multilayer culture vessel 12 may change, which may have an adverse effect.
  • the multilayer culture vessel 12 is housed in the internal space S of the housing 11, and the multilayer culture vessel 12 is not taken out from the internal space S. While the multi-layer culture container 12 is housed in the internal space S, a culture solution or a stripping solution such as trypsin is introduced into the multi-layer culture container 12 via the liquid feed tube 13, and the multi-layer culture container is introduced via the liquid supply tube 13.
  • the structure is such that a culture solution or a stripping solution such as trypsin can be discharged from No. 12.
  • the multi-layer culture container 12 is housed in the internal space S of the housing 11, and the liquid supply pipe 13 is connected to the connection portion 122 of the multi-layer culture container 12 in the internal space S. Attached, the liquid feeding tube 13 and the multilayer culture vessel 12 are communicated with each other. Further, the liquid feed pipe 13 is connected to the liquid feed pipe 3a outside the housing 11 via an insertion portion 15 provided in the wall portion of the housing 11.
  • the insertion portion 15 is not particularly limited as long as it has a structure for connecting the inside and the outside of the housing 11, and may be, for example, a hole having the same diameter as the outer circumference of the liquid feeding pipe 13. In this case, by inserting the liquid feed pipe 13 through the insertion portion 15, the portion of the liquid feed pipe 13 outside the housing 11 constitutes the liquid feed pipe 3a.
  • the culture device 10 has an operation unit 14 for operating the multi-layer culture container 12.
  • the operation unit 14 has a rotation unit 141 capable of holding the multilayer culture container 12 and a drive unit 142 for rotationally driving the rotation unit 141.
  • two axes of rotation axes X1 and X2 are provided.
  • a rotation operation is performed to rotate the rotating portion 141 around the above.
  • the rotation axis X1 is a rotation axis extending in the X-axis direction, whereby the multilayer culture vessel 12 held by the rotation unit 141 and the rotation unit 141 is rotated in the roll direction R. Can be done.
  • the rotation axis X2 is a rotation axis extending in the Y-axis direction, whereby the multilayer culture vessel 12 held by the rotation portion 141 and the rotation portion 141 can be rotated in the pitch direction P.
  • the rotation in the roll direction R can be performed in the range of less than ⁇ 180 °, and in the present embodiment, the rotating portion 141 can be rotated in the roll direction R in the range of ⁇ 120 °.
  • the rotation in the pitch direction P can also be performed in a range of less than ⁇ 180 °, and in the present embodiment, the rotating portion 141 can be rotated in the roll direction R in a range of ⁇ 30 °.
  • the drive unit 142 has a first drive unit 1421 (power motor and / or air cylinder) that rotates the rotation unit 141 on the rotation shaft X1, and a second drive unit 142 that rotates the rotation unit 141 on the rotation shaft X2. It is equipped with a drive unit 1422 (power motor and / or air cylinder), which allows the rotating unit 141 to rotate on two axes.
  • the drive unit 142 of the operation unit 14 can also perform a swing operation in which the rotation unit 141 (multilayer culture vessel 12) is reciprocally rotated about the rotation axis X1 or the rotation axis X2.
  • the drive unit 142 reciprocates the rotating unit 141 (multilayer culture vessel 12) in the roll direction R within a range of ⁇ 120 ° around the rotating shaft X1 to perform a swinging operation around the rotating shaft X1. It can be carried out.
  • the drive unit 142 tilts the rotation unit 141 (multilayer culture container 12) forward (X-axis negative direction) above the rotation unit 141 (multilayer culture container 12) with the rotation axis X2 as the center, and then rotates the rotation unit 142.
  • the operation unit 14 has an opening / closing unit 143 that opens and closes the clamps 131 and 132 of the liquid feeding pipe 13.
  • FIG. 5 is a diagram for explaining an example of the structure of the opening / closing portion 143 and the clamp 131.
  • the opening / closing portion 143 can push a pressing member such as a piston toward the liquid feed pipe 13 side by a drive unit such as an air cylinder, an electric cylinder, or a solenoid, and the liquid feed pipe is formed by the extruded piston and the fixed portion of the clamp 131. By sandwiching the 13, the flow path of the liquid feeding pipe 13 can be closed.
  • the pushing member such as the extruded piston is pushed back to the opposite side to the liquid feeding pipe 13 by the driving unit such as an air cylinder, an electric cylinder, and a solenoid to open the liquid feeding pipe 13 and to open the liquid feeding pipe 13. It can be configured to open the flow path.
  • the opening / closing portion 143 is not limited to the above structure, and a known structure can be applied. Further, a plurality of structures that perform the same operation as the clamp 131 and the opening / closing portion 143 can be provided and used for venting.
  • the multilayer culture vessel 12 is rotated by the rotating portion 141, and the liquid feeding pipe 13 and the clamp 131 are also rotated accordingly.
  • the opening / closing portion 143 is also rotatably provided by the rotating portion 141. ing. Further, the opening / closing portion 143 for opening / closing the clamp 132 may have the same mechanism as the 143 for opening / closing the clamp 131.
  • the temperature adjusting unit 16 adjusts the temperature in the internal space S of the housing 11.
  • the culture apparatus 10 according to the present embodiment has an input unit 19 outside the housing 11, and an operator can operate the input unit 19 to set the temperature of the internal space S of the housing 11. ..
  • the set temperature input by the input unit 19 is transmitted to the temperature adjusting unit 16 via the control unit 18.
  • the temperature adjusting unit 16 adjusts the temperature in the internal space S so that the temperature in the internal space S becomes the set temperature.
  • the gas concentration adjusting unit 171 includes a gas concentration sensor that measures the gas concentration of carbon dioxide or the like in the internal space S of the housing 11. Further, the gas concentration adjusting unit 171 is connected to a gas supply unit provided outside the housing 11 to introduce a gas such as carbon dioxide into the internal space S based on the measurement result of the gas concentration sensor, and is inside. The gas concentration in the space S is adjusted to the gas concentration set by the operator via the input unit 19. As a result, a gas such as carbon dioxide gas having an appropriate concentration can be supplied into the multilayer culture vessel 12. Further, instead of the configuration in which the gas supply unit is provided outside the housing 11, the gas concentration adjusting unit 171 may be provided with the gas supply unit (the gas supply unit is provided inside the housing 11).
  • the pH adjusting unit 172 adjusts the pH of the culture solution or the like filled in the multilayer culture vessel 12.
  • the pH adjusting unit 172 includes a pH sensor for measuring the pH of the fluid material filled in the multilayer culture container 12, and is connected to a gas supply unit (not shown) provided outside the housing 11. Based on the measurement result of the pH sensor, the inside of the multilayer culture vessel 12 can be adjusted to the pH set by the operator via the input unit 19.
  • the input unit 19 inputs an instruction by the operator and transmits the input instruction to the control unit 18.
  • the input unit 19 may be a button such as a switch, or may be a touch panel that also serves as a display.
  • the control unit 18 controls the operations of the operation unit 14, the temperature adjustment unit 16, and the pH adjustment unit 172 based on the instructions of the operator input from the input unit 19. Further, the control unit 18 operates the valves 2a to 2d, the opening / closing unit 143, the liquid feeding pumps 20 and 70, and the centrifuge device 60 based on the instruction of the operator from the input unit 19. The operation can be controlled.
  • the liquid feed pump 20 is connected to the liquid feed pipe 13 and the multilayer culture vessel 12 housed inside the culture apparatus 10 via the liquid feed pipe 3a. Further, the liquid feed pump 20 is connected to the containers 40 and 50 and the centrifuge device 60 via the liquid feed pipes 3b to 3e. Then, the liquid feed pump 20 feeds the culture solution or a stripping solution such as trypsin from the containers 40 and 50 to the multilayer culture vessel 12, and also transfers the culture solution or the stripping solution such as trypsin from the multilayer culture vessel 12 to the containers 40 and 50. Is liquid-fed.
  • the amount of the culture solution or the stripping solution such as trypsin that is fed by the liquid feed pump 20 is measured by the flow meter 30, and the liquid feed pump 20 automatically or manually feeds based on the measurement result of the flow meter 30.
  • the liquid can be stopped.
  • a culture solution in which cells are suspended is placed in a container 40 and prepared.
  • a liquid feeding pipe 3c is attached to the container 40, and the container 40 and the multilayer culture container 12 can be connected or disconnected by opening and closing the valve 2a provided in the vicinity of the container 40.
  • the culture solution can be introduced from the container 40 into the multi-layer culture container 12 by the liquid feed pump 20.
  • the culture solution is fed from the multi-layer culture container 12 to the container 40 by the liquid feed pump 20, and can be collected in the container 40.
  • a stripping solution such as trypsin is put in the container 50 and prepared.
  • a liquid feeding pipe 3d is attached to the container 50, and the container 50 and the multilayer culture container 12 can be connected or disconnected by opening and closing the valve 2b provided in the vicinity of the container 50.
  • the liquid feed pump 20 can introduce a stripping solution such as trypsin from the container 50 into the multilayer culture container 12.
  • the centrifuge device 60 centrifuges a stripping solution such as trypsin containing the cultured cells after the cell stripping treatment, and separates the cultured cells from the stripping solution such as trypsin.
  • a liquid feed pipe 3e is attached to the centrifuge device 60, and the centrifuge device 60 and the multilayer culture vessel 12 are connected or disconnected by opening and closing a valve 2c provided in the vicinity of the centrifuge device 60. can do.
  • the exfoliating solution such as trypsin containing cultured cells can be introduced into the centrifuge device 60 from the multi-layer culture vessel 12 by the liquid feed pump 20.
  • the centrifuge device 60 may be configured such that the operation is automatically controlled by the control unit 18, or the operator may manually operate the centrifuge device 60.
  • the centrifuge device 60 is connected to the liquid feeding pump 70 and the container 80 via the liquid feeding pipes 3f and 3g. After centrifuging and cleaning the stripping solution such as trypsin with the centrifuge device 60, the valve 2c is closed and the valve 2d is opened, so that the liquid feed pump 70 is used to centrifuge the trypsin. The cells separated and collected from the stripping solution such as the above can be collected in the container 80.
  • FIG. 6 is a flowchart showing a cell culture method according to the first embodiment.
