WO2020189446A1 - 半導体パッケージ、半導体パッケージの製造方法、およびそれに用いる熱伝導性組成物 - Google Patents

半導体パッケージ、半導体パッケージの製造方法、およびそれに用いる熱伝導性組成物 Download PDF

Info

Publication number
WO2020189446A1
WO2020189446A1 PCT/JP2020/010573 JP2020010573W WO2020189446A1 WO 2020189446 A1 WO2020189446 A1 WO 2020189446A1 JP 2020010573 W JP2020010573 W JP 2020010573W WO 2020189446 A1 WO2020189446 A1 WO 2020189446A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive composition
heat
thermally conductive
semiconductor package
particles
Prior art date
Application number
PCT/JP2020/010573
Other languages
English (en)
French (fr)
Inventor
直輝 渡部
真 高本
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72519866&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020189446(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020217033313A priority Critical patent/KR20210143224A/ko
Priority to CN202080023193.6A priority patent/CN113631675A/zh
Priority to JP2021507240A priority patent/JP6950848B2/ja
Publication of WO2020189446A1 publication Critical patent/WO2020189446A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4037Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink
    • H01L2023/4068Heatconductors between device and heatsink, e.g. compliant heat-spreaders, heat-conducting bands

Definitions

  • the present invention relates to a semiconductor package, a method for manufacturing a semiconductor package, and a thermally conductive composition used therein.
  • Patent Document 1 a semiconductor package in which a semiconductor element (heating element) mounted on an electronic circuit board and a heat sink are bonded to each other via a heat conductive double-sided tape (a heat conductive material composed of an adhesive).
  • a heat conductive double-sided tape a heat conductive material composed of an adhesive
  • the amount of heat generated by a semiconductor element is increasing as the performance is improved, so that a semiconductor package is required to have a higher degree of improvement in heat dissipation characteristics.
  • a heat conductive material for adhering a semiconductor element and a heat radiation member such as a heat spreader
  • an acrylic adhesive or a heat reversible gel in which boron nitride, alumina or zinc oxide is dispersed is used. It was found that even if it was used, sufficient thermal conductivity could not be obtained.
  • the present inventor has improved the thermal conductivity of the thermally conductive material by using a thermally conductive material having a particle connecting structure formed by syntaring metal particles by heat treatment. Since the semiconductor element and the heat radiating member can be bonded to each other, it has been found that the heat radiating characteristics of the semiconductor package can be improved, and the present invention has been completed.
  • a semiconductor package comprising a substrate, a semiconductor element provided on the substrate, and a heat spreader surrounding the semiconductor element, and the semiconductor element and the heat spreader bonded to each other with a heat conductive material.
  • the thermally conductive material has a particle-connected structure formed by sintering metal particles by heat treatment.
  • thermoly conductive composition used to form a sex material.
  • metal particles Binder resin and Monomer and Including The metal particles are sintered by heat treatment to form a particle-connected structure.
  • a thermally conductive composition is provided.
  • the process of installing semiconductor elements on one side of the substrate so that the other side faces each other A step of applying a heat conductive composition containing metal particles to the surface on one side of the semiconductor element, and A step of arranging the heat spreader so as to be in contact with the heat conductive composition and to cover at least one surface of the semiconductor element.
  • a method for manufacturing a semiconductor package is provided.
  • a semiconductor package having excellent heat dissipation characteristics a method for manufacturing the semiconductor package, and a heat conductive composition used for the semiconductor package are provided.
  • FIG. 1 is a cross-sectional view schematically showing an example of the semiconductor package of the present embodiment.
  • the semiconductor package 100 of the present embodiment includes a substrate 10, a semiconductor element 20, a heat spreader 30, and a heat conductive material 50.
  • the semiconductor element 20 is provided on the substrate 10, the heat spreader 30 surrounds the semiconductor element 20, and the heat conductive material 50 joins the semiconductor element 20 and the heat spreader 30.
  • the heat conductive material 50 has a particle connection structure formed by causing metal particles to be sintered by heat treatment.
  • the particle connection structure in the heat conductive material 50 scans at least one cross section of the heat conductive material 50 when the heat conductive material 50 is cut in the stacking direction of the semiconductor element 20 and the heat spreader 30.
  • Various microscopes such as an electron microscope are used. Can be observed using.
  • the heat conductive material 50 passes through the metal particles therein. Therefore, it can have a bonding structure with the surface of the semiconductor element 20 or the surface of the heat spreader 30.
  • the heat conductive material a material having a particle connection structure formed by causing metal particles to syntarize by heat treatment is used to improve the heat conductivity of the heat conductive material. Since the semiconductor element and the heat radiating member can be bonded, the heat radiating characteristics of the semiconductor package can be improved.
  • the semiconductor package 100 of FIG. 1 includes a substrate 10, a semiconductor element 20, a heat spreader 30, and a heat conductive material 50.
  • the semiconductor element 20 may be, for example, a logic chip or a memory chip, or may be an LSI chip in which a memory circuit and a logic circuit are mixed.
  • the semiconductor element 20 may be configured in a BGA type package.
  • the semiconductor element 20 is mounted on the substrate 10 and electrically connected to the substrate 10.
  • the semiconductor element 20 may be flip-chip connected to the substrate 10.
  • the semiconductor element 20 is solder-connected to the substrate 10 via the solder balls 60.
  • the gap between the semiconductor element 20 and the substrate 10 may be filled with the underfill material 70.
  • the underfill material 70 a known material can be used, but it may be a sealing material or a die attach material.
  • the substrate 10 for example, a printed circuit board or the like is used.
  • One or more semiconductor elements 20 may be mounted on one surface of the substrate 10.
  • electronic components other than the semiconductor element 20 and a heat source may be mounted on one surface of the substrate 10.
  • the other surface (the surface opposite to one surface) of the substrate 10 may have a connection structure that can be connected to the other substrate. Examples of the connection structure include a solder ball and a pin connector.
  • the heat spreader 30 may be made of a member that dissipates heat from a heating element such as a semiconductor element 20, and may be made of, for example, a metal material. Examples of the metal material include copper, aluminum, stainless steel and the like. These may be used alone or in combination of two or more.
  • the heat spreader 30 may have a highly thermally conductive material other than a metal material, and may contain, for example, graphite or the like inside.
  • the heat spreader 30 uses a metal layer made of the above-mentioned metal material and may be composed of a single layer thereof, or may be composed of a laminated structure in which a plurality of layers are laminated. Further, on the surface of the heat spreader 30, at least the surface to be bonded to the heat conductive material 50 may be exposed to the metal material, but may be plated with another metal. For example, a plating film can be formed of nickel, gold, an alloy containing these as a main component, or a laminated film thereof. As a result, the rust prevention property of the heat spreader 30 can be enhanced.
  • the shape of the heat spreader 30 is not particularly limited as long as it has a lid structure that covers the semiconductor element 20.
  • the heat spreader 30 is composed of a housing having an open surface facing the semiconductor element 20.
  • the heat spreader 30 has a plate-shaped portion having another surface facing one surface of the semiconductor element 20 and a plate protruding from the other surface of the plate-shaped portion so as to cover the periphery of the side surface of the semiconductor element 20. It may have a side wall portion provided around the shaped member.
  • the cross-sectional structure of the heat spreader 30 may have, for example, a substantially U-shape when viewed in cross-sectional view in the stacking direction of the semiconductor element 20 and the heat spreader 30.
  • a part of the heat spreader 30 may be adhered to the substrate 10 via an adhesive.
  • the tip of the side wall portion of the heat spreader 30 may be adhered to one surface of the substrate 10 with an adhesive.
  • a known adhesive can be used.
  • the heat conductive material 50 is interposed between one surface of the semiconductor element 20 and the other surface of the heat spreader 30 facing the one surface, and joins them.
  • the heat conductive material 50 has a particle connecting structure formed by sintering metal particles by heat treatment.
  • the heat conductive material 50 can be formed by using a heat conductive composition having a particle connecting structure formed by causing metal particles to sinter by heat treatment. Details of this thermally conductive composition will be described later.
  • the metal particles can include particles made of metal.
  • the metal particles may include, for example, particles made of a metal composed of one or more selected from the group consisting of silver, gold, and copper.
  • the lower limit of the thermal conductivity of the heat conductive material 50 is, for example, 10 W / mK or more, preferably 15 W / mK or more, and more preferably 20 W / mK or more.
  • the upper limit of the thermal conductivity of the heat conductive material 50 may be, for example, 200 W / mK or less, or 150 W / mK or less. The thermal conductivity is obtained by measuring in the thickness direction at 25 ° C. using a laser flash method.
  • the lower limit of the average particle diameter D 50 of the particles made of the metal is, for example, 0.8 ⁇ m or more, preferably 1.0 ⁇ m or more, and more preferably 1.2 ⁇ m or more. Thereby, the thermal conductivity can be enhanced.
  • the upper limit of the average particle diameter D 50 of the particles made of the metal is, for example, 7.0 ⁇ m or less, preferably 5.0 ⁇ m or less, and more preferably 4.0 ⁇ m or less. Thereby, the sinterability between the metal particles can be improved. In addition, the uniformity of sintering can be improved.
  • the average particle diameter D 50 of the particles composed of the metal may be used as the average particle diameter D 50 of the silver particles.
  • the upper limit of the standard deviation of the particle size of the particles made of the metal is 2.0 ⁇ m or less, preferably 1.9 ⁇ m or less, and more preferably 1.8 ⁇ m or less. This makes it possible to improve the uniformity during sintering.
  • the lower limit of the standard deviation of the particle size of the particles made of the metal is not particularly limited, but may be, for example, 0.1 ⁇ m or more and 0.3 ⁇ m or more.
  • the metal particles may include metal-coated resin particles composed of resin particles and a metal formed on the surface of the resin particles.
  • the metal particles may contain either metal-coated resin particles or particles made of metal, but it is more preferable to include both.
  • the heat conductive material 50 may be composed only of a particle connecting structure of metal particles, but may have a particle connecting structure and a resin existing in the structure. As a result, the storage elastic modulus can be reduced while improving the thermal conductivity.
  • the upper limit of the storage elastic modulus of the heat conductive material 50 at 25 ° C. is, for example, 10.0 GPa or less, preferably 9 GPa or less, and more preferably 8 GPa or less. As a result, the heat conductive material 50 can be made low in elasticity, so that cracks and deterioration of adhesion due to stress-strain can be suppressed.
  • the upper limit of the storage elastic modulus of the thermally conductive material 50 at 25 ° C. may be, for example, 1 GPa or more, preferably 2 GPa or more, and more preferably 3 GPa or more. As a result, the heat conductive material 50 having excellent durability can be realized.
  • the storage elastic modulus is obtained by measuring with dynamic viscoelasticity measurement (DMA) at a frequency of 1 Hz.
  • the heat conductive material 50 may be formed on at least a part or the entire surface of one surface of the semiconductor element 20.
  • the semiconductor package 100 may further include a heat sink 80 and a heat conductive material 90.
  • the heat sink 80 can be adhered to the heat spreader 30 via the heat conductive material 90.
  • the heat conductive material 90 a known material can be used, and for example, grease may be used.
  • the heat sink 80 may be made of a member having excellent heat dissipation, and for example, the material used in the heat spreader 30 may be used.
  • the heat sink 80 may have a plurality of fins.
  • the heat conductive composition includes a substrate, a semiconductor element 20 provided on the substrate 10, and a heat spreader 30 surrounding the semiconductor element 20, and the semiconductor element 20 and the heat spreader 30 are made of a heat conductive material. It is used to form the thermally conductive material 50 in the semiconductor package joined at 50.
  • metal particles are sintered by heat treatment to form a particle connection structure, whereby the heat conductive material 50 can be formed.
  • the thermally conductive composition of the present embodiment contains the binder resin and the monomer together with the metal particles.
  • the monomer volatilizes and the volume of the composition shrinks due to heating stress is applied in the direction in which the metal particles approach each other, the interface between the metal particles disappears, and the connected structure of the metal particles Is considered to be formed.
  • the binder resin or the cured resin product of the binder resin and the curing agent, the monomer, or the like remains inside or the outer periphery of the connecting structure during the syntaring of such metal particles. It is also conceivable that the curing reaction produces a force that causes a plurality of metal particles to aggregate.
  • an adhesive layer containing a particle-connected structure of metal particles and a resin component composed of a binder resin, a cured product thereof, resin particles in the metal-coated resin particles, and the like (The thermally conductive material 50) can be realized.
  • the lower limit of the thermal conductivity ⁇ measured in the following procedure A using the thermally conductive composition is, for example, 10 W / mK or more, preferably 15 W / mK or more, more preferably 20 W / mK or more. is there. As a result, the heat dissipation characteristics of the semiconductor package 100 can be improved.
  • the upper limit of the thermal conductivity of the thermal conductivity ⁇ may be, for example, 200 W / mK or less, or 150 W / mK or less.
  • the upper limit of the storage elastic modulus E at 25 ° C. measured in the following procedure B is, for example, 10 GPa or less, preferably 9 GPa or less, and more preferably 8 GPa or less.
  • the upper limit of the storage elastic modulus E at 25 ° C. may be, for example, 1 GPa or more, preferably 2 GPa or more, and more preferably 3 GPa or more.
  • the storage elastic modulus is obtained by measuring with dynamic viscoelasticity measurement (DMA) at a frequency of 1 Hz.
  • DMA dynamic viscoelasticity measurement
  • the thermally conductive composition of the present embodiment contains metal particles.
  • the metal particles can be sintered by heat treatment to form a particle connecting structure (sintering structure).
