WO2020189286A1 - セラミックヒータ - Google Patents

セラミックヒータ Download PDF

Info

Publication number
WO2020189286A1
WO2020189286A1 PCT/JP2020/009188 JP2020009188W WO2020189286A1 WO 2020189286 A1 WO2020189286 A1 WO 2020189286A1 JP 2020009188 W JP2020009188 W JP 2020009188W WO 2020189286 A1 WO2020189286 A1 WO 2020189286A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance layer
low resistance
ceramic
high resistance
electrode
Prior art date
Application number
PCT/JP2020/009188
Other languages
English (en)
French (fr)
Inventor
秀明 高崎
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2021507175A priority Critical patent/JP7248780B2/ja
Priority to CN202080021382.XA priority patent/CN113632589A/zh
Priority to KR1020217028960A priority patent/KR20210125539A/ko
Publication of WO2020189286A1 publication Critical patent/WO2020189286A1/ja
Priority to US17/445,332 priority patent/US20210384014A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Definitions

  • the present invention relates to a ceramic heater.
  • a plasma CVD process may be adopted in a semiconductor manufacturing process.
  • the wafer is placed on the wafer mounting surface of the ceramic heater.
  • a plasma generation electrode and a heater electrode are embedded in the ceramic substrate of the ceramic heater.
  • an upper electrode is arranged in the upper space of the wafer.
  • plasma is generated between these electrodes, and a thin film is deposited on the wafer using this plasma.
  • Such a ceramic heater has a problem that when a leakage current of a high frequency voltage applied to a plasma generating electrode is transmitted to the heater electrode, energization to the heater electrode cannot be controlled.
  • Patent Document 1 proposes to provide a high-resistance insulating layer (leakage current prevention layer) between the plasma generating electrode and the heater electrode. Further, as an example, it has been proposed that the ceramic substrate itself is formed of aluminum nitride ceramic, and the insulating layer is formed of silicon nitride ceramic having a resistance value larger than that of aluminum nitride.
  • the present invention has been made to solve such a problem, and an object of the present invention is to prevent a leakage current between a plasma generating electrode and a heater electrode for a long period of time.
  • the ceramic heater of the present invention A ceramic heater embedded in an AlN ceramic substrate provided with a wafer mounting surface, with plasma generation electrodes and heater electrodes separated from each other in this order from the side closer to the wafer mounting surface.
  • the AlN ceramic substrate is An AlN ceramic high resistance layer provided between the plasma generation electrode and the heater electrode, With an AlN ceramic low resistance layer other than the high resistance layer, With Both the high resistance layer and the low resistance layer contain Si, Mg and Ti, and contain The high resistance layer has a high content of Mg and Ti and a high volume resistivity as compared with the low resistance layer. It is a thing.
  • the AlN ceramic substrate includes an AlN ceramic high resistance layer provided between the plasma generation electrode and the heater electrode, and an AlN ceramic low resistance layer other than the high and low resistance layers.
  • Both the high resistance layer and the low resistance layer contain Si, Mg and Ti.
  • the high resistance layer has a high content of Mg and Ti and a high volume resistivity as compared with the low resistance layer. Therefore, the high resistance layer prevents leakage current from flowing between the plasma generating electrode and the heater electrode.
  • the high resistance layer contains a large amount of Mg and Ti so that the volume resistivity is higher than that of the low resistance layer. Further, since the high resistance layer and the low resistance layer constituting the AlN ceramic substrate are basically AlN ceramics, there is no significant difference in the coefficient of thermal expansion.
  • the high resistance layer preferably has a lower Si content than the low resistance layer.
  • the low resistance layer is an AlN ceramic layer containing Ti of 10 mass ppm or more and 50 mass ppm or less
  • the high resistance layer is an AlN containing Ti of 1000 mass ppm or more and 1500 mass ppm or less. It is preferably a ceramic layer.
  • the volume resistivity of the high resistivity layer can be made higher than the volume resistivity of the low resistivity layer, and the thermal conductivity of the high resistivity layer can be made similar to the thermal conductivity of the low resistivity layer. it can.
  • the low resistance layer is an AlN ceramic layer containing Mg of 90 mass ppm or more and 180 mass ppm or less
  • the high resistance layer is an AlN containing Mg of 200 mass ppm or more and 400 mass ppm or less. It is preferably a ceramic layer.
  • the volume resistivity of the high resistance layer is preferably 1.2 times or more the volume resistivity of the low resistance layer. This makes it easier to prevent leakage current between the plasma generating electrode and the heater electrode.
  • the thermal conductivity of the high resistance layer is preferably 90% or more of the thermal conductivity of the low resistance layer. By doing so, the thermal conductivity of the high resistance layer is relatively high, so that the heat soaking property of the wafer is improved.
  • the AlN ceramic substrate has a three-layer structure in which the low resistance layer, the high resistance layer, and the low resistance layer are laminated in this order, and the thickness of the high resistance layer is 2. It is preferably smaller than the total thickness of the two low resistance layers. Normally, ceramics tend to have low thermal conductivity when the volume resistivity is high, but if such a structure is adopted, the thermal conductivity can be relatively high as a whole, and the heat soaking property of the wafer is good. become.
  • the cross-sectional view which shows the schematic structure of the plasma processing apparatus 10.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the plasma processing apparatus 10
  • FIG. 2 is an enlarged view of an inner circle portion of the alternate long and short dash line in FIG.
  • the plasma processing device 10 includes a chamber 12, a shower head 20, and a wafer mounting device 30.
  • the chamber 12 is a container formed in a box shape by an aluminum alloy or the like.
  • the chamber 12 has a round hole 14 substantially in the center of the bottom surface.
  • the chamber 12 has an exhaust pipe 16 on the bottom surface.
  • the exhaust pipe 16 is provided with a pressure adjusting valve, a vacuum pump, or the like (not shown) in the middle thereof, so that the inside of the chamber 12 can be adjusted to a desired pressure.
  • the ceiling of the chamber 12 is open.
  • the shower head 20 is attached so as to close the opening of the ceiling of the chamber 12.
  • An insulating member 22 is provided between the opening edge of the ceiling of the chamber 12 and the shower head 20.
  • the inside of the chamber 12 whose opening is closed by the shower head 20 is configured to maintain airtightness.
  • the shower head 20 is adapted to inject the gas introduced from the gas introduction pipe 24 from a large number of gas injection holes 26 toward the wafer W mounted on the ceramic heater 31.