  • FIG. 7 is a diagram for explaining the rotational operation of the multilayer culture vessel 12 according to the first embodiment. In FIG. 7, for convenience of explanation, only the multilayer culture vessel 12 and the operation unit 14 are shown, and the other configurations are omitted.
  • step S101 a process of introducing the culture solution into the multilayer culture container 12 is performed. Specifically, first, the operator prepares a container 40 containing a culture solution in which cells are suspended, attaches a liquid feed pipe 3c to the container 40, and opens a valve 2a. Next, the operator operates the input unit 19 to open the clamp 131 of the liquid feed pipe 13 by the opening / closing unit 143, and communicates the container 40 and the multilayer culture container 12. Further, the clamp 132 is opened so that the air in the multilayer culture vessel 12 can be discharged from the air filter 133. Then, the operator operates the input unit 19 from the state shown in FIG. 7 (A) or the state shown in FIG.
  • the operation unit 14 of the culture apparatus 10 controls FIG. 7 (B) or FIG.
  • the multilayer culture vessel 12 is rotated by about 90 ° so that the connecting portion 122 of the multilayer culture vessel 12 is located on the lower side and the connecting portion 123 is located on the upper side.
  • the operator operates the liquid feed pump 20 to introduce the culture liquid from the container 40 into the multi-layer culture container 12.
  • the amount of the culture solution introduced from the container 40 into the multi-layer culture container 12 is measured by the flow meter 30, and the liquid feed pump 20 is the liquid feed pump 20 when the feed of the culture solution is completed. End the operation.
  • the clamp 132 is closed to protect the air filter 133 from the culture solution.
  • the operator operates the input unit 19 and the operation unit 14 sets the multi-layer culture container 12 at 180 ° as shown in FIG. 7 (C). Rotate it so that the connecting portion 122 of the multilayer culture vessel 12 is located on the upper side and the connecting portion 123 is located on the lower side, and then the multilayer culture vessel 12 is erected as shown in FIG. 7 (D). As a result, as shown in FIG. 4 (B), the culture medium in which the cells are suspended can be distributed to each tray 121. Then, a process of closing the valve 2a and the clamp 131 is performed.
  • step S102 cell culture is performed.
  • the operator can preset the temperature of the internal space S of the housing 11 by the input unit 19, and the temperature adjusting unit 16 is inside the housing 11 so as to have the temperature set by the operator. Adjust the temperature of the space S.
  • the worker can culture the cells by statically culturing or shaking culturing the multi-layer culture vessel 12 containing the culture solution in which the cells are suspended in the internal space S of the housing 11 for a predetermined time. it can.
  • step S103 the culture solution is collected.
  • the operator causes the operation unit 14 to open the clamps 131 and 132, and as shown in FIG. 7B or FIG. 4A, opens the multilayer culture vessel 12. Rotate. Further, the operator communicates the container 40 and the multi-layer culture container 12 with the valve 2a open, and then causes the liquid feed pump 20 to send the culture solution from the multi-layer culture container 12 to the container 40. As a result, the culture solution is collected in the container 40, and the cultured cells adhere to the tray 121 of the multilayer culture container 12 and remain.
  • step S104 a process of introducing a stripping solution such as trypsin into the multilayer culture vessel 12 is performed in order to strip the cells adhering to the tray 121.
  • the operator closes the valve 2a while the clamps 131 and 132 are open, and opens the valve 2b near the container 50 containing the release liquid such as trypsin to open the container 50 and the multilayer culture container. Communicate with 12.
  • the operator introduces a stripping solution such as trypsin into the multilayer culture vessel 12 by the liquid feeding pump 20 via the liquid feeding pipes 3d, 3b, 3a and the liquid feeding pipe 13.
  • the operator operates the input unit 19 as shown in FIGS. 7A to 7D in the same manner as in step S101 to operate the operation unit 14.
  • the rotating unit 141 on the driving unit 142 of the above the rotating operation of rotating the multilayer culture vessel 12 is performed.
  • step S105 a cell exfoliation process is performed.
  • the operator can operate the input unit 19 to input an instruction to cause the operation unit 14 to swing the multi-layer culture vessel 12.
  • the rotating portion 141 is used to move the multilayer culture vessel 12 in the first direction (for example, right direction) and the second direction (for example, left direction) about the first rotation axis X1 or the second rotation axis X2.
  • the operation program is programmed to swing the multilayer culture vessel 12 back and forth.
  • this operation program when switching from the rotation operation in the first direction to the rotation operation in the second direction and when switching from the rotation operation in the second direction to the rotation operation in the first direction, It has a stop mode for stopping the movement of the multilayer culture vessel 12 for a specified time.
  • the stop mode even if the swinging motion is performed at a speed faster than the movement of the liquid in the container, the swinging motion is stopped for a specified time when the direction of the rotation motion is switched, so that the liquid in the container causes the swinging motion. It is possible to reliably apply a shearing force to the cells attached to the tray 121 to promote the cells to separate from the tray 121.
  • it is important to shake the container at high speed but the problem of liquid movement delay (time lag) that occurs when the container is shaken at high speed is solved. It is possible.
  • a centrifugation process is performed. Specifically, the operator operates the input unit 19 to cause the operation unit 14 to rotate the multilayer culture vessel 12 so that the connection unit 122 is on the lower side and open the clamps 131 and 132. Further, the operator operates the input unit 19 to open the valve 2c in the vicinity of the centrifuge device 60 to communicate the multilayer culture vessel 12 and the centrifuge device 60. Then, the worker introduces the exfoliating liquid such as trypsin containing the exfoliated cells into the centrifuge device 60 through the liquid feeding pipe 13 and the liquid feeding pipes 3a, 3b, 3e by the liquid feeding pump 20. .. Further, the operator operates the centrifuge device 60 to centrifuge the exfoliating solution such as trypsin containing cells, and separate the cultured cells from the exfoliating solution such as trypsin.
  • the exfoliating liquid such as trypsin containing cells
  • the centrifuge device 60 can use a device composed of a service tank, a continuous centrifuge device, a culture solution supply tank, a cell recovery bag, a waste liquid recovery bag, a pump, and the like.
  • a process for collecting the cultured cells is performed.
  • the operator can collect the cultured cells precipitated by the centrifuge device 60.
  • the operator closes the valve 2c, opens the valve 2d, and communicates the centrifuge device 60 and the container 80, so that the cells separated from the centrifuge device 60 into the container 80 by the liquid feed pump 70 are separated.
  • the suspended culture solution is pumped and collected.
  • the housing 11 that houses the multi-layer culture container 12 containing a plurality of trays 121 in the internal space S and the temperature adjusting unit that adjusts the temperature of the internal space S
  • the multi-layer culture container 12 has an operation unit 14 for operating the multi-layer culture container 12 while being housed in the internal space S, and the multi-layer culture container 12 communicates with the liquid feed pipe 13 and is communicated with the liquid feed pipe 13.
  • the culture solution or a stripping solution such as trypsin can be introduced into the multilayer culture vessel 12 from the outside of the housing 11, or the culture solution can be discharged from the inside of the multilayer culture vessel 12 to the outside of the housing 11 via the liquid feed pipe 13. it can.
  • the operation of the multi-layer culture container 12 and the cell culture can be continuously performed in the same space. Therefore, each time the multi-layer culture container 12 is operated, the multi-layer culture container 12 is taken out from the incubator and the multi-layer culture is performed. The labor of the worker who accommodates the container 12 in the incubator can be saved, and the burden on the worker can be reduced. Further, since it is not necessary to replace the liquid feeding tube 13 outside the incubator, it is possible to effectively prevent a temperature change that adversely affects the cell culture. It should be noted that the series of operations so far can be automatically advanced without the intervention of an operator.
  • the culture system 1 by setting a plurality of systems, it is possible to perform cell culture, cell detachment, and collection of cultured cells using a plurality of multi-layer culture containers 12, which is a burden on the operator. Can be further reduced.
  • FIG. 8 is a perspective view of the culture system 1a according to the second embodiment
  • FIG. 9 is a perspective view showing the configuration of the culture system 1a according to the second embodiment in the housing 11a.
  • the culture system 1a according to the second embodiment has a point having an observation device 101, a point having two liquid level sensors 102 and 103, and a rotating part so that the rotating shaft X2 of the rotating part 141a passes through the multilayer culture vessel 12. It has the same configuration as the culture system 1 according to the first embodiment except that 141a is configured, and operates in the same manner as the culture system 1 according to the first embodiment. Note that, in FIGS. 8 and 9, for convenience of explanation, the fields of view of the observation device 101 and the liquid level sensors 102 and 103 are shown (the same applies to FIG. 10 described later).
  • the space S in the housing 11a is divided into two, an upper accommodating portion 111 and a lower accommodating portion 112, by the partition plate 113.
  • the culture apparatus 10a including the multi-layer culture vessel 12 is accommodated in the upper accommodating portion 111, and the observation device 101 is accommodated in the lower accommodating portion 112.
  • Part or all of the partition plate 113 is made of a translucent material (translucent resin or glass), and at the position of the translucent material, the observation device 101 housed in the lower accommodating portion 112 , It is possible to observe the inside of the multilayer culture vessel 12 housed in the upper storage part 111.
  • the observation device 101 includes a camera 1011, a camera first drive unit 1012, a camera second drive unit 1013, and a lens 1014.
  • the camera 1011 is, for example, a CCD camera or a CMOS camera, and is arranged under the multilayer culture vessel 12 via the lens 1014, and images the inside of the bottom surface of the tray 121 of the multilayer culture vessel 12 from the underside of the multilayer culture vessel 12. It is installed to do.
  • the captured image (including the moving image) captured by the observation device 101 is transmitted to a display device (not shown) and displayed to the operator on the display device.
