WO2020189520A1 - 炭素材料、水蒸気吸着材、蓄電デバイス用電極材料、及び蓄電デバイス - Google Patents
炭素材料、水蒸気吸着材、蓄電デバイス用電極材料、及び蓄電デバイス Download PDFInfo
- Publication number
- WO2020189520A1 WO2020189520A1 PCT/JP2020/010891 JP2020010891W WO2020189520A1 WO 2020189520 A1 WO2020189520 A1 WO 2020189520A1 JP 2020010891 W JP2020010891 W JP 2020010891W WO 2020189520 A1 WO2020189520 A1 WO 2020189520A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon material
- graphite
- resin
- storage device
- power storage
- Prior art date
Links
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 265
- 238000003860 storage Methods 0.000 title claims abstract description 84
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 59
- 239000007772 electrode material Substances 0.000 title claims description 41
- 239000003463 adsorbent Substances 0.000 title claims description 15
- 230000005611 electricity Effects 0.000 title abstract 3
- 230000006698 induction Effects 0.000 claims abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 278
- 229910002804 graphite Inorganic materials 0.000 claims description 205
- 239000010439 graphite Substances 0.000 claims description 205
- 229920005989 resin Polymers 0.000 claims description 144
- 239000011347 resin Substances 0.000 claims description 144
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 119
- 238000001179 sorption measurement Methods 0.000 claims description 68
- 229910052757 nitrogen Inorganic materials 0.000 claims description 54
- 229910021389 graphene Inorganic materials 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 48
- 239000000463 material Substances 0.000 claims description 12
- 238000010521 absorption reaction Methods 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 230000004913 activation Effects 0.000 description 60
- 238000010438 heat treatment Methods 0.000 description 40
- 238000005481 NMR spectroscopy Methods 0.000 description 28
- -1 for example Inorganic materials 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 24
- 238000002156 mixing Methods 0.000 description 24
- 239000003990 capacitor Substances 0.000 description 23
- 239000008151 electrolyte solution Substances 0.000 description 21
- 239000012190 activator Substances 0.000 description 19
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 19
- 229920001225 polyester resin Polymers 0.000 description 18
- 239000004645 polyester resin Substances 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 16
- 239000011148 porous material Substances 0.000 description 16
- 239000011230 binding agent Substances 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 14
- 239000002202 Polyethylene glycol Substances 0.000 description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 12
- 229920001223 polyethylene glycol Polymers 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 229910001873 dinitrogen Inorganic materials 0.000 description 11
- 239000003792 electrolyte Substances 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 9
- 239000004810 polytetrafluoroethylene Substances 0.000 description 9
- 229910000027 potassium carbonate Inorganic materials 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 8
- 239000002608 ionic liquid Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 229920003048 styrene butadiene rubber Polymers 0.000 description 8
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000011255 nonaqueous electrolyte Substances 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 239000009719 polyimide resin Substances 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 238000003763 carbonization Methods 0.000 description 5
- 239000001768 carboxy methyl cellulose Substances 0.000 description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 5
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 229910003481 amorphous carbon Inorganic materials 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229920002313 fluoropolymer Polymers 0.000 description 4
- 239000004811 fluoropolymer Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 4
- 239000004584 polyacrylic acid Substances 0.000 description 4
- 229920001451 polypropylene glycol Polymers 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 229920002689 polyvinyl acetate Polymers 0.000 description 4
- 239000011118 polyvinyl acetate Substances 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 238000002411 thermogravimetry Methods 0.000 description 4
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000002134 carbon nanofiber Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229910016467 AlCl 4 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- 229910015900 BF3 Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000805 composite resin Substances 0.000 description 2
- 238000004455 differential thermal analysis Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 238000002847 impedance measurement Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920002454 poly(glycidyl methacrylate) polymer Polymers 0.000 description 2
- 229920000131 polyvinylidene Polymers 0.000 description 2
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- ZEWQUBUPAILYHI-UHFFFAOYSA-N trifluoperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 ZEWQUBUPAILYHI-UHFFFAOYSA-N 0.000 description 2
- 229960002324 trifluoperazine Drugs 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 2
- 101100317222 Borrelia hermsii vsp3 gene Proteins 0.000 description 1
- 238000000685 Carr-Purcell-Meiboom-Gill pulse sequence Methods 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- HEAMQYHBJQWOSS-UHFFFAOYSA-N ethene;oct-1-ene Chemical compound C=C.CCCCCCC=C HEAMQYHBJQWOSS-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- NEVPXYZQLQMHFW-UHFFFAOYSA-N tetraethylazanium;trifluoroborane Chemical compound FB(F)F.CC[N+](CC)(CC)CC NEVPXYZQLQMHFW-UHFFFAOYSA-N 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
- C01B32/22—Intercalation
- C01B32/225—Expansion; Exfoliation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/342—Preparation characterised by non-gaseous activating agents
- C01B32/348—Metallic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a carbon material, a water vapor adsorbent using the carbon material, an electrode material for a power storage device, and a power storage device.
- carbon materials such as graphene, graphite, activated carbon, and carbon nanofibers have been widely used as electrode materials such as capacitors and lithium ion secondary batteries, and as heat radiation materials such as heat pipes used in heat management technology.
- Patent Document 1 discloses a heat conductive sheet containing scaly graphite particles, a polymer having an isobutylene structure, an ethylene propylene copolymer, and an ethylene octene elastomer. Patent Document 1 exemplifies expanded graphite as scaly graphite particles.
- Patent Document 1 when a carbon material such as Patent Document 1 is used as an electrode material for a power storage device, it is difficult for the polar solvent used as an electrolytic solution to penetrate into the pores of the carbon material, and the electrical resistance becomes high. There's a problem.
- An object of the present invention is to provide a carbon material capable of improving the characteristics of a device such as a power storage device, a water vapor adsorbent using the carbon material, an electrode material for the power storage device, and a power storage device.
- the present inventors have made a first invention of the present application in which the relaxation intensity at a spin-spin relaxation time of 50 msec is in a specific range in a profile standardizing a free induction decay curve measured by pulse NMR. It has been found that the carbon material according to the above can solve the above-mentioned problems, and the first invention has been achieved.
- the carbon material according to the first invention of the present application has a relaxation intensity of 0.7 or less when the spin-spin relaxation time is 50 msec in a profile normalizing the free induction decay curve measured by pulse NMR.
- the BET specific surface area of the carbon material is 450 m 2 / g or more and 3500 m 2 / g or less.
- the carbon material is a carbon material having a graphene laminated structure.
- the carbon material is graphite or flaky graphite.
- the carbon material is a partially exfoliated flaky graphite in which graphite is partially exfoliated.
- the carbon material further comprises at least one of a resin and a resin carbide.
- the content of at least one of the resin and the resin carbide in the carbon material is 1% by weight or more and 99.9% by weight or less. is there.
- the conductivity of the carbon material is 15 S / cm or more.
- the water absorption amount when the relative pressure (P / P 0 ) of the carbon material in the water vapor adsorption isotherm is 0.3 is 5 cm 3 /. It is g or more.
- the water vapor adsorbent according to the present invention includes a carbon material constructed according to the first invention of the present application.
- the steam adsorbent according to the present invention is preferably used in a heat pump.
- the electrode material for a power storage device according to the first invention of the present application includes a carbon material configured according to the first invention of the present application.
- the power storage device includes an electrode made of an electrode material for a power storage device configured according to the first invention of the present application.
- the present inventors have found in the second invention of the present application in which the amount of nitrogen adsorbed when the relative pressure (P / P 0 ) in the nitrogen adsorption isotherm of the carbon material is 0.99 is in a specific range. It was found that the carbon material could solve the above-mentioned problems, and the second invention was made.
- the carbon material according to the second invention of the present application has a nitrogen adsorption amount of 700 cm 3 / g or more when the relative pressure (P / P 0 ) in the nitrogen adsorption isotherm is 0.99.
- the nitrogen adsorption amount when the relative pressure (P / P 0 ) on the nitrogen adsorption isotherm is 0.05 is set to X cm 3 / g, and the nitrogen adsorption isotherm is set.
- the relative pressure (P / P 0 ) on the line is 0.99 and the amount of nitrogen adsorbed is Y cm 3 / g, the ratio X / Y is less than 0.70.
- the amount of nitrogen adsorbed when the relative pressure (P / P 0 ) in the nitrogen adsorption isotherm is 0.05 is 400 cm 3 / g or less. ..
- the volume of the mesopores and macropores measured according to the BJH method of the carbon material is 0.5 cm 3 / g or more. ..
- the volume of the micropores measured according to the MP method of the carbon material is set to Acm 3 / g, and the BJH method of the carbon material is applied.
- the ratio A / B is 0.1 or more and 4.0 or less when the volumes of the mesopores and macropores measured in accordance with this are B cm 3 / g.
- the carbon material is a carbon material having a graphene laminated structure.
- the carbon material is graphite or flaky graphite.
- the carbon material is a partially exfoliated flaky graphite in which graphite is partially exfoliated.
- the carbon material further comprises at least one of a resin and a resin carbide.
- the content of at least one of the resin and the resin carbide in the carbon material is 1% by weight or more and 99% by weight or less.
- the BET specific surface area of the carbon material is 900 m 2 / g or more and 4000 m 2 / g or less.
- the electrode material for a power storage device according to the second invention of the present application includes a carbon material configured according to the second invention of the present application.
- the power storage device according to the second invention of the present application includes an electrode made of an electrode material for the power storage device configured according to the second invention of the present application.
- first invention and the second invention of the present application may be collectively referred to as the present invention.
- a carbon material capable of improving the characteristics of a device such as a power storage device, a water vapor adsorbent using the carbon material, an electrode material for the power storage device, and a power storage device.
- FIG. 1 is a diagram showing profiles of the carbon materials obtained in Examples 1 and 2 and Comparative Examples 1 and 2 and pulse NMR in water.
- FIG. 2 is a diagram showing nitrogen adsorption isotherms in the carbon materials obtained in Examples 3 to 6 and Comparative Examples 3 to 4.
- the carbon material according to the first invention of the present application has a relaxation intensity of 0.7 or less when the spin-spin relaxation time is 50 msec in a profile normalizing a free induction decay curve measured by pulse NMR.
- the pulse NMR measurement can be performed by a pulse nuclear magnetic resonance apparatus (manufactured by Bruker, product number "the minispeq mq20").
- a glass NMR tube manufactured by BRUKER, product number 1824511, outer diameter 10 mm, length 180 mm, flat bottom
- a dispersion liquid in which a carbon material is dispersed in water in an amount of 5% by weight.
- the obtained glass NMR tube is installed in a pulse nuclear magnetic resonance apparatus, and the measurement is performed by setting as follows.
- Measurement temperature 30 ° C
- Proton Measurement mode CPMG method Accumulation number: 120 times Recycle Delay: 16 sec 90 ° -180 °
- the free induction decay curve is standardized by the NMR signal intensity at the first point from the start of measurement of the obtained free induction decay curve, and the value of the NMR signal intensity at 50 msec is calculated.
- the carbon material of the first invention has the above-mentioned structure, it is possible to increase the hydrophilicity while maintaining the original characteristics of the carbon material.
- Hydrophilicity in the present invention means the interaction between the surface of the carbon material and water.
- the carbon material used for conventional heat conductive sheets has excellent heat dissipation, it is difficult to sufficiently adsorb water vapor when used as a water vapor adsorbent such as an adsorption heat pump. Further, when the conventional carbon material is used as an electrode material of a power storage device, there is a problem that the polar solvent used as the electrolytic solution does not easily permeate into the pores of the carbon material and the electric resistance becomes high. On the other hand, if an attempt is made to oxidize the carbon material to increase its affinity with water in order to solve these problems, the inherent properties of the carbon material such as conductivity and thermal conductivity may deteriorate.
- the present inventors pay attention to the relaxation intensity when the spin-spin relaxation time is 50 msec, and set the relaxation intensity when the spin-spin relaxation time is 50 msec to the above upper limit value or less. It has been found that the interaction between the carbon material and the water molecule can be enhanced, and the hydrophilicity of the carbon material can be enhanced.
- the hydrophilicity of the carbon material can be enhanced by setting the relaxation intensity when the spin-spin relaxation time is 50 msec to the above upper limit value or less.
- the carbon material of the first invention can sufficiently adsorb water vapor when used as a water vapor adsorbent such as an adsorption heat pump. Further, when used as an electrode material for a power storage device, the electrolytic solution can be permeated into the pores of the electrode material, and the resistance of the obtained power storage device can be reduced. Therefore, according to the first invention, the characteristics of a device such as a power storage device can be improved.
- the relaxation intensity when the spin-spin relaxation time is 50 msec is preferably 0.5 or less, more preferably 0. It is 0.3 or less.
- the relaxation strength is not more than the above upper limit value, the interaction between the carbon material and the water molecule can be further enhanced, and the hydrophilicity of the carbon material can be further enhanced.
- the lower limit of the relaxation intensity when the spin-spin relaxation time is 50 msec is not particularly limited, but may be 0.0001, for example.
- the relaxation intensity when the spin-spin relaxation time is 200 msec is preferably 0.6 or less, more preferably. Is 0.2 or less.
- the lower limit of the relaxation intensity when the spin-spin relaxation time is 200 msec is not particularly limited, but may be 0.0001, for example.
- the BET specific surface area of the carbon material is preferably 450 m 2 / g or more, more preferably 1100 m 2 / g or more, preferably 4000 m 2 / g or less, and more preferably 3500 m 2 / g or less.
- the capacity can be further increased when used as an electrode material of a power storage device, for example.
- the BET specific surface area can be measured from the adsorption isotherm of nitrogen in accordance with the BET method.
- a high-precision gas adsorption amount measuring device manufactured by Microtrac Bell, product number "BELSORP-MAX", nitrogen gas
- BELSORP-MAX product number "BELSORP-MAX” nitrogen gas
- the carbon material according to the first invention preferably has a graphene laminated structure.
- the hydrophilicity is enhanced as described above, the inherent properties of the carbon material such as conductivity and thermal conductivity can be further enhanced.
- the X-ray diffraction spectrum can be measured by wide-angle X-ray diffraction.
- SmartLab manufactured by Rigaku Co., Ltd.
- Examples of the carbon material having such a graphene laminated structure include graphite and flaky graphite.
- Graphite is a laminate of multiple graphene sheets.
- the number of laminated graphene sheets of graphite is usually about 100,000 to 1,000,000.
- As the graphite for example, natural graphite, artificial graphite, expanded graphite or the like can be used. Expanded graphite has a higher proportion of the inter-story distance between graphene layers than ordinary graphite. Therefore, it is preferable to use expanded graphite as the graphite.
- the flaky graphite is obtained by exfoliating the original graphite, and refers to a graphene sheet laminate thinner than the original graphite.
- the number of graphene sheets laminated in the flaky graphite may be smaller than that of the original graphite.
- the flaky graphite may be flaky oxide graphite.
- the number of laminated graphene sheets is not particularly limited, but is preferably 2 layers or more, more preferably 5 layers or more, preferably 1000 layers or less, and more preferably 500 layers or less.
- the number of graphene sheets laminated is equal to or greater than the above lower limit, the flaky graphite is prevented from scrolling in the liquid and the flaky graphites are prevented from stacking with each other. Therefore, the conductivity and heat conduction of the flaky graphite are suppressed. The sex can be further enhanced.
- the specific surface area of the flaky graphite can be further increased.
- the carbon material having a graphene laminated structure is preferably a partially exfoliated flaky graphite having a structure in which graphite is partially exfoliated.
- partially exfoliated graphite means that in the graphene laminate, the graphene layers are open from the edge to the inside to some extent, that is, one of the graphite at the edge (edge portion). It means that the part is peeled off. Further, it means that the graphite layer is laminated in the central portion in the same manner as the original graphite or the primary flaky graphite. Therefore, the portion where a part of graphite is peeled off at the edge is connected to the portion on the central side. Further, the partially exfoliated thinned graphite may include those in which the graphite at the edge is exfoliated and flaked.
- the graphite layer is laminated in the central portion in the same manner as the original graphite or the primary flake graphite. Therefore, it has a higher degree of graphitization than conventional graphene oxide or carbon black, and is excellent in conductivity and thermal conductivity. Therefore, for example, when it is used as an electrode of a power storage device, the electron conductivity in the electrode can be further increased, and charging / discharging with a larger current becomes possible.
- Whether or not graphite is partially peeled off can be determined by, for example, observation with a scanning electron microscope (SEM), as in the case of the flaky graphite / resin composite material described in International Publication No. 2014/034156. , Can be confirmed by the X-ray diffraction spectrum.
- SEM scanning electron microscope
- the carbon material of the first invention may contain at least one of a resin and a carbide of the resin.
- the carbide of the resin is preferably amorphous carbon.
- amorphous carbon is measured by the X-ray diffraction method, it is preferable that no peak is detected in the vicinity of 2 ⁇ of 26 °.
- a part or all of the resin may remain without being carbonized. Since the resin is used for the purpose of forming carbides, it is distinguished from, for example, a binder used as an electrode material of a power storage device.
- Examples of the resin used for the above resin or the carbide of the above resin include polypropylene glycol, polyethylene glycol, styrene polymer (polystyrene), vinyl acetate polymer (polyvinyl acetate), polyglycidyl methacrylate, polyvinyl butyral, polyacrylic acid, polyester, and styrene.
- Examples thereof include fluoropolymers such as butadiene rubber, polyimide resin, polytetrafluoroethylene, and polyvinylidene fluoride.
- the content of the resin and / or the carbide of the resin contained in 100% by weight of the carbon material is preferably 1% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more. It is particularly preferably 20% by weight or more, most preferably 30% by weight or more, preferably 99% by weight or less, and more preferably 90% by weight or less.
- the content of the resin and / or the carbide of the resin is at least the above lower limit value or at least the upper limit value, the characteristics of the storage device can be further enhanced.
- the resin and / or the carbide content of the resin can be calculated by measuring the weight change with the heating temperature by, for example, thermogravimetric analysis (hereinafter, TG).
- the carbon material of the first invention may further contain other carbon materials.
- the other carbon material is not particularly limited, and graphene, carbon nanotubes, carbon nanofibers, carbon black, activated carbon and the like can be used.
- the carbon material of the first invention can be suitably used for heat management technology because it can increase hydrophilicity while maintaining the original characteristics of the carbon material.
- a heat radiating material in a heat exchanger such as a heat pipe and a steam adsorbent such as an adsorption heat pump can be mentioned.
- the steam adsorbent of the adsorption heat pump can be preferably used.
- the water vapor adsorbent containing the carbon material of the first invention can increase the amount of water vapor adsorbed.