  • An RF power source 60 for generating plasma is connected to the shower head 20. Therefore, the shower head 20 functions as an electrode for plasma generation.
  • the frequency of the RF power supply 60 is preferably, for example, 13 MHz or 27 MHz.
  • the wafer mounting device 30 includes a ceramic heater 31 and a hollow shaft 38.
  • the ceramic heater 31 is in a state in which the RF electrode 33 for plasma generation and the heater electrode 34 are separated in this order from the side closer to the wafer mounting surface 32a on the disk-shaped AlN ceramic substrate 32 provided with the wafer mounting surface 32a. It was buried in.
  • the AlN ceramic substrate 32 includes an AlN ceramic high resistance layer 321 provided between the RF electrode 33 and the heater electrode 34, and an AlN ceramic low resistance layer 322 and 323 other than the high resistance layer 321. It has. Both the high resistance layer 321 and the low resistance layers 322 and 323 contain Si, Mg and Ti.
  • the AlN ceramic substrate 32 has a three-layer structure in which a low resistance layer 322, a high resistance layer 321 and a low resistance layer 323 are laminated in this order, and the thickness of the high resistance layer 321 is two low resistance layers. It is smaller than the total thickness of 322 and 323.
  • the high resistance layer 321 has a higher content of Mg and Ti and a higher volume resistivity than the low resistance layers 322 and 323.
  • the high resistance layer 321 Since the high resistance layer 321 has a higher Ti content than the low resistance layers 322 and 323, it looks blackish in appearance.
  • the high resistance layer 321 preferably has a lower Si content than the low resistance layers 322 and 323.
  • the low resistance layer 322 and 323 are preferably an AlN ceramic layer containing Ti of 10 mass ppm or more and 50 mass ppm or less, and the high resistance layer 321 is an AlN ceramic layer containing Ti of 1000 mass ppm or more and 1500 mass ppm or less. Is preferable.
  • the low resistance layer 322 and 323 are AlN ceramic layers containing Mg of 90 mass ppm or more and 180 mass ppm or less, and the high resistance layer 321 is an AlN ceramic layer containing Mg of 200 mass ppm or more and 400 mass ppm or less. Is preferable. Further, the volume resistivity of the high resistance layer 321 is preferably 1.2 times or more the volume resistivity of the low resistance layer 322, 323, and the thermal conductivity of the high resistance layer 321 is the low resistance layer 322, 323. It is preferably 90% or more of the thermal conductivity of.
  • the coefficient of thermal expansion ⁇ 1 of the high resistance layer 321 is preferably equal to the coefficient of thermal expansion ⁇ 2 of the low resistance layers 322 and 323 (for example, within the range of ⁇ 2 ⁇ 10%, preferably within the range of ⁇ 2 ⁇ 5%).
  • the RF electrode 33 has a mesh shape, a plate shape, or a film shape.
  • the RF electrode 33 is connected to the RF power supply 60 for plasma generation via a feeding rod 35 inserted from the surface (back surface) of the ceramic substrate 32 opposite to the wafer mounting surface 32a.
  • the heater electrode 34 has a coil shape or a ribbon shape, and is, for example, a material containing a simple substance or a compound (carbide or the like) of W, Mo, Ti, Si, or Ni as a main component, a material combining them, or a ceramic substrate 32 thereof. It is produced by a mixed material with the ceramic raw material used in.
  • the heater electrode 34 is wired from one end 34a to the other end 34b in a one-stroke manner so as to spread over the entire wafer mounting surface 32a.
  • Feed rods 36 and 37 are connected to one end 34a and the other end 34b of the heater electrode 34, respectively.
  • a heater power supply 62 is connected between the two power feeding rods 36 and 37. When power is supplied from the heater power supply 62, the heater electrode 34 heats the wafer W that is attracted and held on the wafer mounting surface 32a.
  • the hollow shaft 38 is made of AlN like the ceramic substrate 32, and flanges 38a and 38b are provided around the openings at both ends.
  • the hollow shaft 38 is bonded to the back surface of the ceramic substrate 32 via a flange 38a at one end by diffusion bonding or TCB (Thermal compression bonding).
  • TCB is a known method in which a metal bonding material is sandwiched between two members to be bonded and the two members are pressure-bonded while being heated to a temperature equal to or lower than the solidus temperature of the metal bonding material. If the operating temperature is low, the hollow shaft 38 may be adhered to the back surface of the ceramic substrate 32 via an organic adhesive layer.
  • the hollow shaft 38 is airtightly attached to the periphery of the round hole 14 provided on the bottom surface of the chamber 12 via the flange 38b at the other end. Therefore, the inside of the hollow shaft 38 and the inside of the chamber 12 are completely isolated from each other.
  • a rod fixture 39 is attached to the back surface of the flange 38b of the hollow shaft 38.
  • the rod fixing device 39 fixes the feeding rods 35, 36, and 37 penetrating through by a clamp mechanism (not shown).
  • a manufacturing example of the plasma processing apparatus 10 will be described.
  • a manufacturing example of the wafer mounting device 30 will be described. Since this production example is an application of a well-known technique, only an outline will be described.
  • a molding die having a flat columnar space is prepared.
  • a raw material for a low resistance layer, which becomes a low resistance layer when fired, is put into the molding mold and spread.
  • the RF electrode 33 is arranged on the RF electrode 33, and the raw material for the low resistance layer is further charged and spread on the RF electrode 33.
  • a raw material for a high resistance layer which becomes a high resistance layer when fired, is put on it and spread, and once formed into a disk shape.
  • the heater electrode 34 is arranged on the raw material for the high resistance layer, the raw material for the low resistance layer is further charged, spread on the heater electrode 34, and formed into a disk shape again.
  • the obtained disc-shaped molded body is fired to obtain a ceramic heater 31.
  • the firing may be pressure firing (for example, hot press firing) or normal pressure firing.
  • cutting such as drilling for connecting the feeding rods 35, 36, and 37 is performed on the surface of the ceramic heater 31 opposite to the wafer mounting surface 32a.
  • the feeding rod 35 is connected to the RF electrode 33, and the feeding rods 36 and 37 are connected to one end 34a and the other end 34b of the heater electrode 34. Connect to obtain the wafer mounting device 30.
  • the plasma processing device 10 is arranged in the chamber 12, and the wafer W is placed on the wafer mounting surface 22a. Then, the reaction gas is supplied from the shower head 20 to create a reaction gas atmosphere at a predetermined pressure (for example, several tens to several hundreds Pa) in the chamber 12. In this state, high-frequency power is supplied from the RF power source 60 between the shower head 20 and the RF electrode 33 embedded in the ceramic substrate 32. As a result, plasma is generated between the parallel plate electrode composed of the shower head 20 and the RF electrode 33. The plasma is used to perform CVD film formation or etching on the wafer W.
  • a predetermined pressure for example, several tens to several hundreds Pa