  • the multilayer culture vessel 12 is held by the rotating portion 141a, and as shown in FIG.
  • FIG. 10 is a perspective view of the configuration inside the housing 11a of the culture system 1a according to the second embodiment as viewed from below, and is an observation for observing the cells in the multilayer culture vessel 12 with the observation device 101. It is a figure which shows the culture system 1a at a position.
  • the camera 1011 is connected to the camera first drive unit 1012, and the camera 1011 can be linearly moved in a predetermined first direction.
  • the camera second drive unit 1013 is connected to the camera first drive unit 1012, and the camera 1011 can be linearly moved in the second direction orthogonal to the first direction together with the camera first drive unit 1012. It has become. That is, the camera 1011 can be freely moved in the two-dimensional direction by the camera first drive unit 1012 and the camera second drive unit 1013. Therefore, the operator can observe the culture state from the notch 1412 at the desired position.
  • the position of the camera 1011 in the two-dimensional direction can be instructed by an operator inputting the camera 1011 via the input unit 19.
  • a lighting device (not shown) may be installed on the opposite side of the camera 1011 with the multilayer culture container 12 interposed therebetween.
  • the illuminance of the multilayer culture vessel 12 can be increased and the state of the cultured cells can be imaged with appropriate brightness.
  • the culture system 1a has a first liquid level sensor 102 and a second liquid level sensor 103 as shown in FIGS. 8 and 9.
  • a fluid material such as a culture solution or a stripping solution such as trypsin
  • an appropriate amount of the fluid material is added to the multilayer culture vessel 12 (for culture). It is a sensor for judging whether or not it has been introduced up to the required predetermined amount), has a camera such as CCD or CMOS, and the fluid material is placed in the multilayer culture vessel 12 based on the image (or moving image) of the camera. Detecting that an appropriate amount has been introduced, the control unit 18 outputs a signal for stopping the introduction of the fluid material into the multilayer culture vessel 12.
  • the first liquid level sensor 102 and the second liquid level sensor 103 are fixed to the inner wall of the housing 11a and installed so as to image the liquid level of the fluid material introduced into the multilayer culture vessel 12. ..
  • the fluid material is introduced into the multilayer culture vessel 12 with the multilayer culture vessel 12 tilted at approximately 90 degrees by the rotating portion 141a.
  • the second liquid level sensor 103 is located near the second water level slightly below the first water level at which the fluid material is in an appropriate amount in the multilayer culture vessel 12.
  • the second liquid level sensor 103 detects that the amount of the exfoliating liquid such as the culture solution or trypsin is close to an appropriate amount, and transmits a signal to the control unit 18. To do.
  • the control unit 18 determines that the fluid material is close to an appropriate amount, and controls the operation of the liquid feed pump 20 so as to reduce the inflow amount of the fluid material.
  • the first liquid level sensor 102 images the vicinity of the first water level where the fluid material is an appropriate amount. Then, when the water level of the fluid material reaches the first water level at which the fluid material becomes an appropriate amount, the first liquid level sensor 102 detects that the fluid material is an appropriate amount and transmits a signal to the control unit 18. ..
  • the control unit 18 receives the signal from the first liquid level sensor 102, it determines that the amount of the fluid material has reached an appropriate level, and opens and closes the valves 2a to 2d and opens and closes the opening and closing unit 143 so as to stop the inflow of the fluid material. The operation and the operation of the liquid feed pump 20 are controlled.
  • the configuration of the rotating portion 141a is different from the configuration of the rotating portion 141 according to the first embodiment. That is, in the rotating portion 141 according to the first embodiment, as shown in FIG. 2, the rotating shaft X2 for rotating the multilayer culture vessel 12 in the pitch direction P is configured to pass through the rotating portion 141, and the multilayer culture vessel 12 rotates around the rotation axis X2 in the pitch direction P.
  • the rotating unit 141a includes the first driving unit 1421 that rotates the multilayer culture vessel 12 in the roll direction R, and the multilayer culture vessel 12.
  • a second drive unit 1422 is provided to rotate in the pitch direction P, and the second drive unit 1422 is installed so that the rotation axis X2 of the second drive unit 1422 passes through the multilayer culture vessel 12.
  • the second drive unit 1422 is arranged on the side surface side of the multilayer culture vessel 12 as shown in FIGS. 9 and 10, whereby the multilayer culture vessel 12 is provided by the rotation axis X2 passing through the multilayer culture vessel 12. Can be rotated in the pitch direction P.
  • the multilayer culture vessel 12 can be rotated at a wider angle. That is, in the culture system 1 according to the first embodiment, the second drive unit 1422 could only rotate the multilayer culture vessel 12 around the rotation axis X2 within a range of ⁇ 30 ° in the pitch direction P, but the second In the culture system 1a according to the embodiment, the second drive unit 1422 rotates the multilayer culture vessel 12 around the rotation axis X2 by 90 ° or more in the pitch direction P (specifically, the pitch direction P in the clockwise direction in FIG. 9). As a result, it is possible to swing the multilayer culture vessel 12 in a state where the multilayer culture vessel 12 is rotated by 90 °. As for the first drive unit 1421, the multilayer culture vessel 12 is rotated in the roll direction R about the rotation axis X1 passing through the multilayer culture vessel 12 as in the first embodiment.
  • the culture system 1a has an observation device 101 under the multi-layer culture container 12 that images the inside from the bottom surface of the tray 121 of the multi-layer culture container 12.
  • the operator can appropriately grasp the culture state of the cells in the multilayer culture vessel 12 without removing the multilayer culture vessel 12 from the housing 11a.
  • the bottom surface 1411 of the rotating portion 141a has a plurality of cutouts 1412, and the observation device 101 uses the cutouts 1412 to form cells inside the bottom surface of the tray 121 of the multilayer culture vessel 12. The condition can be observed.
  • the second drive unit 1422 so that the rotation axis X2 of the second drive unit 1422 that rotates the multi-layer culture container 12 in the pitch direction P passes through the multi-layer culture container 12. is set up.
  • the space required for rotation is increased by the distance, and the size of the entire culture system 1 is also increased.
  • the distance between the rotation axis X2 for rotating the multilayer culture vessel 12 in the pitch direction P and the multilayer culture vessel 12 is short, the space required for the rotation of the multilayer culture vessel 12 can be reduced. Therefore, the size of the entire culture system 1 can be reduced accordingly.
  • the culture system 1 including the culture device 10 and the culture device 10 is exemplified as the embodiment of the culture device and the culture system according to the present invention, but as the multi-layer culture container operating device according to the present invention, As shown in FIG. 7, it is also possible to provide an apparatus having an operation unit 14 used for the culture apparatus 10.
  • the configuration in which the culture apparatus 10 includes the temperature adjusting unit 16, the gas concentration adjusting unit 171 and the pH adjusting unit 172 is exemplified, but the present invention is not limited to this configuration, and the temperature adjusting unit 16 and the gas concentration are not limited to this configuration.
  • the configuration may include any one or two of the adjusting unit 171 and the pH adjusting unit 172.
  • the valves 2a to 2c are installed on the individual liquid feed pipes (liquid feed pipes 3c to 3e) communicating with the containers 40, 50, and 80, respectively, and the valves 2a
  • the communication state between the individual liquid feeding pipes (liquid feeding pipes 3c to 3g) and the common liquid feeding pipes (liquid feeding pipes 3a, 3b, 13) is controlled to be open or closed.
  • the configuration is not limited to this, and for example, a valve is installed at the confluence of the individual liquid feed pipes (liquid feed pipes 3c to 3 g) and the common liquid feed pipes (liquid feed pipes 3a, 3b).
  • the configuration using the camera sensor is exemplified as the liquid level sensors 102 and 103, but the configuration is not limited to this configuration, and an ultrasonic type, a capacitance type, or a pressure type liquid level sensor may be used. It can also be used, and it is preferable to use a capacitance type liquid level sensor.
  • the liquid level sensor is attached to a predetermined position (a position where the first water level and the second water level can be measured) of the rotating portion 141 to perform multi-layer culture. Even if the container 12 is replaced, it can be determined whether the fluid material has reached the first water level or the second water level in the multilayer culture container 12.
  • the liquid level sensors 102 and 103 are used to determine whether the exfoliating liquid such as the culture solution or trypsin has reached the first water level or the second water level.
  • the culture solution and the stripping solution such as trypsin can be injected to different water levels.
  • the water level of the culture solution is monitored by the first liquid level sensor 102 and the second liquid level sensor 103
  • the water level of the stripping liquid such as trypsin is monitored by the first liquid level sensor 102 and the second liquid level sensor 103. It can be configured to be monitored by the third liquid level sensor and the fourth liquid level sensor, which are different from the above.
  • the fourth liquid level sensor determines whether the stripping solution such as trypsin has reached the fourth water level slightly below the third water level at which the amount of the stripping solution such as trypsin is appropriate in the multilayer culture vessel 12, and the second solution is determined.
  • the three-liquid level sensor can be configured to determine whether the release liquid such as trypsin has reached the third water level.
  • the fluid level sensor for recovering the fluid material from the multilayer culture vessel 12 and determining that the multilayer culture vessel 12 is empty may be further provided.
  • Input unit 101 ... Observation device 1011 ... Camera 1012 ... Camera 1st drive unit 1013 ... Camera 2nd drive unit 1014 ... Lens 102 ... First liquid level sensor 103... Second liquid level sensor 20... Liquid feed pump 30... Flow meter 40... Container (for supply / recovery of culture solution) 50 ... Container (for supplying stripping liquid such as trypsin) 60 ... Centrifugator 70 ... Liquid transfer pump 80 ... Container (for cell collection) 2a to 2d ... Valve 3a to 3g ... Liquid supply pipe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