- the carbon material of the first invention when used as an electrode material of a power storage device, the electrolytic solution can penetrate into the pores of the electrode material. Therefore, the resistance of the power storage device can be reduced, and the electrode material can be suitably used.
- the conductivity of the carbon material is preferably 15 S / cm or more, more preferably 20 S / cm or more, still more preferably 50 S / cm or more.
- the conductivity of the carbon material is at least the above lower limit value, the conductivity can be further enhanced, and the characteristics such as capacity and rate characteristics can be further enhanced when used as an electrode material of a power storage device.
- the upper limit of the conductivity of the carbon material is not particularly limited, but can be, for example, 5000 S / cm.
- the obtained carbon material is further excellent in thermal conductivity.
- the thermal efficiency can be further improved when used as a heat radiating material in a heat exchanger such as a heat pipe.
- the conductivity can be measured at room temperature and in the air by, for example, a four-probe method resistivity measuring device (manufactured by Mitsubishi Chemical Analytech Co., Ltd., trade name "MCP-T700 / PD51").
- the amount of water absorption when the relative pressure (P / P 0 ) in the water vapor adsorption isotherm is 0.3 is preferably 5 cm 3 / g or more, more preferably 10 cm 3 / g or more.
- the amount of water supplied is at least the above lower limit, the amount of water vapor adsorbed can be further increased when used as a water vapor adsorbent for an adsorption heat pump.
- the upper limit of the amount of water absorption when the relative pressure (P / P 0 ) in the water vapor adsorption isotherm is 0.3 is not particularly limited, but can be, for example, 100 cm 3 / g.
- the steam adsorption isotherm can be measured by, for example, a steam adsorption amount measuring device (manufactured by Microtrac Bell Co., Ltd., product number "BELSORP-Max"). Note that P is the equilibrium pressure and P 0 is the saturated vapor pressure.
- the carbon material of the first invention can be obtained, for example, by subjecting a composite of a carbon material having a graphene laminated structure and a resin and / or a resin carbide to an activation treatment.
- first, graphite or primary flaky graphite and a resin are mixed (mixing step). Further, the activator is further mixed before or after the above mixing to obtain a mixture. Next, a carbon material can be obtained by subjecting the mixture to an activation treatment.
- a surfactant such as carboxymethyl cellulose (CMC) may be further mixed with graphite or primary flaky graphite and resin.
- the mixing step may include a heating step in which graphite or primary flaky graphite and resin are mixed and then heated.
- the heating in this heating step may be heating at the time of thermal decomposition at the time of producing the partially peeling type flaky graphite.
- the resin mixed in the above mixing step may be the resin used in the production of partially peeled flake graphite. That is, the mixing step may be a step of producing partially peelable flaky graphite.
- Partially peeling type flaky graphite is obtained by partially peeling graphite or primary flaky graphite from the edge portion by thermally decomposing at least a part of the resin during heating in a heating step or an activation step (activation treatment). Obtainable.
- the primary flaky graphite broadly includes flaky graphite obtained by exfoliating graphite by various methods.
- the primary flaky graphite may be a partially exfoliated flaky graphite. Since the primary flaky graphite is obtained by exfoliating graphite, its specific surface area may be larger than that of graphite.
- the heating temperature in the heating step can be, for example, 200 ° C. to 500 ° C.
- the heating may be performed in the atmosphere or in an atmosphere of an inert gas such as nitrogen gas.
- the activator may be mixed and heated with graphite or primary flaky graphite and resin before the heating step, or after the heating step, that is, after heating graphite or primary flaky graphite and resin. You may. In the heating of this heating step and the activation step (activation treatment), a part of the resin may be carbonized or the resin may be completely carbonized. Further, heating may be performed only in the activation step without heating in the mixing step.
- the method of activation treatment is not particularly limited, and examples thereof include a chemical activation method and a gas activation method. Above all, the alkali activation method is preferable from the viewpoint that the specific surface area of the obtained carbon material can be increased more effectively.
- the activator used in the alkaline activation method is not particularly limited, and examples thereof include sodium hydroxide, potassium hydroxide, potassium carbonate and the like. Among them, when composited with a resin, potassium carbonate is used from the viewpoint that the composited resin is not affected at room temperature and the specific surface area of the carbon material can be further effectively increased only at a high temperature during the activation treatment. Is preferable.
- such an activator is mixed with the carbon material having the graphene laminated structure, and the activation treatment is performed.
- the activator and the carbon material having the graphene laminated structure may be activated in a physically mixed state, or the carbon material having the graphene laminated structure is impregnated with the activator. May be activated with. From the viewpoint that the specific surface area of the obtained carbon material can be increased more effectively, it is preferable to perform the activation treatment in a state where the carbon material having the graphene laminated structure is impregnated with the activator.
- the temperature of the activation treatment in the alkali activation method can be, for example, 600 ° C to 900 ° C.
- the holding time at that temperature can be, for example, 30 minutes to 300 minutes.
- the activation treatment is preferably performed in an atmosphere of an inert gas such as nitrogen gas or argon gas.
- the activator used in the gas activation method is not particularly limited, and examples thereof include carbon dioxide, water vapor, and combustion gas.
- the temperature of the activation treatment in the gas activation method can be, for example, 600 ° C to 900 ° C.
- the holding time at that temperature can be, for example, 30 minutes to 300 minutes.
- the resin to be mixed with graphite or primary flaky graphite is not particularly limited, and for example, polypropylene glycol, polyethylene glycol, styrene polymer (polystyrene), vinyl acetate polymer (polyvinyl acetate), and polyvinylidene methacrylate. , Polyvinyl butyral, polyacrylic acid, polyester, styrene butadiene rubber, polyimide resin, polytetrafluoroethylene, polyvinylidene fluoride and other fluoropolymers, and the like.
- the above resins may be used alone or in combination of two or more.
- the blending amount of the resin mixed with graphite or primary flaky graphite is preferably 0.1 part by weight or more, more preferably 1 part by weight or more, based on 1 part by weight of graphite or primary flaky graphite. It is preferably 300 parts by weight or less, more preferably 250 parts by weight or less.
- the blending amount of the resin mixed with graphite or the primary flaky graphite is within the above range, it is easier to control the content of the resin and / or the carbide of the resin contained in the obtained carbon material.
- the resin mixed with graphite or primary flaky graphite may be completely carbonized in the carbonization / activation step, or a part of the resin may remain as a resin.
- the method for producing a carbon material of the first invention does not undergo an oxidation step. Therefore, the inherent properties of the carbon material such as conductivity and thermal conductivity are not easily impaired. Further, in the method for producing a carbon material of the first invention, since the activation treatment is performed, a large number of pores such as mesopores and micropores can be formed on the surface of the carbon material. The relaxation strength can be reduced. Therefore, the hydrophilicity of the carbon material can be increased.
- the relaxation intensity of pulse NMR can be further reduced depending on the conditions of the activation treatment. The relaxation intensity of pulse NMR can be further reduced, for example, by raising the temperature of the activation treatment or lengthening the activation treatment time. Further, the relaxation strength of pulse NMR can be adjusted by the type and amount of the resin used.
- the temperature of the activation treatment is preferably 400 ° C. or higher and 1000 ° C. or lower.
- the activation treatment time is preferably 30 minutes or more and 600 minutes or less.
- polyester can be preferably used as the resin mixed with graphite or primary flaky graphite.
- the amount of the resin mixed with graphite or primary flaky graphite is preferably 0.1 parts by weight or more, preferably 250 parts by weight or less, based on 1 part by weight of graphite or primary flaky graphite.
- the power storage device of the first invention is not particularly limited, but is a non-aqueous electrolyte primary battery, an aqueous electrolyte primary battery, a non-aqueous electrolyte secondary battery, an aqueous electrolyte secondary battery, a capacitor, an electric double layer capacitor, or a lithium ion capacitor.
- Etc. are exemplified.
- the power storage device is preferably a capacitor or a lithium ion secondary battery. Examples of the capacitor include an electric double layer capacitor.
- the electrode material for a power storage device of the first invention is an electrode material used for an electrode of a power storage device as described above.
- the electrode material for a power storage device of the first invention includes the carbon material of the first invention.
- the power storage device of the first invention includes an electrode composed of an electrode material for a power storage device containing the carbon material of the first invention, the permeability of the electrolytic solution is excellent and the resistance of the cell is reduced. Can be done.
- the electrode of the power storage device can be manufactured by shaping the carbon material of the first invention by adding a binder resin and a solvent as needed.
- the shaping of the electrode material for the power storage device can be performed, for example, by applying a coating liquid composed of the carbon material, the binder resin and the solvent of the first invention to the current collector and then drying it.
- binder resin for example, a fluorine-based polymer such as polybutylal, polytetrafluoroethylene, styrene-butadiene rubber, polyimide resin, acrylic resin, polyvinylidene fluoride, or water-soluble carboxymethyl cellulose can be used.
- a fluorine-based polymer such as polybutylal, polytetrafluoroethylene, styrene-butadiene rubber, polyimide resin, acrylic resin, polyvinylidene fluoride, or water-soluble carboxymethyl cellulose
- carboxymethyl cellulose or styrene-butadiene rubber can be used.
- carboxymethyl cellulose or styrene-butadiene rubber is used, dispersibility and structural stability can be further improved.
- the blending ratio of the binder resin is preferably in the range of 0.3 parts by weight to 40 parts by weight, and more preferably in the range of 0.3 parts by weight to 15 parts by weight with respect to 100 parts by weight of the carbon material. ..
- the electrostatic capacity of the power storage device can be further increased.
- solvent ethanol, N-methylpyrrolidone (NMP), water or the like can be used.
- an aqueous system or a non-aqueous system may be used as the electrolytic solution of the capacitor.
- water-based electrolytic solution examples include an electrolytic solution using water as a solvent and sulfuric acid, potassium hydroxide, or the like as an electrolyte.
- non-aqueous electrolyte solution for example, an electrolyte solution using the following solvent, electrolyte, or ionic liquid can be used.
- the solvent include acetonitrile, propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), acrylonitrile (AN) and the like.
- lithium hexafluorophosphate LiPF 6
- lithium tetrafluoroborate LiBF 4
- TEABF 4 tetraethylammonium tetrafluoroborate
- TEMABF triethylmethylammonium tetrafluoroborate
- an ionic liquid for example, an ionic liquid having the following cations and anions can be used.
- the cation include imidazolium ion, pyridinium ion, piperidium ion, pyrrolidium ion, ammonium ion, phosphonium ion and the like.
- the anion, boron tetrafluoride ion (BF 4 -), 6 boron fluoride ions (BF 6 -), 4 aluminum chloride ion (AlCl 4 -), 6 tantalum fluoride ions (TaF 6 -), tris (trifluoperazine b) methane ions (C (CF 3 SO 2) 3 -), include bisfluorosulfonylimide like.
- the drive voltage can be further improved in the power storage device. That is, the energy density can be further improved.
- the carbon material according to the second invention of the present application has a nitrogen adsorption amount of 700 cm 3 / g or more when the relative pressure (P / P 0 ) in the nitrogen adsorption isotherm is 0.99.
- the nitrogen adsorption isotherm can be measured by, for example, a high-precision gas adsorption amount measuring device (manufactured by Microtrac Bell, product number "BELSORP-MAX", nitrogen gas, -196 ° C.). Note that P is the equilibrium pressure and P 0 is the saturated vapor pressure.
- the carbon material of the second invention has the above-mentioned configuration, it is possible to increase the capacitance such as capacitance when used as the electrode material of the power storage device. Therefore, according to the second invention, the characteristics of a device such as a power storage device can be improved.
- micropores are formed in conventional carbon materials such as activated carbon.
- the micropores contribute to the improvement of the specific surface area, but the small pore diameter makes it difficult for the electrolytic solution to penetrate. As a result, there has been a problem that the capacity per specific surface area cannot be increased.
- the present inventors have focused on the amount of nitrogen adsorption when the relative pressure (P / P 0 ) of the carbon material on the nitrogen adsorption isotherm is 0.99, and by setting the amount of nitrogen adsorption to the above lower limit or more. It has been found that the volume of pores having a large pore diameter such as macropores and mesopores can be increased, and as a result, the permeability of the electrolytic solution can be improved and the volume per specific surface area can be increased.
- the nitrogen adsorption amount when the relative pressure (P / P 0 ) in the nitrogen adsorption isotherm of the carbon material is 0.99 is set to the above lower limit value or more, so that the electrode of the power storage device When used as a material, it can increase capacitance such as capacitance.
- the nitrogen adsorption amount at a relative pressure (P / P 0) of 0.99 in a nitrogen adsorption isotherm is preferably 1000 cm 3 / g or more, more preferably 1300 cm 3 / g or more ..
- the nitrogen adsorption amount at a relative pressure (P / P 0) of 0.99 is preferably 2500 cm 3 / g or less, and more preferably not more than 2000 cm 3 / g.
- the amount of nitrogen adsorbed when the relative pressure (P / P 0 ) on the nitrogen adsorption isotherm is 0.05 is preferably 400 cm 3 / g or less, more preferably 350 cm 3 / g or less. ..
- the nitrogen adsorption amount when the relative pressure (P / P 0 ) is 0.05 is 0.05 to the above upper limit value or less, the proportion of pores such as micropores in which the electrolytic solution is difficult to permeate can be further reduced. Therefore, the wide specific surface area can be utilized more efficiently, and the capacity such as the capacitance of the power storage device can be further increased.
- the amount of nitrogen adsorbed is preferably 150 cm 3 / g or more, and more preferably 200 cm 3 / g or more.
- the ratio X / Y is preferably less than 0.70, more preferably 0.65 or less, still more preferably 0.6 or less. ..
- the ratio X / Y is less than the above upper limit value (or less), the wide specific surface area can be utilized more efficiently, and the capacity such as the capacitance in the power storage device can be further increased.
- the ratio X / Y is preferably 0.1 or more, more preferably 0.12 or more.
- the density of the material can be further increased while ensuring the permeability of the electrolytic solution.
- the carbon material of the second invention preferably has mesopores and macropores.
- a mesopore means a pore having a pore diameter of 2 nm or more and less than 50 nm.
- the macropore means a pore having a pore diameter of 50 nm or more.
- the volumes of the mesopores and the macropores can be calculated by, for example, the BJH (Barret, Joiner, Hallender) method, which is a method for analyzing the pore structure.
- the volume of the meso hole and the macro hole means the sum of the volumes calculated by the BJH method.
- the volumes of the mesopores and macropores of the carbon material are preferably 0.3 cm 3 / g or more, more preferably 0.5 cm 3 / g or more.
- the volumes of the mesopores and macropores of the carbon material are equal to or more than the above lower limit value, the wide specific surface area can be utilized more efficiently, and the capacitance such as the capacitance in the power storage device can be further increased.
- the volumes of the mesopores and macropores of the carbon material are preferably 3.5 cm 3 / g or less, and more preferably 3.0 cm 3 / g or less.
- the voids can be further reduced and the density of the material can be further increased.
- the carbon material of the second invention preferably has micropores.
- the micropore means a pore having a pore diameter of less than 2 nm.
- the volume of the micropores can be calculated by, for example, the MP (micropore analysis) method.
- the volume of the micropores is the sum of the volumes calculated by the MP method.
- the volume of the micropores of the carbon material is preferably 0.7 cm 3 / g, more preferably at most 0.65 cm 3 / g.
- the volume of the micropores of the carbon material is not more than the above upper limit value, the proportion of the micropores in which the electrolytic solution is difficult to permeate can be further reduced, the wide specific surface area can be utilized more efficiently, and the power storage device. Capacitance such as capacitance can be further increased.
- the volume of the micropores of the carbon material is preferably 0.3 cm 3 / g or more, more preferably 0.35 cm 3 / g or more.
- the specific surface area can be further increased, and the capacity such as the capacitance in the power storage device can be further increased.
- the volume of the micropores measured according to the MP method of the carbon material is Acm 3 / g, and the volumes of the mesopores and the macropores measured according to the BJH method of the carbon material are defined.
- the ratio A / B is preferably 4.0 or less, more preferably 1.0 or less.
- the ratio A / B is not more than the above upper limit value, the wide specific surface area can be utilized more efficiently, and the capacity such as the capacitance in the power storage device can be further increased.
- the ratio A / B is preferably 0.1 or more, more preferably 0.15 or more, and further preferably 0.2 or more.
- the ratio A / B is not more than the above lower limit value, the voids can be further reduced and the density of the material can be further increased.
- the BET specific surface area of the carbon material is preferably 900 m 2 / g or more, more preferably 1100 m 2 / g or more, preferably 4000 m 2 / g or less, and more preferably 3500 m 2 / g or less.
- the capacitance such as the capacitance of the power storage device can be further increased.
- the BET specific surface area can be calculated from the nitrogen adsorption isotherm in accordance with the BET method.
- the measuring device for example, a product number "BELSORP-MAX” manufactured by Microtrack Bell Co., Ltd. can be used.
- the carbon material according to the second invention is preferably a carbon material having a graphene laminated structure.
- the conductivity can be further increased. Therefore, the battery characteristics such as the rate characteristics of the power storage device can be further improved.
- the X-ray diffraction spectrum can be measured by wide-angle X-ray diffraction.
- SmartLab manufactured by Rigaku Co., Ltd.
- Examples of the carbon material having such a graphene laminated structure include graphite and flaky graphite.
- Graphite is a laminate of multiple graphene sheets.
- the number of laminated graphene sheets of graphite is usually about 100,000 to 1,000,000.
- As the graphite for example, natural graphite, artificial graphite, expanded graphite or the like can be used. Expanded graphite has a higher proportion of the inter-story distance between graphene layers than ordinary graphite. Therefore, it is preferable to use expanded graphite as the graphite.
- the flaky graphite is obtained by exfoliating the original graphite, and refers to a graphene sheet laminate thinner than the original graphite.
- the number of graphene sheets laminated in the flaky graphite may be smaller than that of the original graphite.
- the flaky graphite may be flaky oxide graphite.
- the number of laminated graphene sheets is not particularly limited, but is preferably 2 layers or more, more preferably 5 layers or more, preferably 1000 layers or less, and more preferably 500 layers or less.
- the number of graphene sheets laminated is equal to or greater than the above lower limit, the flaky graphite is prevented from scrolling in the liquid and the flaky graphites are prevented from stacking with each other, so that the conductivity of the flaky graphite is further enhanced. be able to.
- the number of laminated graphene sheets is not more than the above upper limit, the specific surface area of the flaky graphite can be further increased.
- the carbon material having a graphene laminated structure is preferably a partially exfoliated flaky graphite having a structure in which graphite is partially exfoliated.