  • the temperature of the wafer W is obtained based on a thermocouple detection signal (not shown), and the voltage of the heater power supply 62 applied to the heater electrode 34 is controlled so that the temperature becomes a set temperature (for example, 350 ° C. or 300 ° C.). ..
  • the high resistance layer 321 prevents leakage current from flowing between the RF electrode 33 and the heater electrode 34.
  • the high resistance layer 321 contains a large amount of Ti so that the volume resistivity is higher than that of the low resistance layers 322 and 323.
  • AlN ceramics tend to have a low volume resistivity when the Ti content is too high, but tend to have a high volume resistivity when the Ti content is an appropriate amount. This property is utilized in this embodiment.
  • the high resistance layer 321 and the low resistance layers 322 and 323 constituting the AlN ceramic substrate 32 are basically AlN ceramics, there is no significant difference in the coefficient of thermal expansion.
  • an RF electric field is induced by a time change of the RF magnetic field generated by the RF current flowing through the RF electrode 33.
  • the high resistance layer 321 prevents this RF electric field from coupling to the heater electrode 34. Therefore, the influence of RF noise on the heater circuit including the heater electrode 34 can be sufficiently prevented. As a result, the temperature of the heater electrode 34 can be controlled accurately.
  • the high resistance layer 321 preferably has a lower Si content than the low resistance layers 322 and 323. By doing so, as shown by the measurement data of the experimental example described later, even if the Ti content is large, the resistance can be made high.
  • the low resistance layer 322 and 323 are AlN ceramic layers containing Si of 30 mass ppm or more and 120 mass ppm or less, and the high resistance layer 321 is an AlN ceramic layer containing Si of 20 mass ppm or more and 100 mass ppm or less.
  • the low resistance layers 322 and 323 preferably have a higher Si content than the high resistance layer 321.
  • the low resistance layer 322 and 323 are AlN ceramic layers containing Ti of 10 mass ppm or more and 50 mass ppm or less, and the high resistance layer 321 is an AlN ceramic layer containing Ti of 1000 mass ppm or more and 1500 mass ppm or less. Is preferable. In this way, the volume resistivity of the high resistivity layer 321 is made higher than the volume resistivity of the low resistivity layers 322 and 323, and the thermal conductivity of the high resistance layer 321 is the same as the thermal conductivity of the low resistance layers 322 and 323. Can be about.
  • the low resistance layer 322 and 323 are AlN ceramic layers containing Mg of 90 mass ppm or more and 180 mass ppm or less, and the high resistance layer 321 is an AlN ceramic layer containing Mg of 200 mass ppm or more and 400 mass ppm or less. Is preferable. By doing so, as shown by the measurement data of the experimental example described later, even if the Ti content is large, the resistance can be made high.
  • the volume resistivity of the high resistance layer 321 is preferably 1.2 times or more the volume resistivity of the low resistance layers 322 and 323. By doing so, it becomes easier to prevent the leakage current between the RF electrode 33 and the heater electrode 34.
  • the thermal conductivity of the high resistance layer 321 is preferably 90% or more of the thermal conductivity of the low resistance layers 322 and 323. By doing so, since the thermal conductivity of the high resistance layer 321 is relatively high, the heat equalizing property of the wafer W is improved.
  • the AlN ceramic substrate 32 has a three-layer structure in which a low resistance layer 322, a high resistance layer 321 and a low resistance layer 323 are laminated in this order, and the thickness of the high resistance layer 321 is two low resistance layers. It is smaller than the total thickness of 322 and 323. Normally, ceramics tend to have low thermal conductivity when the volume resistivity is high, but since such a structure is adopted, the thermal conductivity can be relatively high as a whole, and the wafer W can be averaged. The thermal conductivity becomes good.
  • the high resistance layer 321 is arranged below the lower surface of the RF electrode 33 and in contact with the upper surface of the heater electrode 34, but the present invention is not particularly limited to this.
  • the high resistance layer 321 may be arranged so as to be in contact with the lower surface of the RF electrode 33 and the upper surface of the heater electrode 34.
  • at least one of the RF electrode 33 and the heater electrode 34 may be embedded in the high resistance layer 321.
  • An example in which the heater electrode 34 is embedded in the high resistance layer 321 is shown in FIG. In FIGS. 3 and 4, the same components as those in the above-described embodiment are designated by the same reference numerals. In either case, the same effect as that of the above-described embodiment can be obtained.
  • the wafer mounting surface 32a may be divided into a plurality of zones, and the heater electrodes 34 may be arranged in each zone.
  • the electrostatic electrode may be built in the AlN ceramic substrate 32, and the wafer W may be electrostatically adsorbed on the wafer mounting surface 32a.
  • Ceramic heaters 31 Four types were manufactured according to the manufacturing examples of the ceramic heaters 31 described in the above-described embodiment (Experimental Examples 1 to 4), and the Ti content and characteristics of each AlN ceramic substrate 32 were evaluated. The results are shown in Table 1.
  • the contents of Si, Mg and Ti were determined according to ICP emission spectroscopic analysis (ICP-AES).
  • the volume resistivity is a value measured at room temperature and was determined according to JIS-C2141.
  • the thermal conductivity is a value measured at room temperature and was determined according to JIS-R1611.
  • the coefficient of thermal expansion was a value at room temperature ⁇ 1000 ° C. and was determined according to JIS-R1618.
  • both the high resistance layer 321 and the low resistance layers 322 and 323 contain Si, Mg and Ti, and the high resistance layer 321 has a higher content of Mg and Ti than the low resistance layers 322 and 323. Many had high volume resistivity and low Si content.
  • the coefficient of thermal expansion was almost the same in the high resistance layer 321 and the low resistance layers 322 and 323 in all of Experimental Examples 1 to 4.
  • the volume resistivity of the high resistance layer 321 was higher than that of the low resistance layers 322 and 323.
  • the volume resistivity of the high resistance layer 321 is about four times the volume resistivity of the low resistance layers 322 and 323, and the thermal conductivity of the high resistance layer 321 is the thermal conductivity of the low resistance layers 322 and 323. It was about 95% of.
  • the volume resistivity of the high resistance layer 321 is about 1.2 times the volume resistivity of the low resistance layers 322 and 323, and the thermal conductivity of the high resistance layer 321 is the heat of the low resistance layers 322 and 323. It was about 102% of the conductivity.
  • the present invention can be used, for example, in a semiconductor manufacturing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