課題:多層培養容器の操作と培養とを同一空間内で一連して行うことで、作業者の負担を抑えることができるとともに、温度変化による培養への影響を有効に防止することができる、培養システムおよび培養装置を提供する。 解決手段:複数のトレイ121を内蔵する多層培養容器12を内部空間Sに収容する筐体11と、多層培養容器12を内部空間Sに収容したままの状態で操作する操作部14と、を有し、多層培養容器12は送液管13と連通しており、送液管13を介して筐体11外部から流体材料を多層培養容器内12に導入、または、送液管13を介して多層培養容器12内から流体を筐体11外部に排出することができる培養システム。

Description

培養システム、培養装置、および多層培養容器操作装置
 本発明は、複数のトレイを内蔵する多層培養容器を用いて細胞を培養することができ、かつ、細胞培養と同一空間内で多層培養容器を操作することもできる、培養システム、培養方法、および多層培養容器操作装置に関する。
 従来、小型で効率よく大量の細胞を培養するために、複数のトレイを積層した多層培養容器を用いて細胞培養を行う技術が知られている(たとえば特許文献1参照)。また、このように多層培養容器を用いて細胞培養を行う場合に、作業者の負担を軽減するため、培養液などを多層培養容器に導入または多層培養容器から回収する際に多層培養容器を保持し回転させるハンドリング操作を行う装置が知られている(特許文献2参照)。
特開2016-103984号公報 特開2015-505472号公報
 多層培養容器を用いて細胞培養を行う場合には、多層培養容器を操作して多層培養容器に培養液を充填し、培養器に多層培養容器を入れて細胞培養を行い、細胞培養後に多層培養容器を操作して多層培養容器から培養液を排出し、さらに、細胞剥離のために多層培養容器を操作して多層培養容器にトリプシン等の剥離液を充填し、多層培養容器を揺動する操作をして細胞剥離を行い、細胞剥離後に多層培養容器を操作して多層培養容器から細胞を含むトリプシン等の剥離液を回収するという一連の作業が行われる。
 しかしながら、このような作業は作業者の負担が多いため、上述した特許文献2のように、多層培養容器のハンドリング操作を行う装置が知られているが、ハンドリング操作のためには一定の広さの空間が必要となり、コストの面から、ハンドリング操作は培養器の外で行われることが多かった。しかしながら、培養液やトリプシン等の剥離液を多層培養容器に充填及び排出する際や、多層培養容器内の細胞を顕微鏡で観察する際、細胞を含むトリプシン等の剥離液を多層培養容器から回収する際に、多層培養容器を培養器の外へと取り出してしまうと、温度が低下することによる細胞培養への影響や、多層培養装置に繋ぐ送液管を切り替える作業などによりコンタミネーションを引き起こすおそれがあるため、多層培養容器を培養器の中に入れたままの状態で、多層培養容器の操作と細胞培養とを同一空間内において一連で行うことができる装置が望まれていた。
 本発明は、多層培養容器の操作と細胞観察と細胞培養とを同一空間内で一連して行うことで、作業者の負担を抑えることができるとともに、温度変化による悪影響を防止し、またコンタミネーションを有効に防止することができる、培養システム、培養装置、および多層培養容器操作装置を提供することを目的とする。
 本発明に係る培養システムは、複数のトレイを内蔵する多層培養容器を内部空間に収容する筐体と前記多層培養容器を前記内部空間に収容したままの状態で操作する操作部と、を有し、前記多層培養容器は送液管と連通しており、前記送液管を介して筐体外部から流体材料を前記多層培養容器内に導入、または、前記送液管を介して前記多層培養容器内から流体を筐体外部に排出することができる。
 上記培養システムにおいて、前記操作部は、前記多層培養容器を回転または揺動させる回転部を有するように構成することができる。
 上記培養システムにおいて、前記操作部は、前記送液管と前記多層培養容器との連通路の開閉を行う開閉部を有するように構成することができる。
 上記培養システムにおいて、前記多層培養容器の内部と外部との間にエアフィルタを有し、前記操作部は、前記エアフィルタと前記多層培養容器との連通路の開閉を行う開閉部を有するように構成することができる。
 上記培養システムにおいて、前記筐体は、前記送液管が筐体を貫通する挿通部を有し、前記挿通部および前記送液管を介して、筐体外部から流体材料を前記多層培養容器内に導入、または、前記多層培養容器内から流体を筐体外部へと排出するように構成することができる。
 上記培養システムにおいて、前記送液管が筐体外部に存在する複数の容器または装置に切り替え可能に接続するように構成することができる。
 上記培養システムにおいて、前記複数の容器にそれぞれ連通する複数の個別送液管が、前記多層培養容器と連通する共通送液管と連通しており、前記個別送液管上、または、前記個別送液管と前記共通送液管との合流地点に弁が設置されており、当該弁を制御することで、前記個別送液管と前記共通送液管との連通状態が制御可能となっているように構成することができる。
 上記培養システムにおいて、前記多層培養容器の下側に、前記多層培養容器の内部を撮像する観察装置をさらに有するように構成することができる。
 本発明に係る培養装置は、複数のトレイを内蔵する多層培養容器を内部空間に収容する筐体と、前記多層培養容器を前記内部空間に収容したままの状態で操作する操作部と、を有し、前記多層培養容器は送液管と連通しており、前記送液管を介して筐体外部から流体材料を前記多層培養容器内に導入、または、前記送液管を介して前記多層培養容器内から流体を筐体外部に排出することができる。
 上記培養装置において、前記操作部は、前記多層培養容器を回転または揺動させる回転部を有するように構成することができる。
 上記培養装置において、前記操作部は、前記送液管と前記多層培養容器との連通路開閉を行う開閉部を有するように構成することができる。
 本発明に係る多層培養容器操作装置は、複数のトレイを内蔵する多層培養容器を操作する操作部を有し、筐体内に収容される多層培養容器操作装置であって、前記多層培養容器は、前記筐体内において送液管と連通しており、前記操作部は、前記筐体内に前記多層培養容器を収容したままの状態で、前記多層培養容器を操作可能であり、前記操作部により前記多層培養容器を操作することで、前記送液管を介して筐体外部から流体材料を前記多層培養容器内に導入、または、前記送液管を介して前記多層培養容器内から流体を筐体外部に排出することができる。
 上記多層培養容器操作装置において、前記操作部は、前記多層培養容器を回転または揺動させる回転部を有するように構成することができる。
 上記多層培養容器操作装置において、前記回転部は、前記多層培養容器を回転または揺動させる回転軸として、第1回転軸および第2回転軸を有し、前記第1回転軸および前記第2回転軸が前記多層培養容器を通過する回転軸となるように、前記回転部が構成されるように構成することができる。
 上記多層培養容器操作装置において、前記操作部は、前記送液管と前記多層培養容器との連通路開閉を行う開閉部を有するように構成することができる。
 上記多層培養容器操作装置において、前記送液管を介して筐体外部から流体材料を前記多層培養容器内に導入する際に、前記多層培養容器における前記流体材料の液面を検知する液面センサーをさらに有するように構成することができる。
 上記多層培養容器操作装置において、前記液面センサーは、前記多層培養容器において前記流体材料が所定量導入されたことを示す第1水位まで到達したかを検知する第1液面センサー、または、前記第1水位よりも下側の水位であり、前記流体材料の容量が所定量に近づいていることを示す第2水位まで前記流体材料が到達したかを検知する第2液面センサーを有するように構成することができる。
 本発明によれば、多層培養容器の操作と細胞培養とを同一空間内で一連して行うことができるため、作業者の負担を抑えることができるとともに、温度変化による悪影響を防止し、また、コンタミネーションを有効に防止することができる。
第1実施形態に係る培養システムの構成を示すブロック図である。 第1実施形態に係る培養装置を示す斜視図である。 第1実施形態に係る多層培養容器を説明するための図である。 多層培養容器における各トレイへの流体材料の分配方法を説明するための図である。 開閉部およびクランプの構造の一例を説明するための図である。 第1実施形態に係る細胞培養の方法を示すフローチャートである。 第1実施形態に係る多層培養容器の回転動作を説明するための図である。 第2実施形態に係る培養システムの斜視図である。 第2実施形態に係る培養システムの筐体内の構成を示す斜視図である。 第2実施形態に係る培養システムの筐体内の構成を下側から見た斜視図である。
 本発明に係る培養システム、培養装置、および多層培養容器操作装置の実施形態を図に基づいて説明する。
 《第1実施形態》
 図1は、第1実施形態に係る培養システム1の構成を示すブロック図であり、図2は、第1実施形態に係る培養装置10を示す斜視図である。第1実施形態に係る培養システム1は、図1に示すように、多層培養容器12を収容する培養装置10と、培養液またはトリプシン等の剥離液を液送する送液ポンプ20、70と、培養液またはトリプシン等の剥離液の流量を計測する流量計30と、培養液またはトリプシン等の剥離液を供給または回収するための容器40,50,80と、遠心分離装置60とを有している。
 また、培養システム1は、図1に示すように、各構成が送液管3a~3gを介して連通しているとともに、バルブ2a~2dにより培養液またはトリプシン等の剥離液が液送される流路(送液管3a~3g)を切換可能となっている。なお、バルブ2a~2dの切り替えは、作業者が手動で行う構成としてもよいし、機械により自動で切り換えを行う構成としてもよい。
 培養装置10は、図1および図2に示すように、筐体11と、多層培養容器12と、送液管13と、操作部14と、挿通部15と、温度調整部16と、ガス濃度調整部171と、pH調整部172と、制御部18と、入力部19とを有する。図2に示すように、培養装置10は、筐体11の内部空間S内に多層培養容器12を収容している。筐体11は、開閉可能とすることができるが、細胞培養を行う際は密閉状態で使用される。筐体11の内部空間Sの大きさは、特に限定されないが、後述するように、操作部14により多層培養容器12を回転または揺動させることができるように、多層培養容器12の大きさに応じて適宜設計される。
 ここで、第1実施形態に係る多層培養容器12について説明する。図3(A)は、第1実施形態に係る多層培養容器12を説明するための斜視図であり、多層培養容器12を、図2に示す左側から右側に向けて見た概要図である。また、図3(B)は、図3(A)のIIIB-IIIBに沿う多層培養容器12の断面概要図であり、図3(C)は、図3(A)のIIIC-IIICに沿う多層培養容器12の断面概要図である。なお、図3(A)では、説明の便宜のため、トレイ121の壁部1211の記載は省略している。多層培養容器12は、細胞を効率良く培養するために、図3(A)~(C)に示すように、複数のトレイ121が積層された構成となっている。また、多層培養容器12の各トレイ121には、図3(A)に示すように、四隅のうち二隅に、孔がそれぞれ開けられている。これにより、多層培養容器12は、図3(A)に示すように、複数のトレイ121がそれぞれ空間的に連通するとともに、接続部122を介して送液管13と、また、接続部123を介してエアフィルタ133とそれぞれ空間的に連通している。さらに、送液管13のうち多層培養容器12の接続部122に近い部分にはクランプ131が設けられており、クランプ131を開くことで、送液管13を介して、多層培養容器12内に培養液やトリプシン等の剥離液を導入し、あるいは、多層培養容器12内から培養液やトリプシン等の剥離液を排出することができる。また、多層培養容器12は、接続部123を介してエアフィルタ133と連通している。エアフィルタ133は、空気を通過させるが、多層培養容器12への細菌の混入を遮断するフィルタであり、多層培養容器12の内部と外部との間に配置されている。本実施形態では、エアフィルタ133と接続部123との間にもクランプ132が存在し、クランプ132の開閉を制御することで、多層培養容器12への空気の取り込みや排出が可能となっている。
