WO2015025589A1 - 酸化物セラミックス、及びセラミック電子部品 - Google Patents

酸化物セラミックス、及びセラミック電子部品 Download PDF

Info

Publication number
WO2015025589A1
WO2015025589A1 PCT/JP2014/065234 JP2014065234W WO2015025589A1 WO 2015025589 A1 WO2015025589 A1 WO 2015025589A1 JP 2014065234 W JP2014065234 W JP 2014065234W WO 2015025589 A1 WO2015025589 A1 WO 2015025589A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
molar ratio
ceramic
electric polarization
content
Prior art date
Application number
PCT/JP2014/065234
Other languages
English (en)
French (fr)
Inventor
廣瀬 左京
木村 剛
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015532741A priority Critical patent/JP6061111B2/ja
Publication of WO2015025589A1 publication Critical patent/WO2015025589A1/ja
Priority to US15/017,784 priority patent/US9947460B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/02Variable inductances or transformers of the signal type continuously variable, e.g. variometers
    • H01F21/08Variable inductances or transformers of the signal type continuously variable, e.g. variometers by varying the permeability of the core, e.g. by varying magnetic bias
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic

Definitions

  • the present invention relates to oxide ceramics and ceramic electronic components, and more particularly, oxide ceramics formed of a ferromagnetic dielectric material exhibiting an electromagnetic effect, and ceramic electronic components such as variable inductors using the oxide ceramics. About.
  • ferromagnetic dielectric (multiferroics) materials that exhibit a combined action in which ferromagnetism and ferroelectricity coexist have attracted attention and are actively researched and developed.
  • This ferromagnetic dielectric material induces a helical magnetic order when a magnetic field is applied and exhibits ferroelectricity, causing an electric polarization, changing an electric polarization and a dielectric constant, and applying an electric field. It is known to exhibit a so-called electromagnetic effect in which magnetization occurs or changes in magnetization.
  • the ferromagnetic dielectric material can cause a change in magnetization due to an electric field and a change in electric polarization due to a magnetic field due to the above-described electromagnetic effect.
  • Application to various magnetic electronic devices such as a variable magnetization device for a write head of a storage medium, a magnetic sensor for detecting magnetism, and a nonvolatile memory is expected.
  • Patent Document 1 discloses that the spin is rotating so that the ferroelectricity and the spin direction are along the outside of a cone (the opening angle ⁇ of the apex of the cone is in the range of 0 ° ⁇ ⁇ 90 °).
  • a multiferroic element has been proposed in which an external magnetic field is applied to a multiferroic solid material having ferromagnetism having a structure to control the direction of electric polarization substantially perpendicular to the external magnetic field.
  • Patent Document 2 discloses a multiferroic element which is a multiferroic solid material having both ferroelectricity and ferromagnetism containing iron oxide as a main raw material and in which a current is induced by a weak external magnetic field of 300 gauss or less. Has been proposed.
  • Patent Document 2 when a ferrite compound of Ba 2 Mg 2 Fe 12 O 22 is used as a ferromagnetic dielectric material (multiferroic material) and a low magnetic field of 300 G (0.03 T) is applied, It is described that an electric current flows in response to application of an alternating magnetic field at ⁇ 268 ° C. (5 K), and the electric polarization alternately generates positive and negative.
  • Patent Document 3 discloses a general formula (Sr 1- ⁇ Ba ⁇ ) 3 (Co 1- ⁇ B ⁇ ) 2 Fe 24 O 41 + ⁇ (wherein B represents Ni, Zn, Mn, Mg And one or more elements selected from the group consisting of Cu and ⁇ , ⁇ , and ⁇ are 0 ⁇ ⁇ ⁇ 0.3, 0 ⁇ ⁇ ⁇ 0.3, and ⁇ 1 ⁇ ⁇ ⁇ 1, respectively.
  • An electromagnet effect material having an electromagnetism effect in a temperature range of 250 to 350 K and a magnetic field range of 0.05 T (Tesla) or less is proposed.
  • Patent Document 3 a ferromagnetic dielectric material having a hexagonal Z-type crystal structure represented by the above general formula is used, and is swept between ⁇ 0.05 T to +0.05 T.
  • Patent Document 3 although a maximum of 470 ps / m of an electromagnetic coupling coefficient is obtained near room temperature by using a ferromagnetic dielectric material having a hexagonal Z-type crystal structure, a substantially zero magnetic field ( The maximum value cannot be obtained in the zero magnetic field or the vicinity of the zero magnetic field), and a magnetic bias of about 5 to 10 mT is required to obtain a large electromechanical coupling coefficient.
  • a relatively large electromagnetic coupling coefficient is obtained as described above.
  • a ferromagnetic dielectric having an even larger electromagnetic coupling coefficient is desired.
  • the present invention has been made in view of such circumstances, and oxide ceramics capable of easily producing a much larger electromagnetic effect at room temperature than conventional ones, and ceramic electronic parts using the oxide ceramics.
  • the purpose is to provide.
  • Oxide ceramics formed of a ferrite compound represented by the general formula (Sr, Ba) 2 Co 2 Fe 12 O 22 can generate and control electric polarization in a low magnetic field, and have ferroelectric properties. Since the helical magnetic order that can be expressed can be stably maintained up to a relatively high temperature, it is considered that the electromagnetic effect can be expressed at room temperature by making improvements.
  • the (Sr, Ba) 2 Co 2 Fe 12 O 22 -based compound typically has a hexagonal Y-type crystal structure, but is symmetric from the hexagonal system. Even if it is a crystal system that is slightly displaced and has a lower symmetry than the hexagonal system, if it is a ferrite compound containing Sr, Ba, Co, and Fe in the main component, Sr, Ba, Zn, It has been found that the same effect can be obtained by containing a predetermined amount of Ni and Al in the above-described form.
  • the oxide ceramic according to the present invention is formed of a ferrite compound containing at least Sr, Ba, Co, and Fe, and the Ba is made of the Sr.
  • X is 0.7 to 1.3 when the content of Ba is x / 2 in terms of molar ratio with respect to the total amount of Ba and Sr.
  • Zn and Ni are contained in a form in which a part of Co is substituted, and the molar ratio of the content of the element M to the total amount of the element M and Co
  • the element M is formed of Zn when converted to y / 2
  • the element M is blended so that the Zn content is equal to or higher than the Ni content in terms of molar ratio Y is 0.8 or less (0 Y in the case where the element M is formed of Ni and the element M is blended so that the Zn content is less than the Ni content in terms of molar ratio.
  • Al is contained in a form that replaces a part of the Fe, and the molar ratio of the Al content to the total amount of the Al and the Fe When converted to z / 12, z is 0.8 to 1.2.
  • the oxide ceramics of the present invention have the general formula [Sr 2-x Ba x Co 2-y (Zn u Ni 1-u) y Fe 12-z Al z O 22] ( but, 0.7 ⁇ x ⁇ 1.3, 0 ⁇ y ⁇ 0.8, 0.8 ⁇ z ⁇ 1.2, 0.5 ⁇ u ⁇ 1.0).
  • oxide ceramics of the present invention have the general formula [Sr 2-x Ba x Co 2-y (Zn u Ni 1-u) y Fe 12-z Al z O 22] ( but, 0.7 ⁇ x ⁇ 1.3, 0 ⁇ y ⁇ 1.6, 0.8 ⁇ z ⁇ 1.2, and 0 ⁇ u ⁇ 0.5).
  • the present inventors have conducted further earnest studies, and by suppressing the y to 0.4 or less, it is sufficient to perform the heat treatment after firing in an oxygen atmosphere of 0.1 MPa (atmospheric pressure). It has been found that it is possible to ensure insulation and thereby obtain a ferromagnetic dielectric having a larger electric polarization with a simple manufacturing process.
  • the y is preferably 0.4 or less.
  • the oxide ceramic of the present invention is preferably heat-treated in an air atmosphere when y is 0.4 or less.
  • the applied magnetic field exhibits a maximum value when the applied magnetic field is a substantially zero magnetic field, which is an index of the ferromagnetic dielectric.
  • substantially zero magnetic field means not only a zero magnetic field but also a near zero magnetic field region (that is, a weak magnetic field region) that does not affect characteristics.
  • the polarity of electric polarization is reversed when the polarity of the magnetic field is reversed.
  • the ceramic electronic component according to the present invention is a ceramic electronic component in which an external electrode is formed on a surface of a component element body, wherein the component element body is formed of the oxide ceramic. .
  • the coil is arranged so as to have an inductance corresponding to the magnetic permeability of the component element body.
  • the internal electrode is embedded in the component element body.
  • the oxide ceramic of the present invention is formed of a ferrite compound containing at least Sr, Ba, Co, and Fe, and the Ba is contained in a form that substitutes a part of the Sr, and among Zn and Ni At least one element M is contained in a form that substitutes a part of the Co, and Al is contained in a form that substitutes a part of the Fe, and these Ba, element M (Zn, Ni ) Since the Al content is in the predetermined range as described above, an extremely large electromagnetic coupling coefficient that could not be realized conventionally at room temperature and a substantially zero magnetic field can be obtained, and at a low magnetic field. A ferromagnetic dielectric having good electrical polarization can be obtained.
  • the ceramic electronic component of the present invention a ceramic electronic component in which external electrodes are formed on the surface of the component element body, wherein the component element body is formed of any of the oxide ceramics described above. Therefore, various ceramic electronic components such as a variable inductor capable of exhibiting a large electromagnetic effect at room temperature and a low magnetic field can be realized.
  • FIG. It is a front view which shows one Embodiment of the ceramic electronic component formed using the oxide ceramics based on this invention. It is sectional drawing of FIG. It is the perspective view which showed typically the polarization processing apparatus used in the Example. It is the perspective view which showed typically the electromagnetic current measuring apparatus used in the Example. It is a figure which shows the time-dependent change of the current density of sample number 5, and a magnetic field. It is a figure which shows the time-dependent change of the current density of sample number 5, and an electric polarization. It is a figure which shows the electromagnetic coupling coefficient characteristic of the sample number 5. FIG. It is a figure which shows the time-dependent change of the current density of sample number 35, and an electric polarization. It is a figure which shows the electromagnetic coupling coefficient characteristic of the sample number 35. FIG.
  • the oxide ceramic as an embodiment of the present invention has a hexagonal Y-type crystal structure containing at least Sr, Ba, Co, and Fe.
  • This hexagonal Y-type crystal structure is composed of an S block of spinel structure (CoO.Fe 2 O 3 ) and a T block of hexagonal close-packed structure of (Sr, Ba) and O (oxygen atoms). It has a laminated structure laminated in the order of TSSS.
  • Ba is contained in a form in which a part of Sr is substituted, and when the Ba content is x / 2 in terms of molar ratio, x is 0.7 to 1.. It is set to 3.
  • the present oxide ceramics may contain at least one element M of Zn and Ni in a form of replacing a part of Co.
  • y is set as follows according to the component composition of the constituent components of the element M: .
  • Al is contained in such a form that part of the Fe is substituted, and the content of Al is z / 12 in terms of molar ratio with respect to the total amount of Al and Fe. Sometimes z is between 0.8 and 1.2.
  • the present oxide ceramic is mainly composed of a SrBaCo 2 Fe 12 O 22 ⁇ (Sr, Ba) O 2. (CoO) 2. (Fe 2 O 3 ) 6 ⁇ -based compound having a hexagonal Y-type crystal structure.
  • CoO CoO
  • Fe 2 O 3 6 ⁇ -based compound having a hexagonal Y-type crystal structure.
  • A general formula (A).
  • the molar ratio of Ba to the total amount of Sr and Ba in the (Sr, Ba) site (hereinafter referred to as “Ba substitution molar ratio”) x / 2, and Al to the total amount of Fe and Al at the Fe site.
  • the molar ratio of z (hereinafter referred to as “Al substitution molar ratio”) z / 12 satisfies the formulas (1) to (2).
  • substitution molar ratio of element M is the Zn and Ni at the Co site.
  • the general formula (A) satisfies the formulas (1) and (2), and the formulas (3) and (4) according to the blending ratio of Zn and Ni at the Co site.
  • it has good insulation, and can obtain a large electromagnetic coupling coefficient at room temperature and substantially zero magnetic field (zero magnetic field and near zero magnetic field), and good at low magnetic field. Electric polarization can be obtained, and a large electromagnetic effect can be exhibited.
  • Equation (5) by defining the change of the electric polarization P with respect to the change of the magnetic field as the electromagnetic coupling coefficient ⁇ , the ferromagnetic dielectric characteristics can be evaluated with the electromagnetic coupling coefficient ⁇ .
  • the current density J of the electromagnetic current can be expressed by Equation (6).
  • the electric polarization P can be obtained by integrating the current density J of the electromagnetic current with the time t.
  • dB / dt indicates the sweep speed of the magnetic field.
  • the electromagnetic coupling coefficient ⁇ can be expressed by the formula (8).
  • the electromagnetic coupling coefficient ⁇ can be obtained by dividing the product of the vacuum permeability ⁇ 0 and the current density J by the magnetic field sweep rate (dB / dt).
  • the electromagnetic coupling coefficient ⁇ increases as the current density J of the electromagnetic current increases. Therefore, the larger the rate of change of the electric polarization P, the larger the electromagnetic coupling coefficient ⁇ , so that a huge electromagnetic effect can be obtained and a ferromagnetic dielectric is obtained. Further, since the electromagnetic coupling coefficient ⁇ is obtained from the electric polarization P generated by sweeping the magnetic field B, it is almost equivalent to a change in magnetization when an electric field is applied, and thus the electromagnetic coupling coefficient ⁇ is large. The change in magnetization and magnetic permeability when a voltage, which is the opposite effect, is applied increases.