セラミックヒータ(31)は、ウエハ載置面(32a)を備えたAlNセラミック基体(32)に、ウエハ載置面(32a)に近い方からプラズマ発生用のRF電極(33)、ヒータ電極(34)がこの順に離間した状態で埋設されている。AlNセラミック基体(32)は、RF電極(33)とヒータ電極(34)との間に設けられたAlNセラミック高抵抗層と、高抵抗層以外のAlNセラミック低抵抗層とを備えている。高抵抗層と低抵抗層ともSi、Mg及びTiを含む。高抵抗層は、低抵抗層と比べて、Mg及びTiの含有量が多く体積抵抗率が高い。

Description

セラミックヒータ
 本発明は、セラミックヒータに関する。
 従来より、半導体製造プロセスにおいて、プラズマCVD工程が採用されることがある。プラズマCVD工程では、セラミックヒータのウエハ載置面にウエハを載置する。セラミックヒータのセラミック基体には、プラズマ発生用電極とヒータ電極とが埋設されている。一方、ウエハの上方空間には、上部電極が配置されている。そして、上部電極とプラズマ発生用電極との間に高周波電圧を印加すると、これらの電極の間にプラズマが発生し、このプラズマを利用してウエハに薄膜が蒸着される。こうしたセラミックヒータでは、プラズマ発生用電極に印加した高周波電圧の漏れ電流がヒータ電極に伝わると、ヒータ電極への通電が制御できなくなるという問題があった。この点に鑑み、特許文献1には、プラズマ発生用電極とヒータ電極との間に高抵抗の絶縁層(漏れ電流防止層)を設けることが提案されている。また、一例として、セラミック基体自体は窒化アルミニウムセラミックで形成し、絶縁層として窒化アルミニウムよりも抵抗値の大きい窒化珪素セラミックで形成することが提案されている。
特許第3602908号公報
 しかしながら、窒化珪素セラミックの熱膨張率は窒化アルミニウムセラミックの熱膨張率の6割程度しかないため、セラミックヒータの昇温と降温を繰り返すうちに絶縁層が剥離するおそれがあった。
 本発明はこのような課題を解決するためになされたものであり、プラズマ発生用電極とヒータ電極との間の漏れ電流を長期にわたって防止することを主目的とする。
 本発明のセラミックヒータは、
 ウエハ載置面を備えたAlNセラミック基体に、前記ウエハ載置面に近い方からプラズマ発生用電極、ヒータ電極がこの順に離間した状態で埋設されたセラミックヒータであって、
 前記AlNセラミック基体は、
 前記プラズマ発生用電極と前記ヒータ電極との間に設けられたAlNセラミック高抵抗層と、
 前記高抵抗層以外のAlNセラミック低抵抗層と、
 を備え、
 前記高抵抗層と前記低抵抗層ともSi、Mg及びTiを含み、
 前記高抵抗層は、前記低抵抗層と比べて、Mg及びTiの含有量が多く体積抵抗率が高い、
 ものである。
 このセラミックヒータでは、AlNセラミック基体は、プラズマ発生用電極とヒータ電極との間に設けられたAlNセラミック高抵抗層と、高低抵抗層以外のAlNセラミック低抵抗層とを備えている。高抵抗層と低抵抗層ともSi、Mg及びTiを含む。高抵抗層は、低抵抗層と比べて、Mg及びTiの含有量が多く体積抵抗率が高い。そのため、プラズマ発生用電極とヒータ電極との間に漏れ電流が流れるのを高抵抗層が防止する。高抵抗層は、低抵抗層よりも体積抵抗率が高くなるようにMg及びTiを多めに含有している。また、AlNセラミック基体を構成する高抵抗層と低抵抗層は、いずれも基本的にはAlNセラミックであるため、熱膨張率に大きな差が生じない。そのため、セラミックヒータの昇温と降温を繰り返したとしても、高抵抗層と低抵抗層との層間に剥離が生じにくい。したがって、このセラミックヒータによれば、プラズマ発生用電極とヒータ電極との間の漏れ電流を長期にわたって防止することができる。
 本発明のセラミックヒータにおいて、前記高抵抗層は、前記低抵抗層と比べて、Siの含有量が少ないことが好ましい。
 本発明のセラミックヒータにおいて、前記低抵抗層は、10質量ppm以上50質量ppm以下のTiを含むAlNセラミック層であり、前記高抵抗層は、1000質量ppm以上1500質量ppm以下のTiを含むAlNセラミック層であることが好ましい。こうすれば、高抵抗層の体積抵抗率を低抵抗層の体積抵抗率よりも高くすることができると共に、高抵抗層の熱伝導率を低抵抗層の熱伝導率と同程度にすることができる。
 本発明のセラミックヒータにおいて、前記低抵抗層は、90質量ppm以上180質量ppm以下のMgを含むAlNセラミック層であり、前記高抵抗層は、200質量ppm以上400質量ppm以下のMgを含むAlNセラミック層であることが好ましい。
 本発明のセラミックヒータにおいて、前記高抵抗層の体積抵抗率は、前記低抵抗層の体積抵抗率の1.2倍以上であることが好ましい。こうすれば、プラズマ発生用電極とヒータ電極との間の漏れ電流をより防止しやすくなる。
 本発明のセラミックヒータにおいて、前記高抵抗層の熱伝導率は、前記低抵抗層の熱伝導率の90%以上であることが好ましい。こうすれば、高抵抗層の熱伝導率が比較的高いため、ウエハの均熱性が良好になる。