 多層培養容器12を用いて細胞培養を行う場合、たとえば、多層培養容器12が図3(C)に示す状態から図4(A)に示す状態となるように、多層培養容器12を、反時計回りに90°ほど回転させる。そして、クランプ131およびクランプ132を開き、エアフィルタ133から多層培養容器12内の空気を外部へと排出可能とした状態で、送液管13を介して多層培養容器12内に細胞を懸濁した培養液を導入する。次いで、クランプ132を閉じて、多層培養容器12を時計回りで180°ほど回転した後に、図4(B)に示すように、多層培養容器12を直立に戻すと、多層培養容器12の各トレイ121に培養液が分配される。そして、クランプ131を閉じ、各トレイ121で細胞培養が行われる。細胞培養時は、クランプ132も閉じた状態のままとされる(多層培養容器12の種類によっては、クランプ132を開けた状態で培養することもできる。)。なお、図4は、多層培養容器12における各トレイ121への流体材料の分配方法を説明するための図である。また、図4(A)は、図3(C)と同様に、図3(A)のIIIC-IIICに沿う多層培養容器12の断面概要図であり、図4(B)は、図3(B)と同様に、図3(A)のIIIB-IIIBに沿う多層培養容器12の断面概要図である。
 また、細胞培養後には、培養液を多層培養容器12から排出する培養液排出処理、多層培養容器12の各トレイ121の底面に付着した細胞を剥離するためにトリプシン等の剥離液を多層培養容器12に導入するトリプシン等の剥離液導入処理、および剥離した細胞を含むトリプシン等の剥離液を多層培養容器12から回収するトリプシン等の剥離液回収処理が行われる。これら流体材料(培養前の培養液やリプシン液などの剥離液を含む。以下同様。)や流体(培養後の培養液や剥離した細胞を含むトリプシン等の剥離液)の処理においても、多層培養容器12を回転または揺動するなどして流体材料を導入または排出する作業や、クランプ131,132を開閉する作業が必要となる。
 作業者が手作業で多層培養容器12を操作する場合、培養液やトリプシン等の剥離液を含む多層培養容器12は重く、作業者の負担が増大してしまう。また、手作業のために、作業にばらつきが生じてしまう場合や、不必要に作業者が多層培養容器12に触れることで多層培養容器を破損してしまい細胞培養が継続できなくなる場合もある。また、多層培養容器12の回転や揺動には一定の広さが必要とされるため、培養装置(たとえば市販の培養専用装置)の外で、多層培養容器12に送液管を取り付け、多層培養容器12を操作して多層培養容器12に培養液を充填してから多層培養容器12を培養装置に入れ、また、多層培養容器12を培養装置から取り出して、多層培養容器12に取り付ける送液管を取り換えて、多層培養容器12を操作する作業が行われていた。しかしながら、培養装置の外において多層培養容器12への送液管の取り付けや取り換えを行うことで、多層培養容器12の内部の温度等が変化し悪影響を与えるおそれがあった。
 このような問題を解決するために、本実施形態に係る培養装置10では、筐体11の内部空間S内に多層培養容器12を収容し、多層培養容器12を内部空間Sから取り出すことなく、多層培養容器12を内部空間Sに収容した状態のまま、送液管13を介して多層培養容器12に培養液またはトリプシン等の剥離液を導入、および、送液管13を介して多層培養容器12から培養液またはトリプシン等の剥離液を排出することができる構成とされる。具体的には、本実施形態に係る培養装置10では、筐体11の内部空間Sに多層培養容器12を収容し、内部空間S内において多層培養容器12の接続部122に送液管13を取り付け、送液管13と多層培養容器12とを連通する。また、送液管13は、筐体11の壁部に設けられた挿通部15を介して、筐体11外部の送液管3aと接続している。なお、挿通部15は、筐体11の内部と外部とを接続する構造であれば特に限定されず、たとえば送液管13の外周と同径の孔とすることができる。この場合、挿通部15に送液管13を挿通させることで、送液管13の筐体11外部の部分が送液管3aを構成することとなる。
 また、培養装置10は、多層培養容器12を操作するために操作部14を有する。操作部14は、多層培養容器12を保持可能な回転部141と、回転部141を回転駆動させる駆動部142とを有しており、図2に示すように、回転軸X1,X2の2軸を中心として、回転部141を回転させる回転動作を行う。回転軸X1は、図2に示すように、X軸方向に延在する回転軸であり、これにより、回転部141および回転部141に保持された多層培養容器12をロール方向Rに回転させることができる。また、回転軸X2は、Y軸方向に延在する回転軸であり、これにより、回転部141および回転部141に保持された多層培養容器12をピッチ方向Pに回転させることができる。なお、回転動作において、ロール方向Rの回転は、±180°未満の範囲で可能であり、本実施形態においては、±120°の範囲で回転部141をロール方向Rに回転させることができる。また、ピッチ方向Pの回転も、±180°未満の範囲で可能であり、本実施形態においては、±30°の範囲で回転部141をロール方向Rに回転させることができる。なお、本実施形態において、駆動部142は、回転部141を回転軸X1で回転させる第1駆動部1421(電力モーターおよび/またはエアシリンダー)と、回転部141を回転軸X2で回転させる第2駆動部1422(電力モーターおよび/またはエアシリンダー)とを備えており、これにより、回転部141を2軸で回転させることができる。
 さらに、操作部14の駆動部142は、回転部141(多層培養容器12)を回転軸X1または回転軸X2を中心として往復回転させる揺動動作を行うこともできる。たとえば、駆動部142は、回転部141(多層培養容器12)を回転軸X1を中心としてロール方向Rに±120°の範囲で往復回転させることで、回転軸X1を中心とした揺動動作を行うことができる。また、駆動部142は、回転部141(多層培養容器12)を回転軸X2を中心として、回転部141(多層培養容器12)の上方を前方(X軸負方向)に傾けた後に、回転部141(多層培養容器12)の下方を前方(X軸負方向)に傾くように、ピッチ方向Pに±30°の範囲で往復回転させることで、回転軸X2を中心とした揺動動作を行うこともできる。
 また、操作部14は、送液管13のクランプ131,132を開閉する開閉部143を有している。ここで、図5は、開閉部143およびクランプ131の構造の一例を説明するための図である。開閉部143は、たとえば、ピストンなど押圧部材を、エアシリンダー、電動シリンダー、ソレノイドなどの駆動部で送液管13側に押し出すことができ、押し出したピストンとクランプ131の固定部とで送液管13を挟み込むことで、送液管13の流路を閉じる構造とすることができる。また、この場合、押し出したピストンなど押圧部材を、エアシリンダー、電動シリンダー、ソレノイドなどの駆動部で送液管13と反対側に押し戻すことで、送液管13を開放し、送液管13の流路を開ける構成とすることができる。なお、開閉部143は、上記の構造に限定されず、公知の構造を適用することができる。また、クランプ131および開閉部143と同様の動作を行う構造を複数設けて、ベントに用いることもできる。なお、本実施形態において、多層培養容器12は、回転部141により回転動作し、それに付随して送液管13およびクランプ131も回転するため、開閉部143も回転部141により回転可能に設けられている。また、クランプ132を開閉するための開閉部143も、クランプ131を開閉するための143と同様の機構とすることができる。
 温度調整部16は、筐体11の内部空間S内の温度を調整する。本実施形態に係る培養装置10は、筐体11外部に入力部19を有しており、作業者が入力部19を操作して、筐体11の内部空間Sの温度を設定することができる。入力部19により入力された設定温度は、制御部18を介して、温度調整部16に送信される。温度調整部16は、入力部19により温度が設定されると、内部空間S内が設定温度となるように、内部空間S内の温度を調整する。
 ガス濃度調整部171は、筐体11の内部空間S内の炭酸ガスなどのガス濃度を測定するガス濃度センサーを備える。また、ガス濃度調整部171は、筐体11の外部に設けたガス供給部と接続することで、ガス濃度センサーの測定結果に基づいて炭酸ガスなどのガスを内部空間S内に導入し、内部空間S内のガス濃度を、入力部19を介して作業者により設定されたガス濃度に調整する。これにより、多層培養容器12内に適切な濃度の炭酸ガスなどのガスを供給することができる。また、ガス供給部を筐体11の外部に備える構成に代えて、ガス濃度調整部171がガス供給部を備える(筐体11内部にガス供給部を備える)構成とすることもできる。
 pH調整部172は、多層培養容器12に充填された培養液等のpHを調整する。たとえば、pH調整部172は、多層培養容器12に充填された流体材料のpHを測定するpHセンサーを備えるとともに、筐体11の外部に設けたガス供給部(不図示)と接続しており、pHセンサーの測定結果に基づいて、多層培養容器12内を、入力部19を介して作業者により設定されたpHに調整することができる。
 入力部19は、作業者により指示が入力され、入力された指示を制御部18に送信する。入力部19は、スイッチなどのボタンであってもよいし、ディスプレイを兼用するタッチパネルであってもよい。
 制御部18は、入力部19から入力された作業者の指示に基づいて、操作部14、温度調整部16、およびpH調整部172の動作を制御する。また、制御部18は、入力部19からの作業者の指示に基づいて、バルブ2a~2dの開閉動作や、開閉部143の動作、送液ポンプ20,70の動作、および遠心分離装置60の動作を制御することができる。
 次いで、培養装置10以外の構成について説明する。送液ポンプ20は、送液管3aを介して培養装置10内部に収容された送液管13および多層培養容器12と接続している。また、送液ポンプ20は、送液管3b~3eを介して、容器40,50および遠心分離装置60と接続している。そして、送液ポンプ20は、容器40,50から培養液またはトリプシン等の剥離液を多層培養容器12に液送するとともに、多層培養容器12から容器40,50に培養液またはトリプシン等の剥離液を液送する。送液ポンプ20により液送される培養液またはトリプシン等の剥離液の量は流量計30により計測されており、送液ポンプ20は、流量計30の計測結果に基づいて、自動または手動で送液を停止することができる。
 また、細胞培養のために、容器40には、細胞を懸濁した培養液が入れられて準備される。容器40には送液管3cが取り付けられ、容器40近傍に設けたバルブ2aを開閉することで、容器40と多層培養容器12とを接続または切断することができる。たとえば、細胞培養を行う場合には、バルブ2aを開いた状態とすることで、送液ポンプ20により、容器40から培養液を多層培養容器12へと導入することができる。また、細胞培養後には、バルブ2aを開いた状態とすることで、送液ポンプ20により、多層培養容器12から容器40へと培養液が液送され、容器40に回収することができる。