  • the general formula (A) satisfies the formulas (1) and (2), and the formula (3) according to the blending ratio of Zn and Ni at the Co site. Since (4) and (4) are satisfied, a good electric polarization P can be obtained with a low magnetic field, and a large electromagnetic coupling coefficient ⁇ can be obtained with a substantially zero magnetic field.
  • the electric polarization P is induced in a specific direction with a low magnetic field, once becomes almost zero with a substantially zero magnetic field and disappears. Then, when the polarity is reversed across the zero magnetic field, the electric polarization P is also changed. Invert. For example, when the polarity of the applied magnetic field is reversed from positive to negative, the polarity of the electric polarization is reversed from positive to negative, and when the polarity of the applied magnetic field is reversed from negative to positive, the polarity of the electric polarization is also reversed from negative to positive.
  • the direction of polarization depends on the polarity of the electric field polarization process performed in a magnetic field described later, and can be adjusted to a desired polarization direction.
  • a conventional ferromagnetic dielectric material for example, an oxide ceramic having a hexagonal Z-type crystal structure as in Patent Document 3, the polarity of the electric polarization is reversed even if the polarity of the applied magnetic field is reversed from positive to negative.
  • the present oxide ceramics can ensure an electric polarization P comparable to that of the non-inversion type ferromagnetic dielectric material.
  • x in the substitution molar ratio x / 2 of Ba was set in the range of 0.7 to 1.3 as shown in the above formula (1) because x in the substitution molar ratio x / 2 of Ba was 0. Even if it is less than .7 or more than 1.3, sufficient insulation can be ensured by heat treatment in an oxygen atmosphere of 0.2 MPa or more, but it becomes difficult to induce a helical magnetic ordered phase at room temperature. This is because electric polarization may not be generated.
  • substitution molar ratio y / 2 of the element M is represented by the formulas (3) and (4) according to the blending ratio of Zn and Ni at the Co site.
  • y of y / 2 exceeds 0.8 (when u is 0.5 ⁇ u ⁇ 1.0) or 1.6 (when u is 0 ⁇ u ⁇ 0.5)
  • the molar content of Co This is because there is a risk that the electric current cannot be measured at room temperature and electric polarization cannot be generated.
  • y of the substitution molar ratio y / 2 of the element M is preferably 0.4 or less.
  • the sintered ceramic body is usually subjected to a heat treatment.
  • y of the substitution molar ratio y / 2 of the element M exceeds 0.4, sufficient insulation is obtained.
  • the substitution molar ratio y / 2 of element M is preferably 0.4 or less.
  • the ferrite compound having the hexagonal Y-type crystal structure having the stacking period of the S block and the T block has been described in detail.
  • the periodic structure of the stacking period is partially broken and the crystal symmetry is hexagonal.
  • the crystal system may be lower than the system.
  • a crystal system in which ions coordinated at a predetermined atomic position of the crystal lattice are slightly displaced from the predetermined atomic position and the symmetry of the crystal is lower than that of the hexagonal system.
  • ions such as O 2 ⁇ and Co 2+ constituting the crystal are arranged at a predetermined atomic position where a space group describing the symmetry of the crystal is defined by P6 3 / mmc.
  • the present invention provides a crystal structure in which the ions move from the predetermined atomic position and are arranged at atomic positions defined by other space groups, and the symmetry of the crystal is lower than that of the hexagonal system. Is also applicable.
  • the ferrite compound containing at least Sr, Ba, Co, Fe contains the above-mentioned predetermined amount of Sr, Ba, Zn, Ni, Al, and the symmetry of the crystal is high. Even if the crystal system is slightly lower than the hexagonal system, the intended object of the present invention can be achieved.
  • Fe compound such as Fe 2 O 3 , Sr compound such as SrCO 3 , Ba compound such as BaCO 3 , Zn compound such as ZnO, Ni compound such as NiO, Co compound such as Co 3 O 4 , And an Al compound such as Al 2 O 3 is prepared.
  • the general formula (A) satisfies the formulas (1) and (2), and the formulas (3) and (4) are changed according to the blending ratio of Zn and Ni at the Co site. Weigh each ceramic raw material to be satisfied.
  • these weighed ceramic raw materials are put into a pulverizer such as a pot mill together with a pulverizing medium such as partially stabilized zirconium (hereinafter referred to as “PSZ”) balls, a dispersant and a solvent such as pure water. Mix and grind to obtain a mixture.
  • a pulverizer such as a pot mill together with a pulverizing medium such as partially stabilized zirconium (hereinafter referred to as “PSZ”) balls, a dispersant and a solvent such as pure water.
  • PSZ partially stabilized zirconium
  • the mixture is dried and sized, and then calcined at a temperature of 1000 to 1100 ° C. in an air atmosphere for a predetermined time to obtain a calcined product.
  • this calcined product After sizing this calcined product, it is again put into a pulverizer together with a pulverizing medium, a dispersant, and an organic solvent such as ethanol and toluene, sufficiently mixed and pulverized, and then a binder solution is added sufficiently. To obtain a ceramic slurry.
  • the binder solution is not particularly limited.
  • an organic binder such as polyvinyl butyral resin is dissolved in an organic solvent such as ethanol or toluene, and an additive such as a plasticizer is added as necessary. can do.
  • the ceramic slurry thus formed is formed into a sheet shape using a forming method such as a doctor blade method, and cut into predetermined dimensions to obtain a ceramic green sheet. Then, a predetermined number of the ceramic green sheets are laminated and pressure-bonded, and then cut into predetermined dimensions to obtain a ceramic molded body.
  • a forming method such as a doctor blade method
  • the ceramic molded body is treated to remove the binder at 300 to 500 ° C. in an air atmosphere, and then fired at 1150 to 1250 ° C. in the air atmosphere to obtain a ceramic sintered body.
  • heat treatment is sufficiently performed in an oxygen concentration atmosphere of 0.1 MPa (atmospheric pressure) or 0.2 MPa or more according to the substitution molar ratio y / 2 of the element M, thereby producing an oxide ceramic.
  • the present oxide ceramics it is formed of a ferrite compound containing at least Sr, Ba, Co, and Fe, the general formula (A) satisfies the formulas (1) and (2), and Co Since the formulas (3) and (4) are satisfied according to the mixing ratio of Zn and Ni at the site, a large electromagnetic coupling coefficient ⁇ can be obtained at room temperature and substantially zero magnetic field without requiring a magnetic bias. it can. In addition, it is possible to obtain a ferromagnetic dielectric oxide ceramic that can obtain a good electric polarization P in a low magnetic field and can exhibit a huge electromagnetic effect at room temperature.
  • FIG. 1 is a front view showing an embodiment of a variable inductor as a ceramic electronic component according to the present invention
  • FIG. 2 is a sectional view thereof.
  • the variable inductor has a component body 1 made of the above oxide ceramics and external electrodes 2a and 2b formed at both ends of the component body 1.
  • the variable inductor is provided with a coil so that the magnetic flux passes through the component body 1 when a high-frequency signal flows.
  • the coil 4 formed of a conductive material such as Cu is wound so as to suspend the external electrode 2a and the external electrode 2b.
  • internal electrodes 3a to 3c are embedded in the component body 1 in parallel.
  • the internal electrodes 3a and 3c are electrically connected to one external electrode 2a, and the internal electrode 3b is connected to the other external electrode 2b.
  • This ceramic electronic component can acquire capacitance between the internal electrode 3a and the internal electrode 3b and between the internal electrode 3b and the internal electrode 3c.
  • the electrode material for forming the external electrodes 2a and 2b and the internal electrodes 3a to 3c is not particularly limited as long as it has good conductivity. Various materials such as Pd, Pt, Ag, Ni, and Cu are used. Metal materials can be used.
  • the component body 1 is formed of the above-described oxide ceramics made of a ferromagnetic dielectric, and the coil 4 is wound so as to suspend the external electrode 2a and the external electrode 2b. Therefore, when a high frequency signal is input to the coil 4, the magnetic flux generated in the direction of arrow A passes through the component element body 1, and the number of turns of the coil, the element shape, and the permeability of the component element body 1 are changed. A corresponding inductance is obtained. Further, when a voltage (electric field) is applied to the external electrodes 2a and 2b, a change in magnetization occurs due to the electromagnetic effect, and the inductance L of the coil can be changed. Then, the change rate ⁇ L of the inductance L can be controlled by changing the voltage.
  • a voltage electric field
  • the component body 1 is formed of the above-described oxide ceramics of the present invention, the insulation is good, and a large electromagnetic coupling coefficient can be obtained at room temperature and a substantial zero magnetic field. In addition, since it is possible to obtain electric polarization in a low magnetic field, a variable inductor having a huge electromagnetic effect can be obtained.
  • variable inductor can be manufactured as follows.
  • a ceramic green sheet is prepared by the same method and procedure as the above oxide ceramic manufacturing method.
  • a conductive paste for internal electrodes whose main component is a conductive material such as Pd is prepared. Then, a conductive paste for internal electrodes is applied to the ceramic green sheet, and a conductive layer having a predetermined pattern is formed on the surface of the ceramic green sheet.
  • a ceramic green sheet on which a conductive layer is formed and a ceramic green sheet on which a conductive film is not formed are laminated in a predetermined order, and then cut into predetermined dimensions to obtain a ceramic molded body.
  • the ceramic molded body is treated to remove the binder at 300 to 500 ° C. in an air atmosphere, and then fired at 1150 to 1250 ° C. in the air atmosphere to obtain a ceramic sintered body.
  • a conductive paste for an external electrode mainly composed of Ag or the like is applied to both ends of the component element body 1 and subjected to a baking treatment to produce 2a and 2b with the external electrode, and then a polarization treatment is performed.
  • magnetic field polarization is performed by applying a predetermined magnetic field at room temperature, and then a predetermined electric field is applied in a direction orthogonal to the direction of the magnetic field to perform electric field polarization, thereby producing a variable inductor.
  • the coil 4 is wound around the component body 1 so as to suspend the external electrode 2a and the external electrode 2b, thereby manufacturing a variable inductor.
  • the present invention is not limited to the above embodiment.
  • the oxide ceramic of the present invention can obtain a large electromagnetic coupling coefficient at room temperature and a substantially zero magnetic field, and induces electric polarization at a low magnetic field to generate a large electric coupling coefficient. Since the electromagnetic effect can be exhibited, the present invention can be applied to various ceramic electronic components other than the variable inductor. That is, a magnetic sensor that outputs a current according to the magnitude of the magnetic field, a current sensor that outputs a current according to the magnitude of the magnetic field formed by the current flowing in the coil, a non-volatile memory that controls magnetization by an electric field, and a variable capacitor A device or the like can be realized.
  • the electric field polarization is performed in a direction perpendicular to the magnetic field direction in the magnetic field.
  • the magnetic field direction and the electric field polarization direction are the same direction. Can also obtain a large electromagnetic effect.
  • Fe 2 O 3 , SrCO 3 , BaCO 3 , Co 3 O 4 , ZnO, and Al 2 O 3 were prepared as ceramic raw materials.
  • the ceramic element so that the Ba substitution molar ratio x / 2 x, the Zn substitution molar ratio y / 2 y, and the Al substitution molar ratio z / 12 z have the compositions shown in Table 1.
  • the raw material was weighed.
  • the ceramic raw material weighed in this way is charged with an aqueous polymer dispersant (manufactured by Kao Corporation, Kaosela 2210) and pure water together with PSZ balls into a polyethylene pot mill, mixed and ground for 16 hours, Got.
  • an aqueous polymer dispersant manufactured by Kao Corporation, Kaosela 2210
  • the mixture was dried and sized, and calcined at a temperature of 1100 ° C. for 4 hours in an air atmosphere to obtain a calcined product.
  • polyvinyl butyral binder resin (Sekisui Chemical Co., Ltd., ESREC B “BM-2”) was dissolved in a mixed solvent of ethanol and toluene, and a plasticizer was added to prepare a binder solution.
  • a solvent-based dispersant manufactured by Kao Corporation, Kaosela 8000
  • a mixed solvent of ethanol and toluene are put into a pot mill together with PSZ balls, mixed and ground for 24 hours, and then the binder The solution was added and mixed again for 12 hours, thereby obtaining a ceramic slurry.
  • the ceramic slurry thus prepared was formed into a sheet having a thickness of about 50 ⁇ m by using a doctor blade method, and cut into a predetermined size using a mold to obtain a ceramic green sheet. Then, a predetermined number of the ceramic green sheets were laminated, pressure-bonded at a pressure of 196 MPa, and cut to produce ceramic molded bodies of sample numbers 1 to 25 having a length: 12 mm, a width: 12 mm, and a thickness: 0.6 mm.
  • the ceramic compacts of sample numbers 1 to 25 were subjected to binder removal treatment at 500 ° C. in the air atmosphere, and then subjected to firing treatment at 1200 ° C. in the air atmosphere for 18 hours. A sintered body was produced.