 本発明のセラミックヒータにおいて、前記AlNセラミック基体は、前記低抵抗層と前記高抵抗層と前記低抵抗層とがこの順に積層された3層構造となっており、前記高抵抗層の厚みは2つの前記低抵抗層の厚みの合計よりも小さいことが好ましい。通常、セラミックは体積抵抗率が高いと熱伝導率が低くなる傾向にあるが、このような構造を採用すれば、全体として熱伝導率を比較的高くすることができ、ウエハの均熱性が良好になる。
プラズマ処理装置10の概略構成を示す断面図。 図1における1点鎖線の円内部分の拡大図。 他の実施形態の円内部分の拡大図。 他の実施形態の円内部分の拡大図。
 本発明の好適な実施形態を図面を参照しながら以下に説明する。図1はプラズマ処理装置10の概略構成を示す断面図、図2は図1における1点鎖線の円内部分の拡大図である。
 プラズマ処理装置10は、図1に示すように、チャンバ12と、シャワーヘッド20と、ウエハ載置装置30とを備えている。
 チャンバ12は、アルミニウム合金等によりボックス状に形成された容器である。このチャンバ12は、底面の略中央に丸穴14を有している。また、チャンバ12は、底面に排気管16を有している。排気管16は、図示しない圧力調整弁や真空ポンプ等を途中に備えており、チャンバ12の内部を所望の圧力に調整できるようになっている。チャンバ12の天井は、開口されている。
 シャワーヘッド20は、チャンバ12の天井の開口を塞ぐように取り付けられている。チャンバ12の天井の開口縁とシャワーヘッド20との間には、絶縁部材22が設けられている。シャワーヘッド20で開口が塞がれたチャンバ12の内部は、気密が保たれるように構成されている。シャワーヘッド20は、ガス導入管24から導入されたガスを、多数のガス噴射孔26からセラミックヒータ31に載置されたウエハWに向かって噴射するようになっている。シャワーヘッド20には、プラズマ発生用のRF電源60が接続されている。そのため、シャワーヘッド20は、プラズマ発生用の電極として機能する。RF電源60の周波数は、例えば13MHzとか27MHzが好ましい。
 ウエハ載置装置30は、セラミックヒータ31と、中空シャフト38とを備えている。
 セラミックヒータ31は、ウエハ載置面32aを備えた円板状のAlNセラミック基体32に、ウエハ載置面32aに近い方からプラズマ発生用のRF電極33とヒータ電極34とがこの順に離間した状態で埋設されたものである。
 AlNセラミック基体32は、図2に示すように、RF電極33とヒータ電極34との間に設けられたAlNセラミック高抵抗層321と、高抵抗層321以外のAlNセラミック低抵抗層322,323とを備えている。高抵抗層321と低抵抗層322,323ともSi,Mg及びTiを含んでいる。ここでは、AlNセラミック基体32は、低抵抗層322と高抵抗層321と低抵抗層323とがこの順に積層された3層構造となっており、高抵抗層321の厚みは2つの低抵抗層322,323の厚みの合計よりも小さい。高抵抗層321は、低抵抗層322,323と比べて、Mg及びTiの含有量が多く体積抵抗率が高い。高抵抗層321は、低抵抗層322,323と比べてTi含有量が多いため、外観上、黒っぽく見える。高抵抗層321は、低抵抗層322,323と比べて、Siの含有量が少ないことが好ましい。低抵抗層322,323は、10質量ppm以上50質量ppm以下のTiを含むAlNセラミック層であることが好ましく、高抵抗層321は、1000質量ppm以上1500質量ppm以下のTiを含むAlNセラミック層であることが好ましい。低抵抗層322,323は、90質量ppm以上180質量ppm以下のMgを含むAlNセラミック層であり、高抵抗層321は、200質量ppm以上400質量ppm以下のMgを含むAlNセラミック層であることが好ましい。また、高抵抗層321の体積抵抗率は、低抵抗層322,323の体積抵抗率の1.2倍以上であることが好ましく、高抵抗層321の熱伝導率は、低抵抗層322,323の熱伝導率の90%以上であることが好ましい。高抵抗層321の熱膨張率α1は、低抵抗層322,323の熱膨張率α2と同等(例えばα2±10%の範囲内、好ましくはα2±5%の範囲内)であることが好ましい。
 RF電極33は、メッシュ形状、板状又は膜状であり、例えばW,Mo,Ti,Si,Niの単体又は化合物(炭化物など)を主成分とする材料、それらを組み合わせた材料、あるいはそれらとセラミック基体32に用いられたセラミック原料との混合材料などによって作製される。RF電極33は、セラミック基体32のうちウエハ載置面32aとは反対側の面(裏面)から差し込まれた給電ロッド35を介してプラズマ発生用のRF電源60に接続されている。
 ヒータ電極34は、コイル形状又はリボン形状であり、例えばW,Mo,Ti,Si,Niの単体又は化合物(炭化物など)を主成分とする材料、それらを組み合わせた材料、あるいはそれらとセラミック基体32に用いられたセラミック原料との混合材料などによって作製される。ヒータ電極34は、ウエハ載置面32aの全体にわたって行き渡るように一筆書きの要領で一端34aから他端34bまで配線されている。ヒータ電極34の一端34aと他端34bには、それぞれ給電ロッド36,37が接続されている。2つの給電ロッド36,37の間には、ヒータ電源62が接続されている。ヒータ電極34は、ヒータ電源62から電力が供給されると、ウエハ載置面32aに吸着保持されているウエハWを加熱する。