  • metal particles metal-coated resin particles, particles made of metal, or the like can be used.
  • the metal particles may contain either metal-coated resin particles or particles made of metal, but it is more preferable to include both.
  • the metal-coated resin particles By using the metal-coated resin particles, it is possible to appropriately reduce the storage elastic modulus while suppressing the decrease in the sinterability of the metal particles. By using the particles made of the metal, it is possible to appropriately increase the thermal conductivity while improving the sinterability of the metal particles.
  • the metal-coated resin particles are composed of resin particles and a metal formed on the surface of the resin particles. That is, the metal-coated resin particles may be particles in which the surface of the resin particles is coated with a metal layer.
  • the term "covering the surface of the resin particles with a metal layer” refers to a state in which the metal layer covers at least a part of the surface of the resin particles, and covers the entire surface of the resin particles.
  • the present invention is not limited to, and may include, for example, a mode in which the metal layer partially covers the surface or a mode in which the entire surface is covered when viewed from a specific cross section.
  • the metal layer preferably covers the entire surface surface when viewed from a specific cross section, and more preferably covers the entire surface surface of the particles.
  • the metal in the metal-coated resin particles can include, for example, one or more selected from the group consisting of silver, gold, nickel, and tin. These may be used alone or in combination of two or more. Alternatively, an alloy containing these metals as a main component may be used. Among these, silver can be used from the viewpoint of sintering property and thermal conductivity.
  • the resin material constituting the resin particles (core resin particles) in the metal-coated resin particles examples include silicone, acrylic, phenol, polystyrene, melamine, polyamide, and polytetrafluoroethylene. These may be used alone or in combination of two or more. Resin particles can be composed of polymers using these. The polymer may be a homopolymer or a copolymer containing these as a main component. From the viewpoint of elastic properties and heat resistance, silicone resin particles or acrylic resin particles may be used as the resin particles.
  • the silicone resin particles may be particles composed of organopolysiloxane obtained by polymerizing organochlorosilanes such as methylchlorosilane, trimethyltrichlorosilane, and dimethyldichlorosilane, and have a structure in which the organopolysiloxane is further three-dimensionally crosslinked. Silicone resin particles as the basic skeleton may be used.
  • various functional groups can be introduced into the structure of the silicone resin particles, and the functional groups that can be introduced include an epoxy group, an amino group, a methoxy group, a phenyl group, a carboxyl group, a hydroxyl group, an alkyl group, and a vinyl group. Examples thereof include, but are not limited to, mercapto groups.
  • another low stress modifier may be added to the silicone resin particles as long as the characteristics are not impaired.
  • low-stress modifiers that can be used in combination include butadiene styrene rubber, butadiene acrylonitrile rubber, polyurethane rubber, polyisoprene rubber, acrylic rubber, fluororubber, liquid organopolysiloxane, liquid synthetic rubber such as liquid polybutadiene, and the like. , Not limited to these.
  • the shape of the resin particles is not particularly limited and may be spherical, but may be a different shape other than the spherical shape, for example, a flat shape (flake shape), a plate shape, or a needle shape.
  • the shape of the metal-coated resin particles is formed spherically, it is preferable that the shape of the resin particles used is also spherical.
  • the spherical shape is not limited to a perfect true sphere, but also includes a shape close to a sphere such as an ellipse and a shape having some irregularities on the surface.
  • the lower limit of the specific gravity of the metal-coated resin particles is, for example, 2 or more, preferably 2.5 or more, and further preferably 3 or more. As a result, the thermal conductivity and conductivity of the adhesive layer can be further improved. Further, the upper limit of the specific gravity of the metal-coated resin particles is, for example, 10 or less, preferably 9 or less, and more preferably 8 or less. Thereby, the dispersibility of the particles can be improved.
  • the specific gravity may be the specific gravity of the metal particles including the metal-coated resin particles and the particles made of metal.
  • the metal-coated resin particles may be monodisperse particles or polydisperse particles. Further, the metal-coated resin particles may have one peak in the particle size frequency distribution, or may have two or more peaks.
  • the particles made of the above metal may be particles made of one or more kinds of metal materials, and the core portion and the surface layer portion may be made of the same or different metal materials.
  • the metallic material can include, for example, one or more selected from the group consisting of silver, gold, and copper. These may be used alone or in combination of two or more. Alternatively, an alloy containing these metals as a main component may be used. Among these, silver can be used from the viewpoint of sintering property and thermal conductivity.
  • the shape of the particles made of the metal may be, for example, spherical or flaky.
  • the particles made of the metal may contain either one or both of spherical particles and flake-shaped particles.
  • the metal particles includes silver-coated silicone resin particles as the metal-coated resin particles, and silver particles as particles made of metal.
  • silver-coated acrylic resin particles may be used from the viewpoint of elastic properties.
  • particles containing a metal component other than silver, such as gold particles and copper particles can be used in combination for the purpose of promoting syntaring or reducing the cost.
  • the lower limit of the average particle diameter D 50 of the metal-coated resin particles may be, for example, 0.5 ⁇ m or more, preferably 1.5 ⁇ m or more, and more preferably 2.0 ⁇ m or more. Thereby, the storage elastic modulus can be reduced.
  • the upper limit of the average particle diameter D 50 of the metal-coated resin particles may be, for example, 20 ⁇ m or less, 15 ⁇ m or less, or 10 ⁇ m or less. Thereby, the thermal conductivity can be enhanced.
  • the average particle diameter D 50 of the metal coated resin particles may be used as the average particle diameter D 50 of the silver-coated silicone resin particles or silver-coated acrylic resin particles.
  • the lower limit of the average particle diameter D 50 of the particles made of the metal is, for example, 0.8 ⁇ m or more, preferably 1.0 ⁇ m or more, and more preferably 1.2 ⁇ m or more. Thereby, the thermal conductivity can be enhanced.
  • the upper limit of the average particle diameter D 50 of the particles made of the metal is, for example, 7.0 ⁇ m or less, preferably 5.0 ⁇ m or less, and more preferably 4.0 ⁇ m or less. Thereby, the sinterability between the metal particles can be improved. In addition, the uniformity of sintering can be improved.
  • the average particle diameter D 50 of the particles composed of the metal may be used as the average particle diameter D 50 of the silver particles. Further, the particles made of metal may contain two or more kinds having different particle diameters D50. As a result, the sintering property can be enhanced.
  • the average particle diameter D 50 of the metal particles for example, using a Sysmex Corporation flow particle image analyzer FPIA (registered trademark) -3000 can be determined by performing a particle image measurement. More specifically, the particle size of the metal particles can be determined by measuring the volume-based median diameter using the above device.
  • FPIA registered trademark
  • the content of the metal-coated resin particles is, for example, 1% by mass to 50% by mass, preferably 3% by mass to 45% by mass, and more preferably 5% by mass to 40% by mass with respect to the entire metal particles (100% by mass). It is mass%.
  • the storage elastic modulus can be reduced.
  • the thermal conductivity can be improved.
  • "to" means that an upper limit value and a lower limit value are included unless otherwise specified.
  • the content of the metal particles is 1% by mass to 98% by mass, preferably 30% by mass to 95% by mass, and more preferably 50% by mass to 90% by mass with respect to the entire heat conductive composition (100% by mass). %.
  • the heat conductive composition contains a binder resin.
  • the binder resin may contain one or more selected from the group consisting of epoxy resin, acrylic resin, and allyl resin. These may be used alone or in combination of two or more.
  • binder resin examples include acrylic resins such as acrylic oligomers and acrylic polymers; epoxy resins such as epoxy oligomers and epoxy polymers; and allyl resins such as allyl oligomers and allyl polymers. These may be used alone or in combination of two or more.
  • an epoxy resin having two or more epoxy groups in the molecule may be used.
  • This epoxy resin may be liquid at 25 ° C. Thereby, the handleability of the heat conductive composition can be improved. Moreover, the curing shrinkage can be appropriately adjusted.
  • epoxy resin examples include, for example, trisphenol methane type epoxy resin; hydrogenated bisphenol A type liquid epoxy resin; bisphenol F type liquid epoxy resin such as bisphenol-F-diglycidyl ether; orthocresol novolac type epoxy resin, and the like. Can be mentioned. These may be used alone or in combination of two or more. Among these, hydrogenated bisphenol A type liquid epoxy resin or bisphenol F type liquid epoxy resin may be used. As the bisphenol F type liquid epoxy resin, for example, bisphenol-F-diglycidyl ether can be used.
  • an acrylic resin having two or more acrylic groups in the molecule may be used.
  • This acrylic resin may be liquid at 25 ° C.
  • the acrylic resin one obtained by (co) polymerizing an acrylic monomer can be used.
  • the method of (co) polymerization is not limited, and a known method using a general polymerization initiator and chain transfer agent such as solution polymerization can be used.
  • allyl resin an allyl resin having two or more allyl groups in one molecule may be used.
  • This allyl resin may be liquid at 25 ° C.
  • the allyl resin examples include an allyl ester resin obtained by reacting a dicarboxylic acid, an allyl alcohol, and a compound having an allyl group.
  • the dicarboxylic acid specifically, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, Examples thereof include tetrahydrophthalic acid and hexahydrophthalic acid.
  • the compound having an allyl group include polyether having an allyl group, polyester, polycarbonate, polyacrylate, polymethacrylate, polybutadiene, and a butadiene acrylonitrile copolymer.
  • the lower limit of the content of the binder resin is, for example, 1 part by mass or more, preferably 2 parts by mass or more, and more preferably 3 parts by mass or more with respect to 100 parts by mass of the heat conductive composition. As a result, the adhesion to the adherend can be improved.
  • the upper limit of the content of the binder resin is, for example, 15 parts by mass or less, preferably 12 parts by mass or less, and more preferably 10 parts by mass or less with respect to 100 parts by mass of the heat conductive composition. As a result, it is possible to suppress a decrease in thermal conductivity.
  • the thermally conductive composition contains a monomer.
  • the monomer may contain one or more selected from the group consisting of glycol monomers, acrylic monomers, epoxy monomers and maleimide monomers. These may be used alone or in combination of two or more.
  • the volatilization state of the above-mentioned heat conductive composition after heat treatment can be adjusted.
  • the above-mentioned monomers may be subjected to a curing reaction to adjust the curing shrinkage state.
  • glycol monomer a dihydric alcohol having two hydroxy groups in the molecule and the two hydroxy groups bonded to different carbon atoms; two or more alcohol condensations of the dihydric alcohol.
  • the compound; the hydrogen atom in the hydroxyl group of the alcohol-condensed compound is replaced with an organic group having 1 to 30 carbon atoms to form an alkoxy group.
  • glycol monomer examples include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-propyl ether, ethylene glycol monoisopropyl ether, ethylene glycol mono n-butyl ether, and ethylene glycol monoisobutyl.
  • Ethylene ethylene glycol monohexyl ether, ethylene glycol mono2-ethylhexyl ether, ethylene glycol monoallyl ether, ethylene glycol monophenyl ether, ethylene glycol monobenzyl ether, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monon-propyl Ether, Diethylene glycol monoisopropyl ether, Diethylene glycol monon-butyl ether, Diethylene glycol monoisobutyl ether, Diethylene glycol monohexyl ether, Diethylene glycol mono2-ethylhexyl ether, Diethylene glycol monobenzyl ether, Triethylene glycol, Triethylene glycol monomethyl ether, Triethylene glycol monoethyl Ether, Triethylene Glycol Mono n-Butyl Ether, Tetraethylene Glycol, Tetratylene Glycol Monomethyl, Tetratylene Glycol Monoethy
  • the lower limit of the boiling point of the glycol monomer is, for example, preferably 100 ° C. or higher, more preferably 130 ° C. or higher, further preferably 150 ° C. or higher, and even more preferably 170 ° C. or higher. , 190 ° C. or higher is particularly preferable.
  • the upper limit of the boiling point of the glycol monomer may be, for example, 400 ° C. or lower, or 350 ° C. or lower.
  • the boiling point of the glycol monomer indicates the boiling point under atmospheric pressure (101.3 kPa).
  • the acrylic monomer examples include a monomer having a (meth) acrylic group in the molecule.
  • the (meth) acrylic group refers to an acrylic group and a methacrylic group.
  • the acrylic monomer may be a monofunctional acrylic monomer having only one (meth) acrylic group in the molecule, or a polyfunctional acrylic monomer having two or more (meth) acrylic groups in the molecule. Good.
  • the monofunctional acrylic monomer examples include 2-phenoxyethyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, and isoamyl.
  • polyfunctional acrylic monomer examples include ethylene glycol di (meth) acrylate, trimethylpropantri (meth) atacrylate, propoxylated bisphenol A di (meth) acrylate, and hexane-1,6-diol bis (2-methyl).
  • acrylic monomer a monofunctional acrylic monomer or a polyfunctional acrylic monomer may be used alone, or a monofunctional acrylic monomer and a polyfunctional acrylic monomer may be used in combination.
  • acrylic monomer for example, it is preferable to use a polyfunctional acrylic monomer alone.
  • the epoxy monomer is a monomer having an epoxy group in the molecule.
  • the epoxy monomer may be a monofunctional epoxy monomer having only one epoxy group in the molecule, or a polyfunctional epoxy monomer having two or more epoxy groups in the molecule.
  • the monofunctional epoxy monomer examples include 4-tert-butylphenylglycidyl ether, m, p-cresylglycidyl ether, phenylglycidyl ether, and cresylglycidyl ether.
  • polyfunctional epoxy monomer examples include bisphenol compounds such as bisphenol A, bisphenol F, and biphenol or derivatives thereof; hydrogenated bisphenol A, hydrogenated bisphenol F, hydrogenated biphenol, cyclohexanediol, cyclohexanedimethanol, and the like.
  • Diols having an alicyclic structure such as sidilohexane diethanol or derivatives thereof; aliphatic diols such as butanediol, hexanediol, octanediol, nonanediol, decanediol or epoxidized derivatives thereof; Trifunctional ones having a trihydroxyphenylmethane skeleton and an aminophenol skeleton; and polyfunctional ones obtained by epoxidizing phenol novolac resin, cresol novolac resin, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin and the like.
  • the maleimide monomer is a monomer having a maleimide ring in the molecule.