  • the ceramic sintered bodies of sample numbers 1 to 25 were heat-treated at a temperature of 1090 ° C. for 10 hours in an oxygen atmosphere of 0.1 MPa (1 atm) or 1 MPa (10 atm). Each component body was produced.
  • samples Nos. 4 to 6, 8, 13, 15, and 22 to 25 are subjected to heat treatment after firing in an oxygen atmosphere (atmospheric atmosphere) of 0.1 MPa.
  • a heat treatment after firing was performed in an oxygen atmosphere of 1 MPa to produce a component body.
  • the dimensions of the component body were length: 10 mm, width: 10 mm, and thickness: 0.5 mm.
  • DC sputtering was performed using Pt as a target material on both main surfaces of the component element body to produce a surface electrode having a thickness of about 300 nm, and samples Nos. 1 to 25 were obtained.
  • DC sputtering was performed by supplying Ar gas into a vacuum vessel adjusted to 5 mmT and supplying power of 150 W.
  • each of the samples Nos. 1 to 25 was subjected to composition analysis using inductively coupled plasma emission spectroscopy (ICP) method and X-ray fluorescence analysis (XRF) method. As a result, each sample had the composition shown in Table 1. It was confirmed to have. Further, when the crystal structure of each sample was examined by an X-ray diffraction (XRD) method, it was confirmed that it had a hexagonal Y-type crystal structure.
  • ICP inductively coupled plasma emission spectroscopy
  • XRF X-ray fluorescence analysis
  • sample evaluation About each sample of sample numbers 1 to 25, when a specific resistance ⁇ was measured using a high resistance meter (US Keithley Instruments Inc., 6487), it had a specific resistance ⁇ of 50 M ⁇ ⁇ cm or more. It was confirmed that sufficient insulation was obtained.
  • each sample Nos. 1 to 25 was subjected to polarization treatment.
  • FIG. 3 is a perspective view schematically showing the polarization processing apparatus.
  • signal lines 24 a and 24 b are connected to a sample 23 in which surface electrodes 22 a and 22 b are formed on both main surfaces of a component body 21, and the signal lines 24 a and 24 b are connected between the signal lines 24 a and 24 b.
  • a DC power supply 25 is interposed.
  • the sample 23 has an internal electrode as described above, the direction of the magnetic field applied to the sample 23 (indicated by arrow B) and the direction of the electric field in which electric polarization is performed (indicated by arrow C). Are arranged so as to be orthogonal to each other.
  • the applied electric field is preferably as large as possible, and is preferably 200 V / mm or more although it depends on the polarization temperature and composition.
  • a ferroelectric phase is induced in a state where an electric field is applied by applying a magnetic field (approximately 1.2 T or more at room temperature) from the ferroelectric phase to the paraelectric phase by breaking the helical order.
  • the magnetic field is preferably lowered to 1.2 to 0.05 T at room temperature.
  • FIG. 4 is a perspective view schematically showing a characteristic evaluation apparatus for the sample 23.
  • This characteristic evaluation apparatus is provided with a pier-conmeter (made by Keithley Instruments, Inc., 6487) 26 instead of the DC power supply 25 in FIG. 4, and the evaluation sample is the direction of the magnetic field to be applied, as in FIG. And the direction of the electric field at the time of electric polarization are orthogonal to each other.
  • a physical property measuring device manufactured by Quantum Design, PPMS was used, and polarization treatment and measurement of the electromagnetic current were performed by the following methods.
  • a superconducting magnet (not shown) is applied to the sample 23 arranged in the same manner as in FIG. 3, a ⁇ 5 T DC magnetic field is applied for 1 minute at a temperature of 300 K, and magnetic field polarization is performed in the direction of arrow B. It was.
  • the measurement sample was changed from ⁇ 5T to ⁇ 0.5T at a speed of 18 mT / s to make the measurement sample into a single domain. The electric and magnetic fields were not applied.
  • an electrometer (6517A, manufactured by Keithley Instruments Inc., USA) is interposed between the signal line 24a and the signal line 24b, and about 0.5 to 1 T / min. While the magnetic field was swept at a speed of 1, a charge discharged from the sample at that time, that is, an electric current was measured with an electrometer.
  • Table 1 shows the composition, the oxygen atmosphere of the heat treatment after firing, and the electric polarization P for each of the sample numbers 1 to 25.
  • Sample No. 1 has a substitution molar ratio y / 2 of y of 1.0, and has a high Zn content, and therefore could not exhibit an electromagnetism effect.
  • Sample No. 2 had a substitution molar ratio y / 2 y of 0.9 and a large Zn content, so that the electromagnetism current could not be measured and the electric polarization P could not be obtained.
  • x of Ba substitution molar ratio x / 2 is 1.4, the molar ratio of Sr to Ba is relatively small, and the insulation is good, but the electromagnetic current is measured at room temperature. The electric polarization P could not be obtained.
  • Sample No. 9 has a substitution molar ratio x / 2 x of Ba of 0.6, and the molar ratio of Sr to Ba is relatively large. In this case as well, the insulation is sufficient, but at room temperature, it is electromagnetism. The current could not be measured, and the electric polarization P was not obtained.
  • Sample Nos. 10 and 11 have an Al substitution molar ratio z / 12 of z as small as 0.7 and do not induce a helical magnetic structure that generates electric polarization P at room temperature, and can measure an electric magnetic current. There wasn't.
  • Sample Nos. 16 and 17 have a high Al substitution molar ratio z / 12 z of 1.3 and good insulation, but a heterogeneous phase is generated, and the generation of the heterogeneous phase inhibits the expression of electromagnetic properties.
  • the electromagnetic current could not be measured at room temperature, and the electric polarization P could not be obtained.
  • sample numbers 4 to 6, 8, 13, 15, and 22 to 25 in which the substitution molar ratio y / 2 of Zn is 0.4 or less and the Co content of the Co site is large are the heat treatments after firing. It was found that a large electric polarization P of 10 ⁇ C / m 2 or more can be obtained even when the pressure is 0.1 MPa, and a large electromagnetic effect can be exhibited.
  • Sample No. 5 is a graph showing time-dependent changes in the magnetic field and current density J.
  • the horizontal axis is time (s)
  • the right vertical axis is magnetic field (T)
  • the left vertical axis is current density J ( ⁇ A / m 2 ).
  • FIG. 6 is a graph showing the change over time in the electric polarization P and current density J of sample No. 5.
  • the horizontal axis represents time (s)
  • the right vertical axis represents electric polarization P ( ⁇ C / m 2 )
  • the left vertical axis is the current density J ( ⁇ A / m 2 ).
  • This electric polarization characteristic is that the electric polarization P is induced in a specific direction at a low magnetic field, and the electric polarization P once becomes zero and disappears in the vicinity of the zero magnetic field where the magnetic field is substantially zero, and the magnetic field changes from negative to positive or positive. When reversed from negative to negative, the electric polarization P is also induced in the direction opposite to the specific direction.
  • the electric polarization P becomes 17.5 ⁇ C / m 2 at a room temperature of 300 K and a low magnetic field, and an electric polarization P equivalent to or higher than the hexagonal Z-type crystal structure as in Patent Document 3 is obtained. It turns out that it is obtained.
  • sample numbers 3, 4, 6, 8, 13, 15, and 22 to 25 in which good electric polarization P was obtained, the sample was measured for sample number 5 It was confirmed that when the polarity of the magnetic field is reversed, the polarity of the electric polarization P is also reversed.
  • oxide ceramics having ferromagnetic dielectric properties at room temperature and in a low magnetic field can be obtained as has been clarified in each sample.
  • the electromagnetic coupling coefficient ⁇ was determined based on the formula (8) described in [Mode for Carrying Out the Invention].
  • the vacuum permeability ⁇ 0 is 4 ⁇ ⁇ 10 ⁇ 7 H / m.
  • FIG. 7 is a diagram showing the relationship between the magnetic field and the electromagnetic coupling coefficient ⁇ , where the horizontal axis represents the magnetic field (T) and the vertical axis represents the electromagnetic coupling coefficient ⁇ (ps / m).
  • the electromagnetic coupling coefficient ⁇ is about 1450 ps / m at a substantially zero magnetic field, which is three times larger than that of Patent Document 3 (maximum 470 ps / m). It has been found that a ferromagnetic dielectric material having ⁇ can be obtained.
  • the oxide ceramics of the present invention can obtain an electromagnetic coupling coefficient ⁇ of 1000 ps / m or more at room temperature and substantially zero magnetic field, and the electric polarization P is 5.0 ⁇ C / m 2 or more, particularly at the Co site. It was found that when y of the Zn substitution molar ratio y / 2 was suppressed to 0.40 or less, the electric polarization P exhibited a large electromagnetic effect of 10 ⁇ C / m 2 or more.
  • Fe 2 O 3 , SrCO 3 , BaCO 3 , Co 3 O 4 , NiO, and Al 2 O 3 were prepared as ceramic raw materials.
  • the ceramic element so that the Ba substitution molar ratio x / 2, the Ni substitution molar ratio y / 2 y, and the Al substitution molar ratio z / 12 z have the compositions shown in Table 2.
  • the raw material was weighed.
  • samples Nos. 31 to 55 were prepared by the same method and procedure as in Example 1, except that the heat treatment after firing was performed in an oxygen atmosphere of 1 MPa for all the samples.
  • each sample had the composition represented in Table 2, and hexagonal Y It was confirmed to have a type crystal structure. Further, when the specific resistance ⁇ of each of the samples Nos. 31 to 55 was measured by the same method and procedure as in Example 1, it had a specific resistance ⁇ of 50 M ⁇ ⁇ cm or more and sufficient insulation was obtained. It was confirmed.
  • Example 2 the electromagnetic current was measured by the same method and procedure as in Example 1, and the current density J of the measured electromagnetic current was integrated over time.
  • the electric polarization P as an index was obtained.
  • Table 2 shows the composition and electric polarization P for each of the sample numbers 31 to 55.
  • Sample No. 31 had a substitution molar ratio y / 2 of y of 2.0, and since the content of Ni was large, the electromagnetic effect could not be shown.
  • Sample No. 32 had a substitution molar ratio y / 2 of y of 1.8 and a large Ni content, so that the electromagnetism current could not be measured and the electric polarization P could not be obtained.
  • Sample Nos. 40 and 41 have a low Al substitution molar ratio of z / 12 of 0.7, and, like Sample Nos. 10 and 11 of Example 1, induce a helical magnetic structure that generates electric polarization P at room temperature. The electromagnetic current could not be measured.
  • Sample Nos. 46 and 47 had a high Al substitution molar ratio z / 12 z of 1.3. Like Sample Nos. 16 and 17 of Example 1, the insulation properties were good, but a heterogeneous phase was formed. The generation of the heterogeneous phase hindered the expression of the electromagnetic characteristics, and the electromagnetic current could not be measured at room temperature, and the electric polarization P was not obtained.
  • FIG. 8 is a diagram showing the change over time of the magnetic field and current density J of sample number 35, where the horizontal axis is the magnetic field B (T), the right vertical axis is the electric polarization P ( ⁇ C / m 2 ), and the left vertical axis is the current density. J ( ⁇ A / m 2 ). Electromagnetic properties are shown.
  • FIG. 9 is a diagram showing the relationship between the magnetic field and the electromagnetic coupling coefficient ⁇ , where the horizontal axis represents the magnetic field (T) and the vertical axis represents the electromagnetic coupling coefficient ⁇ (ps / m).
  • the electromagnetic coupling coefficient ⁇ is about 1800 ps / m in absolute value with a substantially zero magnetic field, and it has been found that a ferromagnetic dielectric material having a large electromagnetic coupling coefficient ⁇ can be obtained.
  • the oxide ceramic of the present invention can obtain a large electromagnetic coupling coefficient ⁇ at room temperature and a substantially zero magnetic field, and the electric polarization P also exhibits a large electromagnetic effect of 5.0 ⁇ C / m 2 or more. I understood.
  • Fe 2 O 3 , SrCO 3 , BaCO 3 , Co 3 O 4 , ZnO, NiO, and Al 2 O 3 were prepared as ceramic raw materials.
  • samples Nos. 61 to 66 were prepared by the same method and procedure as in Example 1 except that the heat treatment after firing was performed for all the samples in an oxygen atmosphere of 1 MPa.
  • each sample had the composition shown in Table 3, and hexagonal Y It was confirmed to have a type crystal structure. Further, when the specific resistance ⁇ of each of the samples Nos. 61 to 66 was measured by the same method and procedure as in Example 1, it had a specific resistance ⁇ of 50 M ⁇ ⁇ cm or more and sufficient insulation was obtained. It was confirmed.
  • the electromagnetic current was measured by the same method and procedure as in Example 1, and the current density J of the measured electromagnetic current was integrated over time.
  • the electric polarization P as an index was obtained.
  • Table 3 shows the composition and electric polarization P for each of the sample numbers 61 to 66.
  • Ferroelectric dielectric properties with good electrical polarization P can be obtained with a low magnetic field and a significantly larger electromagnetic coupling coefficient than conventional ones at a room temperature of about 300K and substantially zero magnetic field.
  • Oxide ceramics can be obtained, and various ceramic electronic parts such as variable inductors, magnetic sensors, and nonvolatile memories can be realized using the oxide ceramics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Magnetic Ceramics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 酸化物セラミックスは、一般式[Sr2-xBaCo2-y(ZnNi1-uFe12-zAl22]で表される。ここで、x、zは、それぞれ0.7≦x≦1.3、0.8≦z≦1.2である。yは、0.5≦u≦1.0のときは0≦y≦0.8であり、0≦u<0.5のときは0≦y≦1.6である。yは、好ましくは0.4以下である。そして、セラミック電子部品としての可変インダクタは、部品素体1が、この酸化物セラミックスで形成されている。そして、Cu等の導電性材料で形成されたコイル4が、外部電極2aと外部電極2bとを懸架するように巻回されている。これにより従来に比べ室温で格段に大きな電気磁気効果の発現が容易に可能な酸化物セラミックス、及びこの酸化物セラミックスを使用したセラミック電子部品を実現する。