 中空シャフト38は、セラミック基体32と同様、AlN製であり、両端の開口の周囲にはフランジ38a,38bが設けられている。中空シャフト38は、一端のフランジ38aを介してセラミック基体32の裏面に拡散接合やTCB(Thermal compression bonding)により接合されている。TCBとは、接合対象の2つの部材の間に金属接合材を挟み込み、金属接合材の固相線温度以下の温度に加熱した状態で2つの部材を加圧接合する公知の方法をいう。なお、使用温度が低ければ、中空シャフト38はセラミック基体32の裏面に有機接着層を介して接着されていてもよい。また、中空シャフト38は、他端のフランジ38bを介してチャンバ12の底面に設けられた丸穴14の周囲に気密に取り付けられている。そのため、中空シャフト38の内部とチャンバ12の内部とは、完全に遮断された状態となっている。中空シャフト38のフランジ38bの裏面には、ロッド固定器39が取り付けられている。ロッド固定器39は、貫通する給電ロッド35,36,37を図示しないクランプ機構によって固定するものである。
 次に、プラズマ処理装置10の製造例について説明する。ここでは、ウエハ載置装置30の製造例について説明する。なお、この製造例は周知の技術を応用したものであるため概略のみ説明する。まず、扁平な円柱状の空間を備えた成形型を用意する。その成形型内に、焼成すると低抵抗層になる低抵抗層用原料を投入して敷き詰める。続いて、その上にRF電極33を配置し、更に低抵抗層用原料を投入してRF電極33上に敷き詰める。続いて、その上に、焼成すると高抵抗層になる高抵抗層用原料を投入して敷き詰め、一旦、円板状に成形する。続いて、高抵抗層用原料の上にヒータ電極34を配置し、更に低抵抗層用原料を投入してヒータ電極34上に敷き詰め、再度、円板状に成形する。得られた円板状の成形体を焼成し、セラミックヒータ31を得る。焼成は、加圧焼成(例えばホットプレス焼成)でもよいし、常圧焼成でもよい。続いて、セラミックヒータ31のウエハ載置面32aとは反対側の面に、給電ロッド35,36,37を接続するための穴あけ等の切削を行う。切削を行ったあとのセラミックヒータ31に、別途作製した中空シャフト38を接合したあと、給電ロッド35をRF電極33に接続すると共に給電ロッド36,37をヒータ電極34の一端34a及び他端34bに接続し、ウエハ載置装置30を得る。
 次に、プラズマ処理装置10の使用例について説明する。図1に示すように、チャンバ12内にプラズマ処理装置10を配置し、ウエハ載置面22aにウエハWを載置する。そして、シャワーヘッド20から反応ガスを供給し、チャンバ12内を所定圧力(例えば数10~数100Pa)の反応ガス雰囲気とする。この状態で、シャワーヘッド20とセラミック基体32に埋設されたRF電極33との間に、RF電源60から高周波電力を供給する。これにより、シャワーヘッド20とRF電極33とからなる平行平板電極間にプラズマが発生する。そのプラズマを利用してウエハWにCVD成膜を施したりエッチングを施したりする。また、図示しない熱電対の検出信号に基づいてウエハWの温度を求め、その温度が設定温度(例えば350℃とか300℃)になるようにヒータ電極34へ印加するヒータ電源62の電圧を制御する。
 以上詳述したセラミックヒータ31では、RF電極33とヒータ電極34との間に漏れ電流が流れるのを高抵抗層321が防止する。高抵抗層321は、低抵抗層322,323よりも体積抵抗率が高くなるようにTiを多めに含有している。AlNセラミックは、Ti含有量が多すぎると体積抵抗率が低くなるが、Ti含有量が適量であれば体積抵抗率が高くなる傾向がある。本実施形態ではこの性質を利用している。また、AlNセラミック基体32を構成する高抵抗層321と低抵抗層322,323は、いずれも基本的にはAlNセラミックであるため、熱膨張率に大きな差が生じない。そのため、セラミックヒータ31の昇温と降温を繰り返したとしても、高抵抗層321と低抵抗層322,323との層間に剥離が生じにくい。したがって、このセラミックヒータ31によれば、RF電極33とヒータ電極34との間の漏れ電流を長期にわたって防止することができる。
 また、RF電極33の周辺には、RF電極33を流れるRF電流により発生するRF磁場の時間変化によりRF電界が誘起される。高抵抗層321は、このRF電界がヒータ電極34に結合するのを防止する。そのため、ヒータ電極34を含むヒータ回路へのRFノイズの影響を十分防止することができる。その結果、ヒータ電極34の温度制御を精度よく行うことができる。
 高抵抗層321は、低抵抗層322,323と比べて、Siの含有量が少ないことが好ましい。こうすれば、後述する実験例の測定データが示すように、Tiの含有量が多くても高抵抗とすることができる。低抵抗層322,323は、30質量ppm以上120質量ppm以下のSiを含むAlNセラミック層であり、高抵抗層321は、20質量ppm以上100質量ppm以下のSiを含むAlNセラミック層であり、低抵抗層322,323の方が高抵抗層321よりもSiの含有量が多いことが好ましい。