- partially exfoliated graphite means that in the graphene laminate, the graphene layers are open from the edge to the inside to some extent, that is, one of the graphite at the edge (edge portion). It means that the part is peeled off. Further, it means that the graphite layer is laminated in the central portion in the same manner as the original graphite or the primary flaky graphite. Therefore, the portion where a part of graphite is peeled off at the edge is connected to the portion on the central side. Further, the partially exfoliated thinned graphite may include those in which the graphite at the edge is exfoliated and flaked.
- the graphite layer is laminated in the central portion in the same manner as the original graphite or the primary flake graphite. Therefore, the degree of graphitization is higher than that of conventional graphene oxide or carbon black, and the conductivity is excellent. Therefore, when it is used as an electrode of a power storage device, the electron conductivity in the electrode can be further increased, and charging / discharging with a larger current becomes possible.
- Whether or not graphite is partially peeled off can be determined by, for example, observation with a scanning electron microscope (SEM), as in the case of the flaky graphite / resin composite material described in International Publication No. 2014/034156. , Can be confirmed by the X-ray diffraction spectrum.
- SEM scanning electron microscope
- the carbon material of the second invention may contain at least one of a resin and a resin carbide.
- the resin carbide is preferably amorphous carbon. When amorphous carbon is measured by the X-ray diffraction method, it is preferable that no peak is detected at 2 ⁇ near 26 degrees. A part or all of the resin may remain without being carbonized. Since the resin is used for the purpose of forming carbides, it is distinguished from the binder used as the electrode material of the power storage device.
- the resin used for the resin or the resin carbide examples include polypropylene glycol, polyethylene glycol, styrene polymer (polystyrene), vinyl acetate polymer (polyvinyl acetate), polyglycidyl methacrylate, polyvinyl butyral, polyacrylic acid, polyester, and styrene butadiene.
- examples thereof include fluoropolymers such as rubber, polyimide resin, polytetrafluoroethylene, and polyvinylidene fluoride.
- the resin or the carbide of the resin may be used alone or in combination of two or more.
- a polyester resin such as aromatic polyester is preferably used as the resin used for the resin or the resin carbide.
- the content of the resin and / or the resin carbide contained in 100% by weight of the carbon material is preferably 1% by weight or more, more preferably 3% by weight or more, still more preferably 10% by weight or more, particularly. It is preferably 15% by weight or more, preferably 99% by weight or less, and more preferably 95% by weight or less.
- the content of the resin and / or the resin carbide can be calculated by measuring the weight change with the heating temperature by, for example, thermogravimetric analysis (hereinafter, TG).
- the carbon material of the second invention may further contain other carbon materials.
- the other carbon material is not particularly limited, and graphene, carbon nanotubes, carbon nanofibers, carbon black, activated carbon and the like can be used.
- the carbon material of the second invention can be obtained, for example, by subjecting a composite of a carbon material having a graphene laminated structure and a resin and / or a resin carbide to an activation treatment.
- first, graphite or primary flaky graphite and a resin are mixed (mixing step). Further, the activator is further mixed before or after the above mixing to obtain a mixture. Next, a carbon material can be obtained by subjecting the mixture to an activation treatment.
- a surfactant such as carboxymethyl cellulose (CMC) may be further mixed with graphite or primary flaky graphite and resin.
- the mixing step may include a heating step in which graphite or primary flaky graphite and resin are mixed and then heated.
- the heating in this heating step may be heating at the time of thermal decomposition at the time of producing the partially peeling type flaky graphite.
- the resin mixed in the above mixing step may be the resin used in the production of partially peeled flake graphite. That is, the mixing step may be a step of producing partially peelable flaky graphite.
- Partially peeling type flaky graphite is obtained by partially peeling graphite or primary flaky graphite from the edge portion by thermally decomposing at least a part of the resin during heating in a heating step or an activation step (activation treatment). Obtainable.
- the primary flaky graphite broadly includes flaky graphite obtained by exfoliating graphite by various methods.
- the primary flaky graphite may be a partially exfoliated flaky graphite. Since the primary flaky graphite is obtained by exfoliating graphite, its specific surface area may be larger than that of graphite.
- the heating temperature in the heating step can be, for example, 200 ° C. to 500 ° C.
- the heating may be performed in the atmosphere or in an atmosphere of an inert gas such as nitrogen gas.
- the activator may be mixed and heated with graphite or primary flaky graphite and resin before the heating step, or after the heating step, that is, after heating graphite or primary flaky graphite and resin. You may.
- a part of the resin may be carbonized or the resin may be completely carbonized. Further, heating may be performed only in the activation step without heating in the mixing step.
- the method of activation treatment is not particularly limited, and examples thereof include a chemical activation method and a gas activation method. Above all, the alkali activation method is preferable from the viewpoint that the specific surface area of the obtained carbon material can be increased more effectively.
- the activator used in the alkaline activation method is not particularly limited, and examples thereof include sodium hydroxide, potassium hydroxide, potassium carbonate and the like. Among them, when composited with a resin, potassium carbonate is used from the viewpoint that the composited resin is not affected at room temperature and the specific surface area of the carbon material can be further effectively increased only at a high temperature during the activation treatment. Is preferable.
- such an activator is mixed with the carbon material having the graphene laminated structure, and the activation treatment is performed.
- the activator and the carbon material having the graphene laminated structure may be activated in a physically mixed state, or the carbon material having the graphene laminated structure is impregnated with the activator. May be activated with. From the viewpoint that the specific surface area of the obtained carbon material can be increased more effectively, it is preferable to perform the activation treatment in a state where the carbon material having the graphene laminated structure is impregnated with the activator.
- the temperature of the activation treatment in the alkali activation method can be, for example, 600 ° C to 900 ° C.
- the holding time at that temperature can be, for example, 30 minutes to 300 minutes.
- the activation treatment is preferably performed in an atmosphere of an inert gas such as nitrogen gas or argon gas.
- the activator used in the gas activation method is not particularly limited, and examples thereof include carbon dioxide, water vapor, and combustion gas.
- the temperature of the activation treatment in the gas activation method can be, for example, 600 ° C to 900 ° C.
- the holding time at that temperature can be, for example, 30 minutes to 300 minutes.
- the resin to be mixed with graphite or primary flaky graphite is not particularly limited, and for example, polypropylene glycol, polyethylene glycol, styrene polymer (polystyrene), vinyl acetate polymer (polyvinyl acetate), and polyvinylidene methacrylate.
- Polyvinyl butyral polyacrylic acid, polyester, styrene butadiene rubber, polyimide resin, polytetrafluoroethylene, polyvinylidene fluoride and other fluoropolymers.
- the above resins may be used alone or in combination of two or more.
- a polyester resin such as aromatic polyester is used.
- the viscosity of the resin mixed with graphite or primary flaky graphite at 25 ° C. is preferably 200 mPa ⁇ s or more, more preferably 250 mPa ⁇ s or more, still more preferably 300 mPa ⁇ s or more.
- the viscosity of the resin mixed with graphite or primary flaky graphite is at least the above lower limit, the dispersion stability of graphite or primary flaky graphite or activator in the resin can be further enhanced, and the proportion of macropores. Can be increased even more.
- the amount of nitrogen adsorbed when the relative pressure (P / P 0 ) on the nitrogen adsorption isotherm is 0.99 can be further increased.
- the upper limit of the viscosity of the resin mixed with graphite or primary flaky graphite at 25 ° C. is not particularly limited, but can be, for example, 80,000 mPa ⁇ s. With viscosities higher than this, sufficient dispersion may be difficult.
- the viscosity of the resin was determined by using, for example, a B-type viscometer (manufactured by Brookfield, "RVDV-2, Spindle No. 029") at 25 ° C. It can be measured under the condition of 30 or 60 rpm.
- the blending amount of the resin mixed with graphite or primary flaky graphite is preferably 1 part by weight or more, more preferably 20 parts by weight or more, preferably 20 parts by weight or more, based on 1 part by weight of graphite or primary flaky graphite. It is 500 parts by weight or less, more preferably 250 parts by weight or less.
- the blending amount of the resin mixed with graphite or the primary flaky graphite is within the above range, it is easier to control the content of the resin and / or the resin carbide contained in the obtained carbon material.
- the resin mixed with graphite or primary flaky graphite may be completely carbonized in the carbonization / activation step, or a part of the resin may remain as a resin.
- the carbon material of the second invention When used as an electrode material of a power storage device, it can increase the capacity such as the capacitance of the power storage device. Therefore, it can be suitably used as an electrode material for a power storage device.
- the power storage device of the second invention is not particularly limited, but is a non-aqueous electrolyte primary battery, an aqueous electrolyte primary battery, a non-aqueous electrolyte secondary battery, an aqueous electrolyte secondary battery, a capacitor, an electric double layer capacitor, or a lithium ion capacitor. Etc. are exemplified.
- the electrode material for a power storage device of the second invention is an electrode material used for an electrode of a power storage device as described above.
- the electrode material for a power storage device of the second invention includes the carbon material of the second invention.
- the power storage device of the second invention includes an electrode composed of an electrode material for a power storage device containing the carbon material of the second invention, the capacity such as capacitance can be further increased.
- the carbon material contained in the electrode material for a power storage device can further improve the permeability of the electrolytic solution and further increase the capacitance such as the capacitance as described above, so that the capacitor and the lithium ion secondary can be further enhanced.
- the capacity of the battery can be effectively increased.
- the capacitor include an electric double layer capacitor.
- the electrode material for a power storage device can be used as an electrode for a power storage device by shaping the carbon material of the second invention by adding a binder resin or a solvent as needed.
- the shaping of the electrode material for the power storage device can be performed, for example, by forming a sheet with a rolling roller and then drying it. Further, a coating liquid composed of the carbon material of the second invention, the binder resin and the solvent may be applied to the current collector and then dried.
- binder resin for example, a fluorine-based polymer such as polybutylal, polytetrafluoroethylene, styrene-butadiene rubber, polyimide resin, acrylic resin, polyvinylidene fluoride, or water-soluble carboxymethyl cellulose can be used.
- a fluorine-based polymer such as polybutylal, polytetrafluoroethylene, styrene-butadiene rubber, polyimide resin, acrylic resin, polyvinylidene fluoride, or water-soluble carboxymethyl cellulose
- polytetrafluoroethylene can be used. When polytetrafluoroethylene is used, dispersibility and heat resistance can be further improved.
- the blending ratio of the binder resin is preferably in the range of 0.3 parts by weight to 40 parts by weight, and more preferably in the range of 0.3 parts by weight to 15 parts by weight with respect to 100 parts by weight of the carbon material. ..
- the electrostatic capacity of the power storage device can be further increased.
- solvent ethanol, N-methylpyrrolidone (NMP), water or the like can be used.
- an aqueous system or a non-aqueous system may be used as the electrolytic solution of the capacitor.
- water-based electrolytic solution examples include an electrolytic solution using water as a solvent and sulfuric acid, potassium hydroxide, or the like as an electrolyte.
- non-aqueous electrolyte solution for example, an electrolyte solution using the following solvent, electrolyte, or ionic liquid can be used.
- the solvent include acetonitrile, propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), acrylonitrile (AN) and the like.
- lithium hexafluorophosphate LiPF 6
- lithium tetrafluoroborate LiBF 4
- TEABF 4 tetraethylammonium tetrafluoroborate
- TEMABF triethylmethylammonium tetrafluoroborate
- an ionic liquid for example, an ionic liquid having the following cations and anions can be used.
- the cation include imidazolium ion, pyridinium ion, piperidium ion, pyrrolidium ion, ammonium ion, phosphonium ion and the like.
- the anion, boron tetrafluoride ion (BF 4 -), 6 boron fluoride ions (BF 6 -), 4 aluminum chloride ion (AlCl 4 -), 6 tantalum fluoride ions (TaF 6 -), tris (trifluoperazine b) methane ions (C (CF 3 SO 2) 3 -), include bisfluorosulfonylimide like.
- the drive voltage can be further improved in the power storage device. That is, the energy density can be further increased.
- the partially peeled thin-section graphite immersed in potassium carbonate was activated by holding it in a nitrogen atmosphere at a temperature (carbonization / activation temperature) of 850 ° C. for 100 minutes. Finally, a carbon material was obtained by neutral washing with hot water.
- the resin content in the obtained carbon material was confirmed by using a differential thermogravimetric simultaneous measuring device (manufactured by Hitachi High-Tech Science Corporation, product number "STA7300") as follows.
- the content of the resin shall be the content of the resin and / or the resin carbide, and the same shall apply in the following examples.
- Example 1 Approximately 2 mg of carbon material was weighed in a platinum pan. The sample was measured in an air atmosphere at a heating rate of 10 ° C./min from 30 ° C. to 1000 ° C. From the differential thermal analysis results obtained by the measurement, the combustion temperatures of the resin and the partially peeled flaky graphite were separated, and the amount of resin (% by weight) with respect to the entire carbon material was calculated from the accompanying change in thermogravimetric analysis. In Example 1, the amount of resin with respect to the entire carbon material was 83% by weight.
- Example 2 A carbon material was obtained in the same manner as in Example 1 except that the carbonization / activation temperature was 950 ° C. for 60 minutes. In Example 2, the amount of resin with respect to the entire carbon material was 89% by weight.
- BET specific surface area The BET specific surface area of the carbon materials obtained in Examples 1 and 2 and Comparative Examples 1 and 2 was determined by using a high-precision gas adsorption amount measuring device (manufactured by Microtrac Bell, product number "BELSORP-MAX", nitrogen gas). Was measured.
- FIG. 1 is a diagram showing profiles of pulse NMR in water and carbon materials obtained in Examples 1 and 2 and Comparative Examples 1 and 2.
- the relaxation intensities at spin-spin relaxation times of 50 msec and 200 msec were determined in the pulse NMR profile as shown in FIG.
- the highly hydrophilic material had extremely fast decay due to the interaction at the interface with respect to the free induction decay curve of water.
- the conductivity of the carbon materials obtained in Examples 1 and 2 and Comparative Examples 1 and 2 was measured at room temperature by a four-probe method resistivity measuring device (manufactured by Mitsubishi Chemical Analytech Co., Ltd., trade name "MCP-T700 / PD51"). , Measured in the air. Specifically, 0.1 g of carbon material was weighed, placed in a container having a cross section of 3.14 cm 2 , and the conductivity when pressure was applied to 16 kN with a hydraulic pump, that is, the volume resistivity was measured.
- A The amount of water supplied when the relative pressure (P / P 0 ) is 0.3 or more
- B The amount of water supplied when the relative pressure (P / P 0 ) is 0.3 is less than 5.
- a coated electrode was prepared using the carbon materials obtained in Examples 1 and 2 and Comparative Examples 1 and 2.
- the obtained carbon material was dispersed in water with a rotating and revolving mixer (manufactured by Shinky Co., Ltd., product number "AR-100"). Further, carboxymethyl cellulose as a binder resin and styrene-butadiene rubber were added by 5 parts by weight to 90 parts by weight of the carbon material and mixed to obtain a coating liquid. The obtained coating liquid was applied onto an aluminum foil and dried. In Comparative Example 2, a good coating solution could not be prepared and evaluation as an electrode could not be performed.
- the prepared cell was charged and discharged for 3 cycles in the range of 0V to 2.5V at a control current of 10mA / g, and after confirming that the cell was discharged to 0V, an electrochemical measuring device (manufactured by Bio-logic, part number). : VMP3) was used to measure the AC impedance at 25 ° C.
- the frequency range for impedance measurement was 100 kHz to 10 MHz.
- Impedance was evaluated according to the following evaluation criteria.
- a homomixer Principal
- the polyester resin was adsorbed on the expanded graphite.
- a composition in which the polyester resin is adsorbed on the expanded graphite was prepared.
- the viscosity of the polyester resin used in Example 3 at 25 ° C.
- the viscosity of the resin was measured using a B-type viscometer (manufactured by Brookfield, "RVDV-2, Spindle No. 029") under the conditions of 25 ° C. and 0.3 rpm.
- a heating step was carried out in which the composition was maintained at a temperature of 370 ° C. for 1 hour in a nitrogen atmosphere.
- the polyester resin was thermally decomposed to obtain partially exfoliated flaky graphite. A part of the polyester resin remains in this partially peelable flaky graphite.
- the partially peeled thin-section graphite immersed in potassium carbonate was subjected to activation treatment by holding it in a nitrogen atmosphere at a temperature (carbonization / activation temperature) of 800 ° C. for 60 minutes. Finally, a carbon material was obtained by neutral washing with hot water.
- the resin content in the obtained carbon material was confirmed by using a differential thermogravimetric simultaneous measuring device (manufactured by Hitachi High-Tech Science Corporation, product number "STA7300") as follows.
- the content of the above resin shall be the content of the resin and / or the resin carbide, and the same shall apply in the following examples.
- Example 4 As resins, instead of 250 g of polyester resin (manufactured by Kawasaki Kasei Kogyo Co., Ltd., trade name "RFK509”), 125 g of polyester resin (manufactured by Kawasaki Kasei Kogyo Co., Ltd., trade name "RFK509”) and polyester resin (manufactured by Kawasaki Kasei Kogyo Co., Ltd., product)
- a carbon material was obtained in the same manner as in Example 3 except that 125 g of the name “RFK868”) was mixed and used.
- the viscosity of the polyester resin mixture was 22333 mPa ⁇ s. At this time, the viscosity was measured by the same method as in Example 3 except that the rotation speed was changed to 12 rpm. Moreover, in Example 4, the amount of resin with respect to the whole carbon material was 92% by weight.
- Example 5 Example 3 and Example 3 except that 250 g of polyester resin (manufactured by Kawasaki Kasei Kogyo Co., Ltd., trade name "RFK556") was used instead of 250 g of polyester resin (manufactured by Kawasaki Kasei Kogyo Co., Ltd., trade name "RFK509").
- a carbon material was obtained in the same manner.
- the viscosity of the polyester resin measured by the same method as in Example 4 was 2333 mPa ⁇ s.
- the amount of resin with respect to the whole carbon material was 89% by weight.
- Example 6 As resins, instead of 250 g of polyester resin (manufactured by Kawasaki Kasei Kogyo Co., Ltd., trade name "RFK509”), 125 g of polyester resin (manufactured by Kawasaki Kasei Kogyo Co., Ltd., trade name "RLK087”) and polyethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., product) A carbon material was obtained in the same manner as in Example 3 except that 125 g of the name “PEG600”) was mixed and used. The viscosity of the mixture of the above resins measured by the same method as in Example 3 was 333 mPa ⁇ s. At this time, the viscosity was measured by the same method as in Example 3 except that the rotation speed was changed to 30 rpm. Moreover, in Example 6, the amount of resin with respect to the whole carbon material was 87% by weight.