  • the maleimide monomer may be a monofunctional maleimide monomer having only one maleimide ring in the molecule, or a polyfunctional maleimide monomer having two or more maleimide rings in the molecule.
  • Specific examples of the maleimide monomer include polytetramethylene ether glycol-di (2-maleimide acetate).
  • the lower limit of the content of the monomer is, for example, 0.5 parts by mass or more, preferably 1.0 part by mass or more, and more preferably 2.0 parts by mass or more with respect to 100 parts by mass of the heat conductive composition. ..
  • the upper limit of the content of the monomer is, for example, 10 parts by mass or less, preferably 7 parts by mass or less, and more preferably 5 parts by mass or less with respect to 100 parts by mass of the heat conductive composition.
  • the thermally conductive composition may contain a curing agent, if necessary.
  • the curing agent has a reactive group that reacts with a functional group in a monomer or a binder resin.
  • the reactive group for example, one that reacts with a functional group such as an epoxy group, a maleimide group, or a hydroxyl group may be used.
  • the monomer contains an epoxy monomer and / or the binder resin contains an epoxy resin
  • a phenol resin-based curing agent or an imidazole-based curing agent may be used as the curing agent.
  • phenol resin-based curing agent examples include novolak-type phenol resins such as phenol novolac resin, cresol novolak resin, bisphenol novolak resin, and phenol-biphenyl novolak resin; polyvinylphenol; and polyfunctionality such as triphenylmethane-type phenol resin.
  • Type phenol resin modified phenol resin such as terpen-modified phenol resin and dicyclopentadiene-modified phenol resin; phenol aralkyl type having phenylene skeleton and / or biphenylene skeleton, phenylene and / or naphthol aralkyl resin having biphenylene skeleton
  • Phenolic resins bisphenol compounds such as bisphenol A and bisphenol F (dihydroxydiphenylmethane) (phenol resins having a bisphenol F skeleton); compounds having a biphenylene skeleton such as 4,4'-biphenol and the like can be mentioned. These may be used alone or in combination of two or more. Among these, a phenol aralkyl resin may be used, and a phenol / paraxylylene dimethyl ether polycondensate may be used as the phenol aralkyl resin.
  • imidazole-based curing agent examples include 2-phenyl-1H-imidazole-4,5-dimethanol, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-methylimidazole, and 2-phenylimidazole.
  • 2,4-Diamino-6- [2-methylimidazolyl- (1)]-ethyl-s-triazine, 2-undecylimidazole, 2-heptadecylimidazole, 2,4-diamino-6- [2-methyl Imidazolyl- (1)]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 1-cyanoethyl-2-phenylimidazolium trimerite, 1- Examples thereof include cyanoethyl-2-undecylimidazolium trimellitate. These may be used alone or in combination of two or more.
  • the content of the curing agent may be, for example, 5 parts by mass to 50 parts by mass or 20 parts by mass to 40 parts by mass with respect to 100 parts by mass of the binder resin in the heat conductive composition.
  • the content of the curing agent may be, for example, 1 part by mass to 40 parts by mass with respect to 100 parts by mass of the epoxy resin in the heat conductive composition or 100 parts by mass of the total of the epoxy resin and the epoxy monomer. It may be 10 parts by mass to 35 parts by mass.
  • the thermally conductive composition may contain a radical polymerization initiator.
  • a radical polymerization initiator an azo compound, a peroxide or the like can be used.
  • peroxide examples include bis (1-phenyl-1-methylethyl) peroxide, 1,1-bis (1,1-dimethylethyl peroxy) cyclohexane, methylethylketone peroxide, cyclohexane peroxide, and acetylacetone peroxide.
  • the heat conductive composition may contain a curing accelerator.
  • the curing accelerator can accelerate the reaction between the binder resin or the monomer and the curing agent.
  • the curing accelerator include phosphorus atom-containing compounds such as organic phosphine, tetra-substituted phosphonium compound, phosphobetaine compound, adduct of phosphine compound and quinone compound, and adduct of phosphonium compound and silane compound; Amidines and tertiary amines such as dicyandiamide, 1,8-diazabicyclo [5.4.0] undecene-7, benzyldimethylamine; nitrogen atom-containing compounds such as the amidine or the quaternary ammonium salt of the tertiary amines. Be done. These may be used alone or in combination of two or more.
  • the thermally conductive composition may contain a silane coupling agent.
  • the silane coupling agent can improve the adhesion between the adhesion layer using the thermally conductive composition and the base material or the semiconductor element.
  • silane coupling agent examples include vinyl silanes such as vinyl trimethoxysilane and vinyl triethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3 -Epoxysilanes such as glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; p-styryltrimethoxysilane Styrylsilanes such as 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, methacrylsilanes such as 3-methacryloxypropyltriethoxysilane; 3-
  • Acrylic silanes such as (trimethoxysilyl) propyl, 3-acryloxypropyltrimethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyl Trimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl- ⁇ -aminopropyltrimethoxy Aminosilanes such as silanes; isocyanuratesilanes; alkylsilanes; ureidosilanes such as 3-ureidopropyltrialkoxysilanes; mercaptosilanes such as 3-mercaptopropylmethyldimethoxysilanes and 3-mercap
  • the thermally conductive composition may contain a plasticizer.
  • Low stress can be achieved by adding a plasticizer.
  • the plasticizer include silicone compounds such as silicone oil and silicone rubber; polybutadiene compounds such as polybutadiene maleic anhydride adduct; and acrylonitrile butadiene copolymer compounds. These may be used alone or in combination of two or more.
  • the heat conductive composition may contain other components in addition to the above-mentioned components, if necessary.
  • other components include solvents.
  • the solvent is not particularly limited, and is, for example, ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol.
  • Ketones ethyl acetate, butyl acetate, diethyl phthalate, dibutyl phthalate, acetoxietan, methyl butyrate, methyl hexanoate, methyl octanate, methyl decanoate, methyl cellosolve acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, 1 , 2-Diacetoxyethane, tributyl phosphate, tricredyl phosphate or tripentyl phosphate and other esters; tetrahydrofuran, dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, ethoxyethyl ether , 1,2-bis (2-diethoxy) ethane or 1,2-bis (2-methoxyethoxy) ethane and other est
  • the fluidity of the above heat conductive composition can be controlled.
  • the workability of the paste-like heat conductive composition can be improved.
  • sintering can be promoted by shrinkage during heating.
  • the solvents by using a solvent having a relatively high boiling point, preferably a solvent having a boiling point higher than the curing temperature, voids are generated in the adhesive layer obtained by heat-treating the thermally conductive composition. Can be suppressed.
  • the boiling point of this high boiling point solvent may be, for example, 180 ° C. to 450 ° C., or 200 ° C. to 400 ° C.
  • thermoly conductive composition of the present embodiment a method for producing the thermally conductive composition of the present embodiment.
  • a method for producing the heat conductive composition a method of mixing the above-mentioned raw material components is used.
  • a known method can be used for mixing, and for example, a three-roll or a mixer can be used.
  • the obtained mixture may be further defoamed.
  • defoaming for example, the mixture may be allowed to stand under vacuum.
  • An example of the semiconductor package 100 of this embodiment can be manufactured by using the above-mentioned thermally conductive composition.
  • the method for manufacturing the semiconductor package 100 includes a step of installing the semiconductor element 20 on one surface of the substrate 10 so that the other surface faces each other, and a metal on the surface of one surface side (opposite side of the other surface) of the semiconductor element 20.
  • the semiconductor package 100 includes a step of joining the semiconductor element 10 and the heat spreader 30 via a heat conductive material 50 including a particle connecting structure formed by sintering metal particles.
  • a heat conductive material 50 including a particle connecting structure formed by sintering metal particles.
  • Can include.
  • the method for manufacturing the semiconductor package 100 may include a step of drying the heat conductive composition after the step of applying and before the step of arranging. Thereby, the leveling property can be enhanced.
  • the thermally conductive composition may be coated using a dispenser. As a result, workability can be improved.
  • ⁇ Thermal conductive composition Each raw material component was mixed according to the blending amount shown in Table 1 below to obtain a varnish. The obtained varnish, solvent, and metal particles were blended according to the blending amounts shown in Table 1 below, and kneaded with a three-roll mill at room temperature to prepare a paste-like thermally conductive composition.
  • (Hardener) -Curing agent 1 Phenolic resin having a bisphenol F skeleton (solid at room temperature 25 ° C., made by DIC, DIC-BPF) -Hardener 2: m, p-cresyl glycidyl ether (manufactured by Sakamoto Pharmaceutical Co., Ltd., mp-CGE)
  • (Plasticizer) -Plasticizer 1 Allyl resin (manufactured by Kanto Chemical Co., Inc., polymer of bis (2-propenyl) 1,2-cyclohexanedicarboxylic acid and propane-1,2-diol)
  • Silane coupling agent -Silane coupling agent 1: 3- (trimethoxysilyl) propyl methacrylate (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-503P)
  • Silane coupling agent 2 3-glycidyloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403E)
  • (Curing accelerator) -Imidazole hardener 1 2-phenyl-1H-imidazole-4,5-dimethanol (manufactured by Shikoku Chemicals Corporation, 2PHZ-PW)
  • solvent butyl propylene triglycol (BFTG)
  • -Silver particle 1 Silver powder (manufactured by DOWA Hightech, AG-DSB-114, spherical, D 50 : 1 ⁇ m)
  • -Silver particle 2 Silver powder (manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd., HKD-16, flake-shaped, D 50 : 2 ⁇ m)
  • -Silver-coated resin particles 1 Silver-plated acrylic resin particles (manufactured by Sanno Co., Ltd., SANSILVER-8D, spherical shape, D 50 : 8 ⁇ m, monodisperse particles, specific gravity: 2.4, silver weight ratio 50 wt%, resin weight ratio 50 wt%)
  • -Silver particles 3 Silver powder (TC-88, manufactured by Tokuriki Honten, flakes, D 50 : 3 ⁇ m)
  • thermally conductive composition Using the obtained thermally conductive composition, the following physical properties were measured and the evaluation items were evaluated.
  • the obtained thermally conductive composition was heated from 30 ° C. to 200 ° C. over 60 minutes and then heat-treated at 200 ° C. for 120 minutes to obtain a heat-treated body having a thickness of 1 mm.
  • the heat diffusion coefficient ⁇ in the thickness direction of the heat-treated body was measured by using a laser flash method. The measurement temperature was 25 ° C.
  • the specific heat Cp was measured by differential scanning calorimetry (DSC) measurement, and the density ⁇ measured according to JIS-K-6911 was measured. Using these values, the thermal conductivity ⁇ was calculated based on the following formula.
  • the evaluation results are shown in Table 1 below. The unit is W / (m ⁇ K).
  • Thermal conductivity ⁇ [W / (m ⁇ K)] ⁇ [m 2 / sec] ⁇ Cp [J / kg ⁇ K] ⁇ ⁇ [g / cm 3 ] Both the thermal conductivity of Example 1 and Reference Example 1 was 20 W / (m ⁇ K) or more, and could be used without any problem in practical use.
  • the obtained thermally conductive composition was heated from 30 ° C. to 200 ° C. over 60 minutes, and then heat-treated at 200 ° C. for 120 minutes to obtain a heat-treated body.
  • the storage elastic modulus E (MPa) at 25 ° C. was measured by dynamic viscoelasticity measurement (DMA) at a frequency of 1 Hz using a measuring device (DMS6100 manufactured by Hitachi High-Tech Science Co., Ltd.).
  • a copper lead frame and a silicon chip (length 2 mm ⁇ width 2 mm, thickness 0.35 mm) were prepared. Next, the obtained heat conductive composition was applied to the silicon chip so as to have a coating thickness of 25 ⁇ 10 ⁇ m, and a copper lead frame was placed on the coating thickness. A laminate in which a silicon chip, a heat conductive composition, and a copper lead frame were laminated in this order was produced. Next, the obtained laminate was heated in the air from 30 ° C. to 200 ° C. for 60 minutes, and then heat-treated at 200 ° C. for 120 minutes to cure the thermally conductive composition in the laminate. A thermally conductive material was obtained. Next, using a scanning electron microscope (SEM), the cross section of the heat-treated body of the heat-conductive composition in the laminated body was observed, and the state was evaluated.
  • SEM scanning electron microscope
  • Example 1 it was confirmed that the silver particle connecting structure was formed as shown in FIG. Further, in the cross-sectional image (FIG. 2), a plurality of substantially circular resin particles are included in the silver particle connecting structure, and the metal layer (silver layer) on the surface of the resin particles and the silver particle connecting structure are connected to each other. It was also confirmed that there was. Further, it was confirmed that the cured product of the binder resin exists in the silver particle connecting structure so as to cover the silver in a portion other than silver.
  • the obtained thermally conductive composition was applied onto a surface nickel-plated copper substrate, and a surface nickel-plated silicon chip (2 mm ⁇ 2 mm) was mounted therein. Then, the temperature was raised in an oven from 30 ° C. to 200 ° C. for 60 minutes, and then heated at 200 ° C. for 120 minutes to cure. This sample was placed on a hot plate heated to 260 ° C., and the die shear strength (N / 2 mm ⁇ 2 mm) was measured using DAGE-4000 (manufactured by Nordson).
  • a semiconductor package was obtained as follows.
  • a semiconductor element was installed on one surface of the substrate so that the other surface faces each other.
  • a thermally conductive composition containing metal particles was applied to the surface on one side of the semiconductor element.
  • a heat spreader was arranged so as to be in contact with the heat conductive composition and to cover one surface of the semiconductor element. Structures including substrates, semiconductor devices, thermally conductive compositions and heat spreaders were heat treated. By heat treatment, the semiconductor element and the heat spreader were joined to each other via a heat conductive material containing a particle connection structure formed by syntaring metal particles in the heat conductive composition to obtain a semiconductor package. ..
  • Example 1 As Comparative Example 1, a semiconductor package was obtained by using an acrylic adhesive instead of the thermally conductive composition of Example 1.
  • the thermal diffusion coefficient of the surface of the semiconductor element was measured by a laser flash method. Since Examples 1 to 3 show a higher heat diffusion coefficient than Comparative Example 1, it was found that the semiconductor packages of Examples 1 to 3 can have a structure having excellent heat dissipation characteristics. Further, in the semiconductor packages of Examples 1 to 3, as compared with Comparative Example 1, adhesion is performed at both the bonding interface between the heat conductive material and the semiconductor element and the bonding interface between the heat conductive material and the heat spreader. The strength showed a high value.
  • thermally conductive materials of Examples 1 to 3 were superior in die shear strength as compared with Reference Example 1.
  • the heat conductive materials of Examples 1 to 3 as the TIM1 material, a semiconductor package having excellent heat dissipation characteristics can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本発明の半導体パッケージは、基板と、基板上に設けられた半導体素子と、半導体素子の周囲を囲むヒートスプレッダーとを備え、半導体素子とヒートスプレッダーとを、熱処理により金属粒子がシンタリングを起こして形成される粒子連結構造を有する熱伝導性材料で接合したものである。