Description

酸化物セラミックス、及びセラミック電子部品
 本発明は、酸化物セラミックス、及びセラミック電子部品に関し、より詳しくは電気磁気効果を示す強磁性誘電体材料で形成された酸化物セラミックス、及びこの酸化物セラミックスを使用した可変インダクタ等のセラミック電子部品に関する。
 近年、強磁性と強誘電性とが共存して複合的な作用を奏する強磁性誘電体(マルチフェロイックス(Multiferroics))材料が注目され、盛んに研究・開発されている。
 この強磁性誘電体材料は、磁界を作用させると螺旋型の磁気秩序を誘起させて強誘電性を発現し、電気分極を生じさせたり、電気分極や誘電率が変化し、電界を作用させると磁化が生じたり、磁化が変化するいわゆる電気磁気効果を示すことが知られている。
 強磁性誘電体材料は、上述した電気磁気効果により、電界による磁化の変化や磁界による電気分極の変化を生じさせることができることから、例えば、電界の印加によって透磁率・磁化が変化する可変インダクタや記憶媒体の書き込みヘッド用の可変磁化デバイス、或いは磁気を検出する磁気センサ、更には不揮発性メモリ等の各種セラミック電子部品への応用が期待されている。
 そして、例えば、特許文献1には、強誘電性と、スピンの向きが円錐(円錐の頂点の開き角度αは0度<α≦90度の範囲)の外側を沿うように回転しているスピン構造を有する強磁性を合わせ持つマルチフェロイック固体材料に、外部磁場を印加することにより、前記外部磁場とほぼ直交した電気分極の向きを制御するようにしたマルチフェロイック素子が提案されている。
 この特許文献1では、強磁性誘電体材料(マルチフェロイック材料)としてCoCr(M=Mn,Fe,Co,Ni)を使用することにより、26K付近の極低温領域で磁界の作用によって電気分極を生じさせ、5K付近で2μC/mの電気分極を得ている。
 また、特許文献2には、酸化鉄を主原料として含む強誘電性と強磁性を併せもつマルチフェロイック固体材料で、300ガウス以下の弱い外部磁場により電流を誘起させるようにしたマルチフェロイック素子が提案されている。
 この特許文献2では、強磁性誘電体材料(マルチフェロイック材料)として、BaMgFe1222のフェライト化合物を使用し、300G(0.03T)の低磁界を作用させた場合に、-268℃(5K)で交流磁場印加に相応して電流が流れ、電気分極も正負が交互に発生していることが記載されている。
 また、特許文献3には、一般式(Sr1-αBaα(Co1-ββFe2441+δ(但し、式中、Bは、Ni、Zn、Mn、Mg及びCuからなる群から選ばれる一種以上の元素であり、α、β、δは、それぞれ、0≦α≦0.3、0≦β≦0.3、-1≦δ≦1である。)で示される酸化物セラミックスを主要成分として構成され、250~350Kの温度範囲かつ0.05T(テスラ)以下の磁場範囲において、電気磁気効果を有する電気磁気効果材料が提案されている。
 この特許文献3では、上記一般式で示される六方晶Z型結晶構造を有する強磁性誘電体材料を使用し、-0.05T~+0.05Tの間で掃引したところ、室温付近かつ0.05T以下の磁界範囲で電気分極が1.0~9.5μC/mであって電気磁気結合係数が100ps/m以上の領域を有し、最大で470ps/mを有する強磁性誘電体材料を得ている。
国際公開2007/135817(請求項1、3、段落番号〔0031〕、図7等) 特開2009-224563号(請求項1、3、段落番号〔0032〕、図7等) 特開2012-1396号公報(請求項1、段落番号〔0010〕、〔0061〕、表3、図3等)
 ところで、強磁性誘電体材料を可変インダクタや不揮発性メモリ等の各種電子部品に応用するためには、室温で電気磁気効果を発現させる必要がある。
 しかしながら、上記特許文献1及び2では、室温よりも遥かに低い低温域でのみ電気磁気効果が発現されており、室温で発現させることができないため、電気磁気効果を利用した実用的な各種セラミック電子部品を実現するのは困難な状況にある。
 また、特許文献3では、六方晶Z型結晶構造を有する強磁性誘電体材料を使用することにより、室温付近で最大470ps/mの電気磁気結合係数を得ているものの、実質的なゼロ磁界(ゼロ磁界乃至ゼロ磁界近傍域)で最大値を得ることはできず、大きな電気機械結合係数を得るためには5~10mT程度の磁気バイアスが必要となる。また、特許文献3では、上述したように比較的大きな電気磁気結合係数を得ているが、実用的なセラミック電子部品を実現するためには、より一層大きな電気磁気結合係数を有する強磁性誘電体材料の出現が望まれる。
 本発明はこのような事情に鑑みなされたものであって、従来に比べ室温で格段に大きな電気磁気効果の発現が容易に可能な酸化物セラミックス、及びこの酸化物セラミックスを使用したセラミック電子部品を提供することを目的とする。
 一般式(Sr,Ba)CoFe1222で表されるフェライト化合物で形成された酸化物セラミックスは、低磁界での電気分極の生成及び制御が可能であり、しかも、強誘電性の発現が可能な螺旋型の磁気秩序が比較的高温まで安定的に維持できることから、改良を加えることによって室温での電気磁気効果の発現が可能であると考えられる。
 そこで、本発明者らは、上記(Sr,Ba)CoFe1222系化合物についてCoの一部をZnやNiで置換し、さらにはFeの一部をAlで置換して試行誤を繰り返し、鋭意研究を行ったところ、BaサイトのBaとSrの配合比率、CoサイトのCoと(Zn,Ni)との配合比率、及びFeサイトのFeとAlとの配合比率をそれぞれ所定範囲とすることにより、室温かつゼロ磁界乃至ゼロ磁界近傍域で従来では実現できなかった格段に大きな電気磁気結合係数を得ることができ、しかも低磁界で良好な電気分極を有する強磁性誘電体を得ることができるという知見を得た。
 また、本発明者らの更なる鋭意研究の結果、上記(Sr,Ba)CoFe1222系化合物は、典型的には六方晶Y型結晶構造を有するが、六方晶系から対称性が若干変位し、該六方晶系よりも対称性の低い晶系であっても、主成分中にSr、Ba、Co、及びFeを含有したフェライト化合物であれば、Sr、Ba、Zn、Ni、及びAlを上述した形態で所定量含有させることにより、同様の効果が得られることが分かった。
 本発明はこのような知見に基づきなされたものであって、本発明に係る酸化物セラミックスは、少なくともSr、Ba、Co、及びFeを含有したフェライト化合物で形成され、前記Baは、前記Srの一部を置換する形態で含有されると共に、前記Baの含有量を前記Ba及び前記Srの総量に対しモル比換算でx/2としたときに、xは0.7~1.3であり、Zn及びNiのうちの少なくともいずれか一方の元素Mが、前記Coの一部を置換する形態で含有されると共に、前記元素Mの含有量を前記元素M及び前記Coの総量に対しモル比換算でy/2としたときに、元素MがZnで形成されている場合、及び前記Znの含有量がモル比換算で前記Niの含有量以上となるように元素Mが配合されている場合は、yは0.8以下(0を含む。)であり;元素MがNiで形成されている場合、及び前記Znの含有量がモル比換算で前記Niの含有量未満となるように元素Mが配合されている場合は、yは1.6以下(0を含む。)であり、かつ、Alが、前記Feの一部を置換する形態で含有されると共に、前記Alの含有量を前記Al及び前記Feの総量に対しモル比換算でz/12としたときに、zは0.8~1.2であることを特徴としている。
 また、本発明の酸化物セラミックスは、一般式[Sr2-xBaCo2-y(ZnNi1-uFe12-zAl22](ただし、0.7≦x≦1.3、0≦y≦0.8、0.8≦z≦1.2、0.5≦u≦1.0)で表されるのが好ましい。
 さらに、本発明の酸化物セラミックスは、一般式[Sr2-xBaCo2-y(ZnNi1-uFe12-zAl22](ただし、0.7≦x≦1.3、0≦y≦1.6、0.8≦z≦1.2、0≦u<0.5)で表されるのも好ましい。
 また、本発明者らは、更に鋭意研究を重ねたところ、前記yを0.4以下に抑制することにより、焼成後の熱処理を0.1MPa(大気圧)の酸素雰囲気で行なっても十分な絶縁性を確保でき、これにより簡素な製造プロセスでより大きな電気分極を有する強磁性誘電体を得ることができることが分かった。
 すなわち、本発明の酸化物セラミックスは、前記yが、0.4以下であるのが好ましい。
 また、本発明の酸化物セラミックスは、前記yが0.4以下の場合は、大気雰囲気中で熱処理されてなるのが好ましい。
 これにより高酸素雰囲気で熱処理する必要もなく、製造プロセスが簡素で済むことから比較的低コストで製造することができ、量産性に適したものとなる。
 また、本発明の酸化物セラミックスは、強磁性誘電体の指標となる電気磁気結合係数は、印加された磁界が実質的なゼロ磁界で最大値を示すのが好ましい。
 これにより磁気バイアスを要することなく、所望の大きな電気磁気結合係数を得ることができる。
 ここで、「実質的なゼロ磁界」とは、ゼロ磁界のみならず、特性に影響を与えない程度のゼロ磁界近傍域(つまり、弱磁界領域)をも含むことを意味する。
 また、本発明の酸化物セラミックスは、電気分極の極性は、磁界の極性が反転した場合に反転するのも好ましい。
 これにより印加磁界の極性が反転したときに電気分極の極性も反転する場合であっても、印加磁界の極性が反転しても電気分極の極性は反転しない材料系と少なくとも同等以上の電気分極を確保することが可能となる。
 また、本発明に係るセラミック電子部品は、部品素体の表面に外部電極が形成されたセラミック電子部品であって、前記部品素体が、上記酸化物セラミックスで形成されていることを特徴としている。
 また、本発明のセラミック電子部品は、コイルが、前記部品素体の透磁率に応じたインダクタンスを有するように配されているのが好ましい。
 これにより強磁性誘電特性を活用した磁化スイッチや可変インダクタ等の各種セラミック電子部品を容易に得ることができる。
 さらに、本発明のセラミック電子部品は、内部電極が、前記部品素体に埋設されているのも好ましい。
 本発明の酸化物セラミックスによれば、少なくともSr、Ba、Co、及びFeを含有したフェライト化合物で形成され、前記Baは、前記Srの一部を置換する形態で含有され、Zn及びNiのうちの少なくとも一方の元素Mが、前記Coの一部を置換する形態で含有され、かつ、Alが、前記Feの一部を置換する形態で含有されると共に、これらBa、元素M(Zn、Ni)、Alの含有量が上述したように所定範囲とされているので、室温かつ実質的なゼロ磁界で従来では実現できなかった格段に大きな電気磁気結合係数を得ることができ、かつ低磁界で良好な電気分極を有する強磁性誘電体を得ることができる。
 また、本発明のセラミック電子部品によれば、部品素体の表面に外部電極が形成されたセラミック電子部品であって、前記部品素体が、上記いずれかに記載の酸化物セラミックスで形成されるので、室温かつ低磁界で大きな電気磁気効果を発現できる可変インダクタ等の各種セラミック電子部品を実現することができる。
本発明に係る酸化物セラミックスを使用して形成されたセラミック電子部品の一実施の形態を示す正面図である。 図1の断面図である。 実施例で使用した分極処理装置を模式的に示した斜視図である。 実施例で使用した電気磁気電流測定装置を模式的に示した斜視図である。 試料番号5の電流密度及び磁界の経時変化を示す図である。 試料番号5の電流密度及び電気分極の経時変化を示す図である。 試料番号5の電気磁気結合係数特性を示す図である。 試料番号35の電流密度及び電気分極の経時変化を示す図である。 試料番号35の電気磁気結合係数特性を示す図である。
 次に、本発明の実施の形態を詳説する。
 本発明の一実施の形態としての酸化物セラミックスは、少なくともSr、Ba、Co、及びFeを含有した六方晶Y型結晶構造を有している。
 この六方晶Y型結晶構造は、スピネル構造(CoO・Fe)のSブロックと(Sr,Ba)及びO(酸素原子)による六方最密充填構造のTブロックとが、T-S-T-S-T-S-・・・の順序で積層された積層構造を有している。
 そして、本実施の形態では、Baが、Srの一部を置換する形態で含有されると共に、Baの含有量をモル比換算でx/2としたときに、xは0.7~1.3とされている。