- polyester resin manufactured by Kawasaki Kasei Kogyo Co., Ltd., trade name “
- Example 4 Example 3 and Example 3 except that 250 g of polyethylene glycol (manufactured by Wako Junyaku Co., Ltd., trade name "PEG600”) was used instead of 250 g of polyester resin (manufactured by Kawasaki Kasei Kogyo Co., Ltd., trade name "RFK509").
- a carbon material was obtained in the same manner.
- the viscosity of the polyethylene glycol was 150 mPa ⁇ s. At this time, the viscosity was measured by the same method as in Example 3 except that the rotation speed was changed to 60 rpm. Further, in Comparative Example 4, the amount of resin with respect to the entire carbon material was 82% by weight.
- BET specific surface area For the BET specific surface area of the carbon materials obtained in Examples 3 to 6 and Comparative Examples 3 to 4, a high-precision gas adsorption amount measuring device (manufactured by Microtrac Bell, product number "BELSORP-MAX", nitrogen gas) was used. was measured.
- FIG. 2 is a diagram showing nitrogen adsorption isotherms in the carbon materials obtained in Example 3 and Comparative Example 3.
- the nitrogen adsorption amount Y cm 3 / g when the pressure (P / P 0 ) was 0.99 was determined.
- the ratio X / Y was calculated.
- micropores, mesopores and macropores The volume of micropores in the carbon material conforms to the MP method from the isotherm adsorption wire obtained using a high-precision gas adsorption amount measuring device (manufactured by Microtrac Bell, product number "BELSORP-MAX", nitrogen gas). And calculated.
- the volume of the mesopores and macropores of the carbon material is determined by the BJH method from the isotherm adsorption wire obtained using a high-precision gas adsorption amount measuring device (manufactured by Microtrac Bell, product number "BELSORP-MAX", nitrogen gas). Calculated according to.
- the volume of the micropores was A (cm 3 / g), and the volumes of the mesopores and macropores were B (cm 3 / g), and A / B was determined.
- the carbon materials of Examples 3 to 6 and Comparative Examples 3 to 4 and PTFE (manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) as a binder are kneaded at a weight ratio of 9: 1 and a film is formed using a rolling roller. By doing so, an electrode for a capacitor was obtained.
- the obtained electrode film thickness was adjusted to 50 ⁇ m to 150 ⁇ m, respectively.
- the obtained capacitor electrodes were vacuum dried at 130 ° C. for 14 hours, and then two were punched into a circle having a diameter of 1 cm, and their weights were measured.
- an electric double layer capacitor was produced by injecting 1.2 ml of an electrolytic solution after assembling a cell by sandwiching two capacitor electrodes as a negative electrode and a positive electrode through a separator. These operations were carried out in an environment with a dew point of ⁇ 70 ° C. or lower.
- control current value is set to 10 mA / g (a current of 10 mA is passed per 1 g of electrode weight), and repeated charge / discharge characteristics between 0 V and 2.5 V are measured 3 each. A cycle was carried out. From the obtained measurement results, the calculation range was set to 1.25V to 2.5V, and the calculation was performed using the following formula (1).
- C I / ( ⁇ V / ⁇ t) ... Equation (1)
- C is the capacitance and the unit is F
- I is the discharge current value and the unit is A.
- ⁇ V is the difference between the start voltage value and the end voltage value in the calculation range and is a unit. Is V, and here it is 1.25 because the range is from 2.5V to 1.25V.
- ⁇ t is the time required to discharge from the start voltage value to the end voltage value, and the unit is seconds. Is.
- the capacitance C'per area was calculated using the following equation (2) using the capacitance C calculated from the above equation (1).
- the capacitance C'(F / m 2 ) per area was determined according to the following criteria.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Materials Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
蓄電デバイスなどのデバイスの特性を向上させることができる、炭素材料を提供する。 パルスNMRにより測定した自由誘導減衰曲線を規格化したプロファイルにおいて、スピン-スピン緩和時間50msecのときの緩和強度が、0.7以下である、炭素材料。
Description
本発明は、炭素材料、並びに該炭素材料を用いた水蒸気吸着材、蓄電デバイス用電極材料、及び蓄電デバイスに関する。
近年、キャパシタやリチウムイオン二次電池等の電極材料や、熱マネジメント技術に用いられるヒートパイプ等の放熱材料として、グラフェン、黒鉛、活性炭、カーボンナノファイバー等の炭素材料が広く用いられている。
例えば、下記の特許文献1には、鱗片状の黒鉛粒子と、イソブチレン構造を有する重合体と、エチレンプロピレン共重合体と、エチレンオクテンエラストマーとを含有する熱伝導シートが開示されている。特許文献1では、鱗片状の黒鉛粒子として、膨張黒鉛が例示されている。
ところで、熱マネジメント技術においては、放熱性に優れた熱交換器や、吸着ヒートポンプに用いられるような水蒸気吸脱着能に優れた水蒸気吸着材等が求められている。しかしながら、特許文献1の熱伝導シートに用いられるような炭素材料は、放熱性に優れるものの、水蒸気を十分に吸着することは困難である。
また、特許文献1のような炭素材料は、蓄電デバイスの電極材料として用いたときには、上記炭素材料の細孔中にまで、電解液として用いられる極性溶媒が浸透し難く、電気抵抗が高くなるという問題がある。
一方で、上記のような問題を解決するために、炭素材料を酸化させて水との親和性を高めようとすると、導電性や熱伝導性などの炭素材料が本来有する特性が低下することがある。
本発明の目的は、蓄電デバイスなどのデバイスの特性を向上させることができる、炭素材料、並びに該炭素材料を用いた水蒸気吸着材、蓄電デバイス用電極材料、及び蓄電デバイスを提供することにある。
本発明者らは、鋭意検討した結果、パルスNMRにより測定した自由誘導減衰曲線を規格化したプロファイルにおいて、スピン-スピン緩和時間50msecのときの緩和強度が特定の範囲にある本願の第1の発明に係る炭素材料が、上記課題を解決できることを見出し、第1の発明を成すに至った。
すなわち、本願の第1の発明に係る炭素材料は、パルスNMRにより測定した自由誘導減衰曲線を規格化したプロファイルにおいて、スピン-スピン緩和時間50msecのときの緩和強度が、0.7以下である。
本願の第1の発明に係る炭素材料のある特定の局面では、前記炭素材料のBET比表面積が、450m2/g以上、3500m2/g以下である。
本願の第1の発明に係る炭素材料の他の特定の局面では、前記炭素材料が、グラフェン積層構造を有する炭素材料である。
本願の第1の発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料が、黒鉛又は薄片化黒鉛である。
本願の第1の発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料が、部分的にグラファイトが剥離されている、部分剥離型薄片化黒鉛である。
本願の第1の発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料が、さらに樹脂及び樹脂炭化物のうち少なくとも一方を含む。
本願の第1の発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料中における前記樹脂及び樹脂炭化物のうち少なくとも一方の含有量が、1重量%以上、99.9重量%以下である。
本願の第1の発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料の導電率が、15S/cm以上である。
本願の第1の発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料の水蒸気吸着等温線における相対圧(P/P0)が0.3のときの吸水量が、5cm3/g以上である。
本発明に係る水蒸気吸着材は、本願の第1の発明に従って構成される炭素材料を含む。
本発明に係る水蒸気吸着材は、ヒートポンプに用いられることが好ましい。
本願の第1の発明に係る蓄電デバイス用電極材料は、本願の第1の発明に従って構成される炭素材料を含む。
本願の第1の発明に係る蓄電デバイスは、本願の第1の発明に従って構成される蓄電デバイス用電極材料により構成されている電極を備える。
本発明者らは、鋭意検討した結果、炭素材料の窒素吸着等温線における相対圧(P/P0)が0.99のときの窒素吸着量が特定の範囲にある本願の第2の発明に係る炭素材料が、上記課題を解決できることを見出し、第2の発明を成すに至った。
すなわち、本願の第2の発明に係る炭素材料は、窒素吸着等温線における相対圧(P/P0)が0.99のときの窒素吸着量が、700cm3/g以上である。
本願の第2の発明に係る炭素材料のある特定の局面では、窒素吸着等温線における相対圧(P/P0)が0.05のときの窒素吸着量をXcm3/gとし、窒素吸着等温線における相対圧(P/P0)が0.99のときの窒素吸着量をYcm3/gとしたときに、比X/Yが、0.70未満である。
本願の第2の発明に係る炭素材料の他の特定の局面では、窒素吸着等温線における相対圧(P/P0)が0.05のときの窒素吸着量が、400cm3/g以下である。
本願の第2の発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料のBJH法に準拠して測定されたメソ孔及びマクロ孔の容積が、0.5cm3/g以上である。
本願の第2の発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料のMP法に準拠して測定されたミクロ孔の容積をAcm3/gとし、前記炭素材料のBJH法に準拠して測定されたメソ孔及びマクロ孔の容積をBcm3/gとしたときに、比A/Bが、0.1以上、4.0以下である。
本願の第2の発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料が、グラフェン積層構造を有する炭素材料である。
本願の第2の発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料が、黒鉛又は薄片化黒鉛である。
本願の第2の発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料が、部分的にグラファイトが剥離されている、部分剥離型薄片化黒鉛である。
本願の第2の発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料が、さらに樹脂及び樹脂炭化物のうち少なくとも一方を含む。好ましくは、前記炭素材料中における前記樹脂及び樹脂炭化物のうち少なくとも一方の含有量が、1重量%以上、99重量%以下である。
本願の第2の発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料のBET比表面積が、900m2/g以上、4000m2/g以下である。
本願の第2の発明に係る蓄電デバイス用電極材料は、本願の第2の発明に従って構成される炭素材料を含む。
本願の第2の発明に係る蓄電デバイスは、本願の第2の発明に従って構成される蓄電デバイス用電極材料により構成されている電極を備える。
なお、本願の第1の発明及び第2の発明を総称して、本発明と称する場合があるものとする。
本発明によれば、蓄電デバイスなどのデバイスの特性を向上させることができる、炭素材料、並びに該炭素材料を用いた水蒸気吸着材、蓄電デバイス用電極材料、及び蓄電デバイスを提供することができる。
以下、本発明の詳細を説明する。
[第1の発明]
(炭素材料)
本願の第1の発明に係る炭素材料は、パルスNMRにより測定した自由誘導減衰曲線を規格化したプロファイルにおいて、スピン-スピン緩和時間50msecのときの緩和強度が、0.7以下である。パルスNMR測定には、パルス核磁気共鳴装置(Bruker社製、品番「the minispeq mq20」)により測定することができる。
(炭素材料)
本願の第1の発明に係る炭素材料は、パルスNMRにより測定した自由誘導減衰曲線を規格化したプロファイルにおいて、スピン-スピン緩和時間50msecのときの緩和強度が、0.7以下である。パルスNMR測定には、パルス核磁気共鳴装置(Bruker社製、品番「the minispeq mq20」)により測定することができる。
具体的には、水中に炭素材料を固形分で5重量%分散させた分散液をガラス製NMR管(BRUKER社製、品番1824511、外径10mm、長さ180mm、フラットボトム)に充填する。次いで、得られたガラス製NMR管をパルス核磁気共鳴装置に設置し、以下の通りに設定し測定する。
測定温度:30℃
観測核:プロトン
測定モード:CPMG法
積算回数:120回
Recycle Delay:16sec
90°-180°Pulse Separation(τ):0.5ms
Total Number of Acquired Echoes:1000点
観測核:プロトン
測定モード:CPMG法
積算回数:120回
Recycle Delay:16sec
90°-180°Pulse Separation(τ):0.5ms
Total Number of Acquired Echoes:1000点
上記パルスNMR測定で、得られた自由誘導減衰曲線の測定開始から1点目のNMR信号強度で、自由誘導減衰曲線を規格化し、50msecにおけるNMR信号強度の値を算出する。
第1の発明の炭素材料は、上記の構成を備えているので、炭素材料の本来有する特性を維持しつつ、親水性を高めることができる。本発明における親水性とは、炭素材料表面と水との相互作用を意味する。
従来の熱伝導シートなどに用いられる炭素材料は、放熱性に優れるものの、吸着ヒートポンプなどの水蒸気吸着材に用いたときに水蒸気を十分に吸着することが困難である。また、従来の炭素材料は、蓄電デバイスの電極材料として用いたときに、炭素材料の細孔中にまで、電解液として用いられる極性溶媒が浸透し難く、電気抵抗が高くなるという問題がある。一方で、これらの問題を解決するために、炭素材料を酸化させて水との親和性を高めようとすると、導電性や熱伝導性などの炭素材料が本来有する特性が低下することがある。
本発明者らは、パルスNMRにより測定したプロファイルにおいて、スピン-スピン緩和時間50msecのときの緩和強度に着目し、スピン-スピン緩和時間50msecのときの緩和強度を上記上限値以下とすることにより、炭素材料と水分子との相互作用を高めることができ、炭素材料の親水性を高め得ることを見出した。
従って、第1の発明によれば、パルスNMRにより測定したプロファイルにおいて、スピン-スピン緩和時間50msecのときの緩和強度を上記上限値以下とすることにより、炭素材料の親水性を高めることができる。
よって、第1の発明の炭素材料は、吸着ヒートポンプなどの水蒸気吸着材に用いたときに水蒸気を十分に吸着することができる。また、蓄電デバイスの電極材料として用いたときに、電極材料の細孔内部まで電解液を浸透させることができ、得られる蓄電デバイスの抵抗を低減することができる。よって、第1の発明によれば、蓄電デバイスなどのデバイスの特性を向上させることができる。