 低抵抗層322,323は、10質量ppm以上50質量ppm以下のTiを含むAlNセラミック層であり、高抵抗層321は、1000質量ppm以上1500質量ppm以下のTiを含むAlNセラミック層であることが好ましい。こうすれば、高抵抗層321の体積抵抗率を低抵抗層322,323の体積抵抗率よりも高くすると共に、高抵抗層321の熱伝導率を低抵抗層322,323の熱伝導率と同程度にすることができる。
 低抵抗層322,323は、90質量ppm以上180質量ppm以下のMgを含むAlNセラミック層であり、高抵抗層321は、200質量ppm以上400質量ppm以下のMgを含むAlNセラミック層であることが好ましい。こうすれば、後述する実験例の測定データが示すように、Tiの含有量が多くても高抵抗とすることができる。
 更にまた、高抵抗層321の体積抵抗率は、低抵抗層322,323の体積抵抗率の1.2倍以上であることが好ましい。こうすれば、RF電極33とヒータ電極34との間の漏れ電流をより防止しやすくなる。
 そしてまた、高抵抗層321の熱伝導率は、低抵抗層322,323の熱伝導率の90%以上であることが好ましい。こうすれば、高抵抗層321の熱伝導率が比較的高いため、ウエハWの均熱性が良好になる。
 そして更に、AlNセラミック基体32は、低抵抗層322と高抵抗層321と低抵抗層323とがこの順に積層された3層構造となっており、高抵抗層321の厚みは2つの低抵抗層322,323の厚みの合計よりも小さい。通常、セラミックは体積抵抗率が高いと熱伝導率が低くなる傾向にあるが、このような構造を採用しているため、全体として熱伝導率を比較的高くすることができ、ウエハWの均熱性が良好になる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、高抵抗層321をRF電極33の下面よりも下側であってヒータ電極34の上面に接するように配置したが、特にこれに限定されない。例えば、図3に示すように、高抵抗層321をRF電極33の下面及びヒータ電極34の上面に接するように配置してもよい。あるいは、RF電極33及びヒータ電極34の少なくとも一方を高抵抗層321に埋設してもよい。ヒータ電極34を高抵抗層321に埋設した例を図4に示す。図3及び図4では、上述した実施形態と同様の構成要素については同じ符号を付した。いずれにおいても、上述した実施形態と同様の効果が得られる。
 上述した実施形態において、ウエハ載置面32aを複数のゾーンに分けて、各ゾーンごとにヒータ電極34を配置してもよい。
 上述した実施形態において、AlNセラミック基体32内に静電電極を内蔵し、ウエハWをウエハ載置面32aに静電吸着させてもよい。
 上述した実施形態で説明したセラミックヒータ31の製造例にしたがって4種類のセラミックヒータ31を製造し(実験例1~4)、それぞれのAlNセラミック基体32のTi含有率及び特性を評価した。その結果を表1に示す。Si,Mg及びTiの含有率は、ICP発光分光分析法(ICP-AES)にしたがって求めた。体積抵抗率は、室温で測定したときの値であり、JIS-C2141にしたがって求めた。熱伝導率は、室温で測定したときの値であり、JIS-R1611にしたがって求めた。熱膨張率は、室温-1000℃の値であり、JIS-R1618にしたがって求めた。
Figure JPOXMLDOC01-appb-T000001
 実験例1~4では、高抵抗層321と低抵抗層322,323ともSi、Mg及びTiを含み、高抵抗層321は、低抵抗層322,323と比べて、Mg及びTiの含有量が多く体積抵抗率が高くSiの含有量が低かった。熱膨張率は、実験例1~4のいずれも、高抵抗層321と低抵抗層322,323とでほぼ同等だった。体積抵抗率は、実施例1~4のいずれも、高抵抗層321の方が低抵抗層322,323よりも高かった。実施例1,2では、高抵抗層321の体積抵抗率は低抵抗層322,323の体積抵抗率の約4倍、高抵抗層321の熱伝導率は低抵抗層322,323の熱伝導度の約95%であった。実験例3,4では、高抵抗層321の体積抵抗率は低抵抗層322,323の体積抵抗率の約1.2倍、高抵抗層321の熱伝導率は低抵抗層322,323の熱伝導度の約102%であった。
   本出願は、2019年3月18日に出願された日本国特許出願第2019-049548号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
   本発明は、例えば半導体製造プロセスに利用可能である。
10 プラズマ処理装置、12 チャンバ、14 丸穴、16 排気管、20 シャワーヘッド、22 絶縁部材、22a ウエハ載置面、24 ガス導入管、26 ガス噴射孔、30 ウエハ載置装置、31 セラミックヒータ、32 AlNセラミック基体、321 AlNセラミック高抵抗層、322,323 AlNセラミック低抵抗層、32a ウエハ載置面、33 RF電極、34 ヒータ電極、34a 一端、34b 他端、35,36,37 給電ロッド、38 中空シャフト、38a フランジ、38b フランジ、39 ロッド固定器、60 RF電源、62 ヒータ電源。