 また、本酸化物セラミックスは、Zn及びNiのうちの少なくとも一方の元素Mが、前記Coの一部を置換する形態で含有されていてもよい。
 さらに、元素Mの含有量を元素M及びCoの総量に対しモル比換算でy/2としたときに、yは、元素Mの構成成分の成分組成に応じて以下のように設定されている。
 すなわち、元素MがZnで形成されている場合、及びZnの含有量がモル比換算でNiの含有量以上となるように元素Mが配合されている場合は、yは0.8以下(0を含む。)に設定される。
 一方、元素MがNiで形成されている場合、及び前記Znの含有量がモル比換算で前記Niの含有量未満となるように元素Mが配合されている場合は、yは1.6以下(0を含む。)に設定される。
 また、本酸化物セラミックスは、Alが、前記Feの一部を置換する形態で含有されると共に、前記Alの含有量を前記Al及び前記Feの総量に対しモル比換算でz/12としたときに、zは0.8~1.2とされている。
 したがって、本酸化物セラミックスは、六方晶Y型結晶構造を有するSrBaCoFe1222{(Sr,Ba)O・(CoO)・(Fe}系化合物を主成分とし、下記一般式(A)で表すことができる。
 Sr2-xBaCo2-y(ZnNi1-uFe12-zAl22 ...(A)
 そして、(Sr,Ba)サイト中のSrとBaの総量に対するBaの含有モル比(以下、「Baの置換モル比」という)x/2のx、及びFeサイトのFeとAlの総量に対するAlの含有モル比(以下、「Alの置換モル比」という。)z/12のzは、数式(1)~(2)を満足している。
 0.7≦x≦1.3 ...(1)
 0.8≦z≦1.2 ...(2)
 また、CoサイトのCoと元素M(Zn及びNi)の総量に対する元素Mの含有モル比(以下、「元素Mの置換モル比」という。)y/2のyは、CoサイトのZnとNiとの配合比率に応じ、数式(3)、(4)を満足するように形成されている。
 具体的には、元素MがZnで形成されている場合、及び前記Znの含有量がモル比換算で前記Niの含有量以上となるように元素Mが配合されている場合、すなわち、数式(3a)が成立する場合は、yは数式(3)を満足している。
0.5≦u≦1.0 ...(3a)
 0≦y≦0.8   ...(3)
 一方、元素MがNiで形成されている場合、及び前記Znの含有量がモル比換算で前記Niの含有量未満となるように元素Mが配合されている場合、すなわち数式(4a)が成立する場合は、yは数式(4)を満足している。
0≦u<0.5   ...(4a)
0≦y≦1.6   ...(4)
 このように本酸化物セラミックスは、一般式(A)が、数式(1)及び(2)を満足し、かつCoサイトのZnとNiとの配合比率に応じ、数式(3)及び(4)を満足しており、これにより良好な絶縁性を有すると共に、室温かつ実質的なゼロ磁界(ゼロ磁界及びゼロ磁界近傍域)で大きな電気磁気結合係数を得ることができ、かつ低磁界で良好な電気分極を得ることが可能となり、大きな電気磁気効果を発現することができる。
 すなわち、電気磁気効果を示す強磁性誘電体材料では、螺旋型の磁気秩序が生じると電気分極Pが誘起され、電界によって電気分極の方向を操作することにより磁気秩序が操作できることから、電気分極Pと磁気秩序との間には密接な関係がある。したがって、数式(5)に示すように、磁界の変化に対する電気分極Pの変化を電気磁気結合係数αと定義することにより、該電気磁気結合係数αで強磁性誘電特性を評価することができる。
 α=μ(dP/dB)...(5)
 ここで、μは真空の透磁率(=4π×10-7H/m)である。
 一方、電気磁気電流の電流密度Jは、数式(6)で表わすことができる。
 J=dP/dt ...(6)
 したがって、電気磁気電流の電流密度Jを時間tで積分することにより、電気分極Pを求めることができる。
 また、磁界Bの変化に対する電気分極Pの変化は、数式(7)で表わされる。
 dP/dB=(dP/dt)/(dB/dt)=J/(dB/dt)...(7)
 ここで、dB/dtは磁場の掃引速度を示している。
 数式(7)に上記数式(5)を代入すると電気磁気結合係数αは数式(8)で表わすことができる。
 α=(μ・J)/(dB/dt)...(8)
 したがって、電気磁気結合係数αは、真空の透磁率μと電流密度Jとの積を磁界の掃引速度(dB/dt)で除算することにより求めることができる。
 また、電気磁気結合係数αは、数式(8)から明らかなように、電気磁気電流の電流密度Jが大きいほど大きくなる。したがって電気分極Pの変化率が大きいほど電気磁気結合係数αは大きくなって巨大な電気磁気効果を得ることができ、強磁性誘電体となる。さらに、電気磁気結合係数αは、磁界Bを掃引することで生じる電気分極Pから求められることから、電界を印加した際の磁化の変化とほぼ等価であり、したがって、電気磁気結合係数αが大きいほど、逆の効果である電圧を印加した際の磁化や透磁率の変化も大きくなる。
 そして、本実施の形態では、上述したように、一般式(A)が、数式(1)及び(2)を満足し、かつCoサイトのZnとNiとの配合比率に応じ、数式(3)及び(4)を満足しているので、低磁界で良好な電気分極Pを得ることができ、実質的なゼロ磁界で大きな電気磁気結合係数αを得ることができる。
 本実施の形態では、電気分極Pは低磁界で特定方向に誘起され、実質的なゼロ磁界で一旦ほぼゼロになって消滅し、その後、ゼロ磁界を挟んで極性が反転すると、電気分極Pも反転する。例えば、印加磁界の極性が正から負に反転すると、電気分極の極性も正から負に反転し、印加磁界の極性が負から正に反転すると、電気分極の極性も負から正に反転する。
 そして、このように磁界の極性反転に伴い、電気分極Pの極性が反転すると、上述した特定方向とは逆方向に電気分極Pが誘起され、これにより低磁界で良好な電気分極Pを得ることができる。また、分極の方向は、後述する磁場中で行う電界分極処理の極性に依存し、所望の分極方向に調整することができる。
 すなわち、従来の強磁性誘電体材料、例えば上記特許文献3のような六方晶Z型結晶構造の酸化物セラミックスでは、印加磁界の極性が正から負に反転しても、電気分極の極性は反転しなかったが、本酸化物セラミックスは、このような非反転タイプの強磁性誘電体材料と同等程度の電気分極Pを確保することができる。
 このように印加磁界の反転に伴い、実質的なゼロ磁界で電気分極Pの極性が反転することから、前記ゼロ磁界での電気分極Pの変化率も大きくなり、これにより前記ゼロ磁界で従来に比べ格段に大きな電気磁気結合係数αを得ることが可能となる。
 具体的には従来の強磁性誘電体材料、例えば特許文献3のような六方晶Z型結晶構造の酸化物セラミックスに比べても、室温で3倍程度の格段に大きな電気磁気結合係数を得ることができる。
 ここで、Baの置換モル比x/2のxを、上記数式(1)に示すように0.7~1.3の範囲としたのは、Baの置換モル比x/2のxが0.7未満又は1.3超になっても、0.2MPa以上の酸素雰囲気で熱処理することにより絶縁性は十分に確保できるが、室温で螺旋型の磁気秩序相を誘起するのが困難となり、電気分極を生成できなくなるおそれがあるからである。
 また、元素Mの置換モル比y/2のyを、CoサイトのZnとNiとの配合比率に応じ、数式(3)及び(4)に示すようにしたのは、元素Mの置換モル比y/2のyが0.8(uが0.5≦u≦1.0の場合)又は1.6(uが0≦u<0.5の場合)を超えると、Coの含有モル量が過少となって室温で電気磁気電流を計測できなくなり、電気分極を生成できなくなるおそれがあるからである。
 また、焼成後の熱処理雰囲気を考慮すると、元素Mの置換モル比y/2のyは0.4以下が好ましい。後述するように絶縁性を向上させるために、通常、焼成後のセラミック焼結体に熱処理を施すが、元素Mの置換モル比y/2のyを0.4超とした場合、十分な絶縁性の向上を図るためには、焼成後の熱処理を0.2MPa以上の高酸素雰囲気で行なう必要がある。これに対し、元素Mの置換モル比y/2のyを0.4以下に抑制してCoの含有モル量を増量させると、焼成後の熱処理を大気雰囲気(0.1MPa)下で行なっても十分な絶縁性が得られることから、量産性、生産コスト等を考慮すると、元素Mの置換モル比y/2のyは0.4以下が好ましい。
 また、Alの置換モル比z/12のzを、上記数式(2)に示すように0.8~1.2の範囲としたのは以下の理由による。
 すなわち、Alの置換モル比z/12のzが0.8未満になると、室温で螺旋型の磁気秩序相を誘起するのが困難となり、電気分極を生成できなくなるおそれがある。
 一方、Alの置換モル比z/12のzが1.2を超えると、上述と同様、絶縁性は十分に確保できるものの、Alの固溶限界を超えてしまって六方晶Y型結晶相以外の異相が生成されやすくなり、このため異相が電気磁気特性の発現を阻害し、その結果電気分極を得るのが困難になる。
 尚、上記実施の形態では、Sブロック、Tブロックの積層周期を有する六方晶Y型結晶構造のフェライト化合物について詳述したが、積層周期の周期構造が一部崩れ、結晶の対称性が六方晶系よりも低い晶系であってもよい。
 また、結晶格子の所定原子位置に配位されたイオンが、前記所定原子位置から若干変位し、結晶の対称性が六方晶系よりも低い晶系であってもよい。例えば、六方晶Y型結晶構造では、結晶を構成するO2-、Co2+等のイオンは、結晶の対称性を記述する空間群がP6/mmcで定義される所定原子位置に配される。しかるに、本発明は、上記イオンが前記所定原子位置から移動して他の空間群で定義される原子位置に配され、結晶の対称性が六方晶系よりも低くなっているような結晶構造にも適用できる。
 すなわち、本酸化物セラミックスは、少なくともSr、Ba、Co、Feを含有したフェライト化合物に上述した所定量のSr、Ba、Zn、Ni、Alを含有させるのが重要であり、結晶の対称性が六方晶系よりも若干低い晶系であっても、本発明の所期の目的を達成することができる。
 次に、本酸化物セラミックスの製造方法を詳述する。
 まず、セラミック素原料としてFe等のFe化合物、SrCO等のSr化合物、BaCO等のBa化合物、ZnO等のZn化合物、NiO等のNi化合物、Co等のCo化合物、及びAl等のAl化合物を用意する。
 そして、焼成後の組成において、上記一般式(A)が、数式(1)、(2)を満足し、かつCoサイトのZnとNiとの配合比率に応じ数式(3)、(4)を満足するように、各セラミック素原料を秤量する。
 次に、これら秤量されたセラミック素原料を部分安定化ジルコニウム(以下、「PSZ」という。)ボール等の粉砕媒体、分散剤及び純水等の溶媒と共にポットミル等の粉砕機に投入し、十分に混合粉砕し、混合物を得る。
 次に、上記混合物を乾燥させ、整粒した後、1000~1100℃の温度で大気雰囲気下、所定時間仮焼し、仮焼物を得る。
 次いで、この仮焼物を整粒した後、粉砕媒体、分散剤、及びエタノールやトルエン等の有機溶媒と共に、再度粉砕機に投入し、十分に混合粉砕を行い、その後、バインダ溶液を添加し、十分に混合し、これによりセラミックスラリーを得る。
 尚、バインダ溶液は、特に限定されるものではなく、例えばポリビニルブチラール樹脂等の有機バインダをエタノールやトルエン等の有機溶媒に溶解させ、必要に応じて可塑剤等の添加物を添加したものを使用することができる。
 次いで、このように形成されたセラミックスラリーをドクターブレード法等の成形加工法を使用してシート状に成形し、所定寸法に切断し、セラミックグリーンシートを得る。そして、このセラミックグリーンシートを所定枚数積層して圧着した後、所定寸法に切断し、セラミック成形体を得る。
 次に、このセラミック成形体を、大気雰囲気下、300~500℃で脱バインダ処理し、その後1150~1250℃で大気雰囲気下、焼成処理を行ない、セラミック焼結体を得る。
 そしてその後、元素Mの置換モル比y/2のyに応じ、0.1MPa(大気圧)、又は0.2MPa以上の酸素濃度雰囲気下、十分に熱処理を行い、これにより酸化物セラミックスが作製される。
 このように本酸化物セラミックスによれば、少なくともSr、Ba、Co、及びFeを含有したフェライト化合物で形成され、一般式(A)が、数式(1)、(2)を満足し、かつCoサイトのZnとNiとの配合比率に応じ数式(3)、(4)を満足しているので、磁気バイアスを要することなく室温かつ実質的なゼロ磁界で大きな電気磁気結合係数αを得ることができる。また、低磁界で良好な電気分極Pを得ることができ、室温で巨大な電気磁気効果を発現できる強磁性誘電体の酸化物セラミックスを得ることができる。