第1の発明においては、炭素材料のパルスNMRにより測定した自由誘導減衰曲線を規格化したプロファイルにおいて、スピン-スピン緩和時間50msecのときの緩和強度が、好ましくは0.5以下、より好ましくは0.3以下である。緩和強度が上記上限値以下である場合、炭素材料と水分子との相互作用をより一層高めることができ、炭素材料の親水性をより一層高めることができる。なお、スピン-スピン緩和時間50msecのときの緩和強度の下限値としては、特に限定されないが、例えば、0.0001とすることができる。
また、第1の発明においては、炭素材料のパルスNMRにより測定した自由誘導減衰曲線を規格化したプロファイルにおいて、スピン-スピン緩和時間200msecのときの緩和強度が、好ましくは0.6以下、より好ましくは0.2以下である。緩和強度が上記上限値以下である場合、炭素材料と水分子との相互作用をより一層高めることができ、炭素材料の親水性をより一層高めることができる。なお、スピン-スピン緩和時間200msecのときの緩和強度の下限値としては、特に限定されないが、例えば、0.0001とすることができる。
第1の発明において、炭素材料のBET比表面積は、好ましくは450m2/g以上、より好ましくは1100m2/g以上、好ましくは4000m2/g以下、より好ましくは3500m2/g以下である。炭素材料のBET比表面積が上記範囲内にある場合、例えば、蓄電デバイスの電極材料に用いたときに容量をより一層高めることができる。
上記BET比表面積は、BET法に準拠して、窒素の吸着等温線から測定することができる。測定装置としては、例えば、高精度ガス吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-MAX」、窒素ガス)を用いることができる。
第1の発明に係る炭素材料は、グラフェン積層構造を有することが好ましい。この場合、上記のように親水性が高められた場合にも、導電性や熱伝導性などの炭素材料が本来有する特性をより一層高めることができる。
なお、グラフェン積層構造を有するか否かは、炭素材料のX線回折スペクトルについて、CuKα線(波長1.541Å)を用いて測定したときに、2θ=26度付近のピーク(グラフェン積層構造に由来するピーク)が観察されるか否かにより確認することができる。X線回折スペクトルは、広角X線回折法によって測定することができる。X線回折装置としては、例えば、SmartLab(リガク社製)を用いることができる。
このようなグラフェン積層構造を有する炭素材料としては、黒鉛又は薄片化黒鉛が挙げられる。
黒鉛とは、複数のグラフェンシートの積層体である。黒鉛のグラフェンシートの積層数は、通常、10万層~100万層程度である。黒鉛としては、例えば、天然黒鉛、人造黒鉛又は膨張黒鉛などを用いることができる。膨張黒鉛は、通常の黒鉛よりもグラフェン層同士の層間距離が大きくなっている割合が高い。従って、黒鉛としては、膨張黒鉛を用いることが好ましい。
薄片化黒鉛とは、元の黒鉛を剥離処理して得られるものであり、元の黒鉛よりも薄いグラフェンシート積層体をいう。薄片化黒鉛におけるグラフェンシートの積層数は、元の黒鉛より少なければよい。なお、薄片化黒鉛は、酸化薄片化黒鉛であってもよい。
薄片化黒鉛において、グラフェンシートの積層数は、特に限定されないが、好ましくは2層以上、より好ましくは5層以上、好ましくは1000層以下、より好ましくは500層以下である。グラフェンシートの積層数が上記下限値以上である場合、液中で薄片化黒鉛がスクロールしたり、薄片化黒鉛同士がスタックしたりすることが抑制されるため、薄片化黒鉛の導電性や熱伝導性をより一層高めることができる。グラフェンシートの積層数が上記上限値以下である場合、薄片化黒鉛の比表面積をより一層大きくすることができる。
また、グラフェン積層構造を有する炭素材料は、部分的にグラファイトが剥離されている構造を有する部分剥離型薄片化黒鉛であることが好ましい。
より具体的に、「部分的にグラファイトが剥離されている」とは、グラフェンの積層体において、端縁からある程度内側までグラフェン層間が開いており、すなわち端縁(エッジ部分)にてグラファイトの一部が剥離していることをいう。また、中央側の部分ではグラファイト層が元の黒鉛又は一次薄片化黒鉛と同様に積層していることをいうものとする。従って、端縁にてグラファイトの一部が剥離している部分は、中央側の部分に連なっている。さらに、上記部分剥離型薄片化黒鉛には、端縁のグラファイトが剥離され薄片化したものが含まれていてもよい。
このように、部分剥離型薄片化黒鉛は、中央側の部分において、グラファイト層が元の黒鉛又は一次薄片化黒鉛と同様に積層している。そのため、従来の酸化グラフェンやカーボンブラックより黒鉛化度が高く、導電性や熱伝導性に優れている。従って、例えば、蓄電デバイスの電極に用いた場合、電極内での電子伝導性をより一層大きくすることができ、より一層大きな電流での充放電が可能となる。
なお、部分的にグラファイトが剥離されているか否かは、例えば、国際公開第2014/034156号に記載の薄片化黒鉛・樹脂複合材料と同様に、例えば、走査型電子顕微鏡(SEM)による観察や、X線回折スペクトルにより確認することができる。
第1の発明の炭素材料は、樹脂及び樹脂の炭化物のうち少なくとも一方を含んでいてもよい。上記樹脂の炭化物は、アモルファスカーボンであることが好ましい。X線回折法によって、アモルファスカーボンを測定した場合、2θが26°付近にピークが検出されないことが好ましい。なお、樹脂の一部又は全部は、炭化されずに残存していてもよい。なお、上記樹脂は、炭化物を形成する目的で使用するものなので、例えば、蓄電デバイスの電極材料に用いられるバインダーとは区別されるものとする。
上記樹脂、又は上記樹脂の炭化物に用いられる樹脂としては、ポリプロピレングリコール、ポリエチレングリコール、スチレンポリマー(ポリスチレン)、酢酸ビニルポリマー(ポリ酢酸ビニル)、ポリグリシジルメタクリレート、ポリビニルブチラール、ポリアクリル酸、ポリエステル、スチレンブタジエンゴム、ポリイミド樹脂、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系ポリマーなどが挙げられる。
第1の発明において、炭素材料100重量%中に含まれる樹脂及び/又は樹脂の炭化物の含有量は、好ましくは1重量%以上、より好ましくは5重量%以上、さらに好ましくは10重量%以上、特に好ましくは20重量%以上、最も好ましくは30重量%以上、好ましくは99重量%以下、より好ましくは90重量%以下である。樹脂及び/又は樹脂の炭化物の含有量が、上記下限値以上又は上限値以下の場合、蓄電デバイスとした際の特性をより一層高めることができる。
なお、樹脂及び/又は樹脂の炭化物の含有量は、例えば熱重量分析(以下、TG)によって加熱温度に伴う重量変化を測定し、算出することができる。
第1の発明の炭素材料は、さらに他の炭素材料を含んでいてもよい。上記他の炭素材料としては、特に限定されず、グラフェン、カーボンナノチューブ、カーボンナノファイバー、カーボンブラック、活性炭などを用いることができる。
なお、グラフェン積層構造を有する炭素材料に加えて、樹脂炭化物や樹脂炭化物の元の樹脂、あるいは他の炭素材料を含む場合は、これら全てのパルスNMRの緩和強度、並びにBET比表面積を求めるものとする。
第1の発明の炭素材料は、炭素材料の本来有する特性を維持しつつ、親水性を高めることができるので、熱マネジメント技術に好適に用いることができる。例えば、ヒートパイプなどの熱交換器における放熱材料や、吸着ヒートポンプなどの水蒸気吸着材が挙げられる。なかでも、吸着ヒートポンプの水蒸気吸着材により好適に用いることができる。第1の発明の炭素材料を含む水蒸気吸着材は、水蒸気吸着量を高めることができる。
また、第1の発明の炭素材料は、蓄電デバイスの電極材料として用いたときに、電極材の細孔内部まで電解液を浸透させることができる。従って、蓄電デバイスの抵抗を低減させることができ、電極材料に好適に用いることができる。
第1の発明においては、炭素材料の導電率が、好ましくは15S/cm以上、より好ましくは20S/cm以上、さらに好ましくは50S/cm以上である。炭素材料の導電率が上記下限値以上である場合、導電性をより一層高めることができ、蓄電デバイスの電極材料に用いたときに容量やレート特性などの特性をより一層高めることができる。炭素材料の導電率の上限値は、特に限定されないが、例えば、5000S/cmとすることができる。
また、炭素材料の導電率が上記下限以上であることにより、得られる炭素材料は、熱伝導性にもより一層優れるものとなる。その結果、ヒートパイプなどの熱交換器における放熱材料に用いたときに、熱効率をより一層高めることができる。
導電率は、例えば、四探針法抵抗率測定装置(三菱化学アナリテック社製、商品名「MCP-T700/PD51」)により室温、大気中にて測定することができる。
第1の発明においては、水蒸気吸着等温線における相対圧(P/P0)が0.3のときの吸水量が、好ましくは5cm3/g以上、より好ましくは10cm3/g以上である。給水量が上記下限値以上である場合、吸着ヒートポンプの水蒸気吸着材に用いたときに、水蒸気吸着量をより一層大きくすることができる。水蒸気吸着等温線における相対圧(P/P0)が0.3のときの吸水量の上限値は、特に限定されないが、例えば、100cm3/gとすることができる。
水蒸気吸着等温線は、例えば、蒸気吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-Max」)により測定することができる。なお、Pは平衡圧力であり、P0は飽和蒸気圧である。
(炭素材料の製造方法)
第1の発明の炭素材料は、例えば、グラフェン積層構造を有する炭素材料と、樹脂及び/又は樹脂炭化物の複合体に、賦活処理を施すことにより得ることができる。
第1の発明の炭素材料は、例えば、グラフェン積層構造を有する炭素材料と、樹脂及び/又は樹脂炭化物の複合体に、賦活処理を施すことにより得ることができる。
より具体的に、第1の発明の炭素材料の製造方法では、まず、黒鉛又は一次薄片化黒鉛と樹脂とを混合する(混合工程)。また、上記混合の前又は混合の後に、さらに賦活剤を混合し、混合物を得る。次に、混合物に賦活処理を施すことにより、炭素材料を得ることができる。なお、混合工程において、黒鉛又は一次薄片化黒鉛及び樹脂に、さらにカルボキシメチルセルロース(CMC)のような界面活性剤を混合してもよい。
また、上記混合工程においては、黒鉛又は一次薄片化黒鉛と樹脂とを混合した後に、加熱する、加熱工程を含んでいてもよい。この加熱工程における加熱は、グラフェン積層構造を有する炭素材料が上記部分剥離型薄片化黒鉛の場合には、部分剥離型薄片化黒鉛の製造時における熱分解の際の加熱であってもよい。また、グラフェン積層構造を有する炭素材料が部分剥離型薄片化黒鉛の場合は、上記混合工程で混合される樹脂が、部分剥離型薄片化黒鉛の製造時に用いられる樹脂であってもよい。すなわち、上記混合工程が、部分剥離型薄片化黒鉛の製造工程であってもよい。部分剥離型薄片化黒鉛は、加熱工程や賦活工程(賦活処理)における加熱において、樹脂の少なくとも一部を熱分解させることにより、黒鉛又は一次薄片化黒鉛をエッジ部分から部分的に剥離させることによって得ることができる。
なお、上記黒鉛としては、加熱工程や後述する賦活工程(賦活処理)においてより一層容易にグラファイトを剥離することが可能であるため膨張黒鉛を使用することが好ましい。また、上記一次薄片化黒鉛とは、各種方法により黒鉛を剥離することにより得られた薄片化黒鉛を広く含むものとする。一次薄片化黒鉛は、部分剥離型薄片化黒鉛であってもよい。一次薄片化黒鉛は、黒鉛を剥離することにより得られるものであるため、その比表面積は、黒鉛よりも大きいものであればよい。
上記加熱工程における加熱の温度としては、例えば、200℃~500℃とすることができる。上記加熱は、大気中で行ってもよく、窒素ガスなどの不活性ガス雰囲気下で行ってもよい。賦活剤は、上記加熱工程の前に黒鉛又は一次薄片化黒鉛及び樹脂に混合して加熱してもよいし、上記加熱工程の後、すなわち黒鉛又は一次薄片化黒鉛及び樹脂を加熱した後に混合してもよい。なお、この加熱工程や賦活工程(賦活処理)の加熱において、樹脂の一部が炭化していてもよいし、樹脂が完全に炭化していてもよい。また、上記混合工程における加熱を行わず賦活工程においてのみ加熱してもよい。
賦活処理の方法としては、特に限定されず、薬品賦活法やガス賦活法が挙げられる。なかでも、得られる炭素材料の比表面積をより一層効果的に高め得る観点から、アルカリ賦活法であることが好ましい。
アルカリ賦活法で用いる賦活剤としては、特に限定されず、例えば、水酸化ナトリウム、水酸化カリウム、又は炭酸カリウムなどが挙げられる。なかでも、樹脂と複合化する場合、複合化させる樹脂に常温では影響を与えず、賦活処理時の高温においてのみ炭素材料の比表面積をより一層効果的に高め得る観点から、炭酸カリウムであることが好ましい。
アルカリ賦活法においては、このような賦活剤と上記グラフェン積層構造を有する炭素材料とを混合し、賦活処理が行われる。この際、賦活剤と上記グラフェン積層構造を有する炭素材料とは、物理的に混合させた状態で賦活処理をしてもよいし、上記グラフェン積層構造を有する炭素材料に賦活剤を含浸させた状態で賦活処理してもよい。得られる炭素材料の比表面積をより一層効果的に高め得る観点からは、上記グラフェン積層構造を有する炭素材料に賦活剤を含浸させた状態で賦活処理することが好ましい。
また、アルカリ賦活法における賦活処理の温度としては、例えば、600℃~900℃とすることができる。また、その温度における保持時間は、例えば、30分~300分とすることができる。なお、賦活処理は、窒素ガスやアルゴンガスなどの不活性ガス雰囲気下で行うことが望ましい。
ガス賦活法に用いる賦活剤としては、特に限定されず、例えば、二酸化炭素、水蒸気、燃焼ガスなどが挙げられる。
また、ガス賦活法における賦活処理の温度としては、例えば、600℃~900℃とすることができる。また、その温度における保持時間は、例えば、30分~300分とすることができる。
上記製造工程において、黒鉛又は一次薄片化黒鉛に混合される樹脂としては、特に限定されず、例えば、ポリプロピレングリコール、ポリエチレングリコール、スチレンポリマー(ポリスチレン)、酢酸ビニルポリマー(ポリ酢酸ビニル)、ポリグリシジルメタクリレート、ポリビニルブチラール、ポリアクリル酸、ポリエステル、スチレンブタジエンゴム、ポリイミド樹脂、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系ポリマー、などが挙げられる。なお、上記樹脂は、単独で用いてもよく、複数を併用してもよい。
上記製造工程において、黒鉛又は一次薄片化黒鉛に混合される樹脂の配合量は、黒鉛又は一次薄片化黒鉛1重量部に対し、好ましくは0.1重量部以上、より好ましくは1重量部以上、好ましくは300重量部以下、より好ましくは250重量部以下である。黒鉛又は一次薄片化黒鉛に混合される樹脂の配合量が上記範囲内である場合、得られる炭素材料に含まれる樹脂及び/又は樹脂の炭化物の含有量をより一層制御しやすい。
上記製造工程において、黒鉛又は一次薄片化黒鉛に混合される樹脂は、炭化・賦活工程において完全に炭化されていてもよいし、一部が樹脂として残存してもよい。
このように、第1の発明の炭素材料の製造方法では、酸化工程を経ていない。そのため、導電性や熱伝導性などの炭素材料が本来有する特性が損なわれ難い。また、第1の発明の炭素材料の製造方法では、賦活処理が施されるので、炭素材料の表面にメソ孔や、ミクロ孔などの数多くの細孔を形成することができ、パルスNMRの上記緩和強度を小さくすることができる。よって、炭素材料の親水性を高めることができる。なお、パルスNMRの上記緩和強度は、賦活処理の条件によって、より一層小さくすることができる。パルスNMRの上記緩和強度は、例えば、賦活処理の温度を高くしたり、賦活処理の時間を長くしたりすることによって、より一層小さくすることができる。また、パルスNMRの上記緩和強度は、用いる樹脂の種類や量によっても調整することができる。
パルスNMRの上記緩和強度をより一層小さくする観点から、賦活処理の温度は、好ましくは400℃以上、1000℃以下である。賦活処理の時間は、好ましくは30分以上、600分以下である。黒鉛又は一次薄片化黒鉛に混合される樹脂としては、好ましくはポリエステルを用いることができる。また、黒鉛又は一次薄片化黒鉛に混合される樹脂の配合量は、黒鉛又は一次薄片化黒鉛1重量部に対し、好ましくは0.1重量部以上、好ましくは250重量部以下である。
(蓄電デバイス)
第1の発明の蓄電デバイスとしては、特に限定されないが、非水電解質一次電池、水系電解質一次電池、非水電解質二次電池、水系電解質二次電池、コンデンサ、電気二重層キャパシタ、又はリチウムイオンキャパシタなどが例示される。なかでも、蓄電デバイスとしては、キャパシタやリチウムイオン二次電池であることが好ましい。なお、キャパシタとしては、例えば、電気二重層キャパシタが挙げられる。
第1の発明の蓄電デバイスとしては、特に限定されないが、非水電解質一次電池、水系電解質一次電池、非水電解質二次電池、水系電解質二次電池、コンデンサ、電気二重層キャパシタ、又はリチウムイオンキャパシタなどが例示される。なかでも、蓄電デバイスとしては、キャパシタやリチウムイオン二次電池であることが好ましい。なお、キャパシタとしては、例えば、電気二重層キャパシタが挙げられる。
第1の発明の蓄電デバイス用電極材料は、上記のような蓄電デバイスの電極に用いられる電極材料である。第1の発明の蓄電デバイス用電極材料は、上記第1の発明の炭素材料を含む。
第1の発明の蓄電デバイスは、上記第1の発明の炭素材料を含む蓄電デバイス用電極材料により構成される電極を備えているので、電解液の浸透性に優れ、セルの抵抗を低減することができる。
具体的に、蓄電デバイス用電極材料は、第1の発明の炭素材料に必要に応じてバインダー樹脂や溶媒を含めて賦形することにより、蓄電デバイスの電極を作製することができる。
上記蓄電デバイス用電極材料の賦形は、例えば、第1の発明の炭素材料とバインダー樹脂と溶媒とからなる塗液を集電体に塗工し、その後乾燥することにより行うことができる。
バインダー樹脂としては、例えば、ポリブチラール、ポリテトラフルオロエチレン、スチレンブタジエンゴム、ポリイミド樹脂、アクリル系樹脂、ポリフッ化ビニリデンなどのフッ素系ポリマーや、水溶性のカルボキシメチルセルロースなどを用いることができる。好ましくは、カルボキシメチルセルロースやスチレンブタジエンゴムを用いることができる。カルボキシメチルセルロースやスチレンブタジエンゴムを用いた場合、分散性や構造安定性をより一層向上させることができる。
バインダー樹脂の配合割合については、炭素材料100重量部に対し、0.3重量部~40重量部の範囲とすることが好ましく、0.3重量部~15重量部の範囲とすることがより好ましい。バインダー樹脂の配合割合を上記範囲内とすることにより、蓄電デバイスの静電容量をより一層高めることができる。
なお、上記溶媒としては、エタノール、N-メチルピロリドン(NMP)又は水等を使用することができる。
また、蓄電デバイスをキャパシタに用いる場合、キャパシタの電解液としては、水系を用いてもよいし、非水系(有機系)を用いてもよい。
水系の電解液としては、例えば、溶媒に水を用い、電解質に硫酸や水酸化カリウムなどを用いた電解液が挙げられる。
他方、非水系の電解液としては、例えば、以下の溶媒や電解質、イオン性液体を用いた電解液を用いることができる。具体的に、溶媒としては、アセトニトリル、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、又はアクリロニトリル(AN)などが挙げられる。
また、電解質としては、6フッ化リン酸リチウム(LiPF6)、4フッ化ホウ酸リチウム(LiBF4)、4フッ化ホウ酸テトラエチルアンモニウム(TEABF4)又は4フッ化ホウ酸トリエチルメチルアンモニウム(TEMABF4)などが挙げられる。
さらに、イオン性液体としては、例えば、以下のカチオンとアニオンを有するイオン性液体を用いることができる。カチオンとしては、イミダゾリウムイオン、ピリジニウムイオン、ピペリジウムイオン、ピロリジウムイオン、アンモニウムイオン、ホスホニウムイオンなどが挙げられる。アニオンとしては、4フッ化ホウ素イオン(BF4
-)、6フッ化ホウ素イオン(BF6
-)、4塩化アルミニウムイオン(AlCl4
-)、6フッ化タンタルイオン(TaF6
-)、トリス(トリフルオロメタンスルホニル)メタンイオン(C(CF3SO2)3
-)、ビスフルオロスルホニルイミド等が挙げられる。イオン性液体を用いた場合には、蓄電デバイスにおいて、駆動電圧をより一層向上させ得る。つまりエネルギー密度をより一層向上させることができる。
[第2の発明]
(炭素材料)