Description

半導体パッケージ、半導体パッケージの製造方法、およびそれに用いる熱伝導性組成物
 本発明は、半導体パッケージ、半導体パッケージの製造方法、およびそれに用いる熱伝導性組成物に関する。
 これまで、熱伝導体を備える半導体パッケージにおいて様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。
 特許文献1には、電子回路基板の上に実装された半導体素子(発熱体)とヒートシンクとが、熱伝導性両面テープ(接着剤で構成される熱伝導性材料)を介して接着した半導体パッケージが記載されている(特許文献1の実施例7、図16)。
国際公開第2015/072428号
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の半導体パッケージにおいて、放熱特性の点で改善の余地があることが判明した。
 現在、高性能化に伴って半導体素子(発熱体)の発熱量が増大しているため、半導体パッケージには、さらに高度な放熱特性の改善が求められている。
 このような事情を踏まえ検討したところ、半導体素子とヒートスプレッダー等の放熱部材とを接着する熱伝導性材料として、アクリル系接着剤や、窒化ホウ素、アルミナまたは酸化亜鉛が分散した熱可逆性ゲルを用いたとしても、熱伝導性を十分に得られないことが分かった。
 本発明者はさらに検討したところ、熱伝導性材料として、熱処理により金属粒子がシンタリングを起こして形成される粒子連結構造を有するものを使用することで、熱伝導性材料の熱伝導性を向上させ、半導体素子と放熱部材との接合できるため、半導体パッケージにおける放熱特性を向上できることを見出し、本発明を完成するに至った。
 本発明によれば、
 基板と、前記基板上に設けられた半導体素子と、前記半導体素子の周囲を囲むヒートスプレッダーとを備え、前記半導体素子と前記ヒートスプレッダーとを熱伝導性材料で接合した半導体パッケージであって、
 前記熱伝導性材料は、熱処理により金属粒子がシンタリングを起こして形成される粒子連結構造を有するものである、
半導体パッケージが提供される。
 また本発明によれば、
 基板と、前記基板上に設けられた半導体素子と、前記半導体素子の周囲を囲むヒートスプレッダーとを備え、前記半導体素子と前記ヒートスプレッダーとを熱伝導性材料で接合した半導体パッケージにおいて、前記熱伝導性材料を形成するために用いる、熱伝導性組成物であって、
 金属粒子と、
 バインダー樹脂と、
 モノマーと、
を含み、
 熱処理により前記金属粒子がシンタリングを起こして粒子連結構造を形成するものである、
熱伝導性組成物が提供される。
 また本発明によれば、
 基板の一面上に、他面が対向するように半導体素子を設置する工程と、
 前記半導体素子の一面側の表面に、金属粒子を含む熱伝導性組成物を塗布する工程と、
 前記熱伝導性組成物に接するとともに、前記半導体素子の少なくとも一面を覆うようにヒートスプレッダーを配置する工程と、
 前記基板、半導体素子、熱伝導性組成物および前記ヒートスプレッダーを含む構造体を加熱処理する工程と、
を含み、
 前記加熱処理する工程において、前記金属粒子がシンタリングを起こして形成される粒子連結構造を含む熱伝導性材料を介して、前記半導体素子と前記ヒートスプレッダーとを接合する、
半導体パッケージの製造方法が提供される。
 本発明によれば、放熱特性に優れた半導体パッケージ、半導体パッケージの製造方法、およびそれに用いる熱伝導性組成物が提供される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態に係る半導体パッケージの一例を模式的に示す断面図である。 実施例1の粒子連結構造の断面におけるSEM画像を表す。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。
 本実施形態の半導体パッケージの概要を説明する。
 図1は、本実施形態の半導体パッケージの一例を模式的に示す断面図である。
 本実施形態の半導体パッケージ100は、基板10、半導体素子20、ヒートスプレッダー30および熱伝導性材料50を備える。半導体素子20は、基板10上に設けられており、ヒートスプレッダー30は、半導体素子20の周囲を囲み、熱伝導性材料50は、半導体素子20とヒートスプレッダー30とを接合している。
 このような半導体パッケージ100において、熱伝導性材料50は、熱処理により金属粒子がシンタリング(焼結)を起こして形成される粒子連結構造を有するものである。
 熱伝導性材料50中の粒子連結構造は、半導体素子20とヒートスプレッダー30との積層方向に対して熱伝導性材料50を切断したときの、少なくとも1つの断面を走査電子顕微鏡等の各種顕微鏡を用いて観察できる。
 熱伝導性材料50の上記断面の所定領域において、界面が消失した状態で複数の金属粒子が連結した構造が存在する。このような金属粒子の連結構造によって、熱伝導性材料50の熱伝導性を向上させることが可能である。
 また、熱伝導性材料50と半導体素子20との接着面、あるいは熱伝導性材料50とヒートスプレッダー30との接着面の少なくとも一部において、熱伝導性材料50は、その中の金属粒子を介して、半導体素子20の表面、あるいはヒートスプレッダー30の表面と接合構造を有することができる。
 本実施形態によれば、熱伝導性材料として、熱処理により金属粒子がシンタリングを起こして形成される粒子連結構造を有するものを使用することで、熱伝導性材料の熱伝導性を向上させ、半導体素子と放熱部材との接合できるため、半導体パッケージにおける放熱特性を向上できる。
 以下、半導体パッケージ100について詳細に説明する。
 図1の半導体パッケージ100は、基板10、半導体素子20、ヒートスプレッダー30および熱伝導性材料50を備える。
 半導体素子20は、例えば、ロジックチップやメモリチップでもよく、メモリ回路とロジック回路が混成されたLSIチップでもよい。半導体素子20は、BGA型パッケージで構成されてもよい。
 半導体素子20は、基板10の上に実装され、基板10と電気的に接続される。半導体素子20は、基板10にフリップチップ接続されていてもよい。この場合、半導体素子20は、半田ボール60を介して基板10と半田接続する。半導体素子20と基板10との間隙にはアンダーフィル材70が充填されていてもよい。アンダーフィル材70は、公知のものが使用できるが、封止材でもよくダイアタッチ材でもよい。
 基板10は、例えば、プリント回路基板等が用いられる。基板10の一面に、1または2以上の半導体素子20が実装されてもよい。また、基板10の一面に、半導体素子20以外の電子部品や、熱源体が実装されてもよい。一方、基板10の他面(一面とは反対側の面)は、その他の基板に接続可能な接続構造を有していてもよい。接続構造として、例えば、半田ボール、ピンコネクタなどが挙げられる。
 ヒートスプレッダー30は、半導体素子20などの発熱体から熱を放熱する部材で構成されていればよく、例えば、金属材料で構成され得る。金属材料としては、例えば、銅、アルミニウム、ステンレス等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。ヒートスプレッダー30は、金属材料以外の高熱伝導性材料を有してもよく、例えば、グラファイト等を内部に含んでもよい。
 ヒートスプレッダー30は、上記金属材料からなる金属層を用い、その単層で構成されてもよく、あるいは複数層が積層した積層構造で構成されてもよい。また、ヒートスプレッダー30の表面のうち、少なくとも熱伝導性材料50と接合する面は、上記金属材料が露出してもよいが、その他の金属でメッキ処理されてもよい。例えば、ニッケル、金、これらを主成分とする合金、あるいはこれらの積層皮膜でメッキ膜が構成できる。これにより、ヒートスプレッダー30の防錆性を高められる。
 ヒートスプレッダー30の形状は、半導体素子20を覆うような蓋構造であれば特に限定されない。ヒートスプレッダー30は、半導体素子20と対向する面が開口した筐体で構成される。具体的には、ヒートスプレッダー30は、半導体素子20の一面と対向する他面を有する板状部と、この板状部の他面から突出しており、半導体素子20の側面周囲を覆うよう、板状部材の周囲に設けられた側壁部と、を有してもよい。
 このヒートスプレッダー30の断面構造は、半導体素子20とヒートスプレッダー30との積層方向の断面視で見たとき、例えば、略コの字形状を有していてもよい。
 ヒートスプレッダー30の一部は、接着剤を介して基板10と接着してもよい。例えば、ヒートスプレッダー30の側壁部の先端は、接着剤で基板10の一面と接着してもよい。接着剤は公知のものが使用できる。
 熱伝導性材料50は、半導体素子20の一面と、その一面と対向するヒートスプレッダー30の他面との間に介在し、これらを接合する。
 熱伝導性材料50は、熱処理により金属粒子がシンタリングを起こして形成される粒子連結構造を有するものである。この熱伝導性材料50は、熱処理により、金属粒子がシンタリングを起こして形成される粒子連結構造を有する熱伝導性組成物を用いて形成され得る。この熱伝導性組成物の詳細は、後述する。
 上記金属粒子は、金属からなる粒子を含むことができる。上記金属粒子は、例えば、銀、金、および銅からなる群から選択される一種以上で構成される金属からなる粒子を含んでもよい。
 また、熱伝導性材料50の熱伝導率の下限は、例えば、10W/mK以上、好ましくは15W/mK以上、より好ましくは20W/mK以上である。これにより、半導体パッケージ100の放熱特性を向上できる。一方、熱伝導性材料50の熱伝導率の上限は、例えば、200W/mK以下でもよく、150W/mK以下でもよい。熱伝導率は、レーザーフラッシュ法を用いて、25℃、厚み方向に測定することで得られる。
 上記金属からなる粒子の平均粒子径D50の下限は、例えば、0.8μm以上であり、好ましくは1.0μm以上であり、より好ましくは1.2μm以上である。これにより、熱伝導性を高めることができる。一方、上記金属からなる粒子の平均粒子径D50の上限は、例えば、7.0μm以下であり、好ましくは5.0μm以下であり、より好ましくは4.0μm以下である。これにより、金属粒子間における焼結性を向上させることができる。また、シンタリングの均一性の向上を図ることができる。上記金属からなる粒子の平均粒子径D50は、銀粒子の平均粒子径D50として用いてもよい。
 上記金属からなる粒子の粒径の標準偏差の上限は、2.0μm以下、好ましくは1.9μm以下、より好ましくは1.8μm以下である。これにより、シンタリング時の均一性を向上できる。一方、上記金属からなる粒子の粒径の標準偏差の下限は、特に限定されるものではないが、たとえば、0.1μm以上、0.3μm以上でもよい。
 また、上記金属粒子は、樹脂粒子と樹脂粒子の表面に形成された金属とで構成された金属コート樹脂粒子を含んでもよい。この金属粒子は、金属コート樹脂粒子および金属からなる粒子のいずれか一方を含むことができるが、両者を含むことがより好ましい。
 金属コート樹脂粒子を用いることで、詳細なメカニズムは定かではないが、ニッケルメッキ処理されたヒートスプレッダー30の他面側の表面との密着性を向上させることができる。
 熱伝導性材料50は、金属粒子の粒子連結構造のみで構成されてよいが、粒子連結構造とその構造中に存在する樹脂とを有してもよい。これにより、熱伝導率の向上しつつも、貯蔵弾性率を低減できる。
 熱伝導性材料50の25℃における貯蔵弾性率の上限は、例えば、10.0GPa以下、好ましくは9GPa以下、より好ましくは8GPa以下である。これにより、熱伝導性材料50を低弾性化できるため、応力ひずみによるクラックの発生や密着性の低下を抑制できる。熱伝導性材料50の25℃における貯蔵弾性率の上限は、例えば、1GPa以上、好ましくは2GPa以上、より好ましくは3GPa以上でもよい。これにより、耐久性に優れた熱伝導性材料50を実現できる。貯蔵弾性率は、周波数1Hzでの動的粘弾性測定(DMA)で測定することで得られる。
 熱伝導性材料50は、半導体素子20の一面の少なくとも一部または全面に形成されてもよい。
 半導体パッケージ100は、図1に示すように、さらに、ヒートシンク80および熱伝導性材料90を備えても良い。
 ヒートシンク80は、熱伝導性材料90を介してヒートスプレッダー30と接着できる。熱伝導性材料90は、公知の材料を用いることができ、例えば、グリースを使用してもよい。
 ヒートシンク80は、放熱性に優れた部材で構成されればよく、例えば、ヒートスプレッダー30で使用した材料を用いてもよい。ヒートシンク80は、複数のフィンを有してもよい。
 以下、本実施形態の熱伝導性組成物の各成分について詳述する。
 上記熱伝導性組成物は、基板と、基板10上に設けられた半導体素子20と、半導体素子20の周囲を囲むヒートスプレッダー30とを備え、半導体素子20とヒートスプレッダー30とを熱伝導性材料50で接合した半導体パッケージにおいて、熱伝導性材料50を形成するために用いるものである。
 上記熱伝導性組成物は、熱処理により金属粒子がシンタリングを起こして粒子連結構造を形成するもので、これによって、熱伝導性材料50を形成できる。
 本実施形態の熱伝導性組成物は、上記金属粒子とともに、バインダー樹脂およびモノマーと、を含むものである。
 詳細なメカニズムは定かではないが、加熱によって、モノマーが揮発して組成物の体積が収縮すると、金属粒子同士が近づく方向に応力がかかり、金属粒子同士の界面が消失し、金属粒子の連結構造が形成される、と考えられる。そして、このような金属粒子のシンタリングの際、バインダー樹脂、あるいはバインダー樹脂と硬化剤やモノマー等との樹脂硬化物が、連結構造の内部または外周に残存すると、考えられる。また、硬化反応によって、複数の金属粒子が凝集するような力が生じることも、考えられる。
 上記熱伝導性組成物を加熱処理することで、金属粒子の粒子連結構造と、バインダー樹脂、その硬化物、金属コート樹脂粒子中の樹脂粒子等で構成される樹脂成分と、を含む接着層(熱伝導性材料50)を実現できる。
 また、当該熱伝導性組成物を用いて、下記の手順Aで測定される熱伝導率λの下限は、例えば、10W/mK以上、好ましくは15W/mK以上、より好ましくは20W/mK以上である。これにより、半導体パッケージ100の放熱特性を向上できる。一方、熱伝導率λの熱伝導率の上限は、例えば、200W/mK以下でもよく、150W/mK以下でもよい。
(手順A)
 当該熱伝導性組成物を、30℃から200℃まで60分間かけて昇温し、次いで200℃で120分間熱処理し、厚さ1mmの熱処理体を得る。得られた熱処理体について、レーザーフラッシュ法を用いて、25℃における熱伝導率λ(W/mK)を測定する。
 当該熱伝導性組成物を用いて、下記の手順Bで測定される25℃の貯蔵弾性率Eの上限は、例えば、10GPa以下、好ましくは9GPa以下、より好ましくは8GPa以下である。これにより、熱伝導性材料50を低弾性化できるため、応力ひずみによるクラックの発生や密着性の低下を抑制できる。25℃における貯蔵弾性率Eの上限は、例えば、1GPa以上、好ましくは2GPa以上、より好ましくは3GPa以上でもよい。これにより、耐久性に優れた熱伝導性材料50を実現できる。貯蔵弾性率は、周波数1Hzでの動的粘弾性測定(DMA)で測定することで得られる。
(金属粒子)
 本実施形態の熱伝導性組成物は、金属粒子を含む。この金属粒子は、熱処理によって、シンタリングを起こし、粒子連結構造(シンタリング構造)を形成できる。
 上記金属粒子は、金属コート樹脂粒子、金属からなる粒子等を用いることができる。上記金属粒子は、金属コート樹脂粒子および金属からなる粒子のいずれか一方を含むことができるが、両者を含むことがより好ましい。
 上記金属コート樹脂粒子を用いることで、金属粒子の燒結性の低下を抑制しつつも、貯蔵弾性率を適切に低減させることが可能である。上記金属からなる粒子を用いることで、金属粒子の燒結性を向上させつつも、熱伝導率を適切に高めることが可能である。
 上記金属コート樹脂粒子は、樹脂粒子と樹脂粒子の表面に形成された金属とで構成される。すなわち、上記金属コート樹脂粒子は、樹脂粒子の表面を金属層が被覆した粒子でもよい。
 本明細書中、樹脂粒子の表面を金属層が被覆したとは、樹脂粒子の表面の少なくとも一部の領域を金属層が覆っている状態を指し、樹脂粒子の表面の全面を覆っている態様に限られず、たとえば、金属層が、表面を部分的に覆っている態様や特定の断面から見たときの表面全面を覆っている態様を含んでもよい。
 この中でも、熱伝導性の観点から、金属層が、特定の断面から見たときの表面全面を覆っていることが好ましく、粒子の表面全面を覆っていることがさらに好ましい。
 上記金属コート樹脂粒子中の金属は、例えば、銀、金、ニッケル、スズからなる群から選択される一種以上を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。あるいはこれらの金属を主成分とする合金を用いてもよい。この中でも、シンタリング性や熱伝導性の観点から、銀を用いることができる。
 上記金属コート樹脂粒子中の樹脂粒子(コア樹脂粒子)を構成する樹脂材料は、例えば、シリコーン、アクリル、フェノール、ポリスチレン、メラミン、ポリアミド、ポリテトラフルオロエチレンなどが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。これらを用いたポリマーで樹脂粒子を構成できる。ポリマーは、ホモポリマーでも、これらを主成分とする共重合体でもよい。
 弾性特性や耐熱性の観点から、上記樹脂粒子は、シリコーン樹脂粒子やアクリル樹脂粒子を用いてもよい。
 上記シリコーン樹脂粒子は、メチルクロロシラン、トリメチルトリクロロシラン、ジメチルジクロロシラン等のオルガノクロロシランを重合させることにより得られるオルガノポリシロキサンにより構成される粒子でもよく、このオルガノポリシロキサンをさらに三次元架橋した構造を基本骨格としたシリコーン樹脂粒子でもよい。
 また、シリコーン樹脂粒子の構造中に各種官能基を導入することが可能であり、導入できる官能基としてはエポキシ基、アミノ基、メトキシ基、フェニル基、カルボキシル基、水酸基、アルキル基、ビニル基、メルカプト基等があげられるが、これらに限定されるものではない。
 なお、本実施形態では、特性を損なわない範囲で他の低応力改質剤をこのシリコーン樹脂粒子に添加しても構わない。併用できる他の低応力改質剤としては、ブタジエンスチレンゴム、ブタジエンアクリロニトリルゴム、ポリウレタンゴム、ポリイソプレンゴム、アクリルゴム、フッ素ゴム、液状オルガノポリシロキサン、液状ポリブタジエン等の液状合成ゴム等が挙げられるが、これらに限定されるものではない。
 上記樹脂粒子の形状は、特に限定されず、球状でもよいが、球状以外の異形状、例えば扁平状(フレーク状)、板状、針状でもよい。金属コート樹脂粒子の形状を球状に形成する場合は、使用する樹脂粒子の形状も球状であることが好ましい。なお、球状とは、上述のように、完全な真球に限られず、楕円のような球形に近い形状や、表面に若干の凹凸がある形状等も含まれる。