Claims (7)

  1.  ウエハ載置面を備えたAlNセラミック基体に、前記ウエハ載置面に近い方からプラズマ発生用電極、ヒータ電極がこの順に離間した状態で埋設されたセラミックヒータであって、
     前記AlNセラミック基体は、
     前記プラズマ発生用電極と前記ヒータ電極との間に設けられたAlNセラミック高抵抗層と、
     前記高抵抗層以外のAlNセラミック低抵抗層と、
     を備え、
     前記高抵抗層と前記低抵抗層ともSi、Mg及びTiを含み、
     前記高抵抗層は、前記低抵抗層と比べて、Mg及びTiの含有量が多く体積抵抗率が高い、
     セラミックヒータ。
  2.  前記高抵抗層は、前記低抵抗層と比べて、Siの含有量が少ない、
     請求項1に記載のセラミックヒータ。
  3.  前記低抵抗層は、10質量ppm以上50質量ppm以下のTiを含むAlNセラミック層であり、
     前記高抵抗層は、1000質量ppm以上1500質量ppm以下のTiを含むAlNセラミック層である、
     請求項1又は2に記載のセラミックヒータ。
  4.  前記低抵抗層は、90質量ppm以上180質量ppm以下のMgを含むAlNセラミック層であり、
     前記高抵抗層は、200質量ppm以上400質量ppm以下のMgを含むAlNセラミック層である、
     請求項1~3のいずれか1項に記載のセラミックヒータ。
  5.  前記高抵抗層の体積抵抗率は、前記低抵抗層の体積抵抗率の1.2倍以上である、
     請求項1~4のいずれか1項に記載のセラミックヒータ。
  6.  前記高抵抗層の熱伝導率は、前記低抵抗層の熱伝導率の90%以上である、
     請求項1~5のいずれか1項に記載のセラミックヒータ。
  7.  前記AlNセラミック基体は、前記低抵抗層と前記高抵抗層と前記低抵抗層とがこの順に積層された3層構造となっており、前記高抵抗層の厚みは2つの前記低抵抗層の厚みの合計よりも小さい、
     請求項1~6のいずれか1項に記載のセラミックヒータ。
PCT/JP2020/009188 2019-03-18 2020-03-04 セラミックヒータ WO2020189286A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021507175A JP7248780B2 (ja) 2019-03-18 2020-03-04 セラミックヒータ
CN202080021382.XA CN113632589A (zh) 2019-03-18 2020-03-04 陶瓷加热器
KR1020217028960A KR20210125539A (ko) 2019-03-18 2020-03-04 세라믹 히터
US17/445,332 US20210384014A1 (en) 2019-03-18 2021-08-18 Ceramic heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019049548 2019-03-18
JP2019-049548 2019-03-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/445,332 Continuation US20210384014A1 (en) 2019-03-18 2021-08-18 Ceramic heater

Publications (1)

Publication Number Publication Date
WO2020189286A1 true WO2020189286A1 (ja) 2020-09-24

Family

ID=72520687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009188 WO2020189286A1 (ja) 2019-03-18 2020-03-04 セラミックヒータ

Country Status (6)

Country Link
US (1) US20210384014A1 (ja)
JP (1) JP7248780B2 (ja)
KR (1) KR20210125539A (ja)
CN (1) CN113632589A (ja)
TW (1) TWI725763B (ja)
WO (1) WO2020189286A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077508A (ja) * 1998-08-31 2000-03-14 Kyocera Corp 静電チャック
JP2006060040A (ja) * 2004-08-20 2006-03-02 Rasa Ind Ltd 静電チャックプレート及びその製造方法
JP2007258609A (ja) * 2006-03-24 2007-10-04 Ngk Insulators Ltd 加熱装置
JP2010177698A (ja) * 2010-04-12 2010-08-12 Fujitsu Semiconductor Ltd 静電チャックの製造方法
WO2015025589A1 (ja) * 2013-08-22 2015-02-26 株式会社村田製作所 酸化物セラミックス、及びセラミック電子部品
JP6393006B1 (ja) * 2018-02-08 2018-09-19 日本碍子株式会社 半導体製造装置用ヒータ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602908A (ja) 1983-06-17 1985-01-09 Olympus Optical Co Ltd ライトガイドコネクタ
JP2006140367A (ja) * 2004-11-15 2006-06-01 Sumitomo Electric Ind Ltd 半導体製造装置用加熱体およびこれを搭載した加熱装置
US7312422B2 (en) * 2006-03-17 2007-12-25 Momentive Performance Materials Inc. Semiconductor batch heating assembly
JP2015030634A (ja) * 2013-07-31 2015-02-16 住友電気工業株式会社 窒化アルミニウム焼結体およびそれを使用した半導体製造用または検査用ウェハ載置台
JP6560150B2 (ja) * 2016-03-28 2019-08-14 日本碍子株式会社 ウエハ載置装置
KR102339550B1 (ko) * 2017-06-30 2021-12-17 주식회사 미코세라믹스 질화 알루미늄 소결체 및 이를 포함하는 반도체 제조 장치용 부재

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077508A (ja) * 1998-08-31 2000-03-14 Kyocera Corp 静電チャック
JP2006060040A (ja) * 2004-08-20 2006-03-02 Rasa Ind Ltd 静電チャックプレート及びその製造方法
JP2007258609A (ja) * 2006-03-24 2007-10-04 Ngk Insulators Ltd 加熱装置
JP2010177698A (ja) * 2010-04-12 2010-08-12 Fujitsu Semiconductor Ltd 静電チャックの製造方法
WO2015025589A1 (ja) * 2013-08-22 2015-02-26 株式会社村田製作所 酸化物セラミックス、及びセラミック電子部品
JP6393006B1 (ja) * 2018-02-08 2018-09-19 日本碍子株式会社 半導体製造装置用ヒータ

Also Published As

Publication number Publication date
KR20210125539A (ko) 2021-10-18
JP7248780B2 (ja) 2023-03-29
TWI725763B (zh) 2021-04-21
US20210384014A1 (en) 2021-12-09
TW202100490A (zh) 2021-01-01
CN113632589A (zh) 2021-11-09
JPWO2020189286A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
CN108376635B (zh) 晶圆支承台
TWI459851B (zh) heating equipment
US9269600B2 (en) Electrostatic chuck device
US9209061B2 (en) Electrostatic chuck device
JP5117146B2 (ja) 加熱装置
JP3155802U (ja) ウエハー載置装置
WO2011093451A1 (ja) 静電チャック装置
CN106068251B (zh) 接合体的制造方法
JP6530878B1 (ja) ウエハ載置台及びその製法
JP5846186B2 (ja) 静電チャック装置および静電チャック装置の製造方法
JP2000243821A (ja) ウエハ支持部材
WO2020189286A1 (ja) セラミックヒータ
JP3728078B2 (ja) プラズマ発生用部材
TW202105592A (zh) 晶圓載置台及其製造方法
JP7202326B2 (ja) セラミックヒータ
US20230343564A1 (en) Wafer placement table
JP4069875B2 (ja) ウェハ保持部材
JP6882040B2 (ja) 保持装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507175

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217028960

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772840

Country of ref document: EP

Kind code of ref document: A1