本願の第2の発明に係る炭素材料は、窒素吸着等温線における相対圧(P/P0)が0.99のときの窒素吸着量が、700cm3/g以上である。窒素吸着等温線は、例えば、高精度ガス吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-MAX」、窒素ガス、-196℃)により測定することができる。なお、Pは平衡圧力であり、P0は飽和蒸気圧である。
(炭素材料)
本願の第2の発明に係る炭素材料は、窒素吸着等温線における相対圧(P/P0)が0.99のときの窒素吸着量が、700cm3/g以上である。窒素吸着等温線は、例えば、高精度ガス吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-MAX」、窒素ガス、-196℃)により測定することができる。なお、Pは平衡圧力であり、P0は飽和蒸気圧である。
第2の発明の炭素材料は、上記の構成を備えているので、蓄電デバイスの電極材料に用いたときに、静電容量などの容量を高めることができる。よって、第2の発明によれば、蓄電デバイスなどのデバイスの特性を向上させることができる。
従来の活性炭などの炭素材料では、ミクロ孔が数多く形成されている。ミクロ孔は、比表面積の向上に寄与するが、孔径が小さいため、電解液が浸透し難い。その結果、比表面積あたりの容量を大きくできないという問題が生じていた。
本発明者らは、炭素材料の窒素吸着等温線における相対圧(P/P0)が0.99のときの窒素吸着量に着目し、上記窒素吸着量を上記下限値以上とすることにより、マクロ孔やメソ孔のように孔径の大きな細孔の容積を大きくすることができ、その結果電解液の浸透性を向上させ、比表面積のあたりの容量を高め得ることを見出した。
従って、第2の発明によれば、炭素材料の窒素吸着等温線における相対圧(P/P0)が0.99のときの窒素吸着量を上記下限値以上とすることにより、蓄電デバイスの電極材料に用いたときに、静電容量などの容量を高めることができる。
第2の発明においては、窒素吸着等温線における相対圧(P/P0)が0.99のときの窒素吸着量が、好ましくは1000cm3/g以上、より好ましくは1300cm3/g以上である。相対圧(P/P0)が0.99のときの窒素吸着量を上記下限値以上とすることにより、広い比表面積をより一層効率よく活用することができ、蓄電デバイスにおける静電容量などの容量をより一層高めることができる。もっとも、相対圧(P/P0)が0.99のときの窒素吸着量は、好ましくは2500cm3/g以下、より好ましくは2000cm3/g以下である。相対圧(P/P0)が0.99のときの窒素吸着量を上記上限値以下とすることにより、空隙をより一層少なくすることができ、材料の密度をより一層高めることができる。
第2の発明においては、窒素吸着等温線における相対圧(P/P0)が0.05のときの窒素吸着量が、好ましくは400cm3/g以下、より好ましくは350cm3/g以下である。相対圧(P/P0)が0.05のときの窒素吸着量を上記上限値以下とすることにより、電解液が浸透し難いミクロ孔のような細孔の割合をより一層少なくすることができるため、広い比表面積をより一層効率よく活用することができ、蓄電デバイスにおける静電容量などの容量を一層高めることができる。もっとも、窒素吸着等温線における相対圧(P/P0)が0.05のときの窒素吸着量は、好ましくは150cm3/g以上、より好ましくは200cm3/g以上である。相対圧(P/P0)が0.05のときの窒素吸着量を上記下限値以上とすることにより、比表面積をより一層大きくすることができ、蓄電デバイスにおける静電容量などの容量をより一層高めることができる。
第2の発明においては、窒素吸着等温線における相対圧(P/P0)が0.05のときの窒素吸着量をXcm3/gとし、窒素吸着等温線における相対圧(P/P0)が0.99のときの窒素吸着量をYcm3/gとしたときに、比X/Yが、好ましくは0.70未満、より好ましくは0.65以下、さらに好ましくは0.6以下である。比X/Yが上記上限値未満(以下)である場合、広い比表面積をより一層効率よく活用することができ、蓄電デバイスにおける静電容量などの容量をより一層高めることができる。もっとも、比X/Yは、好ましくは0.1以上、より好ましくは0.12以上である。比X/Yが上記下限値以上である場合、電解液の浸透性を確保しながら、材料の密度をより一層高めることができる。
第2の発明の炭素材料は、メソ孔及びマクロ孔を有することが好ましい。なお、本明細書において、メソ孔とは孔径が、2nm以上、50nm未満の細孔のことをいう。また、マクロ孔とは、孔径が、50nm以上の細孔のことをいう。メソ孔及びマクロ孔の容積は、例えば、細孔構造の解析手法であるBJH(Barret、Joyner、Hallender)法により算出することができる。メソ孔及びマクロ孔の容積とは、BJH法によって算出された容積の和のことをいう。
第2の発明において、炭素材料のメソ孔及びマクロ孔の容積は、好ましくは0.3cm3/g以上、より好ましくは0.5cm3/g以上である。炭素材料のメソ孔及びマクロ孔の容積が上記下限値以上である場合、広い比表面積をより一層効率よく活用することができ、蓄電デバイスにおける静電容量などの容量をより一層高めることができる。もっとも、炭素材料のメソ孔及びマクロ孔の容積は、好ましくは3.5cm3/g以下、より好ましくは3.0cm3/g以下である。炭素材料のメソ孔及びマクロ孔の容積が上記上限値以下である場合、空隙をより一層少なくすることができ、材料の密度をより一層高めることができる。
また、第2の発明の炭素材料は、ミクロ孔を有していることが好ましい。なお、本明細書において、ミクロ孔とは、孔径が2nm未満のものをいう。ミクロ孔の容積は、例えば、MP(micropore analysis)法により算出することができる。また、ミクロ孔の容積とは、MP法によって算出された容積の和のことをいう。
第2の発明において、炭素材料のミクロ孔の容積は、好ましくは0.7cm3/g以下、より好ましくは0.65cm3/g以下である。炭素材料のミクロ孔の容積が上記上限値以下である場合、電解液が浸透し難いミクロ孔の割合より一層少なくすることができ、広い比表面積をより一層効率よく活用することができ、蓄電デバイスにおける静電容量などの容量を一層高めることができる。もっとも、炭素材料のミクロ孔の容積は、好ましくは0.3cm3/g以上、より好ましくは0.35cm3/g以上である。炭素材料のミクロ孔の容積が上記下限値以上である場合、比表面積をより一層大きくすることができ、蓄電デバイスにおける静電容量などの容量をより一層高めることができる。
第2の発明においては、炭素材料のMP法に準拠して測定されたミクロ孔の容積をAcm3/gとし、炭素材料のBJH法に準拠して測定されたメソ孔及びマクロ孔の容積をBcm3/gとしたときに、比A/Bが、好ましくは4.0以下、より好ましくは1.0以下である。比A/Bが上記上限値以下である場合、広い比表面積をより一層効率よく活用することができ、蓄電デバイスにおける静電容量などの容量をより一層高めることができる。もっとも、比A/Bは、好ましくは0.1以上、より好ましくは0.15以上、さらに好ましくは0.2以上である。比A/Bが上記下限値以上である場合、空隙をより一層少なくすることができ、材料の密度をより一層高めることができる。
第2の発明において、炭素材料のBET比表面積は、好ましくは900m2/g以上、より好ましくは1100m2/g以上、好ましくは4000m2/g以下、より好ましくは3500m2/g以下である。炭素材料のBET比表面積が上記範囲内にある場合、蓄電デバイスの静電容量などの容量をより一層高めることができる。
上記BET比表面積は、BET法に準拠して、窒素吸着等温線から算出することができる。測定装置としては、例えば、マイクロトラック・ベル社製、品番「BELSORP-MAX」を用いることができる。
第2の発明に係る炭素材料は、グラフェン積層構造を有する炭素材料であることが好ましい。この場合、導電性をより一層高めることができる。そのため、蓄電デバイスのレート特性などの電池特性をより一層高めることができる。
なお、グラフェン積層構造を有するか否かは、炭素材料のX線回折スペクトルについて、CuKα線(波長1.541Å)を用いて測定したときに、2θ=26度付近のピーク(グラフェン積層構造に由来するピーク)が観察されるか否かにより確認することができる。X線回折スペクトルは、広角X線回折法によって測定することができる。X線回折装置としては、例えば、SmartLab(リガク社製)を用いることができる。
このようなグラフェン積層構造を有する炭素材料としては、黒鉛又は薄片化黒鉛が挙げられる。
黒鉛とは、複数のグラフェンシートの積層体である。黒鉛のグラフェンシートの積層数は、通常、10万層~100万層程度である。黒鉛としては、例えば、天然黒鉛、人造黒鉛又は膨張黒鉛などを用いることができる。膨張黒鉛は、通常の黒鉛よりもグラフェン層同士の層間距離が大きくなっている割合が高い。従って、黒鉛としては、膨張黒鉛を用いることが好ましい。
薄片化黒鉛とは、元の黒鉛を剥離処理して得られるものであり、元の黒鉛よりも薄いグラフェンシート積層体をいう。薄片化黒鉛におけるグラフェンシートの積層数は、元の黒鉛より少なければよい。なお、薄片化黒鉛は、酸化薄片化黒鉛であってもよい。
薄片化黒鉛において、グラフェンシートの積層数は、特に限定されないが、好ましくは2層以上、より好ましくは5層以上、好ましくは1000層以下、より好ましくは500層以下である。グラフェンシートの積層数が上記下限以上である場合、液中で薄片化黒鉛がスクロールしたり、薄片化黒鉛同士がスタックしたりすることが抑制されるため、薄片化黒鉛の導電性をより一層高めることができる。グラフェンシートの積層数が上記上限以下である場合、薄片化黒鉛の比表面積をより一層大きくすることができる。
また、グラフェン積層構造を有する炭素材料は、部分的にグラファイトが剥離されている構造を有する部分剥離型薄片化黒鉛であることが好ましい。
より具体的に、「部分的にグラファイトが剥離されている」とは、グラフェンの積層体において、端縁からある程度内側までグラフェン層間が開いており、すなわち端縁(エッジ部分)にてグラファイトの一部が剥離していることをいう。また、中央側の部分ではグラファイト層が元の黒鉛又は一次薄片化黒鉛と同様に積層していることをいうものとする。従って、端縁にてグラファイトの一部が剥離している部分は、中央側の部分に連なっている。さらに、上記部分剥離型薄片化黒鉛には、端縁のグラファイトが剥離され薄片化したものが含まれていてもよい。
このように、部分剥離型薄片化黒鉛は、中央側の部分において、グラファイト層が元の黒鉛又は一次薄片化黒鉛と同様に積層している。そのため、従来の酸化グラフェンやカーボンブラックより黒鉛化度が高く、導電性に優れている。従って、蓄電デバイスの電極に用いた場合、電極内での電子伝導性をより一層大きくすることができ、より一層大きな電流での充放電が可能となる。
なお、部分的にグラファイトが剥離されているか否かは、例えば、国際公開第2014/034156号に記載の薄片化黒鉛・樹脂複合材料と同様に、例えば、走査型電子顕微鏡(SEM)による観察や、X線回折スペクトルにより確認することができる。
第2の発明の炭素材料は、樹脂及び樹脂炭化物のうち少なくとも一方を含んでいてもよい。上記樹脂炭化物は、アモルファスカーボンであることが好ましい。X線回折法によって、アモルファスカーボンを測定した場合、2θが26度付近にピークが検出されないことが好ましい。なお、樹脂の一部又は全部は、炭化されずに残存していてもよい。なお、上記樹脂は、炭化物を形成する目的で使用するものなので、蓄電デバイスの電極材料に用いられるバインダーとは区別されるものとする。
上記樹脂、又は上記樹脂炭化物に用いられる樹脂としては、ポリプロピレングリコール、ポリエチレングリコール、スチレンポリマー(ポリスチレン)、酢酸ビニルポリマー(ポリ酢酸ビニル)、ポリグリシジルメタクリレート、ポリビニルブチラール、ポリアクリル酸、ポリエステル、スチレンブタジエンゴム、ポリイミド樹脂、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系ポリマーなどが挙げられる。なお、上記樹脂、又は上記樹脂炭化物は、単独で用いてもよく、複数を併用してもよい。上記樹脂、又は上記樹脂炭化物に用いられる樹脂としては、好ましくは、芳香族ポリエステルなどのポリエステル樹脂が挙げられる。
第2の発明において、炭素材料100重量%中に含まれる樹脂及び/又は樹脂炭化物の含有量は、好ましくは1重量%以上、より好ましくは3重量%以上、さらに好ましくは10重量%以上、特に好ましくは15重量%以上、好ましくは99重量%以下、より好ましくは95重量%以下である。樹脂及び/又は樹脂炭化物の含有量を上記下範囲内とすることで、蓄電デバイスにおける静電容量などの容量をより一層高めることができる。
なお、樹脂及び/又は樹脂炭化物の含有量は、例えば熱重量分析(以下、TG)によって加熱温度に伴う重量変化を測定し、算出することができる。
第2の発明の炭素材料は、さらに他の炭素材料を含んでいてもよい。上記他の炭素材料としては、特に限定されず、グラフェン、カーボンナノチューブ、カーボンナノファイバー、カーボンブラック、活性炭などを用いることができる。
なお、グラフェン積層構造を有する炭素材料に加えて、樹脂や樹脂炭化物の元の樹脂、あるいは他の炭素材料を含む場合は、これら全ての窒素吸着等温線、マクロ孔及びミクロ孔の容積、並びにBET比表面積を求めるものとする。
(炭素材料の製造方法)
第2の発明の炭素材料は、例えば、グラフェン積層構造を有する炭素材料と、樹脂及び/又は樹脂炭化物の複合体に、賦活処理を施すことにより得ることができる。
第2の発明の炭素材料は、例えば、グラフェン積層構造を有する炭素材料と、樹脂及び/又は樹脂炭化物の複合体に、賦活処理を施すことにより得ることができる。
より具体的に、第2の発明の炭素材料の製造方法では、まず、黒鉛又は一次薄片化黒鉛と樹脂とを混合する(混合工程)。また、上記混合の前又は混合の後に、さらに賦活剤を混合し、混合物を得る。次に、混合物に賦活処理を施すことにより、炭素材料を得ることができる。なお、混合工程において、黒鉛又は一次薄片化黒鉛及び樹脂に、さらにカルボキシメチルセルロース(CMC)のような界面活性剤を混合してもよい。
また、上記混合工程においては、黒鉛又は一次薄片化黒鉛と樹脂とを混合した後に、加熱する、加熱工程を含んでいてもよい。この加熱工程における加熱は、グラフェン積層構造を有する炭素材料が上記部分剥離型薄片化黒鉛の場合には、部分剥離型薄片化黒鉛の製造時における熱分解の際の加熱であってもよい。また、グラフェン積層構造を有する炭素材料が部分剥離型薄片化黒鉛の場合は、上記混合工程で混合される樹脂が、部分剥離型薄片化黒鉛の製造時に用いられる樹脂であってもよい。すなわち、上記混合工程が、部分剥離型薄片化黒鉛の製造工程であってもよい。部分剥離型薄片化黒鉛は、加熱工程や賦活工程(賦活処理)における加熱において、樹脂の少なくとも一部を熱分解させることにより、黒鉛又は一次薄片化黒鉛をエッジ部分から部分的に剥離させることによって得ることができる。
なお、上記黒鉛としては、加熱工程や後述する賦活工程(賦活処理)においてより一層容易にグラファイトを剥離することが可能であるため膨張黒鉛を使用することが好ましい。また、上記一次薄片化黒鉛とは、各種方法により黒鉛を剥離することにより得られた薄片化黒鉛を広く含むものとする。一次薄片化黒鉛は、部分剥離型薄片化黒鉛であってもよい。一次薄片化黒鉛は、黒鉛を剥離することにより得られるものであるため、その比表面積は、黒鉛よりも大きいものであればよい。
上記加熱工程における加熱の温度としては、例えば、200℃~500℃とすることができる。上記加熱は、大気中で行ってもよく、窒素ガスなどの不活性ガス雰囲気下で行ってもよい。賦活剤は、上記加熱工程の前に黒鉛又は一次薄片化黒鉛及び樹脂に混合して加熱してもよいし、上記加熱工程の後、すなわち黒鉛又は一次薄片化黒鉛及び樹脂を加熱した後に混合してもよい。なお、この加熱工程や賦活工程(賦活処理)の加熱において、樹脂の一部が炭化していてもよいし、樹脂が完全に炭化していてもよい。また、上記混合工程における加熱を行わず賦活工程においてのみ加熱してもよい。
賦活処理の方法としては、特に限定されず、薬品賦活法やガス賦活法が挙げられる。なかでも、得られる炭素材料の比表面積をより一層効果的に高め得る観点から、アルカリ賦活法であることが好ましい。
アルカリ賦活法で用いる賦活剤としては、特に限定されず、例えば、水酸化ナトリウム、水酸化カリウム、又は炭酸カリウムなどが挙げられる。なかでも、樹脂と複合化する場合、複合化させる樹脂に常温では影響を与えず、賦活処理時の高温においてのみ炭素材料の比表面積をより一層効果的に高め得る観点から、炭酸カリウムであることが好ましい。
アルカリ賦活法においては、このような賦活剤と上記グラフェン積層構造を有する炭素材料とを混合し、賦活処理が行われる。この際、賦活剤と上記グラフェン積層構造を有する炭素材料とは、物理的に混合させた状態で賦活処理をしてもよいし、上記グラフェン積層構造を有する炭素材料に賦活剤を含浸させた状態で賦活処理してもよい。得られる炭素材料の比表面積をより一層効果的に高め得る観点からは、上記グラフェン積層構造を有する炭素材料に賦活剤を含浸させた状態で賦活処理することが好ましい。
また、アルカリ賦活法における賦活処理の温度としては、例えば、600℃~900℃とすることができる。また、その温度における保持時間は、例えば、30分~300分とすることができる。なお、賦活処理は、窒素ガスやアルゴンガスなどの不活性ガス雰囲気下で行うことが望ましい。
ガス賦活法に用いる賦活剤としては、特に限定されず、例えば、二酸化炭素、水蒸気、燃焼ガスなどが挙げられる。
また、ガス賦活法における賦活処理の温度としては、例えば、600℃~900℃とすることができる。また、その温度における保持時間は、例えば、30分~300分とすることができる。
上記製造工程において、黒鉛又は一次薄片化黒鉛に混合される樹脂としては、特に限定されず、例えば、ポリプロピレングリコール、ポリエチレングリコール、スチレンポリマー(ポリスチレン)、酢酸ビニルポリマー(ポリ酢酸ビニル)、ポリグリシジルメタクリレート、ポリビニルブチラール、ポリアクリル酸、ポリエステル、スチレンブタジエンゴム、ポリイミド樹脂、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系ポリマーなどが挙げられる。なお、上記樹脂は、単独で用いてもよく、複数を併用してもよい。好ましくは、芳香族ポリエステルなどのポリエステル樹脂が挙げられる。
上記製造工程において、黒鉛又は一次薄片化黒鉛に混合される樹脂の25℃での粘度は、好ましくは200mPa・s以上、より好ましくは250mPa・s以上、さらに好ましくは300mPa・s以上である。黒鉛又は一次薄片化黒鉛に混合される樹脂の粘度が上記下限値以上である場合、樹脂中における黒鉛又は一次薄片化黒鉛や賦活剤の分散安定性をより一層高めることができ、マクロ孔の割合をより一層多くすることができる。その結果、窒素吸着等温線における相対圧(P/P0)が0.99のときの窒素吸着量をより一層高めることができる。なお、黒鉛又は一次薄片化黒鉛に混合される樹脂の25℃での粘度の上限値は、特に限定されないが、例えば、80000mPa・sとすることができる。これ以上の粘度では、十分な分散が困難な場合がある。
樹脂の粘度は、例えば、B型粘度計(ブルックフィールド社製、「RVDV-2、スピンドルNo.029」)等を用いて、25℃及び0.3、0.6、3、6、12、30、又は60rpmの条件で測定することができる。
上記製造工程において、黒鉛又は一次薄片化黒鉛に混合される樹脂の配合量は、黒鉛又は一次薄片化黒鉛1重量部に対し、好ましくは1重量部以上、より好ましくは20重量部以上、好ましくは500重量部以下、より好ましくは250重量部以下である。黒鉛又は一次薄片化黒鉛に混合される樹脂の配合量が上記範囲内である場合、得られる炭素材料に含まれる樹脂及び/又は樹脂炭化物の含有量をより一層制御しやすい。
上記製造工程において、黒鉛又は一次薄片化黒鉛に混合される樹脂は、炭化・賦活工程において完全に炭化されていてもよいし、一部が樹脂として残存してもよい。
第2の発明の炭素材料は、蓄電デバイスの電極材料に用いたときに、蓄電デバイスにおける静電容量などの容量を高めることができる。そのため、蓄電デバイス用電極材料として好適に用いることができる。
(蓄電デバイス用電極材料及び蓄電デバイス)
第2の発明の蓄電デバイスとしては、特に限定されないが、非水電解質一次電池、水系電解質一次電池、非水電解質二次電池、水系電解質二次電池、コンデンサ、電気二重層キャパシタ、又はリチウムイオンキャパシタなどが例示される。第2の発明の蓄電デバイス用電極材料は、上記のような蓄電デバイスの電極に用いられる電極材料である。第2の発明の蓄電デバイス用電極材料は、上記第2の発明の炭素材料を含む。