 上記金属コート樹脂粒子の比重の下限は、たとえば2以上であり、2.5以上であることが好ましく、3以上であることがさらに好ましい。これにより、接着層としての熱伝導性や導電性をさらに向上させることができる。また、上記金属コート樹脂粒子の比重の上限は、たとえば10以下であり、9以下であることが好ましく、8以下であることがさらに好ましい。これにより、粒子の分散性を向上させることができる。上記比重は、金属コート樹脂粒子と金属からなる粒子とを含む金属粒子の比重であってもよい。
 上記金属コート樹脂粒子は、単分散系粒子でもよく、多分散系粒子でもよい。また、上記金属コート樹脂粒子は、粒子径頻度分布において、1つのピークを有してもよく、2つ以上の複数のピークを有していてもよい。
 上記金属からなる粒子は、1種または2種以上の金属材料からなる粒子であればよく、コア部分と表層部分とが、同一または異種の金属材料で構成されてもよい。金属材料は、例えば、銀、金、および銅からなる群から選択される一種以上を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。あるいはこれらの金属を主成分とする合金を用いてもよい。この中でも、シンタリング性や熱伝導性の観点から、銀を用いることができる。
 上記金属からなる粒子の形状は、たとえば、球状でもよく、フレーク状でもよい。上記金属からなる粒子は、球状粒子およびフレーク状粒子のいずれか一方、または両方を含むことができる。
 上記金属粒子の一つの態様は、上記金属コート樹脂粒子として、銀コートシリコーン樹脂粒子、および金属からなる粒子として、銀粒子を含む。
 銀コートシリコーン樹脂粒子の他にも、弾性特性の観点から、銀コートアクリル樹脂粒子を用いてもよい。銀粒子の他にも、たとえばシンタリングを促進する、あるいは低コスト化等の目的で金粒子や銅粒子等の、銀以外の金属成分を含む粒子を併用することが可能である。
 上記金属コート樹脂粒子の平均粒子径D50の下限は、例えば、0.5μm以上、好ましくは1.5μm以上、より好ましくは2.0μm以上でもよい。これにより、貯蔵弾性率を低減させることができる。一方、上記金属コート樹脂粒子の平均粒子径D50の上限は、例えば、20μm以下でもよく、15μm以下でもよく、10μm以下でもよい。これにより、熱伝導性を高めることができる。上記金属コート樹脂粒子の平均粒子径D50は、銀コートシリコーン樹脂粒子や銀コートアクリル樹脂粒子の平均粒子径D50として用いてもよい。
 上記金属からなる粒子の平均粒子径D50の下限は、例えば、0.8μm以上であり、好ましくは1.0μm以上であり、より好ましくは1.2μm以上である。これにより、熱伝導性を高めることができる。一方、上記金属からなる粒子の平均粒子径D50の上限は、例えば、7.0μm以下であり、好ましくは5.0μm以下であり、より好ましくは4.0μm以下である。これにより、金属粒子間における焼結性を向上させることができる。また、シンタリングの均一性の向上を図ることができる。上記金属からなる粒子の平均粒子径D50は、銀粒子の平均粒子径D50として用いてもよい。
 また、金属からなる粒子は、異なる粒径D50を有する2種以上を含んでもよい。これにより、シンタリング性を高められる。
 なお、金属粒子の平均粒子径D50は、たとえば、シスメックス株式会社製フロー式粒子像分析装置FPIA(登録商標)-3000を用い、粒子画像計測を行うことで決定することができる。より具体的には、上記装置を用い、体積基準のメジアン径を計測することで、金属粒子の粒子径を決定することができる。
 上記金属コート樹脂粒子の含有量は、金属粒子全体(100質量%)に対して、例えば、1質量%~50質量%、好ましくは3質量%~45質量%、より好ましくは5質量%~40質量%である。上記下限値以上とすることで、貯蔵弾性率を低減できる。上記上限値以下とすることで、熱伝導率を向上できる。
 本明細書中、「~」は、特に明示しない限り、上限値と下限値を含むことを表す。
 上記金属粒子の含有量は、熱伝導性組成物全体(100質量%)に対して、1質量%~98質量%、好ましくは30質量%~95質量%、より好ましくは50質量%~90質量%である。上記下限値以上とすることで、熱伝導性を高めることができる。上記上限値以下とすることで、塗布性やペースト時の作業製を向上できる。
(バインダー樹脂)
 上記熱伝導性組成物は、バインダー樹脂を含む。
 上記バインダー樹脂は、エポキシ樹脂、アクリル樹脂、およびアリル樹脂からなる群より選択される1種以上を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 上記バインダー樹脂として、具体的には、アクリルオリゴマー、アクリルポリマーといったアクリル樹脂;エポキシオリゴマー、エポキシポリマーといったエポキシ樹脂;アリルオリゴマー、アリルポリマーといったアリル樹脂などを挙げることができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 なお、重量平均分子量が1万未満のものをオリゴマー、重量平均分子量が1万以上のものをポリマーとする。
 上記エポキシ樹脂として、分子内にエポキシ基を2個以上有するエポキシ樹脂を用いてもよい。このエポキシ樹脂は、25℃で液状でもよい。これにより、熱伝導性組成物のハンドリング性を向上できる。また、その硬化収縮を適当に調整できる。
 上記エポキシ樹脂の具体例は、例えば、トリスフェノールメタン型エポキシ樹脂;水添ビスフェノールA型液状エポキシ樹脂;ビスフェノール-F-ジグリシジルエーテルなどのビスフェノールF型液状エポキシ樹脂;オルソクレゾールノボラック型エポキシ樹脂などが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 この中でも、水添ビスフェノールA型液状エポキシ樹脂またはビスフェノールF型液状エポキシ樹脂を用いてもよい。ビスフェノールF型液状エポキシ樹脂として、例えば、ビスフェノール-F-ジグリシジルエーテルを用いることができる。
 上記アクリル樹脂として、分子内にアクリル基を2個以上有するアクリル樹脂を用いてもよい。このアクリル樹脂は、25℃で液状でもよい。
 上記アクリル樹脂として、具体的には、アクリルモノマーを(共)重合したものを用いることができる。ここで、(共)重合の方法としては限定されず、溶液重合など、一般的な重合開始剤および連鎖移動剤を用いる公知の方法を用いることができる。
 上記アリル樹脂として、1分子内にアリル基を2個以上有するアリル樹脂を用いてもよい。このアリル樹脂は、25℃で液状でもよい。
 上記アリル樹脂として、具体的には、ジカルボン酸と、アリルアルコールと、アリル基を備える化合物とを反応することで得られるアリルエステル樹脂が挙げられる。
 ここで、上記ジカルボン酸としては、具体的には、しゅう酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸などが挙げられる。また、上記アリル基を備える化合物としては、具体的には、アリル基を備えるポリエーテル、ポリエステル、ポリカーボネート、ポリアクリレート、ポリメタクリレート、ポリブタジエン、ブタジエンアクリロニトリル共重合体などが挙げられる。
 上記バインダー樹脂の含有量の下限は、熱伝導性組成物100質量部に対して、例えば、1質量部以上、好ましくは2質量部以上、より好ましくは3質量部以上である。これにより、被着体に対して密着性を向上できる。一方、上記バインダー樹脂の含有量の上限は、熱伝導性組成物100質量部に対して、例えば、15質量部以下、好ましくは12質量部以下、より好ましくは10質量部以下である。これにより、熱伝導性の低下を抑制できる。
(モノマー)
 上記熱伝導性組成物は、モノマーを含む。
 上記モノマーは、グリコールモノマー、アクリルモノマー、エポキシモノマーおよびマレイミドモノマーからなる群から選ばれる一または二以上を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 上記モノマーを用いることで、加熱処理したとの上記熱伝導性組成物の揮発状態を調整できる。また、バインダー樹脂や硬化剤との組み合わせを適切に選択することで、上記モノマーとこれらを硬化反応させ、硬化収縮状態を調整してもよい。
 上記グリコールモノマーとして、具体的には、分子中に2個のヒドロキシ基を備え、その2個のヒドロキシ基が、それぞれ異なる炭素原子と結合した2価アルコール;該2価アルコールが2つ以上アルコール縮合した化合物;該アルコール縮合した化合物のヒドロキシル基中の水素原子が、炭素数1以上30以下の有機基に置換されてアルコキシ基となったもの、等が挙げられる。
 上記グリコールモノマーとしては、具体的には、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-プロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノn-ブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノ2-エチルヘキシルエーテル、エチレングリコールモノアリルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノベンジルエーテル、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノn-プロピルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノn-ブチルエーテル、ジエチレングリコールモノイソブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノ2-エチルヘキシルエーテル、ジエチレングリコールモノベンジルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノn-ブチルエーテル、テトラエチレングリコール、テトラチレングリコールモノメチル、テトラチレングリコールモノエチル、テトラエチレングリコールモノn-ブチル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノフェニルエーテル、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノn-プロピルエーテル、ジプロピレングリコールモノn-ブチルエーテル、トリプロピレングリコール、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノn-ブチルエーテルなどが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。この中でも、揮発性の観点から、トリプロピレングリコールモノ-n-ブチルエーテルまたはエチレングリコールモノ-n-ブチルアセテートを用いることができる。
 上記グリコールモノマーの沸点の下限としては、例えば、100℃以上であることが好ましく、130℃以上であることがより好ましく、150℃以上であることが更に好ましく、170℃以上であることが一層好ましく、190℃以上であることが殊更好ましい。また、グリコールモノマーの沸点の上限としては、例えば、400℃以下であってもよく、350℃以下であってもよい。
 なお、グリコールモノマーの沸点とは、大気圧下(101.3kPa)における沸点を示す。
 上記アクリルモノマーとして、分子中に(メタ)アクリル基を備えるモノマーが挙げられる。
 ここで、(メタ)アクリル基とは、アクリル基及びメタアクリル基を示す。
 上記アクリルモノマーは、分子中に(メタ)アクリル基を1つのみ備える単官能アクリルモノマーであってもよいし、分子中に(メタ)アクリル基を2つ以上備える多官能アクリルモノマーであってもよい。
 上記単官能アクリルモノマーとして、具体的には、2-フェノキシエチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソアミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、n-トリデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングルコール(メタ)アクリレート、2-エチルヘキシルジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノールエチレンオキシド変性(メタ)アクリレート、フェニルフェノールエチレンオキシド変性(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート四級化物、グリシジル(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリル酸安息香酸エステル、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチルフタル酸、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシエチルフタル酸、2-(メタ)アクリロイルオキシエチルアシッドフォスフェート、および2-(メタ)アクロイロキシエチルアシッドホスフェートなどを挙げることができる。
 多官能アクリルモノマーとしては、具体的には、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アタクリレート、プロポキシ化ビスフェノールAジ(メタ)アクリレート、ヘキサン-1,6-ジオールビス(2-メチル(メタ)アクリレート)、4,4’-イソプロピリデンジフェノールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,6-ビス((メタ)アクリロイルオキシ)-2,2,3,3,4,4,5,5-オクタフルオロヘキサン、1,4-ビス((メタ)アクリロイルオキシ)ブタン、1,6-ビス((メタ)アクリロイルオキシ)ヘキサン、トリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、N,N’-ジ(メタ)アクリロイルエチレンジアミン、N,N’-(1,2-ジヒドロキシエチレン)ビス(メタ)アクリルアミド、又は1,4-ビス((メタ)アクリロイル)ピペラジンなどが挙げられる。
 アクリルモノマーとしては、単官能アクリルモノマーまたは多官能アクリルモノマーを単独で用いてもよいし、単官能アクリルモノマー及び多官能アクリルモノマーを併用してもよい。アクリルモノマーとしては、例えば多官能アクリルモノマーを単独で用いることが好ましい。
 上記エポキシモノマーは、分子中にエポキシ基を備えるモノマーである。
 上記エポキシモノマーは、分子中にエポキシ基を1つのみ備える単官能エポキシモノマーであってもよいし、分子中にエポキシ基を2つ以上備える多官能エポキシモノマーであってもよい。
 上記単官能エポキシモノマーとしては、具体的には、4-tert-ブチルフェニルグリシジルエーテル、m,p-クレジルグリシジルエーテル、フェニルグリシジルエーテル、クレジルグリシジルエーテルなどが挙げられる。
 上記多官能エポキシモノマーとしては、具体的には、ビスフェノールA、ビスフェノールF、ビフェノールなどのビスフェノール化合物またはこれらの誘導体;水素添加ビスフェノールA、水素添加ビスフェノールF、水素添加ビフェノール、シクロヘキサンジオール、シクロヘキサンジメタノール、シジロヘキサンジエタノールなどの脂環構造を有するジオールまたはこれらの誘導体;ブタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオールなどの脂肪族ジオールまたはこれらの誘導体などをエポキシ化した2官能のもの;トリヒドロキシフェニルメタン骨格、アミノフェノール骨格を有する3官能のもの;フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂などをエポキシ化した多官能のものなどが挙げられる。
 上記マレイミドモノマーは、分子中にマレイミド環を備えるモノマーである。
 上記マレイミドモノマーは、分子中に、マレイミド環を1つのみ備える単官能マレイミドモノマーであってもよいし、分子中にマレイミド環を2つ以上備える多官能マレイミドモノマーであってもよい。
 上記マレイミドモノマーとして、具体的には、ポリテトラメチレンエーテルグリコール-ジ(2-マレイミドアセテート)などが挙げられる。
 上記モノマーの含有量の下限は、熱伝導性組成物100質量部に対して、例えば、0.5質量部以上、好ましくは1.0質量部以上、より好ましくは2.0質量部以上である。一方、上記モノマーの含有量の上限は、熱伝導性組成物100質量部に対して、例えば、10質量部以下、好ましくは7質量部以下、より好ましくは5質量部以下である。
(硬化剤)
 上記熱伝導性組成物は、必要に応じて、硬化剤を含んでもよい。
 上記硬化剤は、モノマーやバインダー樹脂中の官能基と反応する反応性基を有する。反応性基は、例えば、エポキシ基、マレイミド基、ヒドロキシル基などの官能基と反応するものを用いてもよい。
 具体的には、モノマーがエポキシモノマー、あるいは/およびバインダー樹脂がエポキシ樹脂を含む場合、上記硬化剤として、フェノール樹脂系硬化剤またはイミダゾール系硬化剤を用いてもよい。
 上記フェノール樹脂系硬化剤として、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック樹脂、フェノール-ビフェニルノボラック樹脂等のノボラック型フェノール樹脂;ポリビニルフェノール;トリフェニルメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のフェノールアラルキル型フェノール樹脂;ビスフェノールA、ビスフェノールF(ジヒドロキシジフェニルメタン)等のビスフェノール化合物(ビスフェノールF骨格を有するフェノール樹脂);4,4’-ビフェノールなどのビフェニレン骨格を有する化合物などが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 この中でも、フェノールアラルキル樹脂を用いてもよく、フェノールアラルキル樹脂として、フェノール・パラキシリレンジメチルエーテル重縮合物を用いてもよい。
 イミダゾール系硬化剤としては、具体的には、2-フェニル-1H-イミダゾール-4,5-ジメタノール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、2,4-ジアミノ-6-[2-メチルイミダゾリル-(1)]-エチル-s-トリアジン、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2,4-ジアミノ-6-[2-メチルイミダゾリル-(1)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイトなどが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 上記硬化剤の含有量は、熱伝導性組成物中の上記バインダー樹脂100質量部に対して、例えば、5質量部~50質量部でもよく、20質量部~40質量部でもよい。