 次に、本酸化物セラミックスを使用したセラミック電子部品について詳述する。
 図1は、本発明に係るセラミック電子部品としての可変インダクタの一実施の形態を示す正面図であり、図2は、その断面図である。
 この可変インダクタは、上記酸化物セラミックスで形成された部品素体1と、該部品素体1の両端部に形成された外部電極2a、2bとを有している。
 また、この可変インダクタは、高周波信号が流れた際に部品素体1内を磁束が通過するようにコイルが配されている。具体的には、この実施の形態では、Cu等の導電性材料で形成されたコイル4が、外部電極2aと外部電極2bとを懸架するように巻回されている。
 さらに、部品素体1には、内部電極3a~3cが並列状に埋設されている。そして、これら内部電極3a~3cのうち、内部電極3a、3cは一方の外部電極2aに電気的に接続され、内部電極3bは他方の外部電極2bに接続されている。このセラミック電子部品は、内部電極3aと内部電極3b、及び内部電極3bと内部電極3cとの間で静電容量の取得が可能とされている。
 尚、外部電極2a、2b及び内部電極3a~3cを形成する電極材料としては、良導電性を有するものであれば、特に限定されるものではなく、Pd、Pt、Ag、Ni、Cu等各種金属材料を使用することができる。
 このように構成された可変インダクタでは、部品素体1が、上述した強磁性誘電体からなる酸化物セラミックスで形成され、かつコイル4が外部電極2aと外部電極2bとを懸架するように巻回されているので、コイル4に高周波信号が入力されると、矢印A方向に生じた磁束が部品素体1内を通過し、コイルの巻き数や素子形状、及び部品素体1の透磁率に応じたインダクタンスが得られる。また、外部電極2a、2bに電圧(電界)が印加されると、電気磁気効果により磁化の変化が生じ、コイルのインダクタンスLを変化させることが可能となる。そして、電圧を変化させることにより、インダクタンスLの変化率ΔLを制御することが可能となる。
 そして、部品素体1が、上述した本発明の酸化物セラミックスで形成されているので、絶縁性が良好で、室温かつ実質的なゼロ磁界で大きな電気磁気結合係数が得られることから磁気バイアスを要することもなく、また低磁場で電気分極を得ることができることから巨大な電気磁気効果を有する可変インダクタを得ることができる。
 上記可変インダクタは、以下のようにして製造することができる。
 まず、上記酸化物セラミックスの製造方法と同様の方法・手順で、セラミックグリーンシートを作製する。
 次いで、Pd等の導電性材料を主成分とする内部電極用導電性ペーストを用意する。そして、内部電極用導電性ペーストをセラミックグリーンシートに塗布し、該セラミックグリーンシートの表面に所定パターンの導電層を形成する。
 この後、導電層の形成されたセラミックグリーンシートと導電膜の形成されていないセラミックグリーンシートとを所定順序で積層し、その後、所定寸法に切断し、セラミック成形体を得る。
 次に、このセラミック成形体を、大気雰囲気下、300~500℃で脱バインダ処理し、その後1150~1250℃で大気雰囲気下、焼成処理を行ない、セラミック焼結体を得る。
 その後、元素Mの置換モル比yに適した所定の酸素雰囲気中で熱処理を行い、部品素体1を作製する。
 次いで、この部品素体1の両端部にAg等を主成分とする外部電極用導電性ペーストを塗布し、焼付処理を行って外部電極で2a、2bを作製し、その後、分極処理を行う。
 まず、室温で所定の磁界を印加して磁界分極を行い、次いで、磁界の方向と直交する方向に所定の電界を印加し、電界分極を行い、これにより可変インダクタが作製される。このように磁界中で分極処理を行うことにより、より大きな電気磁気効果を得ることができる。
 そして、最後に外部電極2aと外部電極2bとを懸架するようにコイル4を部品素体1の周囲に巻回し、これにより可変インダクタが製造される。
 尚、本発明は、上記実施の形態に限定されるものではない。上記実施の形態では、可変インダクタについて説明したが、本発明の酸化物セラミックスは、室温かつ実質的なゼロ磁界で大きな電気磁気結合係数を得ることができ、低磁界で電気分極を誘起して大きな電気磁気効果を発現できることから、可変インダクタ以外の各種セラミック電子部品にも適用可能である。すなわち、磁界の大きさに応じて電流を出力する磁気センサ、コイルに流れた電流が形成する磁界の大きさに応じて電流を出力する電流センサ、電界で磁化を制御する不揮発性メモリ、可変容量デバイス等の実現が可能となる。
 また、上記実施の形態では、磁界中で磁界方向と直交する方向に電界分極を行なっているが、結晶粒子が多結晶体の場合は、磁界の方向と電界分極の方向は同一方向であっても大きな電気磁気効果を得ることができる。
 また、磁界分極後に、磁界を非印加状態とし、電界分極を行なっても大きな電気磁気効果を得ることができ、使用形態や環境等に応じて適宜選択することができる。
 また、上記実施の形態では、本酸化物セラミックスの一例として、一般式(A)を挙げたが、少なくともSr、Ba、Co、Zn、Fe、Alを所定範囲内で含んでいればよく、例えばZr等の添加物を含有していても良い。また、O(酸素)の含有モル比についても、特性に影響を及ぼさない範囲で理論化学量論比からの若干のズレは許容される。さらに、絶縁抵抗の改善のためにMgOやZrOを添加してもよく、主成分が本発明の範囲内の酸化物セラミックスで構成されていれば、同様の効果を得ることが可能である。
 次に、本発明の実施例を具体的に説明する。
 セラミック素原料としてFe、SrCO、BaCO、Co、ZnO、及びAlを用意した。
 そして、焼成後のBaの置換モル比x/2のx、Znの置換モル比y/2のy、Alの置換モル比z/12のzが、表1に示す組成となるようにセラミック素原料を秤量した。
 次に、このようにして秤量されたセラミック素原料を水系高分子分散剤(花王社に製、カオーセラ2210)及び純水をPSZボールと共にポリエチレン製のポットミルに投入し、16時間混合粉砕し、混合物を得た。
 次に、上記混合物を乾燥させ、整粒した後、大気雰囲気下、1100℃の温度で4時間仮焼し、仮焼物を得た。
 一方、別途、ポリビニルブチラール系バインダ樹脂(積水化学工業社製、エスレックB「BM-2」)をエタノールとトルエンの混合溶媒に溶解させ、可塑剤を添加してバインダ溶液を作製した。
 次いで、上記仮焼物を整粒した後、溶剤系分散剤(花王社製、カオーセラ8000)、及びエタノールとトルエンの混合溶媒をPSZボールと共にポットミルに投入し、24時間混合粉砕し、その後、上記バインダ溶液を添加し、再度12時間混合し、これによりセラミックスラリーを得た。
 次いで、このように作製されたセラミックスラリーをドクターブレード法を使用し、厚みが約50μmのシート状に成形し、金型を使用して所定寸法に切断し、セラミックグリーンシートを得た。そして、このセラミックグリーンシートを所定枚数積層し、196MPaの圧力で圧着し、切断して長さ:12mm、幅:12mm、厚み:0.6mmの試料番号1~25のセラミック成形体を作製した。
 次に、試料番号1~25のセラミック成形体を、大気雰囲気下、500℃で脱バインダ処理を行った後、1200℃で大気雰囲気下、18時間焼成処理を行ない、試料番号1~25のセラミック焼結体を作製した。
 次いで、試料番号1~25のセラミック焼結体を0.1MPa(1気圧)又は1MPa(10気圧)の酸素雰囲気中、1090℃の温度で10時間熱処理を行ない、これにより試料番号1~25の各部品素体を作製した。
 具体的には、試料番号4~6、8、13、15、及び22~25の試料については、0.1MPaの酸素雰囲気(大気雰囲気)中で焼成後の熱処理を行い、その他の試料については、1MPaの酸素雰囲気中で焼成後の熱処理を行い、部品素体を作製した。
 部品素体の寸法は、長さ:10mm、幅:10mm、厚み:0.5mmであった。
 次に、上記部品素体の両主面にPtをターゲット物質にしてDCスパッタリングを行い、厚みが約300nmの表面電極を作製し、試料番号1~25の各試料を得た。尚、DCスパッタリングは、5mmTに調整された真空容器中にArガスを供給し、150Wの電力を供給して行った。
 そして、試料番号1~25の各試料について、誘導結合プラズマ発光分光(ICP)法及び蛍光X線分析(XRF)法を使用して組成分析したところ、各試料は表1で表される組成を有することが確認された。また、各試料について、X線回折(XRD)法で結晶構造を調べたところ、六方晶Y型結晶構造を有していることが確認された。
〔試料の評価〕
 試料番号1~25の各試料について、高抵抗測定計(米国ケースレー・インスツルメント社製、6487)を使用し、比抵抗ρを測定したところ、50MΩ・cm以上の比抵抗ρを有し、十分な絶縁性が得られたことが確認された。
 次に、試料番号1~25の各試料に分極処理を施した。
 図3は、分極処理装置を模式的に示した斜視図である。
 すなわち、この分極処理装置は、部品素体21の両主面に表面電極22a、22bが形成された試料23に信号線24a、24bが接続され、該信号線24aと信号線24bとの間には直流電源25が介装されている。
 尚、試料23は、上述したよう内部電極を有しており、該試料23に印加される磁界の方向(矢印Bで示す。)と電気分極が行われる電界の方向(矢印Cで示す。)とが直交するように配されている。
 そして、まず、電磁石(図示せず。)を使用し、室温で1.5Tの直流磁場を1分間印加し、矢印B方向に磁場分極を行った。次いで、表面電極22a、22b間に800V/mmの電界を印加しつつ、磁場の大きさを1.5Tから0.5Tまで徐々に低下させ、0.5Tの磁場中で3分間、矢印C方向に電気分極を行った。このように磁場中で分極処理を行って単分域化することにより、より大きな電気磁気効果を得ることが可能となる。ここでは、磁場と電場を直交するように分極処理を行ったが、磁場と電場が平行するように分極処理を行っても、略同等の電気分極P及び電気磁気結合係数αが得られることを確認している。
 また、印加する電場は、大きいほど好ましく、分極温度や組成にも依るが200V/mm以上が好ましい。また、印加磁場のついては、螺旋秩序が壊れて強誘電相から常誘電相となる磁場(室温の場合は、約1.2T以上)を印加し、電場を印加した状態で強誘電相が誘起される磁場(室温の場合は、1.2~0.05T)まで低下させるのが好ましい。
 次に、電界及び磁界を非印加状態とし、評価試料を1時間程度放置した。このように分極処理を行った後、所定時間放置することにより、更に大きな電気磁気効果を得ることが可能となる。
 次に、各試料の電気磁気電流を測定し、特性を評価した。
 図4は、試料23の特性評価装置を模式的に示した斜視図である。
 この特性評価装置は、図4の直流電源25に代えてピアコンメータ(米国ケースレー・インスツルメント社製、6487)26が設けられており、評価試料は、図5と同様、印加する磁界の方向と電気分極時の電界の方向とが直交するように配されている。
 そして、低温クライオスタット(東陽テクニカ製社製、LN-Z型)で25℃の温度に制御しながら、電磁石を使用し、0~0.2Tの磁場範囲で、0.1~1.7T/分の速度で複数回往復掃引し、その時に試料から吐き出される電荷、すなわち電気磁気電流をピアコンメータ26で計測した。
 また、上記各試料のうち、焼成後熱処理を0.1MPaの酸素雰囲気中で焼成後の熱処理を行った試料番号4~6、8、13、15、及び22~25の試料については、電気磁気特性の挙動をより詳細に評価するため、物理特性測定装置(カンタム・デザイン社製、PPMS)を使用し、以下の方法で分極処理及び電気磁気電流の測定を行った。
 すなわち、図3と同様に配された試料23に対し、超電導磁石(図示せず。)を使用し、300Kの温度で-5Tの直流磁界を1分間印加し、矢印B方向に磁界分極を行った。次いで、この状態で表面電極22a、22b間に4~8kV/cmの電界を印加しつつ、18mT/sの速度で-5Tから-0.5Tまで変化させ、測定試料を単分域化した後、電界及び磁界を非印加状態とした。