 また、細胞回収のために、容器50には、トリプシン等の剥離液が入れられて準備される。容器50には送液管3dが取り付けられ、容器50近傍に設けたバルブ2bを開閉することで、容器50と多層培養容器12とを接続または切断することができる。たとえば、細胞回収を行う場合には、バルブ2bを開いた状態とすることで、送液ポンプ20により、容器50からトリプシン等の剥離液を多層培養容器12へと導入することができる。
 遠心分離装置60は、細胞剥離処理をした後の培養細胞を含むトリプシン等の剥離液を遠心分離し、培養細胞とトリプシン等の剥離液とを分離する。本実施形態において、遠心分離装置60には送液管3eが取り付けられて、遠心分離装置60近傍に設けたバルブ2cを開閉することで、遠心分離装置60と多層培養容器12とを接続または切断することができる。細胞剥離処理後に、バルブ2cを開いた状態とすることで、送液ポンプ20により、多層培養容器12から培養細胞を含むトリプシン等の剥離液を遠心分離装置60へと導入することができる。なお、遠心分離装置60は、制御部18により動作を自動制御する構成としてもよいし、作業者が手動で動作させる構成とすることもできる。
 また、本実施形態では、遠心分離装置60は、送液管3f,3gを介して、送液ポンプ70および容器80と接続している。遠心分離装置60でトリプシン等の剥離液の遠心分離及び洗浄を行った後に、バルブ2cを閉じた状態とし、バルブ2dを開いた状態とすることで、送液ポンプ70により、遠心分離装置でトリシプン等の剥離液から分離回収した細胞を容器80に回収することができる。
 次に、第1実施形態に係る培養システム1を用いた細胞培養方法について説明する。図6は、第1実施形態に係る細胞培養方法を示すフローチャートである。また、図7は、第1実施形態に係る多層培養容器12の回転動作を説明するための図である。なお、図7においては、説明の便宜のため、多層培養容器12および操作部14のみを記載し、その他の構成は記載を省略している。
 図6に示すように、まず、ステップS101では、培養液を多層培養容器12に導入する処理が行われる。具体的には、まず、作業者は、細胞を懸濁した培養液が入れられた容器40を用意し、容器40に送液管3cを取り付け、バルブ2aを開ける。次いで、作業者は、入力部19を操作して、開閉部143により送液管13のクランプ131を開き、容器40と多層培養容器12とを連通する。また、クランプ132を開きエアフィルタ133から多層培養容器12内の空気を排出できるようにする。そして、作業者は、図7(A)に示す状態または図3(C)に示す状態から、入力部19を操作することで、培養装置10の操作部14により、図7(B)または図4(A)に示すように、多層培養容器12の接続部122が下側に位置し、接続部123が上側に位置するように多層培養容器12を90°ほど回転させる回転動作を行わせる。また、作業者は、送液ポンプ20を動作させて、容器40から多層培養容器12へと培養液を導入する。容器40から多層培養容器12へと導入される培養液の液量は、流量計30により計測されており、送液ポンプ20は、培養液の送液が終了した場合に、送液ポンプ20の動作を終了する。培養液の送液が終了すると、クランプ132が閉じられ、エアフィルタ133を培養液から保護する。また、作業者は、多層培養容器12に培養液が導入された後は、入力部19を操作して、操作部14により、図7(C)に示すように、多層培養容器12を180°ほど回転させて、多層培養容器12の接続部122が上側に位置し、接続部123が下側に位置するようにしてから、図7(D)に示すように、多層培養容器12を直立させることで、図4(B)に示すように、各トレイ121に細胞を懸濁した培養液を分配することができる。そして、バルブ2aおよびクランプ131を閉じる処理が行われる。
 ステップS102では、細胞培養が行われる。たとえば、作業者は、入力部19により筐体11の内部空間Sの温度を予め設定することができ、温度調整部16は、作業者により設定された温度となるように、筐体11の内部空間Sの温度を調整する。そして、作業者は、細胞が懸濁された培養液を含む多層培養容器12を、所定時間、筐体11の内部空間Sにて静置培養あるいは振盪培養することで、細胞を培養させることができる。
 ステップS103では、培養液の回収が行われる。たとえば、作業者は、入力部19を操作することで、操作部14により、クランプ131、132を開かせるとともに、図7(B)または図4(A)に示すように、多層培養容器12を回転させる。また、作業者は、バルブ2aを開いた状態として、容器40と多層培養容器12とを連通させた後に、送液ポンプ20により、多層培養容器12から容器40へと培養液を液送させる。これにより、培養液が容器40に回収され、培養された細胞が多層培養容器12のトレイ121に付着して残る。
 ステップS104では、トレイ121に付着する細胞を剥離するため、トリプシン等の剥離液を多層培養容器12に導入する処理が行われる。具体的には、作業者は、クランプ131,132が開いた状態のまま、バルブ2aを閉じ、トリプシン等の剥離液が入った容器50近傍のバルブ2bを開くことで、容器50と多層培養容器12とを連通させる。そして、作業者は、送液ポンプ20により、送液管3d,3b,3aおよび送液管13を介して、トリプシン等の剥離液を多層培養容器12に導入する。トリプシン等の剥離液を多層培養容器12に導入する場合、作業者は、ステップS101と同様に、図7(A)~(D)に示すように、入力部19を操作して、操作部14の駆動部142に回転部141を回転させることで、多層培養容器12を回転させる回転動作を行わせる。
 ステップS105では、細胞剥離処理が行われる。たとえば、作業者は、入力部19を操作して指示を入力することで、操作部14に、多層培養容器12を揺動させる動作を行わせることができる。また、細胞剥離処理では、回転部141により多層培養容器12を第1回転軸X1または第2回転軸X2を中心として第1の方向(たとえば右方向)および第2の方向(たとえば左方向)に多層培養容器12を往復揺動させるよう、操作プログラムにプログラムされている。また、この操作プログラムでは、第1の方向への回転動作から第2の方向への回転動作へ切り替わる際および第2の方向への回転動作から第1の方向への回転動作へ切り替わる際に、指定された時間、多層培養容器12の移動を停止させる停止モードを備えている。停止モードを備えることにより、容器内の液体の移動よりも早い速度で揺動動作を行っても、回転動作の方向切り換え時に揺動動作を指定時間だけ停止させることで、容器内の液体によって、トレイ121に付着している細胞に確実に剪断力を加えて細胞がトレイ121から剥離することを促進することが可能となる。細胞剥離処理を効果的に行うためには、容器を高速に揺動させることが重要であるが、容器を高速に揺動させた際に生じる液体の移動の遅れ(タイムラグ)の課題を解消することが可能である。
 ステップS106では、遠心分離処理が行われる。具体的には、作業者は、入力部19を操作して、操作部14に、多層培養容器12を接続部122が下側となるように回転させるとともに、クランプ131、132を開かせる。また、作業者は、入力部19を操作することで、遠心分離装置60近傍にあるバルブ2cを開き、多層培養容器12と遠心分離装置60とを連通させる。そして、作業者は、送液ポンプ20により、送液管13および送液管3a,3b,3eを通過して、剥離された細胞を含むトリプシン等の剥離液を遠心分離装置60へと導入する。さらに、作業者は、遠心分離装置60を動作させて、細胞を含むトリプシン等の剥離液の遠心分離を行い、培養した細胞とトリプシン等の剥離液とを分離させる。
 ステップS107では、遠心分離装置60はサービスタンク、連続遠心分離装置、培養液供給タンク、細胞回収バッグ、廃液回収バッグ及びポンプ等により構成される装置を用いることができる。培養細胞を回収する処理が行われる。たとえば、作業者は、遠心分離装置60により沈殿した培養細胞を回収することができる。また、作業者は、バルブ2cを閉じて、バルブ2dを開き、遠心分離装置60と容器80とを連通することで、送液ポンプ70により、遠心分離装置60から容器80へと分離した細胞を懸濁した培養液を液送させて回収する。
 以上のように、第1実施形態に係る培養システム1では、複数のトレイ121を内蔵する多層培養容器12を内部空間Sに収容する筐体11と、内部空間Sの温度を調整する温度調整部16と、多層培養容器12を内部空間Sに収容したままの状態で操作する操作部14と、を有し、多層培養容器12は送液管13と連通しており、送液管13を介して筐体11外部から培養液またはトリプシン等の剥離液を多層培養容器12内に導入、または、送液管13を介して多層培養容器12内から培養液を筐体11外部に排出することができる。これにより、多層培養容器12の操作と細胞培養とを同一空間内で一連して行うことができるため、多層培養容器12の操作の度に培養器から多層培養容器12を取り出し、および、多層培養容器12を培養器に収容する作業者の手間を省くことができ、作業者の負担を軽減することができる。また、培養器の外で送液管13の取り換えなどを行わずに済むため細胞培養に悪影響のある温度変化を有効に防止することができる。
 なお、これまでの一連の動作は、作業者の介在が無くても自動で歩進させることもできる。
 また、本実施形態に係る培養システム1では、システムを複数台構えることで、複数の多層培養容器12を用いて細胞培養、細胞剥離、培養した細胞の回収を行うこともでき、作業者の負担をより軽減することができる。
 《第2実施形態》
 続いて、第2実施形態に係る培養システム1aについて説明する。図8は第2実施形態に係る培養システム1aの斜視図、図9は第2実施形態に係る培養システム1aの筐体11a内の構成を示す斜視図である。第2実施形態に係る培養システム1aは、観察装置101を有する点、2つの液面センサー102,103を有する点、および回転部141aの回転軸X2が多層培養容器12を通過するように回転部141aが構成されている点こと以外は、第1実施形態に係る培養システム1と同様の構成を有し、第1実施形態に係る培養システム1と同様に動作する。なお、図8および図9においては、説明の便宜のため、観察装置101、液面センサー102,103の視野を図示している(後述する図10も同様)。
 具体的には、第2実施形態に係る培養システム1aでは、図8に示すように、筐体11a内の空間Sが、仕切り板113により、上部収容部111と下部収容部112の2つに分けられており、上部収容部111に多層培養容器12を含む培養装置10aが収容されるとともに、下部収容部112に観察装置101が収容される。なお、仕切り板113は一部または全部が透光性素材(透光性樹脂やガラス)で製造されており、当該透光性素材の位置において、下部収容部112に収容された観察装置101が、上部収容部111に収容された多層培養容器12の内部を観察することが可能となっている。
 観察装置101は、図9に示すように、カメラ1011、カメラ第1駆動部1012、カメラ第2駆動部1013、およびレンズ1014を有している。カメラ1011は、たとえばCCDカメラやCMOSカメラであり、レンズ1014を介して、多層培養容器12の下側に配置され、多層培養容器12の下側から多層培養容器12のトレイ121の底面内側を撮像するように設置されている。観察装置101により撮像された撮像画像(動画像を含む)は、図示しない表示装置へと送信され、表示装置において作業者に表示される。実施形態において、多層培養容器12は回転部141aにより保持されており、図10に示すように、回転部141aの底面1411には、複数の切り欠き1412が形成されている。カメラ1011は、この切り欠き1412を介して、多層培養容器12内のトレイ121の底面内側を撮像することができる。なお、図10は、第2実施形態に係る培養システム1aの筐体11a内の構成を下側から見た斜視図であり、観察装置101により多層培養容器12内の細胞を観察するための観察位置における、培養システム1aを示す図である。