 また、上記硬化剤の含有量は、熱伝導性組成物中のエポキシ樹脂100質量部、またはエポキシ樹脂およびエポキシモノマーの合計100質量部に対して、例えば、1質量部~40質量部でもよく、10質量部~35質量部でもよい。
(ラジカル重合開始剤)
 上記熱伝導性組成物は、ラジカル重合開始剤を含んでもよい。
 上記ラジカル重合開始剤として、アゾ化合物、過酸化物などを用いることができる。
 上記過酸化物として、具体的には、ビス(1-フェニル-1-メチルエチル)ペルオキシド、1,1-ビス(1,1-ジメチルエチルペルオキシ)シクロヘキサン、メチルエチルケトンパーオキサイド、シクロヘキサンパーオキサイド、アセチルアセトンパーオキサイド、1,1-ジ(tert-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(tert-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ジ(tert-ブチルパーオキシ)シクロヘキサン、2,2-ジ(tert-ブチルパーオキシ)ブタン、n-ブチルー4,4-ジ(tert-ブチルパーオキシ)バレラート、2,2-ジ(4,4-ジ(tert-ブチルパーオキシ)シクロヘキサン)プロパン、p-メタンヒドロパーオキサイド、ジイソプロピルベンゼンヒドロパーオキサイド、1,1,3,3-テトラメチルブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、tert-ブチルヒドロパーオキサイド、ジ(2-tert-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、2,5-ジメチルー2,5-ジ(tert-ブチルパーオキシ)ヘキサン、tert-ブチルクミルパーオキサイド、ジーtert-ブチルパーオキサイド、2,5-ジメチル2,5-ジ(tert-ブチルパーオキシ)ヘキシン、ジイソブチルパーオキサイド、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド、ジラウリルパーオキサイド、ジ(3-メチルベンゾイル)パーオキサイド、ベンゾイル(3-メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、ジ(4-メチルベンゾイル)パーオキサイド、ジn-pロピルパーオキシジカルボネート、ジイソプロピルパーオキシジカルボネート、ジ(2-エチルヘキシル)パーオキシジカルボネート、ジsec-ブチルパーオキシジカルボネート、クミルパーオキシネオデカネート、1,1,3,3-テトラメチルブチルパーオキシネオデカネート、tert-ヘキシルネオデカネート、tert-ブチルパーオキシネオヘプタネート、tert-ヘキシルパーオキシピバラート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサネート、2,5-ジメチル-2,5-ジ(2-ジエチルヘキノイルパーオキシ)ヘキサン、tert-ブチルパーオキシ-2-エチルヘキサネート、tert-ヘキシパーオキシイソプロピルモノカーボネート、tert-ブチルパーオキシマレイン酸、tert-ブチルパーオキシ3,5,5-トリメチルヘキサネート、tert-ブチルパーオキシイソプロピルモノカーボネート、tert-ブチルパーオキシ-2-エチルヘキシモノカーボネート、tert-ヘキシルパーオキシベンゾネート、2,5―ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、tert-ブチルパーオキシアセトネート、tert-パーオキシ-3-メチルベンゾネート、tert-ブチルパーオキシベンゾネート、tert-ブチルパーオキシアリルモノカーボネート、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボニル)ベンゾフェノンなどが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
(硬化促進剤)
 上記熱伝導性組成物は、硬化促進剤を含んでもよい。
 上記硬化促進剤は、バインダー樹脂またはモノマーと、硬化剤との反応を促進させることができる。
 上記硬化促進剤としては、具体的には、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;ジシアンジアミド、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン等のアミジンや3級アミン;上記アミジンまたは上記3級アミンの4級アンモニウム塩等の窒素原子含有化合物などが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
(シランカップリング剤)
 上記熱伝導性組成物は、シランカップリング剤を含んでもよい。
 上記シランカップリング剤は、熱伝導性組成物を用いた密着層と基材あるいは半導体素子との密着性を向上できる。
 上記シランカップリング剤として、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニルシラン;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシシラン;p-スチリルトリメトキシシランなどのスチリルシラン;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリルシラン;メタクリル酸3-(トリメトキシシリル)プロピル、3-アクリロキシプロピルトリメトキシシランなどのアクリルシラン;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-γ-アミノプロピルトリメトキシシランなどのアミノシラン;イソシアヌレートシラン;アルキルシラン;3-ウレイドプロピルトリアルコキシシランなどのウレイドシラン;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランなどのメルカプトシラン;3-イソシアネートプロピルトリエトキシシランなどのイソシアネートシランなどを用いることができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
(可塑剤)
 上記熱伝導性組成物は、可塑剤を含んでもよい。可塑剤を添加することで、低応力化を実現できる。
 上記可塑剤として、具体的には、シリコーンオイル、シリコーンゴム等のシリコーン化合物;ポリブタジエン無水マレイン酸付加体などのポリブタジエン化合物;アクリロニトリルブタジエン共重合化合物などを挙げることができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
(その他の成分)
 上記熱伝導性組成物は、上述した成分以外にも、必要に、その他の成分を含んでもよい。その他の成分として、例えば、溶剤が挙げられる。
 上記溶剤として、特に限定されないが、たとえばエチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、メチルメトキシブタノール、α-ターピネオール、β-ターピネオール、へキシレングリコール、ベンジルアルコール、2-フェニルエチルアルコール、イゾパルミチルアルコール、イソステアリルアルコール、ラウリルアルコール、エチレングリコール、プロピレングリコール、ブチルプロピレントリグリコールもしくはグリセリン等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール(4-ヒドロキシ-4-メチル-2-ペンタノン)、2-オクタノン、イソホロン(3、5、5-トリメチル-2-シクロヘキセン-1-オン)もしくはジイソブチルケトン(2、6-ジメチル-4-ヘプタノン)等のケトン類;酢酸エチル、酢酸ブチル、ジエチルフタレート、ジブチルフタレート、アセトキシエタン、酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチル、メチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、1,2-ジアセトキシエタン、リン酸トリブチル、リン酸トリクレジルもしくはリン酸トリペンチル等のエステル類;テトラヒドロフラン、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、エトキシエチルエーテル、1,2-ビス(2-ジエトキシ)エタンもしくは1,2-ビス(2-メトキシエトキシ)エタン等のエーテル類;酢酸2-(2ブトキシエトキシ)エタン等のエステルエーテル類;2-(2-メトキシエトキシ)エタノール等のエーテルアルコール類、トルエン、キシレン、n-パラフィン、イソパラフィン、ドデシルベンゼン、テレピン油、ケロシンもしくは軽油等の炭化水素類;アセトニトリルもしくはプロピオニトリル等のニトリル類;アセトアミドもしくはN,N-ジメチルホルムアミド等のアミド類;低分子量の揮発性シリコンオイル、または揮発性有機変成シリコンオイル等のシリコンオイル類から選択される1種または2種以上を含むことができる。
 上記溶剤を用いることで、上記熱伝導性組成物の流動性を制御できる。例えば、ペースト状の上記熱伝導性組成物の作業性を向上できる。また、加熱時の収縮で焼結を促進できる。溶剤の中でも、比較的沸点が高い溶剤を用いること、好ましくは硬化温度よりも沸点が高い溶剤を用いることで、熱伝導性組成物を熱処理して得られる接着層中にボイドが発生することを抑制できる。この高沸点溶剤の沸点は、例えば、180℃~450℃でもよく、200℃~400℃でもよい。
 以下、本実施形態の熱伝導性組成物の製造方法について説明する。
 上記熱伝導性組成物の製造方法として、上述した原料成分を混合する方法が用いられる。混合は、公知の方法を用いることができるが、例えば、3本ロール、ミキサーなどを用いることができる。
 なお、得られた混合物について、さらに脱泡を行ってもよい。脱泡は、例えば、混合物を真空下に静置してもよい。
 次に、本実施形態の半導体パッケージ100の製造方法について説明する。
 本実施形態の半導体パッケージ100の一例は、上述の熱伝導性組成物を用いて製造できる。
 半導体パッケージ100の製造方法は、基板10の一面上に、他面が対向するように半導体素子20を設置する工程と、半導体素子20の一面側(他面とは反対側)の表面に、金属粒子を含む上記熱伝導性組成物を塗布する工程と、熱伝導性組成物に接するとともに、半導体素子20の少なくとも一面を覆うようにヒートスプレッダー30を配置する工程と、基板10、半導体素子20、熱伝導性組成物およびヒートスプレッダー30を含む構造体を加熱処理する工程と、を含んでもよい。
 この半導体パッケージ100は、加熱処理する工程において、金属粒子がシンタリングを起こして形成される粒子連結構造を含む熱伝導性材料50を介して、半導体素子10とヒートスプレッダー30とを接合する工程を含むことができる。
 また、半導体パッケージ100の製造方法は、塗布する工程の後、配置する工程の前に、上記熱伝導性組成物を乾燥させる工程を含んでもよい。これにより、レベリング性を高めることができる。
 また、塗布する工程において、ディスペンサーを用いて、熱伝導性組成物を塗布してもよい。これにより、作業性を向上できる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
<熱伝導性組成物>
 下記の表1に示す配合量に従って、各原料成分を混合し、ワニスを得た。
 得られたワニス、溶剤、金属粒子を、下記の表1に示す配合量に従って配合し、常温で、3本ロールミルで混練して、ペースト状の熱伝導性組成物を作製した。
 以下、表1の原料成分の情報を示す。
(バインダー樹脂)
・エポキシ樹脂1:ビスフェノールF型液状エポキシ樹脂(日本化薬社製、RE-303S)
(硬化剤)
・硬化剤1:ビスフェノールF骨格を有するフェノール樹脂(室温25℃で固体、DIC製、DIC-BPF)
・硬化剤2:m,p-クレジルグリシジルエーテル(阪本薬品工業社製、mp-CGE)
(アクリルモノマー)
・アクリルモノマー1:(メタ)アクリルモノマー(エチレングリコールジメタクリレート、共栄化学社製、ライトエステルEG)
・アクリルモノマー2:ポリアルキレングリコールジメタクリレート(日油製、PDE-600)
(可塑剤)
・可塑剤1:アリル樹脂(関東化学社製、1,2-シクロヘキサンジカルボン酸ビス(2-プロペニル)とプロパン-1,2-ジオールとの重合体)
(シランカップリング剤)
・シランカップリング剤1:メタクリル酸3-(トリメトキシシリル)プロピル(信越化学工業社製、KBM-503P)
・シランカップリング剤2:3-グリシジルオキシプロピルトリメトキシシラン(信越化学工業社製、KBM-403E)
(硬化促進剤)
・イミダゾール硬化剤1:2-フェニル-1H-イミダゾール-4,5-ジメタノール(四国化成工業社製、2PHZ-PW)
(重合開始剤)
・ラジカル重合開始剤1:ジクミルパーオキサイド(化薬アクゾ社製、パーカドックスBC)
(溶剤)
・溶剤1:ブチルプロピレントリグリコール(BFTG)
(金属粒子)
・銀粒子1:銀粉(DOWAハイテック社製、AG-DSB-114、球状、D50:1μm)
・銀粒子2:銀粉(福田金属箔粉工業社製、HKD-16、フレーク状、D50:2μm)
・銀コート樹脂粒子1:銀メッキアクリル樹脂粒子(山王社製、SANSILVER-8D、球形状、D50:8μm、単分散粒子、比重:2.4、銀の重量比率50wt%、樹脂の重量比率50wt%)
・銀粒子3:銀粉(TC-88、徳力本店社製、フレーク状、D50:3μm)
Figure JPOXMLDOC01-appb-T000001
 得られた熱伝導性組成物を用いて、下記の物性を測定し、評価項目を評価した。
(熱伝導率)
 得られた熱伝導性組成物を、30℃から200℃まで60分間かけて昇温し、次いで200℃で120分間熱処理し、厚さ1mmの熱処理体を得た。次いで、レーザーフラッシュ法を用いて、熱処理体の厚み方向の熱拡散係数αを測定した。なお、測定温度は25℃とした。
 さらに、示差走査熱量(Differential scanning calorimetry:DSC)測定により比熱Cpを測定し、また、JIS-K-6911に準拠して測定した密度ρを測定した。これらの値を用いて、以下の式に基づいて、熱伝導率λを算出した。
 評価結果を下記表1に示す。なお、単位はW/(m・K)である。
熱伝導率λ[W/(m・K)]=α[m/sec]×Cp[J/kg・K]×ρ[g/cm
 実施例1、参考例1の熱伝導率のいずれも、20W/(m・K)以上であり、実用上において問題なく使用できるものであった。
(貯蔵弾性率)
 得られた熱伝導性組成物を、30℃から200℃まで60分間かけて昇温し、次いで200℃で120分間熱処理し熱処理体を得た。得られた熱処理体について、測定装置(日立ハイテクサイエンス社製、DMS6100)を用いて、周波数1Hzでの動的粘弾性測定(DMA)で、25℃における貯蔵弾性率E(MPa)を測定した。
(粒子連結構造の観察)
 銅リードフレームと、シリコンチップ(長さ2mm×幅2mm、厚み0.35mm)とを準備した。次いで、シリコンチップに、得られた熱伝導性組成物を塗布厚み25±10μmとなるように塗布し、その上に銅リードフレームを配置した。シリコンチップ、熱伝導性組成物、銅リードフレームがこの順で積層してなる積層体を作製した。
 次いで、得られた積層体を、大気下で、30℃から200℃まで60分間かけて昇温し、次いで200℃で120分間熱処理を行い、積層体中の熱伝導性組成物を硬化させ、熱伝導性材料を得た。
 次いで、走査型電子顕微鏡(SEM)を用いて、積層体中の熱伝導性組成物の熱処理体の断面を観察し、その状態を評価した。
 実施例1において、図2に示すとおり、銀粒子連結構造が形成されていたことを確認した。また、断面画像(図2)において、銀粒子連結構造に略円形の樹脂粒子が複数個含まれており、その樹脂粒子の表面における金属層(銀層)と銀粒子連結構造とが連結していることも確認された。さらに、バインダー樹脂の硬化物は、銀粒子連結構造内部において、銀以外の部分に銀を覆うようにして存在していることが確認された。
(ダイシェア強度)
 得られた熱伝導性組成物を、表面ニッケルメッキの銅基板上に塗布し、その上に表面ニッケルメッキのシリコンチップ(2mm×2mm)をマウントした。その後、オーブンにて30℃~200℃まで60分間かけて昇温し、次いで200℃で120分加熱することで硬化させた。
 このサンプルを260℃に熱した熱板上に置き、DAGE-4000(Nordson社製)を用いてダイシェア強度(N/2mm×2mm)を測定した。
 実施例1~3では、熱伝導性材料の内部において凝集破壊が起こり、参考例1では、熱伝導性材料とリードフレームとの界面において、界面剥離が生じた。
 実施例1~3の熱伝導性組成物を用いて、次のようにして半導体パッケージを得た。
 基板の一面上に、他面が対向するように半導体素子を設置した。半導体素子の一面側の表面に、金属粒子を含む熱伝導性組成物を塗布した。熱伝導性組成物に接するとともに、半導体素子の一面を覆うようにヒートスプレッダーを配置した。基板、半導体素子、熱伝導性組成物およびヒートスプレッダーを含む構造体を加熱処理した。加熱処理によって、熱伝導性組成物中の金属粒子がシンタリングを起こして形成される粒子連結構造を含む熱伝導性材料を介して、半導体素子とヒートスプレッダーとを接合し、半導体パッケージを得た。
 比較例1として、実施例1の熱伝導性組成物に代えて、アクリル系接着剤を使用して、半導体パッケージを得た。
 実施例1~3、比較例1の半導体パッケージを評価用サンプルとして用い、半導体素子の表面について、レーザーフラッシュ法によって熱拡散係数を測定した。実施例1~3が、比較例1よりも高い熱拡散係数を示すことから、実施例1~3の半導体パッケージは、放熱特性に優れた構造を有することができることが分かった。
 また、実施例1~3の半導体パッケージにおいて、比較例1と比べて、熱伝導性材料と半導体素子との接着界面、および、熱伝導性材料とヒートスプレッダーとの接着界面のいずれにおいても、接着強度が高い値を示した。
 実施例1~3の熱伝導性材料は、参考例1に比べてダイシェア強度に優れることが分かった。このような実施例1~3の熱伝導性材料をTIM1材として使用することで、放熱特性に優れた半導体パッケージを実現することができる。
 この出願は、2019年3月20日に出願された日本出願特願2019-052739号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (22)