 次に、図3の直流電源25に代えてエレクトロメータ(米国ケースレー・インスツルメント社製、6517A)を信号線24aと信号線24bとの間に介装し、約0.5~1T/minの速度で磁界を掃引しながら、その時に試料から吐き出される電荷、すなわち電気磁気電流をエレクトロメータで計測した。
 次いで、これら計測された電気磁気電流の電流密度Jを時間で積分し、強誘電体の指標となる電気分極Pを求めた。
 表1は、試料番号1~25の各試料について、その組成、焼成後熱処理の酸素雰囲気、及び電気分極Pを示している。
Figure JPOXMLDOC01-appb-T000001
 試料番号1は、Znの置換モル比y/2のyが1.0であり、Znの含有量が多いため、電気磁気効果を示すことができなかった。
 試料番号2は、Znの置換モル比y/2のyが0.9であり、Znの含有量が多いため、電気磁気電流を測定できず、電気分極Pを得ることができなかった。
 試料番号7は、Baの置換モル比x/2のxが1.4であり、Baに対するSrのモル比が相対的に少なくなり、絶縁性は良好であるが、室温では電気磁気電流を測定することができず、電気分極Pが得られなかった。
 試料番号9は、Baの置換モル比x/2のxが0.6であり、Baに対するSrのモル比が相対的に多くなり、この場合も絶縁性は十分であるが、室温では電気磁気電流を測定することができず、電気分極Pが得られなかった。
 試料番号10及び11は、Alの置換モル比z/12のzが0.7と少なく、室温では電気分極Pを生じる螺旋型の磁気構造が誘起されず、電気磁気電流を測定することができなかった。
 試料番号16及び17は、Alの置換モル比z/12のzが1.3と多く、絶縁性は良好であるが、異相が生成し、該異相の生成によって電気磁気特性の発現が阻害され、室温では電気磁気電流を測定できず、電気分極Pが得られなかった。
 これに対し試料番号3~6、8、12~15、18~25は、Baの置換モル比x/2のxが0.7~1.3、Znの置換モル比がy/2のyが0.8以下、及びAlの置換モル比z/12のzが0.8~1.2であり、いずれも本発明範囲内にあるので、室温で5.0μC/m以上の良好な電気分極Pを有する電気磁気効果を発現する強磁性誘電体が得られることが分かった。
 特に、Znの置換モル比y/2のyが0.4以下であってCoサイトのCo含有量が多い試料番号4~6、8、13、15、及び22~25は、焼成後の熱処理を0.1MPaで行っても、10μC/m以上の大きな電気分極Pを得ることができ、大きな電気磁気効果を発現できることが分かった。
 すなわち、Znの置換モル比y/2のyが0.4以下となったCoサイトのCo含有量が多くなると、0.1MPaの酸素雰囲気で熱処理を行っても、10μC/m以上の大きな電気分極Pを得ることができ、したがって、Znの置換モル比y/2のyを0.4以下に抑制することにより、より簡便な製造プロセスで大きな電気磁気効果を発現できることが分かった。
 図5及び図6は試料番号5の電気磁気特性を示している。
 図5は、試料番号5は、磁界及び電流密度Jの経時変化を示す図であり、横軸は時間(s)、右縦軸は磁界(T)、左縦軸は電流密度J(μA/m)である。
 また、図6は、試料番号5の電気分極P及び電流密度Jの経時変化を示す図であり、横軸は時間(s)、右縦軸は電気分極P(μC/m)、左縦軸は電流密度J(μA/m)である。
 この図5に示すように、磁界を-0.2T~+0.2Tの範囲で一定の速度で複数回往復掃引すると、ゼロ磁界近傍で試料から電気磁気電流が流れ、電流密度Jが得られる。すなわち、-0.2T~+0.2T~-0.2Tと連続掃引しても減衰することなく、ゼロ磁界で電気磁気電流が観測されている。
 そして、この電気磁気電流の電流密度Jを積分すると、電気分極Pが求まり、図6のような電気分極特性が得られる。
 この電気分極特性は、低磁界で電気分極Pが特定方向に誘起され、実質的にゼロ磁場となるゼロ磁場近傍域で電気分極Pが一旦ゼロとなって消滅し、磁界が負から正又は正から負に反転すると電気分極Pも前記特定方向とは逆方向に誘起されている。
 このように本実施例では、磁界の極性が反転すると、電気分極Pの極性も反転することが分かる。
 そして、この図6から明らかなように、300Kの室温かつ低磁界で電気分極Pが17.5μC/mとなり、特許文献3のような六方晶Z型結晶構造と同等以上の電気分極Pが得られることが分かった。
 尚、良好な電気分極Pが得られた他の本発明試料(試料番号3、4、6、8、13、15、及び22~25)についても、電気磁気特性を測定したところ、試料番号5と同様、磁界の極性が反転すると、電気分極Pの極性も反転する電気磁気特性を示すことを確認した。
 以上、各試料で明らかにしたように、室温かつ低磁界で強磁性誘電特性を有する酸化物セラミックスが得られることが分かった。
 次に、電気磁気結合係数αを〔発明を実施するための形態〕でも述べた数式(8)に基づき求めた。
 α=(μ・J)/(dB/dt)...(8)
 ここで、真空の透磁率μは、4π×10-7H/mである。
 図7は磁界と電気磁気結合係数αとの関係を示す図であり、横軸が磁界(T)、縦軸が電気磁気結合係数α(ps/m)である。
 この図7から明らかであるように、実質的なゼロ磁場で電気磁気結合係数αが約1450ps/mとなり、特許文献3(最大470ps/m)に比べても3倍以上の大きな電気磁気結合係数αを有する強磁性誘電体材料を得ることができることが分かった。
 すなわち、本発明の酸化物セラミックスは、室温かつ実質的なゼロ磁場で1000ps/m以上の電気磁気結合係数αを得ることができ、電気分極Pも5.0μC/m以上、特にCoサイトのZnの置換モル比y/2のyを0.40以下に抑制した場合は、電気分極Pが10μC/m以上の大きな電気磁気効果を発現することが分かった。
 セラミック素原料としてFe、SrCO、BaCO、Co、NiO、及びAlを用意した。
 そして、焼成後のBaの置換モル比x/2のx、Niの置換モル比y/2のy、Alの置換モル比z/12のzが、表2に示す組成となるようにセラミック素原料を秤量した。
 その後は、全試料について、焼成後の熱処理を1MPaの酸素雰囲気中で行った以外は、実施例1と同様の方法・手順で試料番号31~55の試料を作製した。
 そして、試料番号31~55の各試料について、実施例1と同様の方法・手順で組成分析し、結晶構造を調べたところ、各試料は表2で表される組成を有し、六方晶Y型結晶構造を有していることが確認された。また、試料番号31~55の各試料について、実施例1と同様の方法・手順で比抵抗ρを測定したところ、50MΩ・cm以上の比抵抗ρを有し、十分な絶縁性が得られたことが確認された。
 次に、試料番号31~55の各試料について、実施例1と同様の方法・手順で電気磁気電流を測定し、計測された電気磁気電流の電流密度Jを時間で積分し、強誘電体の指標となる電気分極Pを求めた。
 表2は、試料番号31~55の各試料について、その組成、及び電気分極Pを示している。
Figure JPOXMLDOC01-appb-T000002
 試料番号31は、Niの置換モル比y/2のyが2.0であり、Niの含有量が多いため、電気磁気効果を示すことができなかった。
 試料番号32は、Niの置換モル比y/2のyが1.8であり、Niの含有量が多いため、電気磁気電流を測定できず、電気分極Pを得ることができなかった。
 試料番号37は、Baの置換モル比x/2のxが1.4であり、Baに対するSrのモル比が相対的に少なくなり、実施例1の試料番号7と同様、絶縁性は良好であるが、室温では電気磁気電流を測定することができず、電気分極Pが得られなかった。
 試料番号39は、Baの置換モル比x/2のxが0.6であり、Baに対するSrのモル比が相対的に多くなり、実施例1の試料番号9と同様、この場合も絶縁性は十分であるが、室温では電気磁気電流を測定することができず、電気分極Pが得られなかった。
 試料番号40及び41は、Alの置換モル比z/12のzが0.7と少なく、実施例1の試料番号10、11と同様、室温では電気分極Pを生じる螺旋型の磁気構造が誘起されず、電気磁気電流を測定することができなかった。
 試料番号46及び47は、Alの置換モル比z/12のzが1.3と多く、実施例1の試料番号16、17と同様、絶縁性は良好であるが、異相が生成し、該異相の生成によって電気磁気特性の発現が阻害され、室温では電気磁気電流を測定できず、電気分極Pが得られなかった。
 これに対し試料番号33~36、38、42~45、48~55は、Baの置換モル比x/2のxが0.7~1.3、Niの置換モル比がy/2のyが1.6以下、及びAlの置換モル比z/12のzが0.8~1.2であり、いずれも本発明範囲内にあるので、室温で5.0μC/m以上の良好な電気分極Pを有する電気磁気効果を発現する強磁性誘電体が得られることが分かった。
 図8は試料番号35の磁界及び電流密度Jの経時変化を示す図であり、横軸は磁界B(T)、右縦軸は電気分極P(μC/m)、左縦軸は電流密度J(μA/m)である。電気磁気特性を示している。
 この図8に示すように、磁界を-0.2T~+0.2Tの範囲で一定の速度で往復掃引すると、ゼロ磁界近傍で試料から電気磁気電流が流れ、電流密度Jが得られる。すなわち、-0.2T~+0.2T~-0.2Tと連続掃引しても減衰することなく、ゼロ磁界で電気磁気電流が観測されている。
 このように弱磁場中で電気分極Pが誘起され、ゼロ磁界で電気分極Pが消滅することが分かった。
 また、磁界Bの極性が負から正、又は正から負に反転すると電気分極Pの極性も正から負、又は負から正に反転することも分かった。
 図9は磁界と電気磁気結合係数αとの関係を示す図であり、横軸が磁界(T)、縦軸が電気磁気結合係数α(ps/m)である。
 図8及びこの図9から明らかであるように、磁界Bの極性に応じて電気分極Pの極性も変動し、それに連れて電気磁気結合係数αの極性も反転することが確認された。そして、実質的なゼロ磁場で電気磁気結合係数αは、絶対値で約1800ps/mとなり、大きな電気磁気結合係数αを有する強磁性誘電体材料を得ることができることが分かった。
 すなわち、本発明の酸化物セラミックスは、室温かつ実質的なゼロ磁場で大きな電気磁気結合係数αを得ることができ、電気分極Pも5.0μC/m以上の大きな電気磁気効果を発現することが分かった。
 セラミック素原料としてFe、SrCO、BaCO、Co、ZnO、NiO、及びAlを用意した。
 そして、焼成後のBaの置換モル比x/2のx、(ZnNi1-u)の置換モル比y/2のy、Alの置換モル比z/12のz、及びCoサイトのZnとNiとの総量に対するZnの配合モル比uが、表3に示す組成となるようにセラミック素原料を秤量した。
 その後は、全試料について焼成後の熱処理を1MPaの酸素雰囲気中で行った以外は、実施例1と同様の方法・手順で試料番号61~66の試料を作製した。
 そして、試料番号61~66の各試料について、実施例1と同様の方法・手順で組成分析し、結晶構造を調べたところ、各試料は表3で表される組成を有し、六方晶Y型結晶構造を有していることが確認された。また、試料番号61~66の各試料について、実施例1と同様の方法・手順で比抵抗ρを測定したところ、50MΩ・cm以上の比抵抗ρを有し、十分な絶縁性が得られたことが確認された。
 次に、試料番号61~66の各試料について、実施例1と同様の方法・手順で電気磁気電流を測定し、計測された電気磁気電流の電流密度Jを時間で積分し、強誘電体の指標となる電気分極Pを求めた。
 表3は、試料番号61~66の各試料について、その組成、及び電気分極Pを示している。
Figure JPOXMLDOC01-appb-T000003
 試料番号61~66から明らかなように、CoサイトにZn及びNiを含有させ、かつZnとNiとの配合比率を本発明範囲内で異ならせても、室温で5.0μC/m以上の良好な電気分極Pを有する電気磁気効果を発現する強磁性誘電体が得られることが分かった。
 絶縁性が良好で300K程度の室温かつ実質的なゼロ磁場で従来に比べ格段に大きな電気磁気結合係数を得ることができ、かつ低磁界で良好な電気分極Pを有する強磁性誘電特性の発現可能な酸化物セラミックスを得ることができ、この酸化物セラミックスを使用して可変インダクタや磁気センサ、不揮発性メモリ等の各種セラミック電子部品の実現が可能となる。
1 部品素体
2a、2b 外部電極
3a~3c 内部電極