第2の発明の蓄電デバイスとしては、特に限定されないが、非水電解質一次電池、水系電解質一次電池、非水電解質二次電池、水系電解質二次電池、コンデンサ、電気二重層キャパシタ、又はリチウムイオンキャパシタなどが例示される。第2の発明の蓄電デバイス用電極材料は、上記のような蓄電デバイスの電極に用いられる電極材料である。第2の発明の蓄電デバイス用電極材料は、上記第2の発明の炭素材料を含む。
第2の発明の蓄電デバイスは、上記第2の発明の炭素材料を含む蓄電デバイス用電極材料により構成される電極を備えているので、静電容量などの容量をより一層高めることができる。
特に、蓄電デバイス用電極材料に含まれる炭素材料は、上記のように電解液の浸透性をより一層向上させ、静電容量などの容量をより一層高めることができることから、キャパシタやリチウムイオン二次電池の容量を効果的に高めることができる。なお、キャパシタとしては、例えば、電気二重層キャパシタが挙げられる。
なお、上記蓄電デバイス用電極材料は、第2の発明の炭素材料に必要に応じてバインダー樹脂や溶媒を含めて賦形することにより、蓄電デバイスの電極として用いることができる。
上記蓄電デバイス用電極材料の賦形は、例えば、圧延ローラーでシート化した後、乾燥することにより行うことができる。また、第2の発明の炭素材料とバインダー樹脂と溶媒とからなる塗液を集電体に塗工し、その後乾燥することにより行ってもよい。
バインダー樹脂としては、例えば、ポリブチラール、ポリテトラフルオロエチレン、スチレンブタジエンゴム、ポリイミド樹脂、アクリル系樹脂、ポリフッ化ビニリデンなどのフッ素系ポリマーや、水溶性のカルボキシメチルセルロースなどを用いることができる。好ましくは、ポリテトラフルオロエチレンを用いることができる。ポリテトラフルオロエチレンを用いた場合、分散性や耐熱性をより一層高めることができる。
バインダー樹脂の配合割合については、炭素材料100重量部に対し、0.3重量部~40重量部の範囲とすることが好ましく、0.3重量部~15重量部の範囲とすることがより好ましい。バインダー樹脂の配合割合を上記範囲内とすることにより、蓄電デバイスの静電容量をより一層高めることができる。
なお、上記溶媒としては、エタノール、N-メチルピロリドン(NMP)又は水等を使用することができる。
また、蓄電デバイスをキャパシタに用いる場合、キャパシタの電解液としては、水系を用いてもよいし、非水系(有機系)を用いてもよい。
水系の電解液としては、例えば、溶媒に水を用い、電解質に硫酸や水酸化カリウムなどを用いた電解液が挙げられる。
他方、非水系の電解液としては、例えば、以下の溶媒や電解質、イオン性液体を用いた電解液を用いることができる。具体的に、溶媒としては、アセトニトリル、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、又はアクリロニトリル(AN)などが挙げられる。
また、電解質としては、6フッ化リン酸リチウム(LiPF6)、4フッ化ホウ酸リチウム(LiBF4)、4フッ化ホウ酸テトラエチルアンモニウム(TEABF4)又は4フッ化ホウ酸トリエチルメチルアンモニウム(TEMABF4)などが挙げられる。
さらに、イオン性液体としては、例えば、以下のカチオンとアニオンを有するイオン性液体を用いることができる。カチオンとしては、イミダゾリウムイオン、ピリジニウムイオン、ピペリジウムイオン、ピロリジウムイオン、アンモニウムイオン、ホスホニウムイオンなどが挙げられる。アニオンとしては、4フッ化ホウ素イオン(BF4
-)、6フッ化ホウ素イオン(BF6
-)、4塩化アルミニウムイオン(AlCl4
-)、6フッ化タンタルイオン(TaF6
-)、トリス(トリフルオロメタンスルホニル)メタンイオン(C(CF3SO2)3
-)、ビスフルオロスルホニルイミド等が挙げられる。イオン性液体を用いた場合には、蓄電デバイスにおいて、駆動電圧をより一層向上させ得る。つまりエネルギー密度をより一層高めることができる。
次に、本発明の具体的な実施例及び比較例を挙げることにより本発明を明らかにする。なお、本発明は以下の実施例に限定されるものではない。
(実施例1)
膨張黒鉛(東洋炭素社製、商品名「PFパウダー8」、BET比表面積=22m2/g)1gと、ポリエチレングリコール(和光純薬工業社製、「PEG600」)250gとを、ホモミクサー(プライミクス社製)を用いて混合した。この操作により、ポリエチレングリコールを膨張黒鉛に吸着させた。このようにして、ポリエチレングリコールが膨張黒鉛に吸着されている組成物を用意した。
膨張黒鉛(東洋炭素社製、商品名「PFパウダー8」、BET比表面積=22m2/g)1gと、ポリエチレングリコール(和光純薬工業社製、「PEG600」)250gとを、ホモミクサー(プライミクス社製)を用いて混合した。この操作により、ポリエチレングリコールを膨張黒鉛に吸着させた。このようにして、ポリエチレングリコールが膨張黒鉛に吸着されている組成物を用意した。
上記混合後に、組成物を窒素雰囲気下において370℃の温度で、1時間維持する加熱工程を実施した。それによって、上記ポリエチレングリコールを熱分解させて、部分剥離型薄片化黒鉛を得た。この部分剥離型薄片化黒鉛には、ポリエチレングリコール(樹脂)の一部が残存している。
次に、得られた部分剥離型薄片化黒鉛0.5gに、賦活剤としての炭酸カリウム1.0gを水5.0gに溶解させた炭酸カリウム水溶液に浸漬させた。それによって、炭酸カリウムの部分剥離型薄片化黒鉛に対する重量比を2倍とした(=含浸率2)。
次に、炭酸カリウムを浸漬させた部分剥離型薄片化黒鉛を、窒素雰囲気下において、温度(炭化・賦活温度)850℃で、100分間保持することにより、賦活処理を施した。最後に、熱水で中性に洗浄することにより、炭素材料を得た。
得られた炭素材料中における樹脂の含有量の確認は、示差熱熱重量同時測定装置(日立ハイテクサイエンス社製、品番「STA7300」)を用いて以下の要領で行った。なお、上記樹脂の含有量は、樹脂及び/又は樹脂炭化物の含有量であるものとし、以下の実施例においても同様であるものとする。
炭素材料約2mgを、白金パン中において秤量した。そのサンプルを大気雰囲気下において昇温速度10℃/分で、30℃から1000℃までの測定を実施した。測定により得られた示差熱分析結果から、樹脂と部分剥離型薄片化黒鉛の燃焼温度を分離し、それに伴う熱重量変化から、炭素材料全体に対する樹脂量(重量%)を算出した。実施例1において、炭素材料全体に対する樹脂量は、83重量%であった。
(実施例2)
炭化・賦活温度を950℃で、60分にしたこと以外は、実施例1と同様にして炭素材料を得た。実施例2において、炭素材料全体に対する樹脂量は、89重量%であった。
炭化・賦活温度を950℃で、60分にしたこと以外は、実施例1と同様にして炭素材料を得た。実施例2において、炭素材料全体に対する樹脂量は、89重量%であった。
(比較例1)
炭素材料として、グラフェン積層構造を有さない活性炭(クラレケミカル社製、商品名「YP50F」)をそのまま用いた。
炭素材料として、グラフェン積層構造を有さない活性炭(クラレケミカル社製、商品名「YP50F」)をそのまま用いた。
(比較例2)
炭素材料として、グラフェン積層構造を有する膨張黒鉛(東洋炭素社製、商品名「PFパウダー8」)をそのまま用いた。
炭素材料として、グラフェン積層構造を有する膨張黒鉛(東洋炭素社製、商品名「PFパウダー8」)をそのまま用いた。
[評価]
実施例1~2及び比較例1~2で得られた炭素材料について、以下の評価を行った。結果を下記の表1に示す。
実施例1~2及び比較例1~2で得られた炭素材料について、以下の評価を行った。結果を下記の表1に示す。
BET比表面積;
実施例1~2及び比較例1~2で得られた炭素材料のBET比表面積は、高精度ガス吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-MAX」、窒素ガス)を用いて測定した。
実施例1~2及び比較例1~2で得られた炭素材料のBET比表面積は、高精度ガス吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-MAX」、窒素ガス)を用いて測定した。
パルスNMRの評価;
実施例1~2及び比較例1~2で得られた炭素材料のパルスNMRは、パルス核磁気共鳴装置(Buruker社製、品番「the minispeq mq20」)を用いて測定した。なお、パルスNMRの測定は、上述した方法に従い行った。
実施例1~2及び比較例1~2で得られた炭素材料のパルスNMRは、パルス核磁気共鳴装置(Buruker社製、品番「the minispeq mq20」)を用いて測定した。なお、パルスNMRの測定は、上述した方法に従い行った。
図1は、実施例1~2及び比較例1~2で得られた炭素材料、並びに水におけるパルスNMRのプロファイルを示す図である。実施例1~2及び比較例1~2では、図1に示すようなパルスNMRのプロファイルにおいて、スピン-スピン緩和時間50msec及び200msecのときの緩和強度を求めた。親水性の高い材料は、水の自由誘導減衰曲線に対して、界面での相互作用により、減衰が極端に速くなっていた。
導電率の評価;
実施例1~2及び比較例1~2で得られた炭素材料の導電率は、四探針法抵抗率測定装置(三菱化学アナリテック社製、商品名「MCP-T700/PD51」)により室温、大気中にて測定した。具体的には、炭素材料0.1gを秤量し、断面積が3.14cm2の容器に入れ、油圧式ポンプにて16kNまで圧力をかけたときの導電率、すなわち体積抵抗率を計測した。
実施例1~2及び比較例1~2で得られた炭素材料の導電率は、四探針法抵抗率測定装置(三菱化学アナリテック社製、商品名「MCP-T700/PD51」)により室温、大気中にて測定した。具体的には、炭素材料0.1gを秤量し、断面積が3.14cm2の容器に入れ、油圧式ポンプにて16kNまで圧力をかけたときの導電率、すなわち体積抵抗率を計測した。
吸水量(水蒸気吸着量)の評価;
実施例1~2及び比較例1~2で得られた炭素材料の吸水量は、水蒸気吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-Max」、温度25℃、飽和蒸気圧3.169kPa)を用いて測定した。なお、水蒸気吸着量の測定に際しては、300℃での真空処理を3時間以上実施して、測定サンプルからのガスリーク量が1.0×10-2Pa/min以下になったことを確認してから、水蒸気の吸着量測定を行った。得られた水蒸気吸着等温線における相対圧(P/P0)が0.3のときの吸水量を求め、以下の評価基準により評価した。
実施例1~2及び比較例1~2で得られた炭素材料の吸水量は、水蒸気吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-Max」、温度25℃、飽和蒸気圧3.169kPa)を用いて測定した。なお、水蒸気吸着量の測定に際しては、300℃での真空処理を3時間以上実施して、測定サンプルからのガスリーク量が1.0×10-2Pa/min以下になったことを確認してから、水蒸気の吸着量測定を行った。得られた水蒸気吸着等温線における相対圧(P/P0)が0.3のときの吸水量を求め、以下の評価基準により評価した。
A…相対圧(P/P0)が0.3のときの給水量が5以上
B…相対圧(P/P0)が0.3のときの給水量が5未満
B…相対圧(P/P0)が0.3のときの給水量が5未満
電極の作製;
実施例1~2及び比較例1~2で得られた炭素材料を用いて塗工電極を作製した。
実施例1~2及び比較例1~2で得られた炭素材料を用いて塗工電極を作製した。
具体的には、得られた炭素材料を自転公転式ミキサー(シンキー社製、品番「AR-100」)にて水中に分散させた。さらに、バインダー樹脂としてのカルボキシメチルセルロースと、スチレンブタジエンゴムを、炭素材料90重量部に対して、それぞれ5重量部添加して、混合させて塗液を得た。得られた塗液を、アルミニウム箔上に塗工し、乾燥させた。なお、比較例2については、良好な塗液が調製できず、電極としての評価ができなかった。
インピーダンス測定による蓄電デバイスの抵抗評価;
まず、上記塗工性評価と同様の方法で作製した塗液を集電体であるアルミニウム箔上に塗工し、電極シートを作製した。次に、フラットセル(宝仙社製)中にて、作製した電極シートから打ち抜いた電極2枚でセパレータを挟み込み、テトラエチルアンモニウム4フッ化ホウ素を電解質とした1Mのプロピレンカーボネート溶液を電解液として含浸させた。それによってセルを作製した。
まず、上記塗工性評価と同様の方法で作製した塗液を集電体であるアルミニウム箔上に塗工し、電極シートを作製した。次に、フラットセル(宝仙社製)中にて、作製した電極シートから打ち抜いた電極2枚でセパレータを挟み込み、テトラエチルアンモニウム4フッ化ホウ素を電解質とした1Mのプロピレンカーボネート溶液を電解液として含浸させた。それによってセルを作製した。
作製したセルを10mA/gの制御電流において、0Vから2.5Vの範囲で3サイクルの充放電を行い、0Vまで放電したのを確認した後に、電気化学測定装置(Bio-logic社製、品番:VMP3)にて交流インピーダンス測定を25℃で実施した。なお、インピーダンス測定の周波数範囲は、100kHz~10mHzとした。
また、インピーダンスは、以下の評価基準で評価した。
[インピーダンスの評価基準]
A:周波数=1Hzのときに測定される実数の抵抗成分(Z‘)が100未満
B:周波数=1Hzのときに測定される実数の抵抗成分(Z‘)が100以上
A:周波数=1Hzのときに測定される実数の抵抗成分(Z‘)が100未満
B:周波数=1Hzのときに測定される実数の抵抗成分(Z‘)が100以上
結果を下記の表1に示す。
(実施例3)
膨張黒鉛(東洋炭素社製、商品名「PFパウダー8」、BET比表面積=22m2/g)1gと、ポリエステル樹脂(川崎化成工業社製、商品名「RFK509」)250gとを、ホモミクサー(プライミクス社製)を用いて混合した。この操作により、ポリエステル樹脂を膨張黒鉛に吸着させた。このようにして、ポリエステル樹脂が膨張黒鉛に吸着されている組成物を用意した。なお、実施例3で用いたポリエステル樹脂の25℃での粘度は、26667mPa・sであった。樹脂の粘度は、B型粘度計(ブルックフィールド社製、「RVDV-2、スピンドルNo.029」)を用いて、25℃及び0.3rpmの条件で測定した。
膨張黒鉛(東洋炭素社製、商品名「PFパウダー8」、BET比表面積=22m2/g)1gと、ポリエステル樹脂(川崎化成工業社製、商品名「RFK509」)250gとを、ホモミクサー(プライミクス社製)を用いて混合した。この操作により、ポリエステル樹脂を膨張黒鉛に吸着させた。このようにして、ポリエステル樹脂が膨張黒鉛に吸着されている組成物を用意した。なお、実施例3で用いたポリエステル樹脂の25℃での粘度は、26667mPa・sであった。樹脂の粘度は、B型粘度計(ブルックフィールド社製、「RVDV-2、スピンドルNo.029」)を用いて、25℃及び0.3rpmの条件で測定した。
上記混合後に、組成物を窒素雰囲気下において370℃の温度で、1時間維持する加熱工程を実施した。それによって、上記ポリエステル樹脂を熱分解させて、部分剥離型薄片化黒鉛を得た。この部分剥離型薄片化黒鉛には、ポリエステル樹脂の一部が残存している。
次に、得られた部分剥離型薄片化黒鉛0.5gに、賦活剤としての炭酸カリウム(K2CO3)1.0gを水5.0gに溶解させた炭酸カリウム水溶液に浸漬させた。それによって、炭酸カリウムの部分剥離型薄片化黒鉛に対する重量比を2倍とした(=含浸率2)。
次に、炭酸カリウムを浸漬させた部分剥離型薄片化黒鉛を、窒素雰囲気下において、温度(炭化・賦活温度)800℃で、60分間保持することにより、賦活処理を施した。最後に、熱水で中性に洗浄することにより、炭素材料を得た。
得られた炭素材料中における樹脂の含有量の確認は、示差熱熱重量同時測定装置(日立ハイテクサイエンス社製、品番「STA7300」)を用いて以下の要領で行った。なお、上記樹脂の含有量は、樹脂及び/又は樹脂炭化物の含有量であるものとし、以下の実施例においても同様であるものとする。
炭素材料約2mgを、白金パン中において秤量した。そのサンプルを大気雰囲気下において昇温速度10℃/分で、30℃から1000℃までの測定を実施した。測定により得られた示差熱分析結果から、樹脂と部分剥離型薄片化黒鉛の燃焼温度を分離し、それに伴う熱重量変化から、炭素材料全体に対する樹脂量(重量%)を算出した。実施例3において、炭素材料全体に対する樹脂量は、94重量%であった。
(実施例4)
樹脂として、ポリエステル樹脂(川崎化成工業社製、商品名「RFK509」)250gの代わりに、ポリエステル樹脂(川崎化成工業社製、商品名「RFK509」)125gとポリエステル樹脂(川崎化成工業社製、商品名「RFK868」)125gを混合して使用したこと以外は、実施例3と同様にして炭素材料を得た。上記ポリエステル樹脂の混合物の粘度は、22333mPa・sであった。このとき、粘度の測定に関し、回転数を12rpmに変更したこと以外は、実施例3と同様の方法で測定した。また、実施例4において、炭素材料全体に対する樹脂量は、92重量%であった。
樹脂として、ポリエステル樹脂(川崎化成工業社製、商品名「RFK509」)250gの代わりに、ポリエステル樹脂(川崎化成工業社製、商品名「RFK509」)125gとポリエステル樹脂(川崎化成工業社製、商品名「RFK868」)125gを混合して使用したこと以外は、実施例3と同様にして炭素材料を得た。上記ポリエステル樹脂の混合物の粘度は、22333mPa・sであった。このとき、粘度の測定に関し、回転数を12rpmに変更したこと以外は、実施例3と同様の方法で測定した。また、実施例4において、炭素材料全体に対する樹脂量は、92重量%であった。
(実施例5)
樹脂として、ポリエステル樹脂(川崎化成工業社製、商品名「RFK509」)250gの代わりに、ポリエステル樹脂(川崎化成工業社製、商品名「RFK556」)250gを使用したこと以外は、実施例3と同様にして炭素材料を得た。実施例4と同様の方法で測定した上記ポリエステル樹脂の粘度は、2333mPa・sであった。また、実施例5において、炭素材料全体に対する樹脂量は、89重量%であった。
樹脂として、ポリエステル樹脂(川崎化成工業社製、商品名「RFK509」)250gの代わりに、ポリエステル樹脂(川崎化成工業社製、商品名「RFK556」)250gを使用したこと以外は、実施例3と同様にして炭素材料を得た。実施例4と同様の方法で測定した上記ポリエステル樹脂の粘度は、2333mPa・sであった。また、実施例5において、炭素材料全体に対する樹脂量は、89重量%であった。
(実施例6)
樹脂として、ポリエステル樹脂(川崎化成工業社製、商品名「RFK509」)250gの代わりに、ポリエステル樹脂(川崎化成工業社製、商品名「RLK087」)125gとポリエチレングリコール(和光純薬社製、商品名「PEG600」)125gを混合して使用したこと以外は、実施例3と同様にして炭素材料を得た。実施例3と同様の方法で測定した上記樹脂の混合物の粘度は、333mPa・sであった。このとき、粘度の測定に関し、回転数を30rpmに変更したこと以外は、実施例3と同様の方法で測定した。また、実施例6において、炭素材料全体に対する樹脂量は、87重量%であった。
樹脂として、ポリエステル樹脂(川崎化成工業社製、商品名「RFK509」)250gの代わりに、ポリエステル樹脂(川崎化成工業社製、商品名「RLK087」)125gとポリエチレングリコール(和光純薬社製、商品名「PEG600」)125gを混合して使用したこと以外は、実施例3と同様にして炭素材料を得た。実施例3と同様の方法で測定した上記樹脂の混合物の粘度は、333mPa・sであった。このとき、粘度の測定に関し、回転数を30rpmに変更したこと以外は、実施例3と同様の方法で測定した。また、実施例6において、炭素材料全体に対する樹脂量は、87重量%であった。
(比較例3)
炭素材料として、グラフェン積層構造を有さない活性炭(クラレケミカル社製、商品名「YP50F」)をそのまま用いた。
炭素材料として、グラフェン積層構造を有さない活性炭(クラレケミカル社製、商品名「YP50F」)をそのまま用いた。
(比較例4)
樹脂として、ポリエステル樹脂(川崎化成工業社製、商品名「RFK509」)250gの代わりに、ポリエチレングリコール(和光純薬社製、商品名「PEG600」)250gを使用したこと以外は、実施例3と同様にして炭素材料を得た。上記ポリエチレングリコールの粘度は、150mPa・sであった。このとき、粘度の測定に関し、回転数を60rpmに変更したこと以外は、実施例3と同様の方法で測定した。また、比較例4において、炭素材料全体に対する樹脂量は、82重量%であった。