  1.  基板と、前記基板上に設けられた半導体素子と、前記半導体素子の周囲を囲むヒートスプレッダーとを備え、前記半導体素子と前記ヒートスプレッダーとを熱伝導性材料で接合した半導体パッケージであって、
     前記熱伝導性材料は、熱処理により金属粒子がシンタリングを起こして形成される粒子連結構造を有するものである、
    半導体パッケージ。
  2.  請求項1に記載の半導体パッケージであって、
     周波数1Hzでの動的粘弾性測定(DMA)で測定した、前記熱伝導性材料の25℃における貯蔵弾性率は、1GPa以上10.0GPa以下である、
    半導体パッケージ。
  3.  請求項1または2に記載の半導体パッケージであって、
     レーザーフラッシュ法を用いて測定した、前記熱伝導性材料の25℃における熱伝導率は、10W/mK以上である、
    半導体パッケージ。
  4.  請求項1~3のいずれか一項に記載の半導体パッケージであって、
     前記金属粒子は、金属からなる粒子を含み、
     前記金属からなる粒子の体積基準の累積分布における50%累積時の粒径D50が、0.8μm以上7.0μm以下である、
    半導体パッケージ。
  5.  請求項4に記載の半導体パッケージであって、
     前記金属からなる粒子の粒径の標準偏差が2.0μm以下である、
    半導体パッケージ。
  6.  請求項4または5に記載の半導体パッケージであって、
     前記金属からなる粒子が、異なる粒径D50を有する2種以上を含む、半導体パッケージ。
  7.  請求項4~6のいずれか一項に記載の半導体パッケージであって、
     前記金属からなる粒子が、球状粒子およびフレーク状粒子を含む、半導体パッケージ。
  8.  請求項1~7のいずれか一項に記載の半導体パッケージであって、
     前記金属粒子は、樹脂粒子と前記樹脂粒子の表面に形成された金属とで構成された金属コート樹脂粒子、を含む、
    半導体パッケージ。
  9.  請求項1~8のいずれか一項に記載の半導体パッケージであって、
     前記金属粒子が、銀、金、および銅からなる群から選択される一種以上で構成される金属からなる粒子を含む、
    半導体パッケージ。
  10.  基板と、前記基板上に設けられた半導体素子と、前記半導体素子の周囲を囲むヒートスプレッダーとを備え、前記半導体素子と前記ヒートスプレッダーとを熱伝導性材料で接合した半導体パッケージにおいて、前記熱伝導性材料を形成するために用いる、熱伝導性組成物であって、
     金属粒子と、
     バインダー樹脂と、
     モノマーと、
    を含み、
     熱処理により前記金属粒子がシンタリングを起こして粒子連結構造を形成するものである、
    熱伝導性組成物。
  11.  請求項10に記載の熱伝導性組成物であって、
     当該熱伝導性組成物を用いて、下記の手順Aで測定される熱伝導率λが、10W/mK以上である、
    熱伝導性組成物。
    (手順A)
     当該熱伝導性組成物を、30℃から200℃まで60分間かけて昇温し、次いで200℃で120分間熱処理し、厚さ1mmの熱処理体を得る。得られた熱処理体について、レーザーフラッシュ法を用いて、25℃における熱伝導率λ(W/mK)を測定する。
  12.  請求項10または11に記載の熱伝導性組成物であって、
     当該熱伝導性組成物を用いて、下記の手順Bで測定される25℃の貯蔵弾性率Eが、1GPa以上10.0GPa以下である、
    熱伝導性組成物。
    (手順B)
     当該熱伝導性組成物を、30℃から200℃まで60分間かけて昇温し、次いで200℃で120分間熱処理し熱処理体得る。得られた熱処理体について、周波数1Hzでの動的粘弾性測定(DMA)を用いて、25℃における貯蔵弾性率E(MPa)を測定する。
  13.  請求項10~12のいずれか一項に記載の熱伝導性組成物であって、
     前記金属粒子は、銀、金、および銅からなる群から選択される一種以上の金属材料からなる粒子を含む、熱伝導性組成物。
  14.  請求項10~13のいずれか一項に記載の熱伝導性組成物であって、
     前記バインダー樹脂は、エポキシ樹脂、アクリル樹脂、およびアリル樹脂からなる群より選択される1種以上を含む、熱伝導性組成物。
  15.  請求項10~14のいずれか一項に記載の熱伝導性組成物であって、
     硬化剤を含む、熱伝導性組成物。
  16.  請求項10~15のいずれか一項に記載の熱伝導性組成物であって、
     前記モノマーは、グリコールモノマー、アクリルモノマー、エポキシモノマー、およびマレイミドモノマーからなる群から選択される一種以上を含む、熱伝導性組成物。
  17.  請求項10~16のいずれか一項に記載の熱伝導性組成物であって、
     ラジカル重合開始剤を含む、熱伝導性組成物。
  18.  請求項10~17のいずれか一項に記載の熱伝導性組成物であって、
     シランカップリング剤を含む、熱伝導性組成物。
  19.  請求項10~18のいずれか一項に記載の熱伝導性組成物であって、
     可塑剤を含む、熱伝導性組成物。
  20.  基板の一面上に、他面が対向するように半導体素子を設置する工程と、
     前記半導体素子の一面側の表面に、金属粒子を含む熱伝導性組成物を塗布する工程と、
     前記熱伝導性組成物に接するとともに、前記半導体素子の少なくとも一面を覆うようにヒートスプレッダーを配置する工程と、
     前記基板、半導体素子、熱伝導性組成物および前記ヒートスプレッダーを含む構造体を加熱処理する工程と、
    を含み、
     前記加熱処理する工程において、前記金属粒子がシンタリングを起こして形成される粒子連結構造を含む熱伝導性材料を介して、前記半導体素子と前記ヒートスプレッダーとを接合する、
    半導体パッケージの製造方法。
  21.  請求項20に記載の半導体パッケージの製造方法において、
     前記塗布する工程の後、前記配置する工程の前に、前記熱伝導性組成物を乾燥させる工程を含む、
     半導体パッケージの製造方法。
  22.  請求項20または21に記載の半導体パッケージの製造方法において、
     前記塗布する工程において、ディスペンサーを用いて、前記熱伝導性組成物を塗布する、
     半導体パッケージの製造方法。
PCT/JP2020/010573 2019-03-20 2020-03-11 半導体パッケージ、半導体パッケージの製造方法、およびそれに用いる熱伝導性組成物 WO2020189446A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217033313A KR20210143224A (ko) 2019-03-20 2020-03-11 반도체 패키지, 반도체 패키지의 제조 방법, 및 이에 이용하는 열전도성 조성물
CN202080023193.6A CN113631675A (zh) 2019-03-20 2020-03-11 半导体封装件、半导体封装件的制造方法和用于其的导热性组合物
JP2021507240A JP6950848B2 (ja) 2019-03-20 2020-03-11 半導体パッケージに用いる熱伝導性組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019052739 2019-03-20
JP2019-052739 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020189446A1 true WO2020189446A1 (ja) 2020-09-24