 本実施形態において、カメラ第1駆動部1012には、カメラ1011が連結しており、カメラ1011を所定の第1方向に直線移動させることが可能となっている。また、カメラ第2駆動部1013は、カメラ第1駆動部1012と連結しており、カメラ1011をカメラ第1駆動部1012と共に、第1方向と直交する第2方向に直線移動させることが可能となっている。すなわち、カメラ1011は、カメラ第1駆動部1012およびカメラ第2駆動部1013により、二次元方向において自在に移動することが可能となっている。そのため、作業者は所望する位置の切り欠き1412から培養状態を観察することができる。なお、カメラ1011の二次元方向における位置は、入力部19を介して、作業者が入力することで指示する構成とすることができる。また、多層培養容器12を挟んでカメラ1011の反対側に、図示しない照明装置を設置する構成としてもよい。この場合、照明装置の光軸と、カメラ1011の光軸とを一致させることで、多層培養容器12の照度を高くし培養細胞の状態を適切な明るさで撮像することができる。
 また、第2実施形態に係る培養システム1aでは、図8および図9に示すように、第1液面センサー102および第2液面センサー103を有する。第1液面センサー102および第2液面センサー103は、培養液やトリプシン等の剥離液などの流体材料を多層培養容器12に導入する際に、流体材料が多層培養容器12に適量(培養に必要な所定量)まで導入されたかを判断するためのセンサーであり、CCDやCMOSなどのカメラを有し、当該カメラの撮像画像(または動画像)に基づいて、流体材料が多層培養容器12に適量導入されたことを検知し、制御部18に、多層培養容器12への流体材料の導入を停止させるための信号を出力する。
 具体的には、第1液面センサー102および第2液面センサー103は、筐体11aの内壁に固定され、多層培養容器12に導入された流体材料の液面を撮像するように設置される。多層培養容器12に流体材料を導入する場合、回転部141aにより多層培養容器12をおおよそ90度に傾けた状態で、流体材料を多層培養容器12内に導入する。第2液面センサー103は、このように流体材料を多層培養容器12に導入している場合に、多層培養容器12において流体材料が適量となる第1水位よりも少し下側の第2水位近傍を撮像する。そして、第2液面センサー103は、第2水位まで流体材料の液面が到達した場合に、培養液やトリプシン等の剥離液が適量に近いことを検知して、制御部18に信号を送信する。制御部18は、第2液面センサー103から信号を受信すると、流体材料が適量に近いと判断し、流体材料の流入量を少なくするように、送液ポンプ20の動作を制御する。
 また、第1液面センサー102は、流体材料を多層培養容器12に導入している場合に、流体材料が適量となる第1水位近傍を撮像する。そして、第1液面センサー102は、流体材料が適量となる第1水位まで流体材料の水面が到達した場合に、流体材料が適量であることを検知して、制御部18に信号を送信する。制御部18は、第1液面センサー102から信号を受信すると、流体材料が適量になったと判断し、流体材料の流入を停止するように、バルブ2a~2dの開閉動作や、開閉部143の動作、送液ポンプ20の動作を制御する。
 さらに、第2実施形態においては、回転部141aの構成が、第1実施形態に係る回転部141の構成と異なる。すなわち、第1実施形態係る回転部141では、図2に示すように、多層培養容器12をピッチ方向Pに回転させる回転軸X2は、回転部141を通過する構成となっており、多層培養容器12はこの回転軸X2を中心にピッチ方向Pに回転する。
 これに対して、第2実施形態においては、図9および図10に示すように、回転部141aは、多層培養容器12をロール方向Rに回転させる第1駆動部1421と、多層培養容器12をピッチ方向Pに回転させる第2駆動部1422とを備え、第2駆動部1422の回転軸X2が多層培養容器12を通過するように、第2駆動部1422が設置されている。言い換えると、第2駆動部1422は、図9および図10に示すように、多層培養容器12の側面側に配置され、これにより、多層培養容器12を通過する回転軸X2により、多層培養容器12をピッチ方向Pに回転させることができる。これにより、第2実施形態に係る第2駆動部1422では、多層培養容器12をより広い角度で回転させることが可能となる。すなわち、第1実施形態に係る培養システム1では第2駆動部1422により回転軸X2を中心として多層培養容器12をピッチ方向Pに±30°の範囲で回転させることしかできなかったが、第2実施形態に係る培養システム1aでは、第2駆動部1422により回転軸X2を中心として多層培養容器12をピッチ方向P(具体的には図9における時計回りでのピッチ方向P)に90°以上回転させることができ、その結果、多層培養容器12を90°回転させた状態で、多層培養容器12を揺動することも可能となっている。なお、第1駆動部1421については、第1実施形態と同様に、多層培養容器12を通過する回転軸X1を中心に、多層培養容器12をロール方向Rに回転させる。
 以上のように、第2実施形態に係る培養システム1aは、多層培養容器12の下側に、多層培養容器12のトレイ121の底面から内側を撮像する観察装置101を有する。これにより、作業者は、筐体11aから多層培養容器12を取り出すことなく、多層培養容器12における細胞の培養状態を適切に把握することができる。また、本実施形態では、回転部141aの底面1411に複数の切り欠き1412を有しており、観察装置101は、この切り欠き1412を介して多層培養容器12のトレイ121の底面内側における細胞の状態を観察することができる。
 また、第2実施形態に係る培養システム1aは、培養液などの流体材料が適量に近いことを検知する第2液面センサー103と、流体材料が適量となったことを検知する第1液面センサー102とを有する。これにより、第2実施形態に係る培養システム1aでは、流体材料が多層培養容器12で適量まで導入された場合に、自動で流体材料の導入を停止することができる。
 さらに、第2実施形態に係る培養システム1aは、多層培養容器12をピッチ方向Pに回転させる第2駆動部1422の回転軸X2が、多層培養容器12を通過するように第2駆動部1422が設置されている。第1実施形態では、多層培養容器12のピッチ方向Pの回転軸X2と多層培養容器12とが離れるため、その距離分だけ回転に必要なスペースが大きくなり、培養システム1全体の大きさも大きくなるが、第2実施形態では、多層培養容器12をピッチ方向Pに回転させる回転軸X2と多層培養容器12との距離が短いため、多層培養容器12の回転に必要なスペースを小さくすることができ、その分、培養システム1全体の大きさを小さくすることができる。
 以上、本発明の好ましい実施形態例について説明したが、本発明の技術的範囲は上記実施形態の記載に限定されるものではない。上記実施形態例には様々な変更・改良を加えることが可能であり、そのような変更または改良を加えた形態のものも本発明の技術的範囲に含まれる。
 たとえば、上述した実施形態では、本発明に係る培養装置および培養システムの実施形態として、培養装置10および培養装置10を備える培養システム1を例示したが、本発明に係る多層培養容器操作装置として、図7に示すように、培養装置10に用いられる、操作部14を有する装置を提供することもできる。
 また、上述した実施形態では、培養装置10が温度調整部16、ガス濃度調整部171、およびpH調整部172を備える構成を例示したが、この構成に限定されず、温度調整部16、ガス濃度調整部171、およびpH調整部172のいずれか1つまたは2つを備える構成とすることができる。
 さらに、上述した実施形態では、図1に示すように、バルブ2a~2cが、容器40,50,80にそれぞれ連通する個別送液管(送液管3c~3e)上に設置され、バルブ2a~2cを制御することで、個別送液管(送液管3c~3g)と共通送液管(送液管3a,3b,13)との連通状態を開状態あるいは閉状態に制御する構成を例示したが、この構成に限定されず、たとえば、個別送液管(送液管3c~3g)と共通送液管(送液管3a,3b)との合流地点にバルブを設置し、当該バルブを制御することで、それぞれの個別送液管(送液管3c~3g)と共通送液管(送液管3a,3b,13)との連通状態を制御する構成とすることができる。
 また、上述した実施形態では、液面センサー102,103として、カメラセンサーを用いる構成を例示したが、この構成に限定されず、超音波式、静電容量式、あるいは圧力式の液面センサーを用いることもでき、そのうち、静電容量式の液面センサーを用いることが好ましい。また、超音波式や静電容量式の液面センサーを用いる場合、液面センサーを回転部141の所定の位置(第1水位や第2水位を測定可能な位置)に取り付けることで、多層培養容器12を取り替えても、多層培養容器12において流体材料が第1水位や第2水位に到達したかを判断することができる。また、上述した実施形態では、説明の便宜のため、液面センサー102,103により、培養液やトリプシン等の剥離液が第1水位や第2水位に到達したかを判定する構成を例示したが、培養液とトリプシン等の剥離液とを異なる水位まで注入する構成とすることができる。この場合、たとえば、培養液の水位を第1液面センサー102と第2液面センサー103で監視するとともに、トリプシン等の剥離液の水位を、第1液面センサー102および第2液面センサー103とは異なる、第3液面センサーおよび第4液面センサーで監視する構成とすることができる。すなわち、第4液面センサーにより、多層培養容器12においてトリプシン等の剥離液が適量となる第3水位よりも少し下側の第4水位までトリプシン等の剥離液が到達したかを判定し、第3液面センサーにより、トリプシン等の剥離液が第3水位まで到達したかを判定する構成とすることができる。さらに、多層培養容器12から流体材料を回収し、多層培養容器12が空となったことを判定するための液面センサーをさらに備える構成とすることもできる。
 1,1a…培養システム
  10,10a…培養装置
   11,11a…筐体
    111…上部収容部
    112…下部収容部
    113…仕切り板
   12…多層培養容器
    121…トレイ
    122,123…接続部   13…送液管
    131,132…クランプ
    133…エアフィルタ
   14…操作部
    141,141a…回転部
     1411…底面
     1412…切り欠き
    142…駆動部
     1421…第1駆動部
     1422…第2駆動部
    143…開閉部
   15…挿通部
   16…温度調整部
   171…ガス濃度調整部
   172…pH調整部
   18…制御部
   19…入力部
   101…観察装置
    1011…カメラ
    1012…カメラ第1駆動部
    1013…カメラ第2駆動部
    1014…レンズ
 102…第1液面センサー
   103…第2液面センサー
  20…送液ポンプ
  30…流量計
  40…容器(培養液の供給・回収用)
  50…容器(トリプシン等の剥離液の供給用)
  60…遠心分離装置
  70…送液ポンプ
  80…容器(細胞の回収用)
  2a~2d…バルブ
  3a~3g…送液管