樹脂として、ポリエステル樹脂(川崎化成工業社製、商品名「RFK509」)250gの代わりに、ポリエチレングリコール(和光純薬社製、商品名「PEG600」)250gを使用したこと以外は、実施例3と同様にして炭素材料を得た。上記ポリエチレングリコールの粘度は、150mPa・sであった。このとき、粘度の測定に関し、回転数を60rpmに変更したこと以外は、実施例3と同様の方法で測定した。また、比較例4において、炭素材料全体に対する樹脂量は、82重量%であった。
[評価]
実施例3~6及び比較例3~4で得られた炭素材料について、以下の評価を行った。結果を下記の表2に示す。
実施例3~6及び比較例3~4で得られた炭素材料について、以下の評価を行った。結果を下記の表2に示す。
BET比表面積;
実施例3~6及び比較例3~4で得られた炭素材料のBET比表面積は、高精度ガス吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-MAX」、窒素ガス)を用いて測定した。
実施例3~6及び比較例3~4で得られた炭素材料のBET比表面積は、高精度ガス吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-MAX」、窒素ガス)を用いて測定した。
窒素吸着量の評価;
実施例3~6及び比較例3~4の窒素吸着量は、高精度ガス吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-MAX」、窒素ガス、-196℃)を用いて測定した。
実施例3~6及び比較例3~4の窒素吸着量は、高精度ガス吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-MAX」、窒素ガス、-196℃)を用いて測定した。
得られた窒素吸着等温線の一例を図2に示す。なお、図2は、実施例3及び比較例3で得られた炭素材料における窒素吸着等温線を示す図である。実施例3~6及び比較例3~4では、図2に示すような窒素吸着等温線において、相対圧(P/P0)が0.05のときの窒素吸着量Xcm3/gと、相対圧(P/P0)が0.99のときの窒素吸着量Ycm3/gを求めた。また、比X/Yを求めた。
ミクロ孔とメソ孔及びマクロ孔の評価;
炭素材料の、ミクロ孔の容積は、高精度ガス吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-MAX」、窒素ガス)を用いて得られた等温吸着線より、MP法に準拠して算出した。
炭素材料の、ミクロ孔の容積は、高精度ガス吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-MAX」、窒素ガス)を用いて得られた等温吸着線より、MP法に準拠して算出した。
炭素材料のメソ孔及びマクロ孔の容積は、高精度ガス吸着量測定装置(マイクロトラック・ベル社製、品番「BELSORP-MAX」、窒素ガス)を用いて得られた等温吸着線より、BJH法に準拠して算出した。
なお、ミクロ孔の容積をA(cm3/g)とし、メソ孔及びマクロ孔の容積をB(cm3/g)として、A/Bを求めた。
静電容量の評価;
実施例3~6及び比較例3~4で得られた炭素材料を用いた電気二重層キャパシタの静電容量を測定した。
実施例3~6及び比較例3~4で得られた炭素材料を用いた電気二重層キャパシタの静電容量を測定した。
具体的には、実施例3~6及び比較例3~4の炭素材料とバインダーとしてのPTFE(三井デュポンフロロケミカル社製)を重量比9:1で混錬し、圧延ローラーを用いて製膜することでキャパシタ用電極を得た。なお、得られた電極膜厚はそれぞれ50μm~150μmに調整した。
得られたキャパシタ用電極を130℃で14時間、真空乾燥させた後、直径1cmの円形に二枚打ち抜き、それらの重量を測定した。次に、二枚のキャパシタ用電極を負極・正極としてセパレータを介して挟み込んでセルを組立てた後、電解液を1.2ml注入することによって電気二重層キャパシタを作製した。これらの作業は、露点-70℃以下の環境で実施した。
電気二重層キャパシタの静電容量を測定するに際しては、制御電流値を10mA/g(電極重量1gあたり10mAの電流を流す)に設定し0V~2.5V間の繰り返し充放電特性測定を各3サイクル実施した。それによって、得られた測定結果から、計算範囲を1.25V~2.5Vに設定した上で、下記式(1)を用いて算出した。
C=I/(ΔV/Δt)…式(1)
(式(1)中、Cは静電容量であり単位はF、Iは放電電流値で単位はAである。ΔVは、計算範囲における開始電圧値と終了電圧値との差であって単位はVであり、ここでは範囲が2.5Vから1.25Vまでであることから1.25である。Δtは開始電圧値から終了電圧値になるまで放電するのに要する時間であり単位は秒である。)
(式(1)中、Cは静電容量であり単位はF、Iは放電電流値で単位はAである。ΔVは、計算範囲における開始電圧値と終了電圧値との差であって単位はVであり、ここでは範囲が2.5Vから1.25Vまでであることから1.25である。Δtは開始電圧値から終了電圧値になるまで放電するのに要する時間であり単位は秒である。)
また、面積当たりの静電容量C‘は、上記式(1)より算出された静電容量Cを用いて、下記式(2)を用いて算出した。
C‘=C/(S×M)・・・式(2)
(式(2)中、Sは、BET比表面積であり、単位はm2/g、Mは、正負極の合計電極重量であり、単位はgである。)
(式(2)中、Sは、BET比表面積であり、単位はm2/g、Mは、正負極の合計電極重量であり、単位はgである。)
なお、面積当たりの静電容量C‘(F/m2)は下記の基準で判定した。
[静電容量C‘の判定基準]
A:0.018F/m2以上
B:0.016F/m2以上、0.018F/m2未満
C:0.016F/m2未満
A:0.018F/m2以上
B:0.016F/m2以上、0.018F/m2未満
C:0.016F/m2未満
結果を下記の表2に示す。
なお、実施例5及び実施例6について、実施例1と同様の方法で測定したパルスNMRのプロファイルにおいて、スピン-スピン緩和時間50msec及び200msecのときの緩和強度は、下記の表3に示す通りである。
Claims (26)
- パルスNMRにより測定した自由誘導減衰曲線を規格化したプロファイルにおいて、スピン-スピン緩和時間50msecのときの緩和強度が、0.7以下である、炭素材料。
- 前記炭素材料のBET比表面積が、450m2/g以上、3500m2/g以下である、請求項1に記載の炭素材料。
- 前記炭素材料が、グラフェン積層構造を有する炭素材料である、請求項1又は2に記載の炭素材料。
- 前記炭素材料が、黒鉛又は薄片化黒鉛である、請求項1~3のいずれか1項に記載の炭素材料。
- 前記炭素材料が、部分的にグラファイトが剥離されている、部分剥離型薄片化黒鉛である、請求項1~4のいずれか1項に記載の炭素材料。
- 前記炭素材料が、さらに樹脂及び樹脂炭化物のうち少なくとも一方を含む、請求項1~5のいずれか1項に記載の炭素材料。
- 前記炭素材料中における前記樹脂及び樹脂炭化物のうち少なくとも一方の含有量が、1重量%以上、99重量%以下である、請求項6に記載の炭素材料。
- 前記炭素材料の導電率が、15S/cm以上である、請求項1~7のいずれか1項に記載の炭素材料。
- 前記炭素材料の水蒸気吸着等温線における相対圧(P/P0)が0.3のときの吸水量が、5cm3/g以上である、請求項1~8のいずれか1項に記載の炭素材料。
- 請求項1~9のいずれか1項に記載の炭素材料を含む、水蒸気吸着材。
- ヒートポンプに用いられる、請求項10記載の水蒸気吸着材。
- 請求項1~9のいずれか1項に記載の炭素材料を含む、蓄電デバイス用電極材料。
- 請求項12に記載の蓄電デバイス用電極材料により構成されている電極を備える、蓄電デバイス。
- 窒素吸着等温線における相対圧(P/P0)が0.99のときの窒素吸着量が、700cm3/g以上である、炭素材料。
- 窒素吸着等温線における相対圧(P/P0)が0.05のときの窒素吸着量をXcm3/gとし、窒素吸着等温線における相対圧(P/P0)が0.99のときの窒素吸着量をYcm3/gとしたときに、比X/Yが、0.70未満である、請求項14に記載の炭素材料。
- 窒素吸着等温線における相対圧(P/P0)が0.05のときの窒素吸着量が、400cm3/g以下である、請求項14又は15に記載の炭素材料。
- 前記炭素材料のBJH法に準拠して測定されたメソ孔及びマクロ孔の容積が、0.5cm3/g以上である、請求項14~16のいずれか1項に記載の炭素材料。
- 前記炭素材料のMP法に準拠して測定されたミクロ孔の容積をAcm3/gとし、前記炭素材料のBJH法に準拠して測定されたメソ孔及びマクロ孔の容積をBcm3/gとしたときに、比A/Bが、0.1以上、4.0以下である、請求項14~17のいずれか1項に記載の炭素材料。
- 前記炭素材料が、グラフェン積層構造を有する炭素材料である、請求項14~18のいずれか1項に記載の炭素材料。
- 前記炭素材料が、黒鉛又は薄片化黒鉛である、請求項14~19のいずれか1項に記載の炭素材料。
- 前記炭素材料が、部分的にグラファイトが剥離されている、部分剥離型薄片化黒鉛である、請求項14~20のいずれか1項に記載の炭素材料。
- 前記炭素材料が、さらに樹脂及び樹脂炭化物のうち少なくとも一方を含む、請求項14~21のいずれか1項に記載の炭素材料。
- 前記炭素材料中における前記樹脂及び樹脂炭化物のうち少なくとも一方の含有量が、1重量%以上、99重量%以下である、請求項22に記載の炭素材料。
- 前記炭素材料のBET比表面積が、900m2/g以上、4000m2/g以下である、請求項14~23のいずれか1項に記載の炭素材料。
- 請求項14~24のいずれか1項に記載の炭素材料を含む、蓄電デバイス用電極材料。
- 請求項25に記載の蓄電デバイス用電極材料により構成されている電極を備える、蓄電デバイス。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020517401A JPWO2020189520A1 (ja) | 2019-03-18 | 2020-03-12 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019049840 | 2019-03-18 | ||
JP2019-049840 | 2019-03-18 | ||
JP2019-050860 | 2019-03-19 | ||
JP2019050860 | 2019-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020189520A1 true WO2020189520A1 (ja) | 2020-09-24 |
Family
ID=72520996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/010891 WO2020189520A1 (ja) | 2019-03-18 | 2020-03-12 | 炭素材料、水蒸気吸着材、蓄電デバイス用電極材料、及び蓄電デバイス |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020189520A1 (ja) |
WO (1) | WO2020189520A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023123303A1 (zh) * | 2021-12-31 | 2023-07-06 | 宁德时代新能源科技股份有限公司 | 硬碳及其制备方法、含有其的二次电池及用电装置 |
US12126023B2 (en) | 2023-09-18 | 2024-10-22 | Contemporary Amperex Technology (Hong Kong) Limited | Hard carbon, method for preparing same, secondary battery comprising same, and electrical apparatus comprising same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017163464A1 (ja) * | 2016-03-22 | 2017-09-28 | 国立研究開発法人物質・材料研究機構 | グラフェンとカーボンナノチューブとの積層体の製造方法、グラフェンとカーボンナノチューブとの積層体からなる電極材料、および、それを用いた電気二重層キャパシタ |
JP2017172099A (ja) * | 2016-03-15 | 2017-09-28 | 関西熱化学株式会社 | 活性炭素繊維およびその製法 |
WO2018230080A1 (ja) * | 2017-06-15 | 2018-12-20 | 積水化学工業株式会社 | 炭素材料及びその製造方法、蓄電デバイス用電極材料、並びに蓄電デバイス |
CN109279601A (zh) * | 2018-11-27 | 2019-01-29 | 西安交通大学 | 一种具有石墨化结构的多孔碳材料及其制备方法与应用 |
-
2020
- 2020-03-12 JP JP2020517401A patent/JPWO2020189520A1/ja active Pending
- 2020-03-12 WO PCT/JP2020/010891 patent/WO2020189520A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017172099A (ja) * | 2016-03-15 | 2017-09-28 | 関西熱化学株式会社 | 活性炭素繊維およびその製法 |
WO2017163464A1 (ja) * | 2016-03-22 | 2017-09-28 | 国立研究開発法人物質・材料研究機構 | グラフェンとカーボンナノチューブとの積層体の製造方法、グラフェンとカーボンナノチューブとの積層体からなる電極材料、および、それを用いた電気二重層キャパシタ |
WO2018230080A1 (ja) * | 2017-06-15 | 2018-12-20 | 積水化学工業株式会社 | 炭素材料及びその製造方法、蓄電デバイス用電極材料、並びに蓄電デバイス |
CN109279601A (zh) * | 2018-11-27 | 2019-01-29 | 西安交通大学 | 一种具有石墨化结构的多孔碳材料及其制备方法与应用 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023123303A1 (zh) * | 2021-12-31 | 2023-07-06 | 宁德时代新能源科技股份有限公司 | 硬碳及其制备方法、含有其的二次电池及用电装置 |
US12126023B2 (en) | 2023-09-18 | 2024-10-22 | Contemporary Amperex Technology (Hong Kong) Limited | Hard carbon, method for preparing same, secondary battery comprising same, and electrical apparatus comprising same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020189520A1 (ja) | 2020-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101046895B1 (ko) | 전극 제조 방법, 그 방법으로 제조한 전극 및 그 전극을포함하는 수퍼커패시터 | |
JP7148396B2 (ja) | 炭素材料、蓄電デバイス用電極材料、並びに蓄電デバイス | |
JP5015146B2 (ja) | エネルギー貯蔵システム用の電極と、その製造方法と、この電極を含むエネルギー貯蔵システム | |
Obreja | Supercapacitors specialities-Materials review | |
Kesavan et al. | High powered hybrid supercapacitor with microporous activated carbon | |
Thangavel et al. | High Volumetric Quasi‐Solid‐State Sodium‐Ion Capacitor under High Mass Loading Conditions | |
US10276312B2 (en) | High surface area carbon materials and methods for making same | |
Du et al. | A Three‐Layer All‐In‐One Flexible Graphene Film Used as an Integrated Supercapacitor | |
Du et al. | Facile fabrication of hierarchical porous carbon for a high-performance electrochemical capacitor | |
TW201817675A (zh) | 碳材料、電容器用電極片材及電容器 | |
US20090124485A1 (en) | Catalytic composition comprising catalytic activated carbon and carbon nanotubes, manufacturing process, electrode and super capacitator comprising the catalytic compound | |
WO2021060243A1 (ja) | 炭素材料及び蓄電デバイス用電極材料 | |
WO2007037523A9 (ja) | 電気二重層キャパシタ用炭素材料および電気二重層キャパシタ | |
WO2020189520A1 (ja) | 炭素材料、水蒸気吸着材、蓄電デバイス用電極材料、及び蓄電デバイス | |
JP7305547B2 (ja) | 炭素材料及びその製造方法、蓄電デバイス用電極材料、並びに蓄電デバイス | |
Su et al. | Schiff-base polymer derived nitrogen-rich microporous carbon spheres synthesized by molten-salt route for high-performance supercapacitors | |
JP2018092978A (ja) | 電気二重層キャパシタ | |
TW201631613A (zh) | 用於鋰離子電容器的陰極 | |
WO2019078073A1 (ja) | 複合体、蓄電デバイス用電極材料、及び蓄電デバイス | |
US20130194724A1 (en) | Electrode, method for fabricating the same, and electrochemical capacitor including the same | |
JP2008130740A (ja) | 電気二重層キャパシタ用電極およびその製造方法 | |
JP5604227B2 (ja) | キャパシタ用活性炭の製造方法及び活性炭 | |
Fu et al. | The AMWCNTs supported porous nanocarbon composites for high-performance supercapacitor | |
JP2023081681A (ja) | 炭素材料、蓄電デバイス用電極材料、キャパシタ用電極シート、及び電気二重層キャパシタ | |
Obreja et al. | On the technology of present-day manufactured supercapacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020517401 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20772975 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20772975 Country of ref document: EP Kind code of ref document: A1 |