Family

ID=72519866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010573 WO2020189446A1 (ja) 2019-03-20 2020-03-11 半導体パッケージ、半導体パッケージの製造方法、およびそれに用いる熱伝導性組成物

Country Status (4)

Country Link
JP (1) JP6950848B2 (ja)
KR (1) KR20210143224A (ja)
CN (1) CN113631675A (ja)
WO (1) WO2020189446A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230174805A (ko) 2022-06-21 2023-12-29 주식회사 비에스테크닉스 열전도 부재가 임베디드된 방열 반도체 패키지 및 그 제조방법 그리고 그 제조에 이용하는 유도 가열 솔더링장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185807A (ja) * 2014-03-26 2015-10-22 住友ベークライト株式会社 ダイアタッチペースト、および半導体装置
JP2017019904A (ja) * 2015-07-08 2017-01-26 住友ベークライト株式会社 熱伝導性組成物、半導体装置、半導体装置の製造方法、および放熱板の接着方法
JP2017022033A (ja) * 2015-07-13 2017-01-26 住友ベークライト株式会社 銀ペーストおよび銀ペーストの硬化体の製造方法
JP2017171844A (ja) * 2016-03-25 2017-09-28 住友ベークライト株式会社 ペースト状接着剤組成物、半導体装置、半導体装置の製造方法および放熱板の接着方法
US20180190566A1 (en) * 2015-08-27 2018-07-05 Huawei Technologies Co., Ltd. Apparatus and Manufacturing Method
JP2018528998A (ja) * 2015-08-03 2018-10-04 ナミックス株式会社 高性能熱伝導性表面実装(ダイアタッチ)接着剤
US20180323130A1 (en) * 2015-12-22 2018-11-08 Intel Corporation Adhesive polymer thermal interface material with sintered fillers for thermal conductivity in micro-electronic packaging
WO2019111778A1 (ja) * 2017-12-04 2019-06-13 住友ベークライト株式会社 ペースト状接着剤組成物、および半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001315244A (ja) * 2000-05-01 2001-11-13 Jsr Corp 熱伝導性シート、その製造方法およびその熱伝導性シートを用いた放熱構造
US9070660B2 (en) * 2013-03-15 2015-06-30 Intel Corporation Polymer thermal interface material having enhanced thermal conductivity
KR20160085253A (ko) 2013-11-12 2016-07-15 제이엔씨 주식회사 히트 싱크
JP6310799B2 (ja) * 2014-07-22 2018-04-11 京セラ株式会社 熱硬化性樹脂組成物、半導体装置、電気・電子部品及びプレート型銀微粒子の製造方法
CN107709418B (zh) * 2015-05-08 2021-04-27 汉高知识产权控股有限责任公司 可烧结的膜和膏及其使用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185807A (ja) * 2014-03-26 2015-10-22 住友ベークライト株式会社 ダイアタッチペースト、および半導体装置
JP2017019904A (ja) * 2015-07-08 2017-01-26 住友ベークライト株式会社 熱伝導性組成物、半導体装置、半導体装置の製造方法、および放熱板の接着方法
JP2017022033A (ja) * 2015-07-13 2017-01-26 住友ベークライト株式会社 銀ペーストおよび銀ペーストの硬化体の製造方法
JP2018528998A (ja) * 2015-08-03 2018-10-04 ナミックス株式会社 高性能熱伝導性表面実装(ダイアタッチ)接着剤
US20180190566A1 (en) * 2015-08-27 2018-07-05 Huawei Technologies Co., Ltd. Apparatus and Manufacturing Method
US20180323130A1 (en) * 2015-12-22 2018-11-08 Intel Corporation Adhesive polymer thermal interface material with sintered fillers for thermal conductivity in micro-electronic packaging
JP2017171844A (ja) * 2016-03-25 2017-09-28 住友ベークライト株式会社 ペースト状接着剤組成物、半導体装置、半導体装置の製造方法および放熱板の接着方法
WO2019111778A1 (ja) * 2017-12-04 2019-06-13 住友ベークライト株式会社 ペースト状接着剤組成物、および半導体装置

Also Published As

Publication number Publication date
JPWO2020189446A1 (ja) 2021-09-13
TW202100703A (zh) 2021-01-01
KR20210143224A (ko) 2021-11-26
JP6950848B2 (ja) 2021-10-13
CN113631675A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2011158753A1 (ja) 樹脂ペースト組成物
WO2020189445A1 (ja) 熱伝導性組成物および半導体装置
JP2022069401A (ja) ペースト状組成物、高熱伝導性材料、および半導体装置
WO2020189446A1 (ja) 半導体パッケージ、半導体パッケージの製造方法、およびそれに用いる熱伝導性組成物
WO2021044915A1 (ja) 熱伝導性組成物および半導体装置
WO2019111778A1 (ja) ペースト状接着剤組成物、および半導体装置
JP2022018051A (ja) ペースト状樹脂組成物、高熱伝導性材料、および半導体装置
TWI841706B (zh) 半導體封裝、半導體封裝之製造方法、及用於其之導熱性組成物
WO2019167824A1 (ja) ペースト状接着剤組成物及び半導体装置
JP2021082640A (ja) 導電性ペーストおよび半導体装置
JPWO2019167824A1 (ja) ペースト状接着剤組成物及び半導体装置
WO2022113923A1 (ja) 銀含有ペーストおよび接合体
WO2021153405A1 (ja) ペースト状樹脂組成物、高熱伝導性材料、および半導体装置
WO2022202434A1 (ja) 導電性ペーストおよび半導体装置
JP7260079B1 (ja) 導電性ペースト、硬化物、シンタリング促進剤およびシンタリング促進方法
WO2023276690A1 (ja) 導電性樹脂組成物、高熱伝導性材料および半導体装置
WO2022202505A1 (ja) 導電性樹脂組成物、高熱伝導性材料および半導体装置
WO2023132051A1 (ja) ペースト状樹脂組成物、高熱伝導性材料、および半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507240

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217033313

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20773354

Country of ref document: EP

Kind code of ref document: A1