Claims (17)

  1.  複数のトレイを内蔵する多層培養容器を内部空間に収容する筐体と、
     前記多層培養容器を前記内部空間に収容したままの状態で操作する操作部と、を有し、
     前記多層培養容器は送液管と連通しており、前記送液管を介して筐体外部から流体材料を前記多層培養容器内に導入、または、前記送液管を介して前記多層培養容器内から流体を筐体外部に排出することができる培養システム。
  2.  前記操作部は、前記多層培養容器を回転または揺動させる回転部を有する、請求項1に記載の培養システム。
  3.  前記操作部は、前記送液管と前記多層培養容器との連通路の開閉を行う開閉部を有する、請求項1または2に記載の培養システム。 
  4.  前記多層培養容器の内部と外部との間にエアフィルタを有し、
     前記操作部は、前記エアフィルタと前記多層培養容器との連通路の開閉を行う開閉部を有する、請求項1ないし3のいずれかに記載の培養システム。 
  5.  前記筐体は、前記送液管が筐体を貫通する挿通部を有し、前記挿通部および前記送液管を介して、筐体外部から流体材料を前記多層培養容器内に導入、または、前記多層培養容器内から流体を筐体外部へと排出する、請求項1ないし4のいずれかに記載の培養システム。
  6.  前記送液管が筐体外部に存在する複数の容器または装置に切り替え可能に接続する、請求項1ないし5のいずれかに記載の培養システム。
  7.  前記複数の容器にそれぞれ連通する複数の個別送液管が、前記多層培養容器に連通する共通送液管と連通しており、前記個別送液管上、または、前記個別送液管と前記共通送液管との合流地点に弁が設置されており、当該弁を制御することで、前記個別送液管と前記共通送液管との連通状態が制御可能となっている、請求項6に記載の培養システム。
  8.  前記多層培養容器の下側に、前記多層培養容器のトレイの内部を撮像する観察装置をさらに有する、請求項1ないし7のいずれかに記載の培養システム。
  9.  複数のトレイを内蔵する多層培養容器を内部空間に収容する筐体と、
     前記多層培養容器を前記内部空間に収容したままの状態で操作する操作部と、を有し、
     前記多層培養容器は送液管と連通しており、前記送液管を介して筐体外部から流体材料を前記多層培養容器内に導入、または、前記送液管を介して前記多層培養容器内から流体を筐体外部に排出することができる培養装置。
  10.  前記操作部は、前記多層培養容器を回転または揺動させる回転部を有する、請求項9に記載の培養装置。
  11.  前記操作部は、前記送液管と前記多層培養容器との連通路の開閉を行う開閉部を有する、請求項9または10に記載の培養装置。
  12.  複数のトレイを内蔵する多層培養容器を操作する操作部を有し、筐体内に収容される多層培養容器操作装置であって、
     前記多層培養容器は、前記筐体内において送液管と連通しており、
     前記操作部は、前記筐体内に前記多層培養容器を収容したままの状態で、前記多層培養容器を操作可能であり、
     前記操作部により前記多層培養容器を操作することで、前記送液管を介して筐体外部から流体材料を前記多層培養容器内に導入、または、前記送液管を介して前記多層培養容器内から流体を筐体外部に排出することを可能にする、多層培養容器操作装置。
  13.  前記操作部は、前記多層培養容器を回転または揺動させる回転部を有する、請求項12に記載の多層培養容器操作装置。
  14.  前記回転部は、前記多層培養容器を回転または揺動させる回転軸として、第1回転軸および第2回転軸を有し、
     前記第1回転軸および前記第2回転軸が前記多層培養容器を通過する回転軸となるように、前記回転部が構成される、請求項13に記載の多層培養容器操作装置。
  15.  前記操作部は、前記送液管と前記多層培養容器との連通路の開閉を行う開閉部を有する、請求項12ないし14のいずれかに記載の多層培養容器操作装置。
  16.  前記送液管を介して筐体外部から流体材料を前記多層培養容器内に導入する際に、前記多層培養容器における前記流体材料の液面を検知する液面センサーをさらに有する、請求項12ないし15のいずれかに記載の多層培養容器操作装置。
  17.  前記液面センサーは、前記多層培養容器において前記流体材料が所定量導入されたことを示す第1水位まで到達したかを検知する第1液面センサー、または、前記第1水位よりも下側の水位であり、前記流体材料が所定量に近づいていることを示す第2水位まで前記流体材料が到達したかを検知する第2液面センサーを有する、請求項16に記載の多層培養容器操作装置。
PCT/JP2020/011606 2019-03-20 2020-03-17 培養システム、培養装置、および多層培養容器操作装置 WO2020189655A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20773518.4A EP3943587A4 (en) 2019-03-20 2020-03-17 GROWING SYSTEM, GROWING DEVICE AND MULTI-LAYER GROWING TANK MANIPULATION DEVICE
SG11202110211SA SG11202110211SA (en) 2019-03-20 2020-03-17 Culture system, culture device, and multi-layer culture vessel manipulation device
KR1020217033532A KR20210142682A (ko) 2019-03-20 2020-03-17 배양 시스템, 배양 장치, 및 다층 배양 용기 조작 장치
CN202080022335.7A CN113614218A (zh) 2019-03-20 2020-03-17 培养系统、培养装置及多层培养容器操作装置
CA3134092A CA3134092A1 (en) 2019-03-20 2020-03-17 Culture system, culture device, and multi-layer culture vessel manipulation device
US17/440,542 US20220154122A1 (en) 2019-03-20 2020-03-17 Culture system, culture device, and multi-layer culture vessel manipulation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-052299 2019-03-20
JP2019052299 2019-03-20
JP2020-022171 2020-02-13
JP2020022171A JP7478546B2 (ja) 2019-03-20 2020-02-13 培養システム、培養装置、および多層培養容器操作装置

Publications (1)

Publication Number Publication Date
WO2020189655A1 true WO2020189655A1 (ja) 2020-09-24

Family

ID=72520870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011606 WO2020189655A1 (ja) 2019-03-20 2020-03-17 培養システム、培養装置、および多層培養容器操作装置

Country Status (3)

Country Link
US (1) US20220154122A1 (ja)
EP (1) EP3943587A4 (ja)
WO (1) WO2020189655A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505472A (ja) 2012-02-02 2015-02-23 コーニング インコーポレイテッド 細胞培養システム
JP2016103984A (ja) 2014-12-01 2016-06-09 株式会社日立製作所 積層型培養容器
JP2017205078A (ja) * 2016-05-19 2017-11-24 澁谷工業株式会社 アイソレータシステム
JP2018139615A (ja) * 2018-05-30 2018-09-13 四国計測工業株式会社 多層培養容器観察装置および多層培養容器観察システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156627B2 (en) * 2016-06-20 2021-10-26 Genesis Technologies Limited Automated cell processing systems and methods
US10590374B2 (en) * 2017-06-23 2020-03-17 Timothy Ray Ho Automatic multi-tray and multi-plate bioreactor systems for adherent cultures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505472A (ja) 2012-02-02 2015-02-23 コーニング インコーポレイテッド 細胞培養システム
JP2016103984A (ja) 2014-12-01 2016-06-09 株式会社日立製作所 積層型培養容器
JP2017205078A (ja) * 2016-05-19 2017-11-24 澁谷工業株式会社 アイソレータシステム
JP2018139615A (ja) * 2018-05-30 2018-09-13 四国計測工業株式会社 多層培養容器観察装置および多層培養容器観察システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943587A4

Also Published As

Publication number Publication date
US20220154122A1 (en) 2022-05-19
EP3943587A4 (en) 2023-01-25
EP3943587A1 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
CN103917635B (zh) 液体处理系统和液体处理方法
US9505173B2 (en) Single-use biological 3 dimensional printer
US10865375B2 (en) Switching valve and suction-discharge device including the same
CA3103223A1 (en) Multi-valve fluid cartridge
US20150017711A1 (en) Cell culture systems
JPH04164257A (ja) 自動前処理装置
CN110186737B (zh) 一种液基标本制片染色一体机
US10942093B2 (en) Powder collector, powder collection device, and automatic powder collecting system
WO2020189655A1 (ja) 培養システム、培養装置、および多層培養容器操作装置
WO2015068450A1 (ja) 細胞培養装置
WO2020168936A1 (zh) 一种废弃物收集设备及废弃物收集处理系统
JP2020156465A (ja) 培養システム、培養装置、および多層培養容器操作装置
US20160201023A1 (en) Culture system and culture method
US10202576B2 (en) Apparatus for culturing cells
WO2020182198A1 (zh) 一种废弃物收集设备及废弃物收集处理系统
CN114107051B (zh) 一种使用连续流离心机制备生物制品的工艺方法
US20060088448A1 (en) Method and apparatus for applying a pressure differential to a multi-well plate
WO2021049117A1 (ja) 細胞培養装置
JP6134816B2 (ja) 細胞培養装置
WO2021019624A1 (ja) 細胞回収装置および細胞回収方法
JP2001095557A (ja) 無菌試験装置
WO2022091648A1 (ja) 細胞培養装置、および細胞培養方法
CN220590368U (zh) 一种离心杯、离心装置及细胞处理设备
JP2022054972A (ja) 培養装置及び培養方法
WO2016157865A1 (ja) 薬液ピペット装置、薬液移送システムおよび薬液移送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3134092

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217033532

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020773518

Country of ref document: EP

Effective date: 20211020