Claims (10)

  1.  少なくともSr、Ba、Co、及びFeを含有したフェライト化合物で形成され、
     前記Baは、前記Srの一部を置換する形態で含有されると共に、前記Baの含有量を前記Ba及び前記Srの総量に対しモル比換算でx/2としたときに、xは0.7~1.3であり、
     Zn及びNiのうちの少なくともいずれか一方の元素Mが、前記Coの一部を置換する形態で含有されると共に、前記元素Mの含有量を前記元素M及び前記Coの総量に対しモル比換算でy/2としたときに、
     元素MがZnで形成されている場合、及び前記Znの含有量がモル比換算で前記Niの含有量以上となるように元素Mが配合されている場合は、yは0.8以下(0を含む。)であり、
     元素MがNiで形成されている場合、及び前記Znの含有量がモル比換算で前記Niの含有量未満となるように元素Mが配合されている場合は、yは1.6以下(0を含む。)であり、
     かつ、Alが、前記Feの一部を置換する形態で含有されると共に、前記Alの含有量を前記Al及び前記Feの総量に対しモル比換算でz/12としたときに、zは0.8~1.2であることを特徴とする酸化物セラミックス。
  2.  一般式[Sr2-xBaCo2-y(ZnNi1-uFe12-zAl22](ただし、0.7≦x≦1.3、0≦y≦0.8、0.8≦z≦1.2、0.5≦u≦1.0、)で表されることを特徴とする請求項1記載の酸化物セラミックス。
  3.  一般式[Sr2-xBaCo2-y(ZnNi1-uFe12-zAl22](ただし、0.7≦x≦1.3、0≦y≦1.6、0.8≦z≦1.2、0≦u<0.5)で表されることを特徴とする請求項1記載の酸化物セラミックス。
  4.  前記yは、0.4以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の酸化物セラミックス。
  5.  大気雰囲気中で熱処理されてなることを特徴とする請求項4記載の酸化物セラミックス。
  6.  強磁性誘電体の指標となる電気磁気結合係数は、印加された磁界が実質的なゼロ磁界で最大値を示すことを特徴とする請求項1乃至請求項5のいずれかに記載の酸化物セラミックス。
  7.  電気分極の極性は、磁界の極性が反転した場合に反転することを特徴とする請求項1乃至請求項6のいずれかに記載の酸化物セラミックス。
  8.  部品素体の表面に外部電極が形成されたセラミック電子部品であって、
     前記部品素体が、請求項1乃至請求項7のいずれかに記載の酸化物セラミックスで形成されていることを特徴とするセラミック電子部品。
  9.  コイルが、前記部品素体の透磁率に応じたインダクタンスを有するように配されていることを特徴とする請求項8記載のセラミック電子部品。
  10.  内部電極が、前記部品素体に埋設されていることを特徴とする請求項8又は請求項9記載のセラミック電子部品。
PCT/JP2014/065234 2013-08-22 2014-06-09 酸化物セラミックス、及びセラミック電子部品 WO2015025589A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015532741A JP6061111B2 (ja) 2013-08-22 2014-06-09 酸化物セラミックス、及びセラミック電子部品
US15/017,784 US9947460B2 (en) 2013-08-22 2016-02-08 Oxide ceramic and ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013172516 2013-08-22
JP2013-172516 2013-08-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/017,784 Continuation US9947460B2 (en) 2013-08-22 2016-02-08 Oxide ceramic and ceramic electronic component

Publications (1)

Publication Number Publication Date
WO2015025589A1 true WO2015025589A1 (ja) 2015-02-26

Family

ID=52483374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065234 WO2015025589A1 (ja) 2013-08-22 2014-06-09 酸化物セラミックス、及びセラミック電子部品

Country Status (3)

Country Link
US (1) US9947460B2 (ja)
JP (1) JP6061111B2 (ja)
WO (1) WO2015025589A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015178080A1 (ja) * 2014-05-21 2017-04-20 株式会社村田製作所 酸化物セラミックス、及びセラミック電子部品
WO2020189286A1 (ja) * 2019-03-18 2020-09-24 日本碍子株式会社 セラミックヒータ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6702296B2 (ja) * 2017-12-08 2020-06-03 株式会社村田製作所 電子部品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055832A (ja) * 2005-08-23 2007-03-08 Taiyo Yuden Co Ltd 酸化物磁性組成物及び高周波用磁性材料
WO2007135817A1 (ja) * 2006-05-24 2007-11-29 Japan Science And Technology Agency マルチフェロイック素子
JP2009224563A (ja) * 2008-03-17 2009-10-01 Japan Science & Technology Agency マルチフェロイック素子
JP2012001396A (ja) * 2010-06-17 2012-01-05 Osaka Univ 電気磁気効果材料及びその製造方法
WO2014061671A1 (ja) * 2012-10-18 2014-04-24 株式会社村田製作所 酸化物セラミックス、及びセラミック電子部品

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3078234A (en) * 1958-04-24 1963-02-19 Jr Charles M Davis Magnetostrictive ferrite
US3638207A (en) * 1969-11-17 1972-01-25 Bell Telephone Labor Inc Magnetic devices
JPS58191962A (ja) 1982-05-07 1983-11-09 Hitachi Ltd ガス検出素子
JPS59231802A (ja) 1983-06-13 1984-12-26 株式会社村田製作所 湿度センサ
JPH0672018B2 (ja) * 1989-04-22 1994-09-14 戸田工業株式会社 磁気記録用板状複合フェライト微粒子粉末及びその製造法
DE69028360T2 (de) * 1989-06-09 1997-01-23 Matsushita Electric Ind Co Ltd Verbundmaterial sowie Verfahren zu seiner Herstellung
JPH04343058A (ja) 1991-05-20 1992-11-30 Agency Of Ind Science & Technol ガス検知用素子
DE69839208T2 (de) * 1997-09-19 2009-03-12 Tdk Corp. Sintermagnet
EP0969483A4 (en) * 1998-01-23 2002-06-05 Hitachi Metals Ltd BOUND MAGNET, MAGNETIC COIL AND POWDER FERRITE FOR USE IN THEIR PREPARATION AND THEIR PRODUCTION PROCESS
US6537463B2 (en) * 1999-03-12 2003-03-25 Hitachi Metals, Ltd. Resin-bonded magnet, its product, and ferrite magnet powder and compound used therefor
JP4100562B2 (ja) * 2003-06-13 2008-06-11 日本化学工業株式会社 スピネル系複合酸化物焼成体およびその製造方法
EP1667176B1 (en) * 2003-09-12 2016-03-23 Hitachi Metals, Ltd. Ferrite sintered magnet
KR101375431B1 (ko) * 2006-03-10 2014-03-17 히타치 긴조쿠 가부시키가이샤 회전기, 본드 자석, 마그넷 롤 및 페라이트 소결 자석의 제조 방법
CN102496438B (zh) * 2007-03-01 2015-04-01 Tdk株式会社 铁氧体烧结磁铁
JP5853381B2 (ja) * 2011-03-09 2016-02-09 Tdk株式会社 アンテナ用磁性材料、並びに、アンテナ及び無線通信機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055832A (ja) * 2005-08-23 2007-03-08 Taiyo Yuden Co Ltd 酸化物磁性組成物及び高周波用磁性材料
WO2007135817A1 (ja) * 2006-05-24 2007-11-29 Japan Science And Technology Agency マルチフェロイック素子
JP2009224563A (ja) * 2008-03-17 2009-10-01 Japan Science & Technology Agency マルチフェロイック素子
JP2012001396A (ja) * 2010-06-17 2012-01-05 Osaka Univ 電気磁気効果材料及びその製造方法
WO2014061671A1 (ja) * 2012-10-18 2014-04-24 株式会社村田製作所 酸化物セラミックス、及びセラミック電子部品

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015178080A1 (ja) * 2014-05-21 2017-04-20 株式会社村田製作所 酸化物セラミックス、及びセラミック電子部品
WO2020189286A1 (ja) * 2019-03-18 2020-09-24 日本碍子株式会社 セラミックヒータ
CN113632589A (zh) * 2019-03-18 2021-11-09 日本碍子株式会社 陶瓷加热器
JPWO2020189286A1 (ja) * 2019-03-18 2021-12-23 日本碍子株式会社 セラミックヒータ
JP7248780B2 (ja) 2019-03-18 2023-03-29 日本碍子株式会社 セラミックヒータ

Also Published As

Publication number Publication date
JPWO2015025589A1 (ja) 2017-03-02
US20160155562A1 (en) 2016-06-02
JP6061111B2 (ja) 2017-01-18
US9947460B2 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
Gao et al. Enhancement of magnetoelectric properties of (1-x) Mn0. 5Zn0. 5Fe2O4-xBa0. 85Sr0. 15Ti0. 9Hf0. 1O3 composite ceramics
Soman et al. Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite
Gao et al. A comparative study of the dielectric, ferroelectric and anomalous magnetic properties of Mn0. 5Mg0. 5Fe2O4/Ba0. 8Sr0. 2Ti0. 9Zr0. 1O3 composite ceramics
Wang et al. Investigation of structural, ferroelectric and magnetic properties of Ca modified BiFeO3–BaTiO3 ceramics
Das et al. Effect of equiproprotional substitution of Zn and Mn in BaTiO 3 ceramic—An index to multiferroic applications
Jain et al. Existence of heterogeneous phases with significant improvement in electrical and magnetoelectric properties of BaFe12O19/BiFeO3 multiferroic ceramic composites
Yang et al. The effect of Bi substitution on the microstructure and magnetic properties of the Sr0. 4Ba0. 3La0. 3Fe12− xBixO19 hexagonal ferrites
Kolte et al. Magnetoelectric properties of microwave sintered BiFeO3 and Bi0. 90La0. 10Fe0. 95Mn0. 05O3 nanoceramics
Rout et al. Effect of co-substitutions (Ca–Mn) on structural, electrical and magnetic characteristics of bismuth ferrite
Alkathy et al. Onset of multiferroicity in nickel and lithium co-substituted barium titanate ceramics
Radojković et al. Tuning of BiFeO3 multiferroic properties by light doping with Nb
Deng et al. Crystal structure, impedance, and multiferroic property of SrZrO3 and MnO2 modified 0.725 BiFeO3− 0.275 BaTiO3 ceramics
Li et al. Dielectric, multiferroic and magnetodielectric properties of (1-x) BaTiO3-xSr2CoMoO6 solid solution
Zhao et al. Enhanced dielectric and multiferroic properties in BaTiO3 doped Bi0. 85Nd0. 15Fe0. 98Mn0. 02O3 ceramics
Wu et al. Effects of HfO2 dopant on the structure, magnetic and electrical properties of NiZnCo ferrites
JP6061111B2 (ja) 酸化物セラミックス、及びセラミック電子部品
Bobić et al. Tailoring the ferroelectric and magnetic properties of Bi5Ti3FeO15 ceramics by doping with Co and Y
US9950958B2 (en) Electromagnetic effect material and ceramic electronic component
JP5884917B2 (ja) 酸化物セラミックス、及びセラミック電子部品
Gao et al. Effect of Ti doping on the dielectric, ferroelectric and magnetic properties of Bi0. 86La0. 08Sm0. 14FeO3 ceramics
Jain et al. Emergence of magnetic and magnetoelectric characteristics (1-x) BaTi0. 88Zr0. 12O3-xNi0. 75Co0. 25Fe2O4 dual phase ceramics
JP6150061B2 (ja) 酸化物セラミックスの製造方法、酸化物セラミックス、及びセラミック電子部品
JP6308376B2 (ja) 酸化物セラミックス、及びセラミック電子部品
Goel et al. Investigations on magnetoelectric response in binary ferroelectric {0.94 Na0. 5Bi0. 5TiO3 (NBT)-0.06 Ba0. 85Sr0. 15Zr0. 1Ti0. 9O3 (BSZT)}-ferrimagnetic (NiFe2O4) particulate composites
Jarupoom et al. Enhancement of electrostrictive and magnetic performance with high energy storage efficiency in Fe2O3 nanoparticles-modified Ba (Zr0. 07Ti0. 93) O3 multiferroic ceramics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532741

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837702

Country of ref document: EP

Kind code of ref